WO2017073671A1 - Light emitting body protective film, wavelength conversion sheet, backlight unit and electroluminescent light emitting unit - Google Patents

Light emitting body protective film, wavelength conversion sheet, backlight unit and electroluminescent light emitting unit Download PDF

Info

Publication number
WO2017073671A1
WO2017073671A1 PCT/JP2016/081890 JP2016081890W WO2017073671A1 WO 2017073671 A1 WO2017073671 A1 WO 2017073671A1 JP 2016081890 W JP2016081890 W JP 2016081890W WO 2017073671 A1 WO2017073671 A1 WO 2017073671A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
protective film
light emitter
phosphor
Prior art date
Application number
PCT/JP2016/081890
Other languages
French (fr)
Japanese (ja)
Inventor
吏里 北原
裕美子 小島
亮 正田
時野谷 修
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015210880A external-priority patent/JP6790345B2/en
Priority claimed from JP2016007106A external-priority patent/JP2017127990A/en
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2017073671A1 publication Critical patent/WO2017073671A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/02Homopolymers or copolymers of unsaturated alcohols
    • C09J129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a light emitter protective film, a wavelength conversion sheet, a backlight unit, and an electroluminescence light emitting unit.
  • a light emitting unit such as a liquid crystal display backlight unit and an electroluminescent light emitting unit
  • a gas barrier film in which a gas barrier layer is formed on a polymer film is often used as a protective film for a light emitter (see, for example, Patent Document 1).
  • the present invention has been made in view of the above problems, and when used in a light emitting unit, a light emitter protective film capable of suppressing the occurrence of dark spots even if the barrier layer has a defect, and It aims at providing the wavelength conversion sheet
  • the present invention includes a first optical film and an adhesive layer having a barrier property, and the first optical film includes a first base layer and a first barrier layer formed on the first base layer.
  • a light emitter protective film which is a barrier film. According to the present invention, generation of dark spots can be suppressed even if the barrier layer has a defect.
  • the light emitter protective film according to the present invention may further include a second optical film.
  • the first optical film is bonded to the second optical film via the adhesive layer.
  • the second optical film may be an optical barrier film including a second base material layer and a second barrier layer formed on the second base material layer.
  • the oxygen permeability of the adhesive layer is preferably 1000 cm 3 / (m 2 ⁇ day ⁇ atm) or less at a thickness of 5 ⁇ m.
  • a light-emitting protective film as a laminated body of an optical barrier film in which a first optical film and a second optical film are laminated
  • damage to the light-emitting layer due to external force is suppressed, and a gas barrier is provided.
  • a gas barrier is provided.
  • the oxygen permeability of the adhesive layer is 1000 cm 3 / (m 2 ⁇ day ⁇ atm) or less
  • the phosphor protective film has a defect in the first barrier layer or the second barrier layer. Also, the occurrence of dark spots can be suppressed.
  • the adhesive layer is preferably formed of an adhesive containing an epoxy resin.
  • the adhesive layer has the above configuration, the adhesion between the first optical film and the second optical film can be improved.
  • the first optical film and the second optical film are arranged via the adhesive layer so that the first barrier layer and the second barrier layer face each other. It is preferable that they are bonded together.
  • the first barrier layer includes a first inorganic thin film layer and a first gas barrier coating layer
  • the second barrier layer includes a second inorganic thin film layer and a second inorganic thin film layer. It is preferable to include a gas barrier coating layer.
  • the adhesive layer may be provided on the outermost surface, and the adhesive layer may be disposed on the first barrier layer.
  • the oxygen permeability of the adhesive layer is preferably 100 cm 3 / (m 2 ⁇ day ⁇ atm) or less at a thickness of 0.3 ⁇ m.
  • the oxygen permeability of the adhesive layer is 100 cm 3 / (m 2 ⁇ day ⁇ atm) or less, even if the light emitter protective film has a defect in the first barrier layer, generation of dark spots is prevented. Can be suppressed.
  • the first barrier layer preferably includes a layer made of a metal oxide.
  • the first barrier layer includes a layer made of a metal oxide, it becomes easy to impart gas barrier properties to the first barrier layer.
  • the adhesive layer is formed of (A) a cured product formed from a hydrolyzate of polyvinyl alcohol and a metal alkoxide, and (B) an epoxy resin and an amine compound. It may be composed of a cured product or (C) a cured product formed from an unsaturated carboxylic acid compound and an amine compound.
  • the present invention also provides a wavelength conversion sheet comprising the above-described phosphor protective film and a phosphor layer.
  • the present invention also provides a backlight unit comprising the wavelength conversion sheet.
  • the present invention also provides an electroluminescence light-emitting unit comprising the above-described phosphor protective film and an electroluminescence phosphor layer.
  • a light emitter protective film capable of suppressing the occurrence of dark spots even if the barrier layer has a defect, and wavelength conversion obtained using the same Sheets, backlight units, and electroluminescent light emitting units can be provided.
  • FIG. 1 is a schematic cross-sectional view of a light emitter protective film according to this embodiment.
  • the first optical film 16a is an optical barrier film including a first base layer 11a and a first barrier layer 14a formed on the first base layer 11a.
  • the first optical film 16a may include two or more first barrier layers 14a.
  • the configuration of the plurality of first barrier layers 14a may be the same or different.
  • the second optical film 16b is an optical barrier film including a second base layer 11b and a second barrier layer 14b formed on the second base layer 11b.
  • the first optical film 16a and the second optical film 16b are bonded together via the adhesive layer 15 so that the first barrier layer 14a and the second barrier layer 14b are opposed to each other.
  • the second optical film 16b may include two or more second barrier layers 14b.
  • the configuration of the plurality of second barrier layers 14b may be the same or different.
  • the configurations of the first barrier layer 14a and the second barrier layer 14b may be the same or different.
  • the light-emitting body protective film 10 When using the said light-emitting body protective film 10 for a light-emitting unit, the light-emitting body protective film 10 is arrange
  • the light emitter protection film 10 is a laminated body of optical barrier films in which the first optical film 16a and the second optical film 16b are stacked, the light emitter layer is prevented from being damaged by an external force when used in a light emitting unit. In addition, gas barrier properties can be improved.
  • the oxygen transmission rate of the adhesive layer 15 is 1000 cm 3 / (m 2 ⁇ day ⁇ atm) (measured in an environment of 40 ° C. and 0% RH) in the thickness direction at a thickness of 5 ⁇ m.
  • the oxygen permeability is preferably 500 cm 3 / (m 2 ⁇ day ⁇ atm) or less, more preferably 100 cm 3 / (m 2 ⁇ day ⁇ atm) or less, and 50 cm 3 / (m 2 ⁇ day).
  • ⁇ Atm) or less is more preferable, and 10 cm 3 / (m 2 ⁇ day ⁇ atm) or less is particularly preferable.
  • the lower limit value of the oxygen permeability is not particularly limited, and is, for example, 0.1 cm 3 / (m 2 ⁇ day ⁇ atm).
  • the gas barrier property more excellent than that of a protective film consisting only of an optical film provided with a barrier layer (not provided with a barrier film laminated structure) is obtained.
  • the barrier layer is formed when local microdefects are generated in the barrier layer (particularly, the barrier layer disposed near the light emitter layer). In some cases, the generation of dark spots in the light-emitting layer near the micro defects generated in the substrate cannot be sufficiently suppressed.
  • Such local micro defects hardly appear in the gas barrier property of the entire protective film evaluated by measuring the gas permeability, but affect the generation of dark spots in the vicinity of the defects. Even if the local light defect has arisen in the barrier layer, the light-emitting-body protective film 10 which concerns on this embodiment bonds the 1st optical film 16a and the 2nd optical film 16b through the contact bonding layer 15. The occurrence of dark spots near the defect can be suppressed.
  • the effect obtained by the light emitter protection film 10 according to the present embodiment is not limited to the case where the micro defect occurs, and even if a large defect occurs in the barrier layer during the production of the protective film, the vicinity of the defect The generation of dark spots can be suppressed. Furthermore, according to the light emitter protective film 10 according to the present embodiment, even if a defect penetrating the barrier layer and the base material layer is produced during the production of the protective film, generation of dark spots near the defect is generated. Can be suppressed.
  • the adhesive layer 15 is formed from a pressure-sensitive adhesive or an adhesive.
  • the adhesive include acrylic adhesives, epoxy adhesives, urethane adhesives, and the like.
  • the adhesive preferably includes an epoxy resin. When the adhesive contains an epoxy resin, the adhesion between the first optical film 16a and the second optical film 16b can be improved.
  • the pressure-sensitive adhesive include acrylic pressure-sensitive adhesives, polyvinyl ether-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, and starch paste-based adhesives.
  • the thickness of the adhesive layer 15 is preferably 0.5 to 50 ⁇ m, more preferably 1 to 20 ⁇ m, and even more preferably 2 to 6 ⁇ m. When the thickness of the adhesive layer 15 is 0.5 ⁇ m or more, adhesion between the first optical film 16a and the second optical film 16b is easily obtained, and when the thickness is 50 ⁇ m or less, it is more excellent. Gas barrier properties are easily obtained.
  • the first base material layer 11a and the second base material layer 11b are layers for suppressing breakage in processing and distribution.
  • the first base layer 11a and the second base layer 11b include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyamides such as nylon; polyolefins such as polypropylene and cycloolefin; polycarbonates; Although cellulose etc. are mentioned, it is not limited to these.
  • the first base material layer 11a and the second base material layer 11b are preferably a polyester film, a polyamide film or a polyolefin film, more preferably a polyester film or a polyamide film, and further preferably a polyethylene terephthalate film. .
  • the 1st base material layer 11a and the 2nd base material layer 11b are biaxially stretched.
  • the first base material layer 11a and the second base material layer 11b may be the same or different.
  • the thickness of the first base material layer 11a and the second base material layer 11b is not particularly limited, but is preferably 3 ⁇ m or more and 100 ⁇ m or less, and more preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • a first barrier layer 14a and a second barrier layer 14b are formed on the first base material layer 11a and the second base material layer 11b, respectively, via an anchor coat layer (not shown) as necessary.
  • the anchor coat layer include polyester resins, and the thickness of the anchor coat layer is about 0.01 to 1 ⁇ m.
  • the first barrier layer 14a preferably includes a first inorganic thin film layer 12a and a first gas barrier coating layer 13a
  • the second barrier layer 14b includes a second inorganic thin film layer 12b and a second gas barrier coating layer 13b. It is preferable to include.
  • the second optical film 16b is bonded via the adhesive layer 15 so that the first barrier layer 14a and the second barrier layer 14b face each other.
  • the first barrier layer 14a and the second barrier layer 14b have the above-described configuration, more excellent gas barrier properties can be obtained.
  • the second optical film 16b as described above, the first barrier layer 14a and the second barrier layer 14b can be protected from external force, and more stable gas barrier properties can be obtained.
  • the first inorganic thin film layer 12a and the second inorganic thin film layer 12b contain an inorganic compound and preferably contain a metal oxide.
  • the metal oxide include oxides of metals such as aluminum, copper, silver, yttrium, tantalum, silicon, and magnesium.
  • the metal oxide is preferably silicon oxide (SiO x , x is 1.0 to 2.0) because it is inexpensive and has excellent barrier performance. When x is 1.0 or more, good gas barrier properties tend to be obtained.
  • the formation method of the first inorganic thin film layer 12a and the second inorganic thin film layer 12b is preferably vacuum film formation.
  • vacuum film formation include physical vapor deposition and chemical vapor deposition.
  • physical vapor deposition include vapor deposition, sputtering, and ion plating.
  • chemical vapor deposition method include a thermal CVD method, a plasma CVD method, and a photo CVD method.
  • the first inorganic thin film layer 12a or the second inorganic thin film layer 12b is preferably an inorganic vapor deposition film layer formed by a vapor deposition method.
  • the 1st inorganic thin film layer 12a or the 2nd inorganic thin film layer 12b is an inorganic vapor deposition film layer
  • a hole may arise in the 1st optical film 16a or the 2nd optical film 16b by scattering (splash) of vapor deposition material.
  • the frequency of splashing is low, the holes created by the splash are relatively large defects and can be holes that penetrate the barrier layer and the substrate layer. Therefore, in the protective film in which the holes due to the splash are generated, the gas barrier property can be greatly reduced.
  • a dark spot is more easily generated.
  • the light emitter protective film 10 according to this embodiment has a barrier film laminated structure, even if the first optical film 16a or the second optical film 16b has a relatively large defect, the gas barrier property is lowered. Can be reduced. Since the light emitter protective film 10 according to the present embodiment further includes the adhesive layer 15, even if the first optical film 16a has such a relatively large defect, it is the same as when there is no defect. Generation of dark spots can be suppressed. Therefore, when the first inorganic thin film layer 12a is an inorganic vapor deposition film layer, it is possible to suppress the generation of dark spots while reducing the manufacturing cost.
  • the thickness of the first inorganic thin film layer 12a and the second inorganic thin film layer 12b is preferably 10 to 300 nm, more preferably 20 to 100 nm.
  • the thickness of the first inorganic thin film layer 12a and the second inorganic thin film layer 12b is 10 nm or more, there is a tendency that a uniform film is easily obtained and gas barrier properties are easily obtained.
  • the thickness of the first inorganic thin film layer 12a and the second inorganic thin film layer 12b is 300 nm or less, the first inorganic thin film layer 12a and the second inorganic thin film layer 12b can be kept flexible. There is a tendency that cracks and the like are less likely to occur due to external forces such as bending and tension after film formation.
  • the first gas barrier coating layer 13a and the second gas barrier coating layer 13b are formed from a composition containing at least one selected from the group consisting of a metal alkoxide represented by the following formula (1) and a hydrolyzate thereof. Is preferred. M 1 (OR 1 ) m (R 2 ) nm (1)
  • R 1 and R 2 are each independently a monovalent organic group having 1 to 8 carbon atoms, preferably an alkyl group such as a methyl group or an ethyl group.
  • M 1 represents an n-valent metal atom such as Si, Ti, Al, or Zr.
  • m is an integer of 1 to n.
  • the metal alkoxide include tetraethoxysilane [Si (OC 2 H 5 ) 4 ], triisopropoxyaluminum [Al (O-iso-C 3 H 7 ) 3 ] and the like.
  • the metal alkoxide is preferably tetraethoxysilane or triisopropoxyaluminum because it is relatively stable in an aqueous solvent after hydrolysis.
  • hydrolyzate of metal alkoxide include silicic acid (Si (OH) 4 ), which is a hydrolyzate of tetraethoxysilane, and aluminum hydroxide (Al (OH), which is a hydrolyzate of triisopropoxyaluminum. 3 ) and the like. These can be used in combination of not only one type but also a plurality of types.
  • the content of the metal alkoxide and the hydrolyzate thereof in the composition is, for example, 10 to 90% by mass.
  • the above composition may further contain a hydroxyl group-containing polymer compound.
  • the hydroxyl group-containing polymer compound include water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone and starch.
  • the hydroxyl group-containing polymer compound is preferably polyvinyl alcohol from the viewpoint of barrier properties. These can be used in combination of not only one type but also a plurality of types.
  • the content of the hydroxyl group-containing polymer compound in the composition is, for example, 10 to 90% by mass.
  • the thickness of the first gas barrier coating layer 13a and the second gas barrier coating layer 13b is preferably 50 to 1000 nm, and more preferably 100 to 500 nm.
  • the thickness of the first gas barrier coating layer 13a and the second gas barrier coating layer 13b is 50 nm or more, there is a tendency that a sufficient gas barrier property can be obtained, and when the thickness is 1000 nm or less, sufficient flexibility is obtained. There is a tendency to hold.
  • the light emitter protection film 10 may further include a mat layer (not shown) on the surface of the second optical film 16b in order to exhibit a light scattering function.
  • a mat layer (not shown) on the surface of the second optical film 16b in order to exhibit a light scattering function.
  • an interference fringe (moire) prevention function and an antireflection function can be obtained in addition to the light scattering function.
  • the phosphor protective film 10 can be suitably used as a protective film for a phosphor that can be deteriorated by contact with oxygen, water vapor, or the like.
  • fluorescent substance such as a quantum dot, an electroluminescent light-emitting body, etc. are mentioned.
  • FIG. 2 is a schematic cross-sectional view of a wavelength conversion sheet according to an embodiment of the present invention.
  • the wavelength conversion sheet is a sheet that can convert some wavelengths of light from the light source of the backlight unit for liquid crystal display.
  • the wavelength conversion sheet 20 of the present embodiment includes a first protective film, a phosphor layer 21 formed on the first protective film, and a first layer provided on the phosphor layer 21.
  • the two protective films 22 are schematically configured.
  • the wavelength conversion sheet 20 has a structure in which the phosphor layer 21 is encapsulated (that is, sealed) between the first protective film and the second protective film 22.
  • the luminous body protective film 10 mentioned above is used for a 1st protective film.
  • the above-described light emitter protective film 10 may be used, or another protective film may be used.
  • the wavelength conversion sheet 20 does not necessarily have to include the second protective film 22. That is, the wavelength conversion sheet 20 of the present embodiment includes the light emitter protective film 10 and the phosphor layer 21 formed on the first optical film 16a of the light emitter protective film 10.
  • the protective film has a structure (barrier film laminated structure) in which a plurality of films each having a barrier layer are bonded via an adhesive layer, thereby improving gas barrier properties.
  • the mechanism of dark spot generation in the phosphor layer is thought to be dominated by gas intrusion in the thickness direction of the protective film from the opposite side (outside) of the protective film to the phosphor layer. It is thought that the gas intrusion from the above direction can be reduced by providing the protective film 10 with the barrier film laminated structure.
  • FIG. 3 is a conceptual diagram showing a dark spot generation mechanism assumed in a wavelength conversion sheet having a defect in a barrier layer arranged on the phosphor layer side.
  • oxygen, water vapor, and the like in the atmosphere enter from the end face of the adhesive layer 150 of the light emitter protection film 100 and diffuse in the surface direction of the adhesive layer 150.
  • the light emitter protection film 100 When the light emitter protection film 100 has the defect 23 in the first barrier layer 140a, the diffused oxygen, water vapor, or the like reaches the phosphor layer 210 through the defect 23. The deterioration of the phosphor progresses around the defect 23 and appears as a dark spot 24 over time.
  • the defect 23 penetrates the first base material layer 110a together with the first barrier layer 140a, it is considered that the progress of phosphor deterioration becomes remarkable and the dark spot 24 is easily visually recognized. That is, oxygen, water vapor, or the like passes through the defect 23 of the first optical film 160a having gas barrier properties from the end face of the adhesive layer 150, and the phosphor is deteriorated.
  • the phosphor protective film 10 has a defect in the barrier layer by using the phosphor protective film 10 as a protective film provided on the phosphor layer 21. Even if this occurs, the occurrence of dark spots can be suppressed.
  • the phosphor layer 21 contains a resin and a phosphor.
  • the thickness of the phosphor layer 21 is several tens to several hundreds ⁇ m.
  • the resin for example, a photocurable resin or a thermosetting resin can be used.
  • the phosphor layer 21 preferably includes two types of phosphors composed of quantum dots. Further, the phosphor layer 21 may be a laminate in which two or more phosphor layers containing one kind of phosphor and another kind of phosphor are laminated. Two types of phosphors having the same excitation wavelength are selected. The excitation wavelength is selected based on the wavelength of light emitted from the light source of the backlight unit. The fluorescent colors of the two types of phosphors are different from each other.
  • the fluorescent colors are red and green.
  • the wavelength of each fluorescence and the wavelength of light emitted from the light source are selected based on the spectral characteristics of the color filter.
  • the peak wavelength of fluorescence is, for example, 610 nm for red and 550 nm for green.
  • a core-shell type quantum dot having particularly good luminous efficiency is preferably used.
  • the core-shell type quantum dot is obtained by covering a semiconductor crystal core as a light emitting portion with a shell as a protective film.
  • cadmium selenide (CdSe) can be used for the core and zinc sulfide (ZnS) can be used for the shell.
  • ZnS zinc sulfide
  • the surface yield of CdSe particles is covered with ZnS having a large band gap, so that the quantum yield is improved.
  • the phosphor may be one in which the core is doubly covered with the first shell and the second shell. In this case, CdSe can be used for the core, zinc selenide (ZnSe) can be used for the first shell, and ZnS can be used for the second shell.
  • the phosphor layer 21 may have a single layer configuration in which all the phosphors are dispersed in a single layer, and has a multilayer configuration in which each phosphor is separately dispersed in a plurality of layers and laminated. You may do it.
  • a method for manufacturing the wavelength conversion sheet 20 of this embodiment will be described with reference to FIG.
  • a method for forming the phosphor layer 21 is not particularly limited, and examples thereof include a method described in JP-T-2013-544018. After the phosphor is dispersed in the binder resin, the prepared phosphor dispersion is applied on the surface of the first protective film (light emitter protective film 10) on the first optical film 16a side, and then the second protective film 22 is applied on the coated surface.
  • the wavelength conversion sheet 20 can be manufactured by bonding together and curing the phosphor layer 21.
  • the phosphor dispersion liquid is applied onto one surface of the second protective film 22, and the phosphor protective film 10 is bonded to the coated surface so that the first optical film 16 a faces the phosphor layer 21.
  • the wavelength conversion sheet 20 can also be manufactured by curing the phosphor layer 21.
  • FIG. 4 is a schematic cross-sectional view of a backlight unit obtained using the wavelength conversion sheet 20.
  • the backlight unit 30 includes a light source 32 and the wavelength conversion sheet 20, and the light emitter protection film 10 is disposed on the opposite side of the light source 32 with the phosphor layer 21 interposed therebetween.
  • the light guide plate 34 and the reflection plate 36 are arranged in this order on the surface of the wavelength conversion sheet 20 on the second protective film 22 side, and the light source 32 is disposed on the side of the light guide plate 34 ( It is arranged in the surface direction of the light guide plate 34.
  • the light guide plate 34 and the reflection plate 36 efficiently reflect and guide the light emitted from the light source 32, and a known material is used.
  • the light guide plate 34 for example, acrylic, polycarbonate, cycloolefin film, or the like is used.
  • the light source 32 is provided with a plurality of blue light emitting diode elements.
  • the light emitting diode element may be a violet light emitting diode or a light emitting diode having a lower wavelength.
  • Light emitted from the light source 32 is incident on the light guide plate 34 (D 1 direction) is incident on the phosphor layer 21 with the reflection and refraction, etc. (D 2 direction).
  • the light that has passed through the phosphor layer 21 becomes white light by mixing the yellow light generated in the phosphor layer 21 with the light before passing through the phosphor layer 21.
  • FIG. 5 is a schematic cross-sectional view of an electroluminescent light emitting unit according to an embodiment of the present invention.
  • the electroluminescence light emitting unit 50 includes an electroluminescence light emitter layer 56 and a light emitter protection film 10.
  • the electroluminescence light emitting unit 50 includes, for example, a transparent electrode layer 54, an electroluminescence light emitter layer 56 provided on the transparent electrode layer 54, and a dielectric layer 58 provided on the electroluminescence light emitter layer 56.
  • the electrode element including the back electrode layer 60 provided on the dielectric layer 58 is obtained by sandwiching and sealing between the first protective film and the second protective film 62.
  • the above-described light emitter protective film 10 is used as the first protective film.
  • the electroluminescence light emitter layer 56 is formed on the first optical film 16 a of the light emitter protection film 10.
  • the light emitter protective film 10 is used by using the light emitter protective film 10 as a protective film provided on the electrode element including the electroluminescent light emitter layer 56. Even if the barrier layer has a defect, generation of dark spots can be suppressed.
  • Each electrode layer, electroluminescent light emitting layer, and dielectric layer can be formed using a known material by, for example, vapor deposition or sputtering.
  • FIG. 6 is a schematic cross-sectional view of a light emitter protective film according to another embodiment of the present invention.
  • the light emitter protection film 300 includes a first base layer 311 (in this embodiment, sometimes referred to as a base film 311) and a first barrier layer 312 (in this embodiment, a gas barrier layer 312. And an adhesive layer 313 having a barrier property (in the present embodiment, sometimes referred to as an adhesion layer 313) is disposed on the gas barrier layer 312.
  • the base film 311 and the gas barrier layer 312 constitute a first optical film.
  • adherence layer 313 is arrange
  • the oxygen permeability of the adhesion layer 313 is 100 cm 3 / (m 2 ⁇ day ⁇ atm) (measured in an environment of 30 ° C. and 70% RH) at a thickness of 0.3 ⁇ m.
  • the oxygen permeability is more preferably 50 cm 3 / (m 2 ⁇ day ⁇ atm) (measured under an environment of 30 ° C. and 70% RH), and more preferably 10 cm 3 / (m 2 ⁇ day ⁇ atm) (30 ° C. (Measurement under 70% RH environment) is particularly preferable.
  • the oxygen permeability of the adhesion layer 313 is 100 cm 3 / (m 2 ⁇ day ⁇ atm) (measured in an environment of 30 ° C. and 70% RH) or less, the gas barrier layer has fine defects when used in the light emitting unit. Even if it has, the light-emitting body protective film 300 which can suppress generation
  • the lower limit value of the oxygen permeability is not particularly limited, and is, for example, 0.1 cm 3 / (m 2 ⁇ day ⁇ atm) (measured in an environment of 30 ° C. and 70% RH).
  • the thickness of the adhesion layer 313 is preferably 0.01 to 10 ⁇ m, and more preferably 0.1 to 5 ⁇ m.
  • the thickness of the adhesion layer 313 is 0.01 ⁇ m or more, the adhesion between the light emitter protective film and the light emitter (or its sealant layer) is easily obtained. Further, when the thickness is 10 ⁇ m or less, it becomes possible to fill the defects in the gas barrier layer and suppress the generation of dark spots.
  • the adhesion layer 313 is (A) a cured product formed from a hydrolyzate of polyvinyl alcohol and metal alkoxide, (B) a cured product formed from an epoxy resin and an amine compound, or (C) an unsaturated carboxylic acid compound and an amine. It is preferable to consist of the hardened
  • the adhesion layer formed by these materials has a gas barrier property with an oxygen permeability of 100 cm 3 / (m 2 ⁇ day ⁇ atm) (measured in an environment of 30 ° C. and 70% RH) or less in the thickness direction, and the material of the partner to be adhered to By selecting as appropriate, high adhesiveness with the light emitting layer (or its sealant layer) can be obtained.
  • a metal alkoxide is at least 1 sort (s) selected from the group represented by following formula (2). . M 2 (OR 3 ) p (R 4 ) qp (2)
  • R 3 and R 4 are each independently a monovalent organic group having 1 to 8 carbon atoms, preferably an alkyl group such as a methyl group or an ethyl group.
  • M 2 represents a q-valent metal atom such as Si, Ti, Al, or Zr.
  • p is an integer of 1 to q.
  • hydrolyzate of metal alkoxide examples include silicic acid (Si (OH) 4 ), which is a hydrolyzate of tetraethoxysilane.
  • Polyvinyl alcohol and metal alkoxide are mixed at a mass ratio of 1/9 to 9/1 from the viewpoint of film forming properties and barrier properties.
  • the epoxy resin has an epoxy resin having a saturated or unsaturated aliphatic structure, an epoxy resin having a saturated or unsaturated alicyclic structure, Alternatively, any epoxy resin having an aromatic structure (aromatic ring) in the molecule may be used, and considering barrier properties, an epoxy resin having an aromatic ring in the molecule is desirable.
  • An amine compound refers to polyamines such as ethylenediamine, metaxylylenediamine, and polyethyleneimine, and is appropriately selected in consideration of reactivity.
  • the cured product of the coating film becomes an adhesion layer. If the reactivity of the amine compound is too great, the pot life of the composition is shortened and handling is worsened. If the reactivity is too small, it will not cure and will not function as an adhesive layer.
  • the epoxy resin and the amine compound are mixed in a mass ratio of 1/9 to 5/5 from the viewpoints of reactivity, film-forming property and barrier property.
  • silane coupling agents having various functional groups, isocyanate compounds, colloidal silica, smectite clay minerals, stabilizers, colorants, Known additives such as viscosity modifiers can be added within a range that does not impair the gas barrier properties.
  • a normal coating method can be used as a method for forming the adhesion layer (coating film).
  • a dipping method, roll coating, gravure coating, reverse coating, air knife coating, comma coating, die coating, screen printing method, spray coating, gravure offset method and the like can be used.
  • the composition mentioned above is apply
  • the coating film is cured by hot air drying, hot roll drying, high frequency irradiation, infrared irradiation, UV irradiation, electron beam (EB) irradiation or the like, and radical polymerization by UV or EB irradiation. Any of these may be used, or two or more of these may be combined.
  • the gas barrier layer 312 is preferably a metal oxide layer (metal oxide layer) from the viewpoint of obtaining high gas barrier properties.
  • the method for forming the metal oxide layer include a physical vapor deposition method and a chemical vapor deposition method, which are vacuum film formation methods.
  • physical vapor deposition include vapor deposition, sputtering, and ion plating.
  • the chemical vapor deposition method include a thermal CVD method, a plasma CVD method, and a photo CVD method. It can select suitably from these film-forming methods.
  • the metal oxide examples include oxides of metals such as aluminum, copper, silver, yttrium, tantalum, silicon, and magnesium. Since the metal oxide is inexpensive and has excellent barrier performance, it is preferably silicon oxide (SiO y , y is 1.0 to 2.0). When y is 1.0 or more, good gas barrier properties tend to be obtained.
  • the thickness of the metal oxide layer is preferably 10 to 300 nm, and more preferably 20 to 50 nm.
  • the thickness is 10 nm or more, a uniform film tends to be obtained, and gas barrier properties tend to be easily obtained.
  • the thickness is 300 nm or less, flexibility necessary for film formation by roll-to-roll is likely to be obtained, and there is a tendency that deterioration of barrier properties due to cracking or the like can be suppressed.
  • the metal oxide layer is too thick, an unoxidized metal color appears strongly, and the transparency may be lowered.
  • the metal oxide layer exhibits a high barrier property, it is preferably hard to form a thin film (10 to 300 nm) in order to impart flexibility because it is hard and brittle.
  • the film thickness is small, the film is easily broken, and minute defects such as damage and cracks due to the inclusion of foreign substances are likely to be introduced. Small defects of several ⁇ m are unlikely to appear in the barrier property on the surface of the metal oxide layer (the gas barrier property of the protective film as a whole evaluated by measuring gas permeability, etc.), but dark spots occur in the light emitting unit. Affects.
  • an adhesion layer having an oxygen permeability of 100 cm 3 / (m 2 ⁇ day ⁇ atm) (measured in an environment of 30 ° C.
  • the cracks can be closed by closing the cracks that are close to each other and repairing the cracks without spreading minute defects in the metal oxide layer. Therefore, the adhesion layer does not need to have the same high barrier property as the metal oxide layer, and if it is a minute defect of several ⁇ m, it is 100 cm 3 / (m 2 ⁇ day ⁇ atm) (measured in an environment of 30 ° C. and 70% RH) or less.
  • the generation of dark spots can be suppressed by using an adhesion layer having an oxygen transmission rate of 10 nm.
  • a protective coat layer (not shown) may be provided on the metal oxide layer for the purpose of preventing scratches on the metal oxide layer.
  • the adhesion layer is provided on the protective coating layer.
  • the material for the protective coat layer include polyacrylic resin, polyester resin, and polyurethane resin in view of adhesion and transparency.
  • the thickness of the protective coat layer is about 0.01 to 1 ⁇ m. When the thickness is 1 ⁇ m or less, the film can be uniformly cured to form a film, and there is a tendency that the surface property does not deteriorate and the gas barrier property can be prevented from decreasing. When the thickness is 0.01 ⁇ m or more, the effect of the protective coat layer is hardly obtained.
  • the protective coating layer can prevent a certain amount of fine scratches, scratches caused by foreign matters of 1 ⁇ m or more cannot be completely prevented, and the yield may decrease due to the occurrence of dark spots.
  • the adhesion layer having a gas barrier property enters the defect. It can be repaired and the occurrence of dark spots can be suppressed.
  • the base film 311 examples include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyamides such as nylon; polyolefins such as polypropylene and cycloolefin; polycarbonates; and triacetyl cellulose. It is not limited.
  • the thickness is not particularly limited, but is preferably 3 ⁇ m or more and 100 ⁇ m or less, and more preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • an anchor coat layer (not shown) may be provided between the base film 311 and the gas barrier layer 312.
  • the material for the anchor coat layer include polyacrylic resin, polyester resin, polyurethane resin and the like in consideration of adhesion and transparency, and the thickness is about 0.01 to 1 ⁇ m.
  • the thickness is 1 ⁇ m or less, the film can be uniformly cured to form a film, and there is a tendency that the surface property does not deteriorate and the deterioration of the gas barrier property can be suppressed.
  • it is 0.01 ⁇ m or more, the expression of adhesion becomes uniform.
  • the light emitter protection film 300 may include a mat layer (not shown) on the surface of the base film 311 opposite to the gas barrier layer 312 in order to exhibit a light scattering function.
  • a mat layer not shown
  • an interference fringe (moire) prevention function and an antireflection function can be provided in addition to the light scattering function.
  • FIG. 7 is a schematic cross-sectional view of a wavelength conversion sheet 400 according to another embodiment of the present invention.
  • the wavelength conversion sheet 400 is a sheet that converts the wavelength of a part of light from a light source of a backlight unit for liquid crystal display (described later).
  • the wavelength conversion sheet 400 according to the present embodiment adheres the phosphor protective films 300a and 300b according to the second embodiment of the present invention and the phosphor layer 316 that is a kind of the phosphor layer.
  • the layers 313a and 313b and the phosphor layer 316 are arranged so as to be in contact with each other, and the phosphor layer 316 is sandwiched between the light emitter protection films 300a and 300b. That is, the wavelength conversion sheet 400 has a structure in which the phosphor layer 316 is wrapped (that is, sealed) by the light emitter protection films 300a and 300b.
  • the phosphor layer 316 includes a phosphor 314 and a binder resin 315.
  • the thickness of the phosphor layer 316 is several tens to several hundreds ⁇ m.
  • As the resin for example, a photocurable resin or a thermosetting resin can be used.
  • the phosphor layer 316 is preferably formed by dispersing two types of phosphors composed of quantum dots.
  • the phosphor layer 316 may be a laminate in which two or more phosphor layers in which one type of phosphor is dispersed and another phosphor layer in which another type of phosphor is dispersed are laminated. Two types of phosphors having the same excitation wavelength are selected.
  • the excitation wavelength is selected based on the wavelength of light emitted from the light source of the backlight unit (described later).
  • the fluorescent colors of the two types of phosphors are different from each other. When a blue light emitting diode (blue LED) is used as the light source, the fluorescent colors are red and green.
  • the wavelength of each fluorescence and the wavelength of light emitted from the light source are selected based on the spectral characteristics of the color filter.
  • the peak wavelength of fluorescence is, for example, 610 nm for red and 550 nm for green.
  • binder resin 315 examples include those based on silicone resins, epoxy resins, acrylic resins, and the like.
  • many epoxy resins or acrylic resins have a barrier property against water vapor and oxygen.
  • more excellent adhesion tends to be obtained by a reaction between an uncrosslinked epoxy group and an amine curing agent that constitutes the adhesion layer of the phosphor protective film according to the present embodiment. .
  • a core-shell type quantum dot having particularly high luminous efficiency is preferably used.
  • the core-shell type quantum dot is obtained by covering a semiconductor crystal core as a light emitting portion with a shell as a protective film.
  • cadmium selenide (CdSe) can be used for the core and zinc sulfide (ZnS) can be used for the shell.
  • ZnS zinc sulfide
  • the surface yield of CdSe particles is covered with ZnS having a large band gap, so that the quantum yield is improved.
  • the phosphor may be one in which the core is doubly covered with the first shell and the second shell. In this case, CdSe can be used for the core, zinc selenide (ZnSe) can be used for the first shell, and ZnS can be used for the second shell.
  • the method for forming the phosphor layer 316 and the method for producing the wavelength conversion sheet 400 are not particularly limited, and examples thereof include a method described in JP 2013-544018 A.
  • a phosphor dispersion liquid whose concentration is adjusted by dispersing phosphor 314 in a solvent is mixed with binder resin 315 and applied as a phosphor composition on the surface of adhesion layer 313a of phosphor protective film 300a.
  • the wavelength conversion sheet 400 can be manufactured by pasting together the adhesion layer 313b of the phosphor protective film 300b and curing the phosphor layer 316.
  • FIG. 8 is a schematic cross-sectional view of a backlight unit 500 obtained using the wavelength conversion sheet 400.
  • a light guide plate 420 and a reflection plate 430 are disposed in this order on the wavelength conversion sheet 400, and a light source 410 is disposed on a side surface of the light guide plate 420.
  • the light guide plate 420 and the reflection plate 430 efficiently guide and reflect the light emitted from the light source 410, and a known material is used.
  • the light guide plate 420 for example, acrylic, polycarbonate, cycloolefin film, or the like is used.
  • the light source 410 is provided with a plurality of blue light emitting diode elements, for example.
  • the light emitting diode element may be a violet light emitting diode or a light emitting diode that emits light having a longer wavelength.
  • the light emitted from the light source 410 enters the light guide plate 420 and then enters the wavelength conversion sheet 400 with reflection by the reflection plate 430, refraction, and the like.
  • the light that has passed through the phosphor layer in the wavelength conversion sheet 400 becomes white light by mixing the light that has been wavelength-converted by the phosphor layer with the light before entering the phosphor layer.
  • FIG. 9 is a schematic cross-sectional view of an electroluminescent light emitting unit according to another embodiment of the present invention.
  • the electroluminescence light emitting unit 700 includes an electrode element 650 including an electroluminescence light emitter layer 610 which is a kind of light emitter layer, a sealant layer 660 for sealing the electrode element 650, and a light emitter protective film according to the second embodiment. 300c, 300d. More specifically, for example, the transparent electrode layer 620, the electroluminescent light emitter layer 610 provided on the transparent electrode layer 620 (lower in the drawing), and the dielectric provided on the electroluminescent light emitter layer 610.
  • An electrode element 650 including a body layer 630 and a back electrode layer 640 provided on the dielectric layer 630 is provided via the sealant layer 660 with the first light emitter protective film 300c and the second light emitter protective film 300c according to the second embodiment. It is obtained by sandwiching and sealing with the light emitter protective film 300d. At this time, the light emitter protection films 300c and 300d are arranged so that the adhesion layers 313c and 313d face each other with the electrode element 650 interposed therebetween.
  • the first light emitter protective film 300c and the second light emitter protective film 300d may be configured such that at least one of them is a light emitter protective film according to the second embodiment.
  • the other may be, for example, a glass substrate.
  • the material for the sealant layer examples include an acid-modified polyolefin resin obtained by graft-modifying a polyolefin resin with an acid, a silicone resin, an epoxy resin, an acrylic resin, and the like.
  • an acid-modified polyolefin resin obtained by graft-modifying a polyolefin resin with an acid
  • a silicone resin an epoxy resin, an acrylic resin, and the like.
  • those mainly composed of an epoxy resin, an acrylic resin or the like are preferable. This is because the material of the sealant layer is made of an epoxy resin, an acrylic resin, or the like, so that the adhesion to the back electrode layer and the first light emitter protective film is improved.
  • the gas barrier layer has a defect by using the light emitter protective film according to the second embodiment as the protective film provided on the sealant layer 660. However, the generation of dark spots can be suppressed.
  • Each electrode layer, electroluminescence light emitter layer, and dielectric layer can be formed by using a known material by a method such as vapor deposition or sputtering, for example.
  • Example 1-1 Acrylic polyol and tolylene diisocyanate are mixed so that the number of NCO groups of tolylene diisocyanate is equal to the number of OH groups of acrylic polyol, and ethyl acetate is added so that the total solid content becomes 5% by mass. Diluted. To the diluted liquid mixture, ⁇ - (3,4 epoxy cyclohexyl) trimethoxysilane was further added so as to be 5% by mass with respect to the total solid content, and these were mixed to obtain the anchor coat layer composition. Produced.
  • the anchor coat layer composition On one surface of a biaxially stretched polyethylene terephthalate film (first base material layer, thickness: 25 ⁇ m), the anchor coat layer composition is applied by a bar coating method, and dried and cured at 100 ° C. for 1 minute to obtain a thickness. An anchor coat layer having a thickness of 50 nm was formed.
  • a silicon oxide material (SiO, manufactured by Canon Optron Co., Ltd.) was evaporated by electron beam heating under a pressure of 1.5 ⁇ 10 ⁇ 2 Pa, on the anchor coat layer. A 30 nm thick SiO x film (first inorganic thin film layer) was formed.
  • the acceleration voltage in vapor deposition was 40 kV, and the emission current was 0.2 A.
  • the first gas barrier coating layer having a thickness of 300 nm was formed on the first inorganic thin film layer by applying and drying the gas barrier coating layer composition. Furthermore, another first inorganic thin film layer having a thickness of 30 nm is formed on the first gas barrier coating layer in the same manner as described above, and another 300 nm thick film is formed on the other first inorganic thin film layer. A first gas barrier coating layer was formed. As described above, the first base material layer, the anchor coat layer, the first inorganic thin film layer, the first gas barrier coating layer, the first inorganic thin film layer, and the first gas barrier coating layer are laminated in this order. An optical film was obtained.
  • the anchor coat layer composition On one surface of a biaxially stretched polyethylene terephthalate film (second base material layer, thickness: 25 ⁇ m), the anchor coat layer composition is applied by a bar coating method, and dried and cured at 100 ° C. for 1 minute to obtain a thickness. An anchor coat layer having a thickness of 50 nm was formed.
  • a silicon oxide material (SiO, manufactured by Canon Optron Co., Ltd.) was evaporated by electron beam heating under a pressure of 1.5 ⁇ 10 ⁇ 2 Pa, on the anchor coat layer. A 30 nm thick SiO x film (second inorganic thin film layer) was formed.
  • the acceleration voltage in vapor deposition was 40 kV, and the emission current was 0.2 A.
  • the gas barrier coating layer composition was applied and dried to form a second gas barrier coating layer having a thickness of 300 nm.
  • a second optical film in which the second base material layer, the anchor coat layer, the second inorganic thin film layer, and the second gas barrier coating layer were laminated in this order was obtained.
  • the following adhesive A is applied on the surface of the first gas barrier coating layer of the obtained first optical film, and the second gas barrier coating layer of the second optical film is bonded to the coating surface of the adhesive A, Aging was performed at 50 ° C. for 2 days. As described above, the first optical film and the second optical film were bonded together via an adhesive layer having a thickness of 5 ⁇ m.
  • the adhesive A is an adhesive composition obtained by mixing a main agent composed of an epoxy resin and a curing agent composed of a polyamine resin.
  • Example 1-1 As in Example 1-1, except that the adhesive shown in Table 1 below was used in place of the adhesive A as the adhesive used for bonding the first optical film and the second optical film. Thus, the light emitter protective films of Examples 1-2 to 1-3 and Comparative Examples 1-1 to 1-3 were obtained.
  • the adhesive C was cured by irradiating an electron beam with a dose of 15 Mrad instead of aging.
  • an oxygen permeability measurement sample (laminated body) in which a CPP having a thickness of 70 ⁇ m, an adhesive layer having a thickness of 5 ⁇ m, and a CPP having a thickness of 70 ⁇ m were laminated in this order was obtained.
  • the obtained sample was placed in a differential pressure type gas permeability measuring device (GTR-30X, manufactured by GTR Tech Co., Ltd.), and the temperature was 40 ° C. and the relative humidity was 0 according to the method described in JIS K7126-1 (Appendix 1).
  • the oxygen permeability of the sample was measured by the differential pressure method at a differential pressure of 101 kPa (1 atm) with oxygen as the test gas in a% environment. Table 1 shows the measurement results of oxygen permeability.
  • the above sample is used.
  • This measurement result can be regarded as the oxygen permeability of the adhesive layer.
  • 2500cm 3 / (m 2 ⁇ day ⁇ atm ) The measurement results of oxygen permeability of the following samples can be regarded as oxygen permeability of the adhesive layer.
  • the phosphor protective films obtained in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 were cut into strips having a width of 15 mm, and the first optical film side of the phosphor protective film was a glass plate. Fixed on top. Using a Tensilon tensile tester (Orientec Co., Ltd.), the second optical film of the fixed strip-shaped light emitter protective film is fixed at a speed of 300 mm / min in the direction perpendicular to the glass plate. It peeled from the optical film and the intensity
  • condition (2) a humidity of 90% RH for 1000 hours (condition (2)) at a temperature of 23 ° C. and a humidity of 65% RH. Measured in an environment.
  • the measurement results of the peel strength measured under the conditions (1) to (2) are shown in Table 1 as the adhesion evaluation results. It was judged that suitable adhesion was obtained when the peel strength was 1N or more, and particularly suitable adhesion was obtained when the peel strength was 3N or more.
  • Example 1 using a composition containing an epoxy resin as an adhesive, a sufficient peel strength exceeding 5 N was obtained.
  • Comparative Example 2 using adhesive E foaming occurred in the adhesive layer during the curing reaction, and the phosphor protective film became cloudy.
  • the second phosphor protective film obtained in the same Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 was further used, and the first optical film was on the phosphor layer side.
  • the phosphor layers (photosensitive resins) were cured by ultraviolet irradiation after being arranged and laminated so as to be suitable for Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3.
  • a wavelength conversion sheet using the phosphor protective film thus obtained was obtained.
  • the first barrier layer and the first base material layer have a diameter of about 30 to 300 ⁇ m by piercing a needle from the first barrier layer side as the first optical film of one of the light emitter protective films.
  • a wavelength conversion sheet for dark spot evaluation for each of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 was prepared using the first optical film provided with a hole penetrating through the first optical film. The hole is a pseudo reproduction of the hole due to splash when the inorganic thin film layer is formed by vapor deposition.
  • the obtained wavelength conversion sheet for dark spot evaluation was exposed to an environment having a temperature of 85 ° C. and a relative humidity of 0% RH.
  • the blue light is irradiated from the side of the light emitter protective film not provided with holes, and from the side of the light emitter protective film provided with holes.
  • the transmitted light was visually confirmed, and the presence or absence of black spot-like defects (dark spots) was evaluated according to the following criteria.
  • Tables 2 to 3 show the evaluation results of dark spots around the holes, along with the major axis a and minor axis b of the holes provided in the first optical film.
  • A Even after 1000 hours from the exposure, the presence of dark spots was not confirmed.
  • B The presence of dark spots was not confirmed after 200 hours after exposure, but the presence of dark spots was confirmed after 1000 hours after exposure.
  • C The presence of dark spots was not confirmed after 72 hours after exposure, but the presence of dark spots was confirmed after 200 hours after exposure.
  • D The presence of dark spots was confirmed 72 hours after the exposure.
  • a hydrolyzed solution of tetraethoxysilane and a polyvinyl alcohol solution were mixed at 1: 1 (mass ratio) to obtain a solution A.
  • Epoxy resin Mitsubishi Gas Chemical Co., Ltd., trade name: M-100
  • amine compound Mitsubishi Gas Chemical Co., Ltd., trade name: C-115
  • Adhesion layer A (Oxygen permeability of adhesion layer and each layer) ⁇ Adhesion layer A>
  • an adhesion layer having a thickness of 300 nm was formed.
  • a sample composed of the OPP film and the adhesion layer A was obtained.
  • ⁇ Adhesion layer B> The solution B was applied on an OPP film having a thickness of 20 ⁇ m and dried to form a layer having a thickness of 300 nm. Further, an adhesion layer was formed by aging at 50 ° C. for 2 days. A sample composed of the OPP film and the adhesion layer B (sample of the adhesion layer B) was obtained.
  • ⁇ Adhesion layer C> Solution C was applied onto an OPP film having a thickness of 20 ⁇ m and dried to form a layer having a thickness of 300 nm. Furthermore, the adhesion layer was formed by performing EB (electron beam) irradiation of 15 Mrad. A sample composed of the OPP film and the adhesion layer C (sample of the adhesion layer C) was obtained.
  • EB electron beam
  • ⁇ Protective coat layer> An acrylic resin was applied on an OPP film having a thickness of 20 ⁇ m so as to have a thickness of 1 ⁇ m and dried by heating to form a protective coat layer. A sample composed of an OPP film and a protective coat layer (protective coat layer sample) was obtained.
  • ⁇ Anchor coat layer> An acrylic resin was applied on an OPP film having a thickness of 20 ⁇ m so as to have a film thickness of 1 ⁇ m, and dried by heating to form an anchor coat layer. A sample composed of an OPP film and an anchor coat layer (an anchor coat layer sample) was obtained.
  • the oxygen permeability of the samples of the protective coat layer and the anchor coat layer was 3000 cm 3 / (m 2 ⁇ day ⁇ atm) (measured in an environment of 30 ° C. and 70% RH) or more. Since these values are not substantially different from the reference values, it is understood that they do not contribute to the oxygen barrier property.
  • the oxygen permeability of the adhesion layers A to C that can be used in the light emitter protective film according to the second embodiment is 100 cm 3 / (m 2 ⁇ day ⁇ atm) (30 ° C. and 70% RH environment). (Lower measurement) and the following, it can be seen that it has a high oxygen barrier property.
  • Example 2-1 An anchor coat layer made of an acrylic resin was formed with a thickness of 1 ⁇ m on one side of a biaxially stretched polyethylene terephthalate film (base film, thickness: 25 ⁇ m). Next, a gas barrier layer made of silicon oxide was formed on the anchor coat layer.
  • the adhesion layer A having a thickness of 300 nm was formed on the silicon oxide film by applying and drying the solution A.
  • the phosphor protective film of Example 2-1 in which the first base material layer, the anchor coat layer, the gas barrier layer, and the adhesion layer were laminated in this order was obtained.
  • Example 2-2 A silicon oxide film was formed in the same manner as in Example 2-1, and the layer B having a thickness of 300 nm was formed by applying and drying the solution B on the formed silicon oxide film. Furthermore, adhesion layer B was formed on the silicon oxide film by performing aging at 50 ° C. for 2 days. As described above, the light emitter protective film of Example 2-2 was obtained in which the first base material layer, the anchor coat layer, the gas barrier layer, and the adhesion layer were laminated in this order.
  • Example 2-3 A silicon oxide film was formed in the same manner as in Example 2-1, and the layer having a thickness of 300 nm was formed by applying and drying the solution C on the formed silicon oxide film. Furthermore, the adhesion layer C was formed on the silicon oxide film by performing EB irradiation of 15 Mrad. As described above, the phosphor protective film of Example 2-3, in which the first base material layer, the anchor coat layer, the gas barrier layer, and the adhesion layer were laminated in this order, was obtained.
  • Example 2-4 A silicon oxide film was formed in the same manner as in Example 2-1, and the protective coating layer made of an acrylic resin was formed to a thickness of 1 ⁇ m on the formed silicon oxide film. A layer having a thickness of 300 nm was formed by applying and drying the solution B on the protective coating layer. Furthermore, the adhesion layer B was formed on the protective coat layer by performing aging at 50 ° C. for 2 days. As described above, the phosphor protective film of Example 2-4, in which the first base material layer, the anchor coat layer, the gas barrier layer, the protective coat layer, and the adhesion layer were laminated in this order, was obtained.
  • Comparative Example 2-1 The phosphor protection of Comparative Example 2-1 in which the first base material layer, the anchor coat layer, and the gas barrier layer are laminated in this order in the same manner as in Example 2-1, except that the adhesion layer was not formed. A film was obtained.
  • Comparative Example 2-2 Comparative Example 2-2 in which the first base material layer, the anchor coat layer, the gas barrier layer, and the protective coat layer were laminated in this order in the same manner as in Example 2-4, except that the adhesion layer was not formed.
  • the light emitter protective film was obtained.
  • each wavelength conversion sheet provided with the phosphor protective film prepared in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2 was cut into strips having a width of 15 mm, Fixed on a glass plate.
  • the phosphor protective film on the upper side of the fixed wavelength conversion sheet is peeled from the phosphor layer at a speed of 300 mm / min in a direction perpendicular to the glass plate using a Tensilon tensile tester (Orientec). Then, the strength required for peeling was measured.
  • the measurement results of peel strength are shown in Table 6 as the evaluation results of adhesion. It was judged that suitable adhesion was obtained when the peel strength was 2 N / cm or more.
  • the wavelength conversion sheets provided with the phosphor protective films prepared in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2 were cut to 60 cm ⁇ 34 cm (corresponding to a 27-inch monitor).
  • the wavelength conversion sheet after cutting was stored in an environment of 85 ° C. for 1000 hours. After storage, the sample was irradiated with UV light, and the number of dark spots was counted visually. Table 6 shows the measurement results (number).
  • SYMBOLS 10 Luminescent body protective film, 11a ... 1st base material layer, 11b ... 2nd base material layer, 12a ... 1st inorganic thin film layer, 12b ... 2nd inorganic thin film layer, 13a ... 1st gas barrier coating layer, 13b ... Second gas barrier coating layer, 14a ... first barrier layer, 14b ... second barrier layer, 15 ... adhesive layer, 16a ... first optical film, 16b ... second optical film, 20 ... wavelength conversion sheet, 21 ... phosphor Layer, 22 ... second protective film, 23 ... defect, 24 ... dark spot, 30 ... backlight unit, 50 ... electroluminescence light emitting unit, 300 ... light emitter protective film, 311 ... base film, 312 ... gas barrier layer, 313 ... adhesion layer, 400 ... wavelength conversion sheet, 500 ... backlight unit, 700 ... electroluminescence light emitting unit.

Abstract

The present invention provides a light emitting body protective film which is provided with a first optical film and an adhesive layer having barrier properties, and wherein the first optical film is an optical barrier film that comprises a first base layer and a first barrier layer formed on the first base layer.

Description

発光体保護フィルム、波長変換シート、バックライトユニット及びエレクトロルミネッセンス発光ユニットLuminescent protective film, wavelength conversion sheet, backlight unit, and electroluminescence light emitting unit
 本発明は、発光体保護フィルム、波長変換シート、バックライトユニット及びエレクトロルミネッセンス発光ユニットに関する。 The present invention relates to a light emitter protective film, a wavelength conversion sheet, a backlight unit, and an electroluminescence light emitting unit.
 液晶ディスプレイのバックライトユニット及びエレクトロルミネッセンス発光ユニット等の発光ユニットでは、量子ドット等の蛍光体やエレクトロルミネッセンス発光体等の発光体が酸素又は水蒸気等と接触して長時間が経過すると、発光体としての性能が低下することがある。このためこれらの発光ユニットでは、しばしば高分子フィルムにガスバリア層が形成されたガスバリアフィルムが、発光体の保護フィルムとして使用される(例えば、特許文献1参照)。 In a light emitting unit such as a liquid crystal display backlight unit and an electroluminescent light emitting unit, when a long time elapses when a phosphor such as a quantum dot or a light emitter such as an electroluminescent light emitter comes in contact with oxygen or water vapor, May degrade the performance. For this reason, in these light emitting units, a gas barrier film in which a gas barrier layer is formed on a polymer film is often used as a protective film for a light emitter (see, for example, Patent Document 1).
国際公開第2015/013225号International Publication No. 2015/013225
 しかしながら、保護フィルムの製造においては、上記ガスバリア層形成の際に、異物の混入による損傷又はクラック等の微小な欠陥がガスバリア層に生じることがある。これらの欠陥は酸素又は水蒸気等の侵入経路となる。その結果、ガスバリア層に上記欠陥を有する保護フィルムを発光ユニットに用いた場合、上記欠陥に近い箇所にダークスポットと呼ばれる黒点状の欠陥(非発光領域)が発生する問題があった。 However, in the production of the protective film, when the gas barrier layer is formed, minute defects such as damage or cracks due to foreign matters may occur in the gas barrier layer. These defects become intrusion paths for oxygen or water vapor. As a result, when a protective film having the above defects in the gas barrier layer is used in a light emitting unit, there is a problem in that black spot-like defects (non-light emitting regions) called dark spots occur at locations near the above defects.
 本発明は上記問題に鑑みてなされたものであり、発光ユニットに用いた場合に、バリア層に欠陥を有していてもダークスポットの発生を抑制することが可能な発光体保護フィルム、並びに、これを用いて得られる波長変換シート、バックライトユニット及びエレクトロルミネセンス発光ユニットを提供することを目的とする。 The present invention has been made in view of the above problems, and when used in a light emitting unit, a light emitter protective film capable of suppressing the occurrence of dark spots even if the barrier layer has a defect, and It aims at providing the wavelength conversion sheet | seat obtained by using this, a backlight unit, and an electroluminescent light emission unit.
 本発明は、第一光学フィルムとバリア性を有する接着層とを備え、上記第一光学フィルムが第一基材層と上記第一基材層上に形成された第一バリア層とを含む光学バリアフィルムである、発光体保護フィルムを提供する。本発明によれば、バリア層に欠陥を有していてもダークスポットの発生を抑制することができる。 The present invention includes a first optical film and an adhesive layer having a barrier property, and the first optical film includes a first base layer and a first barrier layer formed on the first base layer. Provided is a light emitter protective film which is a barrier film. According to the present invention, generation of dark spots can be suppressed even if the barrier layer has a defect.
 本発明に係る発光体保護フィルムは、その一実施形態において、第二光学フィルムをさらに備えていてもよい。上記第一光学フィルムは上記第二光学フィルムと前記接着層を介して貼り合わされている。また、上記第二光学フィルムが第二基材層と上記第二基材層上に形成された第二バリア層とを含む光学バリアフィルムであってもよい。この場合、上記接着層の酸素透過率は、厚さ5μmにおいて1000cm/(m・day・atm)以下であることが好ましい。 In the embodiment, the light emitter protective film according to the present invention may further include a second optical film. The first optical film is bonded to the second optical film via the adhesive layer. The second optical film may be an optical barrier film including a second base material layer and a second barrier layer formed on the second base material layer. In this case, the oxygen permeability of the adhesive layer is preferably 1000 cm 3 / (m 2 · day · atm) or less at a thickness of 5 μm.
 発光体保護フィルムを第一光学フィルムと第二光学フィルムを重ねた光学バリアフィルムの積層体とすることにより、発光ユニットに用いた場合に、外力による発光体層の破損を抑制し、且つ、ガスバリア性を向上させることができる。さらに、上記接着層の酸素透過率が1000cm/(m・day・atm)以下であることにより、発光体保護フィルムが上記第一バリア層又は第二バリア層に欠陥を有していたとしても、ダークスポットの発生を抑制することができる。 By using a light-emitting protective film as a laminated body of an optical barrier film in which a first optical film and a second optical film are laminated, when used in a light-emitting unit, damage to the light-emitting layer due to external force is suppressed, and a gas barrier is provided. Can be improved. Furthermore, when the oxygen permeability of the adhesive layer is 1000 cm 3 / (m 2 · day · atm) or less, the phosphor protective film has a defect in the first barrier layer or the second barrier layer. Also, the occurrence of dark spots can be suppressed.
 本発明の一実施形態に係る発光体保護フィルムにおいて、上記接着層がエポキシ樹脂を含む接着剤から形成されることが好ましい。接着層が上記構成を備えることにより、第一光学フィルムと第二光学フィルムとの密着性を向上させることができる。 In the light emitter protective film according to an embodiment of the present invention, the adhesive layer is preferably formed of an adhesive containing an epoxy resin. When the adhesive layer has the above configuration, the adhesion between the first optical film and the second optical film can be improved.
 本発明の一実施形態に係る発光体保護フィルムにおいて、上記第一光学フィルムと上記第二光学フィルムとは上記第一バリア層と上記第二バリア層とが対向するように上記接着層を介して貼り合わされていることが好ましい。第一光学フィルムと第二光学フィルムとを上記のように配置することにより、第一バリア層及び第二バリア層を外力から保護することができ、より安定したガスバリア性を得ることができる。 In the light emitter protective film according to an embodiment of the present invention, the first optical film and the second optical film are arranged via the adhesive layer so that the first barrier layer and the second barrier layer face each other. It is preferable that they are bonded together. By disposing the first optical film and the second optical film as described above, the first barrier layer and the second barrier layer can be protected from external force, and more stable gas barrier properties can be obtained.
 本発明の一実施形態に係る発光体保護フィルムにおいて、上記第一バリア層が第一無機薄膜層と第一ガスバリア性被覆層とを含み、上記第二バリア層が第二無機薄膜層と第二ガスバリア性被覆層とを含むことが好ましい。上記第一バリア層及び上記第二バリア層が上記構成を備えることにより、一層優れたガスバリア性を得ることができる。 In the light emitter protective film according to one embodiment of the present invention, the first barrier layer includes a first inorganic thin film layer and a first gas barrier coating layer, and the second barrier layer includes a second inorganic thin film layer and a second inorganic thin film layer. It is preferable to include a gas barrier coating layer. When the first barrier layer and the second barrier layer have the above-described configuration, a further excellent gas barrier property can be obtained.
 本発明に係る発光体保護フィルムは、その別の実施形態において、上記接着層を最表面に備え、上記接着層が上記第一バリア層上に配置されていてもよい。この場合、上記接着層の酸素透過率は、厚さ0.3μmにおいて100cm/(m・day・atm)以下であることが好ましい。 In another embodiment of the light emitter protective film according to the present invention, the adhesive layer may be provided on the outermost surface, and the adhesive layer may be disposed on the first barrier layer. In this case, the oxygen permeability of the adhesive layer is preferably 100 cm 3 / (m 2 · day · atm) or less at a thickness of 0.3 μm.
 上記接着層の酸素透過率が100cm/(m・day・atm)以下であることにより、発光体保護フィルムが上記第一バリア層に欠陥を有していたとしても、ダークスポットの発生を抑制することができる。 When the oxygen permeability of the adhesive layer is 100 cm 3 / (m 2 · day · atm) or less, even if the light emitter protective film has a defect in the first barrier layer, generation of dark spots is prevented. Can be suppressed.
 本発明の別の実施形態に係る発光体保護フィルムにおいて、上記第一バリア層が金属酸化物からなる層を含むことが好ましい。第一バリア層が金属酸化物からなる層を含むことにより、第一バリア層にガスバリア性を付与しやすくなる。 In the light emitter protective film according to another embodiment of the present invention, the first barrier layer preferably includes a layer made of a metal oxide. When the first barrier layer includes a layer made of a metal oxide, it becomes easy to impart gas barrier properties to the first barrier layer.
 本発明の別の実施形態に係る発光体保護フィルムにおいて、上記接着層が(A)ポリビニルアルコールと金属アルコキシドの加水分解物により形成される硬化物、(B)エポキシ樹脂とアミン化合物により形成される硬化物、又は(C)不飽和カルボン酸化合物とアミン化合物により形成される硬化物、からなるものであってもよい。 In the phosphor protective film according to another embodiment of the present invention, the adhesive layer is formed of (A) a cured product formed from a hydrolyzate of polyvinyl alcohol and a metal alkoxide, and (B) an epoxy resin and an amine compound. It may be composed of a cured product or (C) a cured product formed from an unsaturated carboxylic acid compound and an amine compound.
 本発明はまた、上記発光体保護フィルムと、蛍光体層と、を備える、波長変換シートを提供する。本発明はまた、上記波長変換シートを備える、バックライトユニットを提供する。本発明はまた、上記発光体保護フィルムと、エレクトロルミネッセンス発光体層と、を備える、エレクトロルミネッセンス発光ユニットを提供する。 The present invention also provides a wavelength conversion sheet comprising the above-described phosphor protective film and a phosphor layer. The present invention also provides a backlight unit comprising the wavelength conversion sheet. The present invention also provides an electroluminescence light-emitting unit comprising the above-described phosphor protective film and an electroluminescence phosphor layer.
 本発明によれば、発光ユニットに用いた場合に、バリア層に欠陥を有していてもダークスポットの発生を抑制することが可能な発光体保護フィルム、並びに、これを用いて得られる波長変換シート、バックライトユニット及びエレクトロルミネセンス発光ユニットを提供することができる。 According to the present invention, when used in a light emitting unit, a light emitter protective film capable of suppressing the occurrence of dark spots even if the barrier layer has a defect, and wavelength conversion obtained using the same Sheets, backlight units, and electroluminescent light emitting units can be provided.
本発明の一実施形態に係る発光体保護フィルムの概略断面図である。It is a schematic sectional drawing of the light-emitting body protective film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る波長変換シートの概略断面図である。It is a schematic sectional drawing of the wavelength conversion sheet which concerns on one Embodiment of this invention. 蛍光体層側に配置されるバリア層に欠陥を有する波長変換シートにおいて想定される、ダークスポット発生のメカニズムを示す概念図である。It is a conceptual diagram which shows the mechanism of a dark spot generation | occurrence | production assumed in the wavelength conversion sheet which has a defect in the barrier layer arrange | positioned at the fluorescent substance layer side. 本発明の一実施形態に係るバックライトユニットの概略断面図である。It is a schematic sectional drawing of the backlight unit which concerns on one Embodiment of this invention. 本発明の一実施形態に係るエレクトロルミネッセンス発光ユニットの概略断面図である。It is a schematic sectional drawing of the electroluminescent light emission unit which concerns on one Embodiment of this invention. 本発明の別の実施形態に係る発光体保護フィルムの概略断面図である。It is a schematic sectional drawing of the light-emitting body protective film which concerns on another embodiment of this invention. 本発明の別の実施形態に係る波長変換シートの概略断面図である。It is a schematic sectional drawing of the wavelength conversion sheet which concerns on another embodiment of this invention. 本発明の別の実施形態に係るバックライトユニットの概略断面図である。It is a schematic sectional drawing of the backlight unit which concerns on another embodiment of this invention. 本発明の別の実施形態に係るエレクトロルミネッセンス発光ユニットの概略断面図である。It is a schematic sectional drawing of the electroluminescent light emission unit which concerns on another embodiment of this invention.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment.
[第一実施形態]
(発光体保護フィルム)
 図1は本実施形態に係る発光体保護フィルムの概略断面図である。図1の発光体保護フィルム10において、第一光学フィルム16aと第二光学フィルム16bとが接着層15を介して貼り合わされている。上記第一光学フィルム16aは第一基材層11aと上記第一基材層11a上に形成された第一バリア層14aとを備える光学バリアフィルムである。上記第一光学フィルム16aは第一バリア層14aを2つ以上備えていてもよい。上記第一光学フィルム16aが第一バリア層14aを2つ以上備える場合、複数の第一バリア層14aの構成は同じであってもよく、異なっていてもよい。上記第二光学フィルム16bは第二基材層11bと上記第二基材層11b上に形成された第二バリア層14bとを備える光学バリアフィルムである。上記第一光学フィルム16aと上記第二光学フィルム16bとは上記第一バリア層14aと上記第二バリア層14bとが対向するように上記接着層15を介して貼り合わされている。また、上記第二光学フィルム16bは第二バリア層14bを2つ以上備えていてもよい。上記第二光学フィルム16bが第二バリア層14bを2つ以上備える場合、複数の第二バリア層14bの構成は同じであってもよく、異なっていてもよい。上記第一バリア層14a及び上記第二バリア層14bの構成は同じであってもよく、異なっていてもよい。上記発光体保護フィルム10を発光ユニットに用いる場合、発光体保護フィルム10は第一光学フィルム16aが発光体層と接するように配置される。発光体保護フィルム10が第一光学フィルム16aと第二光学フィルム16bとを重ねた光学バリアフィルムの積層体であることにより、発光ユニットに用いた場合に、外力による発光体層の破損を抑制し、且つ、ガスバリア性を向上させることができる。
[First embodiment]
(Light Emitter Protection Film)
FIG. 1 is a schematic cross-sectional view of a light emitter protective film according to this embodiment. In the light emitter protective film 10 of FIG. 1, the first optical film 16 a and the second optical film 16 b are bonded together via the adhesive layer 15. The first optical film 16a is an optical barrier film including a first base layer 11a and a first barrier layer 14a formed on the first base layer 11a. The first optical film 16a may include two or more first barrier layers 14a. When the first optical film 16a includes two or more first barrier layers 14a, the configuration of the plurality of first barrier layers 14a may be the same or different. The second optical film 16b is an optical barrier film including a second base layer 11b and a second barrier layer 14b formed on the second base layer 11b. The first optical film 16a and the second optical film 16b are bonded together via the adhesive layer 15 so that the first barrier layer 14a and the second barrier layer 14b are opposed to each other. The second optical film 16b may include two or more second barrier layers 14b. When the second optical film 16b includes two or more second barrier layers 14b, the configuration of the plurality of second barrier layers 14b may be the same or different. The configurations of the first barrier layer 14a and the second barrier layer 14b may be the same or different. When using the said light-emitting body protective film 10 for a light-emitting unit, the light-emitting body protective film 10 is arrange | positioned so that the 1st optical film 16a may contact | connect a light-emitting body layer. When the light emitter protection film 10 is a laminated body of optical barrier films in which the first optical film 16a and the second optical film 16b are stacked, the light emitter layer is prevented from being damaged by an external force when used in a light emitting unit. In addition, gas barrier properties can be improved.
 接着層15の酸素透過率は、厚さ5μmにおいて、厚さ方向に、1000cm/(m・day・atm)(40℃0%RH環境下測定)以下である。上記酸素透過率は500cm/(m・day・atm)以下であることが好ましく、100cm/(m・day・atm)以下であることがより好ましく、50cm/(m・day・atm)以下であることがさらに好ましく、10cm/(m・day・atm)以下であることが特に好ましい。接着層15の酸素透過率が、1000cm/(m・day・atm)以下であることにより、発光ユニットに用いた場合に、バリア層が欠陥を有していたとしても、ダークスポットの発生を抑制することが可能な発光体保護フィルム10を得ることができる。上記酸素透過率の下限値は特に制限されないが、例えば、0.1cm/(m・day・atm)である。 The oxygen transmission rate of the adhesive layer 15 is 1000 cm 3 / (m 2 · day · atm) (measured in an environment of 40 ° C. and 0% RH) in the thickness direction at a thickness of 5 μm. The oxygen permeability is preferably 500 cm 3 / (m 2 · day · atm) or less, more preferably 100 cm 3 / (m 2 · day · atm) or less, and 50 cm 3 / (m 2 · day). · Atm) or less is more preferable, and 10 cm 3 / (m 2 · day · atm) or less is particularly preferable. When the oxygen transmission rate of the adhesive layer 15 is 1000 cm 3 / (m 2 · day · atm) or less, even when the barrier layer has a defect when a light emitting unit is used, a dark spot is generated. Can be obtained. The lower limit value of the oxygen permeability is not particularly limited, and is, for example, 0.1 cm 3 / (m 2 · day · atm).
 本実施形態に係る発光体保護フィルム10のように、バリア層を備える光学フィルムとバリア層を備える別の光学フィルムとが接着層を介して貼り合わされた構成(バリアフィルム積層構成)を備える保護フィルムからは、バリア層を備える光学フィルムのみからなる(バリアフィルム積層構成を備えない)保護フィルムと比べてより優れたガスバリア性が得られる。しかし、上記バリアフィルム積層構成によって保護フィルム全体としてのガスバリア性は得られるものの、バリア層(特に発光体層の近くに配置されたバリア層)に局所的な微小欠陥が生じた場合に、バリア層に生じた微小欠陥の近くの発光体層でのダークスポットの発生を十分抑制できないことがある。このような局所的な微小欠陥は、ガス透過率の測定等によって評価される保護フィルム全体としてのガスバリア性には現れにくいが、当該欠陥近傍のダークスポットの発生に影響するものである。本実施形態に係る発光体保護フィルム10は、第一光学フィルム16aと第二光学フィルム16bとを接着層15を介して貼り合わせることにより、バリア層に局所的な微小欠陥が生じていたとしても、当該欠陥近傍のダークスポットの発生を抑制することができる。また、本実施形態に係る発光体保護フィルム10によって得られる効果は上記微小欠陥が生じた場合にとどまらず、仮に保護フィルム製造の際にバリア層により大きな欠陥が生じていたとしても、当該欠陥近傍のダークスポットの発生を抑制することができる。さらに、本実施形態に係る発光体保護フィルム10によれば、仮に保護フィルム製造の際にバリア層と基材層とを貫通した欠陥が生じていたとしても、当該欠陥近傍のダークスポットの発生を抑制することができる。 A protective film having a configuration (barrier film laminate configuration) in which an optical film including a barrier layer and another optical film including a barrier layer are bonded together via an adhesive layer, like the light emitter protective film 10 according to the present embodiment. The gas barrier property more excellent than that of a protective film consisting only of an optical film provided with a barrier layer (not provided with a barrier film laminated structure) is obtained. However, although the gas barrier properties of the entire protective film can be obtained by the above-described barrier film laminated structure, the barrier layer is formed when local microdefects are generated in the barrier layer (particularly, the barrier layer disposed near the light emitter layer). In some cases, the generation of dark spots in the light-emitting layer near the micro defects generated in the substrate cannot be sufficiently suppressed. Such local micro defects hardly appear in the gas barrier property of the entire protective film evaluated by measuring the gas permeability, but affect the generation of dark spots in the vicinity of the defects. Even if the local light defect has arisen in the barrier layer, the light-emitting-body protective film 10 which concerns on this embodiment bonds the 1st optical film 16a and the 2nd optical film 16b through the contact bonding layer 15. The occurrence of dark spots near the defect can be suppressed. In addition, the effect obtained by the light emitter protection film 10 according to the present embodiment is not limited to the case where the micro defect occurs, and even if a large defect occurs in the barrier layer during the production of the protective film, the vicinity of the defect The generation of dark spots can be suppressed. Furthermore, according to the light emitter protective film 10 according to the present embodiment, even if a defect penetrating the barrier layer and the base material layer is produced during the production of the protective film, generation of dark spots near the defect is generated. Can be suppressed.
 接着層15は粘着剤又は接着剤から形成される。上記接着剤としては、アクリル系接着剤、エポキシ系接着剤、ウレタン系接着剤等が挙げられる。上記接着剤はエポキシ樹脂を含むことが好ましい。接着剤がエポキシ樹脂を含むことにより、第一光学フィルム16aと第二光学フィルム16bとの密着性を向上させることができる。また、上記粘着剤としては、アクリル系粘着剤、ポリビニルエーテル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、でんぷん糊系接着剤等が挙げられる。接着層15の厚さは、0.5~50μmであることが好ましく、1~20μmであることがより好ましく、2~6μmあることがさらに好ましい。接着層15の厚さが0.5μm以上であることにより、第一光学フィルム16aと第二光学フィルム16bとの密着性が得られやすくなり、上記厚さが50μm以下であることにより、より優れたガスバリア性が得られやすくなる。 The adhesive layer 15 is formed from a pressure-sensitive adhesive or an adhesive. Examples of the adhesive include acrylic adhesives, epoxy adhesives, urethane adhesives, and the like. The adhesive preferably includes an epoxy resin. When the adhesive contains an epoxy resin, the adhesion between the first optical film 16a and the second optical film 16b can be improved. Examples of the pressure-sensitive adhesive include acrylic pressure-sensitive adhesives, polyvinyl ether-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, and starch paste-based adhesives. The thickness of the adhesive layer 15 is preferably 0.5 to 50 μm, more preferably 1 to 20 μm, and even more preferably 2 to 6 μm. When the thickness of the adhesive layer 15 is 0.5 μm or more, adhesion between the first optical film 16a and the second optical film 16b is easily obtained, and when the thickness is 50 μm or less, it is more excellent. Gas barrier properties are easily obtained.
 第一基材層11a及び第二基材層11bは加工及び流通等における破損を抑制するための層である。第一基材層11aと第二基材層11bとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリエチレンナフタレート等のポリエステル;ナイロン等のポリアミド;ポリプロピレン及びシクロオレフィン等のポリオレフィン;ポリカーボネート;並びにトリアセチルセルロース等が挙げられるが、これらに限定されない。第一基材層11a及び第二基材層11bは、ポリエステルフィルム、ポリアミドフィルム又はポリオレフィンフィルムであることが好ましく、ポリエステルフィルム又はポリアミドフィルムであることがより好ましく、ポリエチレンテレフタレートフィルムであることがさらに好ましい。また、第一基材層11a及び第二基材層11bは二軸延伸されていることが好ましい。第一基材層11aと第二基材層11bは同じであっても異なっていてもよい。 The first base material layer 11a and the second base material layer 11b are layers for suppressing breakage in processing and distribution. Examples of the first base layer 11a and the second base layer 11b include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyamides such as nylon; polyolefins such as polypropylene and cycloolefin; polycarbonates; Although cellulose etc. are mentioned, it is not limited to these. The first base material layer 11a and the second base material layer 11b are preferably a polyester film, a polyamide film or a polyolefin film, more preferably a polyester film or a polyamide film, and further preferably a polyethylene terephthalate film. . Moreover, it is preferable that the 1st base material layer 11a and the 2nd base material layer 11b are biaxially stretched. The first base material layer 11a and the second base material layer 11b may be the same or different.
 第一基材層11a及び第二基材層11bの厚さは、特に制限されないが、3μm以上100μm以下であることが好ましく、5μm以上50μm以下であることがより好ましい。 The thickness of the first base material layer 11a and the second base material layer 11b is not particularly limited, but is preferably 3 μm or more and 100 μm or less, and more preferably 5 μm or more and 50 μm or less.
 上記第一基材層11a及び第二基材層11b上にそれぞれ第一バリア層14a及び第二バリア層14bが、必要に応じてアンカーコート層(図示しない)を介して、形成されている。アンカーコート層としてはポリエステル樹脂等が挙げられ、アンカーコート層の厚さは0.01~1μm程度である。 A first barrier layer 14a and a second barrier layer 14b are formed on the first base material layer 11a and the second base material layer 11b, respectively, via an anchor coat layer (not shown) as necessary. Examples of the anchor coat layer include polyester resins, and the thickness of the anchor coat layer is about 0.01 to 1 μm.
 上記第一バリア層14aは第一無機薄膜層12aと第一ガスバリア性被覆層13aとを含むことが好ましく、第二バリア層14bは第二無機薄膜層12bと第二ガスバリア性被覆層13bとを含むことが好ましい。この場合、上記第二光学フィルム16bが上記第一バリア層14aと上記第二バリア層14bとが対向するように上記接着層15を介して貼り合わされている。上記第一バリア層14a及び上記第二バリア層14bが上記構成を備えることにより、より優れたガスバリア性を得ることができる。また、第二光学フィルム16bを上記のように配置することにより、第一バリア層14a及び第二バリア層14bを外力から保護することができ、より安定したガスバリア性を得ることができる。 The first barrier layer 14a preferably includes a first inorganic thin film layer 12a and a first gas barrier coating layer 13a, and the second barrier layer 14b includes a second inorganic thin film layer 12b and a second gas barrier coating layer 13b. It is preferable to include. In this case, the second optical film 16b is bonded via the adhesive layer 15 so that the first barrier layer 14a and the second barrier layer 14b face each other. When the first barrier layer 14a and the second barrier layer 14b have the above-described configuration, more excellent gas barrier properties can be obtained. Moreover, by arranging the second optical film 16b as described above, the first barrier layer 14a and the second barrier layer 14b can be protected from external force, and more stable gas barrier properties can be obtained.
 第一無機薄膜層12a及び第二無機薄膜層12bは無機化合物を含み、金属酸化物を含むことが好ましい。上記金属酸化物としては、例えば、アルミニウム、銅、銀、イットリウム、タンタル、ケイ素、マグネシウム等の金属の酸化物が挙げられる。金属酸化物は、安価でバリア性能に優れることから、酸化ケイ素(SiO、xは1.0~2.0)であることが好ましい。xが1.0以上であると、良好なガスバリア性が得られやすい傾向がある。 The first inorganic thin film layer 12a and the second inorganic thin film layer 12b contain an inorganic compound and preferably contain a metal oxide. Examples of the metal oxide include oxides of metals such as aluminum, copper, silver, yttrium, tantalum, silicon, and magnesium. The metal oxide is preferably silicon oxide (SiO x , x is 1.0 to 2.0) because it is inexpensive and has excellent barrier performance. When x is 1.0 or more, good gas barrier properties tend to be obtained.
 第一無機薄膜層12a及び第二無機薄膜層12bの形成方法は真空成膜であることが好ましい。真空成膜としては、物理気相成長法及び化学気相成長法が挙げられる。物理気相成長法としては、例えば、蒸着法、スパッタリング法、イオンプレーティング法等が挙げられる。また、化学気相成長法としては、例えば、熱CVD法、プラズマCVD法、光CVD法等が挙げられる。製造コストの観点から、第一無機薄膜層12a又は第二無機薄膜層12bは蒸着法で形成された無機蒸着膜層であることが好ましい。例えば、第一無機薄膜層12a又は第二無機薄膜層12bが無機蒸着膜層である場合、蒸着材料の飛散(スプラッシュ)により第一光学フィルム16a又は第二光学フィルム16bに孔が生じることがある。スプラッシュが生じる頻度は少ないものの、スプラッシュによって生じる孔は比較的大きな欠陥であり、バリア層及び基材層を貫通する孔となり得る。したがって、スプラッシュによる孔が生じた保護フィルムでは、ガスバリア性が大きく低下し得る。特に、発光体層側に配置される第一バリア層14a及び第一基材層11aを貫通する孔が生じた場合、ダークスポットがより発生しやすくなる。しかしながら、本実施形態に係る発光体保護フィルム10はバリアフィルム積層構成を備えることから、仮に、第一光学フィルム16a又は第二光学フィルム16bに比較的大きな欠陥があったとしても、ガスバリア性の低下を低減することができる。本実施形態に係る発光体保護フィルム10は、さらに、接着層15を備えることから、仮に、第一光学フィルム16aにこのような比較的大きな欠陥があったとしても、欠陥がないときと同様にダークスポットの発生を抑制することができる。したがって、第一無機薄膜層12aが無機蒸着膜層であることにより、製造コストを低減しつつダークスポットの発生を抑制することができる。 The formation method of the first inorganic thin film layer 12a and the second inorganic thin film layer 12b is preferably vacuum film formation. Examples of vacuum film formation include physical vapor deposition and chemical vapor deposition. Examples of physical vapor deposition include vapor deposition, sputtering, and ion plating. Examples of the chemical vapor deposition method include a thermal CVD method, a plasma CVD method, and a photo CVD method. From the viewpoint of production cost, the first inorganic thin film layer 12a or the second inorganic thin film layer 12b is preferably an inorganic vapor deposition film layer formed by a vapor deposition method. For example, when the 1st inorganic thin film layer 12a or the 2nd inorganic thin film layer 12b is an inorganic vapor deposition film layer, a hole may arise in the 1st optical film 16a or the 2nd optical film 16b by scattering (splash) of vapor deposition material. . Although the frequency of splashing is low, the holes created by the splash are relatively large defects and can be holes that penetrate the barrier layer and the substrate layer. Therefore, in the protective film in which the holes due to the splash are generated, the gas barrier property can be greatly reduced. In particular, when a hole penetrating the first barrier layer 14a and the first base material layer 11a disposed on the light emitter layer side is generated, a dark spot is more easily generated. However, since the light emitter protective film 10 according to this embodiment has a barrier film laminated structure, even if the first optical film 16a or the second optical film 16b has a relatively large defect, the gas barrier property is lowered. Can be reduced. Since the light emitter protective film 10 according to the present embodiment further includes the adhesive layer 15, even if the first optical film 16a has such a relatively large defect, it is the same as when there is no defect. Generation of dark spots can be suppressed. Therefore, when the first inorganic thin film layer 12a is an inorganic vapor deposition film layer, it is possible to suppress the generation of dark spots while reducing the manufacturing cost.
 第一無機薄膜層12a及び第二無機薄膜層12bの厚さは、10~300nmであることが好ましく、20~100nmであることがより好ましい。第一無機薄膜層12a及び第二無機薄膜層12bの厚さが10nm以上であることにより、均一な膜が得られやすく、ガスバリア性が得られやすくなる傾向がある。一方、第一無機薄膜層12a及び第二無機薄膜層12bの厚さが300nm以下であることにより、第一無機薄膜層12a及び第二無機薄膜層12bに柔軟性を保持させることができ、成膜後に折り曲げ、引張等の外力により、亀裂等が生じにくくなる傾向がある。 The thickness of the first inorganic thin film layer 12a and the second inorganic thin film layer 12b is preferably 10 to 300 nm, more preferably 20 to 100 nm. When the thickness of the first inorganic thin film layer 12a and the second inorganic thin film layer 12b is 10 nm or more, there is a tendency that a uniform film is easily obtained and gas barrier properties are easily obtained. On the other hand, when the thickness of the first inorganic thin film layer 12a and the second inorganic thin film layer 12b is 300 nm or less, the first inorganic thin film layer 12a and the second inorganic thin film layer 12b can be kept flexible. There is a tendency that cracks and the like are less likely to occur due to external forces such as bending and tension after film formation.
 第一ガスバリア性被覆層13a及び第二ガスバリア性被覆層13bは下記式(1)で表わされる金属アルコキシド及びその加水分解物からなる群より選択される少なくとも1種を含む組成物から形成されることが好ましい。
  M(OR(Rn-m ・・・(1)
The first gas barrier coating layer 13a and the second gas barrier coating layer 13b are formed from a composition containing at least one selected from the group consisting of a metal alkoxide represented by the following formula (1) and a hydrolyzate thereof. Is preferred.
M 1 (OR 1 ) m (R 2 ) nm (1)
 上記式(1)中、R及びRはそれぞれ独立に炭素数1~8の1価の有機基であり、メチル基、エチル基等のアルキル基であることが好ましい。MはSi、Ti、Al、Zr等のn価の金属原子を示す。mは1~nの整数である。金属アルコキシドとしては、例えば、テトラエトキシシラン[Si(OC]、トリイソプロポキシアルミニウム[Al(O-iso-C]等が挙げられる。金属アルコキシドは、加水分解後、水系の溶媒中において比較的安定であることから、テトラエトキシシラン又はトリイソプロポキシアルミニウムであることが好ましい。金属アルコキシドの加水分解物としては、例えば、テトラエトキシシランの加水分解物であるケイ酸(Si(OH))、及び、トリイソプロポキシアルミニウムの加水分解物である水酸化アルミニウム(Al(OH))等が挙げられる。これらは、1種だけでなく、複数種を組み合わせて使用することもできる。上記組成物における金属アルコキシド及びその加水分解物の含有量は、例えば、10~90質量%である。 In the above formula (1), R 1 and R 2 are each independently a monovalent organic group having 1 to 8 carbon atoms, preferably an alkyl group such as a methyl group or an ethyl group. M 1 represents an n-valent metal atom such as Si, Ti, Al, or Zr. m is an integer of 1 to n. Examples of the metal alkoxide include tetraethoxysilane [Si (OC 2 H 5 ) 4 ], triisopropoxyaluminum [Al (O-iso-C 3 H 7 ) 3 ] and the like. The metal alkoxide is preferably tetraethoxysilane or triisopropoxyaluminum because it is relatively stable in an aqueous solvent after hydrolysis. Examples of the hydrolyzate of metal alkoxide include silicic acid (Si (OH) 4 ), which is a hydrolyzate of tetraethoxysilane, and aluminum hydroxide (Al (OH), which is a hydrolyzate of triisopropoxyaluminum. 3 ) and the like. These can be used in combination of not only one type but also a plurality of types. The content of the metal alkoxide and the hydrolyzate thereof in the composition is, for example, 10 to 90% by mass.
 上記組成物はさらに水酸基含有高分子化合物を含んでいてもよい。水酸基含有高分子化合物としては、例えば、ポリビニルアルコール、ポリビニルピロリドン及びデンプン等の水溶性高分子が挙げられる。水酸基含有高分子化合物はバリア性の観点からポリビニルアルコールであることが好ましい。これらは、1種だけでなく、複数種を組み合わせて使用することもできる。上記組成物における水酸基含有高分子化合物の含有量は、例えば、10~90質量%である。 The above composition may further contain a hydroxyl group-containing polymer compound. Examples of the hydroxyl group-containing polymer compound include water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone and starch. The hydroxyl group-containing polymer compound is preferably polyvinyl alcohol from the viewpoint of barrier properties. These can be used in combination of not only one type but also a plurality of types. The content of the hydroxyl group-containing polymer compound in the composition is, for example, 10 to 90% by mass.
 第一ガスバリア性被覆層13a及び第二ガスバリア性被覆層13bの厚さは、50~1000nmであることが好ましく、100~500nmであることがより好ましい。第一ガスバリア性被覆層13a及び第二ガスバリア性被覆層13bの厚さが50nm以上であると、より十分なガスバリア性を得ることができる傾向があり、1000nm以下であると、十分な柔軟性を保持できる傾向がある。 The thickness of the first gas barrier coating layer 13a and the second gas barrier coating layer 13b is preferably 50 to 1000 nm, and more preferably 100 to 500 nm. When the thickness of the first gas barrier coating layer 13a and the second gas barrier coating layer 13b is 50 nm or more, there is a tendency that a sufficient gas barrier property can be obtained, and when the thickness is 1000 nm or less, sufficient flexibility is obtained. There is a tendency to hold.
 発光体保護フィルム10は、光散乱機能を発揮させるために、第二光学フィルム16b側の表面にさらにマット層(図示しない)を備えていてもよい。発光体保護フィルム10がマット層を備えることにより、光散乱機能以外にも、干渉縞(モアレ)防止機能及び反射防止機能等を得ることができる。 The light emitter protection film 10 may further include a mat layer (not shown) on the surface of the second optical film 16b in order to exhibit a light scattering function. When the light emitter protection film 10 includes the mat layer, an interference fringe (moire) prevention function and an antireflection function can be obtained in addition to the light scattering function.
 発光体保護フィルム10は、酸素や水蒸気等と接触することにより劣化し得る発光体の保護フィルムとして好適に用いることができる。上記発光体としては、量子ドット等の蛍光体、エレクトロルミネッセンス発光体等が挙げられる。 The phosphor protective film 10 can be suitably used as a protective film for a phosphor that can be deteriorated by contact with oxygen, water vapor, or the like. As said light-emitting body, fluorescent substance, such as a quantum dot, an electroluminescent light-emitting body, etc. are mentioned.
(波長変換シート)
 図2は本発明の一実施形態に係る波長変換シートの概略断面図である。波長変換シートは液晶ディスプレイ用バックライトユニットの光源からの光の一部の波長を変換可能なシートである。図2に示すように、本実施形態の波長変換シート20は、第一保護フィルムと、上記第一保護フィルム上に形成された蛍光体層21と、上記蛍光体層21上に設けられた第二保護フィルム22と、を備えて概略構成されている。波長変換シート20は、第一保護フィルム及び第二保護フィルム22の間に、蛍光体層21が包み込まれた(すなわち、封止された)構造を有する。図2において、第一保護フィルムには、上述した発光体保護フィルム10が用いられる。一方、第二保護フィルム22には、上述した発光体保護フィルム10が用いられてもよく、別の保護フィルムが用いられてもよい。また、波長変換シート20は必ずしも第二保護フィルム22を備えていなくてもよい。すなわち、本実施形態の波長変換シート20は、発光体保護フィルム10と、上記発光体保護フィルム10の上記第一光学フィルム16a上に形成された蛍光体層21と、を備える。
(Wavelength conversion sheet)
FIG. 2 is a schematic cross-sectional view of a wavelength conversion sheet according to an embodiment of the present invention. The wavelength conversion sheet is a sheet that can convert some wavelengths of light from the light source of the backlight unit for liquid crystal display. As shown in FIG. 2, the wavelength conversion sheet 20 of the present embodiment includes a first protective film, a phosphor layer 21 formed on the first protective film, and a first layer provided on the phosphor layer 21. The two protective films 22 are schematically configured. The wavelength conversion sheet 20 has a structure in which the phosphor layer 21 is encapsulated (that is, sealed) between the first protective film and the second protective film 22. In FIG. 2, the luminous body protective film 10 mentioned above is used for a 1st protective film. On the other hand, for the second protective film 22, the above-described light emitter protective film 10 may be used, or another protective film may be used. Further, the wavelength conversion sheet 20 does not necessarily have to include the second protective film 22. That is, the wavelength conversion sheet 20 of the present embodiment includes the light emitter protective film 10 and the phosphor layer 21 formed on the first optical film 16a of the light emitter protective film 10.
 上述のとおり、保護フィルムが、バリア層を備える複数のフィルムが接着層を介して貼り合わされた構成(バリアフィルム積層構成)を備えることにより、ガスバリア性が向上する。蛍光体層におけるダークスポット発生のメカニズムは保護フィルムの蛍光体層とは反対側(外側)の面からの保護フィルムの厚さ方向へのガスの侵入が支配的であると考えられるが、発光体保護フィルム10がバリアフィルム積層構成を備えることにより、上記方向からのガスの侵入を低減することができると考えられる。しかし、保護フィルムがバリア層(特に、蛍光体層側に配置されるバリア層)に欠陥を有する場合、上記外側の面からのガスの侵入を低減できたとしても、当該欠陥近傍の蛍光体層のダークスポットの発生を抑制できなくなることがある。このようなダークスポットが発生するメカニズムは必ずしも明確ではないが、本発明者らは以下のように考えている。図3は、蛍光体層側に配置されるバリア層に欠陥を有する波長変換シートにおいて想定される、ダークスポット発生のメカニズムを示す概念図である。図3の波長変換シート200において、大気中の酸素や水蒸気等は、発光体保護フィルム100の接着層150の端面から侵入し、接着層150の面方向に拡散する。発光体保護フィルム100が第一バリア層140aに欠陥23を有する場合には、拡散した酸素や水蒸気等が当該欠陥23を通じて蛍光体層210に到達する。欠陥23の場所を中心に蛍光体の劣化が進行し、時間経過とともにダークスポット24となって現れる。上記欠陥23が第一バリア層140aとともに第一基材層110aを貫通している場合、蛍光体劣化の進行が顕著となり、ダークスポット24が視認されやすくなると考えられる。すなわち、酸素や水蒸気等が、接着層150の端面から、ガスバリア性を有する第一光学フィルム160aの欠陥23を通り、蛍光体の劣化が生じる。大気中の酸素や水蒸気が第二基材層110b及び第二バリア層140bを含む第二光学フィルム160bに対して蛍光体層210の反対側から発光体保護フィルム100の厚さ方向に侵入した場合の距離と比べ、接着層150の端面から侵入した場合の距離は極めて大きくなり、侵入量は極めて少なくなると考えられていたことから、図3に示したメカニズムによるダークスポットの発生は意外なことであったといえる。本実施形態の波長変換シート20によれば、蛍光体層21上に設けられた保護フィルムとして、上記発光体保護フィルム10を用いることにより、当該発光体保護フィルム10がバリア層に欠陥を有していたとしても、ダークスポットの発生を抑制することができる。 As described above, the protective film has a structure (barrier film laminated structure) in which a plurality of films each having a barrier layer are bonded via an adhesive layer, thereby improving gas barrier properties. The mechanism of dark spot generation in the phosphor layer is thought to be dominated by gas intrusion in the thickness direction of the protective film from the opposite side (outside) of the protective film to the phosphor layer. It is thought that the gas intrusion from the above direction can be reduced by providing the protective film 10 with the barrier film laminated structure. However, when the protective film has a defect in the barrier layer (particularly the barrier layer disposed on the phosphor layer side), even if the gas intrusion from the outer surface can be reduced, the phosphor layer in the vicinity of the defect It may become impossible to suppress the occurrence of dark spots. The mechanism by which such dark spots occur is not always clear, but the present inventors consider as follows. FIG. 3 is a conceptual diagram showing a dark spot generation mechanism assumed in a wavelength conversion sheet having a defect in a barrier layer arranged on the phosphor layer side. In the wavelength conversion sheet 200 of FIG. 3, oxygen, water vapor, and the like in the atmosphere enter from the end face of the adhesive layer 150 of the light emitter protection film 100 and diffuse in the surface direction of the adhesive layer 150. When the light emitter protection film 100 has the defect 23 in the first barrier layer 140a, the diffused oxygen, water vapor, or the like reaches the phosphor layer 210 through the defect 23. The deterioration of the phosphor progresses around the defect 23 and appears as a dark spot 24 over time. When the defect 23 penetrates the first base material layer 110a together with the first barrier layer 140a, it is considered that the progress of phosphor deterioration becomes remarkable and the dark spot 24 is easily visually recognized. That is, oxygen, water vapor, or the like passes through the defect 23 of the first optical film 160a having gas barrier properties from the end face of the adhesive layer 150, and the phosphor is deteriorated. When oxygen or water vapor in the air enters the second optical film 160b including the second base material layer 110b and the second barrier layer 140b from the opposite side of the phosphor layer 210 in the thickness direction of the light emitter protection film 100. The distance when entering from the end face of the adhesive layer 150 is extremely large and the amount of penetration is considered to be extremely small compared to the distance of 1. Therefore, the occurrence of dark spots due to the mechanism shown in FIG. 3 is surprising. It can be said that there was. According to the wavelength conversion sheet 20 of this embodiment, the phosphor protective film 10 has a defect in the barrier layer by using the phosphor protective film 10 as a protective film provided on the phosphor layer 21. Even if this occurs, the occurrence of dark spots can be suppressed.
 蛍光体層21は樹脂及び蛍光体を含む。蛍光体層21の厚さは数十~数百μmである。上記樹脂としては、例えば、光硬化性樹脂又は熱硬化性樹脂を使用することができる。蛍光体層21は、量子ドットからなる2種類の蛍光体を含むことが好ましい。また、蛍光体層21は、1種類の蛍光体を含む蛍光体層と別の種類の蛍光体を含む蛍光体層が2層以上積層されたものであってもよい。2種類の蛍光体には、励起波長が同一のものが選択される。励起波長は、バックライトユニットの光源が照射する光の波長に基づいて選択される。2種類の蛍光体の蛍光色は相互に異なる。光源に青色発光ダイオード(青色LED)を用いる場合、各蛍光色は、赤色及び緑色である。各蛍光の波長、及び光源が照射する光の波長は、カラーフィルタの分光特性に基づき選択される。蛍光のピーク波長は、例えば、赤色で610nmであり、緑色で550nmである。 The phosphor layer 21 contains a resin and a phosphor. The thickness of the phosphor layer 21 is several tens to several hundreds μm. As the resin, for example, a photocurable resin or a thermosetting resin can be used. The phosphor layer 21 preferably includes two types of phosphors composed of quantum dots. Further, the phosphor layer 21 may be a laminate in which two or more phosphor layers containing one kind of phosphor and another kind of phosphor are laminated. Two types of phosphors having the same excitation wavelength are selected. The excitation wavelength is selected based on the wavelength of light emitted from the light source of the backlight unit. The fluorescent colors of the two types of phosphors are different from each other. When a blue light emitting diode (blue LED) is used as the light source, the fluorescent colors are red and green. The wavelength of each fluorescence and the wavelength of light emitted from the light source are selected based on the spectral characteristics of the color filter. The peak wavelength of fluorescence is, for example, 610 nm for red and 550 nm for green.
 次に、蛍光体の粒子構造を説明する。蛍光体としては、特に発光効率の良いコア・シェル型量子ドットが好適に用いられる。コア・シェル型量子ドットは、発光部としての半導体結晶コアが保護膜としてのシェルにより被覆されたものである。例えば、コアにはセレン化カドミウム(CdSe)、シェルには硫化亜鉛(ZnS)が使用可能である。CdSeの粒子の表面欠陥がバンドギャップの大きいZnSにより被覆されることで量子収率が向上する。また、蛍光体は、コアが第一シェル及び第二シェルにより二重に被覆されたものであってもよい。この場合、コアにはCdSe、第一シェルにはセレン化亜鉛(ZnSe)、第二シェルにはZnSが使用可能である。 Next, the particle structure of the phosphor will be described. As the phosphor, a core-shell type quantum dot having particularly good luminous efficiency is preferably used. The core-shell type quantum dot is obtained by covering a semiconductor crystal core as a light emitting portion with a shell as a protective film. For example, cadmium selenide (CdSe) can be used for the core and zinc sulfide (ZnS) can be used for the shell. The surface yield of CdSe particles is covered with ZnS having a large band gap, so that the quantum yield is improved. Further, the phosphor may be one in which the core is doubly covered with the first shell and the second shell. In this case, CdSe can be used for the core, zinc selenide (ZnSe) can be used for the first shell, and ZnS can be used for the second shell.
 蛍光体層21は、蛍光体をすべて単一の層に分散させた単層構成を有していてもよく、各蛍光体を複数の層に別々に分散させ、これらを積層する多層構成を有していてもよい。 The phosphor layer 21 may have a single layer configuration in which all the phosphors are dispersed in a single layer, and has a multilayer configuration in which each phosphor is separately dispersed in a plurality of layers and laminated. You may do it.
 次に、本実施形態の波長変換シート20の製造方法について図2を参照しながら説明する。蛍光体層21の形成方法としては、特に限定されず、例えば、特表2013-544018号明細書に記載される方法が挙げられる。バインダー樹脂に蛍光体を分散させ、調製した蛍光体分散液を第一保護フィルム(発光体保護フィルム10)の第一光学フィルム16a側の面上に塗布した後、塗布面に第二保護フィルム22を貼り合わせ、蛍光体層21を硬化することにより、波長変換シート20を製造することができる。また反対に、第二保護フィルム22の一方の面上に上記蛍光体分散液を塗布し、塗布面に発光体保護フィルム10を第一光学フィルム16aが蛍光体層21と対向するように貼り合わせ、蛍光体層21を硬化することにより、波長変換シート20を製造することもできる。 Next, a method for manufacturing the wavelength conversion sheet 20 of this embodiment will be described with reference to FIG. A method for forming the phosphor layer 21 is not particularly limited, and examples thereof include a method described in JP-T-2013-544018. After the phosphor is dispersed in the binder resin, the prepared phosphor dispersion is applied on the surface of the first protective film (light emitter protective film 10) on the first optical film 16a side, and then the second protective film 22 is applied on the coated surface. The wavelength conversion sheet 20 can be manufactured by bonding together and curing the phosphor layer 21. Conversely, the phosphor dispersion liquid is applied onto one surface of the second protective film 22, and the phosphor protective film 10 is bonded to the coated surface so that the first optical film 16 a faces the phosphor layer 21. The wavelength conversion sheet 20 can also be manufactured by curing the phosphor layer 21.
(バックライトユニット)
 上記波長変換シート20を用いることにより、バックライトユニットが得られる。図4は、上記波長変換シート20を用いて得られるバックライトユニットの概略断面図である。図4において、バックライトユニット30は光源32と上記波長変換シート20とを備え、上記蛍光体層21を挟んで上記光源32と反対側に上記発光体保護フィルム10が配置される。詳細には、バックライトユニット30は、波長変換シート20の第二保護フィルム22側の表面上に導光板34及び反射板36がこの順で配置され、光源32は上記導光板34の側方(導光板34の面方向)に配置される。
(Backlight unit)
By using the wavelength conversion sheet 20, a backlight unit is obtained. FIG. 4 is a schematic cross-sectional view of a backlight unit obtained using the wavelength conversion sheet 20. In FIG. 4, the backlight unit 30 includes a light source 32 and the wavelength conversion sheet 20, and the light emitter protection film 10 is disposed on the opposite side of the light source 32 with the phosphor layer 21 interposed therebetween. Specifically, in the backlight unit 30, the light guide plate 34 and the reflection plate 36 are arranged in this order on the surface of the wavelength conversion sheet 20 on the second protective film 22 side, and the light source 32 is disposed on the side of the light guide plate 34 ( It is arranged in the surface direction of the light guide plate 34.
 導光板34及び反射板36は、光源32から照射された光を効率的に反射し、導くものであり、公知の材料が使用される。導光板34としては、例えば、アクリル、ポリカーボネート、及びシクロオレフィンフィルム等が使用される。光源32には、例えば、青色発光ダイオード素子が複数個設けられている。この発光ダイオード素子は、紫色発光ダイオード、又はさらに低波長の発光ダイオードであってもよい。光源32から照射された光は、導光板34(D方向)に入射した後、反射及び屈折等を伴って蛍光体層21(D方向)に入射する。蛍光体層21を通過した光は、蛍光体層21を通過する前の光に蛍光体層21で発生した黄色光が混ざることで、白色光となる。 The light guide plate 34 and the reflection plate 36 efficiently reflect and guide the light emitted from the light source 32, and a known material is used. As the light guide plate 34, for example, acrylic, polycarbonate, cycloolefin film, or the like is used. For example, the light source 32 is provided with a plurality of blue light emitting diode elements. The light emitting diode element may be a violet light emitting diode or a light emitting diode having a lower wavelength. Light emitted from the light source 32 is incident on the light guide plate 34 (D 1 direction) is incident on the phosphor layer 21 with the reflection and refraction, etc. (D 2 direction). The light that has passed through the phosphor layer 21 becomes white light by mixing the yellow light generated in the phosphor layer 21 with the light before passing through the phosphor layer 21.
(エレクトロルミネッセンス発光ユニット)
 図5は本発明の一実施形態に係るエレクトロルミネッセンス発光ユニットの概略断面図である。本実施形態に係るエレクトロルミネッセンス発光ユニット50は、エレクトロルミネッセンス発光体層56と、発光体保護フィルム10とを備える。エレクトロルミネッセンス発光ユニット50は、例えば、透明電極層54と、該透明電極層54上に設けられたエレクトロルミネッセンス発光体層56と、該エレクトロルミネッセンス発光体層56上の設けられた誘電体層58と、該誘電体層58上に設けられた背面電極層60を含む電極要素を、第一保護フィルム及び第二保護フィルム62で挟持するとともに密封することにより得られる。上記エレクトロルミネッセンス発光ユニットにおいて、第一保護フィルムには、上述した発光体保護フィルム10が用いられる。エレクトロルミネッセンス発光体層56は上記発光体保護フィルム10の第一光学フィルム16a上に形成される。
(Electroluminescence light emitting unit)
FIG. 5 is a schematic cross-sectional view of an electroluminescent light emitting unit according to an embodiment of the present invention. The electroluminescence light emitting unit 50 according to this embodiment includes an electroluminescence light emitter layer 56 and a light emitter protection film 10. The electroluminescence light emitting unit 50 includes, for example, a transparent electrode layer 54, an electroluminescence light emitter layer 56 provided on the transparent electrode layer 54, and a dielectric layer 58 provided on the electroluminescence light emitter layer 56. The electrode element including the back electrode layer 60 provided on the dielectric layer 58 is obtained by sandwiching and sealing between the first protective film and the second protective film 62. In the electroluminescence light emitting unit, the above-described light emitter protective film 10 is used as the first protective film. The electroluminescence light emitter layer 56 is formed on the first optical film 16 a of the light emitter protection film 10.
 エレクトロルミネッセンス発光ユニットにおいても、波長変換シートに対して説明したメカニズムと同様のメカニズムによるダークスポット発生が考えられる。本実施形態に係るエレクトロルミネッセンス発光ユニット50によれば、エレクトロルミネッセンス発光体層56を含む電極要素上に設けられた保護フィルムとして、上記発光体保護フィルム10を用いることにより、当該発光体保護フィルム10がバリア層に欠陥を有していたとしても、ダークスポットの発生を抑制することができる。 Also in the electroluminescence light emitting unit, dark spots can be generated by the same mechanism as described for the wavelength conversion sheet. According to the electroluminescent light emitting unit 50 according to the present embodiment, the light emitter protective film 10 is used by using the light emitter protective film 10 as a protective film provided on the electrode element including the electroluminescent light emitter layer 56. Even if the barrier layer has a defect, generation of dark spots can be suppressed.
 各電極層、エレクトロルミネッセンス発光体層及び誘電体層は、例えば、蒸着及びスパッタ法等により、公知の材料を用いて、形成することができる。 Each electrode layer, electroluminescent light emitting layer, and dielectric layer can be formed using a known material by, for example, vapor deposition or sputtering.
[第二実施形態]
(発光体保護フィルム)
 図6は本発明の別の実施形態に係る発光体保護フィルムの概略断面図である。図6において、発光体保護フィルム300は、第一基材層311(本実施形態においては、基材フィルム311ということがある。)に第一バリア層312(本実施形態においては、ガスバリア層312ということがある。)を積層し、ガスバリア層312上に、バリア性を有する接着層313(本実施形態においては、密着層313ということがある。)が配置される。基材フィルム311とガスバリア層312は第一光学フィルムを構成する。また、本実施形態において、密着層313は発光体保護フィルム300の最表面に配置されており、発光ユニットではこの密着層313と発光体層とが接するように積層される。
[Second Embodiment]
(Light Emitter Protection Film)
FIG. 6 is a schematic cross-sectional view of a light emitter protective film according to another embodiment of the present invention. In FIG. 6, the light emitter protection film 300 includes a first base layer 311 (in this embodiment, sometimes referred to as a base film 311) and a first barrier layer 312 (in this embodiment, a gas barrier layer 312. And an adhesive layer 313 having a barrier property (in the present embodiment, sometimes referred to as an adhesion layer 313) is disposed on the gas barrier layer 312. The base film 311 and the gas barrier layer 312 constitute a first optical film. Moreover, in this embodiment, the contact | adherence layer 313 is arrange | positioned at the outermost surface of the light-emitting body protective film 300, and is laminated | stacked so that this contact | adherence layer 313 and a light-emitting body layer may contact | connect in a light emitting unit.
 密着層313の酸素透過率は、厚さ0.3μmにおいて100cm/(m・day・atm)(30℃70%RH環境下測定)以下である。上記酸素透過率は50cm/(m・day・atm)(30℃70%RH環境下測定)以下であることがより好ましく、さらには10cm/(m・day・atm)(30℃70%RH環境下測定)以下であることが特に好ましい。 The oxygen permeability of the adhesion layer 313 is 100 cm 3 / (m 2 · day · atm) (measured in an environment of 30 ° C. and 70% RH) at a thickness of 0.3 μm. The oxygen permeability is more preferably 50 cm 3 / (m 2 · day · atm) (measured under an environment of 30 ° C. and 70% RH), and more preferably 10 cm 3 / (m 2 · day · atm) (30 ° C. (Measurement under 70% RH environment) is particularly preferable.
 密着層313の酸素透過率が、100cm/(m・day・atm)(30℃70%RH環境下測定)以下であることにより、発光ユニットに用いた場合に、ガスバリア層が微細な欠陥を有していたとしても、ダークスポットの発生を抑制することが可能な発光体保護フィルム300を得ることができる。上記酸素透過率の下限値は特に制限されないが、例えば、0.1cm/(m・day・atm)(30℃70%RH環境下測定)である。 When the oxygen permeability of the adhesion layer 313 is 100 cm 3 / (m 2 · day · atm) (measured in an environment of 30 ° C. and 70% RH) or less, the gas barrier layer has fine defects when used in the light emitting unit. Even if it has, the light-emitting body protective film 300 which can suppress generation | occurrence | production of a dark spot can be obtained. The lower limit value of the oxygen permeability is not particularly limited, and is, for example, 0.1 cm 3 / (m 2 · day · atm) (measured in an environment of 30 ° C. and 70% RH).
 密着層313の厚さは、0.01~10μmであることが好ましく、0.1~5μmであることがより好ましい。密着層313の厚さが0.01μm以上であることにより、発光体保護フィルムと発光体(又は、そのシーラント層)との密着性が得られやすくなる。また上記厚さが10μm以下であることにより、ガスバリア層の欠陥を埋めてダークスポットの発生を抑制することが可能になる。 The thickness of the adhesion layer 313 is preferably 0.01 to 10 μm, and more preferably 0.1 to 5 μm. When the thickness of the adhesion layer 313 is 0.01 μm or more, the adhesion between the light emitter protective film and the light emitter (or its sealant layer) is easily obtained. Further, when the thickness is 10 μm or less, it becomes possible to fill the defects in the gas barrier layer and suppress the generation of dark spots.
 密着層313は、(A)ポリビニルアルコールと金属アルコキシドの加水分解物により形成される硬化物、(B)エポキシ樹脂とアミン化合物により形成される硬化物、又は(C)不飽和カルボン酸化合物とアミン化合物により形成される硬化物からなることが好ましい。これらによる密着層は厚さ方向に、酸素透過率が100cm/(m・day・atm)(30℃70%RH環境下測定)以下のガスバリア性を有し、且つ、密着する相手の材料に応じて適宜選定することで発光体層(又は、そのシーラント層)との高い密着性が得られる。 The adhesion layer 313 is (A) a cured product formed from a hydrolyzate of polyvinyl alcohol and metal alkoxide, (B) a cured product formed from an epoxy resin and an amine compound, or (C) an unsaturated carboxylic acid compound and an amine. It is preferable to consist of the hardened | cured material formed with a compound. The adhesion layer formed by these materials has a gas barrier property with an oxygen permeability of 100 cm 3 / (m 2 · day · atm) (measured in an environment of 30 ° C. and 70% RH) or less in the thickness direction, and the material of the partner to be adhered to By selecting as appropriate, high adhesiveness with the light emitting layer (or its sealant layer) can be obtained.
 (A)ポリビニルアルコールと金属アルコキシドの加水分解物により形成される硬化物からなる密着層について、金属アルコキシドは、下記式(2)で表される群より選択される少なくとも1種であることが好ましい。
  M(OR(Rq-p・・・(2)
 上記式(2)中、R及びRはそれぞれ独立に炭素数1~8の1価の有機基であり、メチル基、エチル基等のアルキル基であることが好ましい。MはSi、Ti、Al、Zr等のq価の金属原子を示す。pは1~qの整数である。金属アルコキシドの加水分解物としては、例えば、テトラエトキシシランの加水分解物であるケイ酸(Si(OH))等が挙げられる。ポリビニルアルコールと金属アルコキシド(例えば、テトラエトキシシランの加水分解物)は、造膜性、バリア性の観点から、質量比にして1/9~9/1の割合で混合される。ポリビニルアルコールと金属アルコキシドの加水分解物とを含む組成物を塗布し、塗膜を乾燥及び硬化させることにより、塗膜の硬化物が密着層となる。
(A) About the contact | adherence layer which consists of hardened | cured material formed with the hydrolyzate of polyvinyl alcohol and a metal alkoxide, it is preferable that a metal alkoxide is at least 1 sort (s) selected from the group represented by following formula (2). .
M 2 (OR 3 ) p (R 4 ) qp (2)
In the above formula (2), R 3 and R 4 are each independently a monovalent organic group having 1 to 8 carbon atoms, preferably an alkyl group such as a methyl group or an ethyl group. M 2 represents a q-valent metal atom such as Si, Ti, Al, or Zr. p is an integer of 1 to q. Examples of the hydrolyzate of metal alkoxide include silicic acid (Si (OH) 4 ), which is a hydrolyzate of tetraethoxysilane. Polyvinyl alcohol and metal alkoxide (for example, a hydrolyzate of tetraethoxysilane) are mixed at a mass ratio of 1/9 to 9/1 from the viewpoint of film forming properties and barrier properties. By applying a composition containing polyvinyl alcohol and a hydrolyzate of metal alkoxide, and drying and curing the coating film, the cured product of the coating film becomes an adhesion layer.
 (B)エポキシ樹脂とアミン化合物により形成される硬化物からなる密着層について、エポキシ樹脂は飽和若しくは不飽和の脂肪族構造を有するエポキシ樹脂、飽和若しくは不飽和の脂環式構造を有するエポキシ樹脂、又は、芳香族構造(芳香環)を分子内に有するエポキシ樹脂のいずれでもよく、バリア性を考慮すると、芳香環を分子内に有するエポキシ樹脂であることが望ましい。アミン化合物はエチレンジアミン、メタキシリレンジアミン、ポリエチレンイミン等のポリアミンを指し、反応性を考慮して適宜選定される。エポキシ樹脂とアミン化合物とを含む組成物を塗布し、塗膜を乾燥及び硬化させることにより、塗膜の硬化物が密着層となる。アミン化合物の反応性が大きすぎると上記組成物のポットライフが短くなり、ハンドリングが悪くなる。反応性が小さすぎると硬化せずに密着層として機能しにくくなる。エポキシ樹脂とアミン化合物は、反応性、造膜性、バリア性の観点から、質量比にして1/9~5/5の割合で混合される。 (B) For the adhesion layer comprising a cured product formed of an epoxy resin and an amine compound, the epoxy resin has an epoxy resin having a saturated or unsaturated aliphatic structure, an epoxy resin having a saturated or unsaturated alicyclic structure, Alternatively, any epoxy resin having an aromatic structure (aromatic ring) in the molecule may be used, and considering barrier properties, an epoxy resin having an aromatic ring in the molecule is desirable. An amine compound refers to polyamines such as ethylenediamine, metaxylylenediamine, and polyethyleneimine, and is appropriately selected in consideration of reactivity. By applying a composition containing an epoxy resin and an amine compound, and drying and curing the coating film, the cured product of the coating film becomes an adhesion layer. If the reactivity of the amine compound is too great, the pot life of the composition is shortened and handling is worsened. If the reactivity is too small, it will not cure and will not function as an adhesive layer. The epoxy resin and the amine compound are mixed in a mass ratio of 1/9 to 5/5 from the viewpoints of reactivity, film-forming property and barrier property.
 (C)不飽和カルボン酸化合物とアミン化合物により形成される硬化物からなる密着層について、不飽和カルボン酸化合物としては、イタコン酸、マレイン酸、フマル酸、無水イタコン酸、シトラコン酸等が挙げられる。アミン化合物としては、エチレンジアミン、メタキシリレンジアミン、ポリエチレンイミンなどのポリアミン等が挙げられる。これらは反応性を考慮して適宜選定される。不飽和カルボン酸化合物とアミン化合物とを含む組成物を塗布し、塗膜を乾燥及び硬化させることにより、塗膜の硬化物が密着層となる。不飽和カルボン酸化合物(例えば、イタコン酸)とアミン化合物は、造膜性、バリア性の観点から、重量比にして5/5~9/1の割合で混合される。 (C) About the contact | adherence layer which consists of hardened | cured material formed with an unsaturated carboxylic acid compound and an amine compound, As an unsaturated carboxylic acid compound, itaconic acid, maleic acid, fumaric acid, itaconic anhydride, citraconic acid, etc. are mentioned. . Examples of the amine compound include polyamines such as ethylenediamine, metaxylylenediamine, and polyethyleneimine. These are appropriately selected in consideration of reactivity. By applying a composition containing an unsaturated carboxylic acid compound and an amine compound, and drying and curing the coating film, the cured product of the coating film becomes an adhesion layer. The unsaturated carboxylic acid compound (for example, itaconic acid) and the amine compound are mixed in a weight ratio of 5/5 to 9/1 from the viewpoint of film forming property and barrier property.
 密着層へは、密着性、濡れ性、収縮によるクラック発生防止を考慮して、各種官能基を有するシランカップリング剤、イソシアネート化合物、コロイダルシリカ、スメクタイト等の粘土鉱物、安定化剤、着色剤、粘度調整剤等の公知の添加剤を、ガスバリア性を阻害しない範囲で添加することができる。 In consideration of adhesion, wettability, cracking prevention due to shrinkage to the adhesion layer, silane coupling agents having various functional groups, isocyanate compounds, colloidal silica, smectite clay minerals, stabilizers, colorants, Known additives such as viscosity modifiers can be added within a range that does not impair the gas barrier properties.
 密着層(塗膜)の形成方法は、通常のコーティング方法を用いることができる。コーティング方法としては、例えば、ディッピング法、ロールコート、グラビアコート、リバースコート、エアナイフコート、コンマコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等を用いることができる。これらの塗工方式を用いてガスバリア層の上に上述した組成物を塗布する。塗膜の硬化方法としては、熱風乾燥、熱ロール乾燥、高周波照射、赤外線照射、UV照射、電子線(EB)照射等により熱をかけて硬化させる方法、及びUV、EB照射によるラジカル重合等が挙げられ、これらのいずれでもよく、またこれらを2つ以上組み合わせてもよい。 As a method for forming the adhesion layer (coating film), a normal coating method can be used. As the coating method, for example, a dipping method, roll coating, gravure coating, reverse coating, air knife coating, comma coating, die coating, screen printing method, spray coating, gravure offset method and the like can be used. The composition mentioned above is apply | coated on a gas barrier layer using these coating systems. The coating film is cured by hot air drying, hot roll drying, high frequency irradiation, infrared irradiation, UV irradiation, electron beam (EB) irradiation or the like, and radical polymerization by UV or EB irradiation. Any of these may be used, or two or more of these may be combined.
 ガスバリア層312は、高いガスバリア性を得る観点から、金属酸化物からなる層(金属酸化物層)であることが好ましい。金属酸化物層の成膜方法は、真空成膜法である物理気相成長法及び化学気相成長法が挙げられる。物理気相成長法としては、例えば、蒸着法、スパッタリング法、イオンプレーティング法等が挙げられる。また、化学気相成長法としては、例えば、熱CVD法、プラズマCVD法、光CVD法等が挙げられる。これらの成膜方法から適宜選択することができる。 The gas barrier layer 312 is preferably a metal oxide layer (metal oxide layer) from the viewpoint of obtaining high gas barrier properties. Examples of the method for forming the metal oxide layer include a physical vapor deposition method and a chemical vapor deposition method, which are vacuum film formation methods. Examples of physical vapor deposition include vapor deposition, sputtering, and ion plating. Examples of the chemical vapor deposition method include a thermal CVD method, a plasma CVD method, and a photo CVD method. It can select suitably from these film-forming methods.
 上記金属酸化物としては、例えば、アルミニウム、銅、銀、イットリウム、タンタル、ケイ素、マグネシウム等の金属の酸化物が挙げられる。金属酸化物は、安価でバリア性能に優れることから、酸化ケイ素(SiO、yは1.0~2.0)であることが好ましい。yが1.0以上であると、良好なガスバリア性が得られやすい傾向がある。 Examples of the metal oxide include oxides of metals such as aluminum, copper, silver, yttrium, tantalum, silicon, and magnesium. Since the metal oxide is inexpensive and has excellent barrier performance, it is preferably silicon oxide (SiO y , y is 1.0 to 2.0). When y is 1.0 or more, good gas barrier properties tend to be obtained.
 金属酸化物層の厚さは、10~300nmであることが好ましく、20~50nmであることがより好ましい。厚さが10nm以上であることにより均一な膜が得られやすく、ガスバリア性が得られやすくなる傾向がある。一方、厚さが300nm以下であると、ロール・ツー・ロールで成膜するために必要な柔軟性が得られやすく、ワレ等によるバリア性の低下を抑制できる傾向がある。また金属酸化物層は厚すぎると未酸化の金属色が強く現れ、透明性が低下することがある。 The thickness of the metal oxide layer is preferably 10 to 300 nm, and more preferably 20 to 50 nm. When the thickness is 10 nm or more, a uniform film tends to be obtained, and gas barrier properties tend to be easily obtained. On the other hand, when the thickness is 300 nm or less, flexibility necessary for film formation by roll-to-roll is likely to be obtained, and there is a tendency that deterioration of barrier properties due to cracking or the like can be suppressed. On the other hand, when the metal oxide layer is too thick, an unoxidized metal color appears strongly, and the transparency may be lowered.
 金属酸化物層は高いバリア性を発現するが、硬く脆いため可撓性を付与するには膜厚を薄く(10~300nm)成膜することが好ましい。しかし、膜厚が薄いと割れやすく、異物の混入による損傷、クラック等の微小な欠陥が入りやすくなる。数μmの微小な欠陥は、金属酸化物層の面でのバリア性(ガス透過率の測定等によって評価される保護フィルム全体としてのガスバリア性)には現れにくいが、発光ユニットにダークスポットの発生に影響する。しかし、厚さ0.3μmにおいて、100cm/(m・day・atm)(30℃70%RH環境下測定)以下の酸素透過率を有する密着層を金属酸化物層上に備えることで、金属酸化物層に空いた微小な欠陥を広げることなく、割れたキズを閉じ合わせ、密着させて補修することで、クラックを塞ぐことができる。よって、密着層に金属酸化物層と同等の高いバリア性は必要なく、数μmの微小な欠陥ならば、100cm/(m・day・atm)(30℃70%RH環境下測定)以下の酸素透過率を有する密着層を用いることにより、ダークスポットの発生は抑えられる。 Although the metal oxide layer exhibits a high barrier property, it is preferably hard to form a thin film (10 to 300 nm) in order to impart flexibility because it is hard and brittle. However, if the film thickness is small, the film is easily broken, and minute defects such as damage and cracks due to the inclusion of foreign substances are likely to be introduced. Small defects of several μm are unlikely to appear in the barrier property on the surface of the metal oxide layer (the gas barrier property of the protective film as a whole evaluated by measuring gas permeability, etc.), but dark spots occur in the light emitting unit. Affects. However, by providing an adhesion layer having an oxygen permeability of 100 cm 3 / (m 2 · day · atm) (measured in an environment of 30 ° C. and 70% RH) at a thickness of 0.3 μm on the metal oxide layer, The cracks can be closed by closing the cracks that are close to each other and repairing the cracks without spreading minute defects in the metal oxide layer. Therefore, the adhesion layer does not need to have the same high barrier property as the metal oxide layer, and if it is a minute defect of several μm, it is 100 cm 3 / (m 2 · day · atm) (measured in an environment of 30 ° C. and 70% RH) or less. The generation of dark spots can be suppressed by using an adhesion layer having an oxygen transmission rate of 10 nm.
 金属酸化物層の上に、金属酸化物層にキズが入りにくくする目的で保護コート層(図示せず)を設けてもよい。この場合、密着層は当該保護コート層上に設けられる。保護コート層の材料としては、密着性、透明性を考慮すると、ポリアクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂等が挙げられる。保護コート層の厚さは0.01~1μm程度である。1μm以下であると、均一に硬化して成膜させることができ、表面性が低下せずガスバリア性の低下を抑制できる傾向がある。0.01μm以上であると、保護コート層の効果は得られにくくなる。 A protective coat layer (not shown) may be provided on the metal oxide layer for the purpose of preventing scratches on the metal oxide layer. In this case, the adhesion layer is provided on the protective coating layer. Examples of the material for the protective coat layer include polyacrylic resin, polyester resin, and polyurethane resin in view of adhesion and transparency. The thickness of the protective coat layer is about 0.01 to 1 μm. When the thickness is 1 μm or less, the film can be uniformly cured to form a film, and there is a tendency that the surface property does not deteriorate and the gas barrier property can be prevented from decreasing. When the thickness is 0.01 μm or more, the effect of the protective coat layer is hardly obtained.
 保護コート層によってある程度の微細なキズを防ぐことが可能であるが、1μm以上の異物によるキズを完全に防ぐことはできず、ダークスポット発生により歩留まりが低下することがある。本実施形態に係る発光体保護フィルムによれば、保護コート層を貫通して金属酸化物層にこれらのキズやクラックによる欠陥が生じている場合も、ガスバリア性のある密着層が入り込んで欠陥を修復し、ダークスポットの発生を抑制することができる。 Although the protective coating layer can prevent a certain amount of fine scratches, scratches caused by foreign matters of 1 μm or more cannot be completely prevented, and the yield may decrease due to the occurrence of dark spots. According to the light emitter protective film according to the present embodiment, even when defects due to these scratches or cracks are generated in the metal oxide layer through the protective coating layer, the adhesion layer having a gas barrier property enters the defect. It can be repaired and the occurrence of dark spots can be suppressed.
 基材フィルム311としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリエチレンナフタレート等のポリエステル;ナイロン等のポリアミド;ポリプロピレン及びシクロオレフィン等のポリオレフィン;ポリカーボネート;並びにトリアセチルセルロース等が挙げられるが、これらに限定されない。厚さは、特に制限されないが、3μm以上100μm以下であることが好ましく、5μm以上50μm以下であることがより好ましい。 Examples of the base film 311 include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyamides such as nylon; polyolefins such as polypropylene and cycloolefin; polycarbonates; and triacetyl cellulose. It is not limited. The thickness is not particularly limited, but is preferably 3 μm or more and 100 μm or less, and more preferably 5 μm or more and 50 μm or less.
 基材フィルム311とガスバリア層312との密着性を付与するために、基材フィルム311とガスバリア層312との間にアンカーコート層(図示せず)を備えてもよい。アンカーコート層の材料は、密着性、透明性を考慮するとポリアクリル樹脂やポリエステル樹脂、ポリウレタン樹脂等が挙げられ、厚さは0.01~1μm程度である。1μm以下であると、均一に硬化して成膜することができ、表面性が低下せずガスバリア性の低下を抑制できる傾向がある。0.01μm以上であると、密着性の発現が均一になる。 In order to provide adhesion between the base film 311 and the gas barrier layer 312, an anchor coat layer (not shown) may be provided between the base film 311 and the gas barrier layer 312. Examples of the material for the anchor coat layer include polyacrylic resin, polyester resin, polyurethane resin and the like in consideration of adhesion and transparency, and the thickness is about 0.01 to 1 μm. When the thickness is 1 μm or less, the film can be uniformly cured to form a film, and there is a tendency that the surface property does not deteriorate and the deterioration of the gas barrier property can be suppressed. When it is 0.01 μm or more, the expression of adhesion becomes uniform.
 発光体保護フィルム300は、光散乱機能を発揮させるために、基材フィルム311の、ガスバリア層312と反対側の面にマット層(図示せず)を備えていてもよい。発光体保護フィルム300がマット層を備えることにより、光散乱機能以外にも、干渉縞(モアレ)防止機能及び反射防止機能等を付与することができる。 The light emitter protection film 300 may include a mat layer (not shown) on the surface of the base film 311 opposite to the gas barrier layer 312 in order to exhibit a light scattering function. When the light emitter protection film 300 includes the mat layer, an interference fringe (moire) prevention function and an antireflection function can be provided in addition to the light scattering function.
(波長変換シート)
 図7は本発明の別の実施形態に係る波長変換シート400の概略断面図である。波長変換シート400は液晶ディスプレイ用バックライトユニット(後述)の光源からの光の一部の波長を変換するシートである。図7に示すように、本実施形態の波長変換シート400は、本発明の第二実施形態に係る発光体保護フィルム300a,300bと、発光体層の一種である蛍光体層316とを、密着層313a,313bと蛍光体層316とがそれぞれ接するように配置してなり、蛍光体層316を発光体保護フィルム300a,300bで挟んだ構成を有する。つまり、波長変換シート400は、発光体保護フィルム300a,300bで、蛍光体層316が包み込まれた(すなわち、封止された)構造を有する。
(Wavelength conversion sheet)
FIG. 7 is a schematic cross-sectional view of a wavelength conversion sheet 400 according to another embodiment of the present invention. The wavelength conversion sheet 400 is a sheet that converts the wavelength of a part of light from a light source of a backlight unit for liquid crystal display (described later). As shown in FIG. 7, the wavelength conversion sheet 400 according to the present embodiment adheres the phosphor protective films 300a and 300b according to the second embodiment of the present invention and the phosphor layer 316 that is a kind of the phosphor layer. The layers 313a and 313b and the phosphor layer 316 are arranged so as to be in contact with each other, and the phosphor layer 316 is sandwiched between the light emitter protection films 300a and 300b. That is, the wavelength conversion sheet 400 has a structure in which the phosphor layer 316 is wrapped (that is, sealed) by the light emitter protection films 300a and 300b.
 蛍光体層316は蛍光体314及びバインダー樹脂315を含む。蛍光体層316の厚さは数十~数百μmである。上記樹脂としては、例えば光硬化性樹脂又は熱硬化性樹脂を使用することができる。蛍光体層316は、量子ドットからなる2種類の蛍光体を分散させたものであることが好ましい。また、蛍光体層316は、1種類の蛍光体を分散させた蛍光体層と別の種類の蛍光体を分散させた蛍光体層が2層以上積層されたものであってもよい。2種類の蛍光体には、励起波長が同一のものが選択される。励起波長は、バックライトユニット(後述)の光源が出射する光の波長に基づいて選択される。2種類の蛍光体の蛍光色は相互に異なる。光源に青色発光ダイオード(青色LED)を用いる場合、各蛍光色は、赤色及び緑色である。各蛍光の波長、及び光源が出射する光の波長は、カラーフィルタの分光特性に基づき選択される。蛍光のピーク波長は、例えば、赤色で610nmであり、緑色で550nmである。 The phosphor layer 316 includes a phosphor 314 and a binder resin 315. The thickness of the phosphor layer 316 is several tens to several hundreds μm. As the resin, for example, a photocurable resin or a thermosetting resin can be used. The phosphor layer 316 is preferably formed by dispersing two types of phosphors composed of quantum dots. The phosphor layer 316 may be a laminate in which two or more phosphor layers in which one type of phosphor is dispersed and another phosphor layer in which another type of phosphor is dispersed are laminated. Two types of phosphors having the same excitation wavelength are selected. The excitation wavelength is selected based on the wavelength of light emitted from the light source of the backlight unit (described later). The fluorescent colors of the two types of phosphors are different from each other. When a blue light emitting diode (blue LED) is used as the light source, the fluorescent colors are red and green. The wavelength of each fluorescence and the wavelength of light emitted from the light source are selected based on the spectral characteristics of the color filter. The peak wavelength of fluorescence is, for example, 610 nm for red and 550 nm for green.
 バインダー樹脂315としては、シリコーン系樹脂、エポキシ系樹脂、アクリル系樹脂等を主剤としたものが挙げられる。特に、エポキシ系樹脂又はアクリル系樹脂は水蒸気及び酸素に対するバリア性を有するものが多く好ましい。特に、エポキシ系樹脂の場合、未架橋のエポキシ基と、本実施形態に係る発光体保護フィルムの密着層を構成するアミン系硬化剤との反応により、より優れた密着性が得られる傾向がある。 Examples of the binder resin 315 include those based on silicone resins, epoxy resins, acrylic resins, and the like. In particular, many epoxy resins or acrylic resins have a barrier property against water vapor and oxygen. In particular, in the case of an epoxy resin, more excellent adhesion tends to be obtained by a reaction between an uncrosslinked epoxy group and an amine curing agent that constitutes the adhesion layer of the phosphor protective film according to the present embodiment. .
 次に、蛍光体314の粒子構造を説明する。蛍光体314としては、特に発光効率の良いコア・シェル型量子ドットが好適に用いられる。コア・シェル型量子ドットは、発光部としての半導体結晶コアが保護膜としてのシェルにより被覆されたものである。例えば、コアにはセレン化カドミウム(CdSe)、シェルには硫化亜鉛(ZnS)が使用可能である。CdSeの粒子の表面欠陥がバンドギャップの大きいZnSにより被覆されることで量子収率が向上する。また、蛍光体は、コアが第一シェル及び第二シェルにより二重に被覆されたものであってもよい。この場合、コアにはCdSe、第一シェルにはセレン化亜鉛(ZnSe)、第二シェルにはZnSが使用可能である。 Next, the particle structure of the phosphor 314 will be described. As the phosphor 314, a core-shell type quantum dot having particularly high luminous efficiency is preferably used. The core-shell type quantum dot is obtained by covering a semiconductor crystal core as a light emitting portion with a shell as a protective film. For example, cadmium selenide (CdSe) can be used for the core and zinc sulfide (ZnS) can be used for the shell. The surface yield of CdSe particles is covered with ZnS having a large band gap, so that the quantum yield is improved. Further, the phosphor may be one in which the core is doubly covered with the first shell and the second shell. In this case, CdSe can be used for the core, zinc selenide (ZnSe) can be used for the first shell, and ZnS can be used for the second shell.
 蛍光体層316の形成方法及び波長変換シート400の製造方法としては、特に限定されず、例えば、特表2013-544018号公報に記載される方法が挙げられる。蛍光体314を溶媒に分散して濃度調整した蛍光体分散液をバインダー樹脂315と混合し蛍光体組成物として、発光体保護フィルム300aの密着層313aの面上に塗布した後、塗布面と別の発光体保護フィルム300bの密着層313bとを貼り合わせ、蛍光体層316を硬化することにより、波長変換シート400を製造することができる。 The method for forming the phosphor layer 316 and the method for producing the wavelength conversion sheet 400 are not particularly limited, and examples thereof include a method described in JP 2013-544018 A. A phosphor dispersion liquid whose concentration is adjusted by dispersing phosphor 314 in a solvent is mixed with binder resin 315 and applied as a phosphor composition on the surface of adhesion layer 313a of phosphor protective film 300a. The wavelength conversion sheet 400 can be manufactured by pasting together the adhesion layer 313b of the phosphor protective film 300b and curing the phosphor layer 316.
(バックライトユニット)
 上記波長変換シート400を用いることにより、バックライトユニットが得られる。図8は、上記波長変換シート400を用いて得られるバックライトユニット500の概略断面図である。図8において、バックライトユニット500は、波長変換シート400に導光板420及び反射板430がこの順で配置され、光源410は上記導光板420の側面に配置される。
(Backlight unit)
By using the wavelength conversion sheet 400, a backlight unit is obtained. FIG. 8 is a schematic cross-sectional view of a backlight unit 500 obtained using the wavelength conversion sheet 400. In FIG. 8, in the backlight unit 500, a light guide plate 420 and a reflection plate 430 are disposed in this order on the wavelength conversion sheet 400, and a light source 410 is disposed on a side surface of the light guide plate 420.
 導光板420及び反射板430は、光源410から出射された光を効率的に導き、反射するものであり、公知の材料が使用される。導光板420としては、例えば、アクリル、ポリカーボネート、及びシクロオレフィンフィルム等が使用される。光源410には、例えば、青色発光ダイオード素子が複数個設けられる。発光ダイオード素子は、紫色発光ダイオード、又はさらに長波長の光を出射する発光ダイオードであってもよい。光源410から出射された光は、導光板420に入射した後、反射板430による反射や、屈折等を伴って波長変換シート400に入射する。波長変換シート400中の蛍光体層を通過した光は、蛍光体層に入射する前の光に蛍光体層で波長変換された光が混ざることで、白色光となる。 The light guide plate 420 and the reflection plate 430 efficiently guide and reflect the light emitted from the light source 410, and a known material is used. As the light guide plate 420, for example, acrylic, polycarbonate, cycloolefin film, or the like is used. The light source 410 is provided with a plurality of blue light emitting diode elements, for example. The light emitting diode element may be a violet light emitting diode or a light emitting diode that emits light having a longer wavelength. The light emitted from the light source 410 enters the light guide plate 420 and then enters the wavelength conversion sheet 400 with reflection by the reflection plate 430, refraction, and the like. The light that has passed through the phosphor layer in the wavelength conversion sheet 400 becomes white light by mixing the light that has been wavelength-converted by the phosphor layer with the light before entering the phosphor layer.
(エレクトロルミネッセンス発光ユニット)
 図9は本発明の別の実施形態に係るエレクトロルミネッセンス発光ユニットの概略断面図である。エレクトロルミネッセンス発光ユニット700は、発光体層の一種であるエレクトロルミネッセンス発光体層610を含む電極要素650と、電極要素650を封止するためのシーラント層660、第二実施形態に係る発光体保護フィルム300c,300dとを備える。より具体的には、例えば、透明電極層620と、該透明電極層620上(図面では下)に設けられたエレクトロルミネッセンス発光体層610と、該エレクトロルミネッセンス発光体層610上に設けられた誘電体層630と、該誘電体層630上に設けられた背面電極層640を含む電極要素650を、シーラント層660を介して、第二実施形態に係る第一の発光体保護フィルム300c及び第二の発光体保護フィルム300dで挟持するとともに密封することにより得られる。このとき、発光体保護フィルム300c,300dは、電極要素650を挟んで、密着層313c,313dどうしが対向するように配置される。
(Electroluminescence light emitting unit)
FIG. 9 is a schematic cross-sectional view of an electroluminescent light emitting unit according to another embodiment of the present invention. The electroluminescence light emitting unit 700 includes an electrode element 650 including an electroluminescence light emitter layer 610 which is a kind of light emitter layer, a sealant layer 660 for sealing the electrode element 650, and a light emitter protective film according to the second embodiment. 300c, 300d. More specifically, for example, the transparent electrode layer 620, the electroluminescent light emitter layer 610 provided on the transparent electrode layer 620 (lower in the drawing), and the dielectric provided on the electroluminescent light emitter layer 610. An electrode element 650 including a body layer 630 and a back electrode layer 640 provided on the dielectric layer 630 is provided via the sealant layer 660 with the first light emitter protective film 300c and the second light emitter protective film 300c according to the second embodiment. It is obtained by sandwiching and sealing with the light emitter protective film 300d. At this time, the light emitter protection films 300c and 300d are arranged so that the adhesion layers 313c and 313d face each other with the electrode element 650 interposed therebetween.
 第一の発光体保護フィルム300c、第二の発光体保護フィルム300dは、少なくともその一方が第二実施形態に係る発光体保護フィルムとする構成であってもよい。一方のみが第二実施形態に係る発光体保護フィルムであるとき、他方は例えばガラス基材であってもよい。 The first light emitter protective film 300c and the second light emitter protective film 300d may be configured such that at least one of them is a light emitter protective film according to the second embodiment. When only one is the light emitter protective film according to the second embodiment, the other may be, for example, a glass substrate.
 シーラント層の材料としては、ポリオレフィン系樹脂を酸でグラフト変性した酸変性ポリオレフィン系樹脂、シリコーン系樹脂、エポキシ系樹脂、アクリル系樹脂等を主剤としたものが挙げられる。特に、エポキシ系樹脂、アクリル系樹脂等を主体にしたものが好ましい。シーラント層の材料がエポキシ系樹脂、アクリル系樹脂等からなることで、背面電極層や第一の発光体保護フィルムとの密着性が良好となるためである。 Examples of the material for the sealant layer include an acid-modified polyolefin resin obtained by graft-modifying a polyolefin resin with an acid, a silicone resin, an epoxy resin, an acrylic resin, and the like. In particular, those mainly composed of an epoxy resin, an acrylic resin or the like are preferable. This is because the material of the sealant layer is made of an epoxy resin, an acrylic resin, or the like, so that the adhesion to the back electrode layer and the first light emitter protective film is improved.
 エレクトロルミネッセンス発光ユニットにおいても、既述と同様のメカニズムによるダークスポットの発生が考えられる。本実施形態に係るエレクトロルミネッセンス発光ユニット700によれば、シーラント層660上に設けられた保護フィルムとして、第二実施形態に係る発光体保護フィルムを用いることにより、ガスバリア層が欠陥を有していたとしても、ダークスポットの発生を抑制することができる。 Also in the electroluminescence light-emitting unit, dark spots can be generated by the same mechanism as described above. According to the electroluminescence light emitting unit 700 according to the present embodiment, the gas barrier layer has a defect by using the light emitter protective film according to the second embodiment as the protective film provided on the sealant layer 660. However, the generation of dark spots can be suppressed.
 各電極層、エレクトロルミネッセンス発光体層及び誘電体層は、例えば、蒸着及びスパッタリング等の方法により、公知の材料を用いて、形成することができる。 Each electrode layer, electroluminescence light emitter layer, and dielectric layer can be formed by using a known material by a method such as vapor deposition or sputtering, for example.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.
[第一実施形態に係る発光体保護フィルムの作製]
(実施例1-1)
 アクリルポリオールとトリレンジイソシアネートとを、アクリルポリオールのOH基の数に対してトリレンジイソシアネートのNCO基の数が等量となるように混合し、全固形分が5質量%になるよう酢酸エチルで希釈した。希釈後の混合液に、さらにβ-(3,4エポキシシクロヘキシル)トリメトキシシランを、全固形分に対して5質量%となるように添加し、これらを混合することでアンカーコート層組成物を作製した。
[Production of luminous body protective film according to first embodiment]
Example 1-1
Acrylic polyol and tolylene diisocyanate are mixed so that the number of NCO groups of tolylene diisocyanate is equal to the number of OH groups of acrylic polyol, and ethyl acetate is added so that the total solid content becomes 5% by mass. Diluted. To the diluted liquid mixture, β- (3,4 epoxy cyclohexyl) trimethoxysilane was further added so as to be 5% by mass with respect to the total solid content, and these were mixed to obtain the anchor coat layer composition. Produced.
 二軸延伸ポリエチレンテレフタレートフィルム(第一基材層、厚さ:25μm)の一方の面上に、上記アンカーコート層組成物をバーコート法により塗布し、100℃1分間乾燥硬化させることにより、厚さ50nmのアンカーコート層を形成した。 On one surface of a biaxially stretched polyethylene terephthalate film (first base material layer, thickness: 25 μm), the anchor coat layer composition is applied by a bar coating method, and dried and cured at 100 ° C. for 1 minute to obtain a thickness. An anchor coat layer having a thickness of 50 nm was formed.
 電子ビーム加熱式の真空蒸着装置を用いて、酸化珪素材料(SiO、キヤノンオプトロン株式会社製)を1.5×10-2Paの圧力下で電子ビーム加熱によって蒸発させ、上記アンカーコート層上に厚さ30nmのSiO膜(第一無機薄膜層)を形成した。なお、蒸着における加速電圧は40kVであり、エミッション電流は0.2Aであった。 Using an electron beam heating type vacuum deposition apparatus, a silicon oxide material (SiO, manufactured by Canon Optron Co., Ltd.) was evaporated by electron beam heating under a pressure of 1.5 × 10 −2 Pa, on the anchor coat layer. A 30 nm thick SiO x film (first inorganic thin film layer) was formed. In addition, the acceleration voltage in vapor deposition was 40 kV, and the emission current was 0.2 A.
 次に、テトラエトキシシラン10.4質量部と塩酸(濃度:0.1N)89.6質量部とを混合して、混合液を30分間撹拌し、テトラエトキシシランの加水分解溶液を得た。一方、ポリビニルアルコールを水/イソプロピルアルコールの混合溶媒(水/イソプロピルアルコール(質量比)=90:10)中に溶解させ、3質量%のポリビニルアルコール溶液を得た。テトラエトキシシランの加水分解溶液60質量部とポリビニルアルコール溶液40質量部とを混合し、ガスバリア性被覆層組成物を得た。 Next, 10.4 parts by mass of tetraethoxysilane and 89.6 parts by mass of hydrochloric acid (concentration: 0.1 N) were mixed, and the mixed solution was stirred for 30 minutes to obtain a hydrolyzed solution of tetraethoxysilane. On the other hand, polyvinyl alcohol was dissolved in a mixed solvent of water / isopropyl alcohol (water / isopropyl alcohol (mass ratio) = 90: 10) to obtain a 3% by mass polyvinyl alcohol solution. 60 parts by mass of a tetraethoxysilane hydrolysis solution and 40 parts by mass of a polyvinyl alcohol solution were mixed to obtain a gas barrier coating composition.
 第一無機薄膜層上に、上記ガスバリア性被覆層組成物を塗布、乾燥することにより、300nmの厚さを有する第一ガスバリア性被覆層を形成した。さらに、上記第一ガスバリア性被覆層上に、上記と同様にして、厚さ30nmの別の第一無機薄膜層を形成し、上記別の第一無機薄膜層上に、厚さ300nmの別の第一ガスバリア性被覆層を形成した。上記のようにして、第一基材層、アンカーコート層、第一無機薄膜層、第一ガスバリア性被覆層、第一無機薄膜層、及び第一ガスバリア性被覆層がこの順に積層されてなる第一光学フィルムを得た。 The first gas barrier coating layer having a thickness of 300 nm was formed on the first inorganic thin film layer by applying and drying the gas barrier coating layer composition. Furthermore, another first inorganic thin film layer having a thickness of 30 nm is formed on the first gas barrier coating layer in the same manner as described above, and another 300 nm thick film is formed on the other first inorganic thin film layer. A first gas barrier coating layer was formed. As described above, the first base material layer, the anchor coat layer, the first inorganic thin film layer, the first gas barrier coating layer, the first inorganic thin film layer, and the first gas barrier coating layer are laminated in this order. An optical film was obtained.
 二軸延伸ポリエチレンテレフタレートフィルム(第二基材層、厚さ:25μm)の一方の面上に、上記アンカーコート層組成物をバーコート法により塗布し、100℃1分間乾燥硬化させることにより、厚さ50nmのアンカーコート層を形成した。 On one surface of a biaxially stretched polyethylene terephthalate film (second base material layer, thickness: 25 μm), the anchor coat layer composition is applied by a bar coating method, and dried and cured at 100 ° C. for 1 minute to obtain a thickness. An anchor coat layer having a thickness of 50 nm was formed.
 電子ビーム加熱式の真空蒸着装置を用いて、酸化珪素材料(SiO、キヤノンオプトロン株式会社製)を1.5×10-2Paの圧力下で電子ビーム加熱によって蒸発させ、上記アンカーコート層上に厚さ30nmのSiO膜(第二無機薄膜層)を形成した。なお、蒸着における加速電圧は40kVであり、エミッション電流は0.2Aであった。 Using an electron beam heating type vacuum deposition apparatus, a silicon oxide material (SiO, manufactured by Canon Optron Co., Ltd.) was evaporated by electron beam heating under a pressure of 1.5 × 10 −2 Pa, on the anchor coat layer. A 30 nm thick SiO x film (second inorganic thin film layer) was formed. In addition, the acceleration voltage in vapor deposition was 40 kV, and the emission current was 0.2 A.
 第二無機薄膜層上に、上記ガスバリア性被覆層組成物を塗布、乾燥することにより、300nmの厚さを有する第二ガスバリア性被覆層を形成した。上記のようにして、第二基材層、アンカーコート層、第二無機薄膜層、及び第二ガスバリア性被覆層がこの順に積層されてなる第二光学フィルムを得た。 On the second inorganic thin film layer, the gas barrier coating layer composition was applied and dried to form a second gas barrier coating layer having a thickness of 300 nm. As described above, a second optical film in which the second base material layer, the anchor coat layer, the second inorganic thin film layer, and the second gas barrier coating layer were laminated in this order was obtained.
 得られた第一光学フィルムの第一ガスバリア性被覆層の表面上に、下記接着剤Aを塗布し、接着剤Aの塗布面に、第二光学フィルムの第二ガスバリア性被覆層を貼り合わせ、50℃2日間エージングを行った。上記のようにして、第一光学フィルムと第二光学フィルムとを5μmの厚さを有する接着層を介して貼り合せた。なお、上記接着剤Aはエポキシ樹脂からなる主剤とポリアミン樹脂からなる硬化剤とを混合して得られる接着剤組成物である。 The following adhesive A is applied on the surface of the first gas barrier coating layer of the obtained first optical film, and the second gas barrier coating layer of the second optical film is bonded to the coating surface of the adhesive A, Aging was performed at 50 ° C. for 2 days. As described above, the first optical film and the second optical film were bonded together via an adhesive layer having a thickness of 5 μm. The adhesive A is an adhesive composition obtained by mixing a main agent composed of an epoxy resin and a curing agent composed of a polyamine resin.
 次に、第二光学フィルムの第一光学フィルムが貼り合わされていない側の面上に、アクリル樹脂(商品名:アカリディック、DIC社製)100質量部とシリカ粒子(商品名:トスパール120、平均粒子径:2.0μm、モメンティブ・パフォーマンス・マテリアル社製)20質量部からなる組成物を塗布した。塗膜を加熱して、アクリル樹脂を硬化することにより、厚さ3μmのマット層を形成した。上記のようにして、第一光学フィルム、接着層、第二光学フィルム、及びマット層がこの順に積層されてなる発光体保護フィルムを得た。 Next, on the surface of the second optical film on which the first optical film is not bonded, 100 parts by mass of acrylic resin (trade name: Akari Dick, manufactured by DIC) and silica particles (trade name: Tospearl 120, average) A composition consisting of 20 parts by mass (particle size: 2.0 μm, manufactured by Momentive Performance Materials) was applied. The coating film was heated to cure the acrylic resin, thereby forming a mat layer having a thickness of 3 μm. As described above, a light emitter protective film in which the first optical film, the adhesive layer, the second optical film, and the mat layer were laminated in this order was obtained.
(実施例1-2~1-3及び比較例1-1~1-3)
 第一光学フィルムと第二光学フィルムとを貼り合せる際に用いた接着剤として、接着剤Aに代えて、下記表1に記載の接着剤を用いたこと以外は、実施例1-1と同様にして、実施例1-2~1-3及び比較例1-1~1-3の発光体保護フィルムを得た。なお、実施例1-3では、エージングに代えて、線量15Mradで電子線を照射し、接着剤Cを硬化させた。
(Examples 1-2 to 1-3 and Comparative Examples 1-1 to 1-3)
As in Example 1-1, except that the adhesive shown in Table 1 below was used in place of the adhesive A as the adhesive used for bonding the first optical film and the second optical film. Thus, the light emitter protective films of Examples 1-2 to 1-3 and Comparative Examples 1-1 to 1-3 were obtained. In Example 1-3, the adhesive C was cured by irradiating an electron beam with a dose of 15 Mrad instead of aging.
[発光体保護フィルムの評価]
(接着層の酸素透過率)
 実施例1-1~1-3及び比較例1-1~1-3で用いられた接着剤A~Fを厚さ70μmのCPP(無延伸ポリプロピレンフィルム)上に塗布し、上記接着剤の塗布面に、厚さ70μmのCPPを貼り合せ、エージング又は電子線照射を行った。接着剤A~B及び接着剤D~Fに対しては50℃5日間でエージングを行った。接着剤Cに対しては線量15Mradで電子線を照射した。上記のようにして、厚さ70μmのCPP、厚さ5μmの接着層、及び厚さ70μmのCPPがこの順に積層されてなる、酸素透過率測定用サンプル(積層体)を得た。得られたサンプルを差圧式ガス透過率測定装置(GTRテック株式会社製、GTR-30X)内に配置し、JIS K7126-1(附属書1)に記載の方法に従って、温度40℃、相対湿度0%の環境下で試験ガスを酸素とし、差圧101kPa(1atm)で差圧法にて上記サンプルの酸素透過率を測定した。酸素透過率の測定結果を表1に示す。なお、接着剤にて貼り合わせられたフィルムとして、接着層より高い酸素透過率(例えば、1000cm/(m・day・atm)より高い酸素透過率)を有するフィルムを用いることにより、上記サンプルの測定結果は接着層の酸素透過率とみなすことができる。上記測定方法では、接着剤にて貼り合わせられたフィルムとして、酸素透過率2500cm/(m・day・atm)であるCPPを用いていることから、2500cm/(m・day・atm)以下のサンプルの酸素透過率の測定結果は、接着層の酸素透過率とみなすことができる。
[Evaluation of phosphor protective film]
(Oxygen permeability of adhesive layer)
The adhesives A to F used in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 were applied onto CPP (unstretched polypropylene film) having a thickness of 70 μm, and the adhesive was applied. A 70 μm thick CPP was bonded to the surface, and aging or electron beam irradiation was performed. The adhesives A to B and the adhesives D to F were aged at 50 ° C. for 5 days. The adhesive C was irradiated with an electron beam at a dose of 15 Mrad. As described above, an oxygen permeability measurement sample (laminated body) in which a CPP having a thickness of 70 μm, an adhesive layer having a thickness of 5 μm, and a CPP having a thickness of 70 μm were laminated in this order was obtained. The obtained sample was placed in a differential pressure type gas permeability measuring device (GTR-30X, manufactured by GTR Tech Co., Ltd.), and the temperature was 40 ° C. and the relative humidity was 0 according to the method described in JIS K7126-1 (Appendix 1). The oxygen permeability of the sample was measured by the differential pressure method at a differential pressure of 101 kPa (1 atm) with oxygen as the test gas in a% environment. Table 1 shows the measurement results of oxygen permeability. By using a film having an oxygen transmission rate higher than that of the adhesive layer (for example, an oxygen transmission rate higher than 1000 cm 3 / (m 2 · day · atm)) as the film bonded with the adhesive, the above sample is used. This measurement result can be regarded as the oxygen permeability of the adhesive layer. In the above measurement method, as a film that is bonded by an adhesive, since it is used CPP oxygen permeability 2500cm 3 / (m 2 · day · atm), 2500cm 3 / (m 2 · day · atm ) The measurement results of oxygen permeability of the following samples can be regarded as oxygen permeability of the adhesive layer.
(密着性)
 実施例1-1~1-3及び比較例1-1~1-3で得られた発光体保護フィルムを幅15mmの短冊状にカットし、発光体保護フィルムの第一光学フィルム側をガラス板上に固定した。固定された短冊状の発光体保護フィルムの第二光学フィルムを、テンシロン引張試験機(オリエンテック社製)を用いて、ガラス板に対して垂直な方向に、300mm/分の速度で、第一光学フィルムから剥離し、剥離に要した強度を測定した。上記強度を、作製直後の発光体保護フィルム(条件(1))、温度60℃湿度90%RH1000時間保存後の発光体保護フィルム(条件(2))に対して、温度23℃湿度65%RHの環境下で測定した。条件(1)~(2)で測定した剥離強度の測定結果を密着性の評価結果として表1に示す。剥離強度が1N以上である場合に好適な密着性が得られ、3N以上である場合に特に好適な密着性が得られていると判断した。
(Adhesion)
The phosphor protective films obtained in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 were cut into strips having a width of 15 mm, and the first optical film side of the phosphor protective film was a glass plate. Fixed on top. Using a Tensilon tensile tester (Orientec Co., Ltd.), the second optical film of the fixed strip-shaped light emitter protective film is fixed at a speed of 300 mm / min in the direction perpendicular to the glass plate. It peeled from the optical film and the intensity | strength required for peeling was measured. The above strength is compared with the phosphor protective film immediately after fabrication (condition (1)) and the phosphor protective film after storage at a temperature of 60 ° C. and a humidity of 90% RH for 1000 hours (condition (2)) at a temperature of 23 ° C. and a humidity of 65% RH. Measured in an environment. The measurement results of the peel strength measured under the conditions (1) to (2) are shown in Table 1 as the adhesion evaluation results. It was judged that suitable adhesion was obtained when the peel strength was 1N or more, and particularly suitable adhesion was obtained when the peel strength was 3N or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1中に記載した接着剤の詳細は以下のとおりである。
接着剤A:三菱ガス化学株式会社製マクシーブ、配合比(エポキシ樹脂系主剤/アミン系硬化剤/メタノール/酢酸エチル=1/3/3/6(質量比))。
接着剤B:ポリアクリル酸系接着剤、配合比(水酸化ナトリウム水溶液でカルボキシル基の5モル%を中和したポリアクリル酸水溶液/グリセリン=1/1(固形分質量比))。
接着剤C:アミン化合物溶液と不飽和カルボン酸溶液との混合物(アミン化合物溶液/不飽和カルボン酸溶液=1:1(質量比))。アミン化合物溶液は、アミン化合物(株式会社日本触媒製、商品名:エポミンSP110)の水/イソプロピルアルコール混合溶液(3質量%、水/イソプロピルアルコール=50/50(質量比))であり、不飽和カルボン酸溶液は、不飽和カルボン酸(関東化学株式会社製、イタコン酸)の水/イソプロピルアルコール混合溶液(3質量%、水/イソプロピルアルコール=50:50(質量比))である。
接着剤D:東洋モートン株式会社製、配合比(エポキシ樹脂系主剤AD-393/アミン系硬化剤CTA-5/イソプロピルアルコール=5/0.3/2.7(質量比))。
接着剤E:三井化学株式会社製、配合比(エステル系主剤タケラックA-525/イソシアネート系硬化剤タケネートA-52/酢酸エチル=90/10/100(質量比))。
接着剤F:サイデン化学株式会社製、配合比(ポリオール樹脂系主剤X-313-405S/ポリイソシアネート系硬化剤K-341/トルエン=25/0.34/31.25(質量比))。
In addition, the detail of the adhesive agent described in Table 1 is as follows.
Adhesive A: Maxive manufactured by Mitsubishi Gas Chemical Co., Inc., blending ratio (epoxy resin main agent / amine curing agent / methanol / ethyl acetate = 1/3/3/6 (mass ratio)).
Adhesive B: Polyacrylic acid-based adhesive, blending ratio (polyacrylic acid aqueous solution / glycerin = 1/1 (solid content mass ratio) obtained by neutralizing 5 mol% of carboxyl groups with aqueous sodium hydroxide solution).
Adhesive C: Mixture of amine compound solution and unsaturated carboxylic acid solution (amine compound solution / unsaturated carboxylic acid solution = 1: 1 (mass ratio)). The amine compound solution is a water / isopropyl alcohol mixed solution (3 mass%, water / isopropyl alcohol = 50/50 (mass ratio)) of an amine compound (manufactured by Nippon Shokubai Co., Ltd., trade name: Epomin SP110), which is unsaturated. The carboxylic acid solution is a water / isopropyl alcohol mixed solution (3 mass%, water / isopropyl alcohol = 50: 50 (mass ratio)) of unsaturated carboxylic acid (manufactured by Kanto Chemical Co., Inc., itaconic acid).
Adhesive D: manufactured by Toyo Morton Co., Ltd., compounding ratio (epoxy resin main component AD-393 / amine-based curing agent CTA-5 / isopropyl alcohol = 5 / 0.3 / 2.7 (mass ratio)).
Adhesive E: manufactured by Mitsui Chemicals, Inc., mixing ratio (ester main agent Takelac A-525 / isocyanate hardener Takenate A-52 / ethyl acetate = 90/10/100 (mass ratio)).
Adhesive F: Seiden Chemical Co., Ltd., blending ratio (polyol resin main agent X-313-405S / polyisocyanate hardener K-341 / toluene = 25 / 0.34 / 31.25 (mass ratio)).
 接着剤としてエポキシ樹脂を含む組成物を用いた実施例1では5Nを超える十分な剥離強度が得られた。また、接着剤Eを用いた比較例2では硬化反応時に接着層で発泡が生じ、発光体保護フィルムが白濁した。 In Example 1 using a composition containing an epoxy resin as an adhesive, a sufficient peel strength exceeding 5 N was obtained. In Comparative Example 2 using adhesive E, foaming occurred in the adhesive layer during the curing reaction, and the phosphor protective film became cloudy.
[第一実施形態に係る波長変換シートの作製]
 セレン化カドミウム(CdSe)の粒子に硫化亜鉛(ZnS)を被覆したコア・シェル構造を有する蛍光体(商品名:CdSe/ZnS 530、SIGMA-ALDRICH社製)を溶媒に分散して濃度調整することで蛍光体分散液を調製した。上記蛍光体分散液をエポキシ系感光性樹脂と混合して、蛍光体組成物を得た。実施例1-1~1-3及び比較例1-1~1-3で得られた発光体保護フィルムの第一光学フィルム側の表面上に、上記蛍光体組成物を塗布し、100μmの厚さを有する蛍光体層を形成した。
[Production of Wavelength Conversion Sheet According to First Embodiment]
Concentration adjustment by dispersing a phosphor (trade name: CdSe / ZnS 530, manufactured by SIGMA-ALDRICH) having a core / shell structure in which cadmium selenide (CdSe) particles are coated with zinc sulfide (ZnS) in a solvent. A phosphor dispersion liquid was prepared. The phosphor dispersion was mixed with an epoxy photosensitive resin to obtain a phosphor composition. The phosphor composition was coated on the surface of the phosphor protective film obtained in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 on the first optical film side, and the thickness was 100 μm. A phosphor layer having a thickness was formed.
 蛍光体層上に、さらに同じ実施例1-1~1-3及び比較例1-1~1-3で得られた2枚目の発光体保護フィルムを、第一光学フィルムが蛍光体層側に向くように、配置して積層した後、紫外線照射により蛍光体層(感光性樹脂)を硬化することで、実施例1-1~1-3及び比較例1-1~1-3で作製した発光体保護フィルムを用いた波長変換シートを得た。 On the phosphor layer, the second phosphor protective film obtained in the same Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 was further used, and the first optical film was on the phosphor layer side. The phosphor layers (photosensitive resins) were cured by ultraviolet irradiation after being arranged and laminated so as to be suitable for Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3. A wavelength conversion sheet using the phosphor protective film thus obtained was obtained.
[波長変換シートの評価]
(針孔評価)
 波長変換シートの製造において、一方の発光体保護フィルムの第一光学フィルムとして、第一バリア層側から針を突き刺すことにより30~300μm程度の直径を有し第一バリア層及び第一基材層を貫通する孔を設けた第一光学フィルムを用い、実施例1-1~1-3及び比較例1-1~1-3それぞれに対するダークスポット評価用波長変換シートを作製した。上記孔は無機薄膜層を蒸着によって形成した場合のスプラッシュによる孔を疑似的に再現したものである。得られたダークスポット評価用波長変換シートを、温度85℃、相対湿度0%RHの環境下に、曝露した。曝露後72時間、200時間及び1000時間が経過したダークスポット評価用波長変換シートに対し、孔を設けていない発光体保護フィルム側から青色光を照射し、孔を設けた発光体保護フィルム側から透過光を目視にて確認し、下記基準に従って黒点状の欠陥(ダークスポット)の有無を評価した。第一光学フィルムに設けた孔の長径a及び短径bとともに、上記孔周辺におけるダークスポットの評価結果を表2~表3に示す。
A:曝露後1000時間経過後も、ダークスポットの存在が確認されなかった。
B:曝露後200時間経過後には、ダークスポットの存在が確認されなかったが、曝露後1000時間経過後には、ダークスポットの存在が確認された。
C:曝露後72時間経過後には、ダークスポットの存在が確認されなかったが、曝露後200時間経過後には、ダークスポットの存在が確認された。
D:曝露後72時間経過後にダークスポットの存在が確認された。
[Evaluation of wavelength conversion sheet]
(Needle hole evaluation)
In the production of the wavelength conversion sheet, the first barrier layer and the first base material layer have a diameter of about 30 to 300 μm by piercing a needle from the first barrier layer side as the first optical film of one of the light emitter protective films. A wavelength conversion sheet for dark spot evaluation for each of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 was prepared using the first optical film provided with a hole penetrating through the first optical film. The hole is a pseudo reproduction of the hole due to splash when the inorganic thin film layer is formed by vapor deposition. The obtained wavelength conversion sheet for dark spot evaluation was exposed to an environment having a temperature of 85 ° C. and a relative humidity of 0% RH. To the wavelength conversion sheet for dark spot evaluation after 72 hours, 200 hours and 1000 hours after exposure, the blue light is irradiated from the side of the light emitter protective film not provided with holes, and from the side of the light emitter protective film provided with holes. The transmitted light was visually confirmed, and the presence or absence of black spot-like defects (dark spots) was evaluated according to the following criteria. Tables 2 to 3 show the evaluation results of dark spots around the holes, along with the major axis a and minor axis b of the holes provided in the first optical film.
A: Even after 1000 hours from the exposure, the presence of dark spots was not confirmed.
B: The presence of dark spots was not confirmed after 200 hours after exposure, but the presence of dark spots was confirmed after 1000 hours after exposure.
C: The presence of dark spots was not confirmed after 72 hours after exposure, but the presence of dark spots was confirmed after 200 hours after exposure.
D: The presence of dark spots was confirmed 72 hours after the exposure.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 接着層の酸素透過率が1000cm/(m・day・atm)以下である実施例1-1~1-3では高温の環境下に1000時間曝露後もダークスポットの存在が確認されなかった。これに対し、接着層の酸素透過率が2000cm/(m・day・atm)を超える比較例1-1~1-3では比較的短時間の曝露後においてもダークスポットが確認された。 In Examples 1-1 to 1-3 in which the oxygen permeability of the adhesive layer was 1000 cm 3 / (m 2 · day · atm) or less, the presence of dark spots was not confirmed even after 1000 hours exposure in a high temperature environment. . In contrast, in Comparative Examples 1-1 to 1-3 in which the oxygen transmission rate of the adhesive layer exceeded 2000 cm 3 / (m 2 · day · atm), dark spots were confirmed even after a relatively short exposure.
(ダークスポット評価)
 実施例1-1~1-3及び比較例1-1~1-3で得られた発光体保護フィルムを用いた波長変換シートを、60cm×34cm(27インチモニタに相当)に断裁し、温度85℃相対湿度0%の環境下に、1000時間曝露した。曝露後UVライトを照射し、ダークスポットの数を目視で数えた。ダークスポットの数を表4に示す。
(Dark spot evaluation)
The wavelength conversion sheet using the phosphor protective film obtained in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 was cut into 60 cm × 34 cm (corresponding to a 27-inch monitor), and the temperature It was exposed to an environment of 85 ° C. and 0% relative humidity for 1000 hours. After the exposure, UV light was irradiated, and the number of dark spots was counted visually. Table 4 shows the number of dark spots.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から、接着層の酸素透過率が高い比較例1-1~1-3でダークスポットが発生しているのに対し、実施例1-1~1-3ではダークスポットは観察されなかった。 From Table 4, dark spots were generated in Comparative Examples 1-1 to 1-3, where the oxygen permeability of the adhesive layer was high, whereas no dark spots were observed in Examples 1-1 to 1-3. .
[第二実施形態に係る発光体保護フィルムを構成する各層の形成及び評価]
 はじめに、以下の実施例2-1~2-4において、第二実施形態に係る発光体保護フィルムの密着層を形成するために調製したコーティング液について説明する。
<溶液A>
 金属アルコキシドの一種であるテトラエトキシシランと塩酸を混合して、混合液を30分間撹拌し、3質量%のテトラエトキシシランの加水分解溶液を得た。一方、ポリビニルアルコールを水/イソプロピルアルコールの混合溶媒(水/イソプロピルアルコール(質量比)=90:10)中に溶解させ、3質量%のポリビニルアルコール溶液を得た。テトラエトキシシランの加水分解溶液とポリビニルアルコール溶液とを1:1(質量比)で混合し、溶液Aとした。
[Formation and Evaluation of Each Layer Constructing Luminescent Protective Film According to Second Embodiment]
First, in the following Examples 2-1 to 2-4, coating solutions prepared for forming the adhesion layer of the light emitter protective film according to the second embodiment will be described.
<Solution A>
Tetraethoxysilane which is a kind of metal alkoxide and hydrochloric acid were mixed, and the mixed solution was stirred for 30 minutes to obtain a hydrolyzed solution of 3% by mass of tetraethoxysilane. On the other hand, polyvinyl alcohol was dissolved in a mixed solvent of water / isopropyl alcohol (water / isopropyl alcohol (mass ratio) = 90: 10) to obtain a 3% by mass polyvinyl alcohol solution. A hydrolyzed solution of tetraethoxysilane and a polyvinyl alcohol solution were mixed at 1: 1 (mass ratio) to obtain a solution A.
<溶液B>
 エポキシ樹脂(三菱ガス化学株式会社製、商品名:M-100)とアミン化合物(三菱ガス化学株式会社製、商品名:C-115)を1対4(質量比)で混合し、水/イソプロピルアルコールの混合溶媒(メタノール/酢酸エチル(質量比)=90:10)中に溶解させ、3質量%の溶液Bとした。
<Solution B>
Epoxy resin (Mitsubishi Gas Chemical Co., Ltd., trade name: M-100) and amine compound (Mitsubishi Gas Chemical Co., Ltd., trade name: C-115) are mixed at a ratio of 1: 4 (water / isopropyl). It was dissolved in a mixed solvent of alcohol (methanol / ethyl acetate (mass ratio) = 90: 10) to obtain a 3% by mass solution B.
<溶液C>
 アミン化合物(株式会社日本触媒製、商品名:エポミンSP110)を水/イソプロピルアルコールの混合溶媒(水/イソプロピルアルコール(質量比)=50:50)中に溶解させ、3質量%のアミン溶液を得た。不飽和カルボン酸(関東化学株式会社製 イタコン酸)を水/イソプロピルアルコールの混合溶媒(水/イソプロピルアルコール(質量比)=50:50)中に溶解させ、3質量%の不飽和カルボン酸溶液を得た。アミン溶液と不飽和カルボン酸溶液を1:1(質量比)で混合し、溶液Cとした。
<Solution C>
An amine compound (manufactured by Nippon Shokubai Co., Ltd., trade name: Epomin SP110) is dissolved in a mixed solvent of water / isopropyl alcohol (water / isopropyl alcohol (mass ratio) = 50: 50) to obtain a 3% by mass amine solution. It was. Unsaturated carboxylic acid (Itaconic acid manufactured by Kanto Chemical Co., Inc.) is dissolved in a mixed solvent of water / isopropyl alcohol (water / isopropyl alcohol (mass ratio) = 50: 50), and a 3% by mass unsaturated carboxylic acid solution is obtained. Obtained. The amine solution and the unsaturated carboxylic acid solution were mixed at 1: 1 (mass ratio) to obtain a solution C.
(密着層及び各層の酸素透過率)
<密着層A>
 厚さ20μmのOPPフィルム(延伸ポリプロピレンフィルム)上に、溶液Aを塗布、乾燥することにより、300nmの厚さを有する密着層を形成した。OPPフィルムと密着層Aとからなるサンプル(密着層Aのサンプル)を得た。
(Oxygen permeability of adhesion layer and each layer)
<Adhesion layer A>
By applying and drying the solution A on an OPP film (stretched polypropylene film) having a thickness of 20 μm, an adhesion layer having a thickness of 300 nm was formed. A sample composed of the OPP film and the adhesion layer A (sample of the adhesion layer A) was obtained.
<密着層B>
 厚さ20μmのOPPフィルム上に、溶液Bを塗布、乾燥させ、300nmの厚さを有する層を形成した。さらに、50℃、2日間エージングを行うことにより、密着層を形成した。OPPフィルムと密着層Bとからなるサンプル(密着層Bのサンプル)を得た。
<Adhesion layer B>
The solution B was applied on an OPP film having a thickness of 20 μm and dried to form a layer having a thickness of 300 nm. Further, an adhesion layer was formed by aging at 50 ° C. for 2 days. A sample composed of the OPP film and the adhesion layer B (sample of the adhesion layer B) was obtained.
<密着層C>
 厚さ20μmのOPPフィルム上に、溶液Cを塗布、乾燥させ、300nmの厚さを有する層を形成した。さらに、15MradのEB(電子線)照射を行うことにより、密着層を形成した。OPPフィルムと密着層Cとからなるサンプル(密着層Cのサンプル)を得た。
<Adhesion layer C>
Solution C was applied onto an OPP film having a thickness of 20 μm and dried to form a layer having a thickness of 300 nm. Furthermore, the adhesion layer was formed by performing EB (electron beam) irradiation of 15 Mrad. A sample composed of the OPP film and the adhesion layer C (sample of the adhesion layer C) was obtained.
<保護コート層>
 厚さ20μmのOPPフィルム上に、アクリル樹脂を膜厚が1μmとなるように塗布し、加熱乾燥することにより、保護コート層を形成した。OPPフィルムと保護コート層とからなるサンプル(保護コート層のサンプル)を得た。
<Protective coat layer>
An acrylic resin was applied on an OPP film having a thickness of 20 μm so as to have a thickness of 1 μm and dried by heating to form a protective coat layer. A sample composed of an OPP film and a protective coat layer (protective coat layer sample) was obtained.
<アンカーコート層>
 厚さ20μmのOPPフィルム上に、アクリル樹脂を膜厚が1μmとなるように塗布し、加熱乾燥することにより、アンカーコート層を形成した。OPPフィルムとアンカーコート層とからなるサンプル(アンカーコート層のサンプル)を得た。
<Anchor coat layer>
An acrylic resin was applied on an OPP film having a thickness of 20 μm so as to have a film thickness of 1 μm, and dried by heating to form an anchor coat layer. A sample composed of an OPP film and an anchor coat layer (an anchor coat layer sample) was obtained.
 以上、作製した密着層A~C、保護コート層及びアンカーコート層のサンプル、並びにリファレンスとしての厚さ20μmのOPPフィルム、の合計6サンプルを差圧式ガス透過率測定装置(GTRテック株式会社製、GTR-10X)内に配置し、JIS K7126Aに記載の方法に従って、温度30℃相対湿度70%環境下で各層の酸素透過率を測定した。測定結果を表5に示す。 As described above, a total of 6 samples of the prepared adhesion layers A to C, the protective coat layer and anchor coat layer samples, and the 20 μm-thick OPP film as a reference were used for the differential pressure type gas permeability measuring device (manufactured by GTR Tech Co., Ltd., The oxygen permeability of each layer was measured in an environment of 30 ° C. and 70% relative humidity in accordance with the method described in JIS K7126A. Table 5 shows the measurement results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5の結果から、保護コート層及びアンカーコート層のサンプルの酸素透過率は3000cm/(m・day・atm)(30℃70%RH環境下測定)以上であった。これらはリファレンスの値とほぼ変わらないことから、酸素バリア性に寄与していないことが分かる。これに対し、第二実施形態に係る発光体保護フィルムで用いることができる密着層A~Cの酸素透過率は、いずれも100cm/(m・day・atm)(30℃70%RH環境下測定)以下であり、高い酸素バリア性をもつことが分かる。 From the results of Table 5, the oxygen permeability of the samples of the protective coat layer and the anchor coat layer was 3000 cm 3 / (m 2 · day · atm) (measured in an environment of 30 ° C. and 70% RH) or more. Since these values are not substantially different from the reference values, it is understood that they do not contribute to the oxygen barrier property. On the other hand, the oxygen permeability of the adhesion layers A to C that can be used in the light emitter protective film according to the second embodiment is 100 cm 3 / (m 2 · day · atm) (30 ° C. and 70% RH environment). (Lower measurement) and the following, it can be seen that it has a high oxygen barrier property.
[第二実施形態に係る発光体保護フィルムの作製]
(実施例2-1)
 二軸延伸ポリエチレンテレフタレートフィルム(基材フィルム、厚さ:25μm)の片面に、アクリル樹脂からなるアンカーコート層を厚さ1μmで形成した。次に、アンカーコート層上に酸化ケイ素からなるガスバリア層を形成した。ガスバリア層の形成は以下のように行った。Si(純度99.9%)をターゲットとして用いたスパッタリング装置に、アルゴンガスと酸素ガスをAr:O=2:1となる流量比で導入した。圧力は5.3×10-1Paに調整し、膜厚が100nmとなるように、ガスバリア層としての酸化ケイ素膜の成膜を行った。
[Production of luminous body protective film according to second embodiment]
Example 2-1
An anchor coat layer made of an acrylic resin was formed with a thickness of 1 μm on one side of a biaxially stretched polyethylene terephthalate film (base film, thickness: 25 μm). Next, a gas barrier layer made of silicon oxide was formed on the anchor coat layer. The gas barrier layer was formed as follows. Argon gas and oxygen gas were introduced into a sputtering apparatus using Si (purity 99.9%) as a target at a flow rate ratio of Ar: O 2 = 2: 1. The pressure was adjusted to 5.3 × 10 −1 Pa, and a silicon oxide film as a gas barrier layer was formed so that the film thickness was 100 nm.
 次に、酸化ケイ素膜上に、溶液Aを塗布、乾燥することにより、300nmの厚さを有する密着層Aを形成した。上記のようにして、第一基材層、アンカーコート層、ガスバリア層及び密着層がこの順に積層されてなる、実施例2-1の発光体保護フィルムを得た。 Next, the adhesion layer A having a thickness of 300 nm was formed on the silicon oxide film by applying and drying the solution A. As described above, the phosphor protective film of Example 2-1 in which the first base material layer, the anchor coat layer, the gas barrier layer, and the adhesion layer were laminated in this order was obtained.
(実施例2-2)
 実施例2-1と同様の方法で酸化ケイ素膜の形成までを行い、形成した酸化ケイ素膜上に溶液Bを塗布、乾燥することにより、300nmの厚さの層を形成した。さらに、50℃、2日間エージング行うことにより、酸化ケイ素膜上に密着層Bを形成した。上記のようにして、第一基材層、アンカーコート層、ガスバリア層及び密着層がこの順に積層されてなる、実施例2-2の発光体保護フィルムを得た。
(Example 2-2)
A silicon oxide film was formed in the same manner as in Example 2-1, and the layer B having a thickness of 300 nm was formed by applying and drying the solution B on the formed silicon oxide film. Furthermore, adhesion layer B was formed on the silicon oxide film by performing aging at 50 ° C. for 2 days. As described above, the light emitter protective film of Example 2-2 was obtained in which the first base material layer, the anchor coat layer, the gas barrier layer, and the adhesion layer were laminated in this order.
(実施例2-3)
 実施例2-1と同様の方法で酸化ケイ素膜の形成までを行い、形成した酸化ケイ素膜上に溶液Cを塗布、乾燥することにより、300nmの厚さの層を形成した。さらに、15MradのEB照射を行うことにより、酸化ケイ素膜上に密着層Cを形成した。上記のようにして、第一基材層、アンカーコート層、ガスバリア層及び密着層がこの順に積層されてなる、実施例2-3の発光体保護フィルムを得た。
(Example 2-3)
A silicon oxide film was formed in the same manner as in Example 2-1, and the layer having a thickness of 300 nm was formed by applying and drying the solution C on the formed silicon oxide film. Furthermore, the adhesion layer C was formed on the silicon oxide film by performing EB irradiation of 15 Mrad. As described above, the phosphor protective film of Example 2-3, in which the first base material layer, the anchor coat layer, the gas barrier layer, and the adhesion layer were laminated in this order, was obtained.
(実施例2-4)
 実施例2-1と同様の方法で酸化ケイ素膜の形成までを行い、形成した酸化ケイ素膜上にアクリル樹脂からなる上述の保護コート層を1μmの厚さで形成した。この保護コート層の上に溶液Bを塗布、乾燥することにより、300nmの厚さの層を形成した。さらに50℃、2日間エージング行うことにより、保護コート層上に密着層Bを形成した。上記のようにして、第一基材層、アンカーコート層、ガスバリア層、保護コート層及び密着層がこの順に積層されてなる、実施例2-4の発光体保護フィルムを得た。
(Example 2-4)
A silicon oxide film was formed in the same manner as in Example 2-1, and the protective coating layer made of an acrylic resin was formed to a thickness of 1 μm on the formed silicon oxide film. A layer having a thickness of 300 nm was formed by applying and drying the solution B on the protective coating layer. Furthermore, the adhesion layer B was formed on the protective coat layer by performing aging at 50 ° C. for 2 days. As described above, the phosphor protective film of Example 2-4, in which the first base material layer, the anchor coat layer, the gas barrier layer, the protective coat layer, and the adhesion layer were laminated in this order, was obtained.
(比較例2-1)
 密着層を形成しなかったこと以外は、実施例2-1と同様にして、第一基材層、アンカーコート層及びガスバリア層がこの順に積層されてなる、比較例2-1の発光体保護フィルムを得た。
(Comparative Example 2-1)
The phosphor protection of Comparative Example 2-1 in which the first base material layer, the anchor coat layer, and the gas barrier layer are laminated in this order in the same manner as in Example 2-1, except that the adhesion layer was not formed. A film was obtained.
(比較例2-2)
 密着層を形成しなかったこと以外は、実施例2-4と同様にして、第一基材層、アンカーコート層、ガスバリア層及び保護コート層がこの順に積層されてなる、比較例2-2の発光体保護フィルムを得た。
(Comparative Example 2-2)
Comparative Example 2-2 in which the first base material layer, the anchor coat layer, the gas barrier layer, and the protective coat layer were laminated in this order in the same manner as in Example 2-4, except that the adhesion layer was not formed. The light emitter protective film was obtained.
[発光体保護フィルムの評価]
(水蒸気透過率)
 実施例2-1~2-4及び比較例2-1~2-2で得られた発光体保護フィルムについて、等圧式ガス測定装置(モコン社製、アクアトラン)を用いて、JIS K7129B法に記載の方法に従って、40℃90%RH環境下における水蒸気透過率を測定した。測定結果を表6に示す。
[Evaluation of phosphor protective film]
(Water vapor transmission rate)
The luminescent material protective films obtained in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2 were subjected to JIS K7129B method using an isobaric gas measuring device (Aquatran, manufactured by Mocon). According to the method described, the water vapor transmission rate in a 40 ° C. and 90% RH environment was measured. Table 6 shows the measurement results.
[第二実施形態に係る波長変換シートの作製]
 セレン化カドミウム(CdSe)の粒子に硫化亜鉛(ZnS)を被覆したコア・シェル構造を有する蛍光体(商品名:CdSe/ZnS 530、SIGMA-ALDRICH社製)を溶媒に分散して濃度調整することで蛍光体分散液を調製した。該蛍光体分散液をエポキシ系感光性樹脂と混合して蛍光体組成物を得た。次に、実施例2-1~2-4及び比較例2-1~2-2で作製した発光体保護フィルムの密着層面上に、上記蛍光体組成物を100μmの厚さで塗布した。
[Production of Wavelength Conversion Sheet According to Second Embodiment]
Concentration adjustment by dispersing a phosphor (trade name: CdSe / ZnS 530, manufactured by SIGMA-ALDRICH) having a core / shell structure in which cadmium selenide (CdSe) particles are coated with zinc sulfide (ZnS) in a solvent. A phosphor dispersion liquid was prepared. The phosphor dispersion was mixed with an epoxy photosensitive resin to obtain a phosphor composition. Next, the phosphor composition was applied to a thickness of 100 μm on the adhesion layer surface of the phosphor protective film prepared in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2.
 さらに上記蛍光体組成物の塗膜上に、実施例2-1~2-4及び比較例2-1~2-2で作製した別の発光体保護フィルムを、それぞれの密着層面が対向するように積層した後、紫外線照射により感光性樹脂を硬化し蛍光体層を形成した。上記のようにして、実施例2-1~2-4及び比較例2-1~2-2で作製した発光体保護フィルムで蛍光体層を挟んだ構成を備える、波長変換シートを作製した。 Further, another phosphor protective film produced in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2 was placed on the phosphor composition coating film so that the adhesive layer surfaces thereof face each other. Then, the photosensitive resin was cured by ultraviolet irradiation to form a phosphor layer. As described above, a wavelength conversion sheet having a configuration in which the phosphor layer was sandwiched between the phosphor protective films produced in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2 was produced.
[波長変換シートの評価]
(密着性の評価)
 上記のように、実施例2-1~2-4及び比較例2-1~2-2で作製した発光体保護フィルムを備えたそれぞれの波長変換シートを、幅15mmの短冊状にカットし、ガラス板上に固定した。固定した波長変換シートの上側の発光体保護フィルムを、テンシロン引張試験機(オリエンテック社製)を用いて、ガラス板に対して垂直な方向に、300mm/分の速度で、蛍光体層から剥離し、剥離に要した強度を測定した。剥離強度の測定結果を密着性の評価結果として表6に示す。剥離強度が2N/cm以上である場合に好適な密着性が得られていると判断した。
[Evaluation of wavelength conversion sheet]
(Evaluation of adhesion)
As described above, each wavelength conversion sheet provided with the phosphor protective film prepared in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2 was cut into strips having a width of 15 mm, Fixed on a glass plate. The phosphor protective film on the upper side of the fixed wavelength conversion sheet is peeled from the phosphor layer at a speed of 300 mm / min in a direction perpendicular to the glass plate using a Tensilon tensile tester (Orientec). Then, the strength required for peeling was measured. The measurement results of peel strength are shown in Table 6 as the evaluation results of adhesion. It was judged that suitable adhesion was obtained when the peel strength was 2 N / cm or more.
(ダークスポットの評価)
 実施例2-1~2-4及び比較例2-1~2-2で作製した発光体保護フィルムを備えた波長変換シートを、それぞれ60cm×34cm(27インチモニタに相当)に断裁した。断裁後の波長変換シートを85℃の環境下で1000時間保存した。保存後UVライトを照射し、ダークスポットの数を目視で数えた。計測結果(個数)を表6に示す。
(Dark spot evaluation)
The wavelength conversion sheets provided with the phosphor protective films prepared in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2 were cut to 60 cm × 34 cm (corresponding to a 27-inch monitor). The wavelength conversion sheet after cutting was stored in an environment of 85 ° C. for 1000 hours. After storage, the sample was irradiated with UV light, and the number of dark spots was counted visually. Table 6 shows the measurement results (number).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6の結果から、実施例2-1~2-4及び比較例2-1~2-2の発光体保護フィルムの水蒸気透過率はどれも低く、水蒸気バリア性は高いことが分かる。波長変換シートとしたときの蛍光体層との密着性では、密着層がなくガスバリア層上に保護コート層もない比較例2-1は密着性が低いが、保護コート層がある比較例2-2は密着層がなくとも実施例2-1~2-4と同等の良好な密着性を示した。しかし、ダークスポットの発生数は、実施例2-1~2-4で発生しないのに対し、密着層も保護コート層もない比較例2-1では多くのダークスポットが発生した。また比較例2-2では保護コート層の存在によりダークスポットの数は低減したが、十分とはいえなかった。 From the results in Table 6, it can be seen that the light-emitting protective films of Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2 all have low water vapor permeability and high water vapor barrier properties. As for the adhesion with the phosphor layer when the wavelength conversion sheet is formed, Comparative Example 2-1 having no adhesion layer and no protective coating layer on the gas barrier layer has low adhesion, but Comparative Example 2- having a protective coating layer. No. 2 showed good adhesion equivalent to that of Examples 2-1 to 2-4 even without an adhesion layer. However, while the number of dark spots was not generated in Examples 2-1 to 2-4, many dark spots were generated in Comparative Example 2-1 having neither an adhesion layer nor a protective coating layer. In Comparative Example 2-2, the number of dark spots was reduced due to the presence of the protective coating layer, but it was not sufficient.
 10…発光体保護フィルム、11a…第一基材層、11b…第二基材層、12a…第一無機薄膜層、12b…第二無機薄膜層、13a…第一ガスバリア性被覆層、13b…第二ガスバリア性被覆層、14a…第一バリア層、14b…第二バリア層、15…接着層、16a…第一光学フィルム、16b…第二光学フィルム、20…波長変換シート、21…蛍光体層、22…第二保護フィルム、23…欠陥、24…ダークスポット、30…バックライトユニット、50…エレクトロルミネッセンス発光ユニット、300…発光体保護フィルム、311…基材フィルム、312…ガスバリア層、313…密着層、400…波長変換シート、500…バックライトユニット、700…エレクトロルミネッセンス発光ユニット。 DESCRIPTION OF SYMBOLS 10 ... Luminescent body protective film, 11a ... 1st base material layer, 11b ... 2nd base material layer, 12a ... 1st inorganic thin film layer, 12b ... 2nd inorganic thin film layer, 13a ... 1st gas barrier coating layer, 13b ... Second gas barrier coating layer, 14a ... first barrier layer, 14b ... second barrier layer, 15 ... adhesive layer, 16a ... first optical film, 16b ... second optical film, 20 ... wavelength conversion sheet, 21 ... phosphor Layer, 22 ... second protective film, 23 ... defect, 24 ... dark spot, 30 ... backlight unit, 50 ... electroluminescence light emitting unit, 300 ... light emitter protective film, 311 ... base film, 312 ... gas barrier layer, 313 ... adhesion layer, 400 ... wavelength conversion sheet, 500 ... backlight unit, 700 ... electroluminescence light emitting unit.

Claims (14)

  1.  第一光学フィルムとバリア性を有する接着層とを備え、
     前記第一光学フィルムが第一基材層と前記第一基材層上に形成された第一バリア層とを含む光学バリアフィルムである、発光体保護フィルム。
    A first optical film and an adhesive layer having a barrier property;
    The light emitter protective film, wherein the first optical film is an optical barrier film including a first base layer and a first barrier layer formed on the first base layer.
  2.  第二光学フィルムをさらに備え、
     前記第一光学フィルムと前記第二光学フィルムとが前記接着層を介して貼り合わされており、
     前記第二光学フィルムが第二基材層と前記第二基材層上に形成された第二バリア層とを含む光学バリアフィルムであり、
     前記接着層の酸素透過率は、厚さ5μmにおいて1000cm/(m・day・atm)以下である、請求項1に記載の発光体保護フィルム。
    A second optical film,
    The first optical film and the second optical film are bonded via the adhesive layer,
    The second optical film is an optical barrier film comprising a second base material layer and a second barrier layer formed on the second base material layer,
    2. The light emitter protective film according to claim 1, wherein the adhesive layer has an oxygen permeability of 1000 cm 3 / (m 2 · day · atm) or less at a thickness of 5 μm.
  3.  前記接着層がエポキシ樹脂を含む接着剤から形成される、請求項2に記載の発光体保護フィルム。 The light emitter protective film according to claim 2, wherein the adhesive layer is formed of an adhesive containing an epoxy resin.
  4.  前記第一光学フィルムと前記第二光学フィルムとは前記第一バリア層と前記第二バリア層とが対向するように前記接着層を介して貼り合わされている、請求項2又は3に記載の発光体保護フィルム。 The light emission according to claim 2 or 3, wherein the first optical film and the second optical film are bonded together via the adhesive layer so that the first barrier layer and the second barrier layer face each other. Body protection film.
  5.  前記第一バリア層が第一無機薄膜層と第一ガスバリア性被覆層とを含み、
     前記第二バリア層が第二無機薄膜層と第二ガスバリア性被覆層とを含む、請求項2~4のいずれか一項に記載の発光体保護フィルム。
    The first barrier layer includes a first inorganic thin film layer and a first gas barrier coating layer,
    The light emitter protective film according to any one of claims 2 to 4, wherein the second barrier layer includes a second inorganic thin film layer and a second gas barrier coating layer.
  6.  前記接着層を最表面に備え、前記接着層が前記第一バリア層上に配置されている、請求項1に記載の発光体保護フィルム。 The light emitter protective film according to claim 1, wherein the adhesive layer is provided on an outermost surface, and the adhesive layer is disposed on the first barrier layer.
  7.  前記接着層の酸素透過率は、厚さ0.3μmにおいて100cm/(m・day・atm)以下である、請求項6に記載の発光体保護フィルム。 The phosphor protective film according to claim 6, wherein the adhesive layer has an oxygen permeability of 100 cm 3 / (m 2 · day · atm) or less at a thickness of 0.3 μm.
  8.  前記第一バリア層が金属酸化物からなる層を含む、請求項6又は7に記載の発光体保護フィルム。 The light emitter protective film according to claim 6 or 7, wherein the first barrier layer includes a layer made of a metal oxide.
  9.  前記接着層がポリビニルアルコールと金属アルコキシドの加水分解物により形成される硬化物からなる、請求項6~8のいずれか一項に記載の発光体保護フィルム。 The light emitter protective film according to any one of claims 6 to 8, wherein the adhesive layer comprises a cured product formed from a hydrolyzate of polyvinyl alcohol and a metal alkoxide.
  10.  前記接着層がエポキシ樹脂とアミン化合物により形成される硬化物からなる、請求項6~8のいずれか一項に記載の発光体保護フィルム。 The light emitter protective film according to any one of claims 6 to 8, wherein the adhesive layer comprises a cured product formed of an epoxy resin and an amine compound.
  11.  前記接着層が不飽和カルボン酸化合物とアミン化合物により形成される硬化物からなる、請求項6~8のいずれか一項に記載の発光体保護フィルム。 The light emitter protective film according to any one of claims 6 to 8, wherein the adhesive layer comprises a cured product formed of an unsaturated carboxylic acid compound and an amine compound.
  12.  請求項1~11のいずれか一項に記載の発光体保護フィルムと、蛍光体層と、を備える、波長変換シート。 A wavelength conversion sheet comprising the phosphor protective film according to any one of claims 1 to 11 and a phosphor layer.
  13.  請求項12に記載の波長変換シートを備える、バックライトユニット。 A backlight unit comprising the wavelength conversion sheet according to claim 12.
  14.  請求項1~11のいずれか一項に記載の発光体保護フィルムと、エレクトロルミネッセンス発光体層と、を備える、エレクトロルミネッセンス発光ユニット。 An electroluminescence light emitting unit comprising the light emitter protective film according to any one of claims 1 to 11 and an electroluminescence light emitter layer.
PCT/JP2016/081890 2015-10-27 2016-10-27 Light emitting body protective film, wavelength conversion sheet, backlight unit and electroluminescent light emitting unit WO2017073671A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015210880A JP6790345B2 (en) 2015-10-27 2015-10-27 Wavelength conversion sheet
JP2015-210880 2015-10-27
JP2016-007106 2016-01-18
JP2016007106A JP2017127990A (en) 2016-01-18 2016-01-18 Emitter protective film, wavelength conversion sheet, backlight unit, and electroluminescent light-emitting unit

Publications (1)

Publication Number Publication Date
WO2017073671A1 true WO2017073671A1 (en) 2017-05-04

Family

ID=58631712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081890 WO2017073671A1 (en) 2015-10-27 2016-10-27 Light emitting body protective film, wavelength conversion sheet, backlight unit and electroluminescent light emitting unit

Country Status (1)

Country Link
WO (1) WO2017073671A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179513A1 (en) * 2016-04-11 2017-10-19 凸版印刷株式会社 Barrier film laminate, method for producing same, wavelength conversion sheet, backlight unit, and electroluminescent light emitting unit
JP2017189880A (en) * 2016-04-11 2017-10-19 凸版印刷株式会社 Protective film for light-emitting body, wavelength conversion sheet and backlight unit
JP2017226090A (en) * 2016-06-20 2017-12-28 凸版印刷株式会社 Barrier film laminate and production method of the same, wavelength conversion sheet, backlight unit and electroluminescent light-emitting unit
JP2019051663A (en) * 2017-09-15 2019-04-04 凸版印刷株式会社 Barrier film laminate
CN111295603A (en) * 2017-11-07 2020-06-16 日本板硝子株式会社 Light absorbing composition and optical filter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318814A (en) * 1996-05-29 1997-12-12 Nitto Denko Corp Adhesive for polarizing plate and polarizing plate
JP2011051195A (en) * 2009-09-01 2011-03-17 Fujifilm Corp Composite film
JP4654911B2 (en) * 2003-05-16 2011-03-23 凸版印刷株式会社 Transparent gas barrier laminated film, electroluminescence light emitting device, electroluminescence display device, and electrophoretic display panel using the same
JP2011165554A (en) * 2010-02-12 2011-08-25 Toppan Forms Co Ltd Method for manufacturing electronic display panel, and electronic display panel manufactured by the same
JP2012129195A (en) * 2010-12-15 2012-07-05 Korea Institute Of Science And Technology Color conversion luminescent sheet and method for fabricating the same
JP2013075413A (en) * 2011-09-30 2013-04-25 Toray Advanced Film Co Ltd Laminated gas barrier film
WO2013161481A1 (en) * 2012-04-27 2013-10-31 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, gas barrier adhesive agent, and gas barrier laminate body
WO2014069398A1 (en) * 2012-10-29 2014-05-08 リンテック株式会社 Adhesive agent composition and adhesive sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318814A (en) * 1996-05-29 1997-12-12 Nitto Denko Corp Adhesive for polarizing plate and polarizing plate
JP4654911B2 (en) * 2003-05-16 2011-03-23 凸版印刷株式会社 Transparent gas barrier laminated film, electroluminescence light emitting device, electroluminescence display device, and electrophoretic display panel using the same
JP2011051195A (en) * 2009-09-01 2011-03-17 Fujifilm Corp Composite film
JP2011165554A (en) * 2010-02-12 2011-08-25 Toppan Forms Co Ltd Method for manufacturing electronic display panel, and electronic display panel manufactured by the same
JP2012129195A (en) * 2010-12-15 2012-07-05 Korea Institute Of Science And Technology Color conversion luminescent sheet and method for fabricating the same
JP2013075413A (en) * 2011-09-30 2013-04-25 Toray Advanced Film Co Ltd Laminated gas barrier film
WO2013161481A1 (en) * 2012-04-27 2013-10-31 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, gas barrier adhesive agent, and gas barrier laminate body
WO2014069398A1 (en) * 2012-10-29 2014-05-08 リンテック株式会社 Adhesive agent composition and adhesive sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179513A1 (en) * 2016-04-11 2017-10-19 凸版印刷株式会社 Barrier film laminate, method for producing same, wavelength conversion sheet, backlight unit, and electroluminescent light emitting unit
JP2017189880A (en) * 2016-04-11 2017-10-19 凸版印刷株式会社 Protective film for light-emitting body, wavelength conversion sheet and backlight unit
JP2017226090A (en) * 2016-06-20 2017-12-28 凸版印刷株式会社 Barrier film laminate and production method of the same, wavelength conversion sheet, backlight unit and electroluminescent light-emitting unit
JP2019051663A (en) * 2017-09-15 2019-04-04 凸版印刷株式会社 Barrier film laminate
JP7000763B2 (en) 2017-09-15 2022-01-19 凸版印刷株式会社 Barrier film laminate
CN111295603A (en) * 2017-11-07 2020-06-16 日本板硝子株式会社 Light absorbing composition and optical filter

Similar Documents

Publication Publication Date Title
JP5900719B1 (en) Protective film for wavelength conversion sheet, wavelength conversion sheet and backlight unit
KR102446693B1 (en) Wavelength conversion sheet, backlight unit, and film for protecting luminescent substance
WO2017073671A1 (en) Light emitting body protective film, wavelength conversion sheet, backlight unit and electroluminescent light emitting unit
CN109070539B (en) Barrier film laminate, method for producing same, wavelength conversion sheet, backlight unit, and electroluminescence unit
US10967617B2 (en) Gas barrier film and color conversion member
JP7323266B2 (en) Barrier film for wavelength conversion sheet, wavelength conversion sheet and display device used therefor
JP2016213369A (en) Protective film for wavelength conversion sheet, wavelength conversion sheet, and backlight unit
WO2017043483A1 (en) Wavelength-conversion-sheet protection film, method for manufacturing same, wavelength conversion sheet, and back light
JP6950429B2 (en) Fluorescent protective film, wavelength conversion sheet and light emitting unit
WO2019069827A1 (en) Phosphor protection film, wavelength conversion sheet, and light-emitting unit
WO2017126609A1 (en) Light-emitting body protection film and method for manufacturing same, wavelength conversion sheet, and light emission unit
JP6790345B2 (en) Wavelength conversion sheet
JP6710908B2 (en) Gas barrier laminate, wavelength conversion sheet and backlight unit
JP2020187357A (en) Barrier film, wavelength conversion sheet using the same, and display device using the sheet
JP2017226208A (en) Illuminant protective film, wavelength conversion sheet, backlight unit and electroluminescence luminescent unit
JP6772520B2 (en) Wavelength conversion sheet
JP6705156B2 (en) Barrier film laminate, wavelength conversion sheet and backlight unit
JP2017189878A (en) Barrier film laminate and method for producing the same, wavelength conversion sheet, backlight unit, and electroluminescent light-emitting unit
JP6776591B2 (en) Wavelength conversion sheet and backlight unit
JP6690429B2 (en) Barrier film laminate and manufacturing method thereof, wavelength conversion sheet, backlight unit, and electroluminescence light emitting unit
JP7000763B2 (en) Barrier film laminate
JP2017127990A (en) Emitter protective film, wavelength conversion sheet, backlight unit, and electroluminescent light-emitting unit
JP2019006080A (en) Light emitter protective film, wavelength conversion sheet, backlight unit, and electroluminescent light emitting unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859900

Country of ref document: EP

Kind code of ref document: A1