WO2017071573A1 - 电池管理系统的同步采样方法和采样系统 - Google Patents

电池管理系统的同步采样方法和采样系统 Download PDF

Info

Publication number
WO2017071573A1
WO2017071573A1 PCT/CN2016/103314 CN2016103314W WO2017071573A1 WO 2017071573 A1 WO2017071573 A1 WO 2017071573A1 CN 2016103314 W CN2016103314 W CN 2016103314W WO 2017071573 A1 WO2017071573 A1 WO 2017071573A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
main controller
sampling
controllers
voltage
Prior art date
Application number
PCT/CN2016/103314
Other languages
English (en)
French (fr)
Inventor
闫立国
秦兴权
梁瑞
于海龙
Original Assignee
北京新能源汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京新能源汽车股份有限公司 filed Critical 北京新能源汽车股份有限公司
Publication of WO2017071573A1 publication Critical patent/WO2017071573A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to the field of uplink multiple access technology for digital information transmission, and in particular, to a multi-user uplink access method based on resource pattern.
  • a pure electric vehicle is a vehicle that uses a vehicle power supply to provide power, drives the wheels with a motor, and meets the requirements of road traffic and safety regulations.
  • Lithium-ion batteries have many advantages, such as long service life, high specific energy, and flexible combination. However, due to its high energy and poor stability, the requirements for safety in monitoring and management are relatively high. This also leads to the BMS (Battery Management System) occupying a very important position in electric vehicles.
  • BMS Battery Management System
  • the BMS measures the performance state of the battery cells according to the difference between the highest voltage and the lowest voltage at the same time, and according to the difference, the corresponding equalization function is turned on when the condition is met.
  • the BMS currently collects the cell voltage directly through the sub-controller, while a BMS typically contains multiple sub-controllers distributed throughout the PACK.
  • Each sub-controller cyclically collects voltage according to its own acquisition cycle and transmits it to the main controller through CAN.
  • the main controller measures the state of the battery according to the voltage value of all the cells reported by the sub-controller. If the timings of the voltages collected by the two sub-controllers are different, the value of the IP according to the driving conditions is also very different, so the measurement of the cell state according to the maximum and minimum voltage values of the entire PACK will result in a relatively large measurement error or even an error. .
  • Embodiments of the present invention provide a multi-user uplink access method, system, and computer storage medium based on a resource pattern, aiming at eliminating the problem of the influence of voltage and voltage changes at the charging and discharging ends of the battery.
  • a method for synchronous sampling of a battery management system, at least synchronously collecting voltages of all the single cells in the battery management system, and simultaneously collecting voltages of all the single cells in the battery management system include the following: Step: set the clock level of the main controller terminal to the first level; the clock shape of the plurality of sub-controller terminals The state is set to an input state, and the synchronous clock line is monitored, wherein the main controller and the plurality of sub-controllers are respectively connected by a CAN bus, and the main controller further passes the synchronous clock line and the plurality of sub-controls The plurality of sub-controllers respectively collect voltages of at least one single cell; set a clock level of the main controller end to a second level; and the plurality of sub-controllers synchronously collect corresponding single cells a voltage at the first level to the second level change timing; and the plurality of sub-controllers feed back a voltage of the unit battery collected by itself to the main controller.
  • Another object of the present invention is to provide a synchronous sampling system of a battery management system, including: a plurality of sub-controllers, each of the plurality of sub-controllers including: a level signal collecting unit, configured to collect the main controller The level signal is sent; the voltage data collecting unit is connected to the level signal collecting unit, and is configured to collect the voltage of the corresponding set battery when the level signal collecting unit collects the level signal change time; the voltage data a transmission unit connected to the voltage data acquisition unit for transmitting the collected voltage data to the main controller; the main controller, the main controller comprising: a level signal output unit for outputting different levels The signal controls whether the plurality of sub-controllers synchronously collect voltages of the correspondingly disposed single cells; and the voltage data receiving unit is configured to receive voltage data of the single cells sent by the plurality of sub-controllers; wherein the main controller And the plurality of sub-controllers are connected by a CAN bus, and the main controller and the plurality of sub-controllers are also connected by
  • Another object of embodiments of the present invention is to provide a non-volatile computer storage medium storing one or more programs, when the one or more programs are executed by a device,
  • the apparatus performs a synchronous sampling method of the battery management system of the above-described embodiment of the present invention.
  • the embodiment of the invention has low cost and simple implementation, and only needs to increase the synchronous clock harness, and does not need to change the configuration of the PACK; the effect of the voltage change of the resistor and the battery charging and discharging ends can be completely eliminated, and the precision is high.
  • FIG. 1 is a schematic structural view of a synchronous sampling system of a prior art battery management system.
  • FIG. 2 is a flow chart showing voltages of all single cells in a synchronous acquisition battery management system according to an embodiment of the present invention
  • FIG. 3 is a flowchart showing the operation of a main controller according to an embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of a sub-controller according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a synchronous sampling system of a battery management system according to an embodiment of the present invention.
  • the synchronous sampling method of the battery management system at least synchronously collecting the voltages of all the single cells in the battery management system, and simultaneously collecting the voltages of all the single cells in the battery management system includes the following steps:
  • S1 Setting the clock level of the main controller terminal to the first level. In one example of the present invention, after the battery management system is powered on, the clock level of the main controller terminal is defaulted to a low level.
  • S2 Set the clock state of multiple sub-controller terminals to the input state and monitor the synchronous clock line.
  • the main controller and the plurality of sub-controllers are connected through a CAN bus and a synchronous clock line.
  • S3 Set the clock level of the main controller terminal to the second level.
  • the clock level of the main controller terminal is changed from a low level to a high level.
  • S4 The plurality of sub-controllers synchronously collect the voltages of the corresponding single cells at the time when the first level changes to the second level.
  • the voltage data of the correspondingly set single battery at the time of the low level to the high level change is started.
  • S5 The plurality of sub-controllers feed back the voltage data of the single-cell battery collected by themselves to the main controller.
  • step S5 further includes:
  • S501 The plurality of sub-controllers respectively send voltage data of the single-cell battery collected by the main controller to the main controller.
  • S502 The main controller receives the voltage of the single battery sent by the multiple sub-controllers, and detects whether all the multiple sub-controllers send the voltage of the single-cell battery that they are responsible for to the main controller within a preset time. If yes, Then the sampling is completed; if not, the sampling fails, and the main controller sends a sampling failure message.
  • the main controller determines whether each sub-controller transmits the voltage data collected this time to the main controller by detecting an interface connected to each controller. Since the voltage data collected by each sub-controller to the main controller is not synchronized, each sub-controller sends the collected voltage data to the main controller through the CAN bus, so the main controller needs to preset a time period. Receive voltage data sent by each sub-controller. If all the sub-controllers send their own collected voltage data to the main controller within the preset time, the sampling is successful; if it is preset If there is a sub-controller that does not send voltage data to the main controller, the current sampling fails.
  • the number of times of simultaneously collecting the voltages of all the single cells in the battery management system is two. If the two sampling fails and there is a sub-controller that fails to send the voltage of the corresponding collected single cells to the main controller, then The main control sends the fault communication information into the fault handling program, and the fault communication information includes the number of the fault communication sub-controller and the time point at which the voltage data is acquired twice.
  • the engineering flow of the main controller is as shown in FIG. 3, first setting the clock synchronization line as an output, setting the clock level to the first level, and then adjusting the clock line output to the second level.
  • Start cell voltage sampling receive the transmitted voltage data collected by each sub-controller and determine whether all sub-controllers send voltage data to the main controller. After the preset time expires, if all sub-controllers are to the main If the controller sends the voltage data, the sampling is successful, otherwise the sampling fails and the fault handling procedure is performed.
  • the engineering flow of the sub-controller is as shown in FIG. 4, first setting the clock line as an input, and monitoring the level of the clock line, and then collecting the first level change to the second level time corresponding to the connected list The voltage of the battery is finally sent to the main controller.
  • the battery voltage is again collected and sent to the main controller.
  • the synchronous sampling system of the battery management system includes:
  • the main controller and the plurality of sub-controllers wherein the main controller is respectively connected to the plurality of sub-controllers through the CAN bus and the synchronous clock line.
  • the main controller includes:
  • the level signal output unit is configured to output different level signals to control whether the plurality of sub-controllers synchronously collect the voltages of the corresponding set cells.
  • the level of the synchronous clock line end of the master controller defaults to a first level.
  • the main controller adjusts the level of the synchronous clock line to the second level, and when each sub-controller detects that the synchronous clock line end level is the second level, collects the voltage of the corresponding connected single battery at this moment.
  • the voltage data receiving unit is configured to receive voltage data of the single cells sent by the plurality of sub-controllers.
  • a detecting unit configured to detect whether all sub-controllers transmit voltage data of the single-cell battery to the voltage data receiving unit in one sampling, and detect that there is a sub-controller that does not send the single-cell battery to the voltage data receiving unit The voltage data is sent to the information feedback unit.
  • the detecting unit is further configured to send fault communication information to the information feedback unit if a certain sub-controller fails to send the voltage of the corresponding collected single battery to the main controller in two consecutive samplings, and the fault communication information includes two consecutive The number of sub-controllers that failed to send voltage information and the sampling time point twice.
  • An information feedback unit is configured to feed back sampling failure information and fault communication information.
  • the sampling failure information and the fault communication information can be displayed by the display device for the operator to perform troubleshooting.
  • the sampling failure information includes the number of the sub-controller that has not transmitted the voltage of the single cell to the main controller and the time point of sampling.
  • the sub-controllers include:
  • the level signal collecting unit is configured to collect the level signal sent by the main controller, and the level signal collected to the synchronous clock line is changed from the first level to the second level, and the signal is sent to the voltage data collecting unit.
  • the voltage data acquisition unit After receiving the signal sent by the level signal acquisition unit, the voltage data acquisition unit collects the voltage data of the corresponding connected single battery, and sends the voltage data to the voltage data transmission unit after the acquisition.
  • a voltage data transmission unit for transmitting voltage data to the main controller.
  • Embodiments of the present invention also disclose an apparatus comprising: one or more processors; a memory; one or more programs, the one or more programs being stored in the memory when the one or more When the processors are executed, the synchronous sampling method of the battery management system as described in the above embodiments is performed.
  • Embodiments of the present invention also disclose a non-volatile computer storage medium storing one or more programs that, when executed by a device, cause the device to perform the operations described in the above embodiments. Simultaneous sampling method for battery management systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池管理系统的同步采样方法和采样系统,该方法包括:至少同步采集一次电池管理系统中所有单体电池的电压,同步采集电池管理系统中所有单体电池的电压的方法包括:将主控制器端的时钟电平设置为第一电平(S1);将多个子控制器端的时钟状态设置为输入状态,并监测同步时钟线(S2);将所述主控制器端的时钟电平设置为第二电平(S3);所述多个子控制器同步采集相应的单体电池在所述第一电平向所述第二电平变化时刻的电压(S4);以及所述多个子控制器将自身采集的单体电池的电压反馈给所述主控制器(S5)。所述采样系统具有如下优点:成本低,实现简单,只需增加同步时钟线束,无需变更PACK的配置;可以完全消除电阻及电池充、放电末端的电压变化的影响,精度高。

Description

电池管理系统的同步采样方法和采样系统 技术领域
本发明涉及数字信息传输的上行多址接入技术领域,特别涉及一种基于资源图样的多用户上行接入方法。
背景技术
随着经济的发展,也带来了能源危机和污染的负面影响。纯电动汽车的发展,成为了解决这一问题的最好途径。国家也在电动汽车领域投入了大量的人力和物力来解决制约的相关问题和瓶颈。纯电动汽车是指使用车载电源提供动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。
车载能源系统通常采用锂离子电池系统,锂离子电池有很多优点,如使用寿命长、比能量高、组合比较灵活等。但是由于其能量较大,稳定性较差等原因,对监控、管理等安全方面的要求比较高。这也导致BMS(电池管理系统)在电动汽车中占据着非常重要的位置。BMS通过监控所有电池单体电压,依据同一时刻的最高电压和最低电压的差值来衡量电芯的性能状态,并依据此差值在满足条件时开启相应的均衡功能。但是由于连接电芯的铜排或保险(依据安全需求)存在电阻,该电阻在不同的电流下所呈现的电压并不相同,而在真实行车工况中电流的脉动性变化非常快,所以,依据电压差值来衡量电芯性能,该方法的准确性变得非常重要。
如图1所示,目前BMS通过子控制器直接采集电芯单体电压,而一个BMS通常包含多个子控制器分布在整个PACK内部。每个子控制器按照自己的采集周期循环采集电压并通过CAN向主控制器传递,主控制器依据子控制器上报的所有单体的电压值来衡量电芯状态。若两个子控制器采集电压的时刻不相同,根据行车工况IP的值则亦大不相同,所以根据整个PACK的最大最小电压值来衡量电芯状态就会出现比较大的测量误差甚至是错误。
发明内容
本发明实施例提供一种基于资源图样的多用户上行接入方法、系统及计算机存储介质,旨在消除电阻及电池充、放电末端的电压变化的影响的问题。
本发明实施例是这样实现的,一种电池管理系统的同步采样方法,至少同步采集一次电池管理系统中所有单体电池的电压,同步采集电池管理系统中所有单体电池的电压的方法包括以下步骤:将主控制器端的时钟电平设置为第一电平;将多个子控制器端的时钟状 态设置为输入状态,并监测同步时钟线,其中,所述主控制器和分别所述多个子控制器通过CAN总线相连,所述主控制器还通过所述同步时钟线与所述多个子控制器分别相连,所述多个子控制器分别采集至少一个单体电池的电压;将所述主控制器端的时钟电平设置为第二电平;所述多个子控制器同步采集相应的单体电池在所述第一电平向所述第二电平变化时刻的电压;以及所述多个子控制器将自身采集的单体电池的电压反馈给所述主控制器。
本发明实施例的另一目的在于提供一种电池管理系统的同步采样系统,包括:多个子控制器,所述多个子控制器均包括:电平信号采集单元,用于采集所述主控制器发送的电平信号;电压数据采集单元,与所述电平信号采集单元相连,用于在所述电平信号采集单元采集到电平信号变化时刻采集对应设置的单体电池的电压;电压数据传输单元,与所述电压数据采集单元相连,用于向所述主控制器发送采集的电压数据;主控制器,所述主控制器包括:电平信号输出单元,用于输出不同的电平信号控制所述多个子控制器是否同步采集对应设置的单体电池的电压;电压数据接收单元,用于接收所述多个子控制器发送的单体电池的电压数据;其中,所述主控制器和所述多个子控制器通过CAN总线连接,所述主控制器和所述多个子控制器还通过同步时钟线连接。
本发明实施例的另一目的在于提供一种非易失性计算机存储介质,所述计算机存储介质存储有一个或者多个程序,当所述一个或者多个程序被一个设备执行时,使得所述设备执行本发明上述实施例的电池管理系统的同步采样方法。
本发明实施例成本低,实现简单,只需增加同步时钟线束,无需变更PACK的配置;可以完全消除电阻及电池充、放电末端的电压变化的影响,精度高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术的电池管理系统的同步采样系统的结构示意图。
图2是本发明一个实施例的同步采集电池管理系统中所有单体电池的电压的流程图;
图3是本发明一个实施例的主控制器的工作流程图;
图4是本发明一个实施例的子控制器的工作流程图;
图5是本发明一个实施例的电池管理系统的同步采样系统的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
参照下面的描述和附图,将清楚本发明的实施例的这些和其他方面。在这些描述和附图中,具体公开了本发明的实施例中的一些特定实施方式,来表示实施本发明的实施例的原理的一些方式,但是应当理解,本发明的实施例的范围不受此限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
以下结合附图描述根据本发明实施例的电池管理系统的同步采样方法。
请参考图2和图5,电池管理系统的同步采样方法,至少同步采集一次电池管理系统中所有单体电池的电压,同步采集电池管理系统中所有单体电池的电压的方法包括以下步骤:
S1:将主控制器端的时钟电平设置为第一电平,在本发明的一个示例中,电池管理系统上电后,主控制器端的时钟电平为默认为低电平。S2:将多个子控制器端的时钟状态设置为输入状态,并监测同步时钟线。
具体地,主控制器和多个子控制器通过CAN总线和同步时钟线连接。
S3:将主控制器端的时钟电平设置为第二电平。在本发明的一个示例中,将主控制器端的时钟电平从低电平修改为高电平。
S4:多个子控制器同步采集相应的单体电池在第一电平向所述第二电平变化时刻的电压。
具体地,所有子控制器检测到时钟上升沿时开始采集对应设置的单体电池在低电平向高电平变化时刻的电压数据。
S5:多个子控制器将自身采集的单体电池的电压数据反馈给主控制器。
在本发明的一个实施例中,步骤S5进一步包括:
S501:多个子控制器向主控制器分别发送自身采集的单体电池的电压数据。
S502:主控制器接收多个子控制器发送的单体电池的电压,并检测在预设时间内是否所有多个子控制器均向主控制器发送了自身负责的单体电池的电压,如果是,则本次采样完成;如果否,则本次采样失败,主控制器发送采样失败信息。
具体地,主控制器通过检测与各个控制器连接的接口判断各个子控制器是否向主控制器发送了本次采集的电压数据。由于在各个子控制器向主控制器发送自身采集的电压数据是不同步的,各个子控制器通过CAN总线向主控制器先后发送采集的电压数据,因此主控制器需要预设一个时间段来接收各个子控制器发送的电压数据。如果在预设的时间内,所有子控制器均向主控制器发送了自身采集的电压数据,则本次采样成功;如果在预设的时 间内,存在某个子控制器没有向主控制器发送电压数据,则本次采样失败。
更具体地,同步采集电池管理系统中所有单体电池的电压的次数为两次,如果两次采样失败且存在某个子控制器向主控制器发送对应采集的单体电池的电压均失败,则主控制发送故障通信信息进入故障处理程序,故障通信信息包括故障通信子控制器的编号和两次采集电压数据的时间点。
在本实施例中,主控制器的工程流程如图3所示,首先设置时钟同步线为输出,并将时钟电平设置为第一电平,随后将时钟线输出调整为第二电平,启动电芯电压采样,接收各个子控制器采集的发送的电压数据并判断是否所有子控制器均向主控制器发送了电压数据,在预设时间到期后,如果所有子控制器均向主控制器发送了电压数据,则本次采样成功,否则采样失败进行故障处理程序。
在本实施例中,子控制器的工程流程如图4所示,首先设置时钟线为输入,并监测时钟线的电平,然后采集第一电平变化为第二电平时刻对应连接的单体电池的电压,最后将采集到的电池电压发送给主控制器。当再次监测到时钟线的电平从第一电平变为第二电平时,再次采集电池电压并发送给主控制器。
以下结合附图描述根据本发明实施例的电池管理系统的同步采样系统。
请再次参考图5,电池管理系统的同步采样系统包括:
主控制器和多个子控制器,其中,主控制器通过CAN总线和同步时钟线与多个子控制器分别连接。
主控制器包括:
电平信号输出单元,用于输出不同的电平信号控制多个子控制器是否同步采集对应设置的单体电池的电压。
在本发明的一个实施例中,主控制器的同步时钟线端的电平默认为第一电平。主控制器将同步时钟线的电平调整为第二电平,当各个子控制器检测到同步时钟线端电平为第二电平时刻,采集此时刻的对应连接的单体电池的电压。
电压数据接收单元,用于接收多个子控制器发送的单体电池的电压数据。
检测单元,用于检测在一次采样中是否所有子控制器均向电压数据接收单元发送了单体电池的电压数据,并在检测到存在某个子控制器未向电压数据接收单元发送单体电池的电压数据时将检测结果发送给信息反馈单元。检测单元还用于在连续两次采样中,如果存在某个子控制器向主控制器发送对应采集的单体电池的电压均失败,则向信息反馈单元发送故障通信信息,故障通信信息包括连续两次发送电压信息失败的子控制器的编号和两次的采样时间点。
信息反馈单元,用于反馈采样失败信息和故障通信信息。
采样失败信息和故障通信信息可以通过显示装置进行显示,以便操作员人进行故障处理。
在本发明的一个实施例中,采样失败信息包括未向主控制器发送单体电池的电压的子控制器的编号和采样的时间点。
子控制器包括:
电平信号采集单元,用于采集主控制器发送的电平信号,采集到同步时钟线的电平信号由第一电平变化为第二点平时刻,向电压数据采集单元发送信号。
电压数据采集单元,收到电平信号采集单元发送的信号后,采集对应连接的单体电池的电压数据,采集完毕后发送给电压数据传输单元。
电压数据传输单元,用于向主控制器发送电压数据。
本发明的实施例还公开了一种设备,包括:一个或者多个处理器;存储器;一个或者多个程序,所述一个或者多个程序存储在所述存储器中,当被所述一个或者多个处理器执行时,执行如上述实施例所述的电池管理系统的同步采样方法。
本发明的实施例还公开了一种非易失性计算机存储介质,计算机存储介质存储有一个或者多个程序,当一个或者多个程序被一个设备执行时,使得设备执行上述实施例所述的电池管理系统的同步采样方法。
另外,本发明实施例的电池管理系统的同步采样方法、采样系统和非易失性计算机存储介质的其它构成以及作用对于本领域的技术人员而言都是已知的,为了减少冗余,不做赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同限定。

Claims (10)

  1. 一种电池管理系统的同步采样方法,其特征在于,至少同步采集一次电池管理系统中所有单体电池的电压,同步采集电池管理系统中所有单体电池的电压的方法包括以下步骤:
    将主控制器端的时钟电平设置为第一电平;
    将多个子控制器端的时钟状态设置为输入状态,并监测同步时钟线,其中,所述主控制器和分别所述多个子控制器通过CAN总线相连,所述主控制器还通过所述同步时钟线与所述多个子控制器分别相连,所述多个子控制器分别采集至少一个单体电池的电压;
    将所述主控制器端的时钟电平设置为第二电平;
    所述多个子控制器同步采集相应的单体电池在所述第一电平向所述第二电平变化时刻的电压;以及
    所述多个子控制器将自身采集的单体电池的电压反馈给所述主控制器。
  2. 根据权利要求1所述的电池管理系统的同步采样方法,其特征在于,所述多个子控制器将自身采集的单体电池的电压反馈给所述主控制器进一步包括:
    所述多个子控制器向所述主控制器分别发送所述多个子控制器自身采集的单体电池的电压;
    所述主控制器接收所述多个子控制器发送的单体电池的电压,并检测在预设时间内是否所有多个子控制器均向所述主控制器发送了所述单体电池的电压,
    如果是,则本次采样完成;
    如果否,则本次采样失败,所述主控制器发送采样失败信息。
  3. 根据权利要求2所述的电池管理系统的同步采样方法,其特征在于,所述采样失败信息包括未向所述主控制器发送单体电池的电压的子控制器的编号和采样的时间点。
  4. 根据权利要求3所述的电池管理系统的同步采样方法,其特征在于,同步采集电池管理系统中所有单体电池的电压的次数为两次,如果两次采样失败且存在某个子控制器向所述主控制器发送对应采集的单体电池的电压均失败,则所述主控制发送故障通信信息。
  5. 一种电池管理系统的同步采样系统,其特征在于,包括:
    多个子控制器,所述多个子控制器均包括:
    电平信号采集单元,用于采集所述主控制器发送的电平信号;
    电压数据采集单元,与所述电平信号采集单元相连,用于在所述电平信号采集单元采集到电平信号变化时刻采集对应设置的单体电池的电压;
    电压数据传输单元,与所述电压数据采集单元相连,用于向所述主控制器发送采集的电压数据;
    主控制器,所述主控制器包括:
    电平信号输出单元,用于输出不同的电平信号控制所述多个子控制器是否同步采集对应设置的单体电池的电压;
    电压数据接收单元,用于接收所述多个子控制器发送的单体电池的电压数据;
    其中,所述主控制器和所述多个子控制器通过CAN总线连接,所述主控制器和所述多个子控制器还通过同步时钟线连接。
  6. 根据权利要求5所述的电池管理系统的同步采样系统,其特征在于,所述主控制器还包括:
    检测单元,与所述电压数据接收单元相连,用于检测在一次采样中是否所有子控制器均向所述电压数据接收单元发送单体电池的电压数据,并在检测到存在某个子控制器未向所述电压数据接收单元发送单体电池的电压数据时将检测结果发送给信息反馈单元;以及
    信息反馈单元,用于反馈采样失败信息。
  7. 根据权利要求6所述的电池管理系统的同步采样系统,其特征在于,所述采样失败信息包括未向所述主控制器发送单体电池的电压的子控制器的编号和采样的时间点。
  8. 根据权利要求7所述的电池管理系统的同步采样系统,其特征在于,所述检测单元还用于在连续两次采样中,如果存在某个子控制器向所述主控制器发送对应采集的单体电池的电压均失败,则向所述信息反馈单元发送故障通信信息,所述故障通信信息包括连续两次发送电压信息失败的子控制器的编号和两次的采样时间点,所述信息反馈单元将所述故障通信信息进行反馈。
  9. 一种设备,其特征在于,包括:
    一个或者多个处理器;
    存储器;
    一个或者多个程序,所述一个或者多个程序存储在所述存储器中,当被所述一个或者多个处理器执行时,执行如权利要求1-4任一项所述的电池管理系统的同步采样方法。
  10. 一种非易失性计算机存储介质,其特征在于,所述计算机存储介质存储有一个或者多个程序,当所述一个或者多个程序被一个设备执行时,使得所述设备执行如权利要求1-4任一项所述的电池管理系统的同步采样方法。
PCT/CN2016/103314 2015-10-28 2016-10-25 电池管理系统的同步采样方法和采样系统 WO2017071573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510711275.0A CN105226759A (zh) 2015-10-28 2015-10-28 电池管理系统的同步采样方法和采样系统
CN201510711275.0 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017071573A1 true WO2017071573A1 (zh) 2017-05-04

Family

ID=54995547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103314 WO2017071573A1 (zh) 2015-10-28 2016-10-25 电池管理系统的同步采样方法和采样系统

Country Status (2)

Country Link
CN (1) CN105226759A (zh)
WO (1) WO2017071573A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109831007A (zh) * 2019-03-12 2019-05-31 安徽卓越电气有限公司 分布式电池控制系统
CN116315182A (zh) * 2023-04-03 2023-06-23 广州小鹏汽车科技有限公司 电池管理系统以及电池包

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226759A (zh) * 2015-10-28 2016-01-06 北京新能源汽车股份有限公司 电池管理系统的同步采样方法和采样系统
JP6503138B2 (ja) * 2016-02-05 2019-04-17 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. アダプタ及び充電制御方法
CN107305970B (zh) * 2016-04-21 2019-12-27 宝沃汽车(中国)有限公司 数据传输处理方法、电池检测单元和电源管理系统
CN106569424B (zh) * 2016-11-03 2019-06-28 上海理工大学 电池管理系统数据存储的在线同步方法
CN108170540A (zh) * 2017-12-13 2018-06-15 深圳市科陆电子科技股份有限公司 电池簇数据处理方法及电池簇数据处理系统
CN108215907B (zh) * 2018-01-09 2021-09-28 联合汽车电子有限公司 电池管理系统及方法
CN108469747A (zh) * 2018-02-28 2018-08-31 北京智行鸿远汽车有限公司 通信管理方法、系统及计算机可读存储介质
CN110289656B (zh) * 2019-07-04 2023-05-16 大唐恩智浦半导体有限公司 电池管理电路及电池模块
CN110875792A (zh) * 2019-11-29 2020-03-10 东南大学 一种基于主动同步的电池管理单元采样及数据上送方法
CN115498739B (zh) * 2022-11-17 2023-06-30 广东采日能源科技有限公司 储能系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029920A (zh) * 2006-09-07 2007-09-05 长安大学 集中/分布式电动汽车蓄电池组工作参数检测系统
CN101895133A (zh) * 2009-05-19 2010-11-24 Sb锂摩托有限公司 电池管理系统及其驱动方法
CN103529401A (zh) * 2013-10-30 2014-01-22 北京交通大学 基于FlexRay总线的电池信息同步采集装置
CN104716393A (zh) * 2013-12-17 2015-06-17 北汽福田汽车股份有限公司 电池参数采集控制方法、装置及电池管理系统
CN105226759A (zh) * 2015-10-28 2016-01-06 北京新能源汽车股份有限公司 电池管理系统的同步采样方法和采样系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029920A (zh) * 2006-09-07 2007-09-05 长安大学 集中/分布式电动汽车蓄电池组工作参数检测系统
CN101895133A (zh) * 2009-05-19 2010-11-24 Sb锂摩托有限公司 电池管理系统及其驱动方法
CN103529401A (zh) * 2013-10-30 2014-01-22 北京交通大学 基于FlexRay总线的电池信息同步采集装置
CN104716393A (zh) * 2013-12-17 2015-06-17 北汽福田汽车股份有限公司 电池参数采集控制方法、装置及电池管理系统
CN105226759A (zh) * 2015-10-28 2016-01-06 北京新能源汽车股份有限公司 电池管理系统的同步采样方法和采样系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109831007A (zh) * 2019-03-12 2019-05-31 安徽卓越电气有限公司 分布式电池控制系统
CN116315182A (zh) * 2023-04-03 2023-06-23 广州小鹏汽车科技有限公司 电池管理系统以及电池包

Also Published As

Publication number Publication date
CN105226759A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2017071573A1 (zh) 电池管理系统的同步采样方法和采样系统
JP6228666B2 (ja) 電池システム
CN103683428B (zh) 一种用于电动汽车的电池管理系统以及电动汽车
CN103827685B (zh) 用于确定蓄电池单池的充电状态的蓄电池管理系统和方法、具有蓄电池管理系统的蓄电池和机动车
US20110050236A1 (en) State monitoring unit for assembled battery
KR101732854B1 (ko) 축전지 장치 및 축전지 시스템
JP2011047683A (ja) 複数組電池の状態監視ユニット
JPWO2013175605A1 (ja) 電池制御装置
JP2014107979A (ja) 電池監視装置
JP5331656B2 (ja) 電源装置
CN105676091A (zh) 一种电池组绝缘检测装置及其绝缘检测方法
JP5569418B2 (ja) 電池監視装置
JP7302765B2 (ja) バッテリー診断装置及び方法
JP2012208067A (ja) 電池電圧検出装置
JP5656571B2 (ja) 通信システム
JP2014217146A (ja) 電池監視装置、及び、電池ユニット
CN202782733U (zh) 一种支持诊断功能的电池管理系统
US20170163054A1 (en) Storage battery system, storage battery unit, and computer program product
KR101945425B1 (ko) 배터리 팩 상태 병렬 모니터링 장치
JP2012208066A (ja) 電池電圧検出装置
CN103163471A (zh) 电池传感器及电池监控系统
JPWO2015011801A1 (ja) 電池システム監視装置
JP5740899B2 (ja) 電池システム
EP3096431B1 (en) Battery management unit and method for setting identifier by using frequency modulation
TWM575779U (zh) Vehicle low voltage electrical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859008

Country of ref document: EP

Kind code of ref document: A1