WO2017071446A1 - 车辆的主动安全控制系统和方法 - Google Patents

车辆的主动安全控制系统和方法 Download PDF

Info

Publication number
WO2017071446A1
WO2017071446A1 PCT/CN2016/100170 CN2016100170W WO2017071446A1 WO 2017071446 A1 WO2017071446 A1 WO 2017071446A1 CN 2016100170 W CN2016100170 W CN 2016100170W WO 2017071446 A1 WO2017071446 A1 WO 2017071446A1
Authority
WO
WIPO (PCT)
Prior art keywords
motors
braking
vehicle
mode
brake
Prior art date
Application number
PCT/CN2016/100170
Other languages
English (en)
French (fr)
Inventor
廉玉波
罗红斌
张金涛
杨冬生
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP16858882.0A priority Critical patent/EP3369633B1/en
Priority to US15/770,714 priority patent/US20180312146A1/en
Publication of WO2017071446A1 publication Critical patent/WO2017071446A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • B60T8/17616Microprocessor-based systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1766Proportioning of brake forces according to vehicle axle loads, e.g. front to rear of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/885Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means using electrical circuitry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/04Pedal travel sensor, stroke sensor; Sensing brake request
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/42Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition having expanding chambers for controlling pressure, i.e. closed systems
    • B60T8/4275Pump-back systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes

Definitions

  • the present invention relates to the field of automotive technology, and in particular, to an active safety control system and method for a vehicle.
  • ABS anti-lock braking system
  • the object of the present invention is to solve at least one of the above technical problems to some extent.
  • a first object of the present invention is to propose an active safety control system for a vehicle.
  • a second object of the present invention is to provide an active safety control method for a vehicle.
  • a third object of the present invention is to propose a vehicle.
  • an active safety control system for a vehicle includes: a pedal detecting device for detecting a pedal signal of the vehicle; and a motor state detecting device for detecting a plurality of the vehicle a state of the motor; a plurality of wheel speed detecting devices disposed on the plurality of wheels of the vehicle for detecting a wheel speed of the wheel and generating a wheel speed detecting signal; and control means for determining the pedal signal and the Deriving a wheel speed detection signal to obtain a braking torque, determining a corresponding braking mode according to states of the plurality of motors, and applying a plurality of brakes to the vehicle according to the braking mode and the braking torque
  • the motors and the hydraulic brakes of the vehicle are controlled.
  • the active safety control system of the vehicle may determine the braking mode according to the wheel speed data. And the data of the vehicle speed controls the corresponding braking torque of the four wheels to perform anti-lock adjustment, so that the vehicle is decelerated or stopped according to the driver's intention to prevent the occurrence of lock.
  • An active safety control method for a vehicle comprising: detecting a pedal signal of the vehicle, and detecting a wheel speed of the wheel and generating a wheel speed detection signal; a signal and the wheel speed detection signal obtain a braking torque; detecting a state of the plurality of motors of the vehicle, and determining a corresponding braking mode according to states of the plurality of motors; according to the braking mode and the system
  • the dynamic torque controls a plurality of brakes of the vehicle, the plurality of motors, and a hydraulic brake of the vehicle.
  • four wheel corresponding braking torques may be controlled according to the wheel speed data and the vehicle speed data to perform anti-lock adjustment, so that the vehicle is in accordance with the driver's intention. Slow down or stop to prevent locks.
  • a vehicle according to a third aspect of the present invention includes the active safety control system of the vehicle according to the first aspect of the present invention, a plurality of wheels, a power battery, and a plurality of motors disposed on the plurality of wheels, A plurality of brakes on the plurality of wheels and a hydraulic brake system, the active safety control system being respectively coupled to the plurality of motors, the plurality of brakes, and the hydraulic brake device, the power batteries being respectively coupled to the plurality of motors.
  • the four-wheel corresponding braking torque can be controlled according to the wheel speed data and the vehicle speed data to perform anti-lock adjustment, so that the vehicle is used. Decelerate or stop at the driver's intent to prevent lock-up.
  • FIG. 1 is a schematic structural view of an active safety control system of a vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an active safety control system of a vehicle according to another embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of pedal feel fed back by a pedal feel simulator according to an embodiment of the present invention
  • FIG. 4 is a flow chart of an active safety control method for a vehicle in accordance with one embodiment of the present invention.
  • FIG. 1 is a schematic structural view of an active safety control system of a vehicle according to an embodiment of the present invention. It should be noted that the active safety control system of the embodiment of the present invention can be applied to a four-wheel drive electric vehicle.
  • the vehicle may include a pedal detecting device 40, a motor state detecting device 50 (not shown in FIG. 1), a plurality of wheel speed detecting devices 60 (not shown in FIG. 1), and a power battery 70. And control device 80.
  • the active safety control system includes a pedal detecting device 40, a motor state detecting device 50, a plurality of wheel speed detecting devices 60, and a control device 80.
  • a plurality of motors 10 and a plurality of brakes 20 are disposed on a plurality of wheels 11, that is, each of the wheels 11 may correspond to one motor 10 and one brake 20.
  • the power battery 70 is connected to a plurality of motors 10, respectively.
  • the vehicle may further include a brake pedal 1, four gearboxes 12, and four transmission shafts 13.
  • the hydraulic brake device may include a hydraulic brake master cylinder 31, a brake execution module 32 connected to the hydraulic brake master cylinder 31, and a hydraulic brake master cylinder 31, respectively.
  • the hydraulic assist module 33 is connected to the brake execution module 32.
  • the pedal detecting device 40 can be used to detect a pedal signal of the vehicle.
  • the pedal detecting device 40 may be a pedal stroke sensor. More specifically, when the driver steps on the pedal in the vehicle, the pedal detecting device 40 can detect a pedal signal generated by the brake pedal 1, such as a pedal depth signal and a pedal depth change rate signal.
  • the motor state detecting device 50 can be used to detect the state of the plurality of motors 10. More specifically, the motor state detecting device 50 can detect the operating state of each of the motors 10 to determine whether the current state of each of the motors 10 is a failed state or a normal state.
  • a plurality of wheel speed detecting devices are provided on the plurality of wheels 11 and are usable for detecting the wheel speed of the wheels 11 and generating a wheel speed detecting signal.
  • the plurality of wheel speed detecting devices may include a plurality of resolvers 15 and/or a plurality of wheel speed sensors 14 and the like.
  • any one of the wheel speed measurement systems such as four rotary transformers or four wheel speed sensors, may be selected, and two sets of wheel speed measurement systems may be simultaneously used, that is, Simultaneous use of four rotary transformers and four wheel speed sensors, the two can be mutually verified, so that when a set of wheel speed measurement system fails, the data detected by another set of wheel speed measurement system can be used as a basis for judgment.
  • the control device 80 is configured to determine a braking intention of the driver, that is, a braking torque required by the wheel, according to the pedal signal and the wheel speed detecting signal, and determine a corresponding braking mode according to the states of the plurality of motors 10, and according to the braking mode and The braking intention is to control the plurality of brakes 20, the plurality of motors 10, and the hydraulic brake device 30. That is to say, after determining the braking mode, the control device 80 can calculate the slip ratio of the four wheels according to the wheel speed data and the vehicle speed data provided by the plurality of wheel speed detecting devices 60 in real time, when the wheel slip ratio is too large. When the lock is generated, the control device 80 can control the four-wheel corresponding braking torque to perform anti-lock adjustment, and finally cause the vehicle to slow down or stop according to the driver's intention.
  • the control device 80 determines driving based on the pedal signal and the wheel speed detection signal.
  • the specific implementation process of the brake intention of the member may be as follows: determining the required brake deceleration of the vehicle based on the pedal signal, and calculating the braking torque required for the plurality of wheels 11 based on the required brake deceleration and the wheel speed detection signal. More specifically, after receiving the pedal depth signal ⁇ and the pedal depth change rate signal ⁇ detected by the pedal detecting device 40, the control device 80 can determine the vehicle demand brake deceleration according to the pedal depth signal ⁇ and the pedal depth change rate signal ⁇ .
  • the vehicle demand brake deceleration a f ( ⁇ , ⁇ )
  • the front axle and the rear axle can be calculated according to the vehicle demand brake deceleration, the wheel speed detection signal and the ideal front and rear axle braking force distribution curve.
  • the braking torque provided is the braking torque required for each wheel.
  • the specific implementation process of the control device 80 determining the corresponding braking mode according to the states of the plurality of motors 10 may be as follows: when the plurality of motors 10 are in a normal state, determining that the corresponding braking mode is regeneration. Brake control mode; when one of the plurality of motors 10 or two of the coaxial motors 10 are in a failure state, determining that the corresponding brake mode is the hybrid brake control mode; when two of the plurality of motors 10 are different axes When the motor 10 or more than the motor 10 is in a failure state, it is determined that the corresponding brake mode is the hydraulic brake control mode.
  • the operating states of the four motors 10 of the vehicle can be detected, and it is decided to adopt the corresponding braking mode by judging whether each of the motors 10 is working normally: since the braking torque generated by the four wheels is preferentially provided by the motor 10, the electrical mechanism The dynamic response is faster than the hydraulic brake.
  • the four motors 10 regeneratively brake at the same time, which can quickly reach the driver's braking intention and regenerative braking for energy recovery. Therefore, when all four motors 10 are working normally, It can be determined that the corresponding braking mode is the regenerative braking control mode, that is, the four motors 10 are simultaneously braked; when one motor 10 or two coaxial motors 10 fail, the motor 10 that fails at this time cannot provide the regenerative braking torque.
  • the other motor 10 is executed by the corresponding hydraulic brake, so that both the motor brake and the hydraulic brake mode can be called the hybrid brake control mode;
  • the motor 10 or more than 10 motors fail, the motor 10 that fails at this time cannot provide the regenerative braking torque, only the hydraulic brake can be turned on for replenishment, and the response of the motor brake and the hydraulic brake is not synchronized, in order to ensure the system.
  • the dynamic sense of left and right coordination requires the closing of the four motors 10 of the two axes, which are performed by hydraulic braking, so that only the mode of hydraulic braking can be referred to as the hydraulic brake control mode.
  • control device 80 determines the corresponding braking mode based on the states of the plurality of motors 10, the plurality of brakes 20, the plurality of motors 10, and the hydraulic brake device 30 can be controlled accordingly according to the braking mode and the braking intention.
  • the control device 80 may first control the plurality of motors 10 to be replaced by the generator operating mode, and drive according to the braking torque required by the plurality of wheels.
  • the rotor of the motor 10 cuts the magnetic induction line to output a corresponding regenerative braking torque, and transmits the regenerative braking torque to the corresponding wheel 11, and stores the electric energy generated when the rotor of the plurality of motors 10 cuts the magnetic induction line.
  • Power battery 70 when the braking mode is the regenerative braking control mode, the control device 80 may first control the plurality of motors 10 to be replaced by the generator operating mode, and drive according to the braking torque required by the plurality of wheels.
  • the rotor of the motor 10 cuts the magnetic induction line to output a corresponding regenerative braking torque, and transmits the regenerative braking torque to the corresponding wheel 11, and stores the electric energy generated when the rotor of the plurality of motors 10 cuts the magnetic induction line.
  • Power battery 70 when the braking mode is the re
  • the control device 80 can control the four motors 10 to be changed from the motor operating mode to the generator operating mode, so that the kinetic energy of the vehicle drives the motor 10 rotor to cut the magnetic induction line, Thus It is converted into electrical energy and stored in the power battery 70.
  • the motor 10 rotor cuts the magnetic induction line
  • the motor 10 reversely outputs the regenerative braking torque, which is transmitted to the wheel 11 through the transmission case 12 and the transmission shaft 13.
  • the control device 80 simultaneously controls the solenoid valve in the hydraulic brake device 30 to be in a closed state.
  • the motor, the booster pump, and the accumulator in the hydraulic assist module 33 do not operate, and the brake line does not output hydraulic pressure.
  • the control device 80 when the braking mode is the hybrid braking control mode, the control device 80 is specifically configured to: close the two motors 10 of the axle where the failed motor 10 is located, and control the remaining motors 10 to be replaced by generators.
  • the mode and according to the braking torque required by the remaining wheels 10 of the motor 10, drives the rotor of the remaining motor 10 to cut the magnetic induction line to output a corresponding regenerative braking torque, and transmits the regenerative braking torque to the corresponding wheel 11
  • the brake 20 outputs a corresponding braking torque.
  • the control device 80 can cut off the braking torque output of the two motors 10 with the axle of the failed motor 10 (such as the front axle or the rear axle), and another axis
  • the two motors 10 normally output regenerative braking torque and are transmitted to the wheels 11 through the corresponding gearbox 12 and transmission shaft 13.
  • the control device 80 simultaneously controls the solenoid valve in the hydraulic brake device 30, opens the solenoid valve of the motor 10 failure axle, outputs hydraulic pressure to the corresponding brake 20, and the brake caliper piston in the brake 20 pushes the brake pad to rub against the brake disc.
  • the braking torque is output, wherein the power source of the brake hydraulic pressure is provided by the hydraulic assist module 33.
  • the control device 80 can turn off the plurality of motors 10 (ie, all the motors), and simultaneously open the axles of the plurality of motors 10 in the hydraulic brake device 30.
  • the solenoid valve outputs hydraulic pressure to the plurality of brakes 20, and controls the plurality of brakes 20 to output corresponding braking moments according to the braking torque required by the plurality of motors 10 corresponding to the wheels 11.
  • the control device 80 can turn off the four motors 10, simultaneously control the solenoid valves in the hydraulic brake device 30, open the solenoid valves of the motor 10 failure axle, and output the hydraulic pressure.
  • the brake caliper piston in the brake 20 urges the brake pad to rub against the brake disk to output a braking torque, wherein the power source of the brake hydraulic pressure is provided by the hydraulic assist module 33.
  • the active safety control system may further include a pedal feel simulator 90, and the pedal feel simulator 90 may be used to feed back the brake pedal 1 of the vehicle without hydraulic fluctuations.
  • the sense of pedaling As shown in FIG. 2, the pedal feel simulator 90 can be connected to the hydraulic brake master cylinder 31 and the brake execution module 32 in the hydraulic brake device 30.
  • FIG. 3 is a diagram showing an example of pedal feel fed back by a pedal feel simulator according to an embodiment of the present invention.
  • the pedal force is positively correlated with the pedal displacement, that is, the pedal displacement is larger, and the pedal force is also increased.
  • Dynamic deceleration is inversely related to pedal displacement The relationship, that is, the greater the pedal displacement, the smaller the brake deceleration. Therefore, the brake pedal can be hydraulically decoupled from the brake line by the pedal feel simulator, and the brake pedal can feedback a good pedal feel even when the hydraulic brake performs ABS control, thereby improving the comfort during braking. Sex.
  • the active safety control system of the embodiment of the present invention mainly solves the existing pure hydraulic pressure by using the existing four-wheel wheel motor and the hydraulic brake system (including the hydraulic brake device and the brake) as the brake actuator.
  • the braking system has a slow response speed and a low utilization rate of regenerative braking feedback.
  • the motor and the hydraulic brake system jointly perform ABS control in the event of one or more motor failures.
  • the brake pedal force is decoupled from the pressure of the brake pipe to avoid the brake pedal discomfort caused by the line pressure fluctuation in the ABS control.
  • the ABS control can be preferentially utilized by the regenerative braking feedback torque of the wheel motor, thereby quickly controlling the stability of the vehicle, improving the regenerative braking feedback rate, and detecting
  • the ABS control of all motors with the axle of the failed motor eg front or rear axle
  • the unfailed front or rear axle motor ABS control can not only ensure safety but also realize regenerative braking feedback, which improves the control precision of braking.
  • the present invention also proposes an active safety control method for a vehicle.
  • the hydraulic brake device may include a hydraulic brake master cylinder, a brake execution module connected to the hydraulic brake master cylinder, and a hydraulic assist module respectively connected to the hydraulic brake master cylinder and the brake execution module.
  • the active safety control method of the vehicle may include:
  • the pedal signal generated by the brake pedal such as the pedal depth signal ⁇ and the pedal depth change rate signal ⁇
  • the pedal stroke sensor in the vehicle may be rotated by multiple A transformer and/or a plurality of wheel speed sensors detect a plurality of wheel speeds and generate a wheel speed detection signal.
  • two sets of wheel speed measuring systems can be used simultaneously to detect the wheel speed of the wheel, that is, four rotating transformers and four wheel speed sensors are used at the same time, and the two can be mutually verified.
  • the data detected by another set of wheel speed measurement system can be used as a basis for judgment.
  • determining that the corresponding braking mode is the regenerative braking control mode; when one of the plurality of motors or the two coaxial motors are in failure In the state, it is determined that the corresponding braking mode is the hybrid braking control mode; when two motors or two or more motors of different axes of the plurality of motors are in a failure state, determining that the corresponding braking mode is the hydraulic braking control mode , where two motors are placed on different axles.
  • the working states of the four motors of the vehicle can be detected, and the corresponding braking mode is determined by judging whether each motor is working normally: the braking torque generated by the four wheels
  • the motor is provided with priority.
  • the motor brake responds faster than the hydraulic brake.
  • the four motors regeneratively brake at the same time, which can quickly reach the driver's braking intention and regenerative braking for energy recovery, so when four motors
  • the corresponding braking mode is the regenerative braking control mode, that is, four motors are braking at the same time; when one motor or two coaxial motors fail, the motor that fails at this time cannot provide regenerative braking.
  • Torque can only be turned on by hydraulic brakes, and because the motor brakes and hydraulic brakes are not synchronized, even if only a single motor fails, in order to ensure the coordination of the brakes, it is necessary to close the coaxial motor.
  • the other motor is executed by the corresponding hydraulic brake, so that the mode of both the motor brake and the hydraulic brake can be called the hybrid brake control mode;
  • the motor that fails at this time cannot provide regenerative braking torque
  • only the hydraulic brake can be turned on to supplement, and the response of the motor brake and the hydraulic brake is not synchronized.
  • it is necessary to turn off the four motors of the two axes, which are executed by the hydraulic brake so that only the mode of the hydraulic brake can be called the hydraulic brake control mode.
  • the wheel speed data of the four-wheel can be calculated according to the wheel speed data provided by the resolver and/or the wheel speed sensor and the data of the vehicle speed in real time, and the wheel slip ratio is excessively generated to generate a hug.
  • the wheel slip ratio is excessively generated to generate a hug.
  • it can control the corresponding braking torque of four wheels for anti-lock adjustment, and finally make the vehicle slow down or stop according to the driver's intention.
  • the braking mode is the regenerative braking control mode
  • the plurality of motors are controlled to be replaced with the generator operating mode, and the plurality of motors are driven according to the braking torque required for the plurality of wheels.
  • the rotor cuts the magnetic induction line to output a corresponding regenerative braking torque; transmits the regenerative braking torque to the corresponding wheel; and stores the electric energy generated when the rotor of the plurality of motors cuts the magnetic induction line to the power battery.
  • the four motors can be controlled to change from the motor operating mode to the generator operating mode, so that the kinetic energy of the vehicle drives the motor rotor to cut the magnetic induction line, thereby converting into electric energy. And storing this electrical energy in the power battery.
  • the motor rotor cuts the magnetic induction line
  • the motor reversely outputs the regenerative braking torque, which is transmitted to the wheel through the gearbox and transmission shaft of the vehicle.
  • the solenoid valve in the hydraulic brake device is controlled to be in a closed state, and the motor, the booster pump and the accumulator in the hydraulic assist module do not work, and the brake pipe does not output hydraulic pressure.
  • the braking mode when the braking mode is the hybrid braking control mode, the two motors of the axle where the failed motor is located are turned off; the remaining motors are replaced with the generator working mode, and according to the wheels of the remaining motors.
  • the required braking torque drives the rotor of the remaining motor to cut the magnetic induction line to output the corresponding regenerative braking torque; sends the regenerative braking torque to the corresponding wheel; opens the solenoid valve corresponding to the axle of the failed motor in the hydraulic braking device And output hydraulic pressure to the brake corresponding to the two motors, and control the brake output corresponding braking torque according to the braking torque required by the wheels corresponding to the two motors.
  • the braking torque output of the two motors of the axle where the failed motor is located can be cut off, and the two motors of the other shaft are normal.
  • the regenerative braking torque is output and transmitted to the wheels through the corresponding gearbox and transmission shaft.
  • the solenoid valve in the hydraulic brake device is controlled, the solenoid valve of the motor failure axle is opened, and the hydraulic pressure is output to the corresponding brake.
  • the brake caliper piston in the brake pushes the brake pad and the brake disc to friction, and outputs the braking torque.
  • the hydraulic power source is provided by a hydraulic assist module.
  • the braking mode is the hydraulic brake control mode
  • the plurality of motors ie, all the motors
  • the solenoid valves corresponding to the axles of the plurality of motors in the hydraulic brake device are turned on, and the hydraulic pressure is output.
  • controlling the plurality of brakes to output corresponding braking torques according to braking torques required for the wheels of the plurality of motors.
  • the four motors can be turned off, the solenoid valve in the hydraulic brake device is controlled, the solenoid valve of the motor failure axle is opened, and the hydraulic pressure is output to the corresponding brake, the brake The brake caliper piston pushes the brake pad to rub against the brake disc to output a braking torque, wherein the power source of the brake hydraulic pressure is provided by the hydraulic assist module.
  • the active safety control method may further include: feeding back a brake pedal of the vehicle with a pedal feel when there is no hydraulic fluctuation. Specifically, the pedal feel can be fed back to the brake pedal of the vehicle by the pedal feel simulator without the hydraulic fluctuation.
  • FIG. 3 is a diagram showing an example of pedal feel fed back by a pedal feel simulator according to an embodiment of the present invention.
  • the pedal force is positively correlated with the pedal displacement, that is, the pedal displacement is larger, and the pedal force is also increased.
  • the dynamic deceleration is inversely related to the pedal displacement, that is, the larger the pedal displacement, the smaller the brake deceleration. Therefore, the brake pedal can be hydraulically decoupled from the brake line by the pedal feel simulator, and the brake pedal can feedback a good pedal feel even when the hydraulic brake performs ABS control, thereby improving the comfort during braking. Sex.
  • the active safety control method of the embodiment of the present invention mainly solves the existing pure hydraulic pressure by using the existing four-wheel wheel motor and the hydraulic brake system (including the hydraulic brake device and the brake) as the brake actuator.
  • the braking system has a slow response speed and a low utilization rate of regenerative braking feedback.
  • the control motor and the hydraulic brake system jointly perform ABS control.
  • Simultaneous brake pedal force and implementation The pressure decoupling of the moving pipeline avoids the brake pedal discomfort caused by the fluctuation of the pipeline pressure in the ABS control.
  • the ABS control can be preferentially utilized by the regenerative braking feedback torque of the wheel motor, thereby quickly controlling the stability of the vehicle, improving the regenerative braking feedback rate, and detecting
  • the ABS control of all motors with the axle of the failed motor eg front or rear axle
  • the unfailed front or rear axle motor ABS control can not only ensure safety but also realize regenerative braking feedback, which improves the control precision of braking.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable Way Processing to obtain the program electronically and then storing it in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车辆的主动安全控制系统,包括:设置在多个车轮(11)上的多个电机(10);设置在多个车轮(11)上的多个制动器(20);液压制动装置;踏板检测装置(40),用于检测车辆的踏板信号;电机状态检测装置(50),用于检测多个电机(10)的状态;设置在多个车轮(11)上的多个轮速检测装置(60),用于检测车轮(11)的轮速并生成轮速检测信号;动力电池(70),动力电池分别与多个电机(10)相连;控制装置(80),用于根据踏板信号和轮速检测信号得到制动力矩,并根据多个电机(10)的状态确定对应的制动模式,并根据制动模式和制动力矩对多个制动器(20)、多个电机(10)和液压制动装置进行控制。还公开了一种车辆的主动安全控制方法。该系统既能够保证安全又能够实现再生制动回馈,提高了制动的控制精度。

Description

车辆的主动安全控制系统和方法
相关申请的交叉引用
本申请基于申请号为201510703791.9,申请日为2015年10月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及汽车技术领域,尤其涉及一种车辆的主动安全控制系统和方法。
背景技术
随着社会发展以及石油化石能源的减少和环境污染问题日益严重,以电机为驱动力的各种纯电动车相继问世,其中通过轮毂电机进行驱动的电动车是未来电动车发展的主要方向。相比传统汽车,四轮毂电机驱动电动汽车去掉了繁重的发动机与变速箱,使得整车质量轻,结构简单。在解决能源和环境问题的同时,车辆的制动安全也显得尤其重要。汽车防抱死制动系统(ABS)可防止车辆在制动过程中产生车轮抱死、甩尾、侧滑等现象,提高了汽车在制动过程中的安全性和可靠性。就电动车而言,通常采用机械制动与再生制动相结合或液压制动与再生制动相结合的混合制动方式,由于再生制动的力矩有限,以及电池电荷状态(SOC)的限制,再生制动仅在缓速制动时起能量回收的作用,紧急制动时还需依靠液压或机械制动,以及无法进行抱死调节。
发明内容
本发明的目的旨在至少在一定程度上解决上述的技术问题之一。
为此,本发明的第一个目的在于提出一种车辆的主动安全控制系统。本发明的第二个目的在于提出一种车辆的主动安全控制方法。
本发明的第三个目的在于提出一种车辆。
为达上述目的,本发明第一方面实施例的车辆的主动安全控制系统,包括:踏板检测装置,用于检测所述车辆的踏板信号;电机状态检测装置,用于检测所述车辆的多个电机的状态;多个轮速检测装置设置在所述车辆的多个车轮上的,用于检测所述车轮的轮速并生成轮速检测信号;控制装置,用于根据所述踏板信号和所述轮速检测信号得到制动力矩,根据所述多个电机的状态确定对应的制动模式,并根据所述制动模式和所述制动力矩对所述车辆的多个制动器、所述多个电机和所述车辆的液压制动装置进行控制。
根据本发明实施例的车辆的主动安全控制系统,在确定制动模式后,可根据轮速数据以 及车速的数据控制四轮相应的制动力矩以进行防抱死调节,使得车辆按驾驶员意图减速或停止以防止抱死的产生。
为达上述目的,本发明第二方面实施例的车辆的主动安全控制方法,所述方法包括:检测所述车辆的踏板信号,并检测车轮的轮速并生成轮速检测信号;根据所述踏板信号和所述轮速检测信号得到制动力矩;检测所述车辆的多个电机的状态,并根据所述多个电机的状态确定对应的制动模式;根据所述制动模式和所述制动力矩对所述车辆的多个制动器、所述多个电机和所述车辆的液压制动装置进行控制。
根据本发明实施例的车辆的主动安全控制方法,在确定制动模式后,可根据轮速数据以及车速的数据控制四轮相应的制动力矩以进行防抱死调节,使得车辆按驾驶员意图减速或停止以防止抱死的产生。
为达到上述目的,本发明第三方面实施例的车辆包括如第一方面实施例所述的车辆的主动安全控制系统,多个车轮,动力电池,设置在多个车轮上的多个电机,设置在多个车轮上的多个制动器以及液压制动装置,所述主动安全控制系统分别与多个电机、多个制动器以及液压制动装置连接,所述动力电池分别与多个电机连接。
根据本发明实施例的车辆,使用上述车辆的主动安全控制系统,在确定制动模式后,可根据轮速数据以及车速的数据控制四轮相应的制动力矩以进行防抱死调节,使得车辆按驾驶员意图减速或停止以防止抱死的产生。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1是根据本发明一个实施例的车辆的主动安全控制系统的结构示意图;
图2是根据本发明另一个实施例的车辆的主动安全控制系统的结构示意图;
图3是根据本发明实施例的踏板感觉模拟器反馈的踏板感的示例图;以及
图4是根据本发明一个实施例的车辆的主动安全控制方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本发明实施例的车辆的主动安全控制系统和方法。
图1是根据本发明一个实施例的车辆的主动安全控制系统的结构示意图。需要说明的是,本发明实施例的主动安全控制系统可应用于四轮驱动电动汽车中。
如图1所示,所述车辆可以包括:踏板检测装置40、电机状态检测装置50(图1中未示出)、多个轮速检测装置60(图1中未示出)、动力电池70和控制装置80。而所述主动安全控制系统包括踏板检测装置40,电机状态检测装置50,多个轮速检测装置60和控制装置80。
其中,如图1所示,多个电机10、多个制动器20均设置在多个车轮11上,即可以每个车轮11对应一个电机10和一个制动器20。动力电池70分别与多个电机10相连。
此外,如图1所示,所述车辆还可包括制动踏板1、四个变速箱12、四根传动轴13。在本发明的实施例中,如图1所示,液压制动装置可包括液压制动主缸31、与液压制动主缸31相连的制动执行模块32、分别与液压制动主缸31、制动执行模块32相连的液压助力模块33。
具体的,踏板检测装置40可用于检测车辆的踏板信号。其中,在本发明的实施例中,踏板检测装置40可为踏板行程传感器。更具体地,当驾驶员踩下车辆中的踏板之后,踏板检测装置40可检测制动踏板1产生的踏板信号,如踏板深度信号和踏板深度变化率信号。
电机状态检测装置50可用于检测多个电机10的状态。更具体地,电机状态检测装置50可对每个电机10的工作状态进行检测,以确定每个电机10当前的状态为失效状态或正常状态。
多个轮速检测装置设置在多个车轮11上,可用于检测车轮11的轮速并生成轮速检测信号。其中,在本发明的实施例中,如图1所示,多个轮速检测装置可包括多个旋转变压器15和/或多个轮速传感器14等。也就是说,本发明实施例的主动安全控制系统中可以选择任意一套轮速测量系统,如四个旋转变压器、或四个轮速传感器等,还可以同时使用两套轮速测量系统,即同时使用四个旋转变压器和四个轮速传感器,两者可以相互校验,使得当一套轮速测量系统出现失效时,可以以另一套轮速测量系统检测出的数据作为判断依据。
控制装置80可用于根据踏板信号和轮速检测信号判断驾驶员的制动意图即车轮所需的制动力矩,并根据多个电机10的状态确定对应的制动模式,并根据制动模式和制动意图对多个制动器20、多个电机10和液压制动装置30进行控制。也就是说,控制装置80在确定制动模式后,可实时根据多个轮速检测装置60提供的轮速数据以及车速的数据,计算出四轮的滑移率,当车轮滑移率过大而产生抱死时,控制装置80可控制四轮相应的制动力矩进行防抱死调节,最终使车辆按驾驶员意图减速或停止。
具体而言,在本发明的实施例中,控制装置80根据踏板信号和轮速检测信号判断驾驶 员的制动意图的具体实现过程可如下:根据踏板信号判定车辆的需求制动减速度,并根据需求制动减速度和轮速检测信号计算多个车轮11所需的制动力矩。更具体地,控制装置80在接收到踏板检测装置40检测的踏板深度信号α和踏板深度变化率信号β之后,可根据该踏板深度信号α和踏板深度变化率信号β判定车辆需求制动减速度,即车辆需求制动减速度a=f(α,β),之后,可根据该车辆需求制动减速度、轮速检测信号以及理想的前后轴制动力分配曲线计算出前轴、后轴所需要提供的制动力矩,即每个车轮所需的制动力矩。
在本发明的实施例中,控制装置80根据多个电机10的状态确定对应的制动模式的具体实现过程可如下:当多个电机10均处于正常状态时,确定对应的制动模式为再生制动控制模式;当多个电机10中一个或者同轴的两个电机10处于失效状态时,确定对应的制动模式为混合制动控制模式;当多个电机10中不同轴的两个电机10或者两个以上电机10处于失效状态时,确定对应的制动模式为液压制动控制模式。
也就是说,可检测车辆的四个电机10的工作状态,通过判断每个电机10是否正常工作来决定采用相应的制动模式:由于四轮产生的制动力矩优先由电机10提供,电机制动的响应快于液压制动,四个电机10同时再生制动,既可以快速达到驾驶员的制动意图,又可以通过再生制动进行能量回收,所以当四个电机10均正常工作时,可确定对应的制动模式为再生制动控制模式,即四个电机10同时制动;当一个电机10或同轴的两个电机10失效时,此时失效的电机10无法提供再生制动力矩,只能开启液压制动进行补充,又由于电机制动与液压制动的响应不同步,即使只有单个电机10失效,为了保证制动的左右协调感,还需要关闭与该失效电机10同轴的另一个电机10,由相应的液压制动执行,这样既有电机制动又有液压制动的模式可称为混合制动控制模式;当不同轴的两个电机10或两个以上电机10失效时,此时失效的电机10无法提供再生制动力矩,只能开启液压制动进行补充,又由于电机制动与液压制动的响应不同步,为了保证制动的左右协调感,需要关闭两轴的四个电机10,由液压制动执行,这样只有液压制动的模式可称为液压制动控制模式。
控制装置80在根据多个电机10的状态确定对应的制动模式之后,可根据制动模式和制动意图对多个制动器20、多个电机10和液压制动装置30进行相应控制。下面将分别针对不同的制动模式时的控制过程进行描述。
在本发明的实施例中,当制动模式为再生制动控制模式时,控制装置80可先控制多个电机10更换为发电机工作模式,并根据多个车轮所需的制动力矩驱动多个电机10的转子切割磁感线以输出对应的再生制动力矩,并将再生制动力矩发送至对应的车轮11,以及将多个电机10的转子切割磁感线时所产生的电能储存于动力电池70。
更具体地,在确定制动模式为再生制动控制模式时,控制装置80可控制四个电机10由电动机工作模式转变为发电机工作模式,使车辆的动能驱动电机10转子切割磁感线,从而 转化为电能,并将该电能储存在动力电池70中。电机10转子切割磁感线时电机10反向输出再生制动力矩,通过变速箱12、传动轴13传递到车轮11。控制装置80同时控制液压制动装置30中的电磁阀处于关闭状态,液压助力模块33中的电机、助力泵、蓄能器不工作,制动管路不输出液压。
在本发明的实施例中,当制动模式为混合制动控制模式时,控制装置80具体用于:关闭失效电机10所在车轴的两个电机10,并控制其余的电机10更换为发电机工作模式,并根据其余的电机10对应的车轮11所需的制动力矩驱动其余的电机10的转子切割磁感线以输出对应的再生制动力矩,以及将再生制动力矩发送至对应的车轮11;以及打开液压制动装置30中与失效电机10所在车轴对应的电磁阀,并输出液压至与两个电机10对应的制动器20,并根据两个电机10对应的车轮所需的制动力矩控制制动器20输出相应的制动力矩。
更具体地,在确定制动模式为混合制动控制模式时,控制装置80可切断与失效电机10所在车轴(如前轴或后轴)的两个电机10的制动力矩输出,另外一轴的两个电机10正常输出再生制动力矩,通过对应的变速箱12、传动轴13传递到车轮11。控制装置80同时控制液压制动装置30中的电磁阀,打开电机10失效车轴的电磁阀,输出液压给对应的制动器20,制动器20中的制动钳活塞推动制动片与制动盘摩擦,输出制动力矩,其中制动液压的动力源由液压助力模块33提供。
在本发明的实施例中,当制动模式为液压制动控制模式时,控制装置80可关闭多个电机10(即全部电机),同时打开液压制动装置30中多个电机10所在车轴对应的电磁阀,并输出液压至多个制动器20,并根据多个电机10对应的车轮11所需的制动力矩控制多个制动器20输出相应的制动力矩。
更具体地,在确定制动模式为液压制动控制模式时,控制装置80可关闭四个电机10,同时控制液压制动装置30中的电磁阀,打开电机10失效车轴的电磁阀,输出液压给对应的制动器20,制动器20中的制动钳活塞推动制动片与制动盘摩擦,以输出制动力矩,其中制动液压的动力源由液压助力模块33提供。
进一步的,在本发明的一个实施例中,如图2所示,该主动安全控制系统还可包括踏板感觉模拟器90,踏板感觉模拟器90可用于向车辆的制动踏板1反馈无液压波动时的踏板感。其中,如图2所示,该踏板感觉模拟器90可与液压制动装置30中的液压制动主缸31、制动执行模块32相连。
也就是说,在进行ABS控制中,无论是完全再生制动控制、混合制动控制还是完全液压制动控制,踏板感觉模拟器90可一直在工作,反馈无液压波动的踏板感给制动踏板1。图3是根据本发明实施例的踏板感觉模拟器反馈的踏板感的示例图,如图3所示,踏板力与踏板位移成正相关关系,即踏板位移越大,踏板力也随着越大;制动减速度与踏板位移成反相关 关系,即踏板位移越大,制动减速度随着越小。由此,通过踏板感觉模拟器可以使得制动踏板与制动管路液压解耦,制动踏板即使在液压制动进行ABS控制时也能够反馈很好的踏板感,提高了制动时的舒适性。
综上,本发明实施例的主动安全控制系统主要以现有的四轮轮边电机和液压制动系统(如包括液压制动装置和制动器等)为制动执行机构,解决了现有纯液压制动系统存在的响应速度慢,再生制动回馈利用率低的问题。又可以在纯电机ABS控制中,一旦出现一个或多个电机失效的情况,电机和液压制动系统联合进行ABS控制。同时制动踏板力与实施制动管路的压力解耦,避免ABS控制中管路压力波动引起的制动踏板不舒适感。
根据本发明实施例的车辆的主动安全控制系统,可优先利用轮边电机的再生制动回馈力矩来进行ABS控制,以此来快速控制车辆稳定,提高了再生制动回馈率,并且,在检测到一个或多个电机失效的情况下,通过控制装置切断与失效电机所在车轴(如前轴或后轴)的所有电机的ABS控制,利用液压制动与未失效的前轴或后轴电机联合进行ABS控制,既能够保证安全又能够实现再生制动回馈,提高了制动的控制精度。
为了实现上述实施例,本发明还提出了一种车辆的主动安全控制方法。
图4是根据本发明一个实施例的车辆的主动安全控制方法的流程图。需要说明的是,本发明实施例的车辆可包括多个电机、多个制动器、液压制动装置和动力电池。该液压制动装置可包括液压制动主缸、与液压制动主缸相连的制动执行模块、分别与液压制动主缸、制动执行模块相连的液压助力模块。
如图4所示,该车辆的主动安全控制方法可以包括:
S401,检测车辆的踏板信号,并检测车轮的轮速并生成轮速检测信号。
具体的,当驾驶员踩下车辆中的踏板之后,可通过车辆中的踏板行程传感器检测制动踏板产生的踏板信号,如踏板深度信号α和踏板深度变化率信号β,并可通过多个旋转变压器和/或多个轮速传感器检测多个车轮轮速,并生成轮速检测信号。需要说明的是,在本发明的实施例中,可同时使用两套轮速测量系统来检测车轮的轮速,即同时使用四个旋转变压器和四个轮速传感器,两者可以相互校验,使得当一套轮速测量系统出现失效时,可以以另一套轮速测量系统检测出的数据作为判断依据。
S402,根据踏板信号和轮速检测信号得到制动力矩。
具体而言,在本发明的实施例中,可根据踏板信号判定车辆的需求制动减速度,并根据需求制动减速度和轮速检测信号计算多个车轮所需的制动力矩。更具体地,在接收到踏板深度信号α和踏板深度变化率信号β之后,可根据该踏板深度信号α和踏板深度变化率信号β判定车辆需求制动减速度,即车辆需求制动减速度a=f(α,β),之后,可根据该车辆需求制动减速度、轮速检测信号以及理想的前后轴制动力分配曲线计算出前轴、后轴所需要提供 的制动力矩,即每个车轮所需的制动力矩。
S403,检测多个电机的状态,并根据多个电机的状态确定对应的制动模式。
具体而言,在本发明的实施例中,当多个电机均处于正常状态时,确定对应的制动模式为再生制动控制模式;当多个电机中一个或者同轴的两个电机处于失效状态时,确定对应的制动模式为混合制动控制模式;当多个电机中不同轴的两个电机或者两个以上电机处于失效状态时,确定对应的制动模式为液压制动控制模式,其中,两个电机置于不同的车轴。
更具体地,在获得驾驶员的制动意图之后,可检测车辆的四个电机的工作状态,通过判断每个电机是否正常工作来决定采用相应的制动模式:由于四轮产生的制动力矩优先由电机提供,电机制动的响应快于液压制动,四个电机同时再生制动,既可以快速达到驾驶员的制动意图,又可以通过再生制动进行能量回收,所以当四个电机均正常工作时,可确定对应的制动模式为再生制动控制模式,即四个电机同时制动;当一个电机或同轴的两个电机失效时,此时失效的电机无法提供再生制动力矩,只能开启液压制动进行补充,又由于电机制动与液压制动的响应不同步,即使只有单个电机失效,为了保证制动的左右协调感,还需要关闭与该失效电机同轴的另一个电机,由相应的液压制动执行,这样既有电机制动又有液压制动的模式可称为混合制动控制模式;当不同轴的两个电机或两个以上电机失效时,此时失效的电机无法提供再生制动力矩,只能开启液压制动进行补充,又由于电机制动与液压制动的响应不同步,为了保证制动的左右协调感,需要关闭两轴的四个电机,由液压制动执行,这样只有液压制动的模式可称为液压制动控制模式。
S404,根据制动模式和制动力矩对多个制动器、多个电机和液压制动装置进行控制。
具体的,在确定制动模式后,可实时根据旋转变压器和/或轮速传感器提供的轮速数据以及车速的数据,计算出四轮的滑移率,当车轮滑移率过大而产生抱死时,可控制四轮相应的制动力矩进行防抱死调节,最终使车辆按驾驶员意图减速或停止。
下面将分别针对不同的制动模式时的控制过程进行描述。
具体而言,在本发明的实施例中,当制动模式为再生制动控制模式时,控制多个电机更换为发电机工作模式,并根据多个车轮所需的制动力矩驱动多个电机的转子切割磁感线以输出对应的再生制动力矩;将再生制动力矩发送至对应的车轮;以及将多个电机的转子切割磁感线时所产生的电能储存于动力电池。
更具体地,在确定制动模式为再生制动控制模式时,可控制四个电机由电动机工作模式转变为发电机工作模式,使车辆的动能驱动电机转子切割磁感线,从而转化为电能,并将该电能储存在动力电池中。电机转子切割磁感线时电机反向输出再生制动力矩,通过车辆的变速箱、传动轴传递到车轮。同时控制液压制动装置中的电磁阀处于关闭状态,液压助力模块中的电机、助力泵、蓄能器不工作,制动管路不输出液压。
在本发明的实施例中,当制动模式为混合制动控制模式时,关闭失效电机所在车轴的两个电机;控制其余的电机更换为发电机工作模式,并根据其余的电机对应的车轮所需的制动力矩驱动其余的电机的转子切割磁感线以输出对应的再生制动力矩;将再生制动力矩发送至对应的车轮;打开液压制动装置中与失效电机所在车轴对应的电磁阀,并输出液压至与两个电机对应的制动器,并根据两个电机对应的车轮所需的制动力矩控制制动器输出相应的制动力矩。
更具体地,在确定制动模式为混合制动控制模式时,可切断与失效电机所在车轴(如前轴或后轴)的两个电机的制动力矩输出,另外一轴的两个电机正常输出再生制动力矩,通过对应的变速箱、传动轴传递到车轮。同时控制液压制动装置中的电磁阀,打开电机失效车轴的电磁阀,输出液压给对应的制动器,制动器中的制动钳活塞推动制动片与制动盘摩擦,输出制动力矩,其中制动液压的动力源由液压助力模块提供。
在本发明的实施例中,当制动模式为液压制动控制模式时,关闭多个电机(即全部电机),同时打开液压制动装置中多个电机所在车轴对应的电磁阀,并输出液压至多个制动器;根据多个电机对应的车轮所需的制动力矩控制多个制动器输出相应的制动力矩。
更具体地,在确定制动模式为液压制动控制模式时,可关闭四个电机,同时控制液压制动装置中的电磁阀,打开电机失效车轴的电磁阀,输出液压给对应的制动器,制动器中的制动钳活塞推动制动片与制动盘摩擦,以输出制动力矩,其中制动液压的动力源由液压助力模块提供。
进一步的,在本发明的一个实施例中,该主动安全控制方法还可包括:向车辆的制动踏板反馈无液压波动时的踏板感。具体的,可通过踏板感觉模拟器向车辆的制动踏板反馈无液压波动时的踏板感。
也就是说,在进行ABS控制中,无论是完全再生制动控制、混合制动控制还是完全液压制动控制,踏板感觉模拟器可一直在工作,反馈无液压波动的踏板感给制动踏板。图3是根据本发明实施例的踏板感觉模拟器反馈的踏板感的示例图,如图3所示,踏板力与踏板位移成正相关关系,即踏板位移越大,踏板力也随着越大;制动减速度与踏板位移成反相关关系,即踏板位移越大,制动减速度随着越小。由此,通过踏板感觉模拟器可以使得制动踏板与制动管路液压解耦,制动踏板即使在液压制动进行ABS控制时也能够反馈很好的踏板感,提高了制动时的舒适性。
综上,本发明实施例的主动安全控制方法主要以现有的四轮轮边电机和液压制动系统(如包括液压制动装置和制动器等)为制动执行机构,解决了现有纯液压制动系统存在的响应速度慢,再生制动回馈利用率低的问题。又可以在纯电机ABS控制中,一旦出现一个或多个电机失效的情况,控制电机和液压制动系统联合进行ABS控制。同时制动踏板力与实施制 动管路的压力解耦,避免了ABS控制中管路压力波动引起的制动踏板不舒适感。
根据本发明实施例的车辆的主动安全控制方法,可优先利用轮边电机的再生制动回馈力矩来进行ABS控制,以此来快速控制车辆稳定,提高了再生制动回馈率,并且,在检测到一个或多个电机失效的情况下,通过控制装置切断与失效电机所在车轴(如前轴或后轴)的所有电机的ABS控制,利用液压制动与未失效的前轴或后轴电机联合进行ABS控制,既能够保证安全又能够实现再生制动回馈,提高了制动的控制精度。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行 处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (17)

  1. 一种车辆的主动安全控制系统,其特征在于,包括:
    踏板检测装置,用于检测所述车辆的踏板信号;
    电机状态检测装置,用于检测所述车辆的多个电机的状态;
    多个轮速检测装置设置在所述车辆的多个车轮上,用于检测所述车轮的轮速并生成轮速检测信号;
    控制装置,用于根据所述踏板信号和所述轮速检测信号得到制动力矩,根据所述多个电机的状态确定对应的制动模式,并根据所述制动模式和所述制动力矩对所述车辆的多个制动器、所述多个电机和所述车辆的液压制动装置进行控制。
  2. 如权利要求1所述的车辆的主动安全控制系统,其特征在于,所述控制装置具体用于:
    根据所述踏板信号得到所述车辆的需求制动减速度,并根据所述需求制动减速度和所述轮速检测信号得到所述多个车轮所需的制动力矩。
  3. 如权利要求1或2所述的车辆的主动安全控制系统,其特征在于:所述制动模式包括再生制动控制模式,混合制动控制模式和液压制动控制模式。
  4. 如权利要求1-3任意一项所述的车辆的主动安全控制系统,其特征在于,所述控制装置具体用于:
    当所述多个电机均处于正常状态时,确定对应的制动模式为再生制动控制模式;
    当所述多个电机中一个或者同轴的两个电机处于失效状态时,确定对应的制动模式为混合制动控制模式;
    当所述多个电机中不同轴的两个电机或者两个以上电机处于失效状态时,确定对应的制动模式为液压制动控制模式。
  5. 如权利要求4所述的车辆的主动安全控制系统,其特征在于,所述控制装置具体用于:
    当所述制动模式为再生制动控制模式时,控制所述多个电机进入发电机工作模式,并根据所述多个车轮所需的制动力矩驱动所述多个电机的转子切割磁感线以输出对应的再生制动力矩,并将所述再生制动力矩发送至对应的车轮,以及将所述多个电机的转子切割磁感线时所产生的电能储存于所述动力电池。
  6. 如权利要求4所述的车辆的主动安全控制系统,其特征在于,所述控制装置具体用于:
    当所述制动模式为混合制动控制模式时,关闭失效电机所在车轴的两个电机,并控制其余的电机更换为发电机工作模式,并根据所述其余的电机对应的车轮所需的制动力矩驱动所 述其余的电机的转子切割磁感线以输出对应的再生制动力矩,以及将所述再生制动力矩发送至对应的车轮;以及
    打开所述液压制动装置中与所述失效电机所在车轴对应的电磁阀,并输出液压至与所述两个电机对应的制动器,并根据所述两个电机对应的车轮所需的制动力矩控制所述制动器输出相应的制动力矩。
  7. 如权利要求4所述的车辆的主动安全控制系统,其特征在于,所述控制装置具体用于:
    当所述制动模式为液压制动控制模式时,关闭所述多个电机,同时打开所述液压制动装置中所述多个电机所在车轴对应的电磁阀,并输出液压至所述多个制动器,并根据所述多个电机对应的车轮所需的制动力矩控制所述多个制动器输出相应的制动力矩。
  8. 如权利要求1至7中任一项所述的车辆的主动安全控制系统,其特征在于,还包括:
    踏板感觉模拟器,用于向所述车辆的制动踏板反馈无液压波动时的踏板感。
  9. 如权利要求1至8中任一项所述的车辆的主动安全控制系统,其特征在于,所述多个轮速检测装置包括多个旋转变压器和/或多个轮速传感器。
  10. 一种车辆的主动安全控制方法,其特征在于,所述方法包括:
    检测所述车辆的踏板信号,并检测车轮的轮速并生成轮速检测信号;
    根据所述踏板信号和所述轮速检测信号得到制动力矩;
    检测所述车辆的多个电机的状态,并根据所述多个电机的状态确定对应的制动模式;
    根据所述制动模式和所述制动力矩对所述车辆的多个制动器、所述多个电机和所述车辆的液压制动装置进行控制。
  11. 如权利要求10所述的车辆的主动安全控制方法,其特征在于,根据所述踏板信号和所述轮速检测信号得到制动力矩,具体包括:
    根据所述踏板信号判定所述车辆的需求制动减速度,并根据所述需求制动减速度和所述轮速检测信号计算所述多个车轮所需的制动力矩。
  12. 如权利要求10或11所述的车辆的主动安全控制方法,其特征在于,根据所述多个电机的状态确定对应的制动模式,具体包括:
    当所述多个电机均处于正常状态时,确定对应的制动模式为再生制动控制模式;
    当所述多个电机中一个或者同轴的两个电机处于失效状态时,确定对应的制动模式为混合制动控制模式;
    当所述多个电机中不同轴的两个电机或者两个以上电机处于失效状态时,确定对应的制动模式为液压制动控制模式。
  13. 如权利要求12所述的车辆的主动安全控制方法,其特征在于,当所述制动模式为 再生制动控制模式时,根据所述制动模式和所述制动意图对所述多个制动器、所述多个电机和所述液压制动装置进行控制,具体包括:
    控制所述多个电机更换为发电机工作模式,并根据所述多个车轮所需的制动力矩驱动所述多个电机的转子切割磁感线以输出对应的再生制动力矩;
    将所述再生制动力矩发送至对应的车轮;以及
    将所述多个电机的转子切割磁感线时所产生的电能储存于所述动力电池。
  14. 如权利要求12所述的车辆的主动安全控制方法,其特征在于,当所述制动模式为混合制动控制模式时,根据所述制动模式和所述制动力矩对所述多个制动器、所述多个电机和所述液压制动装置进行控制,具体包括:
    关闭失效电机所在车轴的两个电机;
    控制其余的电机更换为发电机工作模式,并根据所述其余的电机对应的车轮所需的制动力矩驱动所述其余的电机的转子切割磁感线以输出对应的再生制动力矩;
    将所述再生制动力矩发送至对应的车轮;
    打开所述液压制动装置中与所述失效电机所在车轴对应的电磁阀,并输出液压至与所述两个电机对应的制动器,并根据所述两个电机对应的车轮所需的制动力矩控制所述制动器输出相应的制动力矩。
  15. 如权利要求12所述的车辆的主动安全控制方法,其特征在于,当所述制动模式为液压制动控制模式时,根据所述制动模式和所述制动意图对所述多个制动器、所述多个电机和所述液压制动装置进行控制,具体包括:
    关闭所述多个电机,同时打开所述液压制动装置中所述多个电机所在车轴对应的电磁阀,并输出液压至所述多个制动器;
    根据所述多个电机对应的车轮所需的制动力矩控制所述多个制动器输出相应的制动力矩。
  16. 如权利要求9至15中任一项所述的车辆的主动安全控制方法,其特征在于,还包括:
    向所述车辆的制动踏板反馈无液压波动时的踏板感。
  17. 一种车辆,包括如权利要求1至9中任一项所述的车辆的主动安全控制系统,多个车轮,动力电池,设置在多个车轮上的多个电机,设置在多个车轮上的多个制动器以及液压制动装置,所述主动安全控制系统分别与所述多个电机,多个制动器以及液压制动装置连接,所述动力电池分别与多个电机连接。
PCT/CN2016/100170 2015-10-26 2016-09-26 车辆的主动安全控制系统和方法 WO2017071446A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16858882.0A EP3369633B1 (en) 2015-10-26 2016-09-26 Active safety control system and method for vehicle
US15/770,714 US20180312146A1 (en) 2015-10-26 2016-09-26 Active safety control system and method for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510703791.9 2015-10-26
CN201510703791.9A CN106608250B (zh) 2015-10-26 2015-10-26 车辆的主动安全控制系统和方法

Publications (1)

Publication Number Publication Date
WO2017071446A1 true WO2017071446A1 (zh) 2017-05-04

Family

ID=58613971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100170 WO2017071446A1 (zh) 2015-10-26 2016-09-26 车辆的主动安全控制系统和方法

Country Status (4)

Country Link
US (1) US20180312146A1 (zh)
EP (1) EP3369633B1 (zh)
CN (1) CN106608250B (zh)
WO (1) WO2017071446A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107901900A (zh) * 2017-10-13 2018-04-13 潍柴动力股份有限公司 液压缓速制动控制系统及方法
CN108162766B (zh) * 2017-12-07 2020-10-16 燕山大学 一种轮毂电机驱动汽车机电液冗余制动系统及控制方法
CN108099697B (zh) * 2017-12-19 2019-11-12 深圳市英威腾电动汽车驱动技术有限公司 一种安全驾驶控制方法、装置及系统
CN110027521B (zh) * 2018-01-12 2021-09-21 比亚迪股份有限公司 车辆的踏板感模拟器和具有其的车辆
US20200055402A1 (en) * 2018-08-14 2020-02-20 Sf Motors, Inc. Adaptive off-throttle regenerative braking
CN110562227B (zh) * 2019-08-22 2021-04-02 中国第一汽车股份有限公司 一种电液耦合制动系统及车辆
US11267457B2 (en) * 2019-12-09 2022-03-08 Ford Global Technologies, Llc Systems and methods for managing electric motor torques in a hybrid electric vehicle
CN112092636B (zh) * 2020-08-24 2021-12-07 奇瑞新能源汽车股份有限公司 电动汽车及其再生制动控制方法、装置以及存储介质
CN112706737A (zh) * 2021-01-12 2021-04-27 精诚工科汽车系统有限公司 一种制动控制方法、装置及车辆
CN113282068B (zh) * 2021-04-06 2022-05-24 广州瑞立科密汽车电子股份有限公司 融合自动识别算法的线控制动系统及其标定方法
CN113085820B (zh) * 2021-04-23 2022-05-27 精诚工科汽车系统有限公司 冗余制动控制方法与系统、制动系统、存储介质
CN114211966B (zh) * 2022-01-30 2023-10-27 中国第一汽车股份有限公司 一种再生制动控制方法、装置以及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007029228A1 (de) * 2006-06-30 2008-01-03 Continental Teves Ag & Co. Ohg Verfahren und System zur Ermittlung von Druckunterschieden in den Bremskreisen von Fahrzeugbremsanlagen
US20080210496A1 (en) * 2007-01-22 2008-09-04 Honda Motor Co., Ltd. Brake system
CN103068643A (zh) * 2010-02-15 2013-04-24 罗伯特·博世有限公司 用于运行车辆的制动力放大的液压制动系统的方法以及用于该系统的控制装置
CN104494585A (zh) * 2014-12-01 2015-04-08 江苏理工学院 电动汽车两侧车轮制动力分配控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318355A (en) * 1991-12-05 1994-06-07 Honda Giken Kogyo Kabushiki Kaisha Brake system in electric vehicle
JP3442266B2 (ja) * 1997-09-16 2003-09-02 トヨタ自動車株式会社 車両用制動装置
JP4058932B2 (ja) * 2001-10-25 2008-03-12 トヨタ自動車株式会社 車輌用制動制御装置
JP5010836B2 (ja) * 2006-02-27 2012-08-29 日立オートモティブシステムズ株式会社 モータ駆動装置,モータ駆動方法、及び電動ブレーキ装置
DE102010040190A1 (de) * 2010-09-03 2012-03-08 Continental Teves Ag & Co. Ohg Verfahren zum Betreiben eines Bremssystems, Bremssystem und Kraftfahrzeug
JP5657426B2 (ja) * 2011-02-25 2015-01-21 Ntn株式会社 電気自動車
JP5784930B2 (ja) * 2011-03-07 2015-09-24 Ntn株式会社 電気自動車
EP2760714B1 (de) * 2011-09-28 2019-03-20 Continental Teves AG & Co. OHG Schlupfgeregeltes bremssystem für elektrisch angetriebene kraftfahrzeuge
DE102011086706A1 (de) * 2011-11-21 2013-05-23 Robert Bosch Gmbh Verfahren zum Verblenden eines Generator-Bremsmoments eines Generators eines rekuperativen Bremssystems mit zwei Bremskreisen und Steuervorrichtung für ein rekuperatives Bremssystem mit zwei Bremskreisen
CN102975702B (zh) * 2012-12-12 2018-02-16 奇瑞汽车股份有限公司 一种串联式再生制动控制方法
DE102013224313A1 (de) * 2013-03-05 2014-09-11 Continental Teves Ag & Co. Ohg Verfahren zum Betreiben eines Bremssystems
CN105102283A (zh) * 2013-04-09 2015-11-25 丰田自动车株式会社 车辆的制动控制装置
CN103991384B (zh) * 2014-05-26 2016-04-20 北京理工大学 一种电动车辆的复合制动系统及其复合制动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007029228A1 (de) * 2006-06-30 2008-01-03 Continental Teves Ag & Co. Ohg Verfahren und System zur Ermittlung von Druckunterschieden in den Bremskreisen von Fahrzeugbremsanlagen
US20080210496A1 (en) * 2007-01-22 2008-09-04 Honda Motor Co., Ltd. Brake system
CN103068643A (zh) * 2010-02-15 2013-04-24 罗伯特·博世有限公司 用于运行车辆的制动力放大的液压制动系统的方法以及用于该系统的控制装置
CN104494585A (zh) * 2014-12-01 2015-04-08 江苏理工学院 电动汽车两侧车轮制动力分配控制方法

Also Published As

Publication number Publication date
CN106608250B (zh) 2019-03-29
EP3369633A4 (en) 2018-10-10
US20180312146A1 (en) 2018-11-01
EP3369633B1 (en) 2021-04-14
EP3369633A1 (en) 2018-09-05
CN106608250A (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2017071446A1 (zh) 车辆的主动安全控制系统和方法
CN103754210B (zh) 一种电机驱动的电子液压制动系统
CN106427601B (zh) 基于四轮驱动的电动汽车的制动系统及方法及电动汽车
CN206406908U (zh) 一种改进主缸的电机驱动电子液压制动系统
US20180093571A1 (en) Braking torque blending system and method
CN103754208B (zh) 一种双电机驱动的电子液压制动系统
CN104760586A (zh) 可主动模拟踏板感觉的双电机驱动式电子液压制动系统
CN112677772B (zh) 基于电子液压制动的汽车再生制动控制系统的控制方法
JP2013086797A (ja) 車両のブレーキングを制御するための方法
US20210237583A1 (en) Systems and methods of vehicular braking
CN207875607U (zh) 用于汽车的电控制动系统
US8251463B2 (en) Vehicle regenerative braking system with system monitor and redundant control capability
CN103754204B (zh) 一种踏板位移主动控制的电子液压制动系统
CN103950442B (zh) 可调杠杆支点的机械式电子液压制动系统
JP2014213628A (ja) 車両の制動システム
JP6153857B2 (ja) 車両用制動装置
US11590944B2 (en) Braking control device
KR20150071568A (ko) 자동 긴급 제동 방법 및 시스템
JP6291460B2 (ja) 電動車両
JP2015110361A (ja) 車両のブレーキ装置
US20240067146A1 (en) Brake system and method for braking a vehicle
JP6325944B2 (ja) 車両用ブレーキシステム
Li et al. Research on mechanism and key technology of intelligent vehicles brake by wire system
JP6194290B2 (ja) 車両用制動システム
KR20170079022A (ko) 자율주행 전기 자동차의 회생제동을 이용한 감속 및 정지방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858882

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770714

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016858882

Country of ref document: EP