WO2017073802A1 - 바다 머드를 이용한 친환경 비료의 제조방법 - Google Patents

바다 머드를 이용한 친환경 비료의 제조방법 Download PDF

Info

Publication number
WO2017073802A1
WO2017073802A1 PCT/KR2015/011418 KR2015011418W WO2017073802A1 WO 2017073802 A1 WO2017073802 A1 WO 2017073802A1 KR 2015011418 W KR2015011418 W KR 2015011418W WO 2017073802 A1 WO2017073802 A1 WO 2017073802A1
Authority
WO
WIPO (PCT)
Prior art keywords
mud
fertilizer
flocculant
seawater
weight
Prior art date
Application number
PCT/KR2015/011418
Other languages
English (en)
French (fr)
Inventor
김성철
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to PCT/KR2015/011418 priority Critical patent/WO2017073802A1/ko
Publication of WO2017073802A1 publication Critical patent/WO2017073802A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Definitions

  • the present invention relates to a method for producing environmentally friendly fertilizer using the mud (sea mud) abundantly present in the sea.
  • Muds are generally deposited in the sea at a thickness of about 640 m, and the total amount of marine sediments, including muds, is about 8.2 ⁇ 10 17 tons, which is twice the weight of the earth's total land mass.
  • the average mud deposition rate of mud is 1cm / 1 year
  • the main component of the layer deposited in the ocean is calcium
  • the main component of mud deposited in the offshore is silicate, so the mud from the mud or the Dead Sea It has less salt (NaCl) than minerals in seawater and contains much more mineral elements for plants, which can be a source of cosmetics and fertilizers.
  • Gansu is also a liquid that remains after salts are precipitated from seawater, and usually contains a large amount of magnesium salts, resulting in a bitter taste.
  • Magnesium chloride is the most abundant in the water, and other magnesium sulfate, sodium chloride, potassium chloride, magnesium bromide and the like are contained.
  • Potassium fertilizer production method is widely known as a process for the treatment of water, but in order to obtain a sufficient fertilizer component, a large amount of seawater must be evaporated or removed, and sodium chloride (NaCl) must be removed.
  • NaCl sodium chloride
  • magnesium (Mg) constitutes most, so only a few minerals are included, there is a problem that must add other essential elements.
  • Republic of Korea Patent No. 1319133 discloses a composition for promoting soil improvement or plant growth containing alkaline natural minerals.
  • the present invention provides a composition that is superior to the chemical fertilizers in soil improvement and plant growth effect, but only disclosed a method for increasing the capacity of a specific component using a natural mineral, using a mud to various elements required for plant growth There is no disclosure of how to increase.
  • the present invention treats mud abundantly with seawater or fresh water to selectively remove high solubility salt (NaCl), and dozens of minerals contained in mud and brine Its purpose is to manufacture environmentally friendly fertilizers and soil improvers by preserving most of them.
  • the present invention comprises the steps of adding a flocculant to the mud (sea mud) containing sea water to produce a precipitate (first step); Centrifuging the precipitate to remove brine and preparing mud sludge (second step); And it provides a fertilizer manufacturing method comprising the step (third step) of adding a natural mineral to the mud sludge.
  • the first step may further include adding a flocculant and adjusting the pH to 6 to 12.8.
  • the mixture may be prepared by adding 300 to 1000 parts by weight of seawater or fresh water based on 100 parts by weight of the mud.
  • the flocculant may be calcium hydroxide [Ca (OH) 2 ], magnesium oxide (MgO), poly (ferric sulfate) PFS, alum [(KAl (SO 4 ) 2 .12H 2 O; alum], poly Consisting of acrylamide, calcium carbonate (CaCO 3 ), iron sulfate (FeSO 4 ⁇ 7H 2 O), iron chloride (FeCl 3 ⁇ 6H 2 O), sodium silicate (Na 2 SiO 3 ), and clay It may be any one selected from the group.
  • the first step may add 0.1 to 10 parts by weight of the flocculant based on 100 parts by weight of the total mud including sea water.
  • the third step may add 5 to 40 parts by weight of natural minerals to a total of 100 parts by weight of the mud sludge.
  • the natural mineral is a phosphate rock powder [Ca 3 (PO 4 ) 2 ], soluble magnesium phosphate, goto (MgSO 4 ), mica (mica, phlogophite), gypsum (CaSO 4 ), potassium feldspar (feldspar), and dolomite ( dolomite) can be mixed with any one or more selected from the group consisting of.
  • FIG. 1 is a flow chart showing a manufacturing method of environmentally friendly fertilizer according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing the surface charge of the silicate as the main component of the mud in an environmentally friendly fertilizer according to an embodiment of the present invention.
  • the present invention comprises the steps of adding a flocculant to the mud (sea mud) containing sea water to produce a precipitate (first step); Centrifuging the precipitate to remove brine and preparing mud sludge (second step); And it provides a method for producing environmentally friendly fertilizer comprising the step (third step) of adding a natural mineral to the mud sludge.
  • the mud contains more than 70 kinds of minerals, especially contains a large amount of 14 essential elements useful for plants, small particles, derived from diatoms and clays (silicates and aluminosilicates) Aluminosilicate and alumina are the main components.
  • the mud has a negative charge (-) at a pH above slightly acidic, so that the mud does not aggregate, and since it contains many seawater, it is difficult to remove salts composed of sodium (Na + ) ions and chlorine (Cl ⁇ ) ions that are harmful to plants.
  • salts composed of sodium (Na + ) ions and chlorine (Cl ⁇ ) ions that are harmful to plants.
  • 300 to 1000 parts by weight of seawater or fresh water may be added to 100 parts by weight of the whole mud.
  • the concentration of sodium ions and chlorine ions unnecessary for eco-friendly fertilizer is reduced, and calcium (Ca), potassium (K), and magnesium (necessary components) are reduced.
  • Mg), boron (B), manganese (Mn), molybdenum (Mo), copper (Cu) ions and solubility of sulfate ions, phosphate ions, bromine ions, etc. may be increased to reduce the efficacy of environmentally friendly fertilizers.
  • the first step may further comprise the step of adjusting the pH to 6 to 12.8 by adding a flocculant.
  • the flocculant is calcium hydroxide [Ca (OH) 2 ], magnesium oxide (MgO), poly (ferric sulfate) (hereinafter 'PFS'), alum [(KAl (SO 4 ) 2 .12H 2 O; alum] , Polyacrylamide, calcium carbonate (CaCO 3 ), iron sulfate (FeSO 4 ⁇ 7H 2 O), iron chloride (FeCl 3 ⁇ 6H 2 O), sodium silicate (Na 2 SiO 3 ), and clay It may be any one selected from the group consisting of.
  • the flocculant can adjust the pH of the mud (sea mud) containing the sea water, when using a flocculant such as PFS, alum, and polyacrylamide pH using sodium hydroxide (NaOH) or potassium hydroxide (KOH)
  • a flocculant such as PFS, alum, and polyacrylamide pH using sodium hydroxide (NaOH) or potassium hydroxide (KOH)
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • calcium oxide it is necessary to react with the coagulant function and minerals to form a hydrate, and to increase the pH simultaneously.
  • the first step may add 0.1 to 10 parts by weight of the flocculant based on 100 parts by weight of the total mud including sea water.
  • the pH is most effective in controlling and beyond that range, it is impossible to reach a pH that precipitates useful components for plant growth, and a large amount of strong base should be used.
  • metal ions form hydrates such as M (OH) 2 , M (OH) 3, and the hydrates are precipitated due to their very low solubility in water and monovalent ions such as NaCl. They remain dissolved in water.
  • the surface charge of the mud composed of silicates and the like is increased to attract the divalent or trivalent cations more strongly than the monovalent cations, thereby selectively adsorbing.
  • the components useful for plant growth contained in seawater are separated and precipitated together with the mud, keeping the useful fertilizer components intact, and some active ingredients can greatly increase the amount.
  • the pH of the brine removed by centrifugation in the mixture is not neutral, it can be neutralized using alum, mica, acetic acid, goto, and the like. I can keep it.
  • the third step may add 5 to 40 parts by weight of natural minerals to a total of 100 parts by weight of the mud sludge.
  • the natural mineral is a phosphate rock powder [Ca 3 (PO 4 ) 2 ], soluble magnesium phosphate, goto (MgSO 4 ), mica (mica, phlogophite), gypsum (CaSO 4 ), potassium feldspar (feldspar), and dolomite ( dolomite) can be mixed with any one or more selected from the group consisting of.
  • the natural mineral is preferably pulverized and added in powder form, and when the natural mineral is added, the mineral component necessary for plant growth may be supplemented.
  • the natural minerals may be added by melting and pulverizing phosphate or plagioclase at 1200 °C or more when the soluble magnesium phosphate is added, it is low solubility to produce a fast-acting fertilizer, not a fast-acting fertilizer and lack of environmentally friendly fertilizer It is preferable to select soluble magnesium phosphate because it can supplement.
  • distilled water was added instead of the flocculant to precipitate.
  • the flocculant was added to confirm that flocculation formed and precipitated in the mixture. After completely removing the brine by centrifugation and dried for 10 hours at 100 °C to obtain an environmentally friendly fertilizer.
  • Muds of various fats were collected and compared with the mineral content of an active ingredient of plant growth and the mineral content of commercial azomite (X-ray fluorescence; Component analysis was performed using 'XRF').
  • Table 1 is a table showing the results of XRF analysis of the mineral content and the mineral content of azomite according to the mud collection site.
  • the sum is CaO, K 2 O, MgO, Fe 2 O 3 , MnO, SrO, ZrO 2 , The sum of Cr 2 O 3 , P 2 O 5 , and SO 3 is shown, and some minerals were not detected at concentrations below the detection limit.
  • mud loaded in seawater contained 1.3 to 34 times more mineral components (CaO to SO 3 ) effective for plant growth than azoites derived from a commercial Utah desert.
  • mineral components CaO to SO 3
  • magnesium, iron, manganese, chromium and sulfate ions were found to be much richer than azomite.
  • the mixture was collected from the tremors by varying the flocculant according to the method of Example 1 and analyzed using XRF.
  • Unwanted sodium ions in the case of processing the mud with distilled water instead of coagulants (Na +), chloride ion (Cl -) concentration and the like are reduced to less and effective minerals of magnesium ions in the plant growth (Mg 2+), sulfate ions ( SO 4 2- ) was dissolved in water and the concentration was reduced.
  • the amount of NaCl may vary greatly depending on the salinity of the water used, but it is also confirmed that the salinity of the water used is important because the solubility of M (OH) 2 , M (OH) 3 increases as salinity decreases.
  • 1 is a flow chart showing a manufacturing process of environmentally friendly fertilizer according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing the surface charge of the mud in the manufacturing method of environmentally friendly fertilizer according to an embodiment of the present invention.
  • the point zero charge of the surface charge varies according to the main component of the mud, in particular, the isoelectric point of the silicate is 2.5, and the isoelectric point of the aluminosilicate is about 6.
  • the surface charge may be adjusted to a zero or positive charge (+) or negative charge ( ⁇ ) state, and may selectively absorb metal ions.
  • Formula 1 indicates that the surface of the silicate, which is the main component of the mud, has a negative charge, so that sodium ions may be adsorbed.
  • salts of the environmentally friendly fertilizer according to the present invention are removed, thereby preventing salts.
  • divalent and trivalent metal ions such as magnesium ions (Mg 2+ ) dissolved in seawater form hydrates under basic conditions.
  • the pH of the seawater is about 8.2 to 8.9, but the brine discharged by changing the pH at the step of adding the flocculant is an acidic material derived from natural materials such as alum, mica, acetic acid, goto (MgSO 4 ), and acidic rock powder.
  • the pH value by treating with the environmentally friendly method of manufacturing fertilizers do not need a chemical reaction using a strong acid and strong base is environmentally friendly.
  • According to the present invention can be prepared by adding seawater or fresh water to the mud containing the minerals useful for plant growth and removing NaCl through centrifugation to prevent salt damage and to produce environmentally friendly fertilizers with minerals useful for plant growth.
  • a flocculant when calcium oxide is used as a flocculant, it can be maintained at a pH of about 12 without additional process for pH control, and it releases salt (NaCl) causing salt damage at the pH condition, and divalent and trivalent, which are major constituents of minerals.
  • Salt (NaCl) salt damage at the pH condition, and divalent and trivalent, which are major constituents of minerals.
  • Metal ions can be precipitated as a hydrate and the adsorption capacity of the mud composed of silicates and the like to the divalent and trivalent cations can be increased to more strongly adsorb the cations in seawater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)

Abstract

본 발명은 바닷물을 포함하는 머드(sea mud)에 응집제를 첨가하여 침전물을 생성시키는 단계(제1단계); 상기 침전물을 원심분리하여 소금물을 제거하고, 머드 슬러지를 제조하는 단계(제2단계); 및 상기 머드 슬러지에 천연광물을 첨가하는 단계(제3단계)를 포함하는 비료의 제조방법를 포함하는 비료의 제조방법을 제공한다. 따라서 수득이 용이한 머드에 바닷물을 첨가하여 함께 처리하는 경우에 머드 내에 다량으로 들어 있는 여러 종의 미네랄을 그대로 활용할 수 있으며, 화학비료를 대체할 수 있는 천연비료로써 활용이 가능하다. 종래의 간수를 이용한 비료의 제조공정에서는 다량의 바닷물이 필요하고 염화나트륨을 제거해야하는 별도의 공정이 필요하나, 상기 처리과정에서 머드 및 바닷물에 포함되어 있는 불필요한 나트륨이온(Na+), 염소이온(Cl-)만 선택적으로 제거할 수 있어 비료 살포 후 염해를 방지할 수 있으며, 상기 처리과정 이후의 머드 내의 유효 성분 비율이 크게 증가되어 고가의 천연광물비료를 대체할 수 있다.

Description

바다 머드를 이용한 친환경 비료의 제조방법
본 발명은 바다에 풍부하게 존재하는 머드(sea mud)를 이용하여 친환경 비료를 제조하는 방법에 관한 것이다.
화학비료의 남용은 토양의 산성화를 초래하며, 토양 내의 식물 생장에 유효한 미네랄의 소모를 촉진한다. 결과적으로 더 많은 양의 화학비료를 필요로 하게 되어 다시 화학비료에 의존하게 되는 악순환을 반복하게 된다. 이에 토양의 산성화를 방지할 수 있는 천연광물을 이용한 토양개량제나 비료를 개발하고자 하는 시도가 있으며, 인산과 질소가 포함되어 광맥으로부터 채광하여 분쇄공정만으로도 바로 비료의 사용이 가능한 천연광물비료가 각광받고 있다. 특히 미국 유타주에서 생산되는 천연광물비료인 아조마이트(azomite)는 식물 생장에 필요한 14가지의 필수 성분이 모두 포함되어 있어 화학비료를 대체하여 다양하게 사용되고 있다.
한편 머드는 일반적으로 바닷속에 약 640 m의 두께로 퇴적되어 있으며, 머드를 포함하는 전체 해양퇴적물의 양은 약 8.2 × 1017 톤(ton)이고, 지구 전체 육지 무게의 2배에 이른다. 머드의 평균 퇴적 속도는 1㎝/1년이며, 대양에서 퇴적되는 층의 주요 성분은 칼슘이고, 근해에서 퇴적되는 머드의 주성분은 실리케이트(silicate)가 일반적이어서 근해에서 퇴적되는 머드나 사해의 머드는 바닷물 속에 들어 있는 미네랄보다 염분(NaCl)은 적고, 식물에 필요한 미네랄 원소들은 훨씬 많이 포함하고 있어서 화장품 및 비료의 원료가 될 수 있다.
또한 간수는 바닷물에서 식염을 석출한 이후에 잔류되는 액체로, 보통 마그네슘염을 다량 함유하여 쓴맛이 난다. 상기 간수에는 염화마그네슘이 가장 많고, 기타 황산마그네슘, 염화나트륨, 염화칼륨, 브롬화마그네슘 등이 함유되어 있다. 간수 처리공정으로 칼륨비료를 생산하는 공법이 널리 알려져 있으나, 충분한 비료 성분을 얻기 위해서는 많은 양의 바닷물을 증발하거나 제거해야 하고, 염화나트륨(NaCl)을 제거해야 하는 문제점이 있다. 또한 간수로 비료를 제조하는 경우에 마그네슘(Mg)이 대부분을 구성하므로 몇 가지 소수의 미네랄만이 포함되어 있어서, 다른 필수 원소를 첨가해야하는 문제점이 있다.
대한민국등록특허 제1319133호는 알칼리성 천연광물을 함유하는 토양개량 또는 식물생장촉진용 조성물을 개시한다. 상기 발명에서 화학비료에 비해 토양개량 및 식물 생장 효과가 우수한 조성물을 제공하나, 천연광물을 이용하여 특정성분의 용량을 증가시키는 방법에 대해서만 개시되었으며, 머드를 이용하여 식물의 성장에 필요한 다양한 원소에 대한 증가방법에 대해서는 개시된 바가 없다.
본 발명은 고가의 천연광물비료를 대체하기 위해 풍부하게 존재하는 머드를 바닷물 또는 담수와 함께 처리하여 용해도가 큰 염분(NaCl)을 선택적으로 제거하고, 머드와 소금물에 포함되어 있는 수십 종의 미네랄은 대부분 보존하여 친환경비료 및 토질개량제 등을 제조하는데 그 목적이 있다.
본 발명은 바닷물을 포함하는 머드(sea mud)에 응집제를 첨가하여 침전물을 생성시키는 단계(제1단계); 상기 침전물을 원심분리하여 소금물을 제거하고, 머드 슬러지를 제조하는 단계(제2단계); 및 상기 머드 슬러지에 천연광물을 첨가하는 단계(제3단계)를 포함하는 비료의 제조방법을 제공한다.
또한 상기 제1단계에서 응집제를 첨가하고 pH를 6 내지 12.8으로 조절하는 단계를 더 포함할 수 있다.
또한 상기 머드 100 중량부에 대하여 바닷물 또는 담수 300 내지 1000 중량부 첨가하여 혼합물을 제조할 수 있다.
또한 상기 응집제는 수산화칼슘[Ca(OH)2], 산화마그네슘 (MgO), 폴리페릭설페이트(Poly(ferric sulfate); PFS), 명반[(KAl(SO4)2·12H2O; alum], 폴리아크릴아미드(polyacrylamide), 탄산칼슘(CaCO3), 황산철(FeSO4 · 7H2O), 염화철(FeCl3 · 6H2O), 규산나트륨(Na2SiO3), 및 클레이(clay)로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 제1단계는 바닷물을 포함하는 머드(sea mud) 총 100 중량부에 대해 응집제 0.1 내지 10 중량부를 첨가할 수 있다.
또한 상기 제3단계는 머드 슬러지에 총 100 중량부에 대해 천연광물을 5 내지 40 중량부로 첨가할 수 있다.
상기 천연광물은 인산광물 암석분말[Ca3(PO4)2], 용성인산마그네슘, 고토(MgSO4), 운모(mica, phlogophite), 석고(CaSO4), 칼륨장석(feldspar), 및 돌로마이트(dolomite)로 이루어진 군에서 선택된 어느 하나 이상을 혼합할 수 있다.
채취가 용이한 머드에 바닷물을 첨가하여 함께 처리하는 경우에 머드와 바닷물 내에 다량으로 들어 있는 여러 종의 미네랄을 그대로 활용할 수 있으며, 화학비료를 대체할 수 있는 천연비료로써 활용이 가능하다. 종래의 간수를 이용한 비료의 제조공정에서는 다량의 바닷물이 필요하고 염화나트륨을 제거해야하는 별도의 공정이 필요하나, 상기 처리과정에서 머드 및 바닷물에 포함되어 있는 불필요한 나트륨이온(Na+), 염소이온(Cl-)만 선택적으로 제거할 수 있어 비료 살포 후 염해를 방지할 수 있으며, 상기 처리과정 이후의 머드 내의 유효 성분이 천연광물비료로 시판 중인 아조마이트에 비해 크게 증가되어 고가의 천연광물비료를 대체할 수 있다.
도 1은 본 발명의 실시 예에 따른 친환경 비료의 제조방법을 나타낸 흐름도이다.
도 2는 본 발명의 실시예에 따른 친환경 비료에 있어서 머드의 주성분인 실리케이트의 표면전하를 나타낸 모식도이다.
이하에서는 본 발명의 실시예에 따른 머드를 이용한 친환경 비료의 제조방법에 관해서 상세하게 알아본다.
본 발명은 바닷물을 포함하는 머드(sea mud)에 응집제를 첨가하여 침전물을 생성시키는 단계(제1단계); 상기 침전물을 원심분리하여 소금물을 제거하고, 머드 슬러지를 제조하는 단계(제2단계); 및 상기 머드 슬러지에 천연광물을 첨가하는 단계(제3단계)를 포함하는 친환경 비료의 제조방법을 제공한다.
상기 머드는 70종 이상의 미네랄이 골고루 포함되어 있으며, 특히 식물에 유용한 필수 원소 14종을 다량 포함하고 있고, 입자가 작으며, 규조류와 클레이(clay)에서 유래되어 실리케이트(silicate)와 알루미노 실리케이트(aluminosilicate), 알루미나(alumina)가 주성분이다.
또한 머드는 약산성 이상의 pH에서 음전하(-)를 띠고 있어서 응집이 되지 않으며, 많은 바닷물을 포함하고 있어서 식물에 유해한 나트륨(Na+) 이온과 염소(Cl-) 이온으로 이루어진 염분을 제거하기 어렵다. 상기 염분을 제거하기 위해 물로 세척하는 경우에는 유효한 비료성분인 칼슘(Ca), 칼륨(K), 마그네슘(Mg), 붕소(B), 망간(Mn), 몰리브덴(Mo), 구리(Cu) 이온들과 황산이온, 인산이온, 브롬이온 등이 물에 함께 용해되어 배출되는 문제가 있다.
상기 머드에 바닷물을 첨가하여 분산하는 단계에서, 머드 전체 100 중량부에 대해 바닷물 또는 담수 300 내지 1000 중량부를 첨가할 수 있다.
상기 바닷물의 양이 300 중량부 미만이면 머드로부터 소금물을 충분히 분리하는 공정에서 원심분리기의 작동에 무리가 생기고 또한 바닷물 속의 유효성분을 충분히 침전시키기 어려우며, 1000 중량부를 초과하는 경우 하기의 소금물을 제거하는 비용과 시간이 증가하여 공정의 효율이 매우 낮아질 수 있다.
상기 바닷물을 첨가하지 아니하고, 응집제 대신 증류수만 첨가되는 경우에는 응집이 되지 않아 친환경 비료에 불필요한 나트륨이온과 염소이온의 농도는 적게 감소하고, 필요성분인 칼슘(Ca), 칼륨(K), 마그네슘(Mg), 붕소(B), 망간(Mn), 몰리브덴(Mo), 구리(Cu) 이온들과 황산이온, 인산이온, 브롬이온 등의 용해도가 증가되어 친환경 비료의 효능이 감소할 수 있다.
여기서 바닷물을 대체하여 담수를 첨가하는 경우에는 Mg 이온이 일부 용해되어 제거되나, 염분의 성분인 Na 이온은 더 많이 제거할 수 있는 효과를 갖는다.
또한 상기 제1단계에서 응집제를 첨가하여 pH를 6 내지 12.8으로 조절하는 단계를 더 포함할 수 있다.
상기 응집제는 수산화칼슘[Ca(OH)2], 산화마그네슘 (MgO), 폴리페릭설페이트(Poly(ferric sulfate); 이하 'PFS'), 명반[(KAl(SO4)2·12H2O; alum], 폴리아크릴아미드(polyacrylamide), 탄산칼슘(CaCO3), 황산철(FeSO4·7H2O), 염화철(FeCl3· 6H2O), 규산나트륨(Na2SiO3), 및 클레이(clay)로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 응집제는 바닷물을 포함하는 머드(sea mud)의 pH를 조절할 수 있으며, PFS, 명반, 및 폴리아크릴아미드 등의 응집제를 사용하는 경우에는 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)을 사용하여 pH를 다시 조절하는 과정이 필요하나, 산화칼슘을 사용하는 경우 자체로 응집제 기능과 미네랄 성분과 반응해 수화물을 형성하며, pH 상승효과를 동시에 초래하므로 따로 pH를 조절하는 과정이 필요하지 않다.
따라서 상기 응집제는 산화칼슘을 사용하는 것이 바람직하다.
상기 제1단계는 바닷물을 포함하는 머드(sea mud) 총 100 중량부에 대해 응집제 0.1 내지 10 중량부를 첨가할 수 있다.
상기 범위 내에서 pH의 조절효과가 가장 크며 상기 범위를 넘어가는 경우 식물 생장에 유용한 성분을 침전시키는 pH에 도달할 수 없고, 다량의 강염기를 사용해야 한다.
상기 응집제를 첨가하여 pH가 증가되는 경우에는 금속이온들은 M(OH)2, M(OH)3 등의 수화물을 형성하는데 상기 수화물은 물에 대한 용해도가 매우 낮아서 침전하게 되고, NaCl 등 1가 이온들은 물에 녹은 상태를 유지하게 된다. 또한 실리케이트 등으로 구성된 머드의 표면 전하는 증가하여 1가 양이온보다 2가나 3가 양이온을 더 강하게 끌어당겨 선택적으로 흡착시킬 수 있다. 이때 바닷물에 포함되어 있는 식물 생장에 유용한 성분은 분리되어 머드와 함께 침전되어, 유용한 비료 성분은 그대로 유지시키고, 일부 유효 성분은 양을 크게 증가시킬 수 있다.
상기 제2단계의 원심분리 단계는 소금물이 포함하고 있는 염분에서 나트륨이온(Na+) 염소이온(Cl-)을 거의 대부분 분리하고, 식물 생장에 유용한 성분을 포함하는 친환경 비료를 제조할 수 있다.
또한 상기 혼합물에서 원심분리하여 제거된 소금물의 pH는 중성이 아니므로, 명반이나 운모, 아세트산, 고토 등을 이용하여 중화할 수 있으며, 이 경우 강산이나 강염기를 이용한 적정 단계가 필요하지 않아 친환경 공정을 유지할 수 있다.
상기 제3단계는 머드 슬러지에 총 100 중량부에 대해 천연광물을 5 내지 40 중량부로 첨가할 수 있다.
상기 천연광물은 인산광물 암석분말[Ca3(PO4)2], 용성인산마그네슘, 고토(MgSO4), 운모(mica, phlogophite), 석고(CaSO4), 칼륨장석(feldspar), 및 돌로마이트(dolomite)로 이루어진 군에서 선택된 어느 하나 이상을 혼합할 수 있다.
상기 천연광물은 분쇄하여 분말 형태로 첨가되는 것이 바람직하며, 천연광물이 첨가되는 경우에 식물 생장에 필요한 미네랄 성분이 보충될 수 있다.
상기 천연광물이 처리된 경우, 식물종에 따라 필요한 미네랄의 양이 다르므로, 식물종에 따라 더 많이 필요로 하는 원소를 혼합하여 미네랄의 균형을 유지할 수 있다. 예로써 칼슘이 부족한 토양의 경우, 석고를 더 첨가할 수 있고, 뿌리를 튼튼히 하고, 병충해 저항성을 키우기 위해 칼륨장석을 추가하거나, 과실의 수확을 증대시키기 위해서 인산광물 암석분말이나, 천연유래 용성인산마그네슘을 혼합할 수 있으며, 유황이 많이 필요로 하는 작물의 경우, 고토를 혼합하여 고구마 등 농작물의 식감을 증대시킬 수 있다.
특히 상기 천연광물은 용성인산마그네슘을 첨가하는 경우에는 인광석과 사장석을 1200 ℃이상에서 용융시킨 후 분쇄하여 첨가할 수 있으며, 용해도가 낮아서 속효성이 아니라 지효성 비료를 제조할 수 있고 친환경 비료의 부족한 인산 성분을 보충할 수 있으므로 용성인산마그네슘을 선택하는 것이 바람직하다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
<실시예 1> 친환경 비료의 제조
바닷물 500 mL에 머드(sea mud) 100g을 넣고 분산시켰다. 응집제로써 산화칼슘, PFS, 명반의 효과를 확인하기 위해 각각 3g을 첨가하였다.
PFS, 명반 및 폴리아크릴아미드의 경우에는 pH를 10으로 조정하기 위해 수산화나트륨(NaOH)를 첨가하여 적정하였으며, 산화칼슘을 첨가한 경우에는 별도의 pH조절 단계를 실시하지 않았다.
한편 응집제의 효과를 비교하기 위해 응집제 대신에 증류수를 첨가하여 침전시켰다.
상기 응집제를 첨가하여 혼합물에서 응집이 생성되어 침전된 것을 확인하였다. 원심분리를 통해 소금물을 완전하게 제거한 이후에 100 ℃에서 10 시간 동안 건조하여 친환경 비료를 수득하였다.
<실험예 1> 친환경 비료의 물성
1. 머드(sea mud)의 분석
우선 머드를 비료로 사용하기 위한 가능성을 확인하였다.여러 지방의 머드를 채취하여 식물 생장의 유효성분인 미네랄 함량과 시판 중인 아조마이트의 미네랄 함량을 비교하기 위해 X선 형광분석기(X-ray fluorescence; 이하 'XRF')를 사용하여 성분 분석을 실시하였다.
표 1은 머드 채집 장소에 따른 미네랄 함량과 아조마이트의 미네랄 함량의 XRF 분석 결과를 나타낸 표이다.
표 1
원소(%) SiO2 Al2O3 Na2O TiO2 Cl N CaO K2O MgO Fe2O3 MnO SrO ZrO2 Cr2O3 P2O5 SO3 합계(%)
아조마이트 65.85 11.43 2.07 0.2 0.22 0.15 3.67 5.23 0.78 1.37 0.02 0.03 - - 0.055 0.166 11.32
진전 67.66 13.3 3.17 0.67 1.09 .018 3.47 2.97 2.66 4.04 0.07 0.04 0.06 0.06 0.17 0.62 14.12
진동 68.42 13.68 1.89 0.7 1.23 0.21 2.86 5.9 2.62 5.43 0.07 0.04 0.05 0.05 0.15 1.78 18.92
벌교 58.8 16.57 2.51 1.42 1.8 0.15 2.58 3.57 2.58 7.9 0.18 - - - 0.46 1.07 18.84
인도네시아A 51.54 18.48 3.3 1.04 2.6 0.12 3.14 1.81 3.14 9.06 0.11 - - - 0.26 5.41 23.07
인도네시아B 54.45 19.17 2.53 1.11 1.87 0.17 3.41 1.74 3.41 9.16 0.12 0.026 - - 0.26 2.63 20.89
상기 합계는 CaO, K2O, MgO, Fe2O3, MnO, SrO, ZrO2, Cr2O3, P2O5, SO3의 합을 나타낸 것이며, 일부 미네랄은 검출 한계 이하의 농도로 검출되지 않았다.
바닷물에 담지되어 있던 머드에서 시판 중인 유타주 사막에서 유래한 아조마이트보다 식물 생장에 유효한 미네랄 성분(CaO 내지 SO3)이 1.3 내지 34배까지 더 많이 포함된 것을 확인하였다. 특히 마그네슘, 철분, 망간, 크롬 및 황산이온이 아조마이트보다 월등하게 풍부한 것으로 확인되었다.
2. 친환경 비료의 분석
응집제 첨가 효과 및 처리과정에 따른 친환경 비료 내의 유효성분을 확인하기 위하여 실시예 1의 방법에 따라 응집제를 달리하여 진전에서 채취한 상기 혼합물을 처리하고 XRF 를 이용하여 분석하였다.
표 2
원소(%) SiO2 Al2O3 Na2O TiO2 Cl N CaO K2O MgO Fe2O3 MnO SrO ZrO2 Cr2O3 P2O5 SO3 합계(%)
진전 67.66 13.3 3.17 0.67 1.09 .018 3.47 2.97 2.66 4.04 0.07 0.04 0.06 0.06 0.17 0.62 14.12
PFS 64.01 13.22 2.19 0.69 - 0.18 3.21 3.18 3.46 6.2 0.06 0.04 0.02 0.07 0.2 2.04 18.48
명반 64.51 13.83 2.5 0.7 0.13 0.2 3.35 5.57 2.96 4.09 0.06 0.04 0.02 - 0.22 1.72 18.03
증류수 68.34 13.61 3.25 0.7 0.54 0.19 3.3 3.05 2.59 4.04 0.06 0.04 0.02 0.04 0.17 0 1.3.31
산화칼슘 64.45 14.0 2.12 0.69 0.13 0.17 4.87 3.58 3.72 4.65 0.07 0.04 0.02 - 0.17 0.84 17.96
응집제 대신에 증류수로 머드를 처리하는 경우에 불필요한 나트륨이온(Na+), 염소이온(Cl-) 등의 농도는 적게 감소하고, 식물 생장에 유효한 미네랄인 마그네슘이온(Mg2+), 황산이온(SO4 2-) 등이 물에 녹아 농도가 감소하였다. NaCl이 감소되는 양은 사용한 물의 염분도에 따라 크게 달라질 수 있으나, 염분도가 감소하면 M(OH)2, M(OH)3 등의 용해도는 증가하므로 사용한 물의 염분도의 조절이 중요함도 확인하였다.
또한 응집제로서 산화칼슘을 사용하는 경우에 식물 생장에 유효한 미네랄인 CaO, K2O, MgO, Fe2O3, MnO, SrO, ZrO2, Cr2O3, P2O5, 및 SO3 함량이 증가된 것을 확인하였다.
따라서 상기 응집제로 산화칼슘을 첨가하는 경우 별도의 천연광물을 첨가하지 않아도 식물 생장에 필요한 미네랄을 포함시킬 수 있는 장점이 있다.
도 1은 본 발명의 실시예에 따른 친환경 비료의 제조공정을 나타낸 흐름도이다.
도 2는 본 발명의 실시예에 따른 친환경 비료의 제조방법에 있어서, 머드의 표면 전하를 나타내 모식도이다.
도면을 참조하면, 머드의 주성분에 따라 표면전하의 등전점(point zero charge)이 다르고, 특히 실리케이트(silicate)의 등전점은 2.5이고, 알루미노실리케이트(aluminosilicate)의 등전점은 6 정도이다. 머드의 pH를 조절하는 경우에 표면전하를 0 또는 양의 전하(+), 음의 전하(-) 상태로 조절할 수 있으며, 이를 이용하여 금속 이온을 선택적으로 흡수할 수 있다.
[화학식 1]
Figure PCTKR2015011418-appb-I000001
상기 화학식 1은 머드의 주성분인 실리케이트의 표면이 음의 전하를 띠게 되어 나트륨이온이 흡착될 수 있는 것을 나타낸다.
나트륨이온의 경우 높은 pH에서 흡착 강도가 다른 양이온에 비해 약하므로 pH를 조절하면 이온 결합력이 약한 나트륨이온만 탈락되며, 식물 생장의 유효한 2가나 3가의 양이온 미네랄 성분의 구성성분인 금속 이온들은 머드의 실리케이트에 강하게 흡착될 수 있다.
여기서 상기 나트륨 이온이 탈락되어 소금물로 배출되는 경우에 본 발명에 따른 친환경 비료의 염분이 제거되므로 염해를 방지할 수 있다.
또한 바닷물 속에 용해되어 있는 마그네슘이온(Mg2+)과 같은 2가와 3가의 금속 이온은 염기성 조건에서 수화물을 형성한다.
[반응식 1]
Mn+ (aq) + nNa+(aq) + nOH-(aq) → M(OH)n (s) + nNa+ (aq)
상기 반응식에 따라 2+ 또는 3+의 이온들은 높은 pH에서 M(OH)2, M(OH)3 등으로 바뀌어 물에 대한 용해도가 매우 낮아지게 되므로, 식물 생장에 유효한 미네랄의 구성 성분인 마그네슘이온 등은 침전되어 머드와 함께 친환경 비료에 포함될 수 있다.
한편 상기 바닷물의 pH는 8.2 내지 8.9 정도이나, 상기 응집제를 첨가하는 단계에서 pH가 변화되어 배출되는 소금물은 명반이나 운모, 아세트산, 고토(MgSO4), 및 산성을 띄는 암석분말 등 천연 유래 산성 재료로 처리하여 pH 값을 조절하는 경우에 친환경 비료의 제조방법은 강산 및 강염기를 사용하는 화학적 반응이 필요하지 않아 환경친화적이다.
이상으로 본 발명에 따르면 식물생장에 유용한 미네랄을 포함하고 있는 머드에 바닷물 또는 담수를 첨가하고 원심분리를 통해 NaCl을 제거하여 염해를 방지하고 식물 생장에 유용한 미네랄이 증강된 친환경 비료를 제조할 수 있다. 특히 응집제로 산화칼슘을 사용하는 경우에는 pH조절을 위한 추가적인 공정없이 pH 12 정도로 유지할 수 있으며, 상기 pH조건에서 염해를 일으키는 염분(NaCl)을 배출시키고, 미네랄의 주요 구성 성분인 2가 및 3가 금속이온을 수화물로 침전시킬 수 있으며, 또한 실리케이트 등으로 구성된 머드의 2가 및 3가 양이온에 대한 흡착능력을 증가시켜 바닷물 속의 양이온들을 더 강하게 흡착시킬 수 있다.
본 발명은 한정된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (6)

  1. 바닷물을 포함하는 머드(sea mud)에 응집제를 첨가하여 침전물을 생성시키는 단계(제1단계);
    상기 침전물을 원심분리하여 소금물을 제거하고, 머드 슬러지를 제조하는 단계(제2단계); 및
    상기 머드 슬러지에 천연광물을 첨가하는 단계(제3단계)를 포함하는 비료의 제조방법.
  2. 청구항 1에 있어서, 상기 제1단계에서 응집제를 첨가하여 pH를 6 내지 12.8 로 조절하는 단계를 더 포함하는 비료의 제조방법.
  3. 청구항 1에 있어서, 상기 머드 100 중량부에 대하여 바닷물 또는 담수를 300 내지 1000 중량부로 첨가하는 것을 특징으로 하는 비료의 제조방법.
  4. 청구항 1 또는 청구항 2에 있어서, 상기 응집제는 수산화칼슘 [Ca(OH)2], 산화마그네슘 (MgO), 폴리페릭설페이트[poly(ferric sulfate); PFS], 명반[(KAl(SO4)2·12H2O; alum], 폴리아크릴아미드(polyacrylamide), 탄산칼슘(CaCO3), 황산철(FeSO4·7H2O), 염화철(FeCl3·6H2O), 규산나트륨(Na2SiO3), 및 클레이로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 비료의 제조방법.
  5. 청구항 1에 있어서, 상기 제1단계는 바닷물을 포함하는 머드 총 100 중량부에 대해 응집제 0.1 내지 10 중량부를 첨가하는 것을 특징으로 하는 비료의 제조방법.
  6. 청구항 1에 있어서, 상기 천연광물은 인산광물 암석분말[Ca3(PO4)2], 용성인산마그네슘, 고토(MgSO4), 운모(mica, phlogophite), 석고(CaSO4), 칼륨장석(feldspar), 및 돌로마이트(dolomite)로 이루어진 군에서 선택된 어느 하나 이상을 혼합한 것을 특징으로 하는 비료의 제조방법.
PCT/KR2015/011418 2015-10-28 2015-10-28 바다 머드를 이용한 친환경 비료의 제조방법 WO2017073802A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/011418 WO2017073802A1 (ko) 2015-10-28 2015-10-28 바다 머드를 이용한 친환경 비료의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/011418 WO2017073802A1 (ko) 2015-10-28 2015-10-28 바다 머드를 이용한 친환경 비료의 제조방법

Publications (1)

Publication Number Publication Date
WO2017073802A1 true WO2017073802A1 (ko) 2017-05-04

Family

ID=58630301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011418 WO2017073802A1 (ko) 2015-10-28 2015-10-28 바다 머드를 이용한 친환경 비료의 제조방법

Country Status (1)

Country Link
WO (1) WO2017073802A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160078A (zh) * 2022-07-28 2022-10-11 天津海桓科技有限公司 一种植物营养液及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546435A (zh) * 2003-12-08 2004-11-17 南京农业大学 海水养殖污泥制备盐生植物有机肥的方法
JP2005298244A (ja) * 2004-04-08 2005-10-27 Yuichi Terasawa 泥土堆肥化方法
KR20090060977A (ko) * 2009-05-18 2009-06-15 안승우 머드(MUD,해안의 갯펄)를 주원료하고 삼중염(TRiple Salt)과 축산분뇨와 중,금속 제거제 및 발효제를 이용한 청정 유,무기질 비료 제조 기술과 그 제품
KR20110022173A (ko) * 2009-08-27 2011-03-07 김명수 천연 삼색 머드나 머드를 이용한 식물영양제(비료) 제조방법
KR101319133B1 (ko) * 2012-12-26 2013-10-17 장원근 알칼리성 천연광물을 함유하는 토양개량 또는 식물생장촉진용 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546435A (zh) * 2003-12-08 2004-11-17 南京农业大学 海水养殖污泥制备盐生植物有机肥的方法
JP2005298244A (ja) * 2004-04-08 2005-10-27 Yuichi Terasawa 泥土堆肥化方法
KR20090060977A (ko) * 2009-05-18 2009-06-15 안승우 머드(MUD,해안의 갯펄)를 주원료하고 삼중염(TRiple Salt)과 축산분뇨와 중,금속 제거제 및 발효제를 이용한 청정 유,무기질 비료 제조 기술과 그 제품
KR20110022173A (ko) * 2009-08-27 2011-03-07 김명수 천연 삼색 머드나 머드를 이용한 식물영양제(비료) 제조방법
KR101319133B1 (ko) * 2012-12-26 2013-10-17 장원근 알칼리성 천연광물을 함유하는 토양개량 또는 식물생장촉진용 조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160078A (zh) * 2022-07-28 2022-10-11 天津海桓科技有限公司 一种植物营养液及其制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis of zeolite/hydrous lanthanum oxide composite from coal fly ash for efficient phosphate removal from lake water
CN104845626B (zh) 用于治理重金属污染土壤的钝化剂及其制备和使用方法
WO2009157681A2 (en) Water quality improvement composition containing eco-friendly active natural minerals and method of manufacturing the same
KR101620211B1 (ko) 바다 머드를 이용한 친환경 비료의 제조방법
CA2492817A1 (en) Method for treating metal-contaminated water and soil
CN100544817C (zh) 除去悬浮物、氮、磷及恶臭的水处理剂制法和水处理剂
WO2017073802A1 (ko) 바다 머드를 이용한 친환경 비료의 제조방법
CN113058547A (zh) 一种高效除磷剂、其制备方法及其应用
CN111704396B (zh) 污水淤泥制备环保型砖的方法
KR20150144448A (ko) 녹조 또는 적조 제거용 조성물 및 그의 제조방법
Mohamed et al. Fractionation of organic and inorganic phosphorus in sandy soils irrigated by treated wastewater cultivated by hordeum vulgre & vicia faba
CN112893447A (zh) 一种重金属污染土壤修复剂和修复方法
KR101016790B1 (ko) 석탄광산슬러지를 사용한 토양 안정화 방법
KR101313853B1 (ko) 비산재를 이용한 폐석 적치장 안정화 방법
WO2004096710A1 (en) Process for preparing a functional salt from deep-sea water
KR102484752B1 (ko) 중금속 오염토양 안정화용 조성물
KR20190054627A (ko) 굴패각을 이용한 녹조제거용 조성물의 제조방법
KR20190054626A (ko) 굴패각을 이용한 녹조제거용 조성물
KR101236145B1 (ko) 슬러지 건조후 재활용이 가능한 녹조 제거용 천연무기응집제로부터 발생한 슬러지를 이용한 녹생토의 제조방법
KR20030036424A (ko) 해양의 토양 및 적조를 개선할 수 있는 황토 조성물
KR20040028807A (ko) 염분이 함유된 200m 이하의 청정한 해양심층수를 역삼투막법 탈염장치(RO)와 진공증발농축장치 등을 이용해 정제, 농축한 천연미네랄농축수의 제조 방법
KR20120093648A (ko) 소성된 패류 껍질 및 슬러지를 이용한 중금속 또는 비소 오염 토양 안정화 또는 수처리용 조성물
Shamshuddin et al. Changes in solid phase properties of acid soils as affected by limestone, gypsum, palm oil mill effluent and rock phosphate applications
Das Characteristics of mangrove substrate sediments of Sunderbans
JP2008068237A (ja) ミネラル水及び該ミネラル水の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907347

Country of ref document: EP

Kind code of ref document: A1