WO2017073711A1 - 無線装置、制御装置および無線通信システム - Google Patents

無線装置、制御装置および無線通信システム Download PDF

Info

Publication number
WO2017073711A1
WO2017073711A1 PCT/JP2016/081996 JP2016081996W WO2017073711A1 WO 2017073711 A1 WO2017073711 A1 WO 2017073711A1 JP 2016081996 W JP2016081996 W JP 2016081996W WO 2017073711 A1 WO2017073711 A1 WO 2017073711A1
Authority
WO
WIPO (PCT)
Prior art keywords
propagation path
wireless
wireless device
information
control device
Prior art date
Application number
PCT/JP2016/081996
Other languages
English (en)
French (fr)
Inventor
潤 式田
石井 直人
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017547878A priority Critical patent/JP6806076B2/ja
Priority to US15/771,544 priority patent/US20180324004A1/en
Publication of WO2017073711A1 publication Critical patent/WO2017073711A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Definitions

  • the present invention is based on a Japanese patent application: Japanese Patent Application No. 2015-212520 (filed on Oct. 29, 2015), and the entire description of the application is incorporated herein by reference.
  • the present invention relates to a radio apparatus, a control apparatus, and a radio communication system in a radio communication system configuration in which a function of a radio base station is divided into a radio apparatus and a control apparatus.
  • Non-Patent Document 1 describes a method of estimating channel capacity for each terminal combination candidate using the channel response of each terminal, and selecting a terminal combination that maximizes the channel capacity as a terminal to be multiplexed. Yes.
  • the scheduling method of MU-MIMO is scheduling of only the spatial axis (MIMO multi-layer), and it is assumed that one carrier is assumed on the frequency axis, and signal power based on the projection channel power of each user is assumed. Because it is a reference, there is a problem that interference power is not considered. Therefore, in Patent Document 1, RB (Resource Block) frequency-divided in a system band is used as a MU-MIMO scheduling method that is consistent with a frequency scheduling method using received SINR (Signal-to-Interference-plus Noise-power Ratio). A scheduling method is described in which reception quality (SINR) expressed in two dimensions of a frequency axis and a space axis is considered at the same time and assigned to an optimal user.
  • SINR Signal-to-Interference-plus Noise-power Ratio
  • Non-Patent Document 2 discusses a C-RAN (Cloud / Centralized Radio Access Access Network) configuration that efficiently operates small cells.
  • C-RAN the baseband processing function of a small cell is divided into a radio device on the antenna side and a control device on the core network side, and the control device aggregates some of the baseband processing functions of multiple small cells. It is done.
  • Non-Patent Document 2 describes a plurality of types of C-RAN configurations according to the division method of the baseband processing function, and transmission required for the transmission path (fronthaul) between the wireless device and the control device is described for each configuration. It describes the capacity and ease of cooperative control between cells.
  • An object of the present invention is to provide a radio apparatus, a control apparatus, and a radio communication system that solve the problem that the application effect of MU-MIMO transmission cannot be sufficiently obtained in a C-RAN configuration.
  • the radio apparatus includes a channel response estimation unit that estimates a channel response between the radio terminal and the own apparatus.
  • the wireless device includes a propagation path information generation unit that generates propagation path information from the estimated propagation path response.
  • the wireless device includes a transmission unit that transmits the generated propagation path information to the control device.
  • the control apparatus includes a receiving unit that receives the propagation path information generated by the wireless apparatus based on the estimated propagation path response between the wireless terminal and the wireless apparatus.
  • the control device includes a scheduling unit that generates scheduling information from the propagation path information.
  • the control device includes a transmission unit that transmits the scheduling information to the wireless device.
  • the wireless communication system includes a wireless device and a control device.
  • the radio apparatus includes a channel response estimation unit that estimates a channel response between a radio terminal and the radio apparatus.
  • the wireless device includes a propagation path information generation unit that generates propagation path information from the propagation path response. Further, the wireless device includes a transmission unit that transmits the propagation path information to the control device.
  • the control device includes a scheduling unit that generates scheduling information from the propagation path information. In addition, the control device includes a transmission unit that transmits the scheduling information to the wireless device.
  • the network capacity of the wireless system is expanded.
  • MU-MIMO transmission in order to operate a small cell with a narrow cell coverage range, when a C-RAN configuration is employed in which the radio apparatus and the control apparatus are physically separated, the radio apparatus transmits the estimated propagation path state to the control apparatus. There is no means for notification, and scheduling by the control apparatus is not suitable for obtaining the application effect of MU-MIMO transmission.
  • FIG. 15 is a block diagram illustrating the configuration of a wireless communication system according to an embodiment.
  • the wireless communication system includes a wireless device 3 and a control device 200.
  • the wireless device 3 includes a propagation path response estimation unit 327 that estimates a propagation path response between the wireless terminal 4 and the own device 3, a propagation path information generation unit 33 that generates propagation path information from the estimated propagation path response, And a transmission unit 34 that transmits the generated propagation path information to the control device 200.
  • the control device 200 receives the propagation path information generated by the wireless device 3 based on the estimated propagation path response between the wireless terminal 4 and the wireless device 3, and the scheduling information from the propagation path information. And a transmission unit 23 that transmits the scheduling information to the wireless device 3.
  • the wireless device 3 estimates a channel response with the wireless terminal 4 based on a reference signal (SRS: Sounding Reference Signal) from the wireless terminal 4.
  • a scheduling unit 214 includes a channel response estimation unit 327 and a transmission unit 34 that transmits the estimated channel information to the control device 200, and performs scheduling using the channel information received from the wireless device 3 in the control device 200. It has.
  • the wireless device 3 when MU-MIMO transmission is used in the C-RAN configuration, the wireless device 3 includes the propagation path response estimation unit 327, and the control device 200 performs scheduling using the propagation path response estimation received from the wireless device 3. It is configured to do. Therefore, when MU-MIMO transmission is used in a C-RAN configuration, the problem that resources cannot be allocated in accordance with the state of the propagation path can be solved, and the network capacity of the wireless system can be expanded.
  • the present invention is not limited to MU-MIMO transmission, and can be applied to other transmission methods.
  • FIG. 1 is a block diagram illustrating a configuration of a wireless communication system according to the present embodiment.
  • the wireless communication system includes a core network 100, a control device 200, a wireless device 300-1 (wireless device # 1), a wireless device 300-2 (wireless device # 2), a wireless terminal 400-1 (wireless terminal # 1), a wireless device Terminal 400-2 (wireless terminal # 2) and wireless terminal 400-3 (wireless terminal # 3) are provided.
  • the wireless terminals 400-1, 400-2, and 400-3 are denoted as the wireless terminal 4 when the distinction is unnecessary.
  • the wireless communication system illustrated in FIG. 1 includes two wireless devices 3, the number of wireless devices 3 is not limited to this. Similarly, the number of wireless terminals 4 is not limited.
  • a wireless terminal is used here as an example, a wireless device having relay capability may be used.
  • the control device 200 and the wireless device 3 are provided at physically separated positions, and are connected via the transmission path 30.
  • the transmission path 30 is a medium used for information transmission such as an optical fiber, a metal cable, and a radio propagation path.
  • the wireless device 3 and the wireless terminal 4 are connected via a wireless propagation path.
  • the control device 200 includes a center radio signal processing unit 210 and a transmission path interface 220 (transmission path IF).
  • the transmission path interface 220 performs processing corresponding to the standard of the transmission path 30 in order to communicate with the wireless device 3 via the transmission path 30.
  • the wireless device 3 includes a transmission line interface 310 (transmission line IF (Interface)), a remote wireless signal processing unit 320, a wireless transmission / reception unit 330, and an antenna 340.
  • transmission line interface 310 transmission line IF (Interface)
  • remote wireless signal processing unit 320 remote wireless signal processing unit 320
  • wireless transmission / reception unit 330 wireless transmission / reception unit 330
  • antenna 340 antenna 340
  • the wireless terminal 4 includes an antenna and a wireless transmission / reception unit.
  • the remote radio signal processing unit 320 in this embodiment includes an FFT (Fast Fourier Transform) unit 326, a channel response estimation unit 327, an encoding unit 321, a modulation unit 322, an antenna mapping unit 323, resources A mapping unit 324 and an IFFT (Inverse Fourier Transform) unit 325 are provided.
  • FFT Fast Fourier Transform
  • the center radio signal processing unit 210 includes a scheduling unit 214, a PDCP (Packet Data Convergence Protocol) layer processing unit 211, an RLC (Radio Link Control) layer processing unit 212, and a MAC (Media Access Control) layer processing unit 213. Yes.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the wireless transmission / reception unit 330 of the wireless device 3 converts a wireless signal including a reference signal received from the wireless terminal via the antenna 340 into a baseband signal and outputs the baseband signal to the FFT unit 326.
  • the FFT unit 326 performs fast Fourier transform (FFT: Fast Fourier Transform) on the baseband signal input from the wireless transmission / reception unit 330 and outputs the result to the channel response estimation unit 327.
  • FFT fast Fourier transform
  • a cyclic prefix (CP: Cyclic : Prefix) is removed between the FFT unit 326 and the wireless transmission / reception unit 330 (not shown).
  • the propagation path response estimation unit 327 uses the signal input from the FFT unit 326 and the reference signal known on the wireless device 3 side transmitted from the wireless terminal 4, and the propagation path between the wireless terminal 4 and the wireless device 3. The response is estimated, and the estimated value is output to the scheduling unit 214 and the antenna mapping unit 323 of the center radio signal processing unit 210 via the transmission path interface 310, the transmission path 30, and the transmission path interface 220.
  • the wireless terminal 4 for which the propagation path response is to be estimated is not limited to the wireless terminal that communicates with the wireless apparatus 3, and the propagation path response to the wireless terminal that communicates with another wireless apparatus may be estimated.
  • the estimated value to be output may be averaged in the time direction or the frequency direction. Note that the terminal may estimate the propagation path response using the reference signal and transmit the propagation path response to the radio apparatus.
  • the transmission path interface 310 performs processing corresponding to the standard of the transmission path 30 in order to communicate with the control device 200 via the transmission path 30.
  • the scheduling unit 214 uses the channel response estimation value input from the channel response estimation unit 327 of the remote radio signal processing unit 320 to the radio terminal 4 for radio resources and modulation coding scheme (MCS: ModulationModCoding Scheme). And the allocation information is output to the RLC layer processing unit 212, the MAC layer processing unit 213, the encoding unit 321, the modulation unit 322, the antenna mapping unit 323, and the resource mapping unit 324.
  • MCS ModulationModCoding Scheme
  • the PDCP layer processing unit 211 performs processing such as compression and encryption on the user data sent from the core network 100 and outputs the processed data to the RLC layer processing unit 212.
  • the RLC layer processing unit 212 buffers the data input from the PDCP layer processing unit 211, divides and combines the buffered data according to the request from the scheduling unit 214, and outputs the data to the MAC layer processing unit 213. .
  • the MAC layer processing unit 213 multiplexes data, control information, and the like sent from the RLC layer processing unit 212 according to the request from the scheduling unit 214, and passes through the transmission path interface 220, the transmission path 30, and the transmission path interface 310.
  • the data is output to the encoding unit 321 of the remote radio signal processing unit 320.
  • the encoding unit 321 encodes the data input from the MAC layer processing unit 213 via the transmission path interface 220, the transmission path 30, and the transmission path interface 310 based on the information sent from the scheduling unit 214, and the modulation unit It outputs to 322.
  • the modulation unit 322 converts the data input from the encoding unit 321 into a modulation signal based on the information sent from the scheduling unit 214, and outputs the modulated signal to the antenna mapping unit 323.
  • the antenna mapping unit 323 uses the information input from the scheduling unit 214 and the channel response estimation value input from the channel response estimation unit 327 to calculate a weighting factor for multiplying the modulated signal.
  • the antenna mapping unit 323 multiplies the modulation signal input from the modulation unit 322 by the calculated weighting factor, adds the spatially multiplexed signals after multiplication by the weighting factor, and outputs the result to the resource mapping unit 324.
  • the resource mapping unit 324 maps the signal input from the antenna mapping unit 323 to a radio resource based on the information input from the scheduling unit 214, and outputs the radio resource to the IFFT unit 325.
  • the IFFT unit 325 performs an inverse fast Fourier transform (IFFT) on the signal input from the resource mapping unit 324, and outputs the result to the radio transmission / reception unit 330.
  • IFFT inverse fast Fourier transform
  • a cyclic prefix (CP: Cyclic Prefix) is added between IFFT unit 325 and wireless transmission / reception unit 330 (not shown).
  • the radio transmission / reception unit 330 converts the baseband signal transmitted from the IFFT unit 325 into a radio signal in the carrier frequency band, and transmits the radio signal via the antenna 340.
  • the radio apparatus 3 in the present embodiment performs the following operations S101 to S110.
  • the wireless device 3 transmits a reference signal request to the wireless terminal 4 (operation S101).
  • the wireless device 3 receives the reference signal from the wireless terminal 4 (operation S102).
  • the propagation channel response estimation unit 327 estimates the propagation channel response (transfer function or impulse response) between the wireless device 3 and the wireless terminal 4 (operation S103).
  • the wireless device 3 sends the estimated value of the propagation path response to the control device 200 (operation S104).
  • the estimated value of the channel response to be transmitted may not be for all estimated wireless terminals.
  • the wireless terminal that is not the communication partner of the wireless device 3 may be limited to a wireless terminal having a large gain of the channel response.
  • the control apparatus 200 may instruct the wireless terminal that should transmit the estimated value of the propagation path response, and may limit the wireless terminal that transmits the estimated value of the propagation path response based on the instruction.
  • the scheduling unit 214 of the control device 200 performs radio resource allocation such as terminal combination, spatial multiplexing, and modulation and coding scheme using the estimated value of the channel response sent from the radio device 3 (operation S105).
  • the center radio signal processing unit 210 of the control device 200 buffers data obtained by compressing and encrypting user data, and buffers the data in accordance with the request from the scheduling unit 214 based on the scheduling result of operation S105.
  • the ringed data is divided and combined to generate transmission data (operation S106).
  • the control device 200 sends the scheduling result of operation S105 (terminal combination, number of layers, MCS, etc.) to the wireless device 3 (operation S107). Further, the transmission data and control information generated in operation S106 are multiplexed in accordance with the request from the scheduling unit 214 and sent to the wireless apparatus 3 (operation S108).
  • the remote radio signal processing unit 320 of the wireless device 3 Based on the scheduling information sent in operation S107, the remote radio signal processing unit 320 of the wireless device 3 performs encoding, modulation, weight generation, mapping, etc. on the transmission data sent in operation S108, A band signal is generated (operation S109).
  • the wireless transmission / reception unit 330 of the wireless device 3 generates a wireless signal from the baseband signal generated in operation S109 and transmits it via the antenna 340 (operation S110).
  • the scheduling unit 214 in the present embodiment first selects a wireless terminal for communication from a plurality of wireless terminals (operations S501 to S504). As shown in FIG. 5, selection of a terminal will be described.
  • an RBG is selected from selectable RBGs (Resource Block Group) (operation S501).
  • RBG Resource Block
  • LTE Long Term Evolution
  • 12 subcarriers (180 kHz) adjacent at 15 kHz intervals are divided into one block, which is called RB, but is not limited thereto.
  • priority is calculated for all terminal combinations (operation S502).
  • the correlation of the propagation path with the selected wireless terminal may be calculated, and the priority may be calculated only for some wireless terminals with low correlation.
  • the selection frequency of each wireless terminal may be calculated, and the priority may be calculated only for some wireless terminals with a low selection frequency. A method for calculating the priority will be described later.
  • the combination of terminals whose priority has reached the specified level is assigned to the selected RBG (operation S503).
  • the term “reached” may be, for example, a terminal combination having the highest priority, or a combination having the maximum overall priority under the condition that each terminal satisfies the minimum rate. Further, it may be compared with a preset threshold value or the like.
  • the number of layers is selected for each of the wireless terminals selected in operations S501 to S504 (operations S601 to S604).
  • the number of layers means the number of modulated signals multiplied by different weighting coefficients in the antenna mapping 323, that is, the number of spatially multiplexed modulated signals.
  • the number of layers is the same as the number of codewords as a unit of encoding. Note that the selection of the terminal and the selection of the number of layers may be performed simultaneously.
  • a terminal assigned to a certain RBG is selected (operation S601).
  • the priority is calculated for all the selectable layers (operation S602).
  • the number of layers for which the calculated priority has reached the regulation is assigned to the selected terminal (operation S603).
  • reaching the regulation may be, for example, the number of layers with the highest priority or the number of layers with the highest priority under the condition that each terminal satisfies the minimum rate. Moreover, you may compare with the threshold value etc. which were preset.
  • the MCS corresponding to each layer of each terminal in each RBG is selected (operations S701 to S704).
  • a certain layer is selected from each layer of a certain terminal set in a certain RBG (operation S701).
  • the reception SINR in the selected layer is calculated (operation S702). However, it is not necessary to limit the SINR to be calculated to one, and the SINR may be calculated for each of a plurality of RBs included in the RBG. The SINR calculation method will be described later.
  • MCS is selected based on the calculated SINR (operation S703).
  • a SINR value that satisfies a predetermined quality (for example, a packet error rate of 0.1) is set for each MCS, and the maximum value is obtained under the condition that the calculated average SINR is larger than the SINR value that satisfies the predetermined quality. What is necessary is just to select MCS.
  • an offset value may be added to the average SINR.
  • the offset value may be a constant value, or may be sequentially changed according to the success or failure of communication, for example.
  • a method using a value representing a priority order is generally used.
  • a high priority indicates an optimal combination in the set.
  • the priority M k is calculated, for example, according to the Max-C / I norm and PF (Proportional Fairness) norm.
  • the received SINR is estimated for the wireless terminal included in the set U s (n) of the selected terminal and the wireless terminal with the terminal number k, and the estimated SINR is calculated based on the Shannon capacity theory.
  • the instantaneous rate is converted by the equation, and the sum of the instantaneous rates is M k .
  • radio resources are allocated at a ratio of instantaneous throughput to average throughput of a target mobile station.
  • M k is not the sum of instantaneous rates but the sum of values obtained by dividing the instantaneous rate by the average rate.
  • the calculation rule of M k may be changed for each stage. Further, in order to preferentially select a combination of terminals having low correlation, the reciprocal of the correlation value of the propagation path between terminals may be set to Mk .
  • a transmission weight (Transmit Weight / Transmission Weight) (weight coefficient for multiplying a modulated signal) and a reception weight (weight coefficient for multiplying a received signal) using a channel response input from the wireless device 3 are used to estimate the SINR.
  • SINR is estimated using a channel response vector for each layer generated by performing matrix calculation processing on the channel response input from the wireless device 3.
  • the SINR is estimated using the correlation of the propagation path between terminals calculated from the propagation path response vector for each layer input from the wireless device 3. Each is expressed by the following equations (1), (3), and (6).
  • N R is the number of antennas included in the wireless terminal 4
  • N T ( ⁇ N R ) is the number of antennas included in the wireless device 3.
  • H k be an N R ⁇ N T propagation path response matrix whose element is an estimated value of the propagation path response between the wireless apparatus 3 and the k-th wireless terminal, which is input from the wireless apparatus 3.
  • the NT dimension transmission weight vector for the l-th layer of the k-th radio terminal be w Tx, k, l
  • the N R- dimensional reception weight vector be w Rx, k, l
  • the transmission power is P k, l
  • the other cell interference power is ⁇ I 2 (k, l).
  • the set of terminals selected by the wireless device is U s and the noise power is ⁇ n 2 .
  • the received SINR ⁇ k, l of the l-th layer of the k-th wireless terminal is estimated by the following equation (1).
  • H represents Hermitian transposition.
  • the transmission weight vector w Tx, k, l is generated by the scheduling unit 214 using H k according to a predetermined standard.
  • a predetermined standard For example, standards such as MRT (Maximum Ratio Transmission), ZF (Zero Forcing), and SLNR (Signal to Leakage plus Noise Ratio) are used.
  • N R transmission weight vectors are included for each of K ′ radio terminals.
  • the transmission weight vector w Tx, k, l of the l-th layer of the k-th wireless terminal is the product of the transmission weight vector and the channel response matrix H k among the transmission weight vectors of the k-th wireless terminal included in W Tx .
  • the transmission weight vector having the lth largest magnitude may be selected.
  • the reception weight vector w Rx, k, l is generated according to a predetermined standard using H k and w Tx, k, l .
  • MRC Maximum Ratio Combining
  • a method for calculating the parameters used in Expression (1) and the transmission power P k, l will be described.
  • a method of assigning a value corresponding to the magnitude of the product with the response matrix is used.
  • the first term of the denominator on the right side in Equation (1) is the interference power that the signal excluding the address of the k-th radio terminal addressed to the l-th layer gives to the k-th radio terminal.
  • the magnitude of this interference power depends on the transmission weight vector generation criterion. For example, when generated according to the ZF standard, the interference power is 0, and the first term of the denominator on the right side can be ignored in the calculation of Expression (1).
  • the received SINR ⁇ k, l of the l-th layer of the k-th radio terminal is estimated by the following equation (3) using the channel response vector g k, l of the l-th layer of the k-th radio terminal.
  • T represents transposition.
  • the calculation method of the parameters used in Expression (3) and the propagation path response vectors g k, l of each layer will be described.
  • the NT- dimensional propagation path response vector g k, l of the l-th layer of the k wireless terminal is expressed by the following equation (4).
  • * represents a complex conjugate. Since v k, l forms an orthonormal basis, g k, l generated by equation (4) is orthogonal to each other between layers. That is, the inner product of g k, l and g k, l ′ (l ⁇ l ′) is zero. In order to obtain the channel response vector of each layer, ⁇ and v are generated by performing singular value decomposition or eigenvalue decomposition on the channel response matrix.
  • Equation (4) A method for calculating the parameters ⁇ and v used in Equation (4) using singular value decomposition will be described.
  • An N R ⁇ N T propagation path response matrix H k whose element is an estimated value of the propagation path response between the wireless device and the k-th wireless terminal can be expressed as the following equation (5).
  • the eigenvalue decomposition is applied to the N T ⁇ N T matrix H k H H k to calculate the eigenvalue ⁇ k, l and the eigenvector v k, l .
  • averaging processing in the time / frequency direction may be performed on H k or H k H H k .
  • the received SINR ⁇ k, l of the l-th layer of the k-th wireless terminal is obtained by using the propagation path response vector g k, l of the l-th layer of the k-th wireless terminal and the coefficient ⁇ k, l indicating the gain of the propagation path. And is estimated by the following equation (6).
  • the method for generating the propagation path response vector g k, l of each layer is omitted because it is the same as the method described in Equation (5).
  • ⁇ k, l is a normalized gain that takes the effect into account, and is calculated by the following equation (7).
  • Equation (6) the correlation ⁇ (k, l) (k ′, k) of the propagation path between the l-th layer of the k-th wireless terminal and the l-th layer of the k′-wireless terminal .
  • a method for calculating l ′) will be described. Using the channel response vector g k, l of the l-th layer of the k-th radio terminal and the channel response vector g k ′, l ′ of the l′-th layer of the k′-radio terminal, using the following equation (8) Calculated.
  • G is obtained from the L ⁇ L matrix D whose diagonal component is the norm of the channel response vector of each layer and the non-diagonal component is 0, and the normalized channel response vector of each layer. It is represented by the product of the L ⁇ NT matrix G ′ that is configured.
  • the N T ⁇ L transmission weight matrix W Tx when the ZF norm is applied can be expressed as the following equation (10).
  • the product of G ′ and G ′ H in equation (10) is the correlation of the propagation path between the two layers where the diagonal component is 1 and the non-diagonal component is calculated from equation (8).
  • the inverse matrix of the product of G ′ and G ′ H can be obtained using a cofactor matrix, and the elements of the inverse matrix can be expressed using the correlation of propagation paths between layers.
  • Equation (7) the fourth-order term or more of the correlation of the propagation path between layers is ignored.
  • the equation for calculating ⁇ k, l is not limited to Equation (7), and a fourth-order or higher term of the correlation of propagation paths between layers may be considered, or a third-order term may be ignored.
  • ⁇ k, l is estimated using equation (7) by ignoring higher-order terms of the correlation between propagation paths between layers. The accuracy is degraded.
  • ⁇ k, l may be derived from the following equation (11).
  • Equation (7) Compared with the case where Equation (7) is used, although the estimation accuracy decreases when the number of layers is small, it is possible to avoid a large deterioration in estimation accuracy when the number of layers is large.
  • coefficient of each term is set to 1, it is not limited to this. Further, third-order or higher terms of the correlation of propagation paths between layers may be considered.
  • Three examples are given as a method of calculating ⁇ I 2 (k, l) indicating the interference power of other cells when the weight of the first example of the method of calculating the received SINR is used.
  • a propagation path response between a radio apparatus serving as an interference source and a kth radio terminal, and a transmission weight vector (matrix) applied by the radio apparatus serving as an interference source are used.
  • a channel quality indicator (CQI: Channel Quality Indicator) reported from the wireless terminal 4 to the scheduling unit 214 via the wireless device 3 is used.
  • CQI Channel Quality Indicator
  • reference signal received power (RSRP: Reference Signal Received Power) for each cell reported from the wireless terminal 4 to the control device 2 via the wireless device 3 is used. These are respectively expressed by the following formulas (12) to (14).
  • ⁇ I 2 (k, l) indicating cell interference power using a transmission weight vector which is a first example.
  • the number of the wireless device with which the kth terminal communicates is j
  • the number of the other wireless device that is the interference source is j ′
  • the set of wireless terminals selected by the j′th wireless device is U s, j ′
  • the j′th The propagation path response matrix between the radio apparatus and the kth radio apparatus is H j ′, k
  • the transmission weight vector corresponding to the l′ th layer of the k ′ radio terminal communicating with the j ′ radio apparatus is w Tx
  • the wireless terminal 4 measures SINR using a known signal (reference signal) transmitted by the wireless device 3, compares it with a threshold value of SINR set for each CQI number, determines a CQI number, The number is reported to the scheduling unit 214 via the device 3.
  • ⁇ I 2 (k, l) indicating cell interference power using RSRP. If the number of the wireless device with which the k-th wireless terminal communicates is j and the RSRP of the j-th wireless device in the k-th wireless terminal is RSRP j , ⁇ I 2 (k, l) is expressed by the following equations (14), (15) Is calculated by
  • a method of calculating ⁇ I 2 (k, l) indicating other cell interference power when another SINR calculation method is used will be described.
  • the configuration of the equations for calculating the interference power shown in the equations (12), (13), and (14) can be changed as appropriate depending on the method of calculating the SINR.
  • the following calculation formulas (16), (17), (18), (19), (23), and (24) can be modified.
  • a transmission weight vector is used to estimate ⁇ I 2 (k, l) indicating the interference power of other cells.
  • the number of the wireless device with which the kth terminal communicates is j
  • the number of the other wireless device that is the interference source is j ′
  • the set of wireless terminals selected by the j′th wireless device is U s, j ′
  • the j′th G j ′, k, l a channel response vector between the wireless device and the l-th layer of the k-th wireless device, and a transmission corresponding to the l′-th layer of the k′-wireless terminal communicating with the j′-wireless device
  • the weight vector is w Tx, j ′, k ′, l ′ and the transmission power is P j ′, k ′, l ′
  • ⁇ I 2 (k, l) is calculated by the following equation (16).
  • the value of the correction coefficient ⁇ may be constant or may be adaptively changed according to the success or failure of communication.
  • RSRP is used for estimation of ⁇ I 2 (k, l) indicating the interference power of other cells.
  • ⁇ I 2 (k, l) is calculated by the following equation (18). .
  • a transmission weight vector is used for estimating ⁇ I 2 (k, l) indicating the interference power of other cells.
  • the number of the wireless device with which the kth terminal communicates is j
  • the number of the other wireless device that is the interference source is j ′
  • the set of wireless terminals selected by the j′th wireless device is U s, j ′
  • the j′th The propagation response vector between the wireless device and the l-th layer of the k-th wireless device is represented by g j ′, k, l
  • the transmission power for the l′-th layer of the k′-th wireless terminal communicating with the j′-th wireless device is calculated by the following equation (19).
  • Equation (20) the fourth and higher order terms of the correlation of the propagation path between layers are ignored.
  • the calculation formula of ⁇ j ′, (k, l) (k ′, l ′) is not limited to the formula (20), and a fourth-order or higher term of the correlation of the propagation path between layers may be considered, It is also possible to ignore the third-order term.
  • ⁇ j ′, (k, l ) derived by Expression (20) is ignored by ignoring the higher-order term of the propagation path correlation between layers.
  • the value of (k ′, l ′) can deviate greatly from the true value. Therefore, ⁇ j ′, (k, l) (k ′, l ′) may be derived from the following equation (22).
  • coefficient of each term is set to 1, it is not limited to this. Further, third-order or higher terms of the correlation of propagation paths between layers may be considered.
  • the value of the correction coefficient ⁇ may be constant or may be adaptively changed according to the success or failure of communication.
  • RSRP is used for estimating ⁇ I 2 (k, l) indicating the interference power of other cells.
  • ⁇ I 2 (k, l) is calculated by the following equation (24). .
  • the noise power ⁇ n 2 is calculated by the following equation (25), where the Boltzmann constant is k B , the absolute temperature is T, the noise figure is F, and the bandwidth is W.
  • T 290K
  • F 9 dB
  • the value of W may be any subcarrier interval (15 kHz in LTE).
  • the wireless device 3 generates an orthogonal channel response for each layer using the estimated channel response value, and sends it to the control device 200.
  • the remote radio signal processing unit 320 in the present embodiment includes an orthogonal channel response generation unit 351 as compared with the remote radio signal processing unit 320 in the first embodiment shown in FIG. Is different.
  • the orthogonal channel response generation unit 351 generates an orthogonal channel response for each layer using the estimated value of the channel response between the radio apparatus 3 and the radio terminal 4 input from the channel response estimation unit 327. Then, it is output to the scheduling unit 214 and the antenna mapping unit 323 of the center radio signal processing unit 210.
  • the wireless terminal that is the target for generating orthogonal channel response for each layer is not limited to the radio terminal with which the radio device 3 communicates, and the channel response for each layer with respect to the radio terminal with which another radio device communicates. May be generated.
  • the orthogonal channel response generation unit 351 uses the estimated value of the channel response, compared to the wireless device 3 in the first embodiment shown in FIG. Then, the orthogonal channel response for each layer is generated (operation S901), and the generated orthogonal channel response for each layer is transmitted to the control device 200 (operation S902).
  • the method of generating orthogonal channel response for each layer in operation S901 is the same as the method using the equation (4) of the first embodiment.
  • the eigenvalue decomposition of the product of the singular value and right singular vector generated by the singular value decomposition of the channel response matrix whose elements are estimated values of the channel response, or the Hermitian transpose of the channel response matrix and the channel response matrix Using the eigenvalues and eigenvectors generated by (1), an orthogonal channel response for each layer is generated by Equation (4).
  • averaging processing in the time / frequency direction may be performed on the product of the channel response matrix or the Hermitian transpose of the channel response matrix and the channel response matrix.
  • the channel response vector may be transmitted to the control device 200 in the form of the vector norm and the channel response vector normalized by the norm instead of the orthogonal channel response vector for each layer. Further, it is not necessary to transmit all the orthogonal channel responses generated in operation S901, and the channel responses to be transmitted may be limited based on the norm of the channel response vector. Moreover, you may limit the propagation path response transmitted based on the instruction
  • Operations other than operations S901 and S902 are the same as those in the first embodiment.
  • the second or third example shown in the first embodiment is used as the SINR estimation method in the scheduling in operation S105.
  • the wireless device when MU-MIMO transmission is used in the C-RAN configuration, the wireless device includes an orthogonal channel response generation unit that generates an orthogonal channel response based on the reference signal, and the control device
  • the configuration is such that scheduling is performed using the orthogonal channel response received from the wireless device. Therefore, it is possible to reduce the amount of fronthaul communication as compared with the configuration in which the channel response estimation is transmitted from the wireless device to the control device.
  • the wireless device 3 calculates the propagation path gain of each layer of each wireless terminal and the correlation of propagation paths between layers of different terminals, and sends them to the control device 200.
  • the remote radio signal processing unit 320 in the present embodiment includes a propagation path gain / correlation calculation unit 352, compared to the remote radio signal processing unit 320 in the second embodiment shown in FIG. Is different.
  • the propagation path gain / correlation calculation unit 352 uses the orthogonal propagation path response for each layer between the wireless device 3 and the wireless terminal 4 input from the orthogonal propagation path response generation unit 351, and propagates the propagation path of each layer. And the correlation of propagation paths between different layers of the terminal are calculated and output to the scheduling unit 214 of the center radio signal processing unit 210.
  • the wireless terminal that is the target of calculating the propagation path gain of each layer and the propagation path correlation between different terminal layers is not limited to the wireless terminal with which the wireless apparatus 3 communicates, and other wireless apparatuses communicate with each other. For each wireless terminal, the gain of the propagation path of each layer and the correlation of propagation paths between layers of the different terminals may be calculated.
  • the gain and correlation calculated by the propagation path gain / correlation calculation section 352 are not limited to the propagation path gain of each layer and the correlation of propagation paths between layers of different terminals, and the propagation path response estimation section 327 outputs Using the estimated value of the propagation path response, the gain of the propagation path of each wireless terminal may be different from the correlation of the propagation path between terminals.
  • the wireless device 3 in the present embodiment has a propagation path gain / correlation calculation unit 352 in which the propagation path is orthogonal to each layer compared to the wireless device 3 in the second embodiment illustrated in FIG. 9.
  • the propagation path gain of each layer and the correlation of propagation paths between layers of different terminals are calculated (operation S1101), and the calculated propagation path gain of each layer and the correlation of propagation paths between layers are calculated.
  • the data is transmitted to the control device 200 (operation S1102).
  • the propagation path gain of each layer is calculated as the norm of orthogonal propagation path response vectors for each layer.
  • the correlation of propagation paths between layers is calculated from Equation (7) in the first embodiment using orthogonal propagation path responses for each layer.
  • Operations other than operations S1101 and S1102 are the same as in the second embodiment.
  • the third example shown in the first embodiment is used as the SINR estimation method in the scheduling in operation S105.
  • the channel gain of each layer of each wireless terminal and the propagation between layers of different terminals are based on the reference signal to the wireless device.
  • a channel gain / correlation generator for calculating channel correlation is provided, and the control device performs scheduling using the channel gain and correlation received from the radio device. Therefore, the communication amount of the fronthaul can be reduced as compared with the configuration in which the orthogonal channel response is transmitted from the wireless device to the control device.
  • the wireless device 3 generates a transmission weight matrix using the estimated value of the propagation path response, and sends it to the control device 200.
  • the remote radio signal processing unit 320 in the present embodiment is different from the remote radio signal processing unit 320 in the first embodiment shown in FIG. 2 in that a transmission weight generation unit 361 is provided. .
  • the transmission weight generation unit 361 generates a transmission weight matrix using the estimated value of the propagation path response between the wireless device 3 and the wireless terminal 4 input from the propagation path response estimation unit 327, and generates the transmission weight matrix.
  • the data is output to the scheduling unit 214 of the processing unit 210.
  • the orthogonal channel response unit 351 in the second embodiment may be provided in the remote radio signal processing unit 320, and a transmission weight matrix may be generated using the orthogonal channel response for each layer.
  • the transmission weight generation unit 361 transmits using the estimated value of the propagation path response, compared to the wireless device 3 in the first embodiment illustrated in FIG. 3.
  • a weight is generated (operation S1301), and the generated transmission weight is transmitted to the control device 200 (operation S1302).
  • a transmission weight matrix is generated for each combination of several wireless terminals selected based on the correlation of propagation paths between terminals, the communication frequency of each wireless terminal, and the like. MRT, ZF, SLNR, etc. are used as transmission weight generation rules.
  • Operations other than operations S1301 and S1302 are the same as those in the first embodiment.
  • the wireless device when MU-MIMO transmission is used in a C-RAN configuration, the wireless device includes a transmission weight generation unit, and the control device uses the propagation path response estimation and the transmission weight received from the wireless device. To perform scheduling. Therefore, it is not necessary to provide a transmission weight generation function in the control device, and the cost of the control device can be reduced.
  • each function included in the wireless device and the control device in each embodiment described above is a computer device among a microprocessor, a circuit, a transmitter, a receiver, and the like included in the device 1000 as shown in FIG. (Processor) 1001 may be implemented by causing one or a plurality of programs to be executed.
  • the program can be stored and provided to a computer using various types of non-transitory computer readable media.
  • Non-transitory computer media include various types of real-life recording media.
  • non-transitory computer-readable media examples include a magnetic recording medium, a magneto-optical recording medium, a CD (Compact Disc), a DVD (Digital Versatile Disc), a BD (Blu-ray Disc), and a semiconductor memory.
  • the program may also be supplied to the computer by various types of temporary computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to a computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • the following modes are possible.
  • [Form 1] As in the wireless device according to the first aspect.
  • [Form 2] The radio apparatus according to mode 1, wherein the radio apparatus includes a reception unit that receives a reference signal from the radio terminal, and the propagation path response estimation unit estimates a propagation path response based on the reference signal.
  • [Form 3] The radio apparatus according to mode 1 or 2, wherein the propagation path information has a smaller amount of information than the propagation path response.
  • the propagation path information is at least one of a propagation path response, an orthogonal propagation path response, a propagation path gain, a propagation path correlation, and a transmission weight.
  • the wireless device according to any one of Embodiments 1 to 4 which is physically separated from the control device and connected to the control device via a transmission path.
  • the wireless device according to any one of Embodiments 1 to 5 wherein the wireless terminal is a wireless terminal that communicates with the wireless device or another wireless device.
  • the radio apparatus includes a reception unit that receives scheduling information from the control apparatus, and the scheduling information includes information for spatially multiplexing resources allocated to a plurality of terminals. Wireless devices.
  • the propagation path response is a propagation path response estimated based on a reference signal transmitted from the wireless terminal.
  • [Mode 10] The control device according to mode 8 or 9, wherein the propagation path information has a smaller amount of information than the propagation path response.
  • [Form 11] The control according to any one of forms 8 to 10, wherein the propagation path information is at least one of a propagation path response, an orthogonal propagation path response, a propagation path gain, a propagation path correlation, and a transmission weight. apparatus.
  • [Form 12] The control device according to any one of Forms 8 to 11, which is physically separated from the wireless device and connected to the wireless device via a transmission path.
  • [Form 13] The control device according to any one of Forms 8 to 12, wherein the wireless terminal is a wireless terminal that communicates with the wireless device or another wireless device.
  • the control apparatus according to any one of Forms 8 to 13, wherein the scheduling information includes information for spatially multiplexing resources allocated to a plurality of terminals.
  • the wireless communication system according to the third aspect is as described above.
  • the propagation path response is a propagation path response estimated based on a reference signal received from the wireless terminal.

Abstract

C-RAN構成におけるMU-MIMO伝送の特性を改善し、無線システムのネットワーク容量を拡大する。無線装置は、無線端末と前記無線装置との間の伝搬路応答を推定する伝搬路応答推定部と、推定した前記伝搬路応答から伝搬路情報を生成する伝搬路情報生成部と、生成した前記伝搬路情報を制御装置に送信する送信部と、を備えている。

Description

無線装置、制御装置および無線通信システム
 [関連出願についての記載]
 本発明は、日本国特許出願:特願2015-212520号(2015年10月29日出願)に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、無線基地局の機能を無線装置と制御装置とに分割した無線通信システム構成における、無線装置、制御装置および無線通信システムに関する。
 無線通信システムにおける周波数利用効率を改善する技術として、複数端末の信号を空間的に多重するマルチユーザーMIMO(MU-MIMO:Multi User Multiple Input Multiple Output)伝送が検討されている。非特許文献1には、各端末の伝搬路応答を用いて端末の組合せの候補ごとにチャネル容量を推定し、チャネル容量が最大となる端末の組合せを多重する端末として選択する方法が記載されている。
 また、特許文献1では、MU-MIMOのスケジューリング方法は、空間軸(MIMO多重レイヤ)のみのスケジューリングであり、周波数軸では1キャリアを想定しているとし、各ユーザの射影チャネル電力に基づく信号電力基準であるため、干渉電力が考慮されていないという問題があるとしている。そこで特許文献1には、受信SINR(Signal to Interference plus Noise power Ratio)を用いた周波数スケジューリング方法に整合したMU-MIMOのスケジューリング方法として、システム帯域内で周波数分割されたRB(Resource Block)を、周波数軸と空間軸の2次元で表される受信品質(SINR)を同時に考慮して最適なユーザに割り当てるスケジューリング方法が記載されている。
 一方、無線通信システムのネットワーク容量拡大に向けて、低送信電力でセルカバレッジ範囲の狭いスモールセルの導入が進んでいる。非特許文献2では、スモールセルを効率的に運用するC-RAN(Cloud/Centralized Radio Access Network)構成が検討されている。C-RANでは、スモールセルのベースバンド処理機能をアンテナ側の無線装置とコアネットワーク側の制御装置とに分割し、制御装置が複数スモールセルのベースバンド処理機能の一部を集約する構成がとられる。非特許文献2には、ベースバンド処理機能の分割方法に応じて複数種類のC-RAN構成が記載されており、各構成によって無線装置と制御装置間の伝送路(フロントホール)に必要な伝送容量やセル間協調制御の容易さなどが記載されている。
特許第5206945号公報
J.Liu, X.She, L.Chen, "A low complexity capacity-greedy user selection scheme for zero-forcing beamforming," VTC Spring 2009, Apr. 2009. Small Cell Forum, "Small cell virtualization functional splits and use cases," ver.159.05.1.01, June 2015.
 しかしながら、以上述べたように先行技術文献には、MU-MIMO伝送を、C-RAN構成で用いることが考慮されていない。そのため、C-RAN構成の場合に空間多重する端末を適切に選ぶことができず、MU-MIMO伝送の適用効果を十分に得ることができない。本発明の目的は、C-RAN構成においてMU―MIMO伝送の適用効果を十分に得ることができないという問題を解決する無線装置、制御装置および無線通信システムを提供することにある。
 本発明の第1の態様に係る無線装置は、無線端末と自装置との間の伝搬路応答を推定する伝搬路応答推定部を備えている。また、無線装置は推定した前記伝搬路応答から伝搬路情報を生成する伝搬路情報生成部を備えている。さらに、無線装置は生成した前記伝搬路情報を制御装置に送信する送信部を備えている。
 本発明の第2の態様に係る制御装置は、無線端末と無線装置との間の推定された伝搬路応答に基づいて前記無線装置が生成した伝搬路情報を受信する受信部を備えている。また、制御装置は前記伝搬路情報からスケジューリング情報を生成するスケジューリング部を備えている。さらに、制御装置は前記スケジューリング情報を前記無線装置に送信する送信部を備えている。
 本発明の第3の態様に係る無線通信システムは、無線装置および制御装置を備えている。前記無線装置は、無線端末と前記無線装置との間の伝搬路応答を推定する伝搬路応答推定部を有する。また、前記無線装置は前記伝搬路応答から伝搬路情報を生成する伝搬路情報生成部を有する。さらに、前記無線装置は前記伝搬路情報を前記制御装置に送信する送信部を有する。前記制御装置は、前記伝搬路情報からスケジューリング情報を生成するスケジューリング部を有する。また、前記制御装置は前記スケジューリング情報を前記無線装置に送信する送信部を有する。
 本発明によれば、MU-MIMO伝送をC-RAN構成において用いることができるため、無線システムのネットワーク容量が拡大される。
本発明における無線通信システムの構成を示すブロック図である。 第1の実施形態におけるセンター無線信号処理部およびリモート無線信号処理部の構成例を示すブロック図である。 第1の実施形態における制御装置および無線装置の動作例を示すシーケンス図である。 第1の実施形態におけるスケジューリング部の動作例を示すフローチャートである。 第1の実施形態におけるスケジューリング部の端末選択の動作例を示すフローチャートである。 第1の実施形態におけるスケジューリング部のレイヤ数選択の動作例を示すフローチャートである。 第1の実施形態におけるスケジューリング部のMCS選択の動作例を示すフローチャートである。 第2の実施形態におけるセンター無線信号処理部およびリモート無線信号処理部の構成例を示すブロック図である。 第2の実施形態における制御装置および無線装置の動作例を示すシーケンス図である。 第3の実施形態におけるセンター無線信号処理部およびリモート無線信号処理部の構成例を示すブロック図である。 第3の実施形態における制御装置および無線装置の動作例を示すシーケンス図である。 第4の実施形態におけるセンター無線信号処理部およびリモート無線信号処理部の構成例を示すブロック図である。 第4の実施形態における制御装置および無線装置の動作例を示すシーケンス図である。 その他の実施形態における制御装置および無線装置の構成例を示すブロック図である。 一実施形態に係る無線通信システムの構成を例示するブロック図である。
 MU-MIMO伝送において、セルカバレッジ範囲の狭いスモールセルを運用するために、無線装置と制御装置を物理的に離したC-RAN構成を取る場合、推定した伝搬路状態を無線装置が制御装置に通知する手段がなく、制御装置によるスケジューリングはMU-MIMO伝送の適用効果を得るには適さないものであった。
 はじめに、一実施形態の概要について説明する。なお、この概要に付記する図面参照符号は、専ら理解を助けるための例示であり、本発明を図示の態様に限定することを意図するものではない。図15は、一実施形態に係る無線通信システムの構成を例示するブロック図である。図15を参照すると、無線通信システムは、無線装置3および制御装置200を備えている。無線装置3は、無線端末4と自装置3との間の伝搬路応答を推定する伝搬路応答推定部327と、推定した伝搬路応答から伝搬路情報を生成する伝搬路情報生成部33と、生成した伝搬路情報を制御装置200に送信する送信部34と、を備えている。一方、制御装置200は、無線端末4と無線装置3との間の推定された伝搬路応答に基づいて無線装置3が生成した伝搬路情報を受信する受信部22と、伝搬路情報からスケジューリング情報を生成するスケジューリング部214と、スケジューリング情報を無線装置3に送信する送信部23と、を備えている。
 本発明の一実施形態の構成では、無線装置3において、無線端末4からの参照信号(SRS:Sounding Reference Signal)を基に、無線端末4との間の伝搬路応答(Channel Response)を推定する伝搬路応答推定部327と、推定した伝搬路情報を制御装置200に送信する送信部34とを備え、制御装置200において、無線装置3から受信した伝搬路情報を用いてスケジューリングを行うスケジューリング部214を備えている。
 以上のように、MU-MIMO伝送をC-RAN構成で用いる際に、無線装置3に伝搬路応答推定部327を備え、制御装置200が無線装置3から受信した伝搬路応答推定を用いてスケジューリングを行う構成を取っている。そのため、MU-MIMO伝送をC-RAN構成で用いた場合において伝搬路の状態に即したリソースの割り当てができないという問題を解消することができ、無線システムのネットワーク容量を拡大することができる。なお本発明はMU-MIMO伝送に限定されるものではなく、その他の伝送方法にも応用できる。以下では、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。当業者は、以下に具体的に説明される実施の形態から把握される原理及び思想を、様々な方式の無線システムに適用することができる。
<実施形態1>
 図1は、本実施形態における無線通信システムの構成を示すブロック図である。無線通信システムは、コアネットワーク100、制御装置200、無線装置300-1(無線装置#1)、無線装置300-2(無線装置#2)、無線端末400-1(無線端末#1)、無線端末400-2(無線端末#2)、および、無線端末400-3(無線端末#3)を備えている。なお、無線装置300-1、300-2の区別が不要な場合には、単に無線装置3と表記することとする。無線端末400-1、400-2、400-3に関しても同様に、区別が不要な場合には無線端末4と表記する。また、図1に示す無線通信システムでは無線装置3を2つ備えているが、無線装置3の数はこれに限定されない。無線端末4についても同様にその数は限定されない。また、ここでは一つの例として無線端末としているが、中継能力を持った無線装置でもよい。
 制御装置200と無線装置3は物理的に離れた位置に設けられ、伝送路30を介して接続される。伝送路30は、光ファイバ、メタルケーブル、無線伝搬路といった情報伝送に使用される媒体である。無線装置3と無線端末4は無線伝搬路を介して接続される。
 制御装置200は、センター無線信号処理部210、および、伝送路インターフェース220(伝送路IF)を備えている。伝送路インターフェース220は、伝送路30を介して無線装置3と通信するために、伝送路30の規格に対応した処理を行う。
 無線装置3は、伝送路インターフェース310(伝送路IF(Interface))、リモート無線信号処理部320、無線送受信部330、および、アンテナ340を備えている。
 無線端末4は、アンテナ、および、無線送受信部を備えている。
 図2に示すように、本実施形態におけるリモート無線信号処理部320は、FFT(Fast Fourier Transform)部326、伝搬路応答推定部327、符号化部321、変調部322、アンテナマッピング部323、リソースマッピング部324、および、IFFT(Inverse Fast Fourier Transform)部325を備えている。
 センター無線信号処理部210は、スケジューリング部214、PDCP(Packet Data Convergence Protocol)層処理部211、RLC(Radio Link Control)層処理部212、および、MAC(Media Access Control)層処理部213を備えている。なお、ここでは一例として、各層の処理部をセンター無線信号処理部210内に記載しているが、リモート無線信号処理部320内に存在してもよい。
 無線装置3の無線送受信部330は、アンテナ340を介して無線端末から受信した、参照信号等を含む無線信号をベースバンド信号に変換し、FFT部326へと出力する。
 FFT部326は、無線送受信部330から入力されたベースバンド信号を高速フーリエ変換(FFT:Fast Fourier Transform)し、伝搬路応答推定部327に出力する。なお、FFT部326と無線送受信部330の間では、サイクリック・プレフィックス(CP:Cyclic Prefix)の除去を行う(図示せず)。
 伝搬路応答推定部327は、FFT部326から入力された信号と無線端末4が送信した無線装置3側で既知の参照信号とを用いて、無線端末4と無線装置3との間の伝搬路応答を推定し、推定値を伝送路インターフェース310、伝送路30、伝送路インターフェース220を介してセンター無線信号処理部210のスケジューリング部214とアンテナマッピング部323に出力する。ただし、伝搬路応答の推定の対象となる無線端末4は無線装置3と通信する無線端末に限定されず、他の無線装置と通信する無線端末に対する伝搬路応答を推定してもよい。また、出力する推定値は時間方向や周波数方向に平均化したものでもよい。なお、端末が参照信号を用いて伝搬路応答を推定し、無線装置に伝搬路応答を送信してもよい。
 伝送路インターフェース310は、伝送路30を介して制御装置200と通信するために、伝送路30の規格に対応した処理を行う。
 スケジューリング部214は、リモート無線信号処理部320の伝搬路応答推定部327から入力された伝搬路応答の推定値を用いて、無線端末4に無線リソースや変調符号化方式(MCS:Modulation Coding Scheme)を割り当て、その割り当て情報をRLC層処理部212、MAC層処理部213、符号化部321、変調部322、アンテナマッピング部323、リソースマッピング部324に出力する。
 PDCP層処理部211は、コアネットワーク100から送られたユーザデータに圧縮、暗号化などの処理を施してRLC層処理部212に出力する。
 RLC層処理部212は、PDCP層処理部211から入力されたデータをバッファリングし、スケジューリング部214からの要求に合わせてバッファリングされたデータを分割・結合してMAC層処理部213に出力する。
 MAC層処理部213は、RLC層処理部212から送られたデータや制御情報などをスケジューリング部214からの要求に合わせて多重し、伝送路インターフェース220、伝送路30、伝送路インターフェース310を介してリモート無線信号処理部320の符号化部321に出力する。
 符号化部321は、伝送路インターフェース220、伝送路30、伝送路インターフェース310を介してMAC層処理部213から入力されたデータを、スケジューリング部214から送られた情報に基づいて符号化し、変調部322に出力する。
 変調部322は、符号化部321から入力されたデータを、スケジューリング部214から送られた情報に基づいて変調信号に変換し、アンテナマッピング部323に出力する。
 アンテナマッピング部323は、スケジューリング部214から入力された情報と伝搬路応答推定部327から入力された伝搬路応答の推定値を用いて、変調信号に乗算する重み係数を計算する。アンテナマッピング部323は、算出された重み係数を変調部322から入力された変調信号に乗算し、空間多重する信号を重み係数の乗算後に加算して、リソースマッピング部324に出力する。
 リソースマッピング部324は、スケジューリング部214から入力された情報に基づいて、アンテナマッピング部323から入力された信号を無線リソースにマッピングし、IFFT部325に出力する。
 IFFT部325は、リソースマッピング部324から入力された信号に対して逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)を施し、無線送受信部330に出力する。なお、IFFT部325と無線送受信部330の間ではサイクリック・プレフィックス(CP:Cyclic Prefix)の付加を行う(図示せず)。
 無線送受信部330は、IFFT部325から伝送されたベースバンド信号をキャリア周波数帯の無線信号に変換し、アンテナ340を介して無線信号を送信する。
 図3に示すように、本実施形態における無線装置3は、以下の動作S101~動作S110を行う。
 まず、無線装置3が無線端末4に参照信号要求を送信する(動作S101)。無線装置3は無線端末4から参照信号を受信する(動作S102)。無線装置3は、伝搬路応答推定部327が無線装置3と無線端末4との間の伝搬路の伝搬路応答(伝達関数またはインパルス応答など)を推定する(動作S103)。無線装置3は、伝搬路応答の推定値を制御装置200に送る(動作S104)。ただし、伝送する伝搬路応答の推定値は推定したすべての無線端末に対するものでなくてもよい。例えば、無線装置3の通信相手でない無線端末に対しては、伝搬路応答の利得が大きい無線端末に限定してもよい。また、伝搬路応答の推定値を伝送すべき無線端末を制御装置200が指示し、その指示に基づいて伝搬路応答の推定値を伝送する無線端末を限定してもよい。
 制御装置200のスケジューリング部214は、無線装置3から送られた伝搬路応答の推定値を用いて、端末の組み合わせ、空間多重、変調符号化方式などの無線リソース割り当てを行う(動作S105)。制御装置200のセンター無線信号処理部210は、ユーザデータに圧縮、暗号化などの処理を施したデータをバッファリングし、動作S105のスケジューリング結果に基づいて、スケジューリング部214からの要求に合わせてバッファリングされたデータを分割・結合し、送信データを生成する(動作S106)。制御装置200は、動作S105のスケジューリング結果(端末の組み合わせ、レイヤ数、MCSなど)を無線装置3に送る(動作S107)。また、動作S106で生成した送信データや制御情報などをスケジューリング部214からの要求に合わせて多重し無線装置3に送る(動作S108)。
 無線装置3のリモート無線信号処理部320は、動作S107で送られたスケジューリング情報に基づいて、動作S108で送られた送信データに対して符号化、変調、ウェイトの生成、マッピング等を行い、ベースバンド信号を生成する(動作S109)。無線装置3の無線送受信部330は、動作S109で生成されたベースバンド信号から無線信号を生成し、アンテナ340を介して送信する(動作S110)。
 図4~図7に示すように、本実施形態における前記動作S105のスケジューリングの詳細な動作を説明する。
 本実施形態におけるスケジューリング部214は、まず、複数の無線端末の中から通信する無線端末を選択する(動作S501~S504)。図5に示すように、端末の選択について説明する。
 まず、選択可能なRBG(Resource Block Group)からあるRBGを選択する(動作S501)。なお、RB(Resource Block)について、LTE(Long Term Evolution)では、15kHz間隔で隣接する12個のサブキャリア(180kHz)を1つのブロックとして分け、これをRBと呼んでいるがこれに限定されない。
 続いて、すべての端末組み合わせにおいて優先度を算出する(動作S502)。なお、選択済み無線端末との伝搬路の相関を計算し、相関の低いいくつかの無線端末に対してのみ優先度を算出してもよい。また、各無線端末の選択頻度を計算し、選択頻度の低いいくつかの無線端末に対してのみ優先度を算出してもよい。優先度の算出方法は後述する。
 優先度が規定に達している端末の組み合わせを、選択したRBGに割り当てる(動作S503)。ここで規定に達しているとは、例えば優先度が最大になる端末組み合わせでもよいし、各端末が最低レートを満たすという条件下において全体の優先度が最大となる組み合わせでもよい。また、事前に設定した閾値などと比較してもよい。
 すべてのRBGに端末を割り当てたら、次のステップへ進む(動作S504)。
 動作S501~S504で選択された無線端末の各々に対してレイヤ数を選択する(動作S601~S604)。ここで、レイヤ数はアンテナマッピング323において異なる重み係数を乗算する変調信号の数、つまり空間多重される変調信号の数を意味する。なお、以下の説明を簡単化するために、レイヤ数と符号化の単位であるコードワードの数とが同一であるものとする。なお、端末の選択とレイヤ数の選択は同時に行ってもよい。
 図6に示すように、レイヤ数の選択について説明する。
 まず、あるRBGに割り当てられた端末を選択する(動作S601)。選択した端末において、選択可能なすべてのレイヤ数で優先度を計算する(動作S602)。算出した優先度が規定に達しているレイヤ数を、選択した端末に割り当てる(動作S603)。ここで、規定に達しているとは、例えば、優先度が最大になるレイヤ数でもよいし、各端末が最低レートを満たすという条件下において優先度が最大となるレイヤ数としてもよい。また事前に設定した閾値などと比較してもよい。
 すべてのRBGにレイヤ数を割り当てたら、次のステップへ進む(動作S604)。
 最後に、図7に示すように、各RBGにおける各端末の各レイヤに対応するMCSを選択する(動作S701~S704)。まず、あるRBGに設定されたある端末の各レイヤから、あるレイヤを選択する(動作S701)。
 選択したレイヤにおける受信SINRを計算する(動作S702)。ただし、計算するSINRを1つに限定する必要はなく、RBGに含まれる複数のRBごとにSINRを計算してもよい。なお、SINRの計算方法は後述する。
 算出したSINRに基づき、MCSを選択する(動作S703)。MCSごとに所定の品質(例えば、パケット誤り率が0.1)を満たすSINRの値を設定しておき、計算した平均SINRが所定の品質を満たすSINRの値よりも大きいという条件下で最大のMCSを選択すればよい。なお、平均SINRと所定の品質を満たすSINRとを比較する際には、平均SINRにオフセット値を付加してもよい。オフセット値は、一定の値でもよいし、例えば、通信の成否に応じて逐次変更してもよい。
 すべてのRBGにおいて、設定された端末のすべてのレイヤにMCSを設定したら次のステップへ進む(動作S704)。
 リソースの割り当てを行うために、優先順位を表す値を用いる方法が一般的である。優先度が高いということは、その集合の中で最適な組み合わせとなることを示す。優先度Mkは、例えばMax-C/I規範やPF(Proportional Fairness)規範などにより計算される。
 Max-C/I規範の場合には、選択端末の集合U(n)に含まれる無線端末と端末番号kの無線端末に対して、受信SINRを推定し、推定したSINRをシャノン容量の理論式により瞬時レートに変換し、その瞬時レートの和をMとする。
 PF規範は、対象となる移動局の平均スループットに対する瞬時スループットの比率で無線リソースの割当が行われる。PF規範の場合には、瞬時レートの和ではなく、瞬時レートを平均レートで割った値の和をMとする。
 なお、Mの計算規範はステージごとに変更してもよい。また、相関の低い端末の組合せを優先的に選択するために、端末間の伝搬路の相関値の逆数をMとしてもよい。
 先に述べた、優先度を算出するために用いるパラメータ、受信SINRの算出方法として3つの例を挙げる。
 第1の例では、無線装置3から入力された、伝搬路応答を用いて送信ウェイト(Transmit Weight/Transmission Weight)(変調信号に乗算する重み係数)と受信ウェイト(受信信号に乗算する重み係数)とを生成し、それらを用いてSINRを推定する。
 第2の例では、無線装置3から入力された、伝搬路応答に行列演算処理を施して生成されるレイヤごとの伝搬路応答ベクトルを用いてSINRを推定する。
 第3の例では、無線装置3から入力された、レイヤごとの伝搬路応答ベクトルから算出される端末間の伝搬路の相関を用いてSINRを推定する。それぞれ次に示す(1)、(3)、(6)のような式で表される。
 まず、受信SINRの算出方法の第1の例である、ウェイトを用いる方法を説明する。例として、第k無線端末の第lレイヤのSINRを推定する場合を考える。Nを無線端末4が備えるアンテナ数、N(≧N)を無線装置3が備えるアンテナ数とする。無線装置3から入力された、無線装置3と第k無線端末間の伝搬路応答の推定値を要素とするN×N伝搬路応答行列をHとする。第k無線端末の第lレイヤに対するN次元送信ウェイトベクトルをwTx,k,l、N次元受信ウェイトベクトルをwRx,k,lとする。送信電力をPk,l、他セル干渉電力をσ (k,l)とする。無線装置が選択した端末の集合をU、雑音電力をσ とする。第k無線端末の第lレイヤの受信SINRγk,lは、次式(1)で推定される。ただし、はエルミート転置を表す。
Figure JPOXMLDOC01-appb-M000001
 次に、式(1)で用いられているパラメータ送信ウェイトベクトルwTx,k,lの算出方法を説明する。送信ウェイトベクトルwTx,k,lはスケジューリング部214がHを用いて所定の規範により生成する。例えば、MRT(Maximum Ratio Transmission)、ZF(Zero Forcing)、SLNR(Signal to Leakage plus Noise Ratio)といった規範が用いられる。
 ここでは例として、ZF規範による生成方法について説明する。SINRの推定の対象となるRBGに端末番号1からK’までのK’個の無線端末4が選択されているとし、K’個の無線端末4に対する伝搬路応答行列を結合した(K’N)×N伝搬路応答行列HをH=(H ・・・HK’ )とする。各無線端末の送信ウェイトベクトルを結合したN×(K’N)送信ウェイト行列WTxがWTx=H(H・H-1により生成される。
 このWTxの中にはK’個の無線端末の各々に対してN個の送信ウェイトベクトルが含まれている。第k無線端末の第lレイヤの送信ウェイトベクトルwTx,k,lは、WTxに含まれる第k無線端末の送信ウェイトベクトルの中で送信ウェイトベクトルと伝搬路応答行列Hとの積の大きさがl番目に大きい送信ウェイトベクトルを選択すればよい。
 続いて、式(1)で用いられているパラメータ、受信ウェイトベクトルwRx,k,lの算出方法を説明する。受信ウェイトベクトルwRx,k,lはHとwTx,k,lを用いて所定の規範により生成される。例として、MRC(Maximum Ratio Combining)規範を用いた場合には以下の式(2)により生成される。
Figure JPOXMLDOC01-appb-M000002
 式(1)で用いられているパラメータ、送信電力Pk,lの算出方法を説明する。送信電力Pk,lの設定には、例えば、選択したK’個の無線端末の各レイヤに等電力を割り当てる方法や、全レイヤの合計電力が一定という条件の下で送信ウェイトベクトルと伝搬路応答行列との積の大きさに応じた値を割り当てる方法等が用いられる。
 なお、式(1)における右辺の分母の第1項は、第k無線端末の第lレイヤ宛を除く信号が第k無線端末に与える干渉電力である。この干渉電力の大きさは送信ウェイトベクトルの生成規範に依存する。例えば、ZF規範で生成する場合には干渉電力は0となり、式(1)の計算において右辺の分母の第1項を無視することができる。
 次に受信SINRの算出方法の第2の例として、レイヤごとの伝搬路応答ベクトルを用いる方法を説明する。例として、第k無線端末の第lレイヤの受信SINRγk,lは、第k無線端末の第lレイヤの伝搬路応答ベクトルgk,lを用いて次式(3)により推定される。ただし、は転置を表す。
Figure JPOXMLDOC01-appb-M000003
 式(3)で用いられているパラメータ、各レイヤの伝搬路応答ベクトルgk,lの算出方法を説明する。k無線端末の第lレイヤのN次元伝搬路応答ベクトルgk,lは次式(4)により表される。
Figure JPOXMLDOC01-appb-M000004
 ただし、は複素共役を表す。vk,lは正規直交基底を成すため、式(4)により生成されたgk,lはレイヤ間で互いに直交する。つまり、gk,lとgk,l’(l≠l’)の内積は0となる。各レイヤの伝搬路応答ベクトルを求めるために、伝搬路応答行列に対して特異値分解または固有値分解を施してλ及びvが生成される。
 式(4)で用いられているパラメータλ及びvについて特異値分解を用いて算出する方法を説明する。無線装置と第k無線端末間の伝搬路応答の推定値を要素とするN×N伝搬路応答行列Hは次式(5)のように表せる。
Figure JPOXMLDOC01-appb-M000005
 ただし、Uは左特異ベクトルuk,l(l=1,...,N)を列ベクトルに持つN×Nユニタリ行列である。Vは右特異ベクトルvk,l(l=1,...,N)を列ベクトルに持つN×Nユニタリ行列である。Σは対角成分にHの特異値(固有値λk,l(l=1,...,N)の平方根)を持ち、非対角成分が0のN×N行列である。なお、特異値(および固有値)の添え字の番号は値の大きい順に付けられているものとする。
 続いて、固有値分解を用いる場合を説明する。N×N行列H に固有値分解を適用して固有値λk,lと固有ベクトルvk,lを算出する。なお、特異値分解または固有値分解を行う前に、HまたはH に対して時間・周波数方向の平均化処理を行ってもよい。
 受信SINRの算出方法の第3の例として、伝搬路の利得と相関(Channel Gain/Channel Correlation)を用いる方法を説明する。例として、第k無線端末の第lレイヤの受信SINRγk,lは、第k無線端末の第lレイヤの伝搬路応答ベクトルgk,lと、伝搬路の利得を示す係数αk,lを用いて次式(6)で推定される。各レイヤの伝搬路応答ベクトルgk,lの生成方法については、式(5)に記載の方法同様のため省略する。
Figure JPOXMLDOC01-appb-M000006
 式(6)で用いられているパラメータ、伝搬路の利得を示す係数αk,lを生成する方法について、説明する。例としてZF規範の場合と、空間的に多重するレイヤ数の多い場合の2種類の算出方法を示す。
 まず、ZF規範の場合には空間的に多重された複数無線端末宛の信号が互いに干渉しないように送信ウェイトベクトルを生成するので、その分だけ所望信号の利得は劣化する。αk,lはその影響を加味した正規化された利得であり、次式(7)により計算される。
Figure JPOXMLDOC01-appb-M000007
 式(6)を導出するために用いられるパラメータ、第k無線端末の第lレイヤと第k’無線端末の第l’レイヤとの間の伝搬路の相関ρ(k,l)(k’,l’)を算出する方法を説明する。第k無線端末の第lレイヤの伝搬路応答ベクトルgk,lと第k’無線端末の第l’レイヤの伝搬路応答ベクトルgk’,l’とを用いて、次式(8)により計算される。
Figure JPOXMLDOC01-appb-M000008
 式(7)のαk,lの導出方法について説明する。端末番号1からK’までのK’個の無線端末4が選択されているとき、各無線端末の伝搬路応答行列を結合したL×N伝搬路応答行列Gは次式(9)のように表せる。
Figure JPOXMLDOC01-appb-M000009
 式(9)のようにGは、対角成分が各レイヤの伝搬路応答ベクトルのノルムで非対角成分が0のL×L行列Dと、正規化された各レイヤの伝搬路応答ベクトルから構成されるL×N行列G’との積で表される。ZF規範適用時のN×L送信ウェイト行列WTxは次式(10)のように表せる。
Figure JPOXMLDOC01-appb-M000010
 式(10)におけるG’とG’の積は対角成分が1で非対角成分が式(8)から計算される2つのレイヤ間の伝搬路の相関となる。G’とG’の積の逆行列は余因子行列を用いて求めることができ、その逆行列の要素はレイヤ間の伝搬路の相関を用いて表せる。式(10)から導出される送信ウェイトベクトルを用いて式(3)の右辺の分子を計算し、式(6)の右辺の分子と比較することで、式(7)のαk,lを導出することができる。
 ただし、式(7)においてはレイヤ間の伝搬路の相関の4次以上の項を無視している。αk,lの計算式は式(7)に限定されず、レイヤ間の伝搬路の相関の4次以上の項を考慮してもよいし、3次の項を無視する形でもよい。
 続いて、空間的に多重するレイヤ数(信号数)が多い場合には、レイヤ間の伝搬路の相関の高次の項を無視することで式(7)を用いたαk,lの推定精度は劣化する。特に式(7)の右辺第2項の分母の値が小さいときにαk,lの値が真値から大きくずれ得る。そこで、次式(11)によりαk,lを導出してもよい。
Figure JPOXMLDOC01-appb-M000011
 式(7)を用いた場合に比べて、レイヤ数が少ないときには推定精度が落ちるものの、レイヤ数が多いときの大きな推定精度の劣化を回避することができる。
 なお、各項の係数を1としているがこれには限定されない。また、レイヤ間の伝搬路の相関の3次以上の項を考慮してもよい。
 受信SINRを算出する方法の第1の例のウェイトを用いる場合における、他セル干渉電力を示すσ (k,l)を算出する方法として3つの例を挙げる。
 第1の例では、干渉源となる無線装置と第k無線端末との間の伝搬路応答、干渉源となる無線装置が適用する送信ウェイトベクトル(行列)を用いる。
 第2の例では、無線端末4から無線装置3を介してスケジューリング部214に報告されるチャネル品質指標(CQI:Channel Quality Indicator)を用いる。
 第3の例では、無線端末4から無線装置3を介して制御装置2に報告される各セルに対する参照信号の受信電力(RSRP:Reference Signal Received Power)を用いる。それぞれ次に示す式(12)~(14)で表される。
 まず、第1の例である、送信ウェイトベクトルを用いてセル干渉電力を示すσ (k,l)を算出する方法について説明する。第k端末が通信する無線装置の番号をj、干渉源となる他の無線装置の番号をj’、第j’無線装置が選択した無線端末の集合をUs,j’とし、第j’無線装置と第k無線装置との間の伝搬路応答行列をHj’,k、第j’無線装置と通信する第k’無線端末の第l’レイヤに対応する送信ウェイトベクトルをwTx,j’,k’,l’、送信電力をPj’,k’,l’とすると、σ (k,l)は次式(12)により計算される。
Figure JPOXMLDOC01-appb-M000012
 続いて第2の例としてCQIを用いてセル干渉電力を示すσ (k,l)を算出する方法を説明する。無線端末4は無線装置3が送信した既知の信号(参照信号)を用いてSINRを測定し、それとCQI番号ごとに設定されたSINRのしきい値とを比較してCQI番号を決定し、無線装置3を介してスケジューリング部214にその番号を報告する。第k無線端末が報告するCQIをCQI、CQIをSINRに変換する関数をf()、他セル干渉電力の補正係数をμとすると、σ (k,l)は次式(13)により計算される。なお、補正係数μの値は一定でもよいし、通信の成否に応じて適応的に変更してもよい。
Figure JPOXMLDOC01-appb-M000013
 第3の例として、RSRPを用いてセル干渉電力を示すσ (k,l)を算出する方法を説明する。第k無線端末が通信する無線装置の番号をj、第k無線端末における第j無線装置のRSRPをRSRP、とすると、σ (k,l)は次式(14)、(15)により計算される。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 その他のSINR算出方法を用いた場合の他セル干渉電力を示すσ (k,l)を算出する方法を説明する。式(12)、(13)、(14)に示されている干渉電力を計算する式は、SINRを算出する方法によって適宜構成を変えることができる。例えば、以下の計算式(16)、(17)、(18)、(19)、(23)、(24)のように変形することができる。
 まず、SINRを推定する際に、レイヤごとの直交した伝搬路応答を用いる場合の、他セル干渉電力を示すσ (k,l)を算出する方法を説明する。
 第1の例として、他セル干渉電力を示すσ (k,l)の推定に、送信ウェイトベクトルを用いた場合を説明する。第k端末が通信する無線装置の番号をj、干渉源となる他の無線装置の番号をj’、第j’無線装置が選択した無線端末の集合をUs,j’とし、第j’無線装置と第k無線装置の第lレイヤとの間の伝搬路応答ベクトルをgj’,k,l、第j’無線装置と通信する第k’無線端末の第l’レイヤに対応する送信ウェイトベクトルをwTx,j’,k’,l’、送信電力をPj’,k’,l’とすると、σ (k,l)は次式(16)により計算される。
Figure JPOXMLDOC01-appb-M000016
 第2の例として、他セル干渉電力を示すσ (k,l)の推定に、CQIを用いた場合を説明する。第k無線端末が報告するCQIをCQI、CQIをSINRに変換する関数をf()、他セル干渉電力の補正係数をμとすると、σ (k,l)は次式(17)により計算される。
Figure JPOXMLDOC01-appb-M000017
 なお、補正係数μの値は一定でもよいし、通信の成否に応じて適応的に変更してもよい。
 第3の例として、他セル干渉電力を示すσ (k,l)の推定に、RSRPを用いた場合を説明する。第k無線端末が通信する無線装置の番号をj、第k無線端末における第j無線装置のRSRPをRSRP、とすると、σ (k,l)は次式(18)により計算される。
Figure JPOXMLDOC01-appb-M000018
 SINRを推定する際に、伝搬路の利得と相関を用いる場合の、他セル干渉電力を示すσ (k,l)を算出する方法を説明する。
 第1の例として、他セル干渉電力を示すσ (k,l)の推定に、送信ウェイトベクトルを用いる場合を説明する。第k端末が通信する無線装置の番号をj、干渉源となる他の無線装置の番号をj’、第j’無線装置が選択した無線端末の集合をUs,j’とし、第j’無線装置と第k無線装置の第lレイヤとの間の伝搬路応答ベクトルをgj’,k,l、第j’無線装置と通信する第k’無線端末の第l’レイヤに対する送信電力をPj’,k’,l’とすると、σ (k,l)は次式(19)により計算される。
Figure JPOXMLDOC01-appb-M000019
 前記式に含まれているパラメータβj’,(k,l)(k’,l’)は次式(20)により計算される。
Figure JPOXMLDOC01-appb-M000020
 なお、式(20)においてはレイヤ間の伝搬路の相関の4次以上の項を無視している。βj’,(k,l)(k’,l’)の計算式は式(20)に限定されず、レイヤ間の伝搬路の相関の4次以上の項を考慮してもよいし、3次の項を無視する形でもよい。
 また、第j’無線装置における第k無線端末の第lレイヤと第k’無線端末の第l’レイヤとの間の伝搬路の相関ρj’,(k,l)(k’,l’)は、第k無線端末の第lレイヤの伝搬路応答ベクトルgj’,k,lと第k’無線端末の第l’レイヤの伝搬路応答ベクトルgj’,k’,l’とを用いて、次式(21)により計算される。
Figure JPOXMLDOC01-appb-M000021
 空間的に多重するレイヤ数(信号数)が多い場合には、レイヤ間の伝搬路の相関の高次の項を無視することで、式(20)で導出したβj’,(k,l)(k’,l’)の値は真値から大きくずれ得る。そこで、βj’,(k,l)(k’,l’)は次式(22)により導出してもよい。
Figure JPOXMLDOC01-appb-M000022
 なお、各項の係数を1としているがこれには限定されない。また、レイヤ間の伝搬路の相関の3次以上の項を考慮してもよい。
 第2の例として、他セル干渉電力を示すσ (k,l)の推定に、CQIを用いる場合を説明する。第k無線端末が報告するCQIをCQI、CQIをSINRに変換する関数をf()、他セル干渉電力の補正係数をμとすると、σ (k,l)は次式(23)により計算される。
Figure JPOXMLDOC01-appb-M000023
 なお、補正係数μの値は一定でもよいし、通信の成否に応じて適応的に変更してもよい。
 第3の例として、他セル干渉電力を示すσ (k,l)の推定に、RSRPを用いる場合を説明する。第k無線端末が通信する無線装置の番号をj、第k無線端末における第j無線装置のRSRPをRSRP、とすると、σ (k,l)は次式(24)により計算される。
Figure JPOXMLDOC01-appb-M000024
 SINR算出に用いられるパラメータ、雑音電力σ の算出方法を説明する。雑音電力σ は、ボルツマン定数をk、絶対温度をT、雑音指数をF、帯域幅をWとすると、次式(25)により計算される。各パラメータの値としては、例えば、T=290K、F=9dBといった値が用いられる。SINRの計算はサブキャリア単位で行うので、Wの値はサブキャリア間隔(LTEでは15kHz)であればよい。
Figure JPOXMLDOC01-appb-M000025
 <実施形態2>
 本実施形態では、無線装置3が伝搬路応答の推定値を用いてレイヤごとの直交した伝搬路応答(Orthogonal Channel Response)を生成し、それを制御装置200に送る。
 図8に示すように、本実施形態におけるリモート無線信号処理部320は、図2に示す第1の実施形態におけるリモート無線信号処理部320と比較して、直交伝搬路応答生成部351を備えている点が異なる。
 直交伝搬路応答生成部351は、伝搬路応答推定部327から入力された無線装置3と無線端末4との間の伝搬路応答の推定値を用いて、レイヤごとの直交した伝搬路応答を生成し、それをセンター無線信号処理部210のスケジューリング部214とアンテナマッピング部323に出力する。なお、レイヤごとの直交した伝搬路応答を生成する対象となる無線端末は無線装置3が通信する無線端末に限定されず、他の無線装置が通信する無線端末に対してレイヤごとの伝搬路応答を生成してもよい。
 その他の構成は、他の実施形態と同様である。
 図9に示すように、本実施形態における無線装置3は、図3に示す第1の実施形態における無線装置3と比較して、直交伝搬路応答生成部351が伝搬路応答の推定値を用いてレイヤごとの直交した伝搬路応答を生成し(動作S901)、生成したレイヤごとの直交した伝搬路応答を制御装置200に伝送する(動作S902)。
 動作S901におけるレイヤごとの直交した伝搬路応答の生成方法は、第1の実施形態の式(4)を用いた方法と同様である。つまり、伝搬路応答の推定値を要素とする伝搬路応答行列の特異値分解により生成される特異値と右特異ベクトル、または伝搬路応答行列のエルミート転置と伝搬路応答行列との積の固有値分解により生成される固有値と固有ベクトルを用いて、式(4)によりレイヤごとの直交した伝搬路応答を生成する。なお、特異値分解または固有値分解を行う前に、伝搬路応答行列または伝搬路応答行列のエルミート転置と伝搬路応答行列との積に対して時間・周波数方向の平均化処理を行ってもよい。
 動作S902では、レイヤごとの直交した伝搬路応答ベクトルそのものでなく、そのベクトルノルムとノルムで正規化した伝搬路応答ベクトルとに分けた形で制御装置200に伝送してもよい。また、動作S901で生成したすべての直交した伝搬路応答を伝送しなくてもよく、伝搬路応答ベクトルのノルムに基づいて伝送する伝搬路応答を限定してもよい。また、制御装置200からの指示に基づいて伝送する伝搬路応答を限定してもよい。
 動作S901、S902以外の動作は第1の実施形態と同様である。ただし、動作S105のスケジューリングにおけるSINRの推定方法としては、第1の実施形態で示した第2または第3の例が用いられる。
 以上のように本実施形態では、MU-MIMO伝送をC-RAN構成で用いる際に、無線装置に参照信号を基に直交伝搬路応答を生成する直交伝搬路応答生成部を備え、制御装置が無線装置から受信した直交伝搬路応答を用いてスケジューリングを行う構成をとっている。そのため、無線装置から伝搬路応答推定を制御装置に送信する構成に比べ、フロントホールの通信量を削減することができる。
 <実施形態3>
 本実施形態では、無線装置3が各無線端末の各レイヤの伝搬路の利得と異なる端末のレイヤ間の伝搬路の相関とを計算し、それらを制御装置200に送る。
 図10に示すように、本実施形態におけるリモート無線信号処理部320は、図8に示す第2の実施形態におけるリモート無線信号処理部320と比較して、伝搬路利得・相関計算部352を備えている点が異なる。
 伝搬路利得・相関計算部352は、直交伝搬路応答生成部351から入力された、無線装置3と無線端末4との間のレイヤごとの直交した伝搬路応答を用いて、各レイヤの伝搬路の利得と異なる端末のレイヤ間の伝搬路の相関とを計算し、それらをセンター無線信号処理部210のスケジューリング部214に出力する。なお、各レイヤの伝搬路の利得と異なる端末のレイヤ間の伝搬路の相関とを計算する対象となる無線端末は、無線装置3が通信する無線端末に限定されず、他の無線装置が通信する無線端末に対して各レイヤの伝搬路の利得と異なる端末のレイヤ間の伝搬路の相関とを計算してもよい。また、伝搬路利得・相関計算部352が計算する利得と相関は、各レイヤの伝搬路の利得と異なる端末のレイヤ間の伝搬路の相関とに限定されず、伝搬路応答推定部327が出力する伝搬路応答の推定値を用いて、各無線端末の伝搬路の利得と異なる端末間の伝搬路の相関とであってもよい。
 その他の構成は他の実施形態と同様である。
 図11に示すように、本実施形態における無線装置3は、図9に示す第2の実施形態における無線装置3と比較して、伝搬路利得・相関計算部352がレイヤごとの直交した伝搬路応答を用いて各レイヤの伝搬路の利得と異なる端末のレイヤ間の伝搬路の相関とを計算し(動作S1101)、算出した各レイヤの伝搬路の利得とレイヤ間の伝搬路の相関とを制御装置200に伝送する(動作S1102)。動作S1101において、各レイヤの伝搬路の利得は、レイヤごとの直交した伝搬路応答ベクトルのノルムとして計算される。レイヤ間の伝搬路の相関は、レイヤごとの直交した伝搬路応答を用いて第1の実施形態における式(7)から計算される。
 動作S1102において、動作S1101で計算されたすべての伝搬路の利得と端末間の伝搬路の相関とを伝送しなくてもよく、伝搬路の利得や端末間の伝搬路の相関の値に基づいて伝送するものを限定してもよい。また、制御装置200からの指示に基づいて伝送する伝搬路の利得と端末間の伝搬路の相関とを限定してもよい。
 動作S1101、S1102以外の動作は第2の実施形態と同様である。ただし、動作S105のスケジューリングにおけるSINRの推定方法としては、第1の実施形態で示した第3の例が用いられる。
 以上のように本実施形態では、MU-MIMO伝送をC-RAN構成で用いる際に、無線装置に参照信号を基に各無線端末の各レイヤの伝搬路利得と、異なる端末のレイヤ間の伝搬路相関を計算する、伝搬路利得・相関生成部を備え、制御装置が無線装置から受信した伝搬路利得と相関を用いてスケジューリングを行う構成をとっている。そのため、無線装置から直交伝搬路応答を制御装置に送信する構成に比べ、フロントホールの通信量を削減することができる。
 <実施形態4>
 本実施形態では、無線装置3が伝搬路応答の推定値を用いて送信ウェイト行列を生成し、制御装置200に送る。
 図12に示すように、本実施形態におけるリモート無線信号処理部320は、図2に示す第1の実施形態におけるリモート無線信号処理部320と比較して、送信ウェイト生成部361を備える点が異なる。送信ウェイト生成部361は、伝搬路応答推定部327から入力された無線装置3と無線端末4との間の伝搬路応答の推定値を用いて、送信ウェイト行列を生成し、それをセンター無線信号処理部210のスケジューリング部214に出力する。
 なお、第2の実施形態における直交伝搬路応答部351をリモート無線信号処理部320に備え、レイヤごとの直交した伝搬路応答を用いて送信ウェイト行列を生成してもよい。
 その他の構成は他の実施形態と同様である。
 図13に示すように、本実施形態における無線装置3は、図3に示す第1の実施形態における無線装置3と比較して、送信ウェイト生成部361が伝搬路応答の推定値を用いて送信ウェイトを生成し(動作S1301)、生成した送信ウェイトを制御装置200に伝送する(動作S1302)。
 動作S1301において、送信ウェイト行列は、端末間の伝搬路の相関や各無線端末の通信頻度などに基づいて選択した、いくつかの無線端末の組合せごとに生成される。送信ウェイトの生成規範としてはMRT、ZF、SLNRなどが用いられる。
 動作S1301、S1302以外の動作は第1の実施形態と同様である。
 以上のように本実施形態では、MU-MIMO伝送をC-RAN構成で用いる際に、無線装置に送信ウェイト生成部を備え、制御装置が無線装置から受信した伝搬路応答推定と送信ウェイトを用いてスケジューリングを行う構成をとっている。そのため、制御装置に送信ウェイトの生成機能を設ける必要がなく、制御装置のコストを削減することができる。
 <その他の実施形態>
 なお、以上に述べた各実施形態における無線装置および制御装置に内包される各機能は図14に記載しているように装置1000に含まれるマイクロプロセッサ、回路、トランスミッタ、レシーバ等のうちのコンピュータ装置(プロセッサ)1001に1又は複数のプログラムを実行させることによって実現してもよい。このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ媒体は、様々なタイプの実態のある記録媒体を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体、光磁気記録媒体、CD(Compact Disc)、DVD(Digital Versatile Disc)、BD(Blu-ray Disc)、半導体メモリ、を含む。またプログラムは、様々なタイプの一時的なコンピュータ可読媒体によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、または無線通信路を介してプログラムをコンピュータに供給できる。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具現化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 なお、本発明において、下記の形態が可能である。
[形態1]
 上記第1の態様に係る無線装置のとおりである。
[形態2]
 前記無線装置は、前記無線端末から参照信号を受信する受信部を備え、前記伝搬路応答推定部は、前記参照信号に基づいて伝搬路応答を推定する、形態1に記載の無線装置。
[形態3]
 前記伝搬路情報は、前記伝搬路応答よりも情報量が少ない、形態1または2に記載の無線装置。
[形態4]
 前記伝搬路情報は、伝搬路応答、直交伝搬路応答、伝搬路利得、伝搬路相関、および、送信ウェイトの少なくともいずれか一つである、形態1ないし3のいずれか一に記載の無線装置。
[形態5]
 前記制御装置と物理的に分離され、伝送路を介して前記制御装置に接続される、形態1ないし4のいずれか一に記載の無線装置。
[形態6]
 前記無線端末は、前記無線装置またはその他の無線装置と通信する無線端末である、形態1ないし5のいずれか一に記載の無線装置。
[形態7]
 前記無線装置は、前記制御装置からスケジューリング情報を受信する受信部を備え、前記スケジューリング情報は、複数の端末へ割り当てられたリソースを空間多重させる情報を含む、形態1ないし6のいずれか一に記載の無線装置。
[形態8]
 上記第2の態様に係る制御装置のとおりである。
[形態9]
 前記伝搬路応答は、前記無線端末から送信された参照信号に基づいて推定される伝搬路応答である、形態8に記載の制御装置。
[形態10]
 前記伝搬路情報は、前記伝搬路応答よりも情報量が少ない、形態8または9に記載の制御装置。
[形態11]
 前記伝搬路情報は、伝搬路応答、直交伝搬路応答、伝搬路利得、伝搬路相関、および、送信ウェイトのうちの少なくともいずれか一つである、形態8ないし10のいずれか一に記載の制御装置。
[形態12]
 前記無線装置と物理的に分離され、前記無線装置に伝送路を介して接続される、形態8ないし11のいずれか一に記載の制御装置。
[形態13]
 前記無線端末は、前記無線装置またはその他の無線装置と通信する無線端末である、形態8ないし12のいずれか一に記載の制御装置。
[形態14]
 前記スケジューリング情報は、複数の端末に割り当てられたリソースを空間多重させる情報を含む、形態8ないし13のいずれか一に記載の制御装置。
[形態15]
 上記第3の態様に係る無線通信システムのとおりである。
[形態16]
 前記伝搬路応答は、前記無線端末から受信した参照信号に基づいて推定した伝搬路応答である、形態15に記載の無線通信システム。
[形態17]
 前記伝搬路情報は、前記伝搬路応答よりも情報量が少ない、形態15または16に記載の無線通信システム。
[形態18]
 前記無線装置と前記制御装置は、物理的に分離され、伝送路を介して接続される、形態15ないし17のいずれか一に記載の無線通信システム。
[形態19]
 前記無線端末は、前記無線装置またはその他の無線装置と通信する無線端末である、形態15ないし18のいずれか一に記載の無線通信システム。
[形態20]
 前記スケジューリング情報は、複数の端末に割り当てられたリソースを空間多重させる情報を含む、形態15ないし19のいずれか一に記載の無線通信システム。
30:伝送路
<ネットワーク>
100:コアネットワーク
<制御装置>
200:制御装置
22:受信部
23:送信部
210:センター無線信号処理部
211:PDCP層処理部
212:RLC層処理部
213:MAC層処理部
214:スケジューリング部
220:伝送路IF
<無線装置>
3、300-1、300-2:無線装置
33:伝搬路情報生成部
34:送信部
310:伝送路IF
320:リモート無線信号処理部
321:符号化部
322:変調部
323:アンテナマッピング部
324:リソースマッピング部
325:IFFT部
326:FFT部
327:伝搬路応答推定部
330:無線送受信部
340:アンテナ
351:直交伝搬路応答生成部
352:伝搬路利得・相関計算部
361:送信ウェイト生成部
<無線端末>
4、400-1~400-3:無線端末
<装置>
1000:装置
1001:プロセッサ

Claims (20)

  1.  無線端末と自装置との間の伝搬路応答を推定する伝搬路応答推定部と、
     推定した前記伝搬路応答から伝搬路情報を生成する伝搬路情報生成部と、
     生成した前記伝搬路情報を制御装置に送信する送信部と、を備える、
     ことを特徴とする無線装置。
  2.  前記無線装置は、前記無線端末から参照信号を受信する受信部を備え、
     前記伝搬路応答推定部は、前記参照信号に基づいて伝搬路応答を推定する、
     請求項1に記載の無線装置。
  3.  前記伝搬路情報は、前記伝搬路応答よりも情報量が少ない、
     請求項1または2に記載の無線装置。
  4.  前記伝搬路情報は、伝搬路応答、直交伝搬路応答、伝搬路利得、伝搬路相関、および、送信ウェイトの少なくともいずれか一つである、
     請求項1ないし3のいずれか1項に記載の無線装置。
  5.  前記制御装置と物理的に分離され、伝送路を介して前記制御装置に接続される、
     請求項1ないし4のいずれか1項に記載の無線装置。
  6.  前記無線端末は、前記無線装置またはその他の無線装置と通信する無線端末である、
     請求項1ないし5のいずれか1項に記載の無線装置。
  7.  前記無線装置は、前記制御装置からスケジューリング情報を受信する受信部を備え、
     前記スケジューリング情報は、複数の端末へ割り当てられたリソースを空間多重させる情報を含む、
     請求項1ないし6のいずれか1項に記載の無線装置。
  8.  無線端末と無線装置との間の推定された伝搬路応答に基づいて前記無線装置が生成した伝搬路情報を受信する受信部と、
     前記伝搬路情報からスケジューリング情報を生成するスケジューリング部と、
     前記スケジューリング情報を前記無線装置に送信する送信部と、を備える、
     ことを特徴とする制御装置。
  9.  前記伝搬路応答は、前記無線端末から送信された参照信号に基づいて推定される伝搬路応答である、
     請求項8に記載の制御装置。
  10.  前記伝搬路情報は、前記伝搬路応答よりも情報量が少ない、
     請求項8または9に記載の制御装置。
  11.  前記伝搬路情報は、伝搬路応答、直交伝搬路応答、伝搬路利得、伝搬路相関、および、送信ウェイトのうちの少なくともいずれか一つである、
     請求項8ないし10のいずれか1項に記載の制御装置。
  12.  前記無線装置と物理的に分離され、前記無線装置に伝送路を介して接続される、
     請求項8ないし11のいずれか1項に記載の制御装置。
  13.  前記無線端末は、前記無線装置またはその他の無線装置と通信する無線端末である、
     請求項8ないし12のいずれか1項に記載の制御装置。
  14.  前記スケジューリング情報は、複数の端末に割り当てられたリソースを空間多重させる情報を含む、
     請求項8ないし13のいずれか1項に記載の制御装置。
  15.  無線装置および制御装置を備え、
     前記無線装置は、無線端末と前記無線装置との間の伝搬路応答を推定する伝搬路応答推定部と、
     前記伝搬路応答から伝搬路情報を生成する伝搬路情報生成部と、
     前記伝搬路情報を前記制御装置に送信する送信部と、を有し、
     前記制御装置は、前記伝搬路情報からスケジューリング情報を生成するスケジューリング部と、
     前記スケジューリング情報を前記無線装置に送信する送信部と、を有する、
     ことを特徴とする無線通信システム。
  16.  前記伝搬路応答は、前記無線端末から受信した参照信号に基づいて推定した伝搬路応答である、
     請求項15に記載の無線通信システム。
  17.  前記伝搬路情報は、前記伝搬路応答よりも情報量が少ない、
     請求項15または16に記載の無線通信システム。
  18.  前記無線装置と前記制御装置は、物理的に分離され、伝送路を介して接続される、
     請求項15ないし17のいずれか1項に記載の無線通信システム。
  19.  前記無線端末は、前記無線装置またはその他の無線装置と通信する無線端末である、
     請求項15ないし18のいずれか1項に記載の無線通信システム。
  20.  前記スケジューリング情報は、複数の端末に割り当てられたリソースを空間多重させる情報を含む、
     請求項15ないし19のいずれか1項に記載の無線通信システム。
PCT/JP2016/081996 2015-10-29 2016-10-28 無線装置、制御装置および無線通信システム WO2017073711A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017547878A JP6806076B2 (ja) 2015-10-29 2016-10-28 無線装置、制御装置および無線通信システム
US15/771,544 US20180324004A1 (en) 2015-10-29 2016-10-28 Radio apparatus, control apparatus and radio communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015212520 2015-10-29
JP2015-212520 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017073711A1 true WO2017073711A1 (ja) 2017-05-04

Family

ID=58631537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081996 WO2017073711A1 (ja) 2015-10-29 2016-10-28 無線装置、制御装置および無線通信システム

Country Status (3)

Country Link
US (1) US20180324004A1 (ja)
JP (1) JP6806076B2 (ja)
WO (1) WO2017073711A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195738A1 (ja) * 2016-05-10 2017-11-16 日本電気株式会社 無線装置および制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3331304B1 (en) * 2016-12-02 2020-04-01 Nokia Technologies Oy Scheduling lte user equipment in the unlicensed band reducing interference on other nodes
JP2023037446A (ja) * 2021-09-03 2023-03-15 日本電気株式会社 無線受信装置及びその方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193189A (ja) * 2009-02-18 2010-09-02 Nippon Telegr & Teleph Corp <Ntt> 分散アンテナシステムおよび分散アンテナ制御方法
WO2015025613A1 (ja) * 2013-08-20 2015-02-26 株式会社日立製作所 無線通信システム、その制御方法及び基地局装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355720B2 (en) * 2001-04-26 2019-07-16 Genghiscomm Holdings, LLC Distributed software-defined radio
US10064242B2 (en) * 2014-09-10 2018-08-28 Intel IP Corporation Modified architecture for cloud radio access networks and approach for compression of front-haul data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193189A (ja) * 2009-02-18 2010-09-02 Nippon Telegr & Teleph Corp <Ntt> 分散アンテナシステムおよび分散アンテナ制御方法
WO2015025613A1 (ja) * 2013-08-20 2015-02-26 株式会社日立製作所 無線通信システム、その制御方法及び基地局装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195738A1 (ja) * 2016-05-10 2017-11-16 日本電気株式会社 無線装置および制御装置
JPWO2017195738A1 (ja) * 2016-05-10 2019-03-14 日本電気株式会社 無線装置および制御装置
JP7014155B2 (ja) 2016-05-10 2022-02-01 日本電気株式会社 無線装置および制御装置

Also Published As

Publication number Publication date
US20180324004A1 (en) 2018-11-08
JPWO2017073711A1 (ja) 2018-10-11
JP6806076B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
JP5560369B2 (ja) 多入力多出力システム用ダウンリンク伝送方法及び基地局
JP5244172B2 (ja) 無線通信ネットワークにおける複数アンテナ送信を制御する方法及び装置
CN107104708B (zh) 多输入多输出无线通信系统中的自适应预编码
CN113938169B (zh) 预编码矩阵确定方法及装置
JP5089718B2 (ja) 無線通信方法、及び無線通信装置
JP2017512441A (ja) チャネル情報のフィードバック方法、パイロットとビームの送信方法、システム及び装置
WO2014036070A1 (en) Method and wireless terminal for mitigating downlink interference
JP2019510394A (ja) 無線通信方法及び無線通信装置
TWI446740B (zh) 在多重輸出入背景中的通信方法
KR101624148B1 (ko) 네트워크 다중 입출력 무선통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
EP2932621A1 (en) Transmission power distribution for mimo communications when multiplicative noise limited
US9072116B2 (en) Systems and methods for reducing complexity in modulation coding scheme (MCS) adaptation
US20240007164A1 (en) Methods for reducing overhead of nr type ii channel state information feedback using angle and delay reciprocity
JP2015109665A (ja) ネットワークにおいて通信するための方法
WO2017073711A1 (ja) 無線装置、制御装置および無線通信システム
US11936446B2 (en) Electronic device, method for wireless communication system, and storage medium
CN116438825A (zh) 无线网络中的定位和自动校准
Barriac et al. Space-time precoding for mean and covariance feedback: application to wideband OFDM
EP3242454B1 (en) Method and apparatus for acquiring downlink channel information and network side device
US20230412430A1 (en) Inforamtion reporting method and apparatus, first device, and second device
EP3751768A1 (en) Communication method, communication apparatus, and system
CN115173909A (zh) 用于频率参数化线性组合码本的码本子集限制
JP2017525217A (ja) データ通信方法及びmimo基地局
US9686799B2 (en) User equipment and method for matching interference channel codeword in inter-cell multi-aerial coordinated system
JP2018061152A (ja) 送信制御装置及び送信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547878

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15771544

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859939

Country of ref document: EP

Kind code of ref document: A1