WO2017073882A1 - 괴성화 설비의 분진 처리 장치 및 처리 방법 - Google Patents

괴성화 설비의 분진 처리 장치 및 처리 방법 Download PDF

Info

Publication number
WO2017073882A1
WO2017073882A1 PCT/KR2016/007258 KR2016007258W WO2017073882A1 WO 2017073882 A1 WO2017073882 A1 WO 2017073882A1 KR 2016007258 W KR2016007258 W KR 2016007258W WO 2017073882 A1 WO2017073882 A1 WO 2017073882A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
iron
dust collector
storage tank
collected
Prior art date
Application number
PCT/KR2016/007258
Other languages
English (en)
French (fr)
Other versions
WO2017073882A8 (ko
Inventor
이광희
최종민
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201680062813.0A priority Critical patent/CN108350521B/zh
Priority to BR112018008281-3A priority patent/BR112018008281A2/pt
Publication of WO2017073882A1 publication Critical patent/WO2017073882A1/ko
Publication of WO2017073882A8 publication Critical patent/WO2017073882A8/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
    • B04C5/185Dust collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/24Multiple arrangement thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a compaction equipment for producing compacted iron (HCI; hot compact i ron) by compressing a reducing agent containing di rect reduced iron (DRI) for the production of molten iron, occurs in the compaction manufacturing facilities
  • the present invention relates to a dust treatment apparatus and a treatment method of a compaction plant for treating dust such as iron powder.
  • Molten reduction iron making facilities for producing molten iron using spectroscopy directly include a flow reduction reactor, aggregating plant, and a molten gasifier connected thereto. Spectroscopy and subsidiary materials at room temperature are reduced by passing through three stages of flow reduction reactors. The reduced-reduced iron is pressed into a compacted material through a compaction facility and charged into a melt gasifier.
  • the compaction equipment includes a storage tank in which the ring reducing iron is stored, a compaction machine for compressing the ring reducing iron to produce a briquette, and a crusher for breaking the briquette to produce a compacted body.
  • the reduced iron is compressed into briquettes through a compaction machine in a storage tank, and crushed while being crushed through a crusher to produce compacted materials. In this process, some are not broken or agglomerated and remain in the form of debris or powder.
  • the compacted material (HCI) is charged into the melting furnace and used as a raw material for the production of molten iron.
  • HAI compacted material
  • the furnace air permeability is lowered, which adversely affects the operation of the melting furnace.
  • dust generated in the manufacturing process of compacted material is collected through a dust collector.
  • a dust treatment apparatus and a treatment method of a compaction apparatus which enables to recycle dust, such as collected iron or debris, in the process of manufacturing compacted material.
  • the present invention provides a dust treatment apparatus and a treatment method of a compaction plant that can increase the stability of compacted material production and produce high quality compacted material through dust reprocessing.
  • the processing apparatus of the present embodiment is connected to a storage tank in which the reduced iron is stored, the first dust collecting unit collecting the powdered iron contained in the gas discharged from the storage tank, and ⁇ the supplied reducing iron of the storage tank to form a briquette by compression molding
  • a second dust collecting part connected to the compacting machine to collect the powdered iron contained in the gas discharged during the compacting process;
  • the first dust collector is connected to the second dust collector and transfers the powdered iron collected from the crab dust collector to the crab dust collector, and the crab dust collector is connected to the storage tank and collected from the first dust collector and the second dust collector.
  • the storage tank By supplying to the storage tank, it may be a structure that mixes the regenerated iron powder having a relatively high oxidation degree to the reducing iron in the storage tank.
  • the first dust collector is supplied with a gas discharged from the reservoir to collect the powdered iron in the cyclone, a dry dust collector connected to the cyclone and having a filter cloth therein to collect the powdered iron from the gas discharged from the cyclone, and the lower dry dust collector And a transfer line connecting the second dust collecting unit to transfer the collected powdered iron to the second dust collecting unit.
  • the second dust collecting unit is connected to the compacting machine to collect the multi-cyclone to collect the powdered iron from the gas discharged during the manufacturing process of the compacted body, a hopper to collect the collected powdered iron connected to the lower portion of the multi-cyclone, and connects the hopper and the reservoir It includes a return line for transporting the reclaimed powder collected in the hopper to the storage tank, the hopper is connected to the first dust collecting unit through the transfer line may be a structure in which the collected iron collected in the first dust collecting unit is transferred to the hopper.
  • the crab dust collector is connected to the multicyclone and the filter cloth therein It may further include a filter dust collector for collecting dust from the gas discharged from the multi-cyclone, and the dust bin is connected to the bottom of the filter dust collector is collected dust.
  • the processing apparatus may further include a processing unit configured to discharge-process the powdered iron collected by the first dust collecting unit to the outside. .
  • the processor may include an emergency discharge line connected between the transfer line and the dust bin to send the powdered iron conveyed from the first dust collecting unit to the dust bin, and a control valve selectively connecting the transfer line and the emergency discharge line. Can be.
  • the dust is collected from the gas discharged from the storage tank in which the reduced iron is stored through the first dust collector.
  • the first dust collecting unit may further include a treatment step of discharge treatment to the outside of the collected iron.
  • the processing step may be a structure that blocks the transfer of the powdered iron to the second dust collecting unit in the transfer step when the operation is unstable and emergency discharge treatment of the powdered iron.
  • FIG. 1 is a schematic configuration diagram showing a dust collecting apparatus of the compaction apparatus according to the present embodiment.
  • FIG. 1 schematically shows a dust treatment apparatus of the compaction apparatus according to the present embodiment.
  • the treatment apparatus 10 of the present embodiment collects and reprocesses dust generated in a process of compacting reduced reduced iron through a plurality of flow reduction paths for manufacturing molten iron.
  • dust may be understood as metal iron or iron oxide in the form of dust or debris contained in gas.
  • reclaimed iron refers to metallic iron or iron oxide which is collected from gas and reprocessed.
  • the compaction apparatus for compacting the reducing iron includes a storage tank 100 in which the reducing iron is transported and stored by a pressure difference, and a compacting machine 110 for compressing and forming the reducing iron into briquettes. Also, although not shown, the compaction apparatus further includes a crusher for crushing the manufactured briquettes into a suitable size, a screen for sorting the compacted material by size, a transfer conduit installed between the components, a transfer conveyor, and the like. can do.
  • the gas containing a large amount of high temperature dust is generated in the process of manufacturing the reduced-reduced iron as a compacted material through the compaction facility.
  • the dust contained in the hot gas from the compaction plant is collected and reprocessed by the treatment unit.
  • the processing apparatus 10 of the present embodiment is connected to a storage tank 100 in which the reduced iron is stored, and collects the powdered iron contained in the hot gas discharged from the storage tank 100.
  • 1 is a dust collecting unit 20
  • the second to collect the powdered iron contained in the gas discharged in the compacted material manufacturing process is connected to the compacting machine 110, which is supplied by compression reducing molding of the reservoir (loo) to produce a briquette 2, the dust collecting unit 30 is included.
  • the first dust collecting unit 20 is connected to the crab second dust collecting unit 30 and transfers the powdered iron collected by the first dust collecting unit 20 to the second dust collecting unit 30.
  • the second dust collecting unit 30 is connected to the storage tank 100 to supply the collected reclaimed powdered iron to the storage tank 100, a structure that mixes the regenerated iron with a high oxidation degree relatively to the reducing iron in the storage tank (100). It is.
  • the recycling rate can be increased and the production yield of compacted material can be improved. Will be.
  • the crab dust collector 20 receives a vent gas discharged from the storage tank 100 to collect a powdered iron in a cyclone 22, and the cyclone 22.
  • a dry dust collector (24) connected to and having a ceramic filter (cerami cfil ter) therein to collect the powdered iron from the hot gas discharged from the cyclone (22), the bottom of the dry dust collector (24) and the crab dust collector (30) Connected between the collected powdered iron to the crab 2 dust collector (30) And a conveying line 26 for conveying.
  • the cyclone 22 primarily separates the dust contained in the gas discharged from the reservoir 100 and returns it to the reservoir 100.
  • the gas discharged from the cyclone 22 is transferred to the dry dust collector 24 and is collected.
  • the dry dust collector 24 is a dry dust collector having a plurality of ceramic filters therein. As the gas discharged from the cyclone 22 passes through the ceramic filter inside the dry precipitator 24, the dust contained in the gas is filtered out.
  • Dust collected in the dry dust collector 24 is mainly composed of iron and iron oxides.
  • the reclaimed powder filtered out of the gas sinks to the bottom of the dry precipitator 24 and is transferred to the crab dust collector 30 through the transfer line 26.
  • the dust collected in the dry dust collector 24 of the crab dust collector 20 has a high temperature of about 40C C or more, a reduction rate of about 60 to 70%, and an average particle size of about 2 to about 10.
  • compacted dust is directly charged into a compacting apparatus to prepare compacted material.
  • the fraction is relatively high, and thus, the compacting efficiency of the compacted material is lowered in the compacting machine 110.
  • the dust collected by the second dust collector 30 has a temperature of about 150 ° C., a reduction rate of about 50% to 55%, and an average particle size of about 15 to 30 ⁇ . .
  • the reduction rate and temperature is relatively low, there is a disadvantage in the manufacturing of compacts in the compacting machine 110.
  • the reduced iron reduction rate in the storage tank is also reduced, which also lowers the compacted material production efficiency.
  • the dust re-loaded into the storage tank 100 has an average reduction rate of 55 ⁇ 60 %,
  • the average particle size is raised to 10 ⁇ 20 micrometers can obtain a more advantageous effect on the compacted material production in the compacted machine (110).
  • the second dust collecting part 30 is connected to the compacting machine 110 to collect the powdered iron from the gas discharged from the compacted material manufacturing process, the multi-cyclone 32, the powdered iron is connected to the dust collected below the multi-cyclone (32)
  • the second dust collecting unit 30 is connected to the multicyclone 32 and has a filter cloth therein to collect dust in the gas discharged from the multicyclone 32, and the bag filter ( 40) further includes a dust bin 42 connected to the lower part to collect dust collected.
  • the multicyclone 32 separates the dust contained in the gas discharged during the compact manufacturing process, the separated dust is collected in the hopper 34 connected to the lower portion of the multicyclone (32).
  • the hopper 34 may have a structure in which at least one is connected in series.
  • the hopper 34 is connected to the dry dust collector 24 of the first dust collector 20 through the transfer line 26. That is, in this embodiment, the transfer line 26 connects between the dry dust collector 24 of the first dust collector 20 and the hopper 34 of the second dust collector 30. Accordingly, the regenerated powder collected in the dry dust collector 24 of the crab 1 dust collector 20 is immediately transferred to the hopper 34.
  • the reclaimed iron collected by the U dust collector 20 is transferred to the storage tank 100 through the return line 36 together with the reclaimed iron collected by the second dust collector 30 for reprocessing.
  • the regenerated iron collected in the U dust collector 20 has a reduction of about 60 to 70%, and the regenerated iron collected in the second dust collector 30 has a reduction rate of about 50 to 55%, which is relative to that of the first dust collector. Small as Thus, the first having a relatively high reduction rate .
  • the reduction rate of the reclaimed iron in the hopper can be maintained at 55% or more. Therefore.
  • the reduction rate of the reclaimed iron that is transferred to the storage tank can be increased and supplied.
  • the reclaimed iron having a lower reduction than the regenerated iron collected at the crab dust collector is introduced into the storage tank. Therefore, in the first dust collector The reduction rate of the collected reclaimed iron can be lowered appropriately and the oxidation degree can be increased to be introduced into the storage tank.
  • the return line 36 connects the hopper 34 and the reservoir 100 so that the reclaimed iron collected in the hopper 34 is finally transferred to the reservoir 100 through the return line 36 and recycled.
  • the reclaimed powdered iron is transferred to the storage tank 100 and introduced into the reducing iron in the storage tank 100, whereby the reducing power of all the reduced iron in the storage tank 100 can be stably maintained.
  • Reduced iron presents a risk of explosion if rapidly oxidized.
  • the regenerated iron is oxidized in the process of being collected from the gas through the first dust collecting unit 20 and the first dust collecting unit 20, so that the degree of oxidation is relatively higher than that of the reducing iron in the storage tank 100.
  • the regenerated iron having a relatively high oxidation degree is supplied into the storage tank 100, whereby the reducing power of the reduced reduction iron in the storage tank 100 can be stabilized. Therefore, the treatment apparatus of this embodiment is mixed with the regenerated powdered iron in the storage tank 100 and the reduced iron, and agglomerated, thereby preventing explosion due to rapid oxidation of the reduced iron and producing a compacted material more stably.
  • the bag filter 40 finally collects dust from the gas discharged from the multicyclone 32.
  • the filter dust collector 40 is a dry dust collector with a plurality of bag f i ter (bag f i ter) therein.
  • the filter dust collector 40 is connected to a suction pump 43 for providing a suction pressure of the gas.
  • the dust collected in the bag filter 40 is collected in the dust bin 42 under the bag filter 40.
  • the dust collected in the dust bin 42 is conveyed to an external processing site for reprocessing, for example using a vehicle or the like.
  • the processing apparatus of the present embodiment further includes a processing unit for discharging the collected iron collected in the first dust collecting unit 20 to the outside when the operation is unstable in the process of collecting and recovering the reclaimed powdered iron, re-injecting it into the storage tank 100, and aggregating it. can do.
  • the processing unit is connected between the transfer line 26 and the dust bin 42 to collect the powdered iron transferred from the crab dust collector 20.
  • the control valve 46 is installed at the connection point of the transfer line 26 and the emergency discharge line 44 is driven in accordance with an external control signal to connect the transfer line 26 and the emergency discharge line 44.
  • the transfer line 26 and the emergency discharge line 44 are connected with the driving of the control valve 46, the regenerated powder conveyed from the dry dust collector 24 of the first dust collector 20 is transferred to the second dust collector 30. It is discharged to the dust bin 42 along the emergency discharge line 44 without being transferred to the hopper 34.
  • the recycled powder collected at the first dust collecting unit 20 is discharged to the dust bin 42 without being transferred to the hopper 34 of the second dust collecting unit 30, thereby improving process instability. Will be.
  • the reduced-reducing iron reduced through the reduction furnace is transferred to the storage tank 100, charged, and pressed in the compaction machine 110 to produce a compacted briquette.
  • a gas containing a large amount of hot dust is generated.
  • the gas discharged from the reservoir 100 is filtered through the crab 1 dust collecting unit 20 to collect the reclaimed iron.
  • the gas discharged in the process of manufacturing the reduced iron as a compacted material is filtered through the second dust collecting unit 30 to collect the reclaimed iron.
  • the regenerated powdered iron collected through the filtering process through the first dust collecting unit 20 is transferred to the second dust collecting unit 30 and collected together with the regenerated powder collected through the filtering process by the second dust collecting unit 30.
  • the collected reclaimed iron is thus transferred to the storage tank 100 and introduced into the storage tank 100. Accordingly, recycled iron having a high oxidation degree is added to the reduced iron contained in the storage tank 100 and mixed. Reducing iron with relatively high oxidation and regeneration with relatively low oxidation By mixing and compacting the powdered iron, the oxidation degree of the reduced-iron can be properly adjusted to prevent explosion due to the sudden oxidation of the reduced-iron.
  • the regenerated powdered iron transported to the storage tank 100 is mixed with the reduced-reduction iron and agglomerated.
  • the first dust collecting unit 20 detects this.
  • the recovered fine powdered fine powder is discharged immediately without being sent to the storage tank (100).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

괴성체 제조 과정에서 포집 처리된 분철이나 부스러기 등의 분진을 재활용하고, 분진 재처리를 통해 보다 괴성체의 안정성을 높이고 고 품질의 괴성체를 제조할 수 있도록, 분환원철이 저장되는 저장조에 연결되어 저장조로부터 배출되는 가스에 포함된 분철을 포집하는 게 1 집진부, 및 상기 저장조의 분환원철을 공급받아 압착 성형하여 브리켓을 제조하는 괴성화 머신에 연결되어 괴성체 제조과정에서 배출되는 가스에 포함된 분철을 포집하는 제 2 집진부를 포함하고, 상기 제 1 집진부는 상기 제 2 집진부와 연결되어 제 1 집진부에서 포집된 분철을 상기 제 2 집진부로 이송하고, 상기 제 2 집진부는 상기 저장조로 연결되어 수거된 재생 분철을 저장조로 공급하여, 저장조 내의 분환원철에 상대적으로 산화도가 높은 재생 분철을 흔합하는 구조의 괴성화 설비의 분진 처리장치를 제공한다.

Description

【명세서】
【발명의 명칭】
괴성화 설비의 분진 처리 장치 및 처리 방법
【기술분야】
본 발명은 용철 제조를 위해 분환원철 (DRI ; di rect reduced i ron) 함유 환원체를 압착하여 괴성체 (HCI ; hot compact i ron)를 제조하는 괴성화 설비에 관한 것으로, 괴성화 제조설비에서 발생되는 분철 등의 분진을 처리하기 위한 괴성화 설비의 분진 처리 장치 및 처리 방법에 관한 것이다.
【발명의 배경이 되는 기술】
최근들어, 고로법의 문제점을 해결하기 위하여, 세계 각국의 제철소에서는 연료 및 환원제로서 일반탄을 직접 사용하고, 철원으로는 전세계 광석 생산량의 80% 이상을 점유하는 분광을 직접 사용하여 용철을 제조하는 용융환원제철법의 개발에 많은 노력을 기울이고 있다.
분광을 직접 사용하여 용철을 제조하는 용융환원제철설비는 유동환원로와 괴성화 설비 및 여기에 연결된 용융가스화로를 포함한다. 상온의 분광 및 부원료는 3단의 유동환원로를 차례로 거치며 환원된다. 분환원철은 괴성화 설비를 거쳐 괴성체로 압착되어 용융가스화로로 장입된다.
상기 괴성화 설비는 분환원철이 저장되는 저장조, 분환원철을 압착하여 브리켓을 제조하는 괴성화 머신, 브리켓을 파쇄하여 괴성체를 제조하는 파쇄기를 포함한다. 분환원철은 저장조에서 괴성화머신을 거쳐 브리켓으로 압착되고, 파쇄기를 거치면서 파쇄되어 괴성체로 제조된다. 이 과정에서 일부는 부스러지거나 괴성화되지 않아 부스러기나 분 형태로 남게 된다.
괴성체 (HCI )는 용융로에 장입되어 용선 생산을 위한 원료로 사용되는 데, 이 때 일부 분진 형태의 환원철이 용융로로 장입되는 경우, 노내 통기성을 저하시켜 용융로 조업에 악영향을 미친다. 이에, 괴성체 제조 과정에서 발생되는 분진은 집진장치를 통해 포집 처리된다.
【발명의 내용】
【해결하고자 하는 과제】 괴성체 제조 과정에서 포집 처리된 분철이나 부스러기 등의 분진을 재활용할 수 있도록 된 괴성화 설비의 분진 처리 장치 및 처리 방법을 제공한다.
또한, 분진 재처리를 통해 보다 괴성체 제조의 안정성을 높이고 고 품질의 괴성체를 제조할 수 있도록 된 괴성화 설비의 분진 처리 장치 및 처리 방법을 제공한다.
【과제의 해결 수단】
이를 위해 본 구현예의 처리장치는, 분환원철이 저장되는 저장조에 연결되어 저장조로부터 배출되는 가스에 포함된 분철을 포집하는 제 1 집진부, 및 ^상기 저장조의 분환원철을 공급받아 압착 성형하여 브리켓을 제조하는 괴성화 머신에 연결되어 괴성체 제조 과정에서 배출되는 가스에 포함된 분철을 포집하는 제 2 집진부를 포함하고,
상기 제 1 집진부는 상기 제 2 집진부와 연결되어 게 1 집진부에서 포집된 분철을 상기 게 2 집진부로 이송하고, 상기 게 2 집진부는 상기 저장조로 연결되어 제 1 집진부와 제 2 집진부에서 수거된 재생 분철을 저장조로 공급하여, 저장조 내의 분환원철에 상대적으로 산화도가 높은 재생 분철을 흔합하는 구조일 수 있다.
상기 제 1 집진부는 저장조에서 배출되는 가스를 공급받아 가스 중의 분철을 포집하는 사이클론, 상기 사이클론에 연결되고 내부에 여과포를 구비하여 사이클론으로부터 배출되는 가스에서 분철을 포집하는 건식 집진기, 및 상기 건식 집진기 하부와 상기 제 2 집진부 사이를 연결하여 포집된 분철을 제 2 집진부로 이송하는 이송라인을 포함할 수 있다.
상기 제 2 집진부는 상기 괴성화 머신에 연결되어 괴성체 제조과정에서 배출되는 가스로부터 분철을 집진하는 멀티사이클론, 상기 멀티사이클론 하부에 연결되어 집진된 분철이 수거되는 호퍼, 및 상기 호퍼와 저장조를 연결하여 호퍼에 수거된 재생 분철을 저장조로 이송하는 리턴라인올 포함하고, 상기 호퍼는 이송라인을 통해 상기 제 1 집진부와 연결되어 제 1 집진부에서 포집된 분철이 상기 호퍼로 이송되는 구조일 수 있다.
상기 게 2 집진부는 상기 멀티사이클론에 연결되고 내부에 여과포를 구비하여 멀티사이클론으로부터 배출되는 가스에서 분진을 집진하는 여과집진기, 및 상기 여과집진기 하부에 연결되어 집진된 분진이 수거되는 더스트빈을 더 포함할 수 있다.
상기 처리장치는 제 1 집진부에서 포집된 분철을 외부로 배출 처리하는 처리부를 더 포함할 수 있다. .
상기 처리부는 상기 이송라인과 상기 더스트빈 사이에 연결되어 상기 제 1 집진부에서 이송되는 분철을 상기 더스트빈으로 보내는 비상배출라인, 및 상기 이송라인과 비상배출라인을 선택적으로 연결하는 제어밸브를 포함할 수 있다.
본 구현예의 처리 방법은, 괴성화 설바에서 발생되는 분진을 포집하여 처리하기 위한 괴성화 설비의 분진 처리 방법에 있어서, 분환원철이 저장되는 저장조에서 배출되는 가스에서 게 1 집진부를 통해 분철을 포집하는 제 1 집진 단계, 저장조의 분환원철을 압착 성형시 배출된 가스에서 제 2 집진부를 통해 분철을 포집하는 제 2 집진 단계, 제 1 집진 단계에서 포집된 분철을 제 2 집진 단계의 제 2 집진부로 이송하는 이송 단계, 및 게 2 집진부로 모아진 재생 분철을 저장조로 공급하여 저장조 내의 분환원철에 상대적으로 산화도가 높은 재생 분철을 흔합하는 흔합 단계를 포함할 수 있다.
상기 이송 단계에서, 제 1 집진부에서 포집된 분철올 외부로 배출 처리하는 처리 단계를 더 포함할 수 있다.
상기 처리 단계는 조업 불안정시 상기 이송 단계에서 분철의 이동 방향을 전환하여 제 2 집진부로의 분철 이송을 차단하고 분철을 비상 배출 처리하는 구조일 수 있다.
【발명의 효과】
이와 같이 본 구현예에 의하면, 분진을 재활용하여 괴성체 생산성을 높일 수 있다.
또한, 산화도가 상대적으로 높은 분진을 이용하여 괴성체를 제조함으로써, 분환원철의 환원력을 적절히 유지하여, 급속 산화에 따른 폭발을 방지하고 안정성을 높일 수 있게 된다.
또한, 비상 조업을 통해 설비를 보다 안정적으로 운영할 수 있게 된다.
【도면의 간단한 설명】
도 1은 본 실시예에 따른 괴성화 설비의 집진장치를 도시한 개략적인 구성도이다.
【발명을 실시하기 위한 구체적인 내용】
이하에서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성 , 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며ᅳ 다른 특정 특성, 영역, 정수 단계, 동작, 요소, 성분 및 /또는 군의 존재나 부가를 제외시키는 것은 아니다.
이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 실시예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 이에, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1은 본 실시예에 따른 괴성화 설비의 분진 처리장치를 개략적으로 도시하고 있다.
도 1에 도시된 바와 같이, 본 실시예의 처리장치 ( 10)는 용철 제조를 위해 복수의 유동환원로를 거쳐 환원된 분환원철을 괴성화하는 과정에서 발생되는 분진을 집진하여 재처리하게 된다. 이하 설명에서 분진이라 함은 가스에 포함된 분이나 부스러기 형태의 금속 철이나 철산화물로 이해할 수 있다. 또한, 재생 분철이라 함은 가스로부터 집진하여 재처리되는 금속 철이나 철산화물을 의미한다.
분환원철을 괴성화하는 괴성화 설비는 분환원철이 압력차에 의하여 이송되어 저장되는 저장조 ( 100)와, 분환원철을 압착 성형하여 브리켓으로 제조하는 괴성화 머신 ( 110)을 포함한다. 또한, 도시되지는 않았으나, 괴성화 설비는 상기한 구성 외에, 제조된 브리켓을 적당한 크기로 파쇄하여 괴성체로 제조하는 파쇄기, 괴성체를 크기별로 선별하는 스크린, 상기 각 구성부 사이에 설치되는 이송도관, 이송컨베이어 등을 더 포함할 수 있다. 상기 괴성화 설비를 거쳐 분환원철을 괴성체로 제조하는 과정에서 고온의 분진이 다량 포함된 가스가 발생된다. 괴성화 설비에서 배출되는 고온의 가스에 포함된 분진은 처리 장치를 통해 포집되어 재처리된다.
이를 위해, 본 실시예의 처리 장치 (10)는 도 1에 도시된 바와 같이, 분환원철이 저장되는 저장조 ( 100)에 연결되어 저장조 (100)로부터 배출되는 고온의 가스에 포함된 분철을 포집하는 게 1 집진부 (20), 및 상기 저장조 ( loo)의 분환원철을 공급받아 압착 성형하여 브리켓을 제조하는 괴성화 머신 ( 110)에 연결되어 괴성체 제조과정에서 배출되는 가스에 포함된 분철을 포집하는 제 2 집진부 (30)를 포함한다.
상기 제 1 집진부 (20)는 상기 게 2 집진부 (30)와 연결되어 제 1 집진부 (20)에서 포집된 분철을 상기 제 2 집진부 (30)로 이송한다. 상기 제 2 집진부 (30)는 상기 저장조 ( 100)로 연결되어 수거된 재생 분철을 저장조 ( 100)로 공급하여, 저장조 (100) 내의 분환원철에 상대적으로 산화도가 높은 재생 분철을 흔합하는 구조로 되어 있다.
이와 같이, 제 1 집진부 (20)와 계 2 질진부 (30)를 통해 분진을 포집하고 포집된 재생 분철을 다시 저장조 ( 100)로 공급함으로써, 재활용율을 높이고 괴성체의 생산 수율을 향상시킬 수 있게 된다.
또한, 저장조 ( 100)에 저장되어 있는 상대적으로 환원력이 높숀 분환원철에 산화도가 높아 상대적으로 환원력이 낮은 재생 분철을 공급하여 흔합함으로써, 저장조 ( 100) 내의 분환원철의 환원력을 적절히 유지하여, 분환원철의 급격한 산화에 따른 폭발을 방지할 수 있게 된다.
도 1에 도시된 바와 같이, 상기 게 1 집진부 (20)는 저장조 ( 100)에서 배출되는 벤트 가스 (vent gas)를 공급받아 가스 중의 분철을 포집하는 사이클론 (22) , 및 상기 사이클론 (22)에 연결되고 내부에 세라믹 필터 (cerami c f i l ter )를 구비하여 사이클론 (22)으로부터 배출되는 고온의 가스에서 분철을 포집하는 건식집진기 (24), 상기 건식집진기 (24) 하부와 상기 게 2 집진부 (30) 사이를 연결하여 포집된 분철을 게 2 집진부 (30)로 이송하는 이송라인 (26)을 포함한다.
사이클론 (22)은 저장조 ( 100)에서 배출되는 가스에 포함된 분진을 일차적으로 분리하여 저장조 ( 100)로 다시 되돌린다.
사이클론 (22)에서 배출된 가스는 건식집진기 (24)로 이송되어 집진된다. 상기 건식집진기 (24)는 내부에 복수개의 세라믹 필터를 구비한 건식 집진 방식의 집진기이다. 사이클론 (22)에서 배출된 가스가 건식집진기 (24) 내부의 세라믹 필터를 지나면서 가스에 포함된 분진이 필터링된다.
상기 건식집진기 (24)에서 집진된 분진들은 주로 분철과 철산화물로 구성된다. 이와 같이 가스에서 필터링된 재생 분철은 건식집진기 (24) 하부로 가라앉아 이송라인 (26)을 통해 게 2 집진부 (30)로 이송된다.
상기 게 1 집진부 (20)의 건식집진기 (24)에서 집진된 분진은 약 40C C 이상의 고온이고, 환원율이 약 60~70% 수준이며, 평균입도가 2 내지 10 정도의 크가로 되어 있다. 종래에는 건식집진기에서 집진된 분진을 바로 괴성화장치에 장입하여 괴성체를 제조하였다. 그러나, 건식집진기 (24)에서 집진된 분진을 괴성화 장치에 직접 장입하게 되면, 분율이 상대적으로 높아져서 괴성화 머신 ( 110)에서 괴성체 제조효율이 떨어지는 등 불리한 측면이 있다. ^
게 1 집진부와 달리, 제 2 집진부 (30)에서 집진된 분진은 온도가 약 150°C정도이고, 환원율이 약 50%~55% 수준이며, 평균입도가 15 내지 30卿 정도의 크기로 되어 있다. 이에, 제 2 집진부에서 집진된 분진을 괴성화 장치에 직접 장입하는 경우, 환원율과 온도가 상대적으로 낮아져서 괴성화 머신 ( 110)에서 괴성체 제조시 불리한 측면이 있다. 또한, 제 2 집진부에서 집진된 분진만을 바로 저장조로 재장입하는 경우 저장조 내의 분환원철 환원율을 떨어뜨려 역시, 괴성체 제조 효율을 저하시키게 된다.
본 실시예의 경우, 게 1 집진부 (20)에서 포집된 재생 분철을 이송라인 (26)을 통해 제 2 집진부 (30)로 이동시킴으로써, 저장조 ( 100)로 재장입되는 분진은 평균 환원율이 55~60%, 평균 입도가 10~20 마이크로미터로 상승되어 괴성화머신 ( 110)에서 괴성체 제조에 보다 유리한 효과를 얻을 수 있다. 상기 제 2 집진부 (30)는 상기 괴성화 머신 ( 110)에 연결되어 괴성체 제조과정에서 배출되는 가스로부터 분철을 집진하는 멀티사이클론 (32), 상기 멀티사이클론 (32) 하부에 연결되어 집진된 분철이 수거되는 호퍼 (34) , 및 상기 호퍼 (34)와 저장조 ( 100)를 연결하여 호퍼 (34)에 수거된 재생 분철을 저장조 ( 100)로 이송하는 리턴라인 (36)을 포함한다.
또한, 상기 제 2 집진부 (30)는 상기 멀티사이클론 (32)에 연결되고 내부에 여과포를 구비하여 멀티사이클론 (32)으로부터 배출되는 가스에서 분진을 집진하는 여과집진기 (40), 및 상기 여과집진기 (40) 하부에 연결되어 집진된 분진이 수거되는 더스트빈 (42)을 더 포함한다.
상기 멀티사이클론 (32)은 괴성체 제조과정에서 배출되는 가스에 포함된 분진을 분리하고, 분리된 분진은 멀티사이클론 (32) 하부에 연결된 호퍼 (34)에 수거된다. 상기 호퍼 (34)는 적어도 하나 이상이 직렬로 연결된 구조일 수 있다.
그리고, 상기 호퍼 (34)는 이송라인 (26)을 통해 상기 제 1 집진부 (20)의 건식집진기 (24)와 연결된다. 즉, 본 실시예에서, 상기 이송라인 (26)은 제 1 집진부 (20)의 건식집진기 (24)와 제 2 집진부 (30)의 호퍼 (34) 사이를 연결한다. 이에, 게 1 집진부 (20)의 건식집진기 (24)에서 포집된 재생 분철은 바로 상기 호퍼 (34)로 이송된다.
거 U 집진부 (20)에서 포집된 재생 분철은 제 2 집진부 (30)에서 포집된 재생분철과 함께 리턴라인 (36)을 통해 저장조 ( 100)로 이송되어 재처리된다. 거 U 집진부 (20)에서 포집된 재생 분철은 환원를이 약 60 내지 70%이고, 제 2 집진부 (30)에서 포집된 재생 분철은 환원률이 약 50 내지 55%로 제 1 집진부의 재생 분철보다 상대적으로 작다. 이에, 상대적으로 높은 환원율을 갖는 제 1 .집진부의 재생 분철을 호퍼로 이송하여 환원율이 상대적으로 낮은 게 2 집진부의 재생 분철과 함께 섞음으로써, 호퍼 내부의 재생 분철의 환원률을 55% 이상으로 높여 유지할 수 있게 된다. 이에. 제 2 집진부에서 포집된 재생 분철만을 저장조로 이송하는 경우와 비교하여 저장조로 이송되는 재생 분철의 환원률을 높여 공급할 수 있게 된다.
또한, 최종적으로 저장조에는 게 1 집진부에서 포집된 재생 분철보다 상대적으로 낮은 환원를의 재생 분철이 투입된다. 따라서, 제 1 집진부에서 수거된 재생 분철의 환원률을 적절히 낮추고 산화도를 높여 저장조로 투입할 수 있게 된다.
상기 리턴라인 (36)은 호퍼 (34)와 저장조 ( 100) 사이를 연결하여 , 호퍼 (34)에 수거된 재생 분철이 리턴라인 (36)을 통해 최종적으로 저장조 ( 100)로 이송되어 재활용된다.
이와 같이, 재생 분철을 저장조 (100)로 이송하여 저장조 ( 100) 내의 분환원철에 투입함으로써, 저장조 ( 100) 내의 전체 분환원철의 환원력을 안정적으로 유지할 수 있게 된다.
환원철은 급속 산화되는 경우 폭발의 위험이 있다. 재생 분철은 가스로부터 제 1 집진부 (20)와 제 1 집진부 (20)를 통해 포집되는 과정에서 산화되면서 저장조 ( 100) 내의 분환원철과 비교하여 상대적으로 산화도가 높아지게 된다.
이에, 산화도가 상대적으로 높은 재생 분철이 저장조 ( 100) 내로 공급됨으로써, 저장조 ( 100) 내의 분환원철의 환원력을 안정화시킬 수 있게 된다. 따라서, 본 실시예의 처리 장치는 재생 분철을 저장조 ( 100) 내와 분환원철과 흔합하여 괴성화됨으로써, 분환원철의 급격한 산화에 따른 폭발을 방지하고 보다 안정적으로 괴성체를 제조할 수 있게 된다.
상기 여과집진기 (40)는 멀티사이클론 (32)에서 배출되는 가스에서 최종적으로 분진을 포집 처리한다. 상기 여과집진기 (40)는 내부에 복수개의 셔과포 (bag f i l ter )를 구비한 건식 집진 방식의 집진기이다. 여과집진기 (40)에는 가스의 흡입압을 제공하는 흡입펌프 (43)가 연결된다. 여과집진기 (40)에서 포집된 분진은 여과집진기 (40) 하부에 더스트빈 (42)에 수거된다. 더스트빈 (42)에 수거된 분진은 예를 들어, 차량 등을 이용하여 외부의 처리장소로 이송되어 재처리된다.
본 실시예의 처리장치는 재생 분철을 포집 회수하고 저장조 ( 100)로 재투입하여 괴성화하는 과정에서 조업이 불안정한 경우, 제 1 집진부 (20)에서 포집된 분철을 외부로 배출 처리하는 처리부를 더 포함할 수 있다.
도 1에 도시된 바와 같이, 상기 처리부는 상기 이송라인 (26)과 상기 더스트빈 (42) 사이에 연결되어 상기 게 1 집진부 (20)에서 이송되는 분철을 상기 더스트빈 (42)으로 보내는 비상배출라인 (44) , 상기 이송라인 (26)과 비상배출라인 (44)을 선택적으로 연결하는 제어밸브 (46)를 포함한다.
상기 계어밸브 (46)는 이송라인 (26)과 비상배출라인 (44)의 연결지점에 설치되어 외부 제어 신호에 따라 구동되어 이송라인 (26)과 비상배출라인 (44)을 연결한다. 제어밸브 (46)의 구동에 따라 이송라인 (26)과 비상배출라인 (44)이 연결되면, 계 1 집진부 (20)의 건식집진기 (24)로부터 이송되는 재생 분철은 제 2 집진부 (30)의 호퍼 (34)로 이송되지 않고 비상배출라인 (44)을 따라 더스트빈 (42)으로 배출된다.
이와 같이, 필요한 경우 제 1 집진부 (20)에서 포집된 재생 분철을 제 2 집진부 (30)의 호퍼 (34)로 이송하지 않고 바로 더스트빈 (42)으로 배출하여 처라함으로써, 공정 불안정성을 개선할 수 있게 된다.
따라서, 장기 조업에 따른 미분 누적으로 괴성화 조업이 불안정해지는 경우, 제 1 집진부 (20)에서 수거된 미분의 재생 분철을 저장조 ( 100)로 보내 재활용하지 않고 바로 배출 처리함으로써, 조업 상황이 개선되고 미분에 의한 괴성화 불량이 개선될 수 있다.
이하, 본 실시예에 따른 괴성화 설비의 분진 처리 과정을 설명한다. 환원로를 거쳐 환원된 분환원철은 저장조 (100)로 이송되어 장입되고, 괴성화 머신 ( 110)에서 압착되어 괴성체인 브리켓으로 제조된다. 분환원철을 괴성체로 제조하는 과정에서 고온의 분진이 다량 포함된 가스가 발생된다. 먼저, 저장조 ( 100)에서 배출되는 가스는 게 1 집진부 (20)를 통해 필터링되어 재생 분철이 포집된다. 또한, 분환원철을 괴성체로 제조하는 과정에서 배출되는 가스는 제 2 집진부 (30)를 통해 필터링되어 재생 분철이 포집된다.
제 1 집진부 (20)를 통한 필터링 과정을 거쳐 포집된 재생 분철은 제 2 집진부 (30)로 이송되어, 제 2 집진부 (30)에 의한 필터링 과정을 통해 포집된 재생 분철과 같이 모아진다.
이렇게 모아진 재생 분철은 다시 저장조 ( 100)로 이송되어 저장조 ( 100) 내부로 투입된다. 이에, 저장조 ( 100) 내에 수용된 분환원철에 상대적으로 산화도가 높은 재생 분철이 투입되어 흔합된다. 이렇게 산화도가 상대적으로 높은 분환원철과 산화도가 상대적으로 낮은 재생 분철이 흔합되어 괴성화됨으로써, 분환원철의 산화도가 적절히 조절되어 분환원철의 갑작스런 산화에 의한 폭발을 방지할 수 있게 된다.
이와 같이, 저장조 ( 100)로 이송된 재생 분철은 분환원철과 혼합되어 괴성화되며, 이 과정에서 장기 조업에 따른 미분 누적으로 괴성화 조업이 불안정해지는 경우 이를 검출하여, 제 1 집진부 (20)에서 수거된 미분의 재생 분철을 저장조 ( 100)로 보내지 않고 바로 배출 처리한다.
따라서, 미분 과다에 의한 조업 불량을 개선할 수 있게 된다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본발명의 범위에 속하는 것은 당연하다.
【부호의 설명】
10 처리장치 20 ^fl l 집진부
22 사이클론 24 건식집진기
26 이송라인 30 제 2 집진부
32 멀티사이클론 34 호퍼
36 리턴라인 .40 여과집진기
42 더스트빈 44 비상배출라인
46 제어밸브

Claims

【청구범위】
【청구항 1】
분환원철이 저장되는 저장조에 연결되어 저장조로부터 배출되는 가스에 포함된 분철을 포집하는 제 1 집진부, 및 상기 저장조의 분환원철을 공급받아 압착 성형하여 브리켓을 제조하는 괴성화 머신에 연결되어 괴성체 제조과정에서 배출되는 가스에 포함된 분철을 포집하는 제 2 집진부를 포함하고,
상기 게 1 집진부는 상기 제 2 집진부와 연결되어 제 1 집진부에서 포집된 분철을 상기 게 2 집진부로 이송하고, 상기 제 2 집진부는 상기 저장조로 연결되어 제 1 집진부와 제 2 집진부에서 수거된 재생 분철을 저장조로 공급하여, 저장조 내의 분환원철에 상대적으로 산화도가 높은 재생 분철을 흔합하는 구조의 괴성화 설비의 분진 처리 장치.
【청구항 2】
게 1 항에 있어서,
상기 제 1 집진부는 저장조에서 배출되는 가스를 공급받아 가스 중의 분철을 포집하는 사이클론, 상기 사이클론에 연결되고 내부에 여과포를 구비하여 사이클론으로부터 배출되는 가스에서 분철을 포집하는 건식 집진기, 및 상기 건식 집진기 하부와 상기 제 2 집진부 사이를 연결하여 포집된 분철을 제 2 .집진부로 이송하는 이송라인을 포함하는 괴성화 설비의 분진 처리 장치 .
【청구항 3】
2 항에 있어서,
상기 게 2 집진부는 상기 괴성화 머신에 연결되어 괴성체 제조과정에서 배출되는 가스로부터 분철을 집진하는 멀티사이클론, 상기 멀티사이클론 하부에 연결되어 집진된 분철이 수거되는 호퍼, 및 상기 호퍼와 저장조를 연결하여 호퍼에 수거된 재생 분철을 저장조로 이송하는 리턴라인을 포함하고, 상기 호퍼는 이송라인을 통해 상기 게 1 집진부와 연결되어 게 1 집진부에서 포집된 분철이 상기 호퍼로 이송되는 구조의 괴성화 설비의 분진 처리 장치.
【청구항 4】 제 3 항에 있어세
상기 게 2 집진부는 상기 멀티사이클론에 연결되고 내부에 여과포를 구비하여 멀티사이클론으로부터 배출되는 가스에서 분진을 집진하는 여과집진기, 및 상기 여과집진기 하부에 연결되어 집진된 분진이 수거되는 더스트빈을 더 포함하는 괴성화 설비의 분진 처리 장치.
【청구항 5】
제 4 항에 있어서,
상기 처리장치는 게 1 집진부에서 포집된 분철을 외부로 배출 처리하는 처리부를 더 포함하는 괴성화 설비의 분진 처리 장치.
【청구항 6】
제 5 항에 있어서,
상기 처리부는 상기 이송라인과 상기 더스트빈사이에 연결되어 상기 제 1 집진부에서 이송되는 분철을 상기 더스트빈으로 보내는 비상배출라인, 및 상기 ᅳ이송라인과 비상배출라인을 선택적으로 연결하는 제어밸브를 포함하는 괴성화 설비의 분진 처리 장치 .
【청구항 7】 .
괴성화 설비에서 발생되는 분진을 포집하여 처리하기 위한 괴성화 설비의 분진 처리 방법에 있어서,
분환원철이 저장되는 저장조에서 배출되는 가스에서 제 1 집진부를 통해 분철을 포집하는 제 1 집진 단계,
저장조의 분환원철을 압착 성형시 배출된 가스에서 제 2 집진부를 통해 분철을 포집하는 제 2 집진 단계,
게 1 집진 단계에서 포집된 분철을 제 2 집진 단계의 제 2 집진부로 이송하는 이송 단계, 및
게 2 집진부로 모아진 제 1 집진부와게 2 집진부의 재생 분철을 저장조로 공급하여 저장조 내의 분환원철에 상대적으로 산화도가 높은 재생 분철을 흔합하는 흔합 단계
를 포함하는 괴성화 설비의 분진 처리 방법.
【청구항 8】
제 7 항에 있어서, 상기 이송 단계에서, 제 1 집진부에서 포집된 분철을 외부로 배출 처리하는 처리 단계를 더 포함하는 괴성화 설비의 분진 처리 방법.
【청구항 9】
제 8 항에 있어서,
상기 처리 단계는 조업 블안정시 상기 이송 단계에서 분철의 이동 방향을 전환하여 제 2 집진부로의 분철 이송을 차단하고 분철을 비상 배출 처리하는 괴성화 설비의 분진 처리 방법.
PCT/KR2016/007258 2015-10-27 2016-07-05 괴성화 설비의 분진 처리 장치 및 처리 방법 WO2017073882A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680062813.0A CN108350521B (zh) 2015-10-27 2016-07-05 压块设备的粉尘处理装置及处理方法
BR112018008281-3A BR112018008281A2 (pt) 2015-10-27 2016-07-05 dispositivo e método para tratar poeira de máquina de compactação

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150149404A KR101693517B1 (ko) 2015-10-27 2015-10-27 괴성화 설비의 분진 처리 장치 및 처리 방법
KR10-2015-0149404 2015-10-27

Publications (2)

Publication Number Publication Date
WO2017073882A1 true WO2017073882A1 (ko) 2017-05-04
WO2017073882A8 WO2017073882A8 (ko) 2017-07-13

Family

ID=57832378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007258 WO2017073882A1 (ko) 2015-10-27 2016-07-05 괴성화 설비의 분진 처리 장치 및 처리 방법

Country Status (4)

Country Link
KR (1) KR101693517B1 (ko)
CN (1) CN108350521B (ko)
BR (1) BR112018008281A2 (ko)
WO (1) WO2017073882A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110093509A (zh) * 2019-04-30 2019-08-06 金堆城钼业股份有限公司 一种利用含钼块状烟灰冶炼钼铁的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100210649B1 (ko) * 1996-04-01 1999-07-15 야마오카 요지로 더스트로부터 산화아연을 회수하는 방법 및 그 장치
KR100360109B1 (ko) * 2000-12-19 2002-11-07 주식회사 포스코 미분을 재활용하는 분철광석의 유동층식 용융환원장치 및이를 이용한 용융환원방법
KR100568352B1 (ko) * 2001-12-21 2006-04-05 주식회사 포스코 발생분진을 단광으로 괴성화하여 원료로 이용하는용선제조방법
KR20140016522A (ko) * 2012-07-30 2014-02-10 주식회사 포스코 괴성화 설비의 집진 장치
KR20140076728A (ko) * 2012-12-13 2014-06-23 (주)창성 공정 단계별 집진이 가능한 분말 성형 장치 및 그 방법.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525686B (zh) * 2008-03-06 2011-02-16 四川龙蟒矿冶有限责任公司 一种高强度煤基直接还原生球块的制造方法及其设备
KR101561278B1 (ko) * 2013-11-04 2015-10-16 주식회사 포스코 용철 제조 설비의 환원가스 제진장치 및 제진방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100210649B1 (ko) * 1996-04-01 1999-07-15 야마오카 요지로 더스트로부터 산화아연을 회수하는 방법 및 그 장치
KR100360109B1 (ko) * 2000-12-19 2002-11-07 주식회사 포스코 미분을 재활용하는 분철광석의 유동층식 용융환원장치 및이를 이용한 용융환원방법
KR100568352B1 (ko) * 2001-12-21 2006-04-05 주식회사 포스코 발생분진을 단광으로 괴성화하여 원료로 이용하는용선제조방법
KR20140016522A (ko) * 2012-07-30 2014-02-10 주식회사 포스코 괴성화 설비의 집진 장치
KR20140076728A (ko) * 2012-12-13 2014-06-23 (주)창성 공정 단계별 집진이 가능한 분말 성형 장치 및 그 방법.

Also Published As

Publication number Publication date
WO2017073882A8 (ko) 2017-07-13
KR101693517B1 (ko) 2017-01-06
CN108350521B (zh) 2020-05-19
CN108350521A (zh) 2018-07-31
BR112018008281A2 (pt) 2018-10-23

Similar Documents

Publication Publication Date Title
JP4750846B2 (ja) 含亜鉛転炉ダストのリサイクル方法
EP2661512B1 (en) Systems and methods for recycling steelmaking converter exhaust residue and products made thereby
CN101637744A (zh) 湿法炼锌挥发窑窑渣的回收及利用方法
CZ113194A3 (en) Method of utilizing waste or residual substances containing iron
KR101767372B1 (ko) 폐 배터리에서 납의 회수 방법
CN109046756B (zh) 炼钢脱硫渣中富集石墨选取方法
KR100360109B1 (ko) 미분을 재활용하는 분철광석의 유동층식 용융환원장치 및이를 이용한 용융환원방법
WO2017073882A1 (ko) 괴성화 설비의 분진 처리 장치 및 처리 방법
KR100797828B1 (ko) 펠렛 제조 장치 및 펠렛 제조 방법
CN115896379B (zh) 一种利用废钢进行炼铁的欧冶炉系统的使用方法
KR100797829B1 (ko) 더스트 괴성체 제조 장치 및 더스트 괴성체 제조 방법
CN104185686B (zh) 粉铁矿还原装置、还原铁及铁水制造设备和还原铁及铁水制造方法
CN102492851A (zh) 回收火法冶炼提锌尾渣的方法
KR101064992B1 (ko) 용철 제조장치
KR100370611B1 (ko) 칩 또는 슬래그를 재활용한 제강용 선철 대용 단괴 제조장치
CN210207629U (zh) 一种返矿二次自动筛分系统
CN110893369B (zh) 一种铜渣料的筛选磨粉生产线系统
CN115725804B (zh) 以钢渣立磨为中心的钢渣二次处理方法
KR101518596B1 (ko) 열교환 기능을 갖는 부생 슬러지 재활용 장치
CN220071917U (zh) 一种阳极碳块生产用磨粉系统
WO2013172652A1 (ko) 미분광석의 입도 선별방법 및 입도 선별장치
CN110066914A (zh) 一种从高炉瓦斯灰中回收金属铁的方法
CN204996560U (zh) 含铁粉末铁粉提取机
EP3392353A1 (en) Method for manufacturing molten iron
KR101667616B1 (ko) 괴성화 설비의 집진 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018008281

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018008281

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180424

122 Ep: pct application non-entry in european phase

Ref document number: 16860066

Country of ref document: EP

Kind code of ref document: A1