WO2017075825A1 - 一种数据存储的方法、终端设备及基站 - Google Patents

一种数据存储的方法、终端设备及基站 Download PDF

Info

Publication number
WO2017075825A1
WO2017075825A1 PCT/CN2015/094048 CN2015094048W WO2017075825A1 WO 2017075825 A1 WO2017075825 A1 WO 2017075825A1 CN 2015094048 W CN2015094048 W CN 2015094048W WO 2017075825 A1 WO2017075825 A1 WO 2017075825A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
parameter
base station
stored
configuration signaling
Prior art date
Application number
PCT/CN2015/094048
Other languages
English (en)
French (fr)
Inventor
曾元清
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to JP2017568120A priority Critical patent/JP6571213B6/ja
Priority to PCT/CN2015/094048 priority patent/WO2017075825A1/zh
Priority to US15/738,047 priority patent/US10595323B2/en
Priority to EP21153157.9A priority patent/EP3829093B1/en
Priority to EP15907667.8A priority patent/EP3300279B1/en
Priority to KR1020187000954A priority patent/KR102414613B1/ko
Priority to CN201580081109.5A priority patent/CN107683577B/zh
Priority to CN202010470976.0A priority patent/CN111641479A/zh
Publication of WO2017075825A1 publication Critical patent/WO2017075825A1/zh
Priority to US16/781,645 priority patent/US20200178265A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a data storage method, a terminal device, and a base station.
  • the Physical Downlink Share Channel (PDSCH) in the Long Term Evolution (LTE) system supports the Hybrid Automatic Repeat Request (HARQ) function, which improves the reliability of data transmission.
  • the terminal device receives downlink control signaling (DCI) sent by the base station, and acquires scheduling information corresponding to the PDSCH.
  • the scheduling information may include physical resource location and quantity, and modulation coding. Level and other content.
  • the terminal device can receive the PDSCH according to the scheduling information, and demodulate and decode the transport block (TB) carried therein. If the decoding is correct, the terminal device feeds back Acknowledgement (ACK) information to the base station. If the decoding fails, the terminal device feeds back Negative Acknowledgment (NACK) information to the base station. Further, the base station retransmits the TB after receiving the NACK information.
  • DCI downlink control signaling
  • NACK Negative Acknowledgment
  • the LTE system uses Carrier Aggregation (CA) technology, which aggregates multiple LTE Carriers (CCs) to achieve greater transmission bandwidth.
  • CA Carrier Aggregation
  • LAA License Assisted Access
  • the Block error rate of a single transmission on the unlicensed carrier is generally considered (Block).
  • the Error Rate, BLER performance will be better than the authorized carrier.
  • the unlicensed carrier is shared by a plurality of nodes, the time for one base station to occupy one unlicensed carrier is limited. Therefore, the method of the prior art is adopted, that is, determining the number and size of TBs that are failed to be decoded by the terminal device according to the number of aggregated carriers, and the efficiency is low.
  • the embodiment of the invention provides a data storage method, so that the terminal device stores the number of TBs that fail to decode with higher efficiency.
  • the first aspect provides a data storage method, including: receiving, by a terminal device, configuration signaling sent by a base station; and determining, by the terminal device, the first parameter according to the configuration signaling, when the terminal device receives the translation When the number of failed transmission blocks TB is not less than the first parameter, the number of TBs stored by the terminal device in the buffer is not less than the first parameter.
  • the first parameter is used by the terminal device to determine the number of TBs that are to be decoded for decoding failure.
  • the method may further include: the terminal device receives the TB sent by the base station, and decodes the TB therein. And determining, according to the first parameter, the TB that failed to be decoded.
  • the terminal device can determine the TB that fails to be decoded according to the first parameter indicated by the configuration signaling sent by the base station, so that the utilization efficiency of the storage space can be improved.
  • the storage space can be a buffer.
  • the configuration signaling includes the first parameter.
  • the terminal device can directly acquire the first parameter according to the configuration signaling.
  • the configuration signaling includes a second parameter.
  • the first parameter is represented as N num_TB
  • the second parameter is represented as N refer
  • L is a predefined constant.
  • determining to store part or all of the received decoding failure TB when the number of failed TBs received by the terminal device is greater than the first parameter, determining to store part or all of the received decoding failure TB. That is, the number of stored TBs that failed to decode is greater than or equal to the first parameter.
  • the terminal device may store the received TB that fails to decode according to the priority order.
  • the TB that fails to be transmitted on the primary carrier has a first priority
  • the TB that fails to be transmitted on the authorized secondary carrier has a second priority
  • the TB that fails to be transmitted on the unlicensed carrier has Third priority.
  • the terminal device determines, according to the first parameter, a minimum bit to be stored by each CB for each CB in the TB that is to be stored failed to be stored.
  • the number n SB a minimum bit to be stored by each CB for each CB in the TB that is to be stored failed to be stored.
  • the determining the minimum number of bits to be stored by each CB includes:
  • N cb represents the coded bit length input by the corresponding CB in the rate matcher of the base station
  • C represents the number of CBs included in the TB that failed to be stored
  • N' soft represents One of the total lengths of the plurality of buffers reported by the terminal device, N num_TB is the first parameter.
  • the determining the minimum number of bits to be stored by each CB includes:
  • K ⁇ indicates the length of the system information corresponding to the CB
  • N cb indicates the length of the coded bit input by the corresponding CB in the rate matcher of the base station
  • C indicates the TB included in the decoding failure to be stored.
  • a method of encoding block storage comprising:
  • the terminal device receives a transport block TB sent by the base station, where the TB includes a plurality of coding blocks CB;
  • the terminal device fails to decode the TB, and determines that the TB is to be stored
  • the terminal device determines a minimum number of bits n SB to be stored by each CB in the TB;
  • the determining the minimum number of bits n SB to be stored by each CB in the TB includes:
  • the n SB is determined according to the coded bit length input by the corresponding CB in the rate matcher of the base station.
  • determining the n SB according to the length of the system information corresponding to the CB including:
  • n SB min(K ⁇ ,P), where K ⁇ is the length of the system information corresponding to the CB, and the value of P is predefined by the standard or calculated by the base station or according to an agreed method.
  • determining the n SB according to the coded bit length input by the corresponding CB in the rate matcher of the base station includes:
  • n SB min(N cb ,Q), where N cb is the coded bit length of the corresponding CB input in the rate matcher of the base station, and the value of Q is predefined by the standard or configured by the base station or according to an agreed method Calculated.
  • a third aspect provides a method for data storage, including: a base station determining a first parameter; the base station sending configuration signaling to a terminal device, where the configuration signaling is used to indicate the first parameter, so that When the number of the transmission blocks TB that are failed to be decoded by the terminal device is not less than the first parameter, the number of TBs stored by the terminal device in the buffer is not less than the first parameter.
  • the first parameter is used by the terminal device to determine the number of transmission blocks TB that are to be decoded and failed to be stored.
  • the configuration signaling includes the first parameter.
  • the terminal device can directly acquire the first parameter according to the configuration signaling.
  • the configuration signaling includes a second parameter.
  • the first parameter is represented as N num_TB
  • the second parameter is represented as N refer
  • L is a predefined constant.
  • a fourth aspect provides a terminal device, including: a receiving unit, configured to receive configuration signaling sent by a base station. a determining unit, configured to determine, according to the configuration signaling, a first parameter, where the terminal device is in the buffer when the number of the transmission block TB that is failed to be decoded by the terminal device is not less than the first parameter The number of TBs stored in is not less than the first parameter.
  • the terminal device can be used to perform the various processes performed by the terminal device in the method of the first aspect and its implementation described above.
  • a terminal device including: a receiver, a processor, and a memory.
  • the receiver is configured to receive configuration signaling sent by the base station.
  • the processor is configured to determine the first parameter according to the configuration signaling.
  • the memory is used to store the TB that failed to decode.
  • the terminal device can be used to perform the various processes performed by the terminal device in the method of the first aspect and its implementation described above.
  • the sixth aspect provides a terminal device, including: a receiving unit, configured to receive a transport block TB sent by a base station, where the TB includes multiple coding blocks CB, and a processing unit, configured to decode the TB, and Determining that the TB is to be stored; and determining a minimum number of bits n SB to be stored by each CB in the TB; wherein the processing unit is specifically configured to: according to the CB corresponding system information for decoding the correct CB The length determines the n SB ; for other CBs, the n SB is determined according to the coded bit length input by the corresponding CB in the rate matcher of the base station.
  • the terminal device can be used to perform various processes performed by the terminal device in the method of the second aspect and its implementation described above.
  • a terminal device includes: a receiver, configured to receive a transport block TB sent by a base station, where the TB includes a plurality of coding blocks CB, and a processor, configured to decode the TB, and Determining that the TB is to be stored; also for determining a minimum number of bits n SB to be stored by each CB in the TB; a memory for storing the TB.
  • the processor is specifically configured to: determine, according to the length of the system information corresponding to the CB, the n SB for the CB that is correctly decoded; and, for other CBs, the code that is input in the rate matcher of the base station according to the corresponding CB. The bit length determines the n SB .
  • the terminal device can be used to perform various processes performed by the terminal device in the method of the second aspect and its implementation described above.
  • a base station comprising: a determining unit, configured to determine a first parameter. a sending unit, configured to send configuration signaling to the terminal device, where the configuration signaling is used to indicate the first parameter, so that the number of transmission blocks TB that are failed to be decoded by the terminal device is not less than the In the first parameter, the number of TBs stored by the terminal device in the buffer is not less than the first parameter.
  • the base station can be used to perform the various processes performed by the base station in the method of the above third aspect and its implementation.
  • a base station comprising: a transmitter, a processor, and a memory.
  • the processor is operative to determine the first parameter.
  • the transmitter is configured to send configuration signaling to the terminal device, where the configuration signaling is used to indicate the first parameter, where the first parameter is used by the terminal device to determine the number of transmission blocks TB that are to be stored failed to be decoded.
  • the memory is used to store instruction code executed by the processor.
  • the base station can be used to perform the various processes performed by the base station in the method of the above third aspect and its implementation.
  • a computer readable storage medium storing a program causing a terminal device to perform the above first aspect, and any one of various implementations of the data storage Methods.
  • a computer readable storage medium storing a program causing a terminal device to perform any of the above second aspect, and various implementations thereof The method of storage.
  • the terminal device receives, by the base station, the first parameter that is sent by the base station.
  • Configuration signaling when the number of TBs that the terminal actually fails to decode is greater than the first parameter, the terminal determines that the number of TBs that are to be decoded failed to be stored is not less than the first parameter, so that the storage efficiency can be improved and the buffer can be improved. Utilization efficiency.
  • FIG. 1 is a schematic diagram of an LTE carrier aggregation technique.
  • FIG. 2 is a schematic flowchart of a method for data storage according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the number of bits of a CB stored in an embodiment of the present invention.
  • FIG. 4 is another schematic diagram of the number of bits of a CB stored in an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for encoding block storage according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is another schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 8 is another schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 9 is another schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 11 is another schematic block diagram of a base station according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside in a process and/or execution thread, and the component can be in place On one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the present invention describes various embodiments in connection with a terminal device.
  • the terminal device can communicate with one or more core networks via a Radio Access Network (RAN), and the terminal device can be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, and a mobile station. , mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the present invention describes various embodiments in connection with a base station.
  • the base station may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or a base station (NodeB, NB) in the WCDMA system, or may be an LTE.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • An evolved base station (Evolutional Node B, eNB or eNodeB) in the system, or the base station may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a future 5G network.
  • LTE-Advanced (LTE-A) technology has evolved from LTE technology.
  • Release 10 (R10) system of LTE-A bandwidth expansion is started using CA technology, that is, up to five LTE carriers CC1 to CC5 as shown in FIG. 1 can be aggregated to achieve a transmission bandwidth of up to 100 MHz.
  • the aggregated carrier may be referred to as a component carrier.
  • the base station can configure the number of carriers for which the aggregate transmission is performed for each terminal device according to the capabilities of the terminal device and the amount of data transmitted.
  • the aggregated multiple component carriers include: (1) a primary carrier (Primary Cell, PCell), and only one primary carrier, and the terminal device performs an initial connection establishment process on the primary carrier or starts a connection re-establishment process.
  • the terminal device only receives the common search space of the PDCCH on the primary carrier, and the terminal device transmits the PUCCH only on the primary carrier.
  • a secondary carrier (Secondary Cell, SCell), other component carriers except the primary carrier are secondary carriers, and the terminal device can receive the DCI and the PDSCH on the secondary carrier, and send the PUSCH on the secondary carrier.
  • LAA technology The main features of LAA technology include: (1) Unlicensed frequency bands need to be aggregated with licensed frequency bands, and unlicensed frequency bands can only work as secondary carriers. To better support LAA technology, the LTE-A Release 13 (R13) system can support up to 32 component carriers for aggregation. (2) The use of unlicensed frequency bands is not only limited by the scheduling of the base station, but also limited by the load of the unlicensed frequency band, that is, it needs to be used by a competition mechanism.
  • the current standard stipulates that the base station performs rate matching on each code block (CB) in each TB before transmitting to obtain the bit length actually needed to be transmitted.
  • the length of the coded information of each code block input into the rate matcher is N cb , and the coded bit length of the input is represented by the following formula:
  • K w 3K ⁇
  • C is the number of CBs included in the TB
  • K ⁇ is the length of the system information of the CB
  • min is the minimum value.
  • the N soft is one of the total lengths of the multiple buffers reported by the terminal device, where the base station selects one of the multiples to ensure consistency with the understanding of the terminal device, and the specific selection principle may refer to the existing standard TS36.212. Section 5.1.4.1.2, not detailed here.
  • the value of K C is related to the level of the terminal device.
  • K MIMO is the maximum number of TBs supported on the component carrier
  • the terminal device After receiving the data sent by the base station, the terminal device demodulates and decodes the TB carried therein.
  • the TB rule that the decoding fails when the number of TBs that fail to decode on each component carrier is not less than K MIMO ⁇ min(M DL_HARQ , M limit ), the number of TBs that the terminal device needs to store at least the decoding failure is K. MIMO ⁇ min (M DL_HARQ , M limit ). And storing at least each CB in the stored TB Bit. among them, The total number of polymeric carriers, in particular the principle of selecting a total length N 'soft buffers for the plurality of terminal devices reported in which the terminal device can be described with reference to the existing protocol TS36.213 Section 7.1.8, where No longer detailed.
  • the buffer of the terminal device is first halved based on the aggregated carrier, and then halved based on the transmission mode and the number of HARQ processes in each carrier.
  • the unlicensed carrier is shared by a plurality of nodes, the time for one base station to occupy one unlicensed carrier is limited. Therefore, the method of the prior art is adopted, that is, determining the number and size of TBs that are failed to be decoded by the terminal device according to the number of aggregated carriers, and the efficiency is low.
  • the parameter is predefined by the base station, so that when the number of TBs that the terminal device fails to decode is greater than the parameter, the number of TBs that the terminal device stores for decoding failure is at least the parameter. That is to say, in the embodiment of the present invention, it is not necessary to determine the number of TBs that need to be stored for decoding failure according to the number of aggregated carriers, so that the storage efficiency can be improved.
  • the data storage method provided by the embodiment of the present invention may be as shown in FIG. 2, including:
  • the terminal device receives configuration signaling sent by the base station.
  • the terminal device determines, according to the configuration signaling, a first parameter, where the terminal device is connected. When the number of the failed transmission block TB is not less than the first parameter, the number of TBs stored by the terminal device in the buffer is not less than the first parameter.
  • the terminal device performs, according to the first parameter indicated by the configuration signaling sent by the base station, when the number of TBs that the terminal device fails to decode is not less than the first parameter, in the buffer of the terminal device.
  • the number of stored TBs that fail to decode is not less than the first parameter, which can improve the utilization efficiency of the storage space.
  • the storage space can be a buffer.
  • the base station first determines the first parameter, and then the base station sends configuration signaling to the terminal device, where the configuration signaling is used to indicate the first parameter.
  • the value of the first parameter determined by the base station is also different.
  • the base station may determine the first parameter according to at least one of the following factors: (1) a total number of aggregated carriers; (2) a total number of unlicensed carriers in the aggregated carrier; (3). The bandwidth of each component carrier; (4) The maximum number of HARQ processes in the component carrier of Time Division Duplex (TDD); (5) The transmission mode on each component carrier.
  • the transmission modulus may refer to the maximum number of spatial layers, the maximum number of TBs, and the like.
  • the base station may also determine the first parameter according to other factors, and is not listed here. The invention is not limited thereto.
  • the configuration signaling includes a first parameter. That is, the configuration signaling directly indicates the value of the first parameter. For example, the first field in the configuration signaling is padded with the value A. Then, the terminal device reads the value A in the first field of the configuration signaling to determine that the value read is the value of the first parameter.
  • the first field may be agreed by the base station and the terminal device in advance or agreed by the protocol.
  • the configuration signaling includes a second parameter, and the first parameter may be determined according to the second parameter. That is, the configuration signaling indirectly indicates the value of the first parameter.
  • the second field in the configuration signaling is padded with the value B. Then, the terminal device reads the value B in the second field of the configuration signaling to determine that the value read is the value of the second parameter.
  • the second field may be agreed by the base station and the terminal device in advance or agreed by the protocol.
  • the relationship between the first parameter and the second parameter may be expressed as follows:
  • L is a predefined constant.
  • the value of L may be a protocol, or the value of L may be configured by the base station to the terminal device.
  • the base station may notify the terminal device by using control signaling or scheduling signaling.
  • the terminal device determines the first parameter in S120
  • the number of TBs that are to be decoded and failed to be stored may be determined according to the first parameter in a subsequent data transmission process. And further storing the TB that failed to decode.
  • the terminal device may determine, after receiving the TB sent by the base station, the TB that fails to be stored and decoded.
  • the terminal device may receive data (such as PDSCH) transmitted by the base station and decode the TB carried therein. After decoding, the terminal device can obtain the number of TBs that actually failed to decode.
  • data such as PDSCH
  • the terminal device can store the TB that actually fails to decode.
  • the terminal device determines to store all the TBs that failed to decode.
  • the number of TBs that the terminal device fails to actually decode is greater than (or equal to) the first parameter, it may be determined that the number of TBs that are to be decoded failed to be stored is greater than or equal to the first parameter.
  • the terminal device determines to store some or all of the received TBs that failed to decode. That is, the number of stored TBs that failed to decode is greater than or equal to the first parameter. That is, the terminal device stores at least N num_TB decoding TBs.
  • the terminal device determines that all the received TBs that fail to decode are stored, that is, the storage.
  • the number of TBs that failed to decode is equal to the first parameter.
  • the first parameter may be regarded as the minimum value of the upper limit of the number of TBs that the terminal device stores in the buffer.
  • the first parameter refers to: when the number of TBs that the terminal device fails to actually decode is not less than the first parameter, the decoding loss stored by the terminal device The minimum number of defeats.
  • the terminal device can determine that the number N store_NB of the decoding failure TB to be stored satisfies N num_TB ⁇ N store_NB ⁇ N num-fail . After determining the number of TBs that are to be decoded for decoding failure, the terminal device can store the TB that failed to decode.
  • the terminal device can determine to store N store_NB failed decoding TBs, where N num_TB ⁇ N store_NB ⁇ N num-fail .
  • the terminal device may select N store_NB of the N num-fail decoding failed TBs for storage. And, the terminal device discards the remaining N num-fail -N store_NB TBs that failed to decode.
  • the terminal device may store the TB that fails to be decoded according to the priority order. Specifically, the TB that fails to be transmitted and transmitted on the primary carrier may be preferentially stored, and then the decoding that is transmitted on the authorized secondary carrier fails to be decoded. TB, finally storing the failed TB transmitted on the unlicensed carrier.
  • the TB that fails to decode on the primary carrier has a first priority (highest priority), and the TB that fails to decode on the authorized secondary carrier has a second priority and transmits on the unlicensed carrier.
  • the TB that failed to decode has a third priority.
  • N store_NB N num_TB as an example.
  • N num_fail fails to decode
  • the TB transmitted on the authorized carrier is N num_licen
  • the TB transmitted on the primary carrier is N num_pri .
  • the TB transmitted on the unlicensed carrier is N num_unlicen
  • N num_licen +N num_unlicen N num-fail , N num_pri ⁇ N num_licen .
  • the terminal device first discards the TB that failed to decode transmitted on the unlicensed carrier.
  • the terminal device discards the TB that failed to be transmitted on the N num-fail -N num_TB unlicensed carriers.
  • the terminal device will also discard A partially failed TB transmitted on an authorized secondary carrier.
  • the terminal device also discards the transmission on part of the primary carrier. Decoding failed TB.
  • the terminal device may determine, according to the first parameter, a minimum number of bits to be stored by each CB for each CB in the TB that is to be stored for decoding failure.
  • the minimum number of bits can be expressed as n SB .
  • N cb represents the coded bit length input by the corresponding CB in the rate matcher of the base station
  • C represents the number of CBs included in the TB that failed to be stored
  • N' soft represents One of the total lengths of the plurality of buffers reported by the terminal device.
  • n SB is the minimum value of the upper limit of the number of coded bits stored in the buffer by each CB in the TB that fails to decode.
  • CB of the terminal apparatus stores at least n bits encoded information SB.
  • K ⁇ indicates the length of the system information corresponding to the CB
  • N cb indicates the length of the coded bit input by the corresponding CB in the rate matcher of the base station
  • C indicates the TB included in the decoding failure to be stored.
  • the number of CBs, N' soft represents one of the total lengths of the plurality of buffers reported by the terminal device.
  • CBs refer to CBs that fail to decode or are not decoded.
  • CBs are other CBs in the TB than the correct CB.
  • the third CB decoding in the TB that failed to be stored will fail or be decoded. Then, it can be determined that the minimum number of bits to be stored by the second CB is n SB1 , and the minimum number of bits to be stored by the third CB is determined to be n SB2 .
  • n SB1 and n SB2 refer to the minimum value of the upper limit of the number of coded bits stored in the buffer by each CB in the TB that fails to decode.
  • the terminal device stores the decoded correct CB SB1 at least n bits of encoded information.
  • the terminal device stores at least n SB 2 bits of coded information of the decoded failed or uncoded CB. .
  • N terminal apparatus determines a first TB num-fail fails to decode a TB of the. Further, the terminal device can determine the number of bits of each CB in the first TB to be stored. It can be understood that the minimum value of the number of coded bits stored in the buffer by each CB is determined by the embodiment of the present invention.
  • n SB the number of bits of each CB in the first TB to be stored. It should be understood that since the N cbs corresponding to different CBs are different, the n SBs corresponding to different CBs may also be different.
  • the terminal device successfully decodes the second CB, and the terminal device fails to decode the third CB or does not decode the third CB. Then, at this time, it can be determined that the number of bits of the second CB in the first TB to be stored is n SB1 , and the number of bits of the third CB in the first TB to be stored is determined to be n SB2 .
  • n SB1 and n SB2 since ⁇ N ⁇ N cb , n SB1 ⁇ n SB2 . That is to say, for the second CB that is successfully decoded, the terminal device can store only its system information without storing the check information, thereby leaving more buffer space for decoding failure or undecoding. CB.
  • a TB includes 4 CBs: CB1, CB2, CB3, and CB4.
  • CB1 and CB2 are decoded correctly, and CB3 and CB4 are decoded (or undecoded).
  • the buffer size of the terminal device is 1TB.
  • the number of bits of the four CBs stored in the buffer is n SB .
  • the number of bits of CB1 and CB2 stored in the buffer is n SB1
  • the number of bits of CB3 and CB4 is n SB2 .
  • the storage space of the buffer can be saved, as shown in (a) of FIG.
  • CB3 and CB4 can store more verification information, as shown in (b) of FIG. It can be seen that for the CB with successful decoding and decoding failure, different methods are used to determine the number of bits, and the combining gain can be improved.
  • the terminal device receives the configuration signaling sent by the base station to indicate the first parameter.
  • the terminal determines that the decoding to be stored fails.
  • the number of TBs is not less than the first parameter, so that the efficiency of storage can be improved and the utilization efficiency of the buffer can be improved.
  • FIG. 5 is an adaptive flowchart of a method for encoding block storage according to an embodiment of the present invention. The method shown in Figure 5 is performed by a terminal device, the method comprising:
  • the terminal device receives a TB sent by a base station, where the TB includes multiple CBs.
  • the terminal device fails to decode the TB, and determines that the TB is to be stored.
  • the terminal device determines a minimum number of bits n SB to be stored by each CB in the TB.
  • the S230 includes: determining, for the CB that is correct for decoding, the n SB according to the length of the system information of the corresponding CB; and for other CBs, determining the n according to the coded bit length input by the corresponding CB in the rate matcher of the base station. SB .
  • the minimum number of bits to be stored by the CB is different, which can save the storage space of the buffer and improve the combining gain.
  • the TB in S210 may be a decoding failed TB transmitted on the primary carrier, or may be a decoding failed TB transmitted on the authorized secondary carrier.
  • the present invention is not limited thereto.
  • CBs refer to CBs that fail to decode or are not decoded.
  • CBs are other CBs in the TB than the correct CB.
  • n SB min(K ⁇ , P).
  • K ⁇ is the length of the system information corresponding to the CB
  • P is predefined by the standard or calculated by the base station or according to an agreed method.
  • the value of P can be a standard predefined value, such as N1.
  • the value of P may be sent by the base station to the terminal device through control signaling or the like.
  • a method of calculating P can be agreed between the base station and the terminal device. For example, you can agree on the method of calculating P as follows:
  • N' soft , C, N num_TB , K MIMO , M DL_HARQ , M limit The meanings are as described in the foregoing embodiments, and are not described herein again.
  • the minimum number of bits to be stored is related to the system information length of the CB.
  • n SB min(N cb ,Q).
  • N cb is the coded bit length input by the CB in the rate matcher of the base station
  • Q is predefined by the standard or calculated by the base station or according to an agreed method.
  • the value of Q can be a standard predefined value, such as N2.
  • the value of Q may be sent by the base station to the terminal device through control signaling or the like.
  • a method of calculating Q can be agreed between the base station and the terminal device. For example, you can agree to calculate Q as follows:
  • N' soft , C, N num_TB , K MIMO , M DL_HARQ , M limit The meanings are as described in the foregoing embodiments, and are not described herein again.
  • the minimum number of bits to be stored is related to the coded bit length input by the CB in the rate matcher of the base station (ie, the transmitting end).
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device 60 in FIG. 6 includes a receiving unit 601 and a determining unit 602.
  • the receiving unit 601 is configured to receive configuration signaling sent by the base station.
  • a determining unit 602 configured to determine, according to the configuration signaling received by the receiving unit 601, a first parameter, when the number of the failed transmission transport block TB received by the terminal device 60 is not less than the first parameter, the terminal The number of TBs that device 60 stores in the buffer is not less than the first parameter.
  • the terminal device determines, according to the first parameter indicated by the configuration signaling sent by the base station, the TB that fails to be stored, which can improve the utilization efficiency of the storage space.
  • the configuration signaling includes the first parameter.
  • the determining unit 602 can directly determine the first parameter.
  • the configuration signaling includes a second parameter.
  • the first parameter is represented as N num_TB
  • the second parameter is represented as N refer
  • L is a predefined constant.
  • the value of L may be protocol-defined, or the value of L may be configured by the base station to the terminal device.
  • the base station may notify the terminal device by using control signaling or scheduling signaling.
  • the receiving unit 601 can be further configured to receive control signaling or scheduling signaling sent by the base station, where the control signaling or scheduling signaling includes a value of L.
  • the determining unit 602 is further configured to: after receiving the TB sent by the base station, determine a TB that fails to be stored for decoding.
  • the receiving unit 601 is further configured to receive the TB sent by the base station.
  • the determining unit 602 is specifically configured to: when the number of TBs that are failed to be decoded by the terminal device 60 is less than (or equal to) the first parameter, determine to store all the received decoding failures. TB.
  • the determining unit 602 is specifically configured to: when the number of TBs that are failed to be decoded by the terminal device 60 is not less than the first parameter, determine that the partially or all received decoding fails. TB.
  • the determining unit 602 is further configured to: determine, according to the first parameter, a minimum number of bits n SB to be stored by each CB for each coding block CB in the TB that is to be stored for decoding failure.
  • the determining unit 602 is specifically configured to: determine Where min is the minimum value, Represents rounding, N cb denotes the length of the encoded bit CB corresponding rate matching input of the base station, C represents the number of the CB to be stored decoding failed TB included, N 'soft representing the One of the total lengths of the plurality of buffers reported by the terminal device.
  • the determining unit 602 is specifically configured to: for decoding the correct CB, For other CBs,
  • K ⁇ indicates the length of the system information corresponding to the CB
  • N cb indicates the length of the coded bit input by the corresponding CB in the rate matcher of the base station
  • C indicates the TB included in the decoding failure to be stored.
  • number of CB, N 'soft denotes a total length of said plurality of buffers in the terminal device reports.
  • the terminal device 60 may further include a storage unit, configured to: store the TB that failed to decode in order of priority. Specifically, the TB that fails to be transmitted transmitted on the primary carrier may be preferentially stored, and then the TB that fails to be transmitted on the authorized secondary carrier is stored, and finally the TB that fails to be transmitted on the unlicensed carrier is stored.
  • the TB that fails to decode on the primary carrier has a first priority (highest priority), and the TB that fails to decode on the authorized secondary carrier has a second priority and transmits on the unlicensed carrier.
  • the TB that failed to decode has a third priority.
  • the receiving unit 601 may be implemented by a transceiver, and the determining unit 602 may be implemented by a processor.
  • the terminal device 70 can include a processor 701, a transceiver 702, and a memory 704.
  • the transceiver 702 can be configured to receive configuration signaling, data, and the like sent by the base station, and the transceiver 702 can be replaced by a receiver.
  • the processor 701 can be used to decode a TB or the like.
  • the memory 704 can be used to store instruction codes executed by the processor 701 for storing TBs that have failed decoding, and the like.
  • terminal device 70 The various components in terminal device 70 are coupled together by a bus system 703, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • a bus system 703 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the terminal device 60 shown in FIG. 6 or the terminal device 70 shown in FIG. 7 can implement the various processes implemented by the terminal device in the foregoing method embodiment shown in FIG. 2. To avoid repetition, details are not described herein again.
  • FIG. 8 is another schematic block diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device 80 shown in FIG. 8 includes a receiving unit 801 and a processing unit 802.
  • the receiving unit 801 is configured to receive a transport block TB sent by the base station, where the TB includes multiple coding blocks CB;
  • the processing unit 802 is configured to: decode the TB received by the receiving unit 801, and determine that the TB is to be stored;
  • the processing unit 802 is further configured to determine a minimum number of bits n SB that each CB in the TB is to store;
  • the processing unit 802 is specifically configured to:
  • the terminal device 80 may further include a storage unit for storing the TB.
  • the processing unit 802 is specifically configured to:
  • n SB is:
  • n SB min(K ⁇ ,P), where K ⁇ is the length of the system information corresponding to the CB, and the value of P is predefined by the standard or calculated by the base station or according to an agreed method.
  • n SB is determined to be:
  • n SB min(N cb ,Q), where N cb is the coded bit length of the corresponding CB input in the rate matcher of the base station, and the value of Q is predefined by the standard or configured by the base station or according to an agreed method Calculated.
  • the values of P and/or Q may be sent by the base station to the terminal device 80 through control signaling. That is to say, the receiving unit 901 can also be configured to receive control signaling sent by the base station.
  • the receiving unit 901 may be implemented by a transceiver
  • the processing unit 902 may be implemented by a processor.
  • the terminal device 90 can include a processor 901, a transceiver 902, and a memory 904.
  • the transceiver 902 can be configured to receive control signaling and TB sent by the base station, and the transceiver 902 can be replaced by a receiver.
  • the processor 901 can be used to decode a TB or the like.
  • the memory 904 can be used to store instruction codes executed by the processor 901 for storing TBs and the like.
  • bus system 903 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the terminal device 80 shown in FIG. 8 or the terminal device 90 shown in FIG. 9 can implement the various processes implemented by the terminal device in the foregoing method embodiment shown in FIG. 5. To avoid repetition, details are not described herein again.
  • FIG. 10 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • the base station 100 shown in FIG. 10 includes a determining unit 1001 and a transmitting unit 1002.
  • the determining unit 1001 is for determining the first parameter.
  • the sending unit 1002 is configured to send configuration signaling to the terminal device, where the configuration signaling is used to indicate the first parameter determined by the determining unit 1001, so that when the terminal device receives the decoding failed transmission block When the number of TBs is not less than the first parameter, the terminal device is in the buffer The number of TBs stored in is not less than the first parameter.
  • the values of the first parameters determined by the base station 100 are also different for different terminal devices.
  • the base station 100 may determine the first parameter according to at least one of the following factors: (1) a total number of aggregated carriers; (2) a total number of unlicensed carriers in the aggregated carrier; (3) The bandwidth of each component carrier; (4) the maximum number of HARQ processes in the component carrier of TDD; (5) the transmission mode on each component carrier.
  • the transmission modulus may refer to the maximum number of spatial layers, the maximum number of TBs, and the like.
  • the base station may also determine the first parameter according to other factors, and is not listed here. The invention is not limited thereto.
  • the configuration signaling includes the first parameter. If the first parameter represents N num_TB, the configuration includes a signaling value of N num_TB.
  • the configuration signaling includes a second parameter.
  • the first parameter is denoted as N num — TB
  • the second parameter is denoted as N refer
  • N num — TB N refer ⁇ L, where L is a predefined constant.
  • the sending unit 1002 is further configured to send control signaling or scheduling signaling to the terminal device, where the control signaling or scheduling signaling includes a value of L.
  • the determining unit 1001 may be implemented by a processor, and the sending unit 1002 may be implemented by a transceiver.
  • the base station 110 may include a processor 1101, a transceiver 1102, and a memory 1104.
  • the transceiver 1102 can be configured to send configuration signaling, data, and the like to the terminal device, and the transceiver 1102 can be replaced by a transmitter.
  • the processor 1101 can be used to determine a value or the like of the first parameter.
  • the memory 1104 can be used to store instruction codes and the like executed by the processor 1101.
  • the various components in base station 110 are coupled together by a bus system 1103, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the base station 100 shown in FIG. 10 or the base station 110 shown in FIG. 11 can implement the various processes implemented by the base station in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (Field).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例提出了一种数据存储的方法,包括:终端设备接收基站发送的配置信令;所述终端设备根据所述配置信令,确定第一参数,当所述终端设备接收到的译码失败的TB的数量不小于所述第一参数时,所述终端设备在缓存器中存储的TB数量不小于所述第一参数。这样,终端设备可以根据基站发送的配置信令所指示的第一参数,在接收到的译码失败的TB的数量不小于第一参数时,确定将要存储的译码失败的TB,这样能够提高存储空间的利用效率。

Description

一种数据存储的方法、终端设备及基站 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种数据存储的方法、终端设备及基站。
背景技术
长期演进(Long Term Evolution,LTE)系统中的物理下行共享信道(Physical Downlink Share Channel,PDSCH)支持混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)功能,这样可以提高数据传输的可靠性。具体地,终端设备与基站建立通信连接后,接收基站发送的下行控制信令(Downlink Control Information,DCI),并获取PDSCH对应的调度信息,例如,调度信息可以包括物理资源位置及数量、调制编码等级等内容。随后,终端设备可根据调度信息接收PDSCH,并对其中承载的传输块(Transport Block,TB)进行解调、译码。若译码正确,则终端设备向基站反馈确认(Acknowledgement,ACK)信息。若译码失败,则终端设备向基站反馈否定确认(Negative Acknowledgment,NACK)信息,进一步地,基站在收到NACK信息之后对该TB进行重传。
为实现带宽扩展,LTE系统使用载波聚合(Carrier Aggregation,CA)技术,即将多个LTE载波(Component Carrier,CC)聚合在一起,实现更大的传输带宽。
无线蜂窝系统中通过使用非授权频段扩展蜂窝系统的使用频率,例如授权辅助接入(License Assisted Access,LAA)技术。该LAA技术实现授权载波和非授权(Unlicensed)载波的聚合。
由于非授权载波上使用了先听后讲(Listen Before Talk,LBT)技术,且使用非授权载波的终端通常是低速或静止终端,通常认为非授权载波上的单次传输的块差错率(Block Error Rate,BLER)性能会好于授权载波。
然而,由于非授权载波由多个节点共享使用,因此一个基站占用一个非授权载波的时间是有限的。因此采用现有技术的方法,即根据聚合的载波数量来确定终端设备所存储的译码失败的TB的数量及大小,效率低下。
发明内容
本发明实施例提供了一种数据存储的方法,使得终端设备存储译码失败的TB的数量具有更高的效率。
第一方面,提供了一种数据存储的方法,包括:终端设备接收基站发送的配置信令;所述终端设备根据所述配置信令,确定第一参数,当所述终端设备接收到的译码失败的传输块TB的数量不小于所述第一参数时,所述终端设备在缓存器中存储的TB数量不小于所述第一参数。
换种理解,所述第一参数用于由所述终端设备确定将要存储的译码失败的TB的数量。
进一步地,还可以包括:终端设备接收基站发送的TB,对其中的TB进行译码。并根据第一参数,确定将要存储的译码失败的TB。
这样,终端设备可以根据基站发送的配置信令所指示的第一参数,确定将要存储的译码失败的TB,这样能够提高存储空间的利用效率。其中,存储空间可以是缓存器。
可选地,所述配置信令包括所述第一参数。这样,终端设备可以根据配置信令直接获取第一参数。
可选地,所述配置信令包括第二参数。这样,终端设备可以根据配置信令中的第二参数,经过计算等获取第一参数。具体地,终端设备确定第一参数为Nnum_TB=Nrefer×L。其中,所述第一参数表示为Nnum_TB,所述第二参数表示为Nrefer,L为预定义的常数。
结合第一方面,在第一种可能的实现方式中,当所述终端设备接收到的译码失败的TB的数量小于或等于所述第一参数时,确定存储所有接收到的译码失败的TB。
结合第一方面,在第二种可能的实现方式中,当所述终端设备接收到的译码失败的TB的数量大于所述第一参数时,确定存储部分或全部接收到的译码失败的TB。即存储的译码失败的TB的数量大于或等于第一参数。
其中,终端设备可以根据优先级顺序存储接收到的译码失败的TB。其中,在主载波上传输的译码失败的TB具有第一优先级,在授权辅载波上传输的译码失败的TB具有第二优先级,在非授权载波上传输的译码失败的TB具有第三优先级。
结合第一方面,在第三种可能的实现方式中,所述终端设备根据所述第 一参数,针对将要存储的译码失败的TB中的各个CB,确定所述各个CB将要存储的最小比特数量nSB
可选地,所述确定所述各个CB将要存储的最小比特数量,包括:
确定nSB为:
Figure PCTCN2015094048-appb-000001
其中,min表示取最小值,
Figure PCTCN2015094048-appb-000002
表示下取整,Ncb表示对应的CB在所述基站的速率匹配器中输入的编码比特长度,C表示所述将要存储的译码失败的TB所包括的CB的数量,N′soft表示所述终端设备上报的多个缓存器的总长度中的一个,Nnum_TB为所述第一参数。
可选地,所述确定所述各个CB将要存储的最小比特数量,包括:
对于译码正确的CB,
Figure PCTCN2015094048-appb-000003
对于其他CB,
Figure PCTCN2015094048-appb-000004
其中,min表示取最小值,
Figure PCTCN2015094048-appb-000005
表示下取整,KΠ表示对应CB的系统信息长度,Ncb表示对应CB在所述基站的速率匹配器中输入的编码比特长度,C表示所述将要存储的译码失败的TB所包括的CB的数量,N′soft表示所述终端设备上报的多个缓存器的总长度中的一个,Nnum_TB为所述第一参数。
第二方面,提供了一种编码块存储的方法,包括:
终端设备接收基站发送的传输块TB,所述TB包含多个编码块CB;
所述终端设备对所述TB译码失败,并确定将要存储所述TB;
所述终端设备确定所述TB中各个CB将要存储的最小比特数量nSB
其中,所述确定所述TB中各个CB将要存储的最小比特数量nSB,包括:
对于译码正确的CB,根据对应CB的系统信息长度确定所述nSB
对于其他CB,根据对应CB在所述基站的速率匹配器中输入的编码比特长度确定所述nSB
其中,对于译码正确的CB,根据对应CB的系统信息长度确定所述nSB,包括:
nSB=min(KΠ,P),其中KΠ为对应CB的系统信息长度,P的取值由标准预先定义或者由所述基站配置或者按照约定方法计算得到。
其中,对于其他CB,根据对应CB在所述基站的速率匹配器中输入的编码比特长度确定所述nSB,包括:
nSB=min(Ncb,Q),其中Ncb为对应CB在所述基站的速率匹配器中输入的编码比特长度,Q的取值由标准预先定义或者由所述基站配置或者按照约定方法计算得到。
第三方面,提供了一种用于数据存储的方法,包括:基站确定第一参数;所述基站向终端设备发送配置信令,所述配置信令用于指示所述第一参数,以使得当所述终端设备接收到的译码失败的传输块TB的数量不小于所述第一参数时,所述终端设备在缓存器中存储的TB数量不小于所述第一参数。
换种理解,所述第一参数用于所述终端设备确定将要存储的译码失败的传输块TB的数量。
可选地,所述配置信令包括所述第一参数。这样,终端设备可以根据配置信令直接获取第一参数。
可选地,所述配置信令包括第二参数。这样,终端设备可以根据配置信令中的第二参数,经过计算等获取第一参数。具体地,终端设备确定第一参数为Nnum_TB=Nrefer×L。其中,所述第一参数表示为Nnum_TB,所述第二参数表示为Nrefer,L为预定义的常数。
第四方面,提供了一种终端设备,包括:接收单元,用于接收基站发送的配置信令。确定单元,用于根据所述配置信令,确定第一参数,当所述终端设备接收到的译码失败的传输块TB的数量不小于所述第一参数时,所述终端设备在缓存器中存储的TB数量不小于所述第一参数。该终端设备可以用于执行上述第一方面及其实现方式的方法中由终端设备执行的各个过程。
第五方面,提供了一种终端设备,包括:接收器、处理器和存储器。接收器用于接收基站发送的配置信令。处理器用于根据所述配置信令,确定第一参数。存储器用于存储译码失败的TB。该终端设备可以用于执行上述第一方面及其实现方式的方法中由终端设备执行的各个过程。
第六方面,提供了一种终端设备,包括:接收单元,用于接收基站发送的传输块TB,所述TB包含多个编码块CB;处理单元,用于对所述TB译码失败,并确定将要存储所述TB;还用于确定所述TB中各个CB将要存储 的最小比特数量nSB;其中,所述处理单元,具体用于:对于译码正确的CB,根据对应CB的系统信息长度确定所述nSB;对于其他CB,根据对应CB在所述基站的速率匹配器中输入的编码比特长度确定所述nSB。该终端设备可以用于执行上述第二方面及其实现方式的方法中由终端设备执行的各个过程。
第七方面,提供了一种终端设备,包括:接收器,用于接收基站发送的传输块TB,所述TB包含多个编码块CB;处理器,用于对所述TB译码失败,并确定将要存储所述TB;还用于确定所述TB中各个CB将要存储的最小比特数量nSB;存储器,用于存储所述TB。其中,所述处理器,具体用于:对于译码正确的CB,根据对应CB的系统信息长度确定所述nSB;对于其他CB,根据对应CB在所述基站的速率匹配器中输入的编码比特长度确定所述nSB。该终端设备可以用于执行上述第二方面及其实现方式的方法中由终端设备执行的各个过程。
第八方面,提供了一种基站,包括:确定单元,用于确定第一参数。发送单元,用于向终端设备发送配置信令,所述配置信令用于指示所述第一参数,以使得当所述终端设备接收到的译码失败的传输块TB的数量不小于所述第一参数时,所述终端设备在缓存器中存储的TB数量不小于所述第一参数。该基站可以用于执行上述第三方面及其实现方式的方法中由基站执行的各个过程。
第九方面,提供了一种基站,包括:发送器、处理器和存储器。处理器用于确定第一参数。发送器用于向终端设备发送配置信令,所述配置信令用于指示所述第一参数,所述第一参数用于所述终端设备确定将要存储的译码失败的传输块TB的数量。存储器用于存储处理器执行的指令代码。该基站可以用于执行上述第三方面及其实现方式的方法中由基站执行的各个过程。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第一方面,及其各种实现方式中的任一种数据存储的方法。
第十一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第二方面,及其各种实现方式中的任一种数据存储的方法。
通过上述的本发明实施例,终端设备接收基站发送的用于指示第一参数 的配置信令,当终端实际译码失败的TB的数量大于第一参数时,终端确定将要存储的译码失败的TB的数量不小于第一参数,这样,能够提高存储的效率,提高缓存器的利用效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是LTE载波聚合技术的示意图。
图2是本发明实施例的数据存储的方法的一个示意性流程图。
图3是本发明实施例的存储CB的比特数量的一个示意图。
图4是本发明实施例的存储CB的比特数量的另一个示意图。
图5是本发明实施例的编码块存储的方法的一个示意性流程图。
图6是本发明实施例的终端设备的一个示意性框图。
图7是本发明实施例的终端设备的另一个示意性框图。
图8是本发明实施例的终端设备的另一个示意性框图。
图9是本发明实施例的终端设备的另一个示意性框图。
图10是本发明实施例的基站的一个示意性框图。
图11是本发明实施例的基站的另一个示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位 于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(General Packet Radio Service,GPRS)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统,以及未来的5G通信系统等。
本发明结合终端设备描述了各个实施例。终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备等。
本发明结合基站描述了各个实施例。基站可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该基站可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备等。
下面简要介绍本发明实施例的涉及的相关技术及概念。
载波聚合技术:
随着通信技术的发展,由LTE技术演进出了长期演进技术升级版(LTE-Advanced,LTE-A)技术。在LTE-A的版本10(Release10,R10)系统中,开始使用CA技术实现带宽扩展,即可以将如图1所示的最多5个LTE载波CC1至CC5聚合在一起,实现最大100MHz的传输带宽。其中,聚合的载波可以称为成员载波。根据终端设备的能力及所传输的数据量,基站可以针对每个终端设备配置其进行聚合传输的载波数量。
对于一个终端设备而言,聚合的多个成员载波包括:(1)主载波(Primary Cell,PCell),主载波只有一个,终端设备在主载波上进行初始连接建立过程或开始连接重新建立过程,终端设备只在主载波上接收PDCCH的公共搜索空间,且终端设备只在主载波上发送PUCCH。(2)辅载波(Secondary Cell,SCell),除主载波以外的其他成员载波都是辅载波,终端设备可在辅载波接收DCI、PDSCH,并在辅载波上发送PUSCH。
LAA技术:
目前,无线蜂窝系统中开始考虑通过使用非授权频段(Unlicensed频段,例如2.4GHz、5.8GHz等频段)扩展蜂窝系统的使用频率。其主要技术包括LAA技术。LAA技术的主要特点包括:(1)非授权频段需要与授权频段聚合使用,且非授权频段只能作为辅载波工作。为更好的支持LAA技术,LTE-A版本13(Release13,R13)系统可支持最多32个成员载波进行聚合。(2)非授权频段的使用不仅受限于基站的调度,也受限于非授权频段的负载,即需要经过竞争机制才能够使用。
目前标准中规定,基站在发送前要对每个TB中的每个编码块(Coded Block,CB)进行速率匹配,以得到实际需要传输的比特长度。其中各编码块的编码信息输入到速率匹配器中的长度为Ncb,该输入的编码比特长度由下式表示:
Figure PCTCN2015094048-appb-000006
其中,上式中的
Figure PCTCN2015094048-appb-000007
Kw=3KΠ,C为该TB包含的CB数量,KΠ为该CB的系统信息长度,min表示取最小 值。
Nsoft为终端设备上报的多个缓存器的总长度中的一个,其中,基站选取多个中的其中一个是为了保证与终端设备的理解一致,具体选取原则可以参照现有的标准TS36.212中5.1.4.1.2节,这里不再详述。KC的取值与终端设备的等级有关,KMIMO为该成员载波上支持的最大TB数量,MDL_HARQ为该成员载波上的最大HARQ进程数,Mlimit=8。
终端设备在接收到基站发送的数据之后,对其中承载的TB进行解调和译码。对于译码失败的TB规定,在每个成员载波上当译码失败的TB数量不小于KMIMO·min(MDL_HARQ,Mlimit)时,终端设备至少要存储的译码失败的TB的数量为KMIMO·min(MDL_HARQ,Mlimit)个。且对于存储的TB中的各个CB,至少存储
Figure PCTCN2015094048-appb-000008
比特。其中,
Figure PCTCN2015094048-appb-000009
为聚合载波总数,N′soft为终端设备上报的多个缓存器的总长度中的一个,其中,终端设备的具体选取原则可以参照现有的协议TS36.213中7.1.8节的描述,这里不再详述。
可见,在存储译码失败的TB的过程中,首先将终端设备的缓存器基于聚合载波进行平分后,再基于各载波内的传输模式、HARQ进程数等进行平分。
然而,由于非授权载波由多个节点共享使用,因此一个基站占用一个非授权载波的时间是有限的。因此采用现有技术的方法,即根据聚合的载波数量来确定终端设备所存储的译码失败的TB的数量及大小,效率低下。
本发明实施例中,由基站预先定义参数,这样,当终端设备实际译码失败的TB的数量大于该参数时,终端设备存储的译码失败的TB的数量至少为该参数。也就是说,本发明实施例中,无需根据聚合的载波数量确定需存储的译码失败的TB的数量,从而能够提高存储的效率。
具体的,本发明实施例所提供的数据存储的方法可以如图2所示,包括:
S110,终端设备接收基站发送的配置信令。
S120,终端设备根据所述配置信令,确定第一参数,当所述终端设备接 收到的译码失败的传输块TB的数量不小于所述第一参数时,所述终端设备在缓存器中存储的TB数量不小于所述第一参数。
本发明实施例中,终端设备根据基站发送的配置信令所指示的第一参数,使得当终端设备接收到的译码失败的TB的数量不小于第一参数时,在终端设备的缓存器中所存储的译码失败的TB的数量不小于该第一参数,这样能够提高存储空间的利用效率。其中,存储空间可以是缓存器。
可理解,在S110之前,基站首先确定第一参数,随后基站将配置信令发送至终端设备,其中,该配置信令用于指示第一参数。
具体的,针对不同的终端设备,基站所确定的第一参数的值也是不同的。
可选地,基站可以根据如下因素中的至少一项来确定所述第一参数:(1).聚合载波的总数量;(2).聚合载波中非授权载波的总数量;(3).各成员载波的带宽;(4).时分双工(Time Division Duplex,TDD)的成员载波内最大HARQ进程数;(5).各成员载波上的传输模式。这里,传输模数可以是指最大空间层数、最大TB数量等。可选地,基站也可以根据其他的因素确定第一参数,这里不再一一罗列。本发明对此不作限定。
作为一种实现方式,配置信令包括第一参数。也就是说,配置信令直接指示第一参数的值。例如,在配置信令的第一字段填充值A。那么,终端设备在配置信令的第一字段读取到值A,便可以确定所读取到的值为第一参数的值。其中,第一字段可以是基站与终端设备提前约定的或者是协议约定好的。
作为另一种实现方式,配置信令包括第二参数,第一参数可以根据第二参数确定。也就是说,配置信令间接指示第一参数的值。例如,在配置信令的第二字段填充值B。那么,终端设备在配置信令的第二字段读取到值B,便可以确定所读取到的值为第二参数的值。其中,第二字段可以是基站与终端设备提前约定的或者是协议约定好的。
其中,第一参数与第二参数的关系可以表示如下:
第一参数表示为Nnum_TB,第二参数表示为Nrefer,那么根据第二参数确定第一参数的关系为Nnum_TB=Nrefer×L。其中L为预定义的常数。
这里,L为常数,例如L=8或者L=16。具体地,L的值可以是协议约定的,或者,L的值可以是基站配置给终端设备的,例如基站可以通过控制信令或调度信令等通知给终端设备。
结合以上描述,作为一例,在S120中,如果终端设备读取该配置信令的第一字段为A,则可知第一参数为Nnum_TB=A。如果终端设备读取该配置信令的第二字段为B,则可知第一参数为Nnum_TB=A×L。
这样,终端设备在S120中确定第一参数之后,便可以在后续的数据传输过程中,根据该第一参数确定要存储的译码失败的TB的数量。并进一步对译码失败的TB进行存储。
也就是说,在S120之后,可以包括:终端设备在接收到基站发送的TB之后,确定将要存储的译码失败的TB。
在S120之后,终端设备可以接收基站发送的数据(如PDSCH),并对其中承载的TB进行译码。在译码之后,终端设备可以得到实际译码失败的TB的数量。
具体地,如果终端设备实际译码失败的TB的数量小于或等于第一参数,那么可以确定将要存储的译码失败的TB的数量等于实际译码失败的TB的数量。进一步地,终端设备可以存储实际译码失败的TB。
也就是说,当终端设备接收到的译码失败的TB的数量小于(或等于)第一参数时,终端设备确定存储所有接收到的译码失败的TB。
应注意,本发明实施例中,针对同一个TB,经过多次重传且都失败时,只记为一个译码失败的TB。也就是说,实际译码失败的TB中不同的TB互不相同。
具体地,如果终端设备实际译码失败的TB的数量大于(或等于)第一参数,那么可以确定将要存储的译码失败的TB的数量大于或等于第一参数。
也就是说,当终端设备接收到的译码失败的TB的数量大于(或等于)第一参数时,终端设备确定存储部分或全部接收到的译码失败的TB。即存储的译码失败的TB的数量大于或等于第一参数。也即终端设备存储至少Nnum_TB个译码失败的TB。
应注意,上述两种描述对于终端设备接收到的译码失败的TB的数量等于第一参数时的情形是一致的,均为:终端设备确定存储全部接收到的译码失败的TB,即存储的译码失败的TB的数量等于第一参数。
本发明实施例中,第一参数可以认为是终端设备在其缓存器中所存储的译码失败的TB的数量的上限的最小值。具体地,第一参数是指:当终端设备实际译码失败的TB的数量不小于第一参数时,终端设备所存储的译码失 败的数量的最小值。
举例来说,假设终端设备接收到的译码失败的TB为Nnum-fail个,且Nnum-fail>Nnum_TB。那么,终端设备可以确定将要存储的译码失败的TB的数量Nstore_NB满足Nnum_TB≤Nstore_NB≤Nnum-fail。在确定将要存储的译码失败的TB的数量之后,终端设备可以存储译码失败的TB。
或者,假设终端设备接收到的译码失败的TB为Nnum-fail个,且Nnum-fail>Nnum_TB。那么,终端设备可以确定存储Nstore_NB个译码失败的TB,其中Nnum_TB≤Nstore_NB≤Nnum-fail
具体的,终端设备可以从Nnum-fail个译码失败的TB中选取其中的Nstore_NB个进行存储。并且,终端设备丢弃其余的Nnum-fail-Nstore_NB个译码失败的TB。
可选地,终端设备可以按照优先级顺序存储译码失败的TB,具体的,可以优先存储在主载波上传输的译码失败的TB,然后再存储在授权辅载波上传输的译码失败的TB,最后再存储非授权载波上传输的译码失败的TB。
也就是说,在主载波上传输的译码失败的TB具有第一优先级(最高优先级),在授权辅载波上传输的译码失败的TB具有第二优先级,在非授权载波上传输的译码失败的TB具有第三优先级。
下面以Nstore_NB=Nnum_TB为例进行说明。
举例来说,假设Nnum-fail个译码失败的TB中,在授权载波上传输的TB为Nnum_licen个,在主载波上传输的TB为Nnum_pri个。在非授权载波上传输的TB为Nnum_unlicen个,且Nnum_licen+Nnum_unlicen=Nnum-fail,Nnum_pri≤Nnum_licen
在Nnum-fail>Nnum_TB的情况下,终端设备首先丢弃非授权载波上传输的译码失败的TB。
其中,若Nnum-fail-Nnum_unlicen≤Nnum_TB,那么终端设备丢弃Nnum-fail-Nnum_TB个非授权载波上传输的译码失败的TB。
进一步地,若终端设备丢弃全部在非授权载波上传输的译码失败的TB后需要存储的TB数量依然大于Nnum_TB,即Nnum-fail-Nnum_unlicen>Nnum_TB,那么,终端设备还将丢弃部分在授权辅载波上传输的译码失败的TB。
进一步地,若终端设备丢弃全部在授权辅载波上传输的译码失败的TB后需要存储的TB数量依然大于Nnum_TB,即Nnum_pri>Nnum_TB,那么,终端设备还将丢弃部分主载波上传输的译码失败的TB。
进一步地,终端设备可以根据第一参数,针对将要存储的译码失败的 TB中的各个CB,确定所述各个CB将要存储的最小比特数量。该最小比特数量可以表示为nSB
可选地,作为一个实施例,
Figure PCTCN2015094048-appb-000010
其中,min表示取最小值,
Figure PCTCN2015094048-appb-000011
表示下取整,Ncb表示对应的CB在所述基站的速率匹配器中输入的编码比特长度,C表示所述将要存储的译码失败的TB所包括的CB的数量,N′soft表示所述终端设备上报的多个缓存器的总长度中的一个。
也就是说,上述的nSB是指,译码失败的TB中各CB在缓存器中存储的编码比特数量的上限的最小值。具体地,当一个译码失败TB中的CB在基站的速率匹配器中输入的编码比特长度Ncb大于nSB时,终端设备存储该CB的至少nSB个比特编码信息。
可选地,作为另一个实施例,对于译码正确的CB,
Figure PCTCN2015094048-appb-000012
对于其他CB,
Figure PCTCN2015094048-appb-000013
其中,min表示取最小值,
Figure PCTCN2015094048-appb-000014
表示下取整,KΠ表示对应CB的系统信息长度,Ncb表示对应CB在所述基站的速率匹配器中输入的编码比特长度,C表示所述将要存储的译码失败的TB所包括的CB的数量,N′soft表示所述终端设备上报的多个缓存器的总长度中的一个。
可理解,其他CB是指译码失败或者未译码的CB。或者,也可以理解为,其他CB为TB中除译码正确的CB之外的其他CB。
作为另一种理解,若将要存储的译码失败的TB中的第二CB译码正确,将要存储的译码失败的TB中的第三CB译码失败或未进行译码。那么,可以确定第二CB将要存储的最小比特数量为nSB1,确定第三CB将要存储的最小比特数量为nSB2
其中,
Figure PCTCN2015094048-appb-000015
也就是说,上述的nSB1和nSB2是指,译码失败的TB中各CB在缓存器中存储的编码比特数量的上限的最小值。具体地,当译码正确的CB在基站的速率匹配器中输入的编码比特长度Ncb大于nSB1时,终端设备存储该译码正确 的CB的至少nSB1个比特编码信息。当译码失败或未译码的CB在基站的速率匹配器中输入的编码比特长度Ncb大于nSB2时,终端设备存储该译码失败或未译码的CB的至少nSB2个比特编码信息。
具体来讲,假设终端设备确定要存储Nnum-fail个译码失败的TB中的第一TB。进一步,终端设备可以确定将要存储的该第一TB中的各个CB的比特数量。可理解,本发明实施例所确定的是各个CB在缓存器中存储的编码比特数量的最小值。
作为一例,可以确定将要存储的该第一TB中的每个CB的比特数量为nSB。应理解,由于不同的CB对应的Ncb不同,所以不同的CB对应的nSB也可能不同。
作为另一例,假设第一TB包括第二CB和第三CB。且终端设备对第二CB译码成功,且终端设备对第三CB译码失败或未对第三CB进行译码。那么,此时,可以确定将要存储的该第一TB中的第二CB的比特数量为nSB1,确定将要存储的该第一TB中的第三CB的比特数量为nSB2
从上述关于nSB1和nSB2的表达式可以看出,由于KΠ<Ncb,所以nSB1<nSB2。也就是说,对于译码成功的第二CB,终端设备可以只存储其系统信息即可,而不需要存储校验信息,从而将更多的缓存空间留给译码失败或者未进行译码的CB。
举例来说,假设一个TB包括4个CB:CB1、CB2、CB3和CB4。其中,终端设备在译码时,CB1和CB2译码正确,CB3和CB4译码失败(或未译码)。假设终端设备的缓存器大小为1TB。
如图3所示,缓存器中所存储的4个CB的比特数量为nSB
如图4所示,缓存器中所示存储的CB1和CB2的比特数量为nSB1,CB3和CB4的比特数量为nSB2。这样,可以节省缓存器的存储空间,如图4中的(a)所示。或者,这样,CB3和CB4可以存储更多校验信息,如图4中的(b)所示。可见,针对译码成功与译码失败的CB,采用不同的方法确定比特数量,能够提高合并增益。
通过上述的本发明实施例,终端设备接收基站发送的用于指示第一参数的配置信令,当终端实际译码失败的TB的数量大于第一参数时,终端确定将要存储的译码失败的TB的数量不小于第一参数,这样,能够提高存储的效率,提高缓存器的利用效率。
图5是本发明实施例的编码块存储的方法的一个适应性流程图。图5所示的方法由终端设备执行,该方法包括:
S210,终端设备接收基站发送的TB,所述TB包含多个CB。
S220,终端设备对所述TB译码失败,并确定将要存储所述TB。
S230,终端设备确定所述TB中各个CB将要存储的最小比特数量nSB
其中,S230包括:对于译码正确的CB,根据对应CB的系统信息长度确定所述nSB;对于其他CB,根据对应CB在所述基站的速率匹配器中输入的编码比特长度确定所述nSB
本发明实施例中,针对译码成功与否,CB将要存储的最小比特数量不同,这样能够节省缓存器的存储空间,提高合并增益。
可选地,S210中的TB可以是在主载波上传输的译码失败的TB,或者,也可以是在授权辅载波上传输的译码失败的TB。本发明对此不限定。
可理解,其他CB是指译码失败或者未译码的CB。或者,也可以理解为,其他CB为TB中除译码正确的CB之外的其他CB。
可选地,对于译码成功的CB,nSB=min(KΠ,P)。其中KΠ为对应CB的系统信息长度,P的取值由标准预先定义或者由所述基站配置或者按照约定方法计算得到。
举例来说,P的值可以是标准预先定义的值,例如为N1。举例来说,P的值可以是基站通过控制信令等发送至该终端设备的。举例来说,基站与终端设备之间可以约定计算P的方法。例如,可以约定计算P的方法如下:
Figure PCTCN2015094048-appb-000016
或者,
Figure PCTCN2015094048-appb-000017
其中,N′soft,C,Nnum_TB,KMIMO,MDL_HARQ,Mlimit
Figure PCTCN2015094048-appb-000018
的含义如前述实施例所述,这里不再赘述。
也就是说,对于译码正确的CB,将要存储的最小比特数量与该CB的系统信息长度有关。
对于其他的CB,nSB=min(Ncb,Q)。其中Ncb为对应CB在所述基站的速率匹配器中输入的编码比特长度,Q的取值由标准预先定义或者由所述基站配置或者按照约定方法计算得到。
举例来说,Q的值可以是标准预先定义的值,例如为N2。举例来说,Q的值可以是基站通过控制信令等发送至该终端设备的。举例来说,基站与终端设备之间可以约定计算Q的方法。例如,可以约定计算Q的方法如下:
Figure PCTCN2015094048-appb-000019
或者,
Figure PCTCN2015094048-appb-000020
其中,N′soft,C,Nnum_TB,KMIMO,MDL_HARQ,Mlimit
Figure PCTCN2015094048-appb-000021
的含义如前述实施例所述,这里不再赘述。
也就是说,对于其他CB,将要存储的最小比特数量与该CB在基站(即发送端)的速率匹配器中输入的编码比特长度有关。
可理解,本发明实施例中,P和Q的值可以相等或者不相等,这里不作限定。
图6是本发明实施例的终端设备的一个示意性框图。图6中的终端设备60包括接收单元601和确定单元602。
接收单元601,用于接收基站发送的配置信令。
确定单元602,用于根据接收单元601接收到的所述配置信令,确定第一参数,当终端设备60接收到的译码失败的传输块TB的数量不小于所述第一参数时,终端设备60在缓存器中存储的TB数量不小于所述第一参数。
本发明实施例中,终端设备根据基站发送的配置信令所指示的第一参数,确定将要存储的译码失败的TB,这样能够提高存储空间的利用效率。
可选地,作为一个实施例,所述配置信令包括所述第一参数。则确定单元602可直接确定该第一参数。
可选地,作为另一个实施例,所述配置信令包括第二参数。则确定单元602可确定所述第一参数为Nnum_TB=Nrefer×L。其中,所述第一参数表示为Nnum_TB,所述第二参数表示为Nrefer,L为预定义的常数。
这里,L的值可以是协议约定的,或者,L的值可以是基站配置给终端设备的,例如基站可以通过控制信令或调度信令等通知给终端设备。可理解,接收单元601还可以用于接收基站发送的控制信令或调度信令,该控制信令或调度信令包括L的值。
进一步地,确定单元602,还可用于:在接收到基站发送的TB之后,确定将要存储的译码失败的TB。
可理解,接收单元601还用于接收基站发送的TB。
可选地,作为一例,确定单元602具体用于:当终端设备60接收到的译码失败的TB的数量小于(或等于)所述第一参数时,确定存储所有接收到的译码失败的TB。
可选地,作为另一例,确定单元602具体用于:当终端设备60接收到的译码失败的TB的数量不小于所述第一参数时,确定存储部分或全部接收到的译码失败的TB。
进一步地,确定单元602还可用于:根据所述第一参数,针对将要存储的译码失败的TB中的各个编码块CB,确定各个CB将要存储的最小比特数量nSB
可选地,确定单元602具体用于:确定
Figure PCTCN2015094048-appb-000022
其中,min表示取最小值,
Figure PCTCN2015094048-appb-000023
表示下取整,Ncb表示对应的CB在所述基站的速率匹配器中输入的编码比特长度,C表示所述将要存储的译码失败的TB所包括的CB的数量,N′soft表示所述终端设备上报的多个缓存器的总长度中的一个。
可选地,确定单元602具体用于:对于译码正确的CB,
Figure PCTCN2015094048-appb-000024
对于其他CB,
Figure PCTCN2015094048-appb-000025
其中,min表示取最小值,
Figure PCTCN2015094048-appb-000026
表示下取整,KΠ表示对应CB的系统信息长度,Ncb表示对应CB在所述基站的速率匹配器中输入的编码比特长度,C表示所述将要存储的译码失败的TB所包括的CB的数量,N′soft表示所述终端设备上报的多个缓存器的总长度中的一个。
并且,终端设备60还可进一步包括存储单元,用于:按照优先级顺序存储译码失败的TB。具体的,可以优先存储在主载波上传输的译码失败的TB,然后再存储在授权辅载波上传输的译码失败的TB,最后再存储非授权载波上传输的译码失败的TB。
也就是说,在主载波上传输的译码失败的TB具有第一优先级(最高优先级),在授权辅载波上传输的译码失败的TB具有第二优先级,在非授权载波上传输的译码失败的TB具有第三优先级。
应注意,本发明实施例中,接收单元601可以由收发器实现,确定单元602可以由处理器实现。如图7所示,终端设备70可以包括处理器701、收发器702和存储器704。
其中,收发器702可以用于接收基站发送的配置信令和数据等,且收发器702可以由接收器替代。处理器701可以用于对TB进行译码等。存储器704可以用于存储处理器701所执行的指令代码,用于存储译码失败的TB等。
终端设备70中的各个组件通过总线系统703耦合在一起,其中总线系统703除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图6所示的终端设备60或图7所示的终端设备70能够实现前述图2所示的方法实施例中由终端设备所实现的各个过程,为避免重复,这里不再赘述。
图8是本发明实施例的终端设备的另一个示意性框图。图8所示的终端设备80包括接收单元801和处理单元802。
接收单元801,用于接收基站发送的传输块TB,所述TB包含多个编码块CB;
处理单元802,用于对接收单元801接收到的所述TB译码失败,并确定将要存储所述TB;
处理单元802,还用于确定所述TB中各个CB将要存储的最小比特数量nSB
其中,处理单元802,具体用于:
对于译码正确的CB,根据对应CB的系统信息长度确定所述nSB
对于其他CB,根据对应CB在所述基站的速率匹配器中输入的编码比特长度确定所述nSB
进一步地,终端设备80还可以包括存储单元,用于存储所述TB。
其中,处理单元802,具体用于:
对于译码正确的CB,确定所述nSB为:
nSB=min(KΠ,P),其中KΠ为对应CB的系统信息长度,P的取值由标准预先定义或者由所述基站配置或者按照约定方法计算得到。
对于其他CB,确定所述nSB为:
nSB=min(Ncb,Q),其中Ncb为对应CB在所述基站的速率匹配器中输入的编码比特长度,Q的取值由标准预先定义或者由所述基站配置或者按照约定方法计算得到。
作为一例,P和/或Q的值可以是基站通过控制信令发送至终端设备80的。也就是说,接收单元901还可以用于接收基站发送的控制信令。
具体地,关于P和Q可以参见前述图5的实施例中的描述,为避免重复,这里不再赘述。
应注意,本发明实施例中,接收单元901可以由收发器实现,处理单元902可以由处理器实现。如图9所示,终端设备90可以包括处理器901、收发器902和存储器904。
其中,收发器902可以用于接收基站发送的控制信令和TB等,且收发器902可以由接收器替代。处理器901可以用于对TB进行译码等。存储器904可以用于存储处理器901所执行的指令代码,用于存储TB等。
终端设备90中的各个组件通过总线系统903耦合在一起,其中总线系统703除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图8所示的终端设备80或图9所示的终端设备90能够实现前述图5所示的方法实施例中由终端设备所实现的各个过程,为避免重复,这里不再赘述。
图10是本发明实施例的基站的一个示意性框图。图10所示的基站100包括确定单元1001和发送单元1002。
确定单元1001用于确定第一参数。
发送单元1002,用于向终端设备发送配置信令,所述配置信令用于指示确定单元1001所确定的所述第一参数,以使得当所述终端设备接收到的译码失败的传输块TB的数量不小于所述第一参数时,所述终端设备在缓存器 中存储的TB数量不小于所述第一参数。
具体的,针对不同的终端设备,基站100所确定的第一参数的值也是不同的。
可选地,基站100可以根据如下因素中的至少一项来确定所述第一参数:(1).聚合载波的总数量;(2).聚合载波中非授权载波的总数量;(3).各成员载波的带宽;(4).TDD的成员载波内最大HARQ进程数;(5).各成员载波上的传输模式。这里,传输模数可以是指最大空间层数、最大TB数量等。可选地,基站也可以根据其他的因素确定第一参数,这里不再一一罗列。本发明对此不作限定。
可选地,作为一个实施例,所述配置信令包括所述第一参数。若将第一参数表示为Nnum_TB,则配置信令包括Nnum_TB的值。
可选地,作为另一个实施例,所述配置信令包括第二参数。所述第一参数表示为Nnum_TB,第二参数表示为Nrefer,且Nnum_TB=Nrefer×L,其中L为预定义的常数。
可选地,发送单元1002还可以用于向终端设备发送控制信令或调度信令,该控制信令或调度信令包括L的值。
应注意,本发明实施例中,确定单元1001可以由处理器实现,发送单元1002可以由收发器实现,如图11所示,基站110可以包括处理器1101、收发器1102和存储器1104。
其中,收发器1102可以用于向终端设备发送配置信令和数据等,且收发器1102可以由发送器替代。处理器1101可以用于确定第一参数的值等。存储器1104可以用于存储处理器1101所执行的指令代码等。
基站110中的各个组件通过总线系统1103耦合在一起,其中总线系统803除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图10所示的基站100或图11所示的基站110能够实现前述所示的方法实施例中由基站所实现的各个过程,为避免重复,这里不再赘述。
可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field  Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应 过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种数据存储的方法,其特征在于,包括:
    终端设备接收基站发送的配置信令;
    所述终端设备根据所述配置信令,确定第一参数,当所述终端设备接收到的译码失败的传输块TB的数量不小于所述第一参数时,所述终端设备在缓存器中存储的TB数量不小于所述第一参数。
  2. 根据权利要求1所述的方法,其特征在于,所述配置信令包括所述第一参数。
  3. 根据权利要求1所述的方法,其特征在于,所述配置信令包括第二参数,
    所述确定第一参数,包括:确定所述第一参数为Nnum_TB=Nrefer×L,
    其中,所述第一参数表示为Nnum_TB,所述第二参数表示为Nrefer,L为预定义的常数。
  4. 根据权利要求1所述的方法,其特征在于,还包括:
    所述终端设备在接收到所述基站发送的TB之后,确定将要存储的译码失败的TB。
  5. 根据权利要求4所述的方法,其特征在于,所述确定将要存储的译码失败的TB,包括:
    当所述终端设备接收到的译码失败的TB的数量不小于所述第一参数时,所述终端设备确定存储部分或全部所述接收到的译码失败的TB。
  6. 根据权利要求1所述的方法,其特征在于,还包括:
    所述终端设备根据所述第一参数,针对将要存储的译码失败的TB中的各个编码块CB,确定所述各个CB将要存储的最小比特数量nSB
  7. 根据权利要求6所述的方法,其特征在于,所述确定所述各个CB将要存储的最小比特数量nSB,包括:
    Figure PCTCN2015094048-appb-100001
    其中,min表示取最小值,
    Figure PCTCN2015094048-appb-100002
    表示下取整,Ncb表示对应的CB在所述基站的速率匹配器中输入的编码比特长度,C表示所述将要存储的译码失败的TB所包括的CB的数量,N′soft表示所述终端设备上报的多个缓存器的总 长度中的一个,Nnum_TB为所述第一参数。
  8. 根据权利要求6所述的方法,其特征在于,所述确定所述各个CB将要存储的最小比特数量nSB,包括:
    对于译码正确的CB,
    Figure PCTCN2015094048-appb-100003
    对于其他CB,
    Figure PCTCN2015094048-appb-100004
    其中,min表示取最小值,
    Figure PCTCN2015094048-appb-100005
    表示下取整,KΠ表示对应CB的系统信息长度,Ncb表示对应CB在所述基站的速率匹配器中输入的编码比特长度,C表示所述将要存储的译码失败的TB所包括的CB的数量,N′soft表示所述终端设备上报的多个缓存器的总长度中的一个,Nnum_TB为所述第一参数。
  9. 根据权利要求5所述的方法,其特征在于,所述终端设备确定存储部分或全部所述接收到的译码失败的TB,包括:
    所述终端设备按照优先级,存储所述部分或全部所述接收到的译码失败的TB;
    其中,在主载波上传输的译码失败的TB具有第一优先级,在授权辅载波上传输的译码失败的TB具有第二优先级,在非授权载波上传输的译码失败的TB具有第三优先级。
  10. 一种编码块存储的方法,其特征在于,包括:
    终端设备接收基站发送的传输块TB,所述TB包含多个编码块CB;
    所述终端设备对所述TB译码失败,并确定将要存储所述TB;
    所述终端设备确定所述TB中各个CB将要存储的最小比特数量nSB
    其中,所述确定所述TB中各个CB将要存储的最小比特数量nSB,包括:
    对于译码正确的CB,根据对应CB的系统信息长度确定所述nSB
    对于其他CB,根据对应CB在所述基站的速率匹配器中输入的编码比特长度确定所述nSB
  11. 根据权利要求10所述的方法,其特征在于,对于译码正确的CB,根据对应CB的系统信息长度确定所述nSB,包括:
    nSB=min(KΠ,P),其中KΠ为对应CB的系统信息长度,P的取值由标 准预先定义或者由所述基站配置或者按照约定方法计算得到。
  12. 根据权利要求10所述的方法,其特征在于,对于其他CB,根据对应CB在所述基站的速率匹配器中输入的编码比特长度确定所述nSB,包括:
    nSB=min(Ncb,Q),其中Ncb为对应CB在所述基站的速率匹配器中输入的编码比特长度,Q的取值由标准预先定义或者由所述基站配置或者按照约定方法计算得到。
  13. 一种用于数据存储的方法,其特征在于,包括:
    基站确定第一参数;
    所述基站向终端设备发送配置信令,所述配置信令用于指示所述第一参数,以使得当所述终端设备接收到的译码失败的传输块TB的数量不小于所述第一参数时,所述终端设备在缓存器中存储的TB数量不小于所述第一参数。
  14. 根据权利要求13所述的方法,其特征在于,所述配置信令包括所述第一参数。
  15. 根据权利要求13所述的方法,其特征在于,所述配置信令包括第二参数,
    所述第一参数表示为Nnum_TB,第二参数表示为Nrefer,且Nnum_TB=Nrefer×L,其中L为预定义的常数。
  16. 一种终端设备,其特征在于,包括:
    接收单元,用于接收基站发送的配置信令;
    确定单元,用于根据所述配置信令,确定第一参数,当所述终端设备接收到的译码失败的传输块TB的数量不小于所述第一参数时,所述终端设备在缓存器中存储的TB数量不小于所述第一参数。
  17. 根据权利要求16所述的终端设备,其特征在于,所述配置信令包括所述第一参数。
  18. 根据权利要求16所述的终端设备,其特征在于,所述配置信令包括第二参数,
    所述确定单元,具体用于:确定所述第一参数为Nnum_TB=Nrefer×L,
    其中,所述第一参数表示为Nnum_TB,所述第二参数表示为Nrefer,L为预定义的常数。
  19. 根据权利要求16所述的终端设备,其特征在于,所述确定单元,还用于:
    在接收到所述基站发送的TB之后,确定将要存储的译码失败的TB。
  20. 根据权利要求19所述的终端设备,其特征在于,所述确定单元,具体用于:
    当所述终端设备接收到的译码失败的TB的数量不小于所述第一参数时,确定存储部分或全部所述接收到的译码失败的TB。
  21. 根据权利要求16所述的终端设备,其特征在于,所述确定单元,还用于:
    根据所述第一参数,针对将要存储的译码失败的TB中的各个编码块CB,确定所述各个CB将要存储的最小比特数量nSB
  22. 根据权利要求21所述的终端设备,其特征在于,所述确定单元,具体用于:确定nSB为:
    Figure PCTCN2015094048-appb-100006
    其中,min表示取最小值,
    Figure PCTCN2015094048-appb-100007
    表示下取整,Ncb表示对应的CB在所述基站的速率匹配器中输入的编码比特长度,C表示所述将要存储的译码失败的TB所包括的CB的数量,N′soft表示所述终端设备上报的多个缓存器的总长度中的一个,Nnum_TB为所述第一参数。
  23. 根据权利要求21所述的终端设备,其特征在于,所述确定单元,具体用于:确定nSB为:
    对于译码正确的CB,
    Figure PCTCN2015094048-appb-100008
    对于其他CB,
    Figure PCTCN2015094048-appb-100009
    其中,min表示取最小值,
    Figure PCTCN2015094048-appb-100010
    表示下取整,KΠ表示对应CB的系统信息长度,Ncb表示对应CB在所述基站的速率匹配器中输入的编码比特长度,C表示所述将要存储的译码失败的TB所包括的CB的数量,N′soft表示所述终端设备上报的多个缓存器的总长度中的一个,Nnum_TB为所述第一参数。
  24. 根据权利要求20所述的终端设备,其特征在于,所述终端设备还包括存储单元,用于:
    按照优先级,存储所述部分或全部所述接收到的译码失败的TB;
    其中,在主载波上传输的译码失败的TB具有第一优先级,在授权辅载波上传输的译码失败的TB具有第二优先级,在非授权载波上传输的译码失败的TB具有第三优先级。
  25. 一种终端设备,其特征在于,包括:
    接收单元,用于接收基站发送的传输块TB,所述TB包含多个编码块CB;
    处理单元,用于对所述TB译码失败,并确定将要存储所述TB;
    所述处理单元,还用于确定所述TB中各个CB将要存储的最小比特数量nSB
    其中,所述处理单元,具体用于:
    对于译码正确的CB,根据对应CB的系统信息长度确定所述nSB
    对于其他CB,根据对应CB在所述基站的速率匹配器中输入的编码比特长度确定所述nSB
  26. 根据权利要求25所述的终端设备,其特征在于,所述处理单元,具体用于:
    对于译码正确的CB,确定所述nSB为:
    nSB=min(KΠ,P),其中KΠ为对应CB的系统信息长度,P的取值由标准预先定义或者由所述基站配置或者按照约定方法计算得到。
  27. 根据权利要求25所述的终端设备,其特征在于,所述处理单元,具体用于:
    对于其他CB,确定所述nSB为:
    nSB=min(Ncb,Q),其中Ncb为对应CB在所述基站的速率匹配器中输入的编码比特长度,Q的取值由标准预先定义或者由所述基站配置或者按照约定方法计算得到。
  28. 一种基站,其特征在于,包括:
    确定单元,用于确定第一参数;
    发送单元,用于向终端设备发送配置信令,所述配置信令用于指示所述 第一参数,以使得当所述终端设备接收到的译码失败的传输块TB的数量不小于所述第一参数时,所述终端设备在缓存器中存储的TB数量不小于所述第一参数。
  29. 根据权利要求28所述的基站,其特征在于,所述配置信令包括所述第一参数。
  30. 根据权利要求28所述的基站,其特征在于,所述配置信令包括第二参数,
    所述第一参数表示为Nnum_TB,第二参数表示为Nrefer,且Nnum_TB=Nrefer×L,其中L为预定义的常数。
PCT/CN2015/094048 2015-11-06 2015-11-06 一种数据存储的方法、终端设备及基站 WO2017075825A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2017568120A JP6571213B6 (ja) 2015-11-06 2015-11-06 データ記憶方法、端末装置及び基地局
PCT/CN2015/094048 WO2017075825A1 (zh) 2015-11-06 2015-11-06 一种数据存储的方法、终端设备及基站
US15/738,047 US10595323B2 (en) 2015-11-06 2015-11-06 Method for data storage, terminal device and base station
EP21153157.9A EP3829093B1 (en) 2015-11-06 2015-11-06 Method for data storage, terminal device and base station
EP15907667.8A EP3300279B1 (en) 2015-11-06 2015-11-06 Method for data storage, terminal device and base station
KR1020187000954A KR102414613B1 (ko) 2015-11-06 2015-11-06 데이터 저장 방법, 단말 장치 및 기지국
CN201580081109.5A CN107683577B (zh) 2015-11-06 2015-11-06 一种数据存储的方法、终端设备及基站
CN202010470976.0A CN111641479A (zh) 2015-11-06 2015-11-06 一种数据存储的方法及终端设备
US16/781,645 US20200178265A1 (en) 2015-11-06 2020-02-04 Method for data storage, terminal device and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094048 WO2017075825A1 (zh) 2015-11-06 2015-11-06 一种数据存储的方法、终端设备及基站

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/738,047 A-371-Of-International US10595323B2 (en) 2015-11-06 2015-11-06 Method for data storage, terminal device and base station
US16/781,645 Continuation US20200178265A1 (en) 2015-11-06 2020-02-04 Method for data storage, terminal device and base station

Publications (1)

Publication Number Publication Date
WO2017075825A1 true WO2017075825A1 (zh) 2017-05-11

Family

ID=58661482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094048 WO2017075825A1 (zh) 2015-11-06 2015-11-06 一种数据存储的方法、终端设备及基站

Country Status (6)

Country Link
US (2) US10595323B2 (zh)
EP (2) EP3829093B1 (zh)
JP (1) JP6571213B6 (zh)
KR (1) KR102414613B1 (zh)
CN (2) CN107683577B (zh)
WO (1) WO2017075825A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11792824B2 (en) * 2020-03-30 2023-10-17 Qualcomm Incorporated Multicast feedback and retransmission for transport block grouping
CN111884775B (zh) * 2020-07-15 2024-02-27 太仓市同维电子有限公司 一种基于共享缓存的harq传输装置和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076023A (zh) * 2010-10-08 2011-05-25 大唐移动通信设备有限公司 缓存空间的分配方法和设备
CN102469022A (zh) * 2010-11-19 2012-05-23 大唐移动通信设备有限公司 缓存空间的分配方法和设备
CN103684660A (zh) * 2012-09-07 2014-03-26 电信科学技术研究院 一种发送和接收传输信息的方法、系统和设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101965707B (zh) * 2008-03-24 2014-03-12 诺基亚公司 通信系统中的软缓冲存储器配置
US9030948B2 (en) 2008-03-30 2015-05-12 Qualcomm Incorporated Encoding and decoding of control information for wireless communication
CN101572661B (zh) * 2008-04-30 2011-09-07 电信科学技术研究院 基于时分双工模式的数据缓存方法、装置和系统
EP2830253A3 (en) * 2009-11-30 2015-08-19 Telefonaktiebolaget L M Ericsson (PUBL) Harq procedure with processing of stored soft-bits
CN101820330B (zh) * 2010-02-09 2013-04-24 华为技术有限公司 一种信号接收处理方法及装置
CN102055558A (zh) * 2011-01-04 2011-05-11 上海华为技术有限公司 传输块分段译码方法、装置和一种多输入多输出接收机
CN102255710B (zh) * 2011-04-15 2014-01-29 电信科学技术研究院 编码块存储方法和设备
CN103024820B (zh) * 2011-09-20 2018-03-23 北京三星通信技术研究有限公司 软缓存处理的方法及设备
CN108173629B (zh) * 2012-07-17 2021-02-02 太阳专利信托公司 终端装置、基站装置、通过终端执行的方法、通过基站执行的发送和接收方法及集成电路
EP3031152B1 (en) * 2013-08-08 2019-03-13 Intel IP Corporation Method and system of advanced interference cancellation on pdsch at the ue
CN103414543B (zh) 2013-08-15 2016-09-28 华为技术有限公司 一种调整harq缓存量的方法及终端
US9674845B2 (en) 2013-11-04 2017-06-06 Qualcomm Incorporated Soft buffer management
CN105141398B (zh) * 2014-05-29 2020-02-11 北京三星通信技术研究有限公司 软缓存处理方法及设备
US9577793B2 (en) * 2014-09-23 2017-02-21 Intel Corporation Soft buffer management
CN105743619B (zh) * 2014-12-26 2020-10-27 北京三星通信技术研究有限公司 混合自动重传请求(harq)传输的方法和设备
US20160227540A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated Soft buffer management for enhanced carrier aggregation
US10298363B2 (en) * 2015-03-31 2019-05-21 Lg Electronics Inc. Buffer management method for D2D communication, and wireless device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076023A (zh) * 2010-10-08 2011-05-25 大唐移动通信设备有限公司 缓存空间的分配方法和设备
CN102469022A (zh) * 2010-11-19 2012-05-23 大唐移动通信设备有限公司 缓存空间的分配方法和设备
CN103684660A (zh) * 2012-09-07 2014-03-26 电信科学技术研究院 一种发送和接收传输信息的方法、系统和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3300279A4 *

Also Published As

Publication number Publication date
EP3300279A1 (en) 2018-03-28
CN111641479A (zh) 2020-09-08
KR102414613B1 (ko) 2022-06-28
US10595323B2 (en) 2020-03-17
EP3829093B1 (en) 2023-02-15
EP3829093A1 (en) 2021-06-02
EP3300279B1 (en) 2021-03-03
KR20180080174A (ko) 2018-07-11
JP2019502274A (ja) 2019-01-24
JP6571213B6 (ja) 2019-11-27
JP6571213B2 (ja) 2019-09-04
CN107683577A8 (zh) 2018-08-24
CN107683577B (zh) 2020-06-26
US20200178265A1 (en) 2020-06-04
US20180310325A1 (en) 2018-10-25
CN107683577A (zh) 2018-02-09
EP3300279A4 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
CN107925990B (zh) 传输反馈信息的方法、终端设备和基站
US20210091893A1 (en) Information Transmission Method and Communications Device
WO2019201249A1 (zh) 通信方法、通信装置及可读存储介质
US11405159B2 (en) Method for transmitting feedback information, terminal device and network device
US20200374042A1 (en) Wireless communication method, network device, terminal device, and readable storage medium
US20200178265A1 (en) Method for data storage, terminal device and base station
WO2019114730A1 (zh) 数据收发的方法、装置和通信系统
US20210105745A1 (en) Data transmission method, network device and terminal device
WO2019080071A1 (zh) 上行控制信道传输方法、终端设备和网络设备
JP6585275B6 (ja) データ伝送方法、端末及び基地局
JP7339439B2 (ja) 通信方法及び装置
WO2019191911A1 (zh) 数据传输的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15738047

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2015907667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2017568120

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187000954

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE