WO2017071451A1 - 一种用于放疗设备旋转的控制装置和方法 - Google Patents

一种用于放疗设备旋转的控制装置和方法 Download PDF

Info

Publication number
WO2017071451A1
WO2017071451A1 PCT/CN2016/100809 CN2016100809W WO2017071451A1 WO 2017071451 A1 WO2017071451 A1 WO 2017071451A1 CN 2016100809 W CN2016100809 W CN 2016100809W WO 2017071451 A1 WO2017071451 A1 WO 2017071451A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
rotation
radiotherapy
rotating
radiotherapy apparatus
Prior art date
Application number
PCT/CN2016/100809
Other languages
English (en)
French (fr)
Inventor
岳小军
Original Assignee
深圳市奥沃医学新技术发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市奥沃医学新技术发展有限公司 filed Critical 深圳市奥沃医学新技术发展有限公司
Publication of WO2017071451A1 publication Critical patent/WO2017071451A1/zh
Priority to US15/961,889 priority Critical patent/US10682526B2/en
Priority to US15/930,096 priority patent/US11000698B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N2005/1074Details of the control system, e.g. user interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2652Medical scanner

Definitions

  • the present invention relates to the field of automatic control, and more particularly to a control apparatus and method for the rotation of a radiotherapy apparatus.
  • a rotating source body, a collimating body, and the like are generally used to open source and shut off the source.
  • the synchronous rotation or asynchronous rotation accuracy of the source body, the collimator body and the like may affect the accuracy of the patient's lesion on the actual absorbed dose of the radioactive ray and the control of the uniformity of the dose field.
  • the existing head gamma knife radiotherapy equipment adopts semi-closed loop feedback detection technology for synchronous rotation or asynchronous rotation, which is to monitor the rotation precision of the head cutter by the encoder provided by the servo motor.
  • this detection method cannot accurately reflect the true position of the cutter head when it is rotated.
  • the motor and the load are composed of a multi-stage transmission chain such as a reducer and a gear, each stage of the transmission mechanism will amplify the rotation error and eventually Will greatly reduce the accuracy of the head knife rotation.
  • the technical problem to be solved by the present invention is to provide a control device and method for the rotation of a radiotherapy device, which can improve the safety of the radiotherapy device by monitoring the true rotation of the rotating component of the radiotherapy device and correcting the rotation when the rotation occurs. And positioning accuracy.
  • the present invention adopts a technical solution for providing a control device for rotating a radiotherapy device for controlling rotation of each rotating load of the radiotherapy device about a rotating shaft, and the control device and the radiotherapy device form a full closed loop structure.
  • the control device comprises: a monitoring module for monitoring each rotational load of the radiotherapy device and recording an offset when the rotational offset occurs; and a control module for detecting at least one of the rotational loads of the radiotherapy device monitored by the monitoring module When offsetting, a correction instruction for eliminating the offset is generated according to the offset; the driving module is used for Each rotating load that drives the radiation therapy device rotates about the axis of rotation and drives the offsetting rotational load movement to cancel the offset according to a correction command issued by the control module.
  • the present invention adopts a technical solution of providing a control method for the rotation of a radiotherapy apparatus, comprising: setting a rotational load of the radiotherapy apparatus to rotate along a rotating shaft, and monitoring a rotating load and recording a rotational offset. Offset; when at least one of the respective rotational loads of the radiotherapy apparatus is detected to be offset, a correction instruction for eliminating the offset is generated according to the offset; and the rotational load shift of the offset is driven according to the correction instruction to eliminate Offset.
  • the control device for rotating the radiotherapy device of the present invention performs actual position monitoring on the rotation of the carrier, the collimator and the switch body of the head knife rotating device.
  • a certain rotation axis is detected to be offset, and the actual rotation of the rotating component of the radiotherapy device is monitored, and the rotation is offset in time to improve the safety and positioning accuracy of the radiotherapy device.
  • FIG. 1 is a schematic structural view of a first embodiment of a control device for rotating a radiotherapy apparatus according to the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of a control device for rotating a radiotherapy apparatus according to the present invention
  • FIG. 3 is a schematic flow chart of a first embodiment of a method for controlling rotation of a radiotherapy apparatus according to the present invention
  • FIG. 4 is a schematic flow chart of a second embodiment of a control method for rotation of a radiotherapy apparatus according to the present invention.
  • Full-closed-loop monitoring system and semi-closed-loop monitoring system are common monitoring methods in the field of automatic control.
  • the semi-closed-loop monitoring system monitors the driving link of the final execution of the whole system, and does not monitor the final executing organization;
  • the closed-loop monitoring system monitors the final execution of the whole system, which can compensate the error caused by any part of the system.
  • the control accuracy of the rotation performance is closely related to the uniformity of the dose field of the radiotherapy equipment and the accuracy of the actual absorbed dose of the lesion to the reflective ray, because when using the full closed-loop monitoring system It is precisely controlled.
  • FIG. 1 is a schematic structural view of a first embodiment of a control device for rotating a radiotherapy apparatus according to the present invention.
  • the control device 100 includes a monitoring module 120, a control module 130, and a driving module 140, and forms a full closed loop structure with the rotating load 110 of the radiotherapy apparatus (not shown).
  • the rotating load 110 includes at least a carrier body 111, a switch body 112, and a collimating body 113 that are sequentially covered.
  • the carrier body 111, the switch body 112, and the collimating body 113 are all bowl-shaped structures, and Synchronous or asynchronous rotation along a shaft that passes vertically through the bottom of each bowl.
  • the carrier 111, the switch body 112, and the collimator 113 are sequentially covered, it is considered that the carrier 111, the switch body 112, and the collimator 113 rotate along the same rotation axis.
  • the monitoring module 120 is connected to the rotating load 110 for monitoring the rotation of the carrier 111, the switch body 112 and the collimator 113.
  • the monitoring module 120 monitors using a circular grating.
  • the monitoring module 120 transmits the offset of the rotational displacement of the carrier body 111, the switch body 112, and the collimator 113 to the control module 130.
  • the control module 130 calculates the corrected correction offset required for the normal rotation according to the offset rotation load, and sends a correction instruction to the driving module 140, and the driving module 140 is configured to drive each of the rotating loads during the normal treatment process.
  • the part is rotated, and the part in which the rotational offset occurs is offset by the correction command, and the normal rotation is resumed.
  • the radioactive material for radiotherapy is provided on the carrier 111, which is harmful to the human body. Only the precise control of the rotation of the carrier 111, the switch body 112 and the collimator 113 can be effectively treated without the health care of medical staff and patients.
  • the Kang area causes damage.
  • the control module 130 sets the carrier 111, the switch body 112, and the collimator 113 of the rotating load to rotate at a certain rate and direction, so that the patient receives the irradiation of the radioactive rays according to the treatment plan.
  • the monitoring module 120 monitors the rotation of the carrier 111, the switch body 112 and the collimator 113 in real time, and the extension line of the axis along which the carrier body 111, the switch body 112 and the collimator 113 rotate is vertical.
  • the rotation axis along which the rotation axis is rotated relative to the rotation axis direction during normal rotation also occurs.
  • the deflection of the present invention includes directional deflection and positional deflection.
  • the monitoring module 120 monitors the rotational load 110 whose rotation has changed, and transmits the offset to the control module 130.
  • the control module 130 sends a correction instruction to the driving module 140, where the correction instruction is an instruction to cancel the offset when the rotation of any one or more of the carrier 110, the switch body 120, and the collimator 130 is offset, and the driving module 140 According to the correction command, the offset is eliminated, so that normal rotation is resumed.
  • the control device for rotating the radiotherapy device of the present invention performs actual position monitoring on the rotation of the carrier, the collimator and the switch body of the head knife rotating device.
  • a certain rotation axis is detected to be offset, and the actual rotation of the rotating component of the radiotherapy device is monitored, and the rotation is offset in time to improve the safety and positioning accuracy of the radiotherapy device.
  • FIG. 2 is a schematic structural view of a second embodiment of a control device for rotating a radiotherapy apparatus according to the present invention.
  • the control device 200 includes a monitoring module 220, a control module 230, and a driving module 240.
  • the rotating load 210 forms a full closed loop structure with the rotating load 210 of the radiotherapy apparatus (not shown).
  • the rotating load 210 includes at least a carrier body 211, a switch body 212 and a collimating body 213 which are sequentially covered by a radiotherapy apparatus (not shown), both of which are bowl-shaped and are arranged along a rotation axis vertically passing through the bottom of each bowl structure. Synchronous or asynchronous rotation.
  • the carrier body 211, the switch body 212, and the collimator 213 of the three bowl-like structures are sequentially covered, and the three rotating shafts are rotated by the rotation control technique.
  • the carrier 211, the switch body 212 and the collimator 213 are direct components of the radiotherapy device for emitting radiation to the patient, and the relative rotation of the three can accurately control the radioactive material in the radiotherapy device according to a predetermined treatment plan. And Guanyuan, if the source body 211, the switch body 212
  • the relative rotation of the collimator 213 is offset, which may cause a medical accident.
  • the monitoring module 220 is configured to monitor the rotation of the carrier 211, the collimator 212, and the switch body 213, including the monitoring unit 221 and the alarm unit 222.
  • the monitoring unit 221 of the monitoring module 220 is configured to monitor the rotation of the rotating shaft of the carrier body 211, the switch body 212 and the collimating body 213, and any one or several rotations of the carrier body 211, the switch body 212 and the collimating body 213 occur. Offset, the monitoring unit 221 of the monitoring module 220 records the offset detected by the monitoring module 220.
  • the offset involved includes a positional shift and an angular offset
  • the positional shift refers to a position in which the positions of the rotating shafts of the carrier body 211, the switch body 212, and the collimator 213 rotate in parallel, away from the initial position, and the angle
  • the offset means that the rotating shaft of the carrier body 211, the switch body 212 and the collimating body 213 no longer vertically passes through the annular surface of the monitoring module 220, but forms an angle with the vertical direction.
  • the alarm unit 222 records the offset of the offset after the rotation of any one or more of the carrier 211, the switch body 212, and the collimator 213, and issues an alarm signal to notify the control module 230.
  • the alarm signal includes an offset of the offset error monitored by the monitoring module 220.
  • the circular grating is used as the monitoring module, and the rotational offset error can be accurately fed back, and the rotating shaft of the carrier body 211, the collimating body 212 and the switch body 213 is digitally controlled, so that the actual position of the rotating shaft is strictly at any time. It is kept fixed, so that the rotation of the carrier 211, the switch body 212 and the collimator 213 has high dynamic and steady state precision.
  • the carrier body 211, the switch body 212 or the collimator 213 rotates to generate a positional offset or an angular offset, and the offset error value can be accurately captured by the circular grating, and the control module 230 is notified to perform subsequent correction.
  • a virtual rotating shaft 233 is set in the control module 230 so as to be parallel with the rotating shaft of the carrier body 211, the switch body 212 and the collimating body 213.
  • the overlap, and the virtual rotation axis 233 is virtual, the human eye cannot observe, and its position is fixed.
  • the physical axis of rotation of the carrier body 211, the switch body 212, and the collimator 213 is respectively disposed in parallel with the virtual rotating shaft 233, and finally the physical body of the carrier 211, the switch body 212, and the collimator 213 is rotated.
  • the axes are parallel or even overlapping.
  • the control module 230 includes a receiving unit 231 and a command unit 232.
  • the receiving unit 231 of the control module 230 receives the alarm signal, and obtains an offset according to the alarm signal.
  • the command unit 232 generates a correction command according to the offset, and the correction command is generated according to the offset included in the alarm signal.
  • the offset command includes the control module 230 according to the rotational load 210 The offset is calculated as the corrected offset of the correction required to resume normal rotation, and the command module 232 transmits the correction command to the drive module 240 after the correction command is generated.
  • the driving module 240 includes a first driving unit 241, a second driving unit 242, and a third driving unit 243.
  • the first driving unit 241, the second driving unit 242, and the third driving unit 243 are respectively used to drive the source body 211 and the switch body. 212 and the rotation of the collimating body 213, the driving module 240 is powered by a power source (not shown).
  • the first driving unit 241, the second driving unit 242 and the third driving unit 243 simultaneously analyze the correction command to confirm the corresponding carrier body 211, the collimating body 212 and the switch. Whether or not the rotation of the body 213 is shifted, and after the offset is confirmed, according to the correction method in the correction command, the offset is eliminated and the normal rotation is resumed.
  • a monitoring module 220 is disposed in the first driving unit 241, the second driving unit 242, and the third driving unit 243.
  • the monitoring module 220 uses a circular grating, and the circular grating has a ring structure and is loaded.
  • the rotating shafts of the body 211, the collimating body 212 and the switch body 213 are all perpendicular to the circular surface of the annular structure and vertically pass through the center of the circle.
  • an alarm signal is sent to the control module 230 to be offset by the control module 230 according to the monitoring module 220.
  • the rotational load of the offset is calculated to restore the corrected offset of the normal rotation, and the offset is eventually eliminated by the corresponding drive unit in the drive module 240.
  • the control device for rotating the radiotherapy device of the present invention performs actual position monitoring on the rotation of the carrier, the collimator and the switch body of the head knife rotating device.
  • a certain rotation axis is detected to be offset, and the actual rotation of the rotating component of the radiotherapy device is monitored, and the rotation is offset in time to improve the safety and positioning accuracy of the radiotherapy device.
  • FIG. 3 is a schematic flow chart of a first embodiment of a method for controlling rotation of a radiotherapy apparatus according to the present invention. The steps of the method include:
  • S301 Set the rotational load of the radiotherapy device to rotate along the rotating shaft, and monitor the rotating load and record the offset when the rotational offset occurs.
  • the source body, the switch body and the collimator are all bowl-shaped structures, which are sequentially covered and controlled by different drive motors, and the three are vertically passed through the respective bowls.
  • the shaft at the bottom of the structure rotates while the relative rotation between the three is possible. Only the precise control of the rotation of the carrier, the switch body and the collimator can effectively treat the open source and source of radioactive materials in the radiotherapy equipment according to the predetermined treatment plan, without the medical staff and the disease. Damage to the affected area.
  • a circular grating which is a ring structure. Since the carrier, the collimator, and the switch body are sequentially covered, the rotation axes along which the respective rotations are rotated coincide with each other on the same straight line.
  • the circular surface of the circular grating annular structure is disposed perpendicular to a straight line of the rotating shaft of the carrier body, the collimating body and the rotating body of the switch body, and the straight line vertically passes through the center of the circular surface. Go to step S302.
  • the position of the circular grating is fixed.
  • the position of the rotating shaft of the carrier body, the switch body and the collimator is not changed. Further perpendicular to the circular surface of the annular structure of the circular grating, or when the straight line does not vertically pass through the center of the circular surface, it can be determined that the rotation of the carrier, the switch body or the collimator is offset from the normal operation, Make corrections.
  • the correction instruction is calculated according to the offset, and the correction instruction is an instruction for eliminating the offset, which comprises comparing the offset of the rotating shaft relative to the circular grating by comparing the offset error information with a preset relative axis of the rotating shaft.
  • the correction method after determining the position of the grating. After the correction command is issued, the process proceeds to step S303.
  • the drive motor that drives the carrier body, the switch body, and the collimator rotates to eliminate the offset generated during the rotation of the carrier, the switch body, and the collimator according to the correction method in the correction command. Restore the work of the radiotherapy equipment to normal.
  • the actual position monitoring of the rotation of the carrier, the collimator and the switch body of the head knife rotating device is performed by the control method of the rotation of the radiotherapy device of the present invention.
  • a certain rotation axis is detected to be offset, and the actual rotation of the rotating component of the radiotherapy device is monitored, and the rotation is offset in time to improve the safety and positioning accuracy of the radiotherapy device.
  • FIG. 4 is a control method for rotating a radiotherapy apparatus provided by the present invention.
  • a schematic diagram of the flow of the second embodiment. The steps of the method include:
  • S401 Set the rotational load of the radiotherapy device to rotate along the rotating shaft, and monitor the rotating load and record the offset when the rotational offset occurs.
  • S402 Send an alarm signal when it is detected that at least one of the respective rotational loads of the radiotherapy device is offset.
  • the circular grating is used to monitor the rotation of the carrier, the switch body and the collimator of the radiotherapy apparatus.
  • the circular grating monitors the relative position of the virtual rotating shaft and the rotating shaft along which the carrier body, the collimating body and the switch body rotate.
  • the carrier body, the collimator body and the switch body rotate, the carrier body and collimation
  • the position or angle of the rotation of the body and the switch body relative to the circular grating must change.
  • the circular grating determines the offset mode, calculates the offset after the offset, and sends an alarm signal to the controller, and proceeds to step S403.
  • the alarm signal After receiving the alarm signal, the alarm signal is parsed to obtain an offset included therein, and a correction command is generated according to the offset.
  • the correction command is an instruction to cancel the offset when the rotation of at least one of the carrier body, the switch body, and the collimator is offset, and includes correction for correcting the rotation required to restore the normal rotation according to the offset
  • the offset is added to the correction command and the correction command is sent to the drive motor.
  • the drive motor that drives the carrier body, the collimator and the switch body rotates to eliminate the bias occurred during the rotation of the carrier, the collimator and the switch body according to the correction offset in the correction command. Move to restore the work of the radiotherapy equipment.
  • the actual position monitoring of the rotation of the carrier, the collimator and the switch body of the head knife rotating device is performed by the control method of the rotation of the radiotherapy device of the present invention.
  • a certain rotation axis is detected to be offset, and the actual rotation of the rotating component of the radiotherapy device is monitored, and the rotation is offset in time to improve the safety and positioning accuracy of the radiotherapy device.

Abstract

一种用于放疗设备旋转的控制装置(100,200)和方法,该控制装置(100,200)用于控制放疗设备的各个旋转负载(110,210)绕旋转轴同步或异步旋转,控制装置(100,200)与放疗设备形成全闭环结构,控制装置(100,200)包括:监测模块(120,220),用于监测放疗设备的各个旋转负载(110,210),并且记录发生旋转偏移时的偏移量;控制模块(130,230),用于在监测模块(120,220)监测到放疗设备的各个旋转负载(110,210)至少其中之一者发生偏移时,根据偏移量产生消除偏移的校正指令;驱动模块(140,240),用于驱动放疗设备的各个旋转负载(110,210)绕旋转轴旋转,并根据控制模块(130,230)发出的校正指令,驱动发生偏移的旋转负载(110,210)移动,以消除偏移。所述控制装置(100,200)和方法通过监测放疗设备旋转负载(110,210)的真实转动情况,在其转动发生偏移时及时校正,提高放疗设备的安全性和定位精度。

Description

一种用于放疗设备旋转的控制装置和方法 技术领域
本发明涉及自动控制领域,特别是涉及一种用于放疗设备旋转的控制装置和方法。
背景技术
现有的头部伽玛刀放疗设备中,通常采用旋转源体、准直体等方式式以进行放射源的开源及关源。而源体、准直体等同步旋转或异步旋转精度会影响患者病灶对放射性射线实际吸收剂量的准确性以及剂量场均匀性的控制。
现有的头部伽玛刀放疗设备同步旋转或异步旋转多采用半闭环反馈检测技术,就是通过伺服电机自带的编码器来监测头刀的旋转精度。但是,这种检测方法无法准确的反映刀头旋转时的真实位置,因为电机和负载之间是通过减速机、齿轮等多级传动链组成,每一级传动机构都会将旋转误差放大,最终将会大大降低了头刀旋转精度。
发明内容
本发明主要解决的技术问题是提供一种用于放疗设备旋转的控制装置和方法,能够通过监测放疗设备旋转部件的真实转动情况,在其转动发生偏移时及时校正,提高放疗设备的安全性和定位精度。
为解决上述技术问题,本发明采用的一个技术方案是:提供用于放疗设备旋转的控制装置,用于控制放疗设备的各个旋转负载绕旋转轴旋转,控制装置与放疗设备形成全闭环结构,该控制装置包括:监测模块,用于监测放疗设备的各个旋转负载并记录发生旋转偏移时的偏移量;控制模块,用于在监测模块监测到放疗设备的各个旋转负载至少其中之一者发生偏移时,根据偏移量产生消除偏移的校正指令;驱动模块,用于 驱动放疗设备的各个旋转负载绕旋转轴旋转,并根据控制模块发出的校正指令,驱动发生偏移的旋转负载移动,以消除偏移。
为解决上述技术问题,本发明采用的一个技术方案是:提供用于放疗设备旋转的控制方法,包括:设置放疗设备的旋转负载沿转轴进行旋转,并监测旋转负载并记录发生旋转偏移时的偏移量;在监测到放疗设备的各个旋转负载至少其中之一者发生偏移时,根据偏移量产生消除偏移的校正指令;根据校正指令,驱动发生偏移的旋转负载移动,以消除偏移。
区别于现有技术,利用本发明放疗设备旋转的控制装置对头刀旋转设备载源体、准直体及开关体的旋转进行实际位置监测。同步或异步旋转过程中监测到某个旋转轴发生了偏移,通过监测放疗设备旋转部件的真实转动情况,在其转动发生偏移时及时校正,提高放疗设备的安全性和定位精度。
附图说明
图1是本发明提供的一种用于放疗设备旋转的控制装置的第一实施方式的结构示意图;
图2是本发明提供的一种用于放疗设备旋转的控制装置的第二实施方式的结构示意图;
图3是本发明提供的一种用于放疗设备旋转的控制方法的第一实施方式的流程示意图;
图4是本发明提供的一种用于放疗设备旋转的控制方法的第二实施方式的流程示意图。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步更详细的描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范 围。
全闭环监测系统和半闭环监测系统是目前自动控制领域常见的监控方法。其中,半闭环监测系统监控的是整个系统最终执行环节的驱动环节,对最终执行机构不作监控;全闭环监测系统监控的是整个系统的最终执行环节,可对系统任一环节造成的误差进行补偿。对于放疗设备,头刀的旋转部件作为最终执行机构,其旋转性能的控制精度与放疗设备剂量场的均匀性以及病灶对反射性射线实际吸收剂量的准确性息息相关,因当利用全闭环监控系统对其进行精确控制。
参阅图1,图1是本发明提供的一种用于放疗设备旋转的控制装置的第一实施方式的结构示意图。控制装置100包括监测模块120、控制模块130和驱动模块140,与放疗设备(图未示)的旋转负载110形成全闭环结构。
本实施例中,所述旋转负载110至少包括依次罩合的载源体111、开关体112和准直体113,载源体111、开关体112和准直体113均为碗状结构,且沿垂直穿过各个碗状结构底部的转轴进行同步或异步旋转。在本实施方式中,因载源体111、开关体112和准直体113依次罩合,因此可认为载源体111、开关体112和准直体113沿相同的转轴进行旋转。监测模块120连接旋转负载110,用以监测载源体111、开关体112和准直体113的旋转情况。优选的,监测模块120使用圆光栅进行监控。当载源体111、开关体112和准直体113在旋转过程中其中的一个或几个旋转发生偏差,即可被监测模块120监测到。监测模块120将载源体111、开关体112和准直体113中发生旋转偏移的偏移量发送到控制模块130。控制模块130根据偏移量计算偏移的旋转负载恢复正常旋转所需校正的校正偏移量,并向驱动模块140发送校正指令,驱动模块140用于在正常的治疗过程中驱动旋转负载的各部件进行旋转,以及根据校正指令,使发生旋转偏移的部件消除偏移,恢复正常旋转。
在本实施方式的放疗设备中,载源体111上设置有放疗用的放射性物质,对人体是有害的。只有精确控制载源体111、开关体112和准直体113三者的旋转,才能进行有效治疗,且不会对医务人员及病患的健 康部位造成伤害。首先控制模块130设定旋转负载的载源体111、开关体112和准直体113以一定的速率及方向进行旋转,使患者按治疗计划接收放射性射线的照射。在治疗过程中,监测模块120实时监测载源体111、开关体112和准直体113的旋转情况,载源体111、开关体112和准直体113旋转时所沿的轴线的延伸线垂直穿过监测模块120的环状圆心,当源体111、准直体112和开关体113其中一个或几个的旋转发生偏转时,其旋转所沿的转轴相对于正常旋转时的转轴方位也发生了变化,需要说明的是,本发明所述的偏转包括方向偏转和位置偏转,此时监测模块120监测到旋转发生变化的旋转负载110,将偏移量发送到控制模块130。控制模块130向驱动模块140发送校正指令,该校正指令是载源体110、开关体120和准直体130中任意一个或几个的旋转发生偏移时消除该偏移的指令,驱动模块140根据校正指令,消除偏移,使恢复正常的旋转。
区别于现有技术,利用本发明放疗设备旋转的控制装置对头刀旋转设备载源体、准直体及开关体的旋转进行实际位置监测。同步或异步旋转过程中监测到某个旋转轴发生了偏移,通过监测放疗设备旋转部件的真实转动情况,在其转动发生偏移时及时校正,提高放疗设备的安全性和定位精度。
参阅图2,图2是本发明提供的一种用于放疗设备旋转的控制装置的第二实施方式的结构示意图。控制装置200包括监测模块220、控制模块230和驱动模块240,旋转负载210,与放疗设备(图未示)的旋转负载210形成全闭环结构。
旋转负载210至少包括放疗设备(图未示)的依次罩合的载源体211、开关体212和准直体213,均为碗状结构,且沿垂直穿过各个碗状结构底部的转轴进行同步或异步旋转。三个碗状结构的载源体211、开关体212和准直体213依次罩合,利用旋转控制技术使三个转轴旋转。载源体211、开关体212和准直体213是放疗设备用于发射放射线对病人进行治疗的直接部件,通过三者的相对旋转,可根据预定的治疗计划精确控制放疗设备内放射性物质的开源和关源,如果载源体211、开关体212 和准直体213的相对旋转发生偏移,可能会造成医疗事故。
监测模块220用于监控载源体211、准直体212和开关体213的旋转情况,包括监测单元221和警报单元222。监测模块220的监测单元221用于监测载源体211、开关体212和准直体213转轴的旋转,当载源体211、开关体212和准直体213中的任意一个或几个旋转发生偏移,监测模块220的监测单元221记录监测模块220监测到的偏移量。本发明中,涉及的偏移包括位置偏移和角度偏移,位置偏移是指载源体211、开关体212和准直体213旋转的转轴的位置发生平行移动,离开初始的位置,角度偏移是指载源体211、开关体212和准直体213旋转的转轴不再垂直穿过监测模块220的环形表面,而是与垂直方向产生一角度。警报单元222在载源体211、开关体212和准直体213中任意1个或几个的旋转发生偏移后,记录偏移的偏移量,发出警报信号,通知控制模块230。该警报信号中包含监测模块220监测得到的偏移误差的偏移量。在本实施方式中,采用圆光栅作为监测模块,可精确反馈旋转偏移误差,对载源体211、准直体212和开关体213旋转的转轴进行数字化控制,使任何时刻转轴的实际位置严格保持固定,从而保证载源体211、开关体212和准直体213的旋转具有很高的动、稳态精度。载源体211、开关体212或准直体213旋转发生位置偏移或角度偏移,其偏移误差值均可被圆光栅准确捕捉,通知控制模块230进行后续的校正。
在本实施方式中,于检测模块220进行监测之前,在控制模块230中设定一虚拟旋转轴233,使之与载源体211、开关体212和准直体213旋转的转轴均为平行或重叠,且虚拟旋转轴233是虚拟的,人眼无法观察,而且其位置固定不变。通过该虚拟旋转轴233,使载源体211、开关体212和准直体213旋转的物理轴分别与之平行设置,最终实现了载源体211、开关体212和准直体213旋转的物理轴平行甚至重叠。
控制模块230包括接收单元231和命令单元232。控制模块230的接收单元231接收该警报信号,根据警报信号解析得到偏移量,命令单元232根据该偏移量生成一校正指令,该校正指令是根据警报信号中包含的偏移量生成的消除偏移的指令,包含控制模块230根据旋转负载210 的偏移量计算其恢复正常旋转所需校正的校正偏移量,生成校正指令后命令模块232将该校正指令传输到驱动模块240。
驱动模块240包括第一驱动单元241、第二驱动单元242和第三驱动单元243,第一驱动单元241、第二驱动单元242和第三驱动单元243分别用于驱动载源体211、开关体212和准直体213的旋转,驱动模块240通过一电源(图未示)为其供电。同时在接收到命令单元232传输的校正指令时,第一驱动单元241、第二驱动单元242和第三驱动单元243同时解析该校正指令,确认对应的载源体211、准直体212及开关体213的旋转是否发生偏移,在确认偏移后根据校正指令中的修正方法,消除偏移,使之恢复正常旋转。
进一步,可在第一驱动单元241、第二驱动单元242和第三驱动单元243内部分别设置一监测模块220,本实施方式中监测模块220使用圆光栅,圆光栅为环状结构,且载源体211、准直体212及开关体213旋转时的转轴均垂直于环状结构的圆面,且垂直穿过其圆心。各个圆光栅监测到放疗设备的载源体211、准直体212及开关体213旋转发生偏移时时,向控制模块230发出警报信号,以待控制模块230根据监测模块220得到的偏移量,计算发生偏移的旋转负载恢复正常旋转的校正偏移量,最终由驱动模块240中相应的驱动单元消除偏移。
区别于现有技术,利用本发明放疗设备旋转的控制装置对头刀旋转设备载源体、准直体及开关体的旋转进行实际位置监测。同步或异步旋转过程中监测到某个旋转轴发生了偏移,通过监测放疗设备旋转部件的真实转动情况,在其转动发生偏移时及时校正,提高放疗设备的安全性和定位精度。
参阅图3,图3是本发明提供的一种用于放疗设备旋转的控制方法的第一实施方式的流程示意图。该方法的步骤包括:
S301:设置放疗设备的旋转负载沿转轴进行旋转,并监测旋转负载并记录发生旋转偏移时的偏移量。
放疗设备在正常工作的过程中,载源体、开关体和准直体均为碗状结构,且依次罩合,通过不同的驱动电机控制,三者沿垂直穿过各个碗 状结构底部的转轴进行旋转,同时三者之间可进行相对旋转。只有精确控制载源体、开关体和准直体三者的旋转,才能进行有效治疗,可根据预定的治疗计划精确控制放疗设备内放射性物质的开源和关源,而不会对医务人员及病患的健康部位造成伤害。
在载源体、准直体和开关体工作过程中,通过一圆光栅监测三者的旋转情况,圆光栅为环状结构。因载源体、准直体和开关体依次罩合,所以在旋转时,各自旋转所沿的转轴重合于同一直线上。设置该圆光栅环状结构的圆面垂直于载源体、准直体和开关体旋转的转轴所在直线,且该直线垂直穿过圆面的圆心。进入步骤S302。
S302:在监测到放疗设备的各个旋转负载至少其中之一者发生偏移时,根据偏移量产生消除偏移的校正指令。
圆光栅的位置固定不变,当监测到载源体、开关体和准直体旋转的转轴与圆光栅的相对位置发生变化,如载源体、开关体或准直体旋转的转轴所在直线不再垂直于圆光栅环状结构的圆面,或者该直线不垂直穿过圆面的圆心时,可以确定是载源体、开关体或准直体的旋转相较正常工作时发生偏移,需进行校正。圆光栅计算偏移量后,根据偏移量计算得到校正指令,该校正指令是消除偏移的指令,包含通过对比偏移误差信息中转轴相对圆光栅的偏移量及预设的转轴相对圆光栅的位置后确定的修正方法。发出校正指令后,进入步骤S303。
S303:根据校正指令,驱动发生偏移的旋转负载移动,以消除偏移。
发出校正指令后,驱动载源体、开关体及准直体旋转的驱动电机会根据校正指令中的修正方法,消除载源体、开关体及准直体三者旋转过程中发生的偏移,使放疗设备的工作恢复正常。
区别于现有技术,利用本发明放疗设备旋转的控制方法对头刀旋转设备载源体、准直体及开关体的旋转进行实际位置监测。同步或异步旋转过程中监测到某个旋转轴发生了偏移,通过监测放疗设备旋转部件的真实转动情况,在其转动发生偏移时及时校正,提高放疗设备的安全性和定位精度。
参阅图4,图4是本发明提供的一种用于放疗设备旋转的控制方法 的第二实施方式的流程示意图。该方法的步骤包括:
S401:设置放疗设备的旋转负载沿转轴进行旋转,并监测旋转负载并记录发生旋转偏移时的偏移量。
与前一实施方式相同,不再赘述。放疗设备进入正常运转后,进入步骤S402。
S402:在监测到放疗设备的各个旋转负载至少其中之一者发生偏移时,发出警报信号。
与前一实施方式相同,利用圆光栅监测放疗设备的载源体、开关体和准直体的旋转情况。圆光栅通过监控虚拟旋转轴与载源体、准直体和开关体旋转所沿的转轴的相对位置,当载源体、准直体和开关体旋转发生偏移时,载源体、准直体和开关体旋转的转轴相对于圆光栅的位置或角度必定发生变化。偏移后,圆光栅确定偏移方式,并计算偏移后的偏移量,向控制器发送警报信号,进入步骤S403。
S403:根据偏移量产生消除偏移的校正指令。
接收到警报信号后,解析该警报信号,得到其中包含的偏移量,根据偏移量生成校正指令。校正指令是在载源体、开关体和准直体至少其中之一者的旋转发生偏移时消除偏移的指令,包含根据偏移量计算偏移的旋转负载恢复正常旋转所需校正的校正偏移量,并附加到校正指令中,将校正指令发送到驱动电机。
S404:根据校正指令,驱动发生偏移的旋转负载移动,以消除偏移。
发出校正指令后,驱动载源体、准直体及开关体旋转的驱动电机会根据校正指令中的校正偏移量,消除载源体、准直体及开关体三者旋转过程中发生的偏移,使放疗设备的工作恢复正常。
区别于现有技术,利用本发明放疗设备旋转的控制方法对头刀旋转设备载源体、准直体及开关体的旋转进行实际位置监测。同步或异步旋转过程中监测到某个旋转轴发生了偏移,通过监测放疗设备旋转部件的真实转动情况,在其转动发生偏移时及时校正,提高放疗设备的安全性和定位精度。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范 围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种用于放疗设备旋转的控制装置,控制放疗设备的各个旋转负载绕旋转轴旋转,所述旋转负载的旋转为同步旋转或异步旋转中的任意一种,其特征在于,所述控制装置与所述放疗设备形成全闭环结构,所述控制装置包括:
    监测模块,用于监测所述放疗设备的各个旋转负载并记录所述旋转负载发生旋转偏移时的偏移量;
    控制模块,用于在所述监测模块监测到所述放疗设备的各个旋转负载至少其中之一者发生偏移时,根据所述偏移量产生消除所述偏移的校正指令;
    驱动模块,用于驱动所述放疗设备的各个旋转负载绕所述旋转轴旋转,并根据所述控制模块发出的所述校正指令,驱动发生偏移的旋转负载移动,以消除偏移。
  2. 根据权利要求1所述的用于放疗设备旋转的控制装置,其特征在于,所述监测模块包括监测单元和警报单元,所述监测单元用于监测所述旋转负载的旋转轴的旋转;所述警报单元在监测到所述旋转负载至少其中之一者发生偏移时,根据所述偏移量发出警报信号。
  3. 根据权利要求2所述的用于放疗设备旋转的控制装置,其特征在于,所述控制模块包括接收单元和命令单元,
    其中,所述接收单元用于接收所述监测模块发送的警报信号;所述命令单元用于根据所述警报信号,生成校正指令发送到所述驱动模块。
  4. 根据权利要求3所述的用于放疗设备旋转的控制装置,其特征在于,所述转轴的偏移是位置偏移或角度偏移中的任一种;所述警报信号至少包括发生偏移的转轴的偏移量;所述校正指令是所述控制模块根据所述偏移量,计算发生偏移的旋转负载恢复正常旋转的校正偏移量。
  5. 根据权利要求4所述的用于放疗设备旋转的控制装置,其特征在于,所述放疗设备的旋转负载包括载源体、开关体和准直体,所述驱动 模块至少包括第一驱动单元、第二驱动单元和第三驱动单元;
    所述第一驱动单元、第二驱动单元和第三驱动单元分别用于驱动所述放疗设备的载源体、开关体和准直体进行同步或异步旋转,且在所述载源体、开关体和准直体至少其中之一者的转轴发生偏移时,根据所述校正指令相应的进行偏移消除。
  6. 根据权利要求5所述的用于放疗设备旋转的控制装置,其特征在于,所述第一驱动单元、第二驱动单元和第三驱动单元上分别设置一所述监测模块,其中,所述监测模块为圆光栅。
  7. 一种用于放疗设备旋转的控制方法,其特征在于,包括:
    设置放疗设备的旋转负载沿转轴进行同步或异步旋转,并监测所述旋转负载并记录发生旋转偏移时的偏移量;
    在监测到所述放疗设备的各个旋转负载至少其中之一者发生偏移时,根据所述偏移量产生消除所述偏移的校正指令;
    根据所述校正指令,驱动发生偏移的旋转负载移动,以消除偏移。
  8. 根据权利要求7所述的用于放疗设备旋转的控制方法,其特征在于,在监测到所述放疗设备的各个旋转负载至少其中之一者发生偏移时,根据所述偏移量产生消除所述偏移的校正指令的步骤中,在监测到所述放疗设备的旋转负载至少其中之一者发生偏移时,根据所述偏移量向一控制器发出警报信号,所述控制器根据所述警报信号中的所述偏移量生成校正指令,所述校正指令是根据所述偏移量,计算发生偏移的旋转负载恢复正常旋转的校正偏移量。
  9. 根据权利要求8所述的用于放疗设备旋转的控制方法,其特征在于,所述旋转负载至少其中之一者发生偏移时,偏移的方式是位置偏移和角度偏移的任意一种,计算得到所述偏移的偏移量后随所述警报信号传输到所述控制器,根据所述偏移量计算偏移的旋转负载恢复正常旋转的校正偏移量,以生成所述校正指令。
  10. 根据权利要求8所述的用于放疗设备旋转的控制方法,其特征在于,通过设置3个圆光栅分别监测所述放疗设备的载源体、开关体和准直体的旋转,并在所述载源体、开关体和准直体其中至少之一者发生偏 转时,确定偏转方式并计算偏转量。
PCT/CN2016/100809 2015-10-26 2016-09-29 一种用于放疗设备旋转的控制装置和方法 WO2017071451A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/961,889 US10682526B2 (en) 2015-10-26 2018-04-25 Device and method for controlling rotation of radiotherapy equipment
US15/930,096 US11000698B2 (en) 2015-10-26 2020-05-12 Device and method for controlling rotation of radiotherapy equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510702909.6 2015-10-26
CN201510702909.6A CN105288869B (zh) 2015-10-26 2015-10-26 一种用于放疗设备旋转的控制装置和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/961,889 Continuation US10682526B2 (en) 2015-10-26 2018-04-25 Device and method for controlling rotation of radiotherapy equipment

Publications (1)

Publication Number Publication Date
WO2017071451A1 true WO2017071451A1 (zh) 2017-05-04

Family

ID=55187111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100809 WO2017071451A1 (zh) 2015-10-26 2016-09-29 一种用于放疗设备旋转的控制装置和方法

Country Status (3)

Country Link
US (1) US10682526B2 (zh)
CN (1) CN105288869B (zh)
WO (1) WO2017071451A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105288869B (zh) 2015-10-26 2018-06-08 深圳市奥沃医学新技术发展有限公司 一种用于放疗设备旋转的控制装置和方法
US11000698B2 (en) 2015-10-26 2021-05-11 Shenzhen Our New Medical Technologies Development Co., Ltd. Device and method for controlling rotation of radiotherapy equipment
CN109669370B (zh) * 2018-11-29 2021-08-13 中国科学院近代物理研究所 一种信号处理器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1147410A (zh) * 1995-10-10 1997-04-16 戴强 多媒体数控伽玛刀
JP2007167411A (ja) * 2005-12-22 2007-07-05 Shimadzu Corp デジタル表示装置
CN101247851A (zh) * 2005-03-23 2008-08-20 最佳医疗国际有限公司 用于监控放射治疗装置的几何形状的系统、可跟踪组件、程序产品及相关方法
JP2010246733A (ja) * 2009-04-16 2010-11-04 Hitachi Ltd ベッド位置決め方法
CN102188778A (zh) * 2010-03-05 2011-09-21 三菱电机株式会社 驱动式患者台、其控制装置及用它们的粒子射线治疗装置
CN102918363A (zh) * 2010-05-31 2013-02-06 株式会社安川电机 旋转编码器、旋转马达以及旋转马达系统
CN103301581A (zh) * 2013-06-21 2013-09-18 山东新华医疗器械股份有限公司 大型医疗设备治疗床
CN103736211A (zh) * 2014-01-28 2014-04-23 深圳市医诺智能科技发展有限公司 放疗设备的旋转部的检测方法和装置
TW201433330A (zh) * 2013-02-22 2014-09-01 Mitsubishi Electric Corp 粒子射線治療裝置
WO2015118021A1 (en) * 2014-02-10 2015-08-13 Elekta Ab (Publ) Image guided radiotherapy
CN105288869A (zh) * 2015-10-26 2016-02-03 深圳市奥沃医学新技术发展有限公司 一种用于放疗设备旋转的控制装置和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100512906C (zh) * 2003-12-31 2009-07-15 深圳市尊瑞科技有限公司 变准直孔径的准直装置及其变换方法
US7590218B2 (en) 2005-03-23 2009-09-15 Best Medical International, Inc. System for monitoring the geometry of a radiation treatment apparatus, trackable assembly, program product, and related methods
JP5246895B2 (ja) * 2009-03-23 2013-07-24 独立行政法人放射線医学総合研究所 検出器回動型放射線治療・画像化複合装置
CN202974248U (zh) * 2012-12-20 2013-06-05 成都利尼科医学技术发展有限公司 一种医用直线加速器机架角度测量装置
GB2522914A (en) * 2014-02-10 2015-08-12 Elekta Ab Image guided radiotherapy
CN104225807B (zh) * 2014-09-11 2017-06-09 郑晓天 一种立体定向放疗设备及其实现方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1147410A (zh) * 1995-10-10 1997-04-16 戴强 多媒体数控伽玛刀
CN101247851A (zh) * 2005-03-23 2008-08-20 最佳医疗国际有限公司 用于监控放射治疗装置的几何形状的系统、可跟踪组件、程序产品及相关方法
JP2007167411A (ja) * 2005-12-22 2007-07-05 Shimadzu Corp デジタル表示装置
JP2010246733A (ja) * 2009-04-16 2010-11-04 Hitachi Ltd ベッド位置決め方法
CN102188778A (zh) * 2010-03-05 2011-09-21 三菱电机株式会社 驱动式患者台、其控制装置及用它们的粒子射线治疗装置
CN102918363A (zh) * 2010-05-31 2013-02-06 株式会社安川电机 旋转编码器、旋转马达以及旋转马达系统
TW201433330A (zh) * 2013-02-22 2014-09-01 Mitsubishi Electric Corp 粒子射線治療裝置
CN103301581A (zh) * 2013-06-21 2013-09-18 山东新华医疗器械股份有限公司 大型医疗设备治疗床
CN103736211A (zh) * 2014-01-28 2014-04-23 深圳市医诺智能科技发展有限公司 放疗设备的旋转部的检测方法和装置
WO2015118021A1 (en) * 2014-02-10 2015-08-13 Elekta Ab (Publ) Image guided radiotherapy
CN105288869A (zh) * 2015-10-26 2016-02-03 深圳市奥沃医学新技术发展有限公司 一种用于放疗设备旋转的控制装置和方法

Also Published As

Publication number Publication date
CN105288869B (zh) 2018-06-08
US10682526B2 (en) 2020-06-16
CN105288869A (zh) 2016-02-03
US20180236266A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2017071451A1 (zh) 一种用于放疗设备旋转的控制装置和方法
EP2197547B1 (en) Imaging positioning system having robotically positioned d-arm
EP1958664B1 (en) Medical device
US8674326B2 (en) Driving type patient platform, control device for driving type patient platform, control program for driving type patient platform, and particle beam therapy system utilizing these items
JP4184839B2 (ja) 多分割絞り装置
US11000698B2 (en) Device and method for controlling rotation of radiotherapy equipment
US8964937B2 (en) Methods and systems in radiotherapy
EP2995347B1 (en) Portal imaging during radiotherapy
US9814908B2 (en) Apparatus and method pertaining to movement compensation during radiation treatment
US10363436B2 (en) Radiotherapy apparatus using inertial characteristics for delivery planning
US8488741B2 (en) Adequate clearance for gantry trajectory
CN213941895U (zh) 一种用于放疗设备旋转的控制装置
JP2834994B2 (ja) 放射線治療装置
JPH07148276A (ja) 放射線治療装置
KR20130134206A (ko) 방사선 암치료용 스마트 베드
JP7023735B2 (ja) 粒子線治療装置および粒子線治療装置の制御方法
CN215195090U (zh) 放疗系统的控制电路及放疗系统
JP2005230561A (ja) 放射線治療装置
JP4088618B2 (ja) 放射線治療装置および放射線治療計画法
JP2010057811A (ja) 粒子線治療装置
SU534895A1 (ru) Гамма-терапевтический аппарат
JP2014111164A (ja) 粒子線治療装置
JPH07236701A (ja) 放射線治療装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16858887

Country of ref document: EP

Kind code of ref document: A1