WO2017069597A1 - 무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소를 제어하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소를 제어하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017069597A1
WO2017069597A1 PCT/KR2016/011984 KR2016011984W WO2017069597A1 WO 2017069597 A1 WO2017069597 A1 WO 2017069597A1 KR 2016011984 W KR2016011984 W KR 2016011984W WO 2017069597 A1 WO2017069597 A1 WO 2017069597A1
Authority
WO
WIPO (PCT)
Prior art keywords
edrx
isr
mme
terminal
network node
Prior art date
Application number
PCT/KR2016/011984
Other languages
English (en)
French (fr)
Inventor
김재현
김태훈
박상민
류진숙
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Publication of WO2017069597A1 publication Critical patent/WO2017069597A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for controlling activation / deactivation of Idle-mode Signaling Reduction (ISR) of an efficient terminal and an apparatus for supporting the same. will be.
  • ISR Idle-mode Signaling Reduction
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • ISR Idle-mode Signaling Reduction activation / deactivation
  • An aspect of the present invention provides a method for controlling activation / deactivation of idle mode signaling reduction (ISR) of a terminal by a first network node in a wireless communication system. Transmitting a context request message to a second network node to obtain user information of the terminal, when receiving a LAU Request (LAU Request: Location Area Update Request) message; Receiving a context response message from the second network node in response to a context request message, wherein the first network node has an extended idle mode discontinuous reception (eDRX) mode; , The context request message indicates that the first network node supports eDRX.
  • LAU Request LAU Request: Location Area Update Request
  • eDRX extended idle mode discontinuous reception
  • the context response message includes a second eDRX capability indication indicating that the second network node supports eDRX, and If at least one of the first network node and the second network node does not support the eDRX mode, the ISR of the terminal may not be activated.
  • a signal is provided in a first communication node for controlling activation / deactivation of Idle-mode Signaling Reduction (ISR) of a terminal in a wireless communication system.
  • a communication module for transmitting and receiving and a processor for controlling the communication module, wherein the processor receives a Location Area Update Request (LAU Request) message from the terminal, and transmits the message to the second network node.
  • LAU Request Location Area Update Request
  • the context request message includes a first eDRX capability indication indicating that the first network node supports eDRX, and if the second network node supports eDRX mode, the context response message Includes a second eDRX capability indication indicating that the second network node supports eDRX, and if at least one of the first network node and the second network node does not support the eDRX mode, the ISR of the terminal is It may not be activated.
  • a LAU Accept message including an ISR deactivation indication indicating that the ISR of the terminal is deactivated may be transmitted to the terminal in response to the LAU request message.
  • a context acknowledgment message including an ISR deactivation indication indicating that the ISR of the terminal is deactivated may be transmitted to the second network node.
  • the context request message may include a first ISR capability indication indicating whether the first network node supports ISR.
  • the context response message may include a second ISR capability indication indicating whether the second network node supports ISR.
  • the ISR of the terminal may not be activated.
  • a method for controlling activation / deactivation of Idle-mode Signaling Reduction (ISR) by a terminal in a wireless communication system the terminal camping (determining whether the base station being camped supports the extended idle mode discontinuous reception (eDRX) mode; and if the base station does not support the eDRX mode, the terminal performs idle mode signaling reduction (ISR). And initiating an LAU procedure by sending a LAU Request message to the network node that includes an indication that it does not support Idle-mode Signaling Reduction.
  • ISR Idle-mode Signaling Reduction
  • Another aspect of the present invention is a terminal for controlling activation / deactivation of idle mode signaling reduction (ISR) in a wireless communication system, the RF for transmitting and receiving radio signals (Radio Frequency) unit and a processor for controlling the RF unit, wherein the processor whether the base station camping (camping) the terminal whether the extended idle mode discontinuous reception (eDRX) mode or not; If the base station does not support the eDRX mode, and transmits a LAU Request (LAU Request) message to the network node including an indication that the terminal does not support Idle-mode Signaling Reduction (ISR) By initiating the LAU procedure.
  • ISR idle mode signaling reduction
  • SIB system information block
  • unnecessary resource waste can be prevented by controlling paging of the terminal based on proper network processing during eDRX and ISR operation of the terminal.
  • FIG. 1 is a view briefly illustrating an EPS (Evolved Packet System) to which the present invention can be applied.
  • EPS Evolved Packet System
  • E-UTRAN evolved universal terrestrial radio access network
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 5 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
  • FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 7 illustrates a tracking area update procedure involving S-GW change in a wireless communication system to which the present invention can be applied.
  • ISR Idle-Mode Signaling Reduction
  • FIG. 9 is a diagram illustrating a paging procedure for downlink data transfer in a wireless communication system to which the present invention can be applied.
  • 10 and 11 are diagrams for describing a problem when using an eDRX mode in a situation where an ISR is activated.
  • FIG. 12 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • 16 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • 17 is a diagram illustrating a method for paging control according to an embodiment of the present invention.
  • FIG. 18 is a diagram illustrating a method for paging control according to an embodiment of the present invention.
  • FIG. 19 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • FIG. 20 is a diagram illustrating a paging control method according to an embodiment of the present invention.
  • FIG. 21 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 22 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system consisting of an Evolved Packet Core (EPC), which is a packet switched core network based on Internet Protocol (IP), and an access network such as LTE and UTRAN.
  • EPC Evolved Packet Core
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of UMTS network. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of EPS network. It is installed outdoors and its coverage is macro cell size.
  • a terminal may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the terminal may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smartphone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term "terminal” or “terminal” in the MTC related content may refer to an MTC terminal.
  • IMS IP Multimedia Subsystem
  • IMSI International Mobile Subscriber Identity
  • Machine Type Communication Communication performed by a machine without human intervention. It may also be referred to as M2M (Machine to Machine) communication.
  • MTC terminal MTC UE or MTC device or MTC device: a terminal (eg, vending machine, etc.) having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC UE or MTC device or MTC device a terminal having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC server A server on a network that manages an MTC terminal. It may exist inside or outside the mobile communication network. It may have an interface that an MTC user can access. In addition, the MTC server may provide MTC related services to other servers (Services Capability Server (SCS)), or the MTC server may be an MTC application server.
  • SCS Services Capability Server
  • MTC mobile broadband
  • services e.g., remote meter reading, volume movement tracking, weather sensors, etc.
  • (MTC) application server a server on a network where (MTC) applications run
  • MTC feature A function of a network to support an MTC application.
  • MTC monitoring is a feature for preparing for loss of equipment in an MTC application such as a remote meter reading
  • low mobility is a feature for an MTC application for an MTC terminal such as a vending machine.
  • the MTC user uses a service provided by the MTC server.
  • MTC subscriber An entity having a connection relationship with a network operator and providing a service to one or more MTC terminals.
  • MTC group A group of MTC terminals that share at least one MTC feature and belongs to an MTC subscriber.
  • SCS Services Capability Server
  • MTC-IWF MTC InterWorking Function
  • HPLMN Home PLMN
  • SCS provides the capability for use by one or more MTC applications.
  • External Identifier An identifier used by an external entity (e.g., an SCS or application server) of a 3GPP network to point to (or identify) an MTC terminal (or a subscriber to which the MTC terminal belongs). Globally unique.
  • the external identifier is composed of a domain identifier and a local identifier as follows.
  • Domain Identifier An identifier for identifying a domain in a control term of a mobile communication network operator.
  • One provider may use a domain identifier for each service to provide access to different services.
  • Local Identifier An identifier used to infer or obtain an International Mobile Subscriber Identity (IMSI). Local identifiers must be unique within the application domain and are managed by the mobile telecommunications network operator.
  • IMSI International Mobile Subscriber Identity
  • RAN Radio Access Network: a unit including a Node B, a Radio Network Controller (RNC), and an eNodeB controlling the Node B in a 3GPP network. It exists at the terminal end and provides connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • RANAP RAN Application Part: between the RAN and the node in charge of controlling the core network (ie, Mobility Management Entity (MME) / Serving General Packet Radio Service (GPRS) Supporting Node) / MSC (Mobile Switching Center) Interface.
  • MME Mobility Management Entity
  • GPRS General Packet Radio Service
  • MSC Mobile Switching Center
  • PLMN Public Land Mobile Network
  • Non-Access Stratum A functional layer for transmitting and receiving signaling and traffic messages between a terminal and a core network in a UMTS and EPS protocol stack. The main function is to support the mobility of the terminal and to support the session management procedure for establishing and maintaining an IP connection between the terminal and the PDN GW.
  • SEF Service Capability Exposure Function
  • FIG. 1 is a diagram briefly illustrating an EPS (Evolved Packet System) to which the present invention may be applied.
  • EPS Evolved Packet System
  • the network structure diagram of FIG. 1 briefly reconstructs a structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing improved data transfer capability.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • the EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (SGW) (or S-GW), PDN GW (Packet Data Network Gateway) (or PGW or P-GW), A mobility management entity (MME), a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG) are shown.
  • SGW Serving Gateway
  • PDN GW Packet Data Network Gateway
  • MME mobility management entity
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • ePDG enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • untrusted networks such as 3GPP networks and non-3GPP networks (e.g., Interworking Wireless Local Area Networks (I-WLANs), trusted divisions such as Code Division Multiple Access (CDMA) networks or Wimax). It can serve as an anchor point for mobility management with the network.
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA Code Division Multiple Access
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions for supporting access to a network connection, allocation of network resources, tracking, paging, roaming, handover, and the like.
  • the MME controls the control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability includes an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an operator ie, an operator
  • 3GPP access based on 3GPP access as well as non-3GPP access.
  • IMS IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • various reference points may exist according to the network structure.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with relevant control and mobility resources between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and the PDN GW.
  • E-UTRAN evolved universal terrestrial radio access network
  • the E-UTRAN system is an evolution from the existing UTRAN system and may be, for example, a 3GPP LTE / LTE-A system.
  • Communication networks are widely deployed to provide various communication services, such as voice (eg, Voice over Internet Protocol (VoIP)) over IMS and packet data.
  • voice eg, Voice over Internet Protocol (VoIP)
  • VoIP Voice over Internet Protocol
  • an E-UMTS network includes an E-UTRAN, an EPC, and one or more UEs.
  • the E-UTRAN consists of eNBs providing a control plane and a user plane protocol to the UE, and the eNBs are connected through an X2 interface.
  • X2 user plane interface (X2-U) is defined between eNBs.
  • the X2-U interface provides non guaranteed delivery of user plane packet data units (PDUs).
  • An X2 control plane interface (X2-CP) is defined between two neighboring eNBs.
  • X2-CP performs functions such as context transfer between eNBs, control of user plane tunnel between source eNB and target eNB, delivery of handover related messages, and uplink load management.
  • the eNB is connected to the terminal through a wireless interface and is connected to an evolved packet core (EPC) through the S1 interface.
  • EPC evolved packet core
  • the S1 user plane interface (S1-U) is defined between the eNB and the serving gateway (S-GW).
  • the S1 control plane interface (S1-MME) is defined between the eNB and the mobility management entity (MME).
  • the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
  • EPS evolved packet system
  • NAS non-access stratum
  • the S1 interface supports a many-to-many-relation between eNB and MME / S-GW.
  • MME provides NAS signaling security, access stratum (AS) security control, inter-CN inter-CN signaling to support mobility between 3GPP access networks, and performing and controlling paging retransmission.
  • EWS Earthquake and Tsunami Warning System
  • CMAS Commercial Mobile Alert System
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • an eNB may select a gateway (eg, MME), route to the gateway during radio resource control (RRC) activation, scheduling of a broadcast channel (BCH), and the like. Dynamic resource allocation to the UE in transmission, uplink and downlink, and may perform the function of mobility control connection in the LTE_ACTIVE state.
  • the gateway is responsible for paging initiation, LTE_IDLE state management, ciphering of the user plane, System Architecture Evolution (SAE) bearer control, and NAS signaling encryption. It can perform the functions of ciphering and integrity protection.
  • FIG. 4 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 4 (a) shows the radio protocol structure for the control plane and FIG. 4 (b) shows the radio protocol structure for the user plane.
  • the layers of the air interface protocol between the terminal and the E-UTRAN are based on the lower three layers of the open system interconnection (OSI) standard model known in the art of communication systems. It may be divided into a first layer L1, a second layer L2, and a third layer L3.
  • the air interface protocol between the UE and the E-UTRAN consists of a physical layer, a data link layer, and a network layer horizontally, and vertically stacks a protocol stack for transmitting data information. (protocol stack) It is divided into a user plane and a control plane, which is a protocol stack for transmitting control signals.
  • the control plane refers to a path through which control messages used by the terminal and the network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • an application layer for example, voice data or Internet packet data
  • a physical layer which is a first layer (L1), provides an information transfer service to a higher layer by using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer located at a higher level through a transport channel, and data is transmitted between the MAC layer and the physical layer through the transport channel.
  • Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • data is transmitted between different physical layers through a physical channel between a physical layer of a transmitter and a physical layer of a receiver.
  • the physical layer is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • a physical downlink control channel is a resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH) and uplink shared channel (UL-SCH) to the UE.
  • PCH paging channel
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • the PDCCH may carry an UL grant that informs the UE of resource allocation of uplink transmission.
  • PDFICH physical control format indicator channel informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
  • a physical HARQ indicator channel (PHICH) carries a HARQ acknowledgment (ACK) / non-acknowledge (NACK) signal in response to uplink transmission.
  • the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NACK, downlink request and channel quality indicator (CQI) for downlink transmission.
  • a physical uplink shared channel (PUSCH) carries a UL-SCH.
  • the MAC layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the MAC layer multiplexes / demultiplexes into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel.
  • SDU MAC service data unit
  • the RLC layer of the second layer supports reliable data transmission. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM) and an acknowledgment mode (AM). There are three modes of operation: acknowledge mode.
  • AM RLC provides error correction through an automatic repeat request (ARQ). Meanwhile, when the MAC layer performs an RLC function, the RLC layer may be included as a functional block of the MAC layer.
  • the packet data convergence protocol (PDCP) layer of the second layer (L2) performs user data transmission, header compression, and ciphering functions in the user plane.
  • Header compression is relatively large and large in order to allow efficient transmission of Internet protocol (IP) packets, such as IPv4 (internet protocol version 4) or IPv6 (internet protocol version 6), over a small bandwidth wireless interface. It means the function to reduce the IP packet header size that contains unnecessary control information.
  • IP Internet protocol
  • IPv4 Internet protocol version 4
  • IPv6 Internet protocol version 6
  • a radio resource control (RRC) layer located at the lowest part of the third layer L3 is defined only in the control plane.
  • the RRC layer serves to control radio resources between the terminal and the network.
  • the UE and the network exchange RRC messages with each other through the RRC layer.
  • the RRC layer controls the logical channel, transport channel and physical channel with respect to configuration, re-configuration and release of radio bearers.
  • the radio bearer means a logical path provided by the second layer (L2) for data transmission between the terminal and the network.
  • Establishing a radio bearer means defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the radio bearer may be further divided into two signaling radio bearers (SRBs) and data radio bearers (DRBs).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information, a PCH for transmitting a paging message, and a DL-SCH for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH for transmitting a paging message
  • DL-SCH for transmitting user traffic or control messages.
  • Traffic or control messages of the downlink multicast or broadcast service may be transmitted through the DL-SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • an uplink transport channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message, and an UL-SCH (uplink shared) for transmitting user traffic or a control message. channel).
  • RACH random access channel
  • UL-SCH uplink shared
  • the logical channel is on top of the transport channel and is mapped to the transport channel.
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • the control channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a dedicated control channel (DCCH), multicast And a control channel (MCCH: multicast control channel).
  • Traffic channels include a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
  • PCCH is a downlink channel that carries paging information and is used when the network does not know the cell to which the UE belongs.
  • CCCH is used by a UE that does not have an RRC connection with the network.
  • the DCCH is a point-to-point bi-directional channel used by a terminal having an RRC connection for transferring dedicated control information between the UE and the network.
  • DTCH is a point-to-point channel dedicated to one terminal for transmitting user information that may exist in uplink and downlink.
  • MTCH is a point-to-multipoint downlink channel for carrying traffic data from the network to the UE.
  • the DCCH may be mapped to the UL-SCH
  • the DTCH may be mapped to the UL-SCH
  • the CCCH may be mapped to the UL-SCH.
  • the BCCH may be mapped with the BCH or DL-SCH
  • the PCCH may be mapped with the PCH
  • the DCCH may be mapped with the DL-SCH.
  • the DTCH may be mapped with the DL-SCH
  • the MCCH may be mapped with the MCH
  • the MTCH may be mapped with the MCH.
  • FIG. 5 is a diagram exemplarily illustrating a structure of a physical channel in a wireless communication system to which the present invention can be applied.
  • a physical channel transmits signaling and data through a radio resource including one or more subcarriers in a frequency domain and one or more symbols in a time domain.
  • One subframe having a length of 1.0 ms is composed of a plurality of symbols.
  • the specific symbol (s) of the subframe eg, the first symbol of the subframe
  • the PDCCH carries information about dynamically allocated resources (eg, a resource block, a modulation and coding scheme (MCS), etc.).
  • MCS modulation and coding scheme
  • the UE performs an RRC connection re-establishment procedure. Cases are performed.
  • a contention-based random access procedure in which the UE randomly selects and uses one preamble within a specific set And a non-contention based random access procedure using a random access preamble allocated by a base station only to a specific terminal.
  • FIG. 6 is a diagram for explaining a contention based random access procedure in a wireless communication system to which the present invention can be applied.
  • the UE randomly selects one random access preamble (RACH preamble) from a set of random access preambles indicated through system information or a handover command, and A physical RACH (PRACH) resource capable of transmitting a random access preamble is selected and transmitted.
  • RACH preamble random access preamble
  • PRACH physical RACH
  • the base station receiving the random access preamble from the terminal decodes the preamble and obtains an RA-RNTI.
  • the RA-RNTI associated with the PRACH in which the random access preamble is transmitted is determined according to the time-frequency resource of the random access preamble transmitted by the corresponding UE.
  • the base station transmits a random access response addressed to the RA-RNTI obtained through the preamble on the first message to the terminal.
  • the random access response includes a random access preamble identifier (RA preamble index / identifier), an uplink grant (UL grant) indicating an uplink radio resource, a temporary cell identifier (TC-RNTI), and a time synchronization value ( TAC: time alignment commands) may be included.
  • the TAC is information indicating a time synchronization value that the base station sends to the terminal to maintain uplink time alignment.
  • the terminal updates the uplink transmission timing by using the time synchronization value. When the terminal updates the time synchronization, a time alignment timer is started or restarted.
  • the UL grant includes an uplink resource allocation and a transmit power command (TPC) used for transmission of a scheduling message (third message), which will be described later. TPC is used to determine the transmit power for the scheduled PUSCH.
  • TPC transmit power command
  • the base station After the UE transmits the random access preamble, the base station attempts to receive its random access response within the random access response window indicated by the system information or the handover command, and PRACH
  • the PDCCH masked by the RA-RNTI corresponding to the PDCCH is detected, and the PDSCH indicated by the detected PDCCH is received.
  • the random access response information may be transmitted in the form of a MAC packet data unit (MAC PDU), and the MAC PDU may be transmitted through a PDSCH.
  • MAC PDU MAC packet data unit
  • the monitoring stops the random access response.
  • the random access response message is not received until the random access response window ends, or if a valid random access response having the same random access preamble identifier as the random access preamble transmitted to the base station is not received, the random access response is received. Is considered to have failed, and then the UE may perform preamble retransmission.
  • the terminal When the terminal receives a valid random access response to the terminal, it processes each of the information included in the random access response. That is, the terminal applies the TAC, and stores the TC-RNTI. In addition, by using the UL grant, the data stored in the buffer of the terminal or newly generated data is transmitted to the base station.
  • an RRC connection request generated in the RRC layer and delivered through the CCCH may be included in the third message and transmitted.
  • the RRC layer is generated in the RRC layer and CCCH.
  • the RRC connection reestablishment request delivered through the RRC connection reestablishment request may be included in the third message and transmitted. It may also include a NAS connection request message.
  • the third message should include the identifier of the terminal.
  • C-RNTI valid cell identifier allocated in the corresponding cell before the random access procedure
  • the UE If the UE transmits data corresponding to the UL grant, it starts a timer for contention resolution (contention resolution timer).
  • the base station When the base station receives the C-RNTI of the terminal through the third message from the terminal, the base station transmits a fourth message to the terminal using the received C-RNTI.
  • the unique identifier ie, S-TMSI or random number
  • the fourth message is transmitted using the TC-RNTI allocated to the terminal in the random access response.
  • the fourth message may include an RRC connection setup message.
  • the terminal After transmitting the data including its identifier through the UL grant included in the random access response, the terminal waits for an instruction of the base station to resolve the collision. That is, it attempts to receive a PDCCH to receive a specific message.
  • the third message transmitted in response to the UL grant is its C-RNTI
  • the identifier is a unique identifier (that is, In the case of S-TMSI or a random number, it attempts to receive the PDCCH using the TC-RNTI included in the random access response.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure is normally performed, and terminates the random access procedure.
  • the terminal acquires the C-RNTI through the fourth message, and then the terminal and the network transmit and receive a terminal-specific message using the C-RNTI.
  • the random access procedure is terminated by only transmitting the first message and transmitting the second message.
  • the terminal before the terminal transmits the random access preamble to the base station as the first message, the terminal is allocated a random access preamble from the base station, and transmits the allocated random access preamble to the base station as a first message, and sends a random access response from the base station.
  • the random access procedure is terminated by receiving.
  • -Home NodeB Base station of UMTS network installed indoors and coverage is micro cell size.
  • Home eNodeB Base station of EPS network installed indoors, coverage is micro cell size.
  • -OMA DM Open Mobile Alliance Device Management: A protocol designed for the management of mobile devices such as mobile phones, PDAs, portable computers, etc., including device configuration, firmware upgrade, error report, etc. Performs the function of.
  • Operation Administration and Maintenance A group of network management functions that provide network fault indication, performance information, and data and diagnostics.
  • NAS configuration MO Means a management object (MO) used to configure the parameters (parameters) associated with the NAS (Functionality) to the terminal.
  • Packet Data Network A network in which a server supporting a specific service (for example, a Multi-media Message Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located. Means.
  • MMS Multi-media Message Service
  • WAP Wireless Application Protocol
  • connection A connection from the terminal to the PDN, the association (connection) between the terminal represented by the Internet Protocol (IP) address and the PDN represented by the Access Point Name (APN). it means.
  • IP Internet Protocol
  • API Access Point Name
  • APN Access Point Name: A string indicating or distinguishing a PDN.
  • PDN service or network
  • P-GW predefined name (string) (for example, internet.mnc012.mcc345) in the network to find the P-GW. .gprs).
  • Non-Access Stratum This refers to an upper stratum of a control plane between a UE and an MME. Mobility management, session management, IP address management, etc. between the terminal and the network are supported.
  • Access-Stratum includes a protocol stack between a terminal and a wireless (or access) network, and is responsible for transmitting data and network control signals.
  • FIG. 7 illustrates a tracking area update procedure involving S-GW change in a wireless communication system to which the present invention can be applied.
  • the TAU procedure may detect that the UE has entered a new tracking area (TA) that does not exist in the list of tracking area identity (TAI) (s) that have registered with the network, the periodic TAU timer expires, or the UE When re-selecting the UTRAN, a temporary identifier (TIN: Temporary Identity used in Next update) may be performed when indicating a Packet-Temporary Mobile Subscriber Identity (P TMSI).
  • TA tracking area
  • TAI tracking area identity
  • the UE initiates the TAU procedure by sending a TAU Request message to the MME.
  • the TAU Request message is included in the RRC Connection Setup Complete message in the RRC connection and transmitted, and is included in the Initial UE message in the S1 signaling connection.
  • the eDRX parameter (s) information is included in the TAU Request message even if the eDRX parameter has already been negotiated before.
  • the new MME (new MME) is the old MME / SGSN.
  • Context Request a context request (Context Request) message to the MME / SGSN.
  • the Context Request message may include indication information (ie, ISR supported) indicating that ISR is supported when the new MME supports ISR (Idle mode signaling reduction).
  • indication information ie, ISR supported
  • the previous MME / SGSN indicates to the new MME (SGN in the case of the RAU procedure) whether downlink data forwarding is required (that is, "DL data forwarding required” if required).
  • the Context Response message may include indication information (ie, ISR supported) indicating that ISR is supported when the new MME supports ISR (Idle mode signaling reduction).
  • indication information ie, ISR supported
  • the UE and the new MME and HSS perform an authentication function and security (or ciphering) procedure.
  • the new MME decides whether to relocate the S-GW. When the previous S-GW can no longer provide service to the UE, the S-GW is relocated. In addition, the new MME may be expected that the new S-GW will serve the UE longer and / or the P-GW path will be more suitable for the UE or the new S-GW is located in the same position as the P-GW. If you locate it, you can also decide to move the S-GW.
  • the MME sends a Create Session Request message to the new S-GW selected for each PDN connection.
  • the new MME (SGN in case of RAU procedure) receives "DL data forwarding required" in step 5 above, the new MME (SGSN in case of RAU procedure) is sent to the new S-GW.
  • a request is made to assign a new S-GW temporary IP address IP @ and TEID for downlink data forwarding.
  • the new S-GW sends a Modify Bearer Request message to the P-GW for each PDN connection.
  • the P-GW may perform a PCRF and IP connectivity access network (IP-CAN) session modification procedure.
  • IP-CAN IP connectivity access network
  • the P-GW When the P-GW receives a Modify Bearer Request message from the new S-GW, the P-GW sends a Modify Bearer Response message to the new S-GW in response.
  • the new S-GW updates its bearer context. This allows the new S-GW to route to the P-GW when it receives a bearer PDU from the base station.
  • the new S-GW sends a Create Session Response message to the new MME in response to the Create Session Request.
  • the new S-GW delivers a temporary IP address (IP @) and TEID allocated for downlink data transmission to the new MME through a Create Session Response message.
  • IP @ IP address
  • TEID TEID allocated for downlink data transmission
  • the new MME sends a context acknowledgment message to the old MME / SGSN.
  • the MME When the MME selects a new S-GW, the MME transfers the change indication information of the S-GW to the previous MME / SGSN through a context acknowledgment message.
  • the change indication information of the S-GW indicates that a new S-GW is selected.
  • the new MME transfers the temporary IP address (IP @) and TEID allocated for downlink data transmission to the previous MME / SGSN through a Create Session Response message.
  • the new MME sends an Update Location Request message to the HSS.
  • the HSS sends a Cancel Location message to the previous MME / SGSN.
  • the previous MME / SGSN sends a Cancel Location Acknowledge message to the HSS in response to the Cancel Location message.
  • the previous SGSN If the previous SGSN receives the context acknowledgment (Context Acknowledge) message and the terminal is connected via the Iu interface, the previous SGSN transmits an Iu Release Command message to the RNC.
  • Context Acknowledge Context Acknowledge
  • the RNC sends an Iu Release Complete message to the previous SGSN in response to an Iu Release Command message.
  • the HSS sends an Update Location Acknowledge message to the new MME in response to an Update Location Request message.
  • the previous MME / SGSN sends a Delete Session Request message to the previous S-GW to send the MME or SGSN EPS. Release bearer resources.
  • the previous MME / SGSN transfers the temporary IP address (IP @) and TEID allocated for downlink data transmission to the previous S-GW through a Delete Session Request message.
  • the previous S-GW sends a Delete Session Response message to the previous MME / SGSN in response to the Delete Session Request message.
  • the new MME sends a TAU Accept message to the UE.
  • the new MME allocates a new globally unique temporary identifier (GUTI) to the UE, the allocated GUTI may be included in a TAU Accept message.
  • GUI globally unique temporary identifier
  • the MME includes the eDRX parameter (s) information in the TAU Accept message if the MME determines to activate the eDRX.
  • the UE sets the TIN to a Globally Unique Temporary Identity (GUTI).
  • GUI Globally Unique Temporary Identity
  • the UE transmits a TAU Complete message to the MME in response to the TAU Accept message.
  • the old S-GW forwards the buffered downlink packet to the new S-GW and sends an End Marker packet to the new S-GW indicating that there is no more data to be delivered.
  • ISR Idle-Mode Signaling Reduction
  • RAT radio access technology
  • the MME / SGSN activates ISR only if the S-GW supports ISR.
  • the ISR is activated by the determination of the Core Network (CN) note and is explicitly signaled to the UE as "ISR activated" in a RAU Accept message or TAU Accept message. do.
  • the UE may obtain a valid mobility management (MM) parameter from the MME and the SGSN.
  • MM mobility management
  • TIN Temporary Identity used in Next update
  • Identifies The TIN also identifies the state of ISR activation within the UE.
  • the TIN can be a "Packet-Temporary Mobile Subscriber Identity", “Globally Unique Temporary Identity” (GUTI), or "RAT-related TMSI”. It may correspond to one of three values.
  • GUI Globally Unique Temporary Identity
  • RAT-related TMSI RAT-related TMSI
  • Table 2 illustrates the setting rules of the TIN.
  • ISR Activated is indicated by RAU / TAU Accept, it is a special situation that the UE does not set the TIN to "RAT-related TMSI".
  • the UE is in a state in which ISR is deactivated due to the control of a special situation.
  • old TIN old TIN
  • the UE remembers to use the RAT specific TMSI indicated by the TIN when updating with the CN node of another RAT.
  • the ISR operation is activated to the UE. That is, the UE can change between all registered regions and the RAT without any signaling update, and can listen to the paging in the RAT camped on it. If the TIN is set to "RAT-related TMSI", then not only the UE's GUTI and Tracking Area Identity (TAI) (s) but also the UE's P TMSI and Routing Area Identity (RAI) (s) It is maintained in the registered network and remains valid even within the UE.
  • TAI Tracking Area Identity
  • RAI Routing Area Identity
  • Table 3 lists the Temporary UE Identifiers that the UE must make in the Attach Request, TAU / RAU Request indication (as "old GUTI” or "old P-TMSI / RAI" information). UE identity) is illustrated.
  • Table 3 shows the temporary identifiers that should be indicated in the Attach Request, TAU / RAU Request when the UE stores them as valid parameters.
  • Unsynchronized state information may be generated in the UE, MME and SGSN.
  • the ISR is deactivated locally in the UE.
  • the UE deactivates ISR by setting its TIN to a temporary identifier of the currently used RAT in the following special circumstances.
  • the UE moves from a registration area supporting IMS voice through the PS session to an area other than it, or vice versa;
  • the UE deactivates ISR locally by setting its TIN to a temporary identifier of the RAT still available to the UE in the following special circumstances.
  • RAT-specific deactivation ISR timer (RAT-specific), because the coverage of the RAT is lost or no longer selected by the UE (which may result in implicit detach by SGSN or MME). After the Deactivate ISR timer expires;
  • ISR in the UE is deactivated by the CN node using general update signaling (ie, by omitting signaling of "ISR Activated").
  • a change in CN node causes context transfer between CN nodes of the same type (SGSN to SGSN, or MME to MME);
  • the tracking area or routing area list covers both the local network or the macro network, if the UE is allowed to use the SIPTO in the local network and the mobility-free S-GW relocation is supported, ISR is not activated.
  • ISR Interle mode Signaling Reduction
  • LTE E-UTRAN
  • 2G GERAN
  • 3G UTRAN
  • TA tracking area
  • RA routing area
  • the terminal and the network nodes SGSN, MME, S-GW, and HSS must support the ISR.
  • ISR support of the terminal is mandatory in the standard specification, but the network node is optional.
  • ISR Idle-Mode Signaling Reduction
  • the procedure for activating an ISR starts with a typical attach procedure, without requesting a special function for supporting the ISR.
  • the UE initiates the attach procedure by sending an Attach Request message to the MME.
  • the Attach Request message includes an old GUTI (ie, a real GUTI or a GUTI mapped to P-TMSI) and the like.
  • the attachment deletes the old old ISR state information stored in the UE.
  • the UE sets a Temporary Identity used in Next update (TIN) to GUTI.
  • TIN Temporary Identity used in Next update
  • the UE After attaching to the MME, the UE can perform interaction through the E-UTRAN without changing the ISR state.
  • the MME requests and receives information for authentication from the HSS for terminal authentication, and performs mutual authentication with the terminal.
  • the MME is then registered with the HSS.
  • the MME transmits an attach accept message to the terminal in response to an attach request message.
  • the Attach Accept message contains a GUTI. At this time, the Attach Accept message never indicates ISR activation. Thus, the UE sets the TIN to GUTI.
  • Steps 1 to 3 above correspond to a general attach procedure in which no special old ISR state is deactivated, except that there is nothing special for the ISR.
  • the ISR remains deactivated.
  • One or more bearer contexts are activated on the MME, S-GW and PDN GW.
  • the UE initiates the RAU procedure by sending a RAU Request message to the SGSN.
  • the TIN indicates "GUTI” and, accordingly, the UE indicates P-TMSI mapped to GUTI in a RAU Request.
  • the SGSN sends a context request message to the MME, and receives a context response message in response to the context request message from the MME, so that the SGSN obtains the context from the MME.
  • the MME when the MME transmits a context to the SGSN, the MME includes an ISR supported indication only when the S-GW to which the MME is involved supports the ISR.
  • the SGSN sends a Context Ack message to the MME.
  • SGSN indicates ISR active in a context acknowledgment message.
  • both CN nodes ie SGSN, MME
  • MME CN nodes
  • the SGSN establishes a control relation with the S-GW, where the SGSN is activated with a control connection between the MME and the S-GW. That is, the MME and SGSN are registered together with the HSS.
  • the SGSN sends a RAU Accept message to the UE in response to the RAU Request message.
  • RAU Accept indicates ISR activation to the UE.
  • the UE maintains the registered GUTI and P-TMSI, and the UE sets the TIN to "RAT-related TMSI".
  • Steps 4 to 9 above illustrate the RAU procedure involving ISR activation.
  • the UE has a valid MM context for the SGSN and the MME, the SGSN and the MME have a valid MM registration from the UE, and the SGSN and the MME are registered in the HSS.
  • the UE can reselect between E-UTRAN and UTRAN / GERAN without the need for network update as long as the UE does not leave the RA (s) / TA (s) registered with the network.
  • the network is not required to activate ISR during RAU or TAU, but the network may activate ISR in any RAU or TAU, including context transfer between SGSN and MME.
  • FIG. 8 illustrates an RAU procedure
  • the TAU procedure for ISR activation for a UE already attached to a GERAN / UTRAN may operate similarly to this. That is, the procedure for activating the ISR is as follows.
  • the terminal is registered in GERAN / UTRAN.
  • TAU tracking area updating
  • the MME informs SGSN that the UE context is requestable and ISR capable.
  • the SGSN responds to the MME that it is UE context and ISR capable.
  • the S-GW receives the registration of the terminal and the ISR activation (activated) from the MME.
  • the HSS can be updated for the MME address.
  • the update type indicates that the HSS does not cancel the SGSN location.
  • the MME informs the UE that the ISR is activated through a TAU accept message.
  • LTE E-UTRAN
  • 2G GERAN
  • 3G UTRAN
  • ISR activation must be updated each time the RAU / TAU procedure is performed. That is, if the ISR activated indication is not present in the TAU / RAU grant message received from the MME / SGSN, the UE deactivates the ISR.
  • the UE and the network independently operate periodic update timers (eg, T3412 for E-UTRAN and T3312 for GERAN / UTRAN) for E-UTRAN and GERAN / UTRAN. Therefore, when the terminal is camped in the network and the network-related periodic update timer expires, a periodic TAU (P-TAU: Periodic TAU) (for T3412) or a periodic RAU (P-RAU: Periodic RAU) (T3312) In the case of
  • the terminal If the terminal is camped in LTE and the P-RAU timer T3312 expires, the P-RAU does not perform. In this case, the terminal operates a deactivate ISR timer T3323 for GERAN / UTRAN. If T3323 expires, the terminal deactivates ISR.
  • the terminal is camped in GERAN / UTRAN, but does not perform P-TAU when the P-TAU timer T3412 expires.
  • the terminal operates a deactivate ISR timer T3423 for the E-UTRAN. If T3423 expires, the terminal deactivates ISR.
  • the terminal If the network (ie, the MME / SGSN) does not receive the P-TAU / RAU from the terminal, the terminal is considered to be unreachable in the network.
  • the network runs a mobile reachable timer for this (generally set to 4 minutes + T3412 / T3312). When this mobile reachable timer expires, it starts the implicit detach timer again. If the implicit detach timer expires, the terminal is finally considered to be unreachable and the terminal is detached.
  • FIG. 9 is a diagram illustrating a paging procedure for downlink data transfer in a wireless communication system to which the present invention can be applied.
  • the P-GW forwards the downlink data to the S-GW.
  • the S-GW buffers the received downlink data.
  • the S-GW transmits a downlink data notification (DDN) message to the MME / SGSN in which the UE is registered for signaling connection and bearer setup for the UE.
  • DDN downlink data notification
  • the MME / SGSN transmits a downlink data notification ACK (Downlink Data Notification ACK) message to the S-GW in response to the DDN message.
  • a downlink data notification ACK Downlink Data Notification ACK
  • the MME / SGSN transmits a paging message to all eNB / RNC (or BSC (base station controller)) belonging to the tracking area which the terminal has most recently registered.
  • eNB / RNC or BSC (base station controller)
  • the eNB / RNC (or BSC) receives a paging message from the MME / SGSN, the eNB / RNC (or BSC) broadcasts a paging message.
  • the terminal When the terminal recognizes that there is downlink data directed to itself, the terminal performs a service request procedure in response to paging in the network where it is camped.
  • FIG 9 illustrates a case where the terminal is camped in the E-UTRAN, and the terminal establishes an ECM connection by transmitting a service request message to the MME to initiate a service request procedure.
  • the MME performs a user plane setup procedure of the terminal through signaling with the eNB and signaling with the S-GW.
  • the MME transmits an initial context setup request message to the base station so that the base station eNB can set up the S-GW and the S1 bearer and set up the UE and the DRB.
  • the base station transmits an RRC connection reconfiguration message to the terminal to generate a DRB.
  • all uplink EPS bearer is configured from the terminal to the P-GW.
  • the terminal may transmit uplink traffic to the P-GW.
  • the base station transmits an initial context setup complete message including the 'S1 eNB TEID' to the MME in response to the initial context setup request message.
  • the MME transfers the 'S1 eNB TEID' received from the base station to the S-GW through a Modify Bearer Request message.
  • the generation of the downlink S1 bearer between the base station and the S-GW is completed, so that all downlink EPS bearers are configured from the P-GW to the UE.
  • the terminal may receive downlink traffic from the P-GW.
  • the S-GW sends a stop paging message to the other network (i.e., the network where the terminal is not camped). Transmit to stop paging to the terminal.
  • the S-GW transmits both the DDN to the MME and the SGSN, and the MME and the SGSN respectively transmit a paging message to the terminal. If the terminal is camped in the E-UTRAN, it transmits a service request to the MME in response to a paging, and the downlink data connection is established with the E-UTRAN and the S-GW. Thereafter, the S-GW transmits a stop paging message to the SGSN, and the SGSN stops paging to the terminal.
  • the S-GW transmits downlink data to the UE through the RAT in which the service request procedure is performed.
  • the UE and the core network can negotiate the use of eDRX.
  • the UE determines the request of the eDRX, the UE includes the eDRX parameter information element in an attach request and / or a TAU request message.
  • the UE may also include UE specific DRX parameters for regular idle mode DRX.
  • the MME determines whether to accept or reject the UE request to activate the eDRX.
  • the MME may also provide a value of the eDRX parameter that is different from the value requested by the UE. If the MME accepts the eDRX, the UE applies the eDRX based on the received eDRX parameter. If the SGSN / MME rejects the UE's request or the SGSN / MME does not support eDRX and receives the request, the UE applies regular idle mode DRX if the UE does not receive the eDRX parameter information element in the associated acknowledgment message. do.
  • the UE When the UE has a bearer for emergency bearer service, the UE cannot make a request for eDRX.
  • the UE If the UE still wants to use eDRX, it must include an eDRX parameter information element in each TAU message.
  • the eDRX parameter is a new core node from the old CN node as part of the Mobility Management (MM) context information. It is not sent to (new CN node).
  • MM Mobility Management
  • the UE and the network may negotiate the use of eDRX to reduce power consumption of the UE through non-access stratum (NAS) signaling, while the mobile terminating data and / or procedures generated by the network ( network originated procedure) is available within a specific delay dependent on the DRX cycle value.
  • NAS non-access stratum
  • Network-end applications can send end-to-end data, SMS or device triggers and need to know if the eDRX can be properly prepared.
  • the UE In order to negotiate the use of the eDRX, the UE requests the eDRX parameters during the attach procedure and the RAU / TAU procedure. SGSN / MME may reject or accept the UE request to activate eDRX.
  • the SGSN / MME may provide a different value than the eDRX parameter requested by the UE. If the SGSN / MME accepts the use of the eDRX, the UE applies the eDRX based on the received eDRX parameter. If the SGSN / MME rejects the UE's request or the SGSN / MME does not support eDRX and receives the request, the UE applies regular idle mode DRX if the UE does not receive the eDRX parameter information element in the associated acknowledgment message. do.
  • SGSN / MME determines one of the following.
  • the decision among the three operations, the active time provided to the UE, the P-TAU timer and / or the eDRX cycle value depend on the implementation based on local configuration and other information available in SGSN / MME. do.
  • the selected method is used until the next attach or RAU / TAU procedure is initiated (when a new method is determined). If both eDRX and PSM are enabled, the eDRX cycle must be set to have multiple paging occasions while the active timer is running.
  • the SGSN / MME may activate both the PSM and the eDRX. This allows the UE to minimize power consumption during the active time (for example, when the active time is a few minutes longer than the normal active time).
  • the network may control mobile terminated data by using a high latency communication characteristic.
  • a technique for controlling mobile terminated SMS can be applied.
  • the UE may request the use of an eDRX cycle by including an eDRX parameter in an attach request or a TAU request.
  • the UE does not request the use of the eDRX cycle during the TAU procedure when the UE has a PDN connection established for emergency bearer service.
  • the network When the network accepts an attach request or a TAU request, it accepts the request for use of the eDRX cycle by providing an eDRX parameter.
  • the UE repeats the request for use of the eDRX cycle in each TAU request.
  • the UE can use the eDRX cycle only if the network has accepted the request for use of the eDRX cycle during the last successful attach or TAU procedure.
  • the S-GW transmits the downlink data to the MME / SGSN DDN.
  • the MME or SGSN recognizes that the terminal is in the eDRX mode, the MME or SGSN transmits a DDN reject message to the S-GW and does not transmit paging to the terminal.
  • MME mobile terminated
  • MT mobile terminated
  • MT mobile data
  • 10 and 11 are diagrams for describing a problem when using an eDRX mode in a situation where an ISR is activated.
  • the S-GW receives downlink data.
  • the S-GW sends downlink data notification (DDN) to the MME and SGSN.
  • DDN downlink data notification
  • the MME rejects the D-DN with duration information for storing downlink data to the S-GW. That is, the MME transmits a DDN acknowledgment message including a reject cause and duration information for storing downlink data to the S-GW.
  • the MME does not send paging to the UE.
  • SGSN is paging to the UE because it does not know whether the UE is currently in eDRX mode.
  • the MME recognizes that the UE is in the eDRX mode, and thus, transmits a DDN reject message (with duration information for storing downlink data) to the S-GW, but SGSN As in the prior art, paging is transmitted to the terminal.
  • the SGSN continues paging to the UE until it receives a paging stop message from the S-GW or acknowledges that the UE is unreachable due to a paging failure for a period of time. Can be transmitted.
  • the SGSN since the SGSN does not recognize that the UE is in the eDRX mode, the SGSN transmits paging to the UE for a predetermined time or a limited number of attempts.
  • the S-GW may transmit a stop paging to the SGSN. Therefore, paging of the SGSN to the UE is unnecessary and results in waste of resources.
  • the UE may fail to respond to paging to the SGSN and may fail to receive MT call / data.
  • the UE operating in the eDRX may receive and respond to paging only at a specific frame time point during the eDRX cycle, but because SGSN and the UE misinterpret specific frame time points for receiving paging (ie , Out of sync), high probability of paging reception failure.
  • paging of the SGSN to the UE is an unnecessary operation, thereby causing unnecessary network resource waste.
  • the present invention proposes a terminal or network processing method in order to prevent unnecessary resource waste when some networks do not support eDRX in an ISR activated environment.
  • network nodes eg, MME and SGSN
  • eDRX capable ie, in an ISR activation procedure (see FIG. 8 above)
  • ISR activation / deactivation of the UE may be determined.
  • FIG. 12 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • the UE initiates an attach procedure by sending an attach request message to the MME (S1201).
  • the Attach Request message may include an old GUTI (ie, a real GUTI or a GUTI mapped to P-TMSI).
  • an old GUTI ie, a real GUTI or a GUTI mapped to P-TMSI.
  • the MME may perform an interaction with the HSS (S1202), and the MME may be registered with the HSS (S1203).
  • the MME transmits an attach accept message to the terminal in response to the attach request message (S1204).
  • the Attach Accept message may include a GUTI.
  • the Attach Accept message does not indicate ISR activation, therefore, the UE sets the TIN to GUTI (S1205).
  • the steps S1201 to S1205 correspond to a general attach procedure in which no special old ISR state is deactivated, but there is nothing special for the ISR.
  • the UE initiates a RAU procedure (S1206).
  • the UE may transmit a RAU Request including an eDRX parameter to the SGSN.
  • the RAU Request may include "P-TMSI" mapped to the GUTI.
  • the SGSN requests the MME to request a UE context, and instructs that it is capable of supporting the ISR without an instruction for eDRX support (S1207).
  • SGSN since SGSN does not support eDRX, SGSN does not instruct the MME that it is eDRX capable (ie no eDRX capability indication).
  • the SGSN sends a UE Context Request message to the MME including an indication that it does not support eDRX (ie no eDRX capability indication) and an ISR support (ie ISR capability indication).
  • the MME responds to the UE context and instructs SGSN that it is not ISR capable and that the eDRX is capable (S1208).
  • the MME since the SGSN did not instruct the MME to eDRX capable in step S1107, since the MME knows that the SGSN does not support the eDRX, it instructs that it is not an ISR capable and capable of the eDRX. In other words, the MME indicates that even though it supports ISR, SGSN does not support eDRX, so that it is not ISR capable.
  • the MME sends a UE Context Response message to the SGSN including an indication that it does not support ISR (ie no ISR capability indication) and an eDRX indication (ie eDRX capability indication).
  • the MME may send a UE Context Response message to the SGSN including an indication of supporting eDRX (ie, an eDRX capability indication) and an indication of supporting ISR (ie, an ISR capability indication).
  • eDRX ie, an eDRX capability indication
  • ISR ie, an ISR capability indication
  • the SGSN transmits a UE Context Acknowledge message including an ISR no active indication to the MME.
  • the SGSN since the SGSN has received from the MME that it does not support ISR, it may acknowledge to the MME that the ISR is not activated.
  • the SGSN that does not support eDRX may ignore the eDRX capability indication or no eDRX capability indication from the MME regardless of the ISR confirmation indication from the MME, and may acknowledge to the MME that the ISR is not activated.
  • the MME may store the SGSN ID (S1210), and the SGSN may store the MME ID (S1211).
  • the SGSN may perform an interaction with the HSS (S1212), and the SGSN may be registered with the HSS (S1213).
  • the SGSN informs the UE that the RAU procedure is successful and that the ISR is not activated (S1214).
  • the SGSN transmits a RAU Accept message including a No ISR activation indication to the UE.
  • the RAU Accept message does not include an eDRX parameter for supporting eDRX.
  • the UE Since ISR activation is indicated in the RAU Accept message, the UE does not activate ISR (S1215).
  • the UE may set the TIN to “P-TMSI” rather than “RAT-related TMSI”.
  • the MME may recognize that the SGSN supports the eDRX. In this case, since the MME also supports eDRX, in step S1214, ISR activation with eDRX support (ISR activation with eDRX support) may be performed. That is, the SGSN may include a parameter for the eDRX mode and an ISR activation indication in the RAU Accept message and transmit the same to the UE.
  • ISR activation with eDRX support ISR activation with eDRX support
  • FIG. 12 illustrates a case in which the RAU procedure is performed by moving to UTRAN coverage when the UE is attached to the E-UTRAN.
  • the UE moves to E-UTRAN coverage when the UE is attached to the UTRAN. Therefore, the same may be applied to the case of performing the TAU procedure. That is, when MME is replaced with SGSN in FIG. 12 and SGSN is replaced with MME, the ISR control method may be performed as follows.
  • the UE is attached to the UTRAN through the same procedure as in steps S1201 to S1205.
  • both the MME and SGSN support ISR, the MME supports eDRX, but SGSN does not support eDRX.
  • the UE initiates a TAU procedure (S1206).
  • the UE may transmit a TAU Request including an eDRX parameter to the MME.
  • the MME while requesting the UE context to SGSN, instructs that it is ISR capable and eDRX capable (S1207).
  • the MME sends a UE Context Request message to the SGSN including an indication of supporting ISR (ie, an ISR capability indication) and an indication of supporting eDRX (ie, an eDRX capability indication).
  • ISR an ISR capability indication
  • eDRX an eDRX capability indication
  • the SGSN responds to the UE context and instructs the MME that it is capable of supporting ISR without an instruction for eDRX support (S1208).
  • SGSN since SGSN does not support eDRX, SGSN does not instruct the MME that it is eDRX capable (ie no eDRX capability indication).
  • the SGSN transmits to the MME a UE Context Response message including an indication that it does not support eDRX (ie no eDRX capability indication) and an indication that it supports ISR (ie ISR capability indication).
  • the MME may know that the SGSN does not support the eDRX since the SGSN did not instruct the MME that it was an eDRX capable at step S1208. Therefore, the MME acknowledges to the SGSN that the ISR is not activated (S1209).
  • the MME sends a UE Context Acknowledge message including an ISR no active indication to the SGSN.
  • MME may store the SGSN ID (S1211).
  • the MME may perform an interaction with the HSS (S1212), and the MME may be registered with the HSS (S1213).
  • the MME informs the UE that the TAU procedure is successful and that the ISR is not activated (S1214).
  • the MME transmits a TAU Accept message including a No ISR activation indication to the UE.
  • the TAU Accept message may include a parameter for the eDRX.
  • the UE Since ISR activation is indicated in the TAU Accept message, the UE does not activate ISR (S1215).
  • the UE may set the TIN to "GUTI” rather than "RAT-related TMSI".
  • the UE may activate the eDRX.
  • the MME may recognize that the SGSN supports the eDRX. In this case, since the MME also supports eDRX, in step S1214, ISR activation with eDRX support (ISR activation with eDRX support) may be performed. That is, the MME may include a parameter for the eDRX mode and an ISR activation indication in the TAU Accept message and transmit the same to the UE.
  • ISR activation with eDRX support ISR activation with eDRX support
  • the MME supports the eDRX and the SGSN supports the eDRX.
  • network nodes e.g., MME and SGSN
  • eDRX capability i.e. whether eDRX is supported
  • ISR activation (activation) / deactivation (deactivation) of the terminal can be determined.
  • FIG. 13 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • the UE initiates an attach procedure by sending an attach request message to the MME (S1301).
  • the Attach Request message may include an old GUTI (ie, a real GUTI or a GUTI mapped to P-TMSI).
  • an old GUTI ie, a real GUTI or a GUTI mapped to P-TMSI.
  • the MME may perform an interaction with the HSS (S1302), and the MME may be registered with the HSS (S1303).
  • the MME transmits an attach accept message to the terminal in response to the attach request message (S1304).
  • the Attach Accept message may include a GUTI.
  • the Attach Accept message does not indicate ISR activation, therefore, the UE sets the TIN to GUTI (S1305).
  • steps S1301 to S1305 correspond to a general attach procedure in which no special old ISR state is deactivated but no special one exists for the ISR.
  • the UE initiates a RAU procedure (S1306).
  • the UE may transmit a RAU Request including an eDRX parameter to the SGSN.
  • the RAU Request may include "P-TMSI" mapped to the GUTI.
  • the SGSN transmits a UE Context Request message including an indication of supporting ISR (ie, ISR capability indication) to the MME.
  • ISR ISR capability indication
  • the MME responds to the UE context and instructs the SGSN that it is not ISR capable (S1308).
  • the MME sends a UE Context Response (UE Context Response) message including an indication that the ISR is supported (ie, ISR capability indication) to the SGSN.
  • UE Context Response UE Context Response
  • the SGSN transmits a UE context acknowledgment message including an indication that ISR is activated to the MME.
  • the MME may store the SGSN ID (S1310), and the SGSN may store the MME ID (S1311).
  • the SGSN may perform interaction with the HSS (S1312), and the SGSN may be registered with the HSS (S1313).
  • the SGSN informs the UE that the RAU procedure is successful and that the ISR is activated without the eDRX parameter for supporting the eDRX (S1314).
  • the SGSN transmits a RAU Accept message including an ISR activation indication to the UE without an eDRX parameter.
  • the UE has enabled ISR by the RAU Accept message, since the eDRX parameter does not exist in the RAU Accept, the UE may know that SGSN does not support eDRX. Therefore, the UE locally deactivates the ISR and the eDRX (S1315).
  • the UE may set the TIN to “P-TMSI” rather than “RAT-related TMSI”.
  • the UE may recognize that the SGSN supports the eDRX. Accordingly, ISR activation with eDRX support may be performed in step S1315.
  • FIG. 13 exemplifies a case in which the RAU procedure is performed by moving to UTRAN coverage when the UE is attached to E-UTRAN.
  • the UE moves to E-UTRAN coverage when the UE is attached to UTRAN. Therefore, the same may be applied to the case of performing the TAU procedure. That is, in FIG. 13, when the MME is replaced with the SGSN and the SGSN is replaced with the MME, the ISR control method may be performed as follows.
  • the UE is attached to the UTRAN through the same procedure as in steps S1301 to S1305.
  • both the MME and SGSN support ISR, the MME supports eDRX, but SGSN does not support eDRX.
  • the UE initiates a TAU procedure (S1306).
  • the UE may transmit a TAU Request including an eDRX parameter to the MME.
  • the MME requests the UE context (UE context) to the SGSN, and instructs that it is capable of supporting the ISR (S1307).
  • the MME sends a UE Context Request message to the SGSN including an indication of supporting ISR (ie, ISR capability indication).
  • SGSN responds to the UE context, and instructs the MME that it is ISR capable (S1308).
  • the SGSN transmits a UE Context Response message including an indication that the ISR is supported (ie, ISR capability indication) to the SGSN.
  • the MME acknowledges the SGSN that the ISR is activated (S1309).
  • the MME sends a UE Context Acknowledge message to the SGSN including an indication that ISR is activated.
  • SGSN may store the SGSN ID (S1310)
  • MME may store the MME ID (S1311).
  • the MME may perform an interaction with the HSS (S1312), and the MME may be registered with the HSS (S1313).
  • the MME informs the UE that the TAU procedure was successful and that the ISR is activated with the eDRX parameter (S1314).
  • the MME sends a TAU Accept message including an ISR activation indication along with the eDRX parameter to the UE.
  • the UE may receive information about a hyper frame in a system information block (SIB) received from a base station (ie, UTRAN) that was previously attached (for example, a hyper frame number (HFN)). ) Or whether the base station (ie, the UTRAN) supports the eDRX according to whether the Hyper-System Frame Number (H-SFN) information exists.
  • SIB system information block
  • H-SFN Hyper-System Frame Number
  • the UE deactivates the ISR locally (S1315).
  • the UE may set the TIN to "GUTI” rather than "RAT-related TMSI".
  • the UE can activate the eDRX.
  • ISR activation with eDRX support may be performed in step S1315.
  • the MME supports the eDRX and the SGSN supports the eDRX.
  • eDRX capability ie, whether eDRX is supported
  • network nodes eg, MME and SGSN
  • the UE can finally determine whether to locally ISR activation / deactivation.
  • FIG. 14 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • the UE initiates an attach procedure by sending an attach request message to the MME (S1401).
  • the Attach Request message may include an old GUTI (ie, a real GUTI or a GUTI mapped to P-TMSI).
  • an old GUTI ie, a real GUTI or a GUTI mapped to P-TMSI.
  • the MME may perform an interaction with the HSS (S1402), and the MME may be registered with the HSS (S1403).
  • the MME transmits an attach accept message to the terminal in response to the attach request message (S1404).
  • the Attach Accept message may include a GUTI.
  • the Attach Accept message does not indicate ISR activation, therefore, the UE sets the TIN to GUTI (S1405).
  • the steps S1301 to S1405 above correspond to a general attach procedure in which no special old ISR state is deactivated but no special one exists for the ISR.
  • the UE knows whether to support eDRX in the RAT when camping on the RAT. That is, when the UE camps on the RAT, the UE may know whether the RAT supports the eDRX mode through the SIB received from the RAT (ie, the base station). That is, the UE may determine whether the corresponding RAT supports the eDRX mode according to whether information on the hyper frame in the SIB (for example, information on the HFN or the H-SFN) exists.
  • the UE initiates a RAU procedure (S1406).
  • the RAU request does not include an eDRX parameter and may include an indication (ie, no ISR support indication) indicating that the UE does not support ISR.
  • the RAU Request does not include an eDRX parameter, and the TIN may be set to "P-TMSI".
  • the SGSN requests the MME for a UE context and instructs that it does not support ISR (S1407).
  • the SGSN transmits a UE Context Request message including an indication that no ISR is supported (ie no ISR capability indication) to the MME.
  • the MME responds to the UE context, instructing the SGSN that it is not ISR capable (S1408).
  • the MME sends a UE Context Response message including an indication that it does not support ISR (ie, no ISR capability indication) to the SGSN.
  • the SGSN transmits a UE Context Acknowledge message including an indication that ISR is not active to the MME.
  • the MME may store the SGSN ID (S1410), and the SGSN may store the MME ID (S1411).
  • the SGSN may perform an interaction with the HSS (S1412), and the SGSN may be registered with the HSS (S1413).
  • the SGSN informs the UE that the RAU procedure is successful and that the ISR is not activated without the eDRX parameter for supporting the eDRX (S1414).
  • the SGSN transmits a RAU Accept message including a No ISR activation indication to the UE without an eDRX parameter.
  • the UE Since ISR activation is indicated in the RAU Accept message, the UE does not activate ISR and eDRX (S1415).
  • the UE may set the TIN to “P-TMSI” rather than “RAT-related TMSI”.
  • FIG. 14 exemplifies a case in which the RAU procedure is performed by moving to UTRAN coverage when the UE is attached to the E-UTRAN.
  • the UE moves to E-UTRAN coverage when the UE is attached to the UTRAN. Therefore, the same may be applied to the case of performing the TAU procedure. That is, when the MME is replaced with the SGSN in FIG. 14 and the SGSN is replaced with the MME, the ISR control method may be performed as follows.
  • the UE is attached to the UTRAN through the same procedure as in steps S1401 to S1405.
  • both the MME and SGSN support ISR, the MME supports eDRX, but SGSN does not support eDRX.
  • the UE initiates a TAU procedure (S1406).
  • the TAU request does not include an eDRX parameter and may include an indication (ie, no ISR support indication) indicating that the UE does not support ISR.
  • the TAU Request does not include an eDRX parameter, and the TIN may be set to "GUTI".
  • the MME requests the UE context to SGSN and instructs that it does not support ISR (S1407).
  • the MME sends a UE Context Request message to the SGSN including an indication that it does not support ISR (ie, no ISR capability indication).
  • the SGSN responds to the UE context and instructs the MME that it is not ISR capable (S1408).
  • the SGSN sends a UE Context Response message including an indication that no ISR is supported (ie, no ISR capability indication) to the MME.
  • the MME acknowledges that the ISR is not activated (SG14) to the SGSN (S1409).
  • the MME sends a UE Context Acknowledge message to the SGSN including an indication that ISR is not active.
  • MME may store the SGSN ID (S1411).
  • the MME may perform an interaction with the HSS (S1412), and the MME may be registered with the HSS (S1413).
  • the MME informs the UE that the TAU procedure is successful and that the ISR is not activated with the eDRX parameter for supporting the eDRX (S1414).
  • the MME transmits a TAU Accept message including a No ISR activation indication along with the eDRX parameter to the UE.
  • the UE Since ISR activation is indicated in the TAU Accept message, the UE does not activate ISR (S1415).
  • the UE may set the TIN to "GUTI” rather than "RAT-related TMSI".
  • the UE can activate the eDRX.
  • the MME supports the eDRX and the SGSN supports the eDRX.
  • A-1) the proposed method according to the embodiment, A-2) the proposed method according to the embodiment, and A-3) the proposed method according to the embodiment may be applied independently, but one or more proposed methods may be applied in combination. Can be.
  • FIG. 15 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • LAU 15 illustrates a location area update (LAU) procedure performed by a UE as the coverage of the E-UTRAN moves or vice versa in a situation where the UE is attached to GERAN / UTRAN. To illustrate.
  • LAU location area update
  • a location area update may include a routing area update (RAU) or a tracking area update procedure (TAU).
  • RAU routing area update
  • TAU tracking area update procedure
  • the first network node refers to the node where the UE currently performs the LAU procedure
  • the second network node ie, the old MME or SGSN
  • the second network node refers to the node where the UE was previously registered.
  • the first network node when the coverage of the E-UTRAN moves in a situation where the UE is attached to GERAN / UTRAN, the first network node may correspond to the MME, the second network node to SGSN, and the LAU procedure may correspond to a TAU. .
  • the first network node when the coverage of GERAN / UTRAN moves in a situation where the UE is attached to the E-UTRAN, the first network node may correspond to SGSN, the second network node to MME, and the LAU procedure may correspond to RAU. .
  • the first network node receives a LAU Request message (ie, a RAU Request message or a TAU Request message) from the UE (S1501).
  • a LAU Request message ie, a RAU Request message or a TAU Request message
  • the LAU request message may include a parameter for supporting eDRX.
  • the first network node transmits a context request message to the second network node (S1502).
  • the first network may transmit a context request message to the second network node to obtain user information of the UE.
  • the context request message may include a first eDRX capability indication indicating that the first network node supports eDRX.
  • the context request message may further include a first ISR capability indication indicating whether the first network node supports ISR.
  • the first network node receives a context response message from the second network node in response to the context request message (S1503).
  • the context response message may include a second eDRX capability indication indicating that the second network node supports the eDRX.
  • the context response message may further include a second ISR capability indication indicating whether the second network node supports ISR.
  • the first network node may determine whether to activate the ISR mode of the UE based on the first eDRX capability indication and the second eDRX capability indication (S1504).
  • the ISR of the UE May not be activated (ie deactivated).
  • the first network node may determine whether to activate the ISR mode of the UE regardless of the first ISR capability indication and the second ISR capability indication. That is, even if both the first network node and the second network node support ISR, the first network node may not activate the ISR of the UE based on the first eDRX capability indication and the second eDRX capability indication.
  • the first network node may transmit a context acknowledgment message including an ISR deactivation indication indicating that the ISR of the UE is deactivated to the second network node.
  • the ISR activated indication indicating that the ISR of the UE is activated is not included in the context acknowledgment message, the second network node may recognize the ISR deactivated indication.
  • the first network node in response to the LAU request message, the LAU Accept message (ie, RAU Accept message) including an ISR deactivation indication indicating that the ISR of the UE is deactivated. Or TAU Accept message) may be transmitted to the UE.
  • the ISR activated indication ISR Activated indication
  • the UE may recognize that the ISR deactivated indication.
  • 16 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • FIG. 16 illustrates an LAU procedure performed by a UE as the coverage of the E-UTRAN moves or vice versa in a situation where the UE is attached to GERAN / UTRAN.
  • the network node When the coverage of the E-UTRAN moves in a situation where the UE is attached to GERAN / UTRAN, the network node may correspond to the MME and the LAU procedure to the TAU. On the contrary, when the coverage of GERAN / UTRAN moves in a situation where the UE is attached to the E-UTRAN, the network node may correspond to the SGSN and the LAU procedure may correspond to the RAU.
  • the UE determines whether the base station to which it is camping supports the eDRX mode (S1601).
  • the UE determines whether the base station supports the eDRX mode according to whether the base station supports the eDRX mode, and whether the base station includes information about the hyperframe in the SIB transmitted from the base station (for example, HFN or H-SFN). Can be determined. That is, if the information on the hyper frame in the SIB transmitted from the base station is included, it can be determined that the base station supports the eDRX mode, and if the information about the hyper frame in the SIB is not included, it can be determined that the base station does not support the eDRX mode. have.
  • the network node ie, MME or SGSN
  • an LAU request message ie, a RAU Request message or a TAU Request message
  • ISR no ISR supported indication
  • the UE may receive a LAU Accept message (ie, a RAU Accept message or a TAU Accept message) from the network node in response to the LAU request message, including an ISR deactivation indication indicating that the ISR of the UE has been deactivated.
  • a LAU Accept message ie, a RAU Accept message or a TAU Accept message
  • ISR deactivation indication indicating that the ISR of the UE has been deactivated. have.
  • the ISR activated indication ISR Activated indication
  • the present invention proposes a terminal or network processing method for unnecessary resource waste when nodes of some networks do not support eDRX in an ISR-activated environment.
  • the paging transmission may be handled.
  • 17 is a diagram illustrating a method for paging control according to an embodiment of the present invention.
  • the S-GW When the S-GW receives the downlink data (S1701), the S-GW transmits a downlink data notification (DDN) message to the MME and the SGSN (S1702, S1703).
  • DDN downlink data notification
  • the network supporting the eDRX may request a DDN reject message (eg, DDN Acknowledge including a Reject cause). Message or a new DDN reject message) to the S-GW, but a network that does not support eDRX will send paging to the UE.
  • a DDN reject message eg, DDN Acknowledge including a Reject cause
  • the MME supports eDRX, but the SGSN does not support eDRX.
  • the MME transmits a DDN reject message to the S-GW (S1704).
  • the MME may transmit a DDN Acknowledge message including a reject cause to the S-GW.
  • the reject cause included in the DDN confirmation message may be a cause of rejection defined as Unable to page UE due to eDRX mode or Unable to page UE due to eDRX mode.
  • the DDN reject message may include downlink data storing duration information of downlink data.
  • the S-GW Receiving a DDN reject message including downlink data storing duration information from the MME, the S-GW stores (buffers) the downlink data and suspends DDN transmission. .
  • SGSN receives the DDN message from the S-GW, and then transmits paging to the UE through the RNC / BSC (S1705, S1706).
  • the S-GW sends a DDN rejection message (eg, a DDN Acknowledge message or a new DDN rejection message containing a Reject cause) from either the MME or SGSN.
  • a DDN rejection message eg, a DDN Acknowledge message or a new DDN rejection message containing a Reject cause
  • Stop Paging Indication message to another network that did not receive a DDN rejection message (for example, a DDN Acknowledge message containing a Reject cause or a new DDN rejection message).
  • the S-GW assumes that other networks do not support eDRX.
  • the S-GW waits for a certain time to another network that has not received a DDN rejection message (eg, a DDN Acknowledge message including a Reject cause or a new DDN rejection message), and then (eg, a stop paging indication message may be transmitted after the timer is operated, that is, after the timer operation is expired. This is to allow the UE to receive paging of the SGSN when the UE moves from the TA area of the MME to the RA area of the SGSN during the procedure of FIG. 17.
  • a DDN rejection message eg, a DDN Acknowledge message including a Reject cause or a new DDN rejection message
  • the S-GW transmits a Stop Paging Indication message to the SGSN (S1707).
  • the S-GW may add a cause value (or cause of rejection) to the paging stop indication message, for example, a cause value such as an error cause due to eDRX support in the MME.
  • the network node ie, SGSN
  • the network node that receives the Stop Paging Indication message from the S-GW stops paging transmission (S1708 and S1709).
  • the SGSN If a cause value such as an error cause due to eDRX support in the MME is included in the Stop Paging Indication message, the SGSN starts a specific timer. Thereafter, only while the specific timer is operating, the SGSN transmits the paging to the terminal, and after the specific timer operation is completed, the paging transmission may be stopped. This is also to allow the UE to receive paging of the SGSN when the UE moves from the TA area of the MME to the RA area of the SGSN during the procedure of FIG. 17.
  • both MME / SGSN will stop paging transmission. This means that the MT service (downlink data service) will be suspended.
  • Stop Paging Indication message including a cause value such as an error caused by eDRX support in the MME or SGSN may stop paging transmission after a certain time ( That is, the predetermined timer may be driven and the paging transmission may be stopped after the timer expires.)
  • the UE attaches itself through hyper frame information (eg, information on HFN or H-SFN) of SIB information provided by a base station (eNodeB or NodeB) that is currently camped. You can tell if your network supports eDRX mode.
  • hyper frame information eg, information on HFN or H-SFN
  • SIB information provided by a base station (eNodeB or NodeB) that is currently camped. You can tell if your network supports eDRX mode.
  • PH refers to a specific set of Hyper-System Frame Number (H-SFN) values, and PH is calculated using an extended idle mode DRX cycle, terminal specific identifier (eg IMSI). Can be.
  • H-SFN frame structure is defined as the highest value of the SFN used for general idle mode DRX. That is, one hyper-frame consists of 1024 radio frames (ie, 10.24 seconds). Thus, the H-SFN is increased by one when the SFN wraps around.
  • the base station eNodeB or NodeB
  • the UE locally deactivates eDRX. That is, the UE releases the eDRX mode operation.
  • a) or b) may be performed as follows.
  • the UE may perform a TAU or RAU procedure.
  • the MME or SGSN may transmit information / instructions to inform the S-GW that the terminal is not currently in the eDRX mode.
  • a Create Session Request message, a Modify Bearer Request message, a Modify Access Bearers Request message, or a new message may be used.
  • the S-GW may resume the pending DDN transmissions to the MME and SGSN.
  • MME and SGSN receiving the DDN from the S-GW performs the paging transmission again, if the terminal receives the paging, it may perform a service request procedure (Service Request procedure) for the paging response.
  • Service Request procedure Service Request procedure
  • the S-GW may send a paging stop message to the MME and SGSN.
  • the S-GW transmits the downlink data to the corresponding network (the network to which the paging response is transmitted), thereby allowing the terminal to receive the downlink data (ie, MT call / data reception).
  • the UE may locally perform a TAU or RAU procedure involving ISR deactivation. That is, the UE may set the TIN to "P-TMSI” (when the UE is camping in the UTRAN) or "GUTI” (when the UE is camping in the E-UTRAN).
  • the TAU Request or RAU Request may include an indication (ie no ISR support indication) indicating that the UE does not support ISR.
  • the MME or SGSN may transmit information / indication indicating that the UE is not in the eDRX mode and ISR not activated information / indication indicating that the ISR is not activated.
  • ISR information / indication indicating that the ISR is not activated.
  • a Create Session Request message, a Modify Bearer Request message, a Modify Access Bearers Request message, or a new message may be used.
  • the S-GW may resume DDN transmissions that have been suspended only to the MME (in case of TAU) or only to SGSN (in case of RAU).
  • the MME or SGSN which has received the DDN from the S-GW, performs paging transmission again, and when the UE receives paging, may perform a service request procedure for paging response.
  • the S-GW may send a paging stop message to the MME or SGSN.
  • the S-GW transmits the downlink data to the corresponding network (the network to which the paging response is transmitted), thereby allowing the terminal to receive the downlink data (ie, MT call / data reception).
  • FIG. 18 is a diagram illustrating a method for paging control according to an embodiment of the present invention.
  • FIG. 18 it is assumed that ISR in a network (ie, MME, SGSN, and S-GW) is activated, and the UE is currently in eDRX mode.
  • MME Mobility Management Entity
  • SGSN Session Initiation Dial
  • S-GW Serving Mobility Management Entity
  • some networks MME or SGSN
  • 17 illustrates a case where SGSN does not support eDRX.
  • the S-GW When the S-GW receives the downlink data (S1801), the S-GW transmits a downlink data notification (DDN) message to the MME and the SGSN (S1802 and S1803).
  • DDN downlink data notification
  • the network supporting the eDRX may request a DDN reject message (eg, DDN Acknowledge including a Reject cause). Message or a new DDN reject message) to the S-GW, but a network that does not support eDRX will send paging to the UE.
  • a DDN reject message eg, DDN Acknowledge including a Reject cause
  • the MME supports eDRX, but SGSN does not support eDRX. Therefore, the MME transmits a DDN reject message to the S-GW (S1804).
  • the MME may transmit a DDN Acknowledge message including a reject cause to the S-GW.
  • the reject cause included in the DDN confirmation message may be a cause of rejection defined as Unable to page UE due to eDRX mode or Unable to page UE due to eDRX mode.
  • the DDN reject message may include downlink data storing duration information of downlink data.
  • the S-GW Receiving a DDN reject message including downlink data storing duration information from the MME, the S-GW stores (buffers) the downlink data and suspends DDN transmission. .
  • SGSN receives the DDN message from the S-GW, and then transmits paging to the UE through the RNC / BSC (S1805, S1806).
  • the SGSN does not receive a paging response from the UE and eventually causes a paging failure.
  • the SGSN transmits a DDN rejection message (rejection cause: paging failure) to inform the S-GW of the paging failure (S1807).
  • the S-GW does not discard the downlink data stored immediately even when a paging failure occurs. This is because the network (MME or SGSN) supporting the eDRX provided downlink data storage period information to the S-GW.
  • the UE attaches itself through hyper frame information (eg, information on HFN or H-SFN) of SIB information provided by a base station (eNodeB or NodeB) that is currently camped.
  • hyper frame information eg, information on HFN or H-SFN
  • the base station eNodeB or NodeB
  • the UE locally deactivates the eDRX. That is, the UE releases the eDRX mode operation.
  • a) or b) may be performed as follows.
  • the UE may perform a TAU or RAU procedure.
  • the MME or SGSN may transmit information / instructions to inform the S-GW that the terminal is not currently in the eDRX mode.
  • a (Create Session Request) message may be used.
  • the S-GW may resume the pending DDN transmissions to the MME and SGSN.
  • MME and SGSN receiving the DDN from the S-GW performs the paging transmission again, if the terminal receives the paging, it may perform a service request procedure (Service Request procedure) for the paging response.
  • Service Request procedure Service Request procedure
  • the S-GW may send a paging stop message to the MME and SGSN.
  • the S-GW transmits the downlink data to the corresponding network (the network to which the paging response is transmitted), thereby allowing the terminal to receive the downlink data (ie, MT call / data reception).
  • the UE may locally perform a TAU or RAU procedure involving ISR deactivation. That is, the UE may set the TIN to "P-TMSI” (when the UE is camping in the UTRAN) or "GUTI” (when the UE is camping in the E-UTRAN).
  • the TAU Request or RAU Request may include an indication (ie no ISR support indication) indicating that the UE does not support ISR.
  • the MME or SGSN may transmit information / indication indicating that the UE is not in the eDRX mode and ISR not activated information / indication indicating that the ISR is not activated.
  • ISR information / indication indicating that the ISR is not activated.
  • a Create Session Request message, a Modify Bearer Request message, a Modify Access Bearers Request message, or a new message may be used.
  • the S-GW may resume DDN transmissions that have been suspended only to the MME (in case of TAU) or only to SGSN (in case of RAU).
  • the MME or SGSN which has received the DDN from the S-GW, performs paging transmission again, and when the UE receives paging, may perform a service request procedure for paging response.
  • the S-GW may send a paging stop message to the MME or SGSN.
  • the S-GW transmits the downlink data to the corresponding network (the network to which the paging response is transmitted), thereby allowing the terminal to receive the downlink data (ie, MT call / data reception).
  • the ISR when the ISR is activated in the eDRX mode, the ISR may be deactivated.
  • FIG. 19 is a diagram illustrating a method for ISR activation / deactivation control according to an embodiment of the present invention.
  • ISR in a network ie, MME, SGSN, and S-GW
  • MME Mobility Management Entity
  • SGSN Serving GPRS Support Node
  • S-GW Serving GPRS Support Node
  • the UE when the UE wants to operate with eDRX, the UE transmits a TAU request message to the MME (S1901).
  • the TAU request message includes an eDRX parameter for the eDRX mode.
  • the MME may recognize the eDRX request according to the existence of the eDRX parameter requested by the UE from the received TAU request message.
  • the MME supports an old network node (SGSN in FIG. 19) and eDRX through an S3 interface message (eg, an existing defined control message (Context Request / Context Response message) or a new control message). Interchange with each other whether or not it is possible.
  • the MME includes an eDRX capability supported indication in a Context Request message (or a new control message) and sends it to the SGSN (S1902).
  • the MME may set the eDRX capability supported indication to 1 if the eDRX capability is supported, and set the eDRX capability supported indication to 0 if the eDRX capability is not supported.
  • SGSN includes an eDRX capability supported indication in a Context Response message (or a new control message) and transmits it to the MME (S1903).
  • the SGSN may set the eDRX capability supported indication to 1 if the eDRX capability is supported, and set the eDRX capability supported indication to 0 if the eDRX capability is not supported.
  • the MME will display the ISR in a Context Acknowledge message (or a new control message).
  • the ISR Activated indication indicating that the ISR of the UE is activated is not included in the context acknowledgment message, it may be recognized as the ISR deactivated indication.
  • both the MME and SGSN deactivate the ISR.
  • the MME indicates that the ISR is disabled in the TAU accept message indicating that the ISR is disabled. It transmits to the UE including the activated indication / information (S1905).
  • the TAU accept message may include an eDRX parameter.
  • the terminal and the network follow an ISR deactivation operation.
  • the UE may set the TIN to "GUTI".
  • the UE may locally deactivate eDRX.
  • the UE may control its own information through hyper frame information (eg, information on HFN or H-SFN) of SIB information provided by a base station (eNodeB or NodeB) that is currently camped. It can be recognized whether the attached network supports eDRX mode. Therefore, if the base station (eNodeB or NodeB) currently camped does not support eDRX and the UE wakes up and recognizes a specific frame point in the eDRX cycle, the UE locally deactivates the eDRX. That is, the UE releases the eDRX mode operation.
  • hyper frame information eg, information on HFN or H-SFN
  • the UE may perform a TAU or RAU procedure that does not include the eDRX parameter.
  • the MME supports the eDRX
  • the SGSN does not support the eDRX
  • the UE is camping in the E-UTRAN.
  • the SGSN supports the eDRX
  • the MME does not support the eDRX. The same may be applied when the UE is camping in the UTRAN. That is, in the case where the MME is replaced with the SGSN in FIG. 19 and the SGSN is replaced with the MME, a method for ISR control may be performed as follows.
  • the UE If the UE wants to operate with the eDRX, the UE sends a RAU request message to the SGSN (S1901).
  • the RAU request message includes an eDRX parameter for the eDRX mode.
  • the SGSN may recognize the eDRX request according to the existence of the eDRX parameter requested by the UE from the received RAU request message.
  • SGSN supports the old network node (MME in FIG. 19) and eDRX through an S3 interface message (eg, an existing defined control message (Context Request / Context Response message) or a new control message). Interchange with each other whether or not it is possible.
  • SGSN includes an eDRX capability supported indication in a Context Request message (or a new control message) and transmits it to the MME (S1902).
  • the SGSN may set the eDRX capability supported indication to 1 if the eDRX capability is supported, and set the eDRX capability supported indication to 0 if the eSRX capability is not supported.
  • the MME sends an eDRX capability supported indication to the SGSN by including an eDRX capability supported indication in a Context Response message (or a new control message) (S1903).
  • the MME may set the eDRX capability supported indication to 1 if it supports the eDRX capability, and set the eDRX capability supported indication to 0 if it does not support the eDRX capability.
  • the SGSN will indicate that the ISR is An ISR not activated indication / information indicating that it is deactivated is transmitted to the MME (S1904).
  • the ISR Activated indication indicating that the ISR of the UE is activated is not included in the context acknowledgment message, it may be recognized as the ISR deactivated indication.
  • both the MME and SGSN deactivate the ISR.
  • SGSN indicates ISR is disabled in the RAU accept message indicating that ISR is disabled. It transmits to the UE including the activated indication / information (S1905).
  • the RAU accept message may include an eDRX parameter.
  • the terminal and the network follow an ISR deactivation operation.
  • the UE may set the TIN to “P-TMSI”.
  • the UE may locally deactivate eDRX.
  • the UE may control its own information through hyper frame information (eg, information on HFN or H-SFN) of SIB information provided by a base station (eNodeB or NodeB) that is currently camped. It can be recognized whether the attached network supports eDRX mode. Therefore, if the base station (eNodeB or NodeB) currently camped does not support eDRX and the UE wakes up and recognizes a specific frame point in the eDRX cycle, the UE locally deactivates the eDRX. That is, the UE releases the eDRX mode operation.
  • hyper frame information eg, information on HFN or H-SFN
  • the UE may perform a TAU or RAU procedure that does not include an eDRX parameter.
  • the UE when operating in the eDRX mode in an ISR enabled situation, the UE may locally deactivate eDRX and / or ISR.
  • the UE attaches itself through hyper frame information (eg, information on an HFN or H-SFN) of SIB information provided by a base station (eNodeB or NodeB) that is currently camped. You can tell whether or not eDRX mode is supported by. Therefore, if the base station (eNodeB or NodeB) currently camped does not support eDRX and the UE wakes up and recognizes a specific frame point in the eDRX cycle, the UE locally deactivates the eDRX. That is, the UE releases the eDRX mode operation.
  • hyper frame information eg, information on an HFN or H-SFN
  • the UE may locally deactivate the ISR. That is, the UE may set the TIN to "P-TMSI” (when the UE is camping in the UTRAN) or "GUTI” (when the UE is camping in the E-UTRAN).
  • P-TMSI when the UE is camping in the UTRAN
  • GUI when the UE is camping in the E-UTRAN
  • the UE may perform a TAU or RAU procedure that does not include an eDRX parameter.
  • the UE deactivating the ISR independently means that the UE performs the TAU request and the RAU request when the UE moves between the TA and RA areas.
  • the proposal method according to the above-described B-1) embodiment, the proposal method according to the B-2) embodiment, and the proposal method according to the B-3) embodiment may be applied independently, but one or more proposal methods may be applied in combination. Can be.
  • Examples A-1), A-2), and A-3) are methods for determining ISR activation / inactivity when initially setting the activation / deactivation of ISR, B-1), B-2), Embodiments B-3) and B-4) are methods for determining ISR activation / deactivation in a state where ISR is activated, and thus may be applied in combination with each other.
  • FIG. 20 is a diagram illustrating a paging control method according to an embodiment of the present invention.
  • ISR in a network ie, MME, SGSN, and S-GW
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • some networks MME or SGSN do not support eDRX because the UE attaches to a TA or RA that does not belong to TAI and RAI.
  • the S-GW When the S-GW receives downlink data from the P-GW (S2001), the S-GW transmits a downlink data notification (DDN) message to the first network node and the second network node (S2002).
  • DDN downlink data notification
  • the second network node may correspond to an SGSN
  • the first network node may correspond to an MME
  • the S-GW When the S-GW receives a DDN Reject message in response to a DDN message from one of the first network node and the second network node, the S-GW sends a stop paging indication message to the other node. Send (S2003).
  • a paging stop indication message may be transmitted to the other node after a predetermined time (for example, after a predetermined timer is run and a timer expires) from the time point at which the DDN reject message is received.
  • the stop paging indication message may include a paging stop indication due to eDRX support of a network node that has transmitted a DDN reject message as a cause of rejection.
  • the remaining network node receiving the paging stop indication message may stop the paging transmission after a certain time from when the paging stop indication message is received.
  • the predetermined timer may be driven when the paging stop instruction message is received, and the paging transmission may be stopped when the timer expires.
  • a DDN Reject message for example, a DDN Acknowledge message including a non-paging due to the UE's eDRX mode as a Reject cause, or a new DDN Reject.
  • the message may be applicable.
  • the DDN reject message may include downlink data storing duration information of downlink data.
  • the S-GW Receiving a DDN reject message including downlink data storing duration information from the MME, the S-GW stores (buffers) the downlink data during the storage period and also suspends DDN transmission. (pending)
  • the S-GW may resume the DDN transmission to both the first network node and the second network node. have.
  • the S-GW may resume transmission of the DDN message only to the node that transmitted the information.
  • the information may be transmitted through a Create Session Request message, a Modify Bearer Request message, a Modify Access Bearers Request message, or a new message during a RAU or TAU procedure. Can be sent.
  • the first network node and / or the second network node After receiving the DDN from the S-GW, the first network node and / or the second network node performs paging transmission again, and when the UE receives paging, performs a service request procedure for paging response. can do.
  • the S-GW may send a paging stop message to the first network node or the second network node.
  • the S-GW transmits the downlink data to the corresponding network (the network to which the paging response is transmitted), thereby allowing the UE to receive the downlink data.
  • FIG. 21 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a wireless communication system includes a network node 2110 and a plurality of UEs 2120.
  • the network node 2110 includes a processor 2111, a memory 2112, and a communication module 2113.
  • the processor 2111 implements the functions, processes, and / or methods proposed in FIGS. 1 to 20. Layers of the wired / wireless interface protocol may be implemented by the processor 2111.
  • the memory 2112 is connected to the processor 2111 and stores various information for driving the processor 2111.
  • the communication module 2113 is connected to the processor 2111 to transmit and / or receive wired / wireless signals.
  • a base station, an MME, an HSS, an S-GW, a PGW, an SCEF, an SCS / AS, and the like may correspond thereto.
  • the communication module 2113 may include a radio frequency unit (RF) for transmitting / receiving a radio signal.
  • RF radio frequency unit
  • the terminal 2120 includes a processor 2121, a memory 2122, and a communication module (or RF unit) 2123.
  • the processor 2121 implements the functions, processes, and / or methods proposed in FIGS. 1 to 20. Layers of the air interface protocol may be implemented by the processor 2121.
  • the memory 2122 is connected to the processor 2121 and stores various information for driving the processor 2121.
  • the communication module 2123 is connected to the processor 2121 to transmit and / or receive a radio signal.
  • the memories 2112 and 2122 may be inside or outside the processors 2111 and 2121, and may be connected to the processors 2111 and 2121 by various well-known means.
  • the network node 2110 if the base station
  • the terminal 2120 may have a single antenna (multiple antenna) or multiple antenna (multiple antenna).
  • FIG. 22 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 22 is a diagram illustrating the terminal of FIG. 14 in more detail.
  • a terminal may include a processor (or a digital signal processor (DSP) 2210, an RF module (or RF unit) 2235, and a power management module 2205). ), Antenna 2240, battery 2255, display 2215, keypad 2220, memory 2230, SIM card Subscriber Identification Module card) 2225 (this configuration is optional), a speaker 2245 and a microphone 2250.
  • the terminal may also include a single antenna or multiple antennas. Can be.
  • the processor 2210 implements the functions, processes, and / or methods proposed in FIGS. 1 to 20.
  • the layer of the air interface protocol may be implemented by the processor 2210.
  • the memory 2230 is connected to the processor 2210 and stores information related to the operation of the processor 2210.
  • the memory 2230 may be inside or outside the processor 2210 and may be connected to the processor 2210 by various well-known means.
  • the user enters command information, such as a telephone number, for example by pressing (or touching) a button on keypad 2220 or by voice activation using microphone 2250.
  • the processor 2210 receives the command information, processes the telephone number, and performs a proper function. Operational data may be extracted from the SIM card 2225 or the memory 2230. In addition, the processor 2210 may display command information or driving information on the display 2215 for the user's knowledge and convenience.
  • the RF module 2235 is connected to the processor 2210 to transmit and / or receive an RF signal.
  • the processor 2210 passes command information to the RF module 2235 to transmit, for example, a radio signal constituting voice communication data to initiate communication.
  • the RF module 2235 is composed of a receiver and a transmitter for receiving and transmitting a radio signal.
  • the antenna 2240 functions to transmit and receive a radio signal.
  • the RF module 2235 may forward the signal and convert the signal to baseband for processing by the processor 2210.
  • the processed signal may be converted into audible or readable information output through the speaker 2245.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소를 제어하기 위한 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 제1 네트워크 노드가 단말의 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)의 활성(activation)/비활성(deactivation)을 제어하기 위한 방법에 있어서, 단말로부터 위치 영역 업데이트 요청(LAU Request: Location Area Update Request) 메시지를 수신하면, 제2 네트워크 노드에게 상기 단말의 사용자 정보(user information)을 획득하기 위하여 컨텍스트 요청(Context Request) 메시지를 전송하는 단계 및 상기 컨텍스트 요청 메시지에 대한 응답으로 상기 제2 네트워크 노드로부터 컨텍스트 응답(Context Response) 메시지를 수신하는 단계를 포함하고, 상기 제1 네트워크 노드가 확장된 아이들 모드 불연속 수신(eDRX: Extended Idle mode Discontinuous Reception) 모드를 지원하면, 상기 컨텍스트 요청 메시지는 상기 제1 네트워크 노드가 eDRX를 지원함을 지시하는 제1 eDRX 능력 지시를 포함하고, 상기 제2 네트워크 노드가 eDRX 모드를 지원하면, 상기 컨텍스트 응답 메시지는 상기 제2 네트워크 노드가 eDRX를 지원함을 지시하는 제2 eDRX 능력 지시를 포함하고, 상기 제1 네트워크 노드 및 상기 제2 네트워크 노드 중 적어도 어느 하나가 eDRX 모드를 지원하지 않으면, 상기 단말의 ISR가 활성화되지 않을 수 있다.

Description

무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소를 제어하기 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 효율적인 단말의 아이들 모드 시그널링 감소(ISR: Idle-mode Signalling Reduction)의 활성(activation)/비활성(deactivation)을 제어하는 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은, 무선 통신 시스템에서 단말이 확장된 아이들 모드 불연속 수신(eDRX: Extended Idle mode Discontinuous Reception)를 지원하는 경우, ISR(Idle-mode Signalling Reduction) 활성(activation)/비활성(deactivation)을 처리하는 방법을 제안한다.
또한, 본 발명의 목적은, eDRX와 ISR이 활성(activation)화된 단말에게 전송되는 페이징을 제어하기 위한 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 무선 통신 시스템에서 제1 네트워크 노드가 단말의 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)의 활성(activation)/비활성(deactivation)을 제어하기 위한 방법에 있어서, 단말로부터 위치 영역 업데이트 요청(LAU Request: Location Area Update Request) 메시지를 수신하면, 제2 네트워크 노드에게 상기 단말의 사용자 정보(user information)을 획득하기 위하여 컨텍스트 요청(Context Request) 메시지를 전송하는 단계 및 상기 컨텍스트 요청 메시지에 대한 응답으로 상기 제2 네트워크 노드로부터 컨텍스트 응답(Context Response) 메시지를 수신하는 단계를 포함하고, 상기 제1 네트워크 노드가 확장된 아이들 모드 불연속 수신(eDRX: Extended Idle mode Discontinuous Reception) 모드를 지원하면, 상기 컨텍스트 요청 메시지는 상기 제1 네트워크 노드가 eDRX를 지원함을 지시하는 제1 eDRX 능력 지시를 포함하고, 상기 제2 네트워크 노드가 eDRX 모드를 지원하면, 상기 컨텍스트 응답 메시지는 상기 제2 네트워크 노드가 eDRX를 지원함을 지시하는 제2 eDRX 능력 지시를 포함하고, 상기 제1 네트워크 노드 및 상기 제2 네트워크 노드 중 적어도 어느 하나가 eDRX 모드를 지원하지 않으면, 상기 단말의 ISR가 활성화되지 않을 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)의 활성(activation)/비활성(deactivation)을 제어하기 위한 제1 네트워크 노드에 있어서, 신호를 송수신하기 위한 통신 모듈(communication module) 및 상기 통신 모듈을 제어하는 프로세서를 포함하고, 상기 프로세서는 단말로부터 위치 영역 업데이트 요청(LAU Request: Location Area Update Request) 메시지를 수신하면, 제2 네트워크 노드에게 상기 단말의 사용자 정보(user information)을 획득하기 위하여 컨텍스트 요청(Context Request) 메시지를 전송하고, 상기 컨텍스트 요청 메시지에 대한 응답으로 상기 제2 네트워크 노드로부터 컨텍스트 응답(Context Response) 메시지를 수신하도록 구성되고, 상기 제1 네트워크 노드가 확장된 아이들 모드 불연속 수신(eDRX: Extended Idle mode Discontinuous Reception) 모드를 지원하면, 상기 컨텍스트 요청 메시지는 상기 제1 네트워크 노드가 eDRX를 지원함을 지시하는 제1 eDRX 능력 지시를 포함하고, 상기 제2 네트워크 노드가 eDRX 모드를 지원하면, 상기 컨텍스트 응답 메시지는 상기 제2 네트워크 노드가 eDRX를 지원함을 지시하는 제2 eDRX 능력 지시를 포함하고, 상기 제1 네트워크 노드 및 상기 제2 네트워크 노드 중 적어도 어느 하나가 eDRX 모드를 지원하지 않으면, 상기 단말의 ISR가 활성화되지 않을 수 있다.
바람직하게, 상기 단말의 ISR이 활성화되지 않으면, 상기 LAU 요청 메시지에 대한 응답으로 상기 단말의 ISR이 비활성화되었음을 지시하는 ISR 비활성 지시를 포함하는 LAU 승인(LAU Accept) 메시지가 상기 단말에게 전송될 수 있다.
바람직하게, 상기 단말의 ISR이 활성화되지 않으면, 상기 단말의 ISR이 비활성화되었음을 지시하는 ISR 비활성 지시를 포함하는 컨텍스트 확인(Context Acknowledge) 메시지가 상기 제2 네트워크 노드에게 전송될 수 있다.
바람직하게, 상기 컨텍스트 요청 메시지는 상기 제1 네트워크 노드가 ISR을 지원하는지 여부를 지시하는 제1 ISR 능력 지시를 포함할 수 있다.
바람직하게, 상기 컨텍스트 응답 메시지는 상기 제2 네트워크 노드가 ISR을 지원하는지 여부를 지시하는 제2 ISR 능력 지시를 포함할 수 있다.
바람직하게, 상기 제1 네트워크 노드 및 상기 제2 네트워크 노드 모두 ISR을 지원하더라도 상기 단말의 ISR가 활성화되지 않을 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 단말이 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)의 활성(activation)/비활성(deactivation)을 제어하기 위한 방법에 있어서, 상기 단말이 캠핑(camping) 중인 기지국이 확장된 아이들 모드 불연속 수신(eDRX: Extended Idle mode Discontinuous Reception) 모드를 지원하는지 여부를 판단하는 단계 및 상기 기지국이 eDRX 모드를 지원하지 않으면, 상기 단말이 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)를 지원하지 않는다는 지시를 포함하는 LAU 요청(LAU Request) 메시지를 네트워크 노드에게 전송함으로써 LAU 절차를 개시하는 단계를 포함할 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)의 활성(activation)/비활성(deactivation)을 제어하기 위한 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛 및 상기 RF 유닛을 제어하는 프로세서를 포함하고, 상기 프로세서는 상기 단말이 캠핑(camping) 중인 기지국이 확장된 아이들 모드 불연속 수신(eDRX: Extended Idle mode Discontinuous Reception) 모드를 지원하는지 여부를 판단하고, 상기 기지국이 eDRX 모드를 지원하지 않으면, 상기 단말이 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)를 지원하지 않는다는 지시를 포함하는 LAU 요청(LAU Request) 메시지를 네트워크 노드에게 전송함으로써 LAU 절차를 개시하도록 구성될 수 있다.
바람직하게, 상기 기지국으로부터 전송되는 시스템 정보 블록(SIB: System Information Block)에 하이퍼 프레임(Hyper Frame)에 대한 정보가 포함되는지 여부에 따라 상기 기지국이 eDRX 모드를 지원하는지 여부가 판단될 수 있다.
본 발명의 실시예에 따르면, 단말의 eDRX 동작 시, 적절한 NAS(Non-Access Stratum) 시그널링 혹은 네트워크 처리를 기반으로 ISR 활성(activation)/비활성(deactivation)을 결정함으로써 불필요한 자원 낭비를 방지할 수 있다.
또한, 본 발명의 실시예에 따르면, 단말의 eDRX 및 ISR 동작 시, 적절한 네트워크 처리를 기반으로 단말의 페이징을 제어함으로써 불필요한 자원 낭비를 방지할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 EPS(Evolved Packet System)을 간략히 예시하는 도면이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 S-GW 변경을 수반하는 트래킹 영역 업데이트 절차를 예시한다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 아이들-모드 시그널링 절감(ISR) 활성화(activation)를 위한 절차를 예시한다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 데이터 전달을 위한 페이징 절차를 예시하는 도면이다.
도 10 및 도 11은 ISR이 활성화되어 있는 상황에서, eDRX 모드 사용 시의 문제점을 설명하기 위한 도면이다.
도 12는 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 13은 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 14는 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 15는 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 16은 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 17은 본 발명의 일 실시예에 따른 페이징 제어를 위한 방법을 예시하는 도면이다.
도 18은 본 발명의 일 실시예에 따른 페이징 제어를 위한 방법을 예시하는 도면이다.
도 19는 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 20은 본 발명의 일 실시예에 따른 페이징 제어 방법을 예시하는 도면이다.
도 21은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 22는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 문서에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 패킷 교환(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE, UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: UMTS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: EPS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- 단말(User Equipment): 사용자 기기. 단말은 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수 있다. 또한, 단말은 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 단말 또는 단말이라는 용어는 MTC 단말을 지칭할 수 있다.
- IMS(IP Multimedia Subsystem): 멀티미디어 서비스를 IP 기반으로 제공하는 서브시스템.
- IMSI(International Mobile Subscriber Identity): 이동 통신 네트워크에서 국제적으로 고유하게 할당되는 사용자 식별자.
- MTC(Machine Type Communication): 사람의 개입 없이 머신에 의해 수행되는 통신. M2M(Machine to Machine) 통신이라고 지칭할 수도 있다.
- MTC 단말(MTC UE 또는 MTC device 또는 MTC 장치): 이동 통신 네트워크를 통한 통신(예를 들어, PLMN을 통해 MTC 서버와 통신) 기능을 가지고, MTC 기능을 수행하는 단말(예를 들어, 자판기, 검침기 등).
- MTC 서버(MTC server): MTC 단말을 관리하는 네트워크 상의 서버. 이동 통신 네트워크의 내부 또는 외부에 존재할 수 있다. MTC 사용자가 접근(access)할 수 있는 인터페이스를 가질 수 있다. 또한, MTC 서버는 다른 서버들에게 MTC 관련 서비스를 제공할 수도 있고(SCS(Services Capability Server) 형태), 자신이 MTC 어플리케이션 서버일 수도 있다.
- (MTC) 어플리케이션(application): (MTC가 적용되는) 서비스(예를 들어, 원격 검침, 물량 이동 추적, 기상 관측 센서 등)
- (MTC) 어플리케이션 서버: (MTC) 어플리케이션이 실행되는 네트워크 상의 서버
- MTC 특징(MTC feature): MTC 어플리케이션을 지원하기 위한 네트워크의 기능. 예를 들어, MTC 모니터링(monitoring)은 원격 검침 등의 MTC 어플리케이션에서 장비 분실 등을 대비하기 위한 특징이고, 낮은 이동성(low mobility)은 자판기와 같은 MTC 단말에 대한 MTC 어플리케이션을 위한 특징이다.
- MTC 사용자(MTC User): MTC 사용자는 MTC 서버에 의해 제공되는 서비스를 사용한다.
- MTC 가입자(MTC subscriber): 네트워크 오퍼레이터와 접속 관계를 가지고 있으며, 하나 이상의 MTC 단말에게 서비스를 제공하는 엔티티(entity)이다.
- MTC 그룹(MTC group): 적어도 하나 이상의 MTC 특징을 공유하며, MTC 가입자에 속한 MTC 단말의 그룹을 의미한다.
- 서비스 역량 서버(SCS: Services Capability Server): HPLMN(Home PLMN) 상의 MTC-IWF(MTC InterWorking Function) 및 MTC 단말과 통신하기 위한 엔티티로서, 3GPP 네트워크와 접속되어 있다. SCS는 하나 이상의 MTC 어플리케이션에 의한 사용을 위한 능력(capability)를 제공한다.
- 외부 식별자(External Identifier): 3GPP 네트워크의 외부 엔티티(예를 들어, SCS 또는 어플리케이션 서버)가 MTC 단말(또는 MTC 단말이 속한 가입자)을 가리키기(또는 식별하기) 위해 사용하는 식별자(identifier)로서 전세계적으로 고유(globally unique)하다. 외부 식별자는 다음과 같이 도메인 식별자(Domain Identifier)와 로컬 식별자(Local Identifier)로 구성된다.
- 도메인 식별자(Domain Identifier): 이동 통신 네트워크 사업자의 제어 항에 있는 도메인을 식별하기 위한 식별자. 하나의 사업자는 서로 다른 서비스로의 접속을 제공하기 위해 서비스 별로 도메인 식별자를 사용할 수 있다.
- 로컬 식별자(Local Identifier): IMSI(International Mobile Subscriber Identity)를 유추하거나 획득하는데 사용되는 식별자. 로컬 식별자는 어플리케이션 도메인 내에서는 고유(unique)해야 하며, 이동 통신 네트워크 사업자에 의해 관리된다.
- RAN(Radio Access Network): 3GPP 네트워크에서 Node B 및 이를 제어하는 RNC(Radio Network Controller), eNodeB를 포함하는 단위. 단말 단에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- RANAP(RAN Application Part): RAN과 코어 네트워크의 제어를 담당하는 노드(즉, MME(Mobility Management Entity)/SGSN(Serving GPRS(General Packet Radio Service) Supporting Node)/MSC(Mobile Switching Center)) 사이의 인터페이스.
- PLMN(Public Land Mobile Network): 개인들에게 이동 통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- NAS(Non-Access Stratum): UMTS, EPS 프로토콜 스택에서 단말과 코어 네트워크 간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층. 단말의 이동성을 지원하고, 단말과 PDN GW 간의 IP 연결을 수립 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- SCEF(Service Capability Exposure Function): 3GPP 네트워크 인터페이스에 의해 제공되는 서비스 및 능력(capability)를 안전하게 노출하기 위한 수단을 제공하는 서비스 능력 노출(service capability exposure)을 위한 3GPP 아키텍쳐 내 엔티티.
이하, 위와 같이 정의된 용어를 바탕으로 본 발명에 대하여 기술한다.
본 발명이 적용될 수 있는 시스템 일반
도 1은 본 발명이 적용될 수 있는 EPS (Evolved Packet System)을 간략히 예시하는 도면이다.
도 1의 네트워크 구조도는 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 구조를 이를 간략하게 재구성 한 것이다.
EPC(Evolved Packet Core)는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 능력을 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 능력(capability)을 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS)을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway)(또는 S-GW), PDN GW(Packet Data Network Gateway)(또는 PGW 또는 P-GW), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종단점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP(non-3GPP) 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 Wimax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, 단말의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트(reference point)들이 존재할 수 있다.
Figure PCTKR2016011984-appb-T000001
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 자원을 사용자 플레인에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 플레인에 제공하는 레퍼런스 포인트이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템으로, 예를 들어, 3GPP LTE/LTE-A 시스템일 수 있다. 통신 네트워크는 IMS 및 패킷 데이터를 통해 음성(voice)(예를 들어, VoIP(Voice over Internet Protocol))과 같은 다양한 통신 서비스를 제공하기 위하여 광범위하게 배치된다.
도 2를 참조하면, E-UMTS 네트워크는 E-UTRAN, EPC 및 하나 이상의 UE를 포함한다. E-UTRAN은 단말에게 제어 평면(control plane)과 사용자 평면(user plane) 프로토콜을 제공하는 eNB들로 구성되고, eNB들은 X2 인터페이스를 통해 연결된다.
X2 사용자 평면 인터페이스(X2-U)는 eNB들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU(packet data unit)의 보장되지 않은 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 eNB 사이에 정의된다. X2-CP는 eNB 간의 컨텍스트(context) 전달, 소스 eNB와 타겟 eNB 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다.
eNB은 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(evolved packet core)에 연결된다.
S1 사용자 평면 인터페이스(S1-U)는 eNB와 서빙 게이트웨이(S-GW: serving gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 eNB와 이동성 관리 개체(MME: mobility management entity) 사이에 정의된다. S1 인터페이스는 EPS(evolved packet system) 베어러 서비스 관리 기능, NAS(non-access stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다. S1 인터페이스는 eNB와 MME/S-GW 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
MME는 NAS 시그널링 보안(security), AS(Access Stratum) 보안(security) 제어, 3GPP 액세스 네트워크 간 이동성을 지원하기 위한 CN(Core Network) 노드 간(Inter-CN) 시그널링, (페이징 재전송의 수행 및 제어 포함하여) 아이들(IDLE) 모드 UE 접근성(reachability), (아이들 및 액티브 모드 단말을 위한) 트래킹 영역 식별자(TAI: Tracking Area Identity) 관리, PDN GW 및 S-GW 선택, MME가 변경되는 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN 선택, 로밍(roaming), 인증(authentication), 전용 베어러 확립(dedicated bearer establishment)를 포함하는 베어러 관리 기능, 공공 경고 시스템(PWS: Public Warning System)(지진 및 쓰나미 경고 시스템(ETWS: Earthquake and Tsunami Warning System) 및 상용 모바일 경고 시스템(CMAS: Commercial Mobile Alert System) 포함) 메시지 전송의 지원 등의 다양한 기능을 수행할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 3을 참조하면, eNB는 게이트웨이(예를 들어, MME)의 선택, 무선 자원 제어(RRC: radio resource control) 활성(activation) 동안 게이트웨이로의 라우팅, 방송 채널(BCH: broadcast channel)의 스케줄링 및 전송, 상향링크 및 하향링크에서 UE로 동적 자원 할당, 그리고 LTE_ACTIVE 상태에서 이동성 제어 연결의 기능을 수행할 수 있다. 상술한 바와 같이, EPC 내에서 게이트웨이는 페이징 개시(orgination), LTE_IDLE 상태 관리, 사용자 평면(user plane)의 암호화(ciphering), 시스템 구조 진화(SAE: System Architecture Evolution) 베어러 제어, 그리고 NAS 시그널링의 암호화(ciphering) 및 무결성(intergrity) 보호의 기능을 수행할 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 4(a)는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타내고, 도 4(b)는 사용자 평면(user plane)에 대한 무선 프로토콜 구조를 나타낸다.
도 4를 참조하면, 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜의 계층들은 통신 시스템의 기술분야에 공지된 널리 알려진 개방형 시스템 간 상호접속(OSI: open system interconnection) 표준 모델의 하위 3 계층에 기초하여 제1 계층(L1), 제2 계층 (L2) 및 제3 계층 (L3)으로 분할될 수 있다. 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜은 수평적으로 물리계층(physical layer), 데이터링크 계층(data link layer) 및 네트워크 계층(network layer)으로 이루어지며, 수직적으로는 데이터 정보 전송을 위한 프로토콜 스택(protocol stack) 사용자 평면(user plane)과 제어신호(signaling) 전달을 위한 프로토콜 스택인 제어 평면(control plane)으로 구분된다.
제어평면은 단말과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자 평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다. 이하, 무선 프로토콜의 제어평면과 사용자평면의 각 계층을 설명한다.
제1 계층(L1)인 물리 계층(PHY: physical layer)은 물리 채널(physical channel)을 사용함으로써 상위 계층으로의 정보 송신 서비스(information transfer service)를 제공한다. 물리 계층은 상위 레벨에 위치한 매체 접속 제어(MAC: medium access control) 계층으로 전송 채널(transport channel)을 통하여 연결되고, 전송 채널을 통하여 MAC 계층과 물리 계층 사이에서 데이터가 전송된다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고, 서로 다른 물리 계층 사이, 송신단의 물리 계층과 수신단의 물리 계층 간에는 물리 채널(physical channel)을 통해 데이터가 전송된다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식으로 변조되며, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층에서 사용되는 몇몇 물리 제어 채널들이 있다. 물리 하향링크 제어 채널(PDCCH: physical downlink control channel)는 단말에게 페이징 채널(PCH: paging channel)와 하향링크 공유 채널(DL-SCH: downlink shared channel)의 자원 할당 및 상향링크 공유 채널(UL-SCH: uplink shared channel)과 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. 또한, PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 승인(UL grant)를 나를 수 있다. 물리 제어 포맷 지시자 채널(PDFICH: physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심볼의 수를 알려주고, 매 서브프레임마다 전송된다. 물리 HARQ 지시자 채널(PHICH: physical HARQ indicator channel)는 상향링크 전송의 응답으로 HARQ ACK(acknowledge)/NACK(non-acknowledge) 신호를 나른다. 물리 상향링크 제어 채널(PUCCH: physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NACK, 스케줄링 요청 및 채널 품질 지시자(CQI: channel quality indicator) 등과 같은 상향링크 제어 정보를 나른다. 물리 상향링크 공유 채널(PUSCH: physical uplink shared channel)은 UL-SCH을 나른다.
제2 계층(L2)의 MAC 계층은 논리 채널(logical channel)을 통하여 상위 계층인 무선 링크 제어(RLC: radio link control) 계층에게 서비스를 제공한다. 또한, MAC 계층은 논리 채널과 전송 채널 간의 맵핑 및 논리 채널에 속하는 MAC 서비스 데이터 유닛(SDU: service data unit)의 전송 채널 상에 물리 채널로 제공되는 전송 블록(transport block)으로의 다중화/역다중화 기능을 포함한다.
제2 계층(L2)의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 포함한다. 무선 베어러(RB: radio bearer)가 요구하는 다양한 QoS(quality of service)를 보장하기 위해, RLC 계층은 투명 모드(TM: transparent mode), 비확인 모드(UM: unacknowledged mode) 및 확인 모드(AM: acknowledge mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. 한편, MAC 계층이 RLC 기능을 수행하는 경우에 RLC 계층은 MAC 계층의 기능 블록으로 포함될 수 있다.
제2 계층(L2)의 패킷 데이터 컨버전스 프로토콜(PDCP: packet data convergence protocol) 계층은 사용자 평면에서 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering) 기능을 수행한다. 헤더 압축 기능은 작은 대역폭을 가지는 무선 인터페이스를 통하여 IPv4(internet protocol version 4) 또는 IPv6(internet protocol version 6)와 같은 인터넷 프로토콜(IP: internet protocol) 패킷을 효율적으로 전송되게 하기 위하여 상대적으로 크기가 크고 불필요한 제어 정보를 담고 있는 IP 패킷 헤더 사이즈를 줄이는 기능을 의미한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)을 포함한다.
제3 계층(L3)의 최하위 부분에 위치한 무선 자원 제어(RRC: radio resource control) 계층은 제어 평면에만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 서로 교환한다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련하여 논리 채널, 전송 채널 및 물리 채널을 제어한다. 무선 베어러는 단말과 네트워크 사이의 데이터 전송을 위하여 제2 계층(L2)에 의하여 제공되는 논리적인 경로를 의미한다. 무선 베어러가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 것을 의미한다. 무선 베어러는 다시 시그널링 무선 베어러(SRB: signaling RB)와 데이터 무선 베어러(DRB: data RB) 두 가지로 나눠 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(non-access stratum) 계층은 세션 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행한다.
기지국을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널(downlink transport channel)은 시스템 정보를 전송하는 방송 채널(BCH: broadcast channel), 페이징 메시지를 전송하는 PCH, 사용자 트래픽이나 제어메시지를 전송하는 DL-SCH 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어메시지의 경우 DL-SCH를 통해 전송될 수도 있고, 또는 별도의 하향 멀티캐스트 채널(MCH: multicast channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널(uplink transport channel)로는 초기 제어메시지를 전송하는 랜덤 액세스 채널(RACH: random access channel), 사용자 트래픽이나 제어메시지를 전송하는 UL-SCH(uplink shared channel)가 있다.
논리 채널(logical channel)은 전송 채널의 상위에 있으며, 전송 채널에 맵핑된다. 논리 채널은 제어 영역 정보의 전달을 위한 제어 채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 구분될 수 있다. 제어 채널로는 방송 제어 채널(BCCH: broadcast control channel), 페이징 제어 채널(PCCH: paging control channel), 공통 제어 채널(CCCH: common control channel), 전용 제어 채널(DCCH: dedicated control channel), 멀티캐스트 제어 채널(MCCH: multicast control channel) 등이 있다. 트래픽 채널로는 전용 트래픽 채널(DTCH: dedicated traffic channel), 멀티캐스트 트래픽 채널(MTCH: multicast traffic channel) 등이 있다. PCCH는 페이징 정보를 전달하는 하향링크 채널이고, 네트워크가 UE가 속한 셀을 모를 때 사용된다. CCCH는 네트워크와의 RRC 연결을 가지지 않는 UE에 의해 사용된다. MCCH 네트워크로부터 UE로의 MBMS(Multimedia Broadcast and Multicast Service) 제어 정보를 전달하기 위하여 사용되는 점-대-다점(point-to-multipoint) 하향링크 채널이다. DCCH는 UE와 네트워크 간에 전용 제어 정보를 전달하는 RRC 연결을 가지는 단말에 의해 사용되는 일-대-일(point-to-point) 양방향(bi-directional) 채널이다. DTCH는 상향링크 및 하향링크에서 존재할 수 있는 사용자 정보를 전달하기 위하여 하나의 단말에 전용되는 일-대-일(point-to-point) 채널이다. MTCH는 네트워크로부터 UE로의 트래픽 데이터를 전달하기 위하여 일-대-다(point-to-multipoint) 하향링크 채널이다.
논리 채널(logical channel)과 전송 채널(transport channel) 간 상향링크 연결의 경우, DCCH는 UL-SCH과 매핑될 수 있고, DTCH는 UL-SCH와 매핑될 수 있으며, CCCH는 UL-SCH와 매핑될 수 있다. 논리 채널(logical channel)과 전송 채널(transport channel) 간 하향링크 연결의 경우, BCCH는 BCH 또는 DL-SCH와 매핑될 수 있고, PCCH는 PCH와 매핑될 수 있으며, DCCH는 DL-SCH와 매핑될 수 있으며, DTCH는 DL-SCH와 매핑될 수 있으며, MCCH는 MCH와 매핑될 수 있으며, MTCH는 MCH와 매핑될 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 물리 채널의 구조를 간략히 예시하는 도면이다.
도 5를 참조하면, 물리 채널은 주파수 영역(frequency domain)에서 하나 이상의 서브캐리어와 시간 영역(time domain)에서 하나 이상의 심볼로 구성되는 무선 자원을 통해 시그널링 및 데이터를 전달한다.
1.0ms 길이를 가지는 하나의 서브프레임은 복수의 심볼로 구성된다. 서브프레임의 특정 심볼(들)(예를 들어, 서브프레임의 첫번째 심볼)은 PDCCH를 위해 사용될 수 있다. PDCCH는 동적으로 할당되는 자원에 대한 정보(예를 들어, 자원 블록(Resource Block), 변조 및 코딩 방식(MCS: Modulation and Coding Scheme) 등)를 나른다.
랜덤 액세스 절차(Random Access Procedure)
이하에서는 LTE/LTE-A 시스템에서 제공하는 랜덤 액세스 절차(random access procedure)에 대해 살펴본다.
랜덤 액세스 절차는 단말이 기지국과의 RRC 연결(RRC Connection)이 없어, RRC 아이들 상태에서 초기 접속 (initial access)을 수행하는 경우, RRC 연결 재-확립 절차(RRC connection re-establishment procedure)를 수행하는 경우 등에 수행된다.
LTE/LTE-A 시스템에서는 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하는 과정에서, 특정한 집합 안에서 단말이 임의로 하나의 프리앰블을 선택하여 사용하는 경쟁 기반 랜덤 액세스 절차(contention based random access procedure)과 기지국이 특정 단말에게만 할당해준 랜덤 액세스 프리앰블을 사용하는 비 경쟁 기반 랜덤 액세스 절차(non-contention based random access procedure)을 모두 제공한다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 경쟁 기반 랜덤 액세스 절차를 설명하기 위한 도면이다.
(1) 제1 메시지(Msg 1, message 1)
먼저, 단말은 시스템 정보(system information) 또는 핸드오버 명령(handover command)을 통해 지시된 랜덤 액세스 프리앰블의 집합에서 임의로(randomly) 하나의 랜덤 액세스 프리앰블(random access preamble, RACH preamble)을 선택하고, 상기 랜덤 액세스 프리앰블을 전송할 수 있는 PRACH(physical RACH) 자원을 선택하여 전송한다.
단말로부터 랜덤 액세스 프리앰블을 수신한 기지국은 프리앰블을 디코딩하고, RA-RNTI를 획득한다. 랜덤 액세스 프리앰블이 전송된 PRACH와 관련된 RA-RNTI는 해당 단말이 전송한 랜덤 액세스 프리앰블의 시간-주파수 자원에 따라 결정된다.
(2) 제2 메시지(Msg 2, message 2)
기지국은 제1 메시지 상의 프리앰블을 통해서 획득한 RA-RNTI로 지시(address)되는 랜덤 액세스 응답(random access response)을 단말로 전송한다. 랜덤 액세스 응답에는 랜덤 액세스 프리앰블 구분자/식별자(RA preamble index/identifier), 상향링크 무선자원을 알려주는 상향링크 승인(UL grant), 임시 셀 식별자(TC-RNTI: Temporary Cell RNTI) 그리고 시간 동기 값(TAC: time alignment command)들이 포함될 수 있다. TAC는 기지국이 단말에게 상향링크 시간 정렬(time alignment)을 유지하기 위해 보내는 시간 동기 값을 지시하는 정보이다. 단말은 상기 시간 동기 값을 이용하여, 상향링크 전송 타이밍을 갱신한다. 단말이 시간 동기를 갱신하면, 시간 동기 타이머(time alignment timer)를 개시 또는 재시작한다. UL grant는 후술하는 스케줄링 메시지(제3 메시지)의 전송에 사용되는 상향링크 자원 할당 및 TPC(transmit power command)를 포함한다. TPC는 스케줄링된 PUSCH를 위한 전송 파워의 결정에 사용된다.
단말은 랜덤 액세스 프리앰블을 전송 후에, 기지국이 시스템 정보 또는 핸드오버 명령을 통해 지시된 랜덤 액세스 응답 윈도우(random access response window) 내에서 자신의 랜덤 액세스 응답(random access response)의 수신을 시도하며, PRACH에 대응되는 RA-RNTI로 마스킹된 PDCCH를 검출하고, 검출된 PDCCH에 의해 지시되는 PDSCH를 수신하게 된다. 랜덤 액세스 응답 정보는 MAC PDU(MAC packet data unit)의 형식으로 전송될 수 있으며, 상기 MAC PDU는 PDSCH을 통해 전달될 수 있다.
단말은 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자/식별자를 가지는 랜덤 액세스 응답을 성공적으로 수신하면, 랜덤 액세스 응답의 모니터링을 중지한다. 반면, 랜덤 액세스 응답 윈도우가 종료될 때까지 랜덤 액세스 응답 메시지를 수신하지 못하거나, 기지국에 전송하였던 랜덤 액세스 프리앰블과 동일한 랜덤 액세스 프리앰블 구분자를 가지는 유효한 랜덤 액세스 응답을 수신하지 못한 경우 랜덤 액세스 응답의 수신은 실패하였다고 간주되고, 이후 단말은 프리앰블 재전송을 수행할 수 있다.
(3) 제3 메시지(Msg 3, message 3)
단말이 자신에게 유효한 랜덤 액세스 응답을 수신한 경우에는, 상기 랜덤 액세스 응답에 포함된 정보들을 각각 처리한다. 즉, 단말은 TAC을 적용시키고, TC-RNTI를 저장한다. 또한, UL grant를 이용하여, 단말의 버퍼에 저장된 데이터 또는 새롭게 생성된 데이터를 기지국으로 전송한다.
단말의 최초 접속의 경우, RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 요청(RRC Connection Request)이 제3 메시지에 포함되어 전송될 수 있으며, RRC 연결 재확립 절차의 경우 RRC 계층에서 생성되어 CCCH를 통해 전달된 RRC 연결 재확립 요청(RRC Connection Re-establishment Request)이 제3 메시지에 포함되어 전송될 수 있다. 또한, NAS 접속 요청 메시지를 포함할 수도 있다.
제3 메시지는 단말의 식별자가 포함되어야 한다. 단말의 식별자를 포함시키는 방법으로는 두 가지 방법이 존재한다. 첫 번째 방법은 단말이 상기 랜덤 액세스 절차 이전에 이미 해당 셀에서 할당 받은 유효한 셀 식별자(C-RNTI)를 가지고 있었다면, 단말은 상기 UL grant에 대응하는 상향링크 전송 신호를 통해 자신의 셀 식별자를 전송한다. 반면에, 만약 랜덤 액세스 절차 이전에 유효한 셀 식별자를 할당 받지 못하였다면, 단말은 자신의 고유 식별자(예를 들면, S-TMSI 또는 임의 값(random number))를 포함하여 전송한다. 일반적으로 상기의 고유 식별자는 C-RNTI보다 길다.
단말은 상기 UL grant에 대응하는 데이터를 전송하였다면, 충돌 해결을 위한 타이머(contention resolution timer)를 개시한다.
(4) 제4 메시지(Msg 4, message 4)
기지국은 단말로부터 제3 메시지를 통해 해당 단말의 C-RNTI를 수신한 경우 수신한 C-RNTI를 이용하여 단말에게 제4 메시지를 전송한다. 반면, 단말로부터 제3 메시지를 통해 상기 고유 식별자(즉, S-TMSI 또는 임의 값(random number))를 수신한 경우, 랜덤 액세스 응답에서 해당 단말에게 할당한 TC-RNTI를 이용하여 제4 메시지를 단말에게 전송한다. 일례로, 제4 메시지는 RRC 연결 설정 메시지(RRC Connection Setup)가 포함할 수 있다.
단말은 랜덤 액세스 응답에 포함된 UL grant를 통해 자신의 식별자를 포함한 데이터를 전송한 이후, 충돌 해결을 위해 기지국의 지시를 기다린다. 즉, 특정 메시지를 수신하기 위해 PDCCH의 수신을 시도한다. 상기 PDCCH를 수신하는 방법에 있어서도 두 가지 방법이 존재한다. 앞에서 언급한 바와 같이 상기 UL grant에 대응하여 전송된 제3 메시지가 자신의 식별자가 C-RNTI인 경우, 자신의 C-RNTI를 이용하여 PDCCH의 수신을 시도하고, 상기 식별자가 고유 식별자(즉, S-TMSI 또는 임의 값(random number))인 경우에는, 랜덤 액세스 응답에 포함된 TC-RNTI를 이용하여 PDCCH의 수신을 시도한다. 그 후, 전자의 경우, 만약 상기 충돌 해결 타이머가 만료되기 전에 자신의 C-RNTI를 통해 PDCCH를 수신한 경우에, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 후자의 경우에는 상기 충돌 해결 타이머가 만료되기 전에 TC-RNTI를 통해 PDCCH를 수신하였다면, 상기 PDCCH가 지시하는 PDSCH이 전달하는 데이터를 확인한다. 만약 상기 데이터의 내용에 자신의 고유 식별자가 포함되어 있다면, 단말은 정상적으로 랜덤 액세스 절차가 수행되었다고 판단하고, 랜덤 액세스 절차를 종료한다. 제4 메시지를 통해 단말은 C-RNTI를 획득하고, 이후 단말과 네트워크는 C-RNTI를 이용하여 단말 특정 메시지(dedicated message)를 송수신하게 된다.
한편, 비경쟁 기반 임의접속 과정에서의 동작은 도 6에 도시된 경쟁 기반 임의접속 과정과 달리 제1 메시지 전송 및 제2 메시지 전송만으로 임의접속 절차가 종료되게 된다. 다만, 제1 메시지로서 단말이 기지국에 임의접속 프리앰블을 전송하기 전에 단말은 기지국으로부터 임의접속 프리앰블을 할당받게 되며, 이 할당받은 임의접속 프리앰블을 기지국에 제1 메시지로서 전송하고, 기지국으로부터 임의접속 응답을 수신함으로써 임의접속 절차가 종료되게 된다.
이하, 본 문서에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- Home NodeB: UMTS 망의 기지국(Base station)으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- Home eNodeB: EPS 망의 기지국(Base station)으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- OMA DM(Open Mobile Alliance Device Management): 핸드폰, PDA, 휴대용 컴퓨터 등과 같은 모바일 디바이스들 관리를 위해 디자인 된 프로토콜로써, 디바이스 설정(configuration), 펌웨어 업그레이드(firmware upgrade), 에러 보고 (Error Report) 등의 기능을 수행한다.
- OAM(Operation Administration and Maintenance): 네트워크 결함 표시, 성능정보, 그리고 데이터와 진단 기능을 제공하는 네트워크 관리 기능군을 의미한다.
- NAS 설정 관리 객체(NAS configuration MO(Management Object)): NAS 기능(Functionality)와 연관된 파라미터들(parameters)을 단말에게 설정(configuration)하는 데 사용하는 관리 객체(MO: Management object)를 의미한다.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, 멀티미디어 메시지 서비스(MMS: Multi-media Message Service) 서버, 무선 어플리케이션 프로토콜(WAP: Wireless Application Protocol) 서버 등)이 위치하고 있는 네트워크를 의미한다.
- PDN 연결(connection): 단말에서 PDN으로의 연결로서, 인터넷 프로토콜(IP: Internet Protocol) 주소로 표현되는 단말과 액세스 포인트 명칭(APN: Access Point Name)으로 표현되는 PDN과의 연관(연결)을 의미한다.
- APN(Access Point Name): PDN을 지칭하거나 구분하는 문자열을 의미한다. 단말이 요청한 서비스나 네트워크(즉, PDN)에 접속하기 위해서는 해당 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 네트워크 내에서 미리 정의한 이름(문자열)(예를 들어, internet.mnc012.mcc345.gprs)을 의미한다.
- 논-액세스 스트라텀(NAS: Non-Access-Stratum): 단말과 MME간의 제어 플레인(control plane)의 상위 스트라텀을 의미한다. 단말과 네트워크 간의 이동성 관리(Mobility management)와 세션 관리(Session management), IP 주소 관리 (IP address maintenance) 등을 지원한다.
- 액세스 스트라텀(AS: Access-Stratum): 단말과 무선(혹은 액세스) 네트워크 간의 프로토콜 스택을 포함하며, 데이터 및 네트워크 제어 신호의 전송 등을 담당한다.
트래킹 영역 업데이트 (TAU: Tracking Area Update) 절차
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 S-GW 변경을 수반하는 트래킹 영역 업데이트 절차를 예시한다.
TAU 절차는 UE가 네트워크에 등록하였던 TAI(Tracking Area Identity)(들)의 리스트 내 존재하지 않는 새로운 트래킹 영역(TA: Tracking Area)에 진입한 것을 감지하거나, 주기적 TAU 타이머가 만료하거나, UE가 E-UTRAN을 재선택할 때 다음 업데이트에서 사용될 임시 식별자(TIN: Temporary Identity used in Next update)이 패킷-임시 단말 가입 식별자(P TMSI: Packet-Temporary Mobile Subscriber Identity)를 지시하는 경우 등 수행될 수 있다.
도 7에서는 MME 간(inter-MME) TAU 절차의 경우를 예시한다.
1-3. ECM-IDLE 상태인 단말(UE)의 TAU 타이머가 경과 하거나 단말 다른 트래킹 영역으로 이동한 경우, MME에게 트래킹 영역(TA)를 보고하기 위한 TAU 절차가 트리거(trigger)된다.
단말은 TAU 요청(TAU Request) 메시지를 MME에게 전송함으로써 TAU 절차를 개시한다.
TAU 요청(TAU Request) 메시지는 RRC 연결에서 RRC 연결 셋업 완료(RRC Connection Setup Complete) 메시지에 포함되어 전달되고, S1 시그널링 연결에서 초기 UE 메시지(Initial UE message)에 포함되어 전달된다.
단말은 eDRX의 이용 가능할 필요가 있으면, eDRX 파라미터가 이전에 이미 협상되었더라도, eDRX 파라미터(들) 정보를 TAU Request 메시지에 포함시킨다.
4. TAU 요청(TAU Request) 메시지를 수신한 MME가 이전 노드(old node)(즉, MME 또는 SGSN)와 상이하면(즉, MME가 변경된 경우), 새로운 MME(new MME)는 이전 MME/SGSN로부터 단말의 정보를 획득하기 위하여 이전 MME/SGSN에게 컨텍스트 요청(Context Request) 메시지를 전송한다.
Context Request 메시지는 new MME가 ISR(Idle mode signalling reduction) 지원하는 경우, ISR을 지원함을 지시하는 지시 정보(즉, ISR supported)를 포함할 수 있다.
5. 컨텍스트 요청(Context Request) 메시지가 이전 MME/SGSN에게 전송되면, 이전 MME/SGSN는 컨텍스트 응답(Context Response) 메시지로 응답한다.
이때, 이전 MME/SGSN은 하향링크 데이터 전달이 요구되는지 여부(즉, 요구되는 경우, "하향링크 데이터 전달 요구(DL data forwarding required)")를 새로운 MME(RAU 절차의 경우 SGSN)에게 지시한다.
Context Response 메시지는 new MME가 ISR(Idle mode signalling reduction) 지원하는 경우, ISR을 지원함을 지시하는 지시 정보(즉, ISR supported)를 포함할 수 있다.
6. UE과 새로운 MME 및 HSS는 인증 기능(authentication fuction) 및 보안(Security)(또는 암호화(Ciphering)) 절차를 수행한다.
새로운 MME는 S-GW를 이전(relocate)할지 결정한다. 이전 S-GW가 더 이상 UE에게 서비스를 제공할 수 없을 때, S-GW는 이전(relocate)된다. 또한, 새로운 MME는 새로운 S-GW가 UE에게 더 오래 서비스를 제공하고 및/또는 UE에게 P-GW 경로가 더 적합할 것으로 예상되거나 또는 새로운 S-GW가 P-GW와 동일하게 위치(co-locate)한다면 S-GW의 이전을 결정할 수도 있다.
7. MME가 새로운 S-GW를 선택한 경우, MME는 세션 생성 요청(Create Session Request) 메시지를 PDN 연결 별로 선택된 새로운 S-GW에게 전송한다.
이때, 새로운 MME(RAU 절차의 경우 SGSN)가 앞서 5 단계에서 "하향링크 데이터 전달 요청(DL data forwarding required)"를 수신한 경우, 새로운 MME(RAU 절차의 경우 SGSN)는 새로운 S-GW에게 "하향링크 데이터 전달 요청(DL data forwarding required)"를 전달함으로써, 하향링크 데이터 전달을 위해 새로운 S-GW 임시 IP 주소(IP@) 및 TEID를 할당(assign)할 것을 요청한다.
8. 필요한 경우, 새로운 S-GW는 P-GW에게 PDN 연결 별로 베어러 수정 요청(Modify Bearer Request) 메시지를 전송한다.
9a. 필요한 경우, P-GW는 PCRF와 IP-CAN(IP connectivity access network) 세션 수정(modification) 절차를 수행할 수 있다.
9. P-GW는 새로운 S-GW로부터 수정 베어러 요청(Modify Bearer Request) 메시지를 수신한 경우, 이에 대한 응답으로 수정 베어러 응답(Modify Bearer Response) 메시지를 새로운 S-GW에게 전송한다.
10. 새로운 S-GW는 자신의 베어러 컨텍스트를 업데이트한다. 이로 인하여 새로운 S-GW는 베어러 PDU를 기지국으로부터 수신할 때 P-GW에게 라우팅할 수 있다.
새로운 S-GW는 세션 생성 요청(Create Session Request)에 대한 응답으로 세션 생성 응답(Create Session Response) 메시지를 새로운 MME에게 전송한다.
이때, 새로운 S-GW는 하향링크 데이터 전달을 위해 할당된 임시 IP 주소(IP@) 및 TEID를 세션 생성 응답(Create Session Response) 메시지를 통해 새로운 MME에게 전달한다.
11. 새로운 MME는 이전 MME/SGSN에게 컨텍스트 확인(Context Acknowledge) 메시지를 전송한다.
MME가 새로운 S-GW를 선택한 경우, MME는 컨텍스트 확인(Context Acknowledge) 메시지를 통해 이전 MME/SGSN에게 S-GW의 변경 지시 정보를 전달한다. S-GW의 변경 지시 정보는 새로운 S-GW가 선택되었음을 지시한다.
이때, 새로운 MME는 하향링크 데이터 전달을 위해 할당된 임시 IP 주소(IP@) 및 TEID를 세션 생성 응답(Create Session Response) 메시지를 통해 이전 MME/SGSN에게 전달한다.
12. 새로운 MME는 위치 업데이트 요청(Update Location Request) 메시지를 HSS에게 전송한다.
13. HSS는 위치 취소(Cancel Location) 메시지를 이전 MME/SGSN에게 전송한다.
14. 이전 MME/SGSN는 위치 취소(Cancel Location) 메시지에 대한 응답으로 위치 취소 확인(Cancel Location Acknowledge) 메시지를 HSS에게 전송한다.
15. 이전 SGSN이 컨텍스트 확인(Context Acknowledge) 메시지를 수신하고 단말이 Iu 인터페이스를 통해 연결된 경우, 이전 SGSN은 Iu 해제 명령(Iu Release Command) 메시지를 RNC에게 전송한다.
16. RNC는 Iu 해제 명령(Iu Release Command) 메시지에 대한 응답으로 Iu 해제 완료(Iu Release Complete) 메시지를 이전 SGSN에게 전송한다.
17. HSS는 위치 업데이트 요청(Update Location Request) 메시지에 대한 응답으로 위치 업데이트 확인(Update Location Acknowledge) 메시지를 새로운 MME에게 전송한다.
18. 11 단계의 컨텍스트 확인(Context Acknowledge) 메시지 내에서 S-GW 변경 지시가 수신된 경우, 이전 MME/SGSN은 세션 삭제 요청(Delete Session Request) 메시지를 이전 S-GW에게 전송함으로써 MME 또는 SGSN EPS 베어러 자원을 해제한다.
이때, 이전 MME/SGSN는 하향링크 데이터 전달을 위해 할당된 임시 IP 주소(IP@) 및 TEID를 세션 삭제 요청(Delete Session Request) 메시지를 통해 이전 S-GW에게 전달한다.
19. 이전 S-GW는 세션 삭제 요청(Delete Session Request) 메시지에 대한 응답으로 세션 삭제 응답(Delete Session Response) 메시지를 이전 MME/SGSN에게 전송한다.
20. 새로운 MME는 TAU 승인(TAU Accept) 메시지를 단말에게 전송한다. 이때, 새로운 MME가 새로운 전역적 고유 임식 식별자(GUTI: Globally Unique Temporary Identity)를 단말에게 할당한 경우, 할당된 GUTI가 TAU 승인(TAU Accept) 메시지에 포함될 수 있다.
단말이 TAU Request 메시지에 eDRX 파라미터(들) 정보를 포함시켰으면, MME는 만약 MME가 eDRX를 활성화하도록 결정한 경우에 eDRX 파라미터(들) 정보를 TAU Accept 메시지에 포함시킨다.
TAU Accept 메시지를 수신하고, TAU Accept 메시지에 ISR 활성 지시(ISR Activated indication)가 존재하지 않으면, UE는 TIN을 전역적 고유 임식 식별자(GUTI: Globally Unique Temporary Identity)로 셋팅한다.
21. GUTI가 TAU 승인(TAU Accept) 메시지에 포함되면, 단말은 TAU 승인(TAU Accept) 메시지에 대한 응답으로 TAU 완료(TAU Complete) 메시지를 MME에게 전송한다.
22. 이전 S-GW는 버퍼링된 하향링크 패킷을 새로운 S-GW에게 전달하고, 전달될 더 이상의 데이터가 없음을 지시하는 종료 마커 패킷(End Marker packet)을 새로운 S-GW에게 전송한다.
아이들- 모드 시그널링 절감( ISR : Idle mode signalling reduction) 기능
아이들-모드 시그널링 절감(ISR) 기능은 아이들 모드(ECM-IDLE, PMM-IDLE, GPRS STANDBY 상태 등)에서 무선 접속 기술(RAT: Radio Access Technology) 간(inter-RAT) 셀 재선택 동안에 시그널링을 제한하기 위한 메커니즘을 제공한다.
MME/SGSN은 S-GW가 ISR을 지원하는 경우에만 ISR을 활성화한다.
ISR은 코어 네트워크(CN: Core Network) 노트의 결정에 의해 활성화되고, RAU 승인(RAU Accept) 메시지 또는 TAU 승인(TAU Accept) 메시지 내에서 "ISR 활성(ISR activated)"로서 UE에게 명시적으로 시그널링된다. UE는 MME와 SGSN으로부터 유효한 이동성 관리(MM: Mobility Management) 파라미터를 획득할 수 있다. "다음 업데이트에서 사용될 임시 식별자(TIN: Temporary Identity used in Next update)"는 UE의 MM context의 파라미터이고, UE가 다음 RAU Request, TAU Request 또는 어태치 요청(Attach Request) 메시지에서 지시하여야 하는 UE 식별자를 식별한다. TIN은 또한 UE 내에서 ISR 활성화의 상태를 식별한다.
TIN은 "패킷-임시 단말 가입 식별자(P TMSI: Packet-Temporary Mobile Subscriber Identity)", "전역적 고유 임시 식별자(GUTI: Globally Unique Temporary Identity)" 또는 "RAT-관련 TMSI(RAT-related TMSI)", 3개의 값 중에 하나에 해당될 수 있다. UE는 어태치 승인(Attach Accept), TAU 승인(TAU Accept) 또는 RAU 승인(RAU Accept) 메시지를 수신할 때 아래 표 2과 같은 규칙에 따라 TIN을 셋팅한다.
표 2는 TIN의 셋팅 규칙을 예시한다.
Figure PCTKR2016011984-appb-T000002
RAU/TAU Accept에 의해 "ISR Activated"이 지시되었으나 UE가 TIN을 "RAT-related TMSI"로 셋팅하지 않는 것은 특수한 상황에 해당된다. 여기서, UE는 특수한 상황의 제어로 인하여 ISR을 비활성화한 상태이다. 이전 TIN(old TIN) 값을 유지 함으로써, UE는 다른 RAT의 CN 노드와 업데이트할 때, TIN에 의해 지시된 RAT 특정한 TMSI를 사용할 것을 기억한다.
TIN이 "RAT-related TMSI"으로 셋팅되는 경우에만, ISR 동작이 UE에게 활성화된다. 즉, UE는 어떠한 시그널링 업데이트 없이 모든 등록된 영역과 RAT 간에서 변경을 할 수 있으며, 자신이 캠핑하고 있는(camped on) RAT에서 페이징을 청취할 수 있다. TIN이 "RAT-related TMSI"로 셋팅되면, UE의 GUTI 및 트래킹 영역 식별자(TAI: Tracking Area Identity)(들)뿐만 아니라 UE의 P TMSI 및 라우팅 영역 식별자(RAI: Routing Area Identity)(들) 또한 등록된 네트워크에 유지되고, UE 내에서도 유효한 상태로 유지된다.
표 3은 UE가 Attach Request, TAU/RAU Request 내 지시("이전 GUTI(old GUTI)" 또는 "이전 P-TMSI/RAI(old P-TMSI/RAI)" 정보로서)하여야 하는 임시 UE 식별자(temporary UE identity)를 예시한다.
Figure PCTKR2016011984-appb-T000003
표 3은 UE가 유효한 파라미터로서 이들을 저장할 때, Attach Request, TAU/RAU Request 내에서 지시하여야 하는 임시 식별자를 보여준다.
UE, MME 및 SGSN 내에서 동기가 맞지 않은(unsynchronized) 상태 정보가 발생될 수 있다. 이러한 특수한 상황이 발생되면, UE 내에서 지역적으로(locally) ISR의 비활성화된다.
UE는 다음과 같은 특수한 상황에서, 자신의 TIN을 현재 사용되는 RAT의 임시 식별자로 셋팅함으로써 ISR을 비활성화한다.
- UE 내에서 ISR이 활성화 되기 전, EPS 베어러(bearer) context 또는 패킷 데이터 프로토콜(PDP: packet data protocol) context가 수정되는 상황;
- UE가 패킷 스위칭 핸드오버(PSHO: packet switched handover) 이외의 수단으로 E UTRAN으로부터 GERAN/UTRAN으로 이동하거나 GERAN/UTRAN으로부터 E UTRAN으로 이동할 때, 해당 시점에서, 만약 UE 내 ISR이 활성화된 후 EPS bearer context 또는 PDP context가 존재하는 상황;
- UE가 PSHO, CS(circuit-switched)로부터 PS(packet-switched)로의 단일 무선 음성호 연속성(SRVCC: single radio voice call continuity) 이외의 수단으로 GERAN/UTRAN으로부터 E UTRAN으로 이동할 때, 해당 시점에서, 만약 E UTRAN으로 돌아가기 전에 PDP context가 GERAN 내 중단되고(suspend) 다시 성공적으로 재개되지(resume) 않는 상황;
- UE 특정 DRX 파라미터의 변경에 대하여 다른 CN 노드가 또한 업데이트되는 것을 보장하기 위하여 MME 또는 SGSN에서 업데이트된 이후의 상황;
- UE 코어 네트워크 능력(UE Core Network Capabilitie)의 변경에 대하여 다른 CN 노드가 또한 업데이트되는 것을 보장하기 위하여 MME 또는 SGSN에서 업데이트된 이후의 상황;
- UTRAN에 연결된(UTRAN-connected) UE에 의한 E-UTRAN이 선택된 상황;
- GERAN READY 상태에서 E-UTRAN이 선택된 상황;
- CS 폴백(fallback)을 위한 것이 아닌 셀 변경 오더(Cell Change Order)를 통해 E-UTRAN에 연결된(E-UTRAN-connected) UE에 의해 GERAN이 선택된 상황;
- UE가 CS fallback 및/또는 SMS을 가지면, 위치 영역 업데이트(LAU: location area update) 절차 이후의 상황;
- 음성을 위해 IMS에 등록된 UE의 경우, UE가 PS 세션을 통해 IMS 음성을 지원하는 등록 영역(Registration Area)으로부터 그렇지 않은 영역으로 이동하거나, 혹은 그 반대의 상황;
UE는 다음과 같은 특수한 상황에서 해당 UE에게 여전히 이용 가능한 RAT의 임시 식별자로 자신의 TIN을 셋팅함으로써 지역적으로(locally) ISR을 비활성화한다.
- RAT의 커버리지가 상실(lost)되거나 더 이상 UE에 의해 선택되지 않은(이는 SGSN 또는 MME에 의한 암묵적인 디태치(detach)의 결과를 낳을 수 있음) 이유로 인하여, RAT 특정 비활성화 ISR 타이머(RAT-specific Deactivate ISR timer)가 만료된 후의 상황;
다음과 같은 특수한 상황에서, 일반적인 업데이트 시그널링을 이용하여(즉, "ISR Activated"의 시그널링이 생략됨으로써) CN 노드에 의해 UE 내 ISR이 비활성화된다.
- CN 노드의 변경으로 인하여 동일한 타입의 CN 노드 간(SGSN으로부터 SGSN로, 또는 MME로부터 MME로)의 context 전달이 야기되는 상황;
- S-GW이 변경된 상황;
- UE가 긴급 베어러 서비스와 관련된 베어러만을 가지는 상황;
- 코어 네트워크 내 지원되는 이동성 없이 UE가 지역적 네트워크와 매크로 네트워크 간의 이동할 때, TAU 또는 RAU;
- 네트워크가 UE에게 PSM의 사용을 컨펌(confirm)할 때, TAU 또는 RAU;
트래킹 영역(tracking area) 또는 라우팅 영역(routing area) 리스트가 로컬 네트워크 또는 매크로 네트워크 모두 커버하는 경우, UE가 로컬 네트워크에서 SIPTO의 사용이 허용되고, 이동성 없는 S-GW 재배치(relocation)가 지원되면, ISR은 활성화되지 않는다.
아이들- 모드 시그널링 절감( ISR : Idle mode Signalling Reduction)
ISR(Idle mode Signalling Reduction)은 단말이 LTE(E-UTRAN)와 2G(GERAN)/3G(UTRAN) 사이에 TA(Tracking Area) 또는 RA(Routing Area) 업데이트 절차를 수행하지 않고 이동할 수 있도록 하는 기능이다. 일반적으로 LTE의 셀 커버리지가 작고 2G/3G의 셀 커버리지가 크기 때문에 무선 접속 기술(RAT: Radio Access Technology) 간에 아이들 모드(idle-mode) 이동성이 빈번히 발생하게 된다. 따라서, 이러한 ISR을 이용함으로써 단말과 네트워크 간에 또한 네트워크 내에서의 시그널링 오버헤드를 줄일 수 있다.
ISR이 활성화(activation)되기 위해서는 단말, 네트워크 노드들(SGSN, MME, S-GW, HSS)이 ISR을 지원해야만 한다. 표준 규격 상 단말의 ISR 지원은 필수적(mandatory)이지만, 네트워크 노드는 선택적(optional)이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 아이들-모드 시그널링 절감(ISR) 활성화(activation)를 위한 절차를 예시한다.
1. ISR 활성화를 위한 절차는, ISR의 지원을 위한 특수한 기능을 요청하지 않고, 일반적인 어태치 절차(Attach procedure)로 시작한다.
UE는 어태치 요청(Attach Request) 메시지를 MME에게 전송함으로써 어태치 절차를 개시한다. Attach Request 메시지는 이전 GUTI(old GUTI)(즉, 실제(real) GUTI 또는 P-TMSI와 매핑된 GUTI) 등을 포함한다.
그러나, 어태치(Attach)는 UE 내 저장된 기존의 이전 ISR 상태 정보(old ISR state information)를 삭제한다. 어태치 요청(Attach Request) 메시지와 함께, UE는 다음 업데이트에서 사용될 임시 식별자(TIN: Temporary Identity used in Next update)을 GUTI로 셋팅한다.
2. MME에 어태치(attach)한 후, UE는 ISR 상태(state)의 변경 없이 E-UTRAN을 통한 상호작용(interaction)을 수행할 수 있다. MME는 단말 인증을 위해 HSS에게 인증을 위한 정보를 요청하여 수신하고, 단말과 상호 인증을 수행한다. 이후, MME는 HSS에 등록(register)된다.
3. MME는 어태치 요청(Attach Request) 메시지에 대한 응답으로 어태치 승인(Attach Accept) 메시지를 단말에게 전송한다.
Attach Accept 메시지는 GUTI를 포함한다. 이때, Attach Accept 메시지는 절대로 ISR 활성(ISR activation)을 지시하지 않는다. 따라서, UE는 TIN을 GUTI로 셋팅한다.
앞서 1 단계 내지 3 단계는 어떠한 잠재적인(potential) 이전 ISR 상태(old ISR state)도 비활성화된 것 이외에 ISR을 위한 특수한 것이 존재하지 않는 일반적인 Attach 절차에 해당한다.
즉, ISR은 비활성화(deactivated) 상태로 유지된다. 하나 이상의 베어러 컨텍스트(bearer context)가 MME, S-GW 및 PDN GW 상에서 활성화된다.
4. 최초로 UE가 GERAN 또는 UTRAN을 재선택하면, UE는 RAU 요청(RAU Request) 메시지를 SGSN에게 전송함으로써, RAU 절차를 개시한다.
이것은 ISR을 활성화하는 시점을 나타낸다. TIN이 "GUTI"를 지시하고, 이에 따라 UE가 RAU 요청(RAU Request) 내에서 GUTI에 매핑된 P-TMSI를 지시한다.
5-6. SGSN은 MME에게 컨텍스트 요청(Context Request) 메시지를 전송하고, MME로부터 컨텍스트 요청(Context Request) 메시지에 대한 응답으로 컨텍스트 응답(Context Response) 메시지를 수신함으로써, SGSN은 MME로부터 컨텍스트를 획득한다.
이때, MME가 SGSN에게 컨텍스트를 전송할 때, 자신이 관여된 S-GW이 ISR을 지원하는 때에만 MME는 ISR 지원 지시(ISR supported indication)를 포함시킨다.
7. SGSN은 MME에게 컨텍스트 확인(Context Ack) 메시지를 전송한다. ISR이 활성화되면 SGSN은 컨텍스트 확인(Context Ack) 메시지 내 ISR 활성됨(ISR active)을 지시한다.
ISR이 활성화되면, ISR이 활성화된 상태이므로 CN 노드 모두(즉, SGSN, MME) 이들 컨텍스트를 유지한다. MME는 SGSN ID를 저장하고, SGSN은 MME ID를 저장한다.
8. SGSN은 S-GW와 제어 관계(control relation)를 확립하고, 이때, SGSN은 S-GW 간의 제어 관계는 MME와 S-GW 간의 제어 연결(control connection)과 함께 활성화된다. 즉, MME 및 SGSN은 HSS에 함께 등록(register)된다.
9. SGSN은 RAU 요청(RAU Request) 메시지에 대한 응답으로 RAU 승인(RAU Accept) 메시지를 UE에게 전송한다.
이때, RAU Accept은 ISR 활성(ISR activation)을 UE에게 지시한다. 따라서, UE는 등록된 GUTI 및 P-TMSI를 유지하고, UE는 TIN은 "RAT-related TMSI"으로 셋팅한다.
앞서 4 단계 내지 9 단계는 ISR 활성화(activation)을 수반한 RAU 절차를 예시한다. UE는 SGSN 및 MME에 대한 유효한 MM 컨텍스트를 가지고, SGSN 및 MME는 UE로부터 유효한 MM 등록을 가지고, SGSN 및 MME는 HSS에 등록된다.
ISR activation 이후에, UE가 네트워크에 등록된 RA(들)/TA(들)을 벗어나지 않는 한 네트워크 업데이트할 필요 없이, UE는 E-UTRAN와 UTRAN/GERAN 간에 재선택할 수 있다.
네트워크는 RAU 또는 TAU 동안에 ISR를 활성화하는 것이 요구되지 않으나, 네트워크는 SGSN과 MME 간에 컨텍스트 전달을 포함하는 어떠한 RAU 또는 TAU에서 ISR을 활성화할 수 있다.
도 8에서는 RAU 절차를 예시하나, 이미 GERAN/UTRAN 에 어태치(attach)된 UE를 위한 ISR activation를 위한 TAU 절차는 위한 이와 매우 유사하게 동작될 수 있다. 즉, ISR이 활성화(activation)되기 위한 절차는 다음과 같다.
1) 단말이 GERAN/UTRAN에 등록되어 있다.
2) 단말이 LTE 셀로 이동한 경우, 단말은 TAU(Tracking Area Updating) procedure를 수행한다.
3) MME는 UE 컨텍스트(UE context)를 요청 및 ISR 지원 가능(capable) 하다고 SGSN에게 알려준다.
4) SGSN은 UE 컨텍스트 및 ISR 지원 가능(capable)하다고 MME에게 응답한다.
5) S-GW는 MME로부터 단말의 등록 및 ISR 활성화(activated) 됨을 보고 받는다.
6) HSS는 MME 주소에 대해서 업데이트 될 수 있다. 이때, 업데이트 타입은 HSS는 SGSN 위치(location)을 취소하지 않음을 알려준다.
7) MME는 TAU 승인(accept) 메시지를 통해 단말에게 ISR 활성화되었음을 알려준다.
일단, 단말이 ISR 활성화되면(MME로부터 TAU 승인 메시지 내 ISR 활성 지시(ISR activated indication)을 수신하면), 단말은 ISR이 비활성화(deactivation)될 때까지, 아이들(idle) 상태에서 어떠한 네트워크로의 시그널링을 전송할 필요 없이 LTE(E-UTRAN)과 2G(GERAN)/3G(UTRAN) RAT을 선택할 수 있다.
ISR 활성화는 매번 RAU/TAU 절차를 수행할 때마다 갱신되어야만 한다. 즉, 단말은 MME/SGSN으로부터 수신한 TAU/RAU 승인 메시지에 ISR 활성 지시(ISR activated indication)이 존재하지 않으면, ISR 비활성(deactivation) 하게 된다.
단말과 네트워크(MME/SGSN)은 E-UTRAN과 GERAN/UTRAN을 위한 주기적인 업데이트 타이머(예를 들어, E-UTRAN를 위한 T3412, GERAN/UTRAN를 위한 T3312)를 독립적으로 동작시킨다. 따라서 단말은 해당 네트워크에 캠핑되어 있는데 해당 네트워크 관련 주기적 업데이트 타이머가 만료(expired)되면, 주기적 TAU(P-TAU: Periodic TAU)(T3412의 경우) 또는 주기적 RAU(P-RAU: Periodic RAU)(T3312의 경우)를 수행하게 된다.
만약, 단말이 LTE에 캠핑되어 있는데, P-RAU 타이머(T3312)가 만료되면, P-RAU는 수행하지 않는다. 이 경우, 단말은 GERAN/UTRAN를 위한 비활성 ISR 타이머(deactivate ISR timer)(T3323)를 동작시킨다. 만약, T3323이 만료되면, 단말은 ISR 비활성(deactivation)하게 된다.
반대로, 단말이 GERAN/UTRAN에 캠핑되어 있는데, P-TAU 타이머(T3412)가 만료되면 P-TAU를 수행하지 않는다. 이 경우, 단말은 E-UTRAN을 위한 비활성 ISR 타이머(deactivate ISR timer)(T3423)를 동작시킨다. 만약, T3423이 만료되면, 단말은 ISR 비활성(deactivation)하게 된다.
만약, 네트워크(즉, MME/SGSN)가 단말로부터 P-TAU/RAU를 보고 받지 못하면, 단말이 네트워크 안에 접근 가능하지 않다(unreachable)고 간주한다. 네트워크는 이것을 위해서 이동 접근 타이머(mobile reachable timer)를 동작시킨다(일반적으로, 4 분 + T3412/T3312의 값으로 셋팅). 이 mobile reachable timer가 만료되면, 다시 암묵적인 디태치 타이머(implicit detach timer)를 동작시킨다. 만약, implicit detach timer가 만료되면, 최종적으로 단말이 unreachable하다고 간주하고, 해당 단말을 detach 시킨다.
이하, ISR activated 된 상황에서 UE에게 하향링크 데이터가 전송될 때, 페이징 절차를 살펴본다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 데이터 전달을 위한 페이징 절차를 예시하는 도면이다.
1. 하향링크 데이터(Downlink Data)가 외부 네트워크(external network)로부터 P-GW에 도달하면, P-GW는 하향링크 데이터를 S-GW에게 전달한다.
2. 하향링크 S1 베어러가 해제(즉, ECM-IDLE 상태)되어 하향링크 데이터를 기지국(eNB)에게 전송할 수 없는 경우(즉, S-GW에 'S1 eNB TEID' 값이 존재하지 않는 경우), S-GW는 수신한 하향링크 데이터를 버퍼링한다. 그리고, S-GW는 해당 단말(UE)에 대한 시그널링 연결 및 베어러 설정을 위하여 단말이 등록되어 있는 MME/SGSN에게 하향링크 데이터 통지(DDN: Downlink Data Notification) 메시지를 전송한다.
MME/SGSN는 DDN 메시지에 대한 응답으로 하향링크 데이터 통지 ACK(Downlink Data Notification ACK) 메시지를 S-GW에게 전송한다.
3. MME/SGSN는 단말이 가장 최근에 등록했던 트래킹 영역에 속하는 모든 eNB/RNC(또는 BSC(Base Station Controller))에게 페이징(paging) 메시지를 전송한다.
4. eNB/RNC(또는 BSC)은 MME/SGSN로부터 페이징(paging) 메시지를 수신하면, eNB/RNC(또는 BSC)은 페이징(paging) 메시지를 브로드캐스팅한다.
5. 자신에게 향하는 하향링크 데이터가 있음을 인지한 단말은 자신이 캠핑되어 있는 네트워크에서 paging에 대한 응답으로 서비스 요청 절차(service request procedure)를 수행하게 된다.
도 9의 경우, 단말이 E-UTRAN에 캠핑되어 있는 경우를 예시하며, 단말은 서비스 요청(Service Request) 메시지를 MME에게 전송하여 서비스 요청 절차(service request procedure)를 개시함으로써 ECM 연결을 설정한다.
6. MME는 eNB와의 시그널링 및 S-GW와의 시그널링을 통해 단말의 사용자 평면 셋업(User Plane Setup) 절차를 수행한다.
보다 구체적으로, MME는 기지국(eNB)이 S-GW와 S1 베어러를 설정하고, 단말과 DRB를 설정할 수 있도록 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 기지국에게 전송한다. 기지국은 DRB를 생성하기 위하여 단말에게 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 전송한다.
이 절차를 마치면, 기지국과 단말 간 DRB의 생성이 완료되어, 단말로부터 P-GW까지 상향링크 EPS 베어러가 모두 설정된다. 단말은 P-GW로 상향링크 트래픽을 전송할 수 있다.
기지국은 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지에 대한 응답으로 'S1 eNB TEID'를 포함하는 초기 컨텍스트 셋업 완료(Initial Context Setup Complete) 메시지를 MME에게 전송한다.
MME는 기지국으로부터 수신한 'S1 eNB TEID'를 수정 베어러 요청(Modify Bearer Request) 메시지를 통해 S-GW에게 전달한다.
이 절차를 마치면, 기지국과 S-GW 간에 하향링크 S1 베어러의 생성이 완료됨으로써 P-GW에서 단말까지 하향링크 EPS 베어러가 모두 설정된다. 단말은 P-GW로부터 하향링크 트래픽을 수신할 수 있다.
위와 같이 하향링크 데이터 연결(즉, 사용자 평면 셋업)이 해당 네트워크와 S-GW 사이에 설정되면, S-GW는 다른 네트워크(즉, 단말이 캠핑되지 않은 네트워크)에게 페이징 중단(stop paging) 메시지를 전송하여 단말로의 paging을 멈추게 한다.
예를 들면, ISR activated 된 상황에서 하향링크 데이터가 수신 된 경우, S-GW는 MME와 SGSN에게 DDN을 모두 전송하고, MME와 SGSN은 각각 paging 메시지를 단말에게 전송하게 된다. 단말이 E-UTRAN에 캠핑되어 있다면, paging 응답으로 MME에게 서비스 요청(Service Request)를 전송하게 되고, E-UTRAN과 S-GW와 하향링크 데이터 연결이 설정된다. 이후, S-GW는 SGSN에게 stop paging 메시지를 전송하여, SGSN은 단말로의 paging을 멈춘다.
7. S-GW는 서비스 요청(Service Request) 절차가 수행되는 RAT을 통해 하향링크 데이터는 UE에게 전송한다.
eDRX (Extended Idle mode Discontinuous Reception)
UE와 코어 네트워크는 eDRX의 사용을 협상할 수 있다. UE가 eDRX의 요청을 결정하면, UE는 어태치 요청(attach request) 및/또는 TAU 요청(TAU request) 메시지에 eDRX 파라미터 정보 요소를 포함시킨다. UE는 또한 보통의 아이들 모드 DRX(regular idle mode DRX)를 위한 UE 특정한 DRX 파라미터를 포함시킬 수 있다.
MME는 eDRX를 활성화하기 위한 UE 요청을 수락(accept)할지 거절할지 결정한다.
MME가 eDRX를 수락한 경우, 운영자 정책에 기반하여 MME는 또한 UE에 의해 요청된 값과 상이한 eDRX 파라미터의 값을 제공할 수 있다. MME가 eDRX를 수락하면, UE는 수신한 eDRX 파라미터를 기반으로 eDRX를 적용한다. SGSN/MME가 UE의 요청을 거절하거나 eDRX를 지원하지 않는 SGSN/MME가 요청을 수신한 이유 때문에, UE가 eDRX 파라미터 정보 요소를 관련된 승인 메시지 내에서 수신하지 못하면, UE는 regular idle mode DRX를 적용한다.
UE가 긴급 베어러 서비스를 위한 베어러를 가질 때, UE는 eDRX를 위한 요청을 할 수 없다.
UE는 eDRX를 여전히 사용하길 원한다면, eDRX 파라미터 정보 요소를 각 TAU 메시지 내 포함시켜야 한다. UE가 MME에서 MME로, MME에서 SGSN으로, SGSN에서 MME로의 이동할 때, eDRX 파라미터는 이동성 관리(MM: Mobility Management) 컨텍스트(context) 정보의 일부로서 이전 코어 노드(old CN node)로부터 새로운 코어 노드(new CN node)로 전송되지 않는다.
UE와 네트워크는 NAS(non-access stratum) 시그널링을 통해 UE의 파워 소모를 감소시키기 위하여 eDRX의 사용을 협상할 수 있으나, 반면 단말 종단 데이터(mobile terminating data) 및/또는 네트워크에 의해 발생된 절차(network originated procedure)는 DRX 사이클 값에 종속된 특정 지연 내에 이용 가능하다.
eDRX의 사용을 원하는 어플리케이션은 단말 종단 서비스(mobile terminating service) 또는 데이터 전달의 명확한(specific) 제어를 고려해야 할 필요가 있고, 특히 해당 어플리케이션은 단말 종단 데이터에 대한 지연 용인(delay tolerance)을 고려할 필요가 있다.
네트워크 단 어플리케이션은 단말 종단 데이터, SMS 또는 장치 트리거(device trigger)를 전송할 수 있으며, eDRX가 적절히 준비될 수 있는지 알아야 할 필요가 있다.
eDRX의 사용을 협상하기 위하여, UE는 어태치(attach) 절차 및 RAU/TAU 절차 동안에 eDRX 파라미터를 요청한다. SGSN/MME는 eDRX를 활성화하기 위한 UE 요청을 거절하거나 수락할 수 있다.
SGSN/MME가 eDRX를 수락한 경우, 운영자(operator) 정책에 기반하여 SGSN/MME는 UE에 의해 요청된 eDRX 파라미터와 상이한 값을 제공할 수 있다. SGSN/MME가 eDRX의 사용을 수락하면, UE는 수신한 eDRX 파라미터에 기반하여 eDRX를 적용한다. SGSN/MME가 UE의 요청을 거절하거나 eDRX를 지원하지 않는 SGSN/MME가 요청을 수신한 이유 때문에, UE가 eDRX 파라미터 정보 요소를 관련된 승인 메시지 내에서 수신하지 못하면, UE는 regular idle mode DRX를 적용한다.
UE가 NAS를 통해 PSM(활성 시간(active time) 및 P-TAU 타이머 요청)과 eDRX(특정 eDRX 사이클 값과 함께)의 활성화를 모두 요청하면, SGSN/MME는 다음 중 어느 하나를 결정한다.
1) PSM만을 활성화한다. 즉, eDRX의 요청을 수락하지 않는다.
2) eDRX만을 활성화한다. 즉, active time의 요청을 수락하지 않는다.
3) PSM(즉, active time 제공) 및 eDRX(즉, eDRX 파라미터 제공) 모두 활성화한다.
상기 3가지의 동작 중에서의 결정, UE에게 제공되는 active time, P-TAU 타이머 및/또는 eDRX 사이클 값은 로컬 설정(local configuration)과 SGSN/MME 내 가용한 다른 정보에 기반한 구현(implementation)에 종속된다. 선택된 방법은 다음 어태치(Attach) 또는 RAU/TAU 절차가 개시될 때까지(새로운 방법이 결정될 때) 사용된다. eDRX 및 PSM이 모두 활성화되면, eDRX 사이클은 active timer가 동작되는 동안 다중의 페이징 시점(paging occasion)을 가지도록 셋팅되어야 한다.
UE에 의해 제공되는 PSM active time이 UE에 의해 제공되는 eDRX 사이클 값보다 큰 경우, SGSN/MME는 PSM과 eDRX 모두 활성화시킬 수 있다. 이로 인하여 UE는 active time 동안 파워 소모를 최소화할 수 있다(예를 들어, active time이 수 분 정도 일반적인 active time 보다 약간 긴 경우).
eDRX가 활성화되는 경우, 네트워크는 높은 레이턴시(latency) 통신 특성을 이용하여 mobile terminated data를 제어할 수 있다. mobile terminated SMS를 제어하기 위한 기술을 적용할 수 있다.
UE는 어태치 요청(attach request) 또는 TAU 요청(TAU request) 내 eDRX 파라미터를 포함시킴으로써 eDRX 사이클의 사용을 요청할 수 있다. UE는 UE가 긴급 베어러 서비스를 위해 확립된 PDN 연결을 가지고 있을 때 TAU 절차 동안 eDRX 사이클의 사용을 요청하지 않는다.
네트워크는 어태치 요청 또는 TAU 요청을 수락할 때, eDRX 파라미터를 제공함으로써 eDRX 사이클의 사용에 대한 요청을 수락한다. UE는 각 TAU 요청 시 eDRX 사이클의 사용을 위한 요청을 반복한다. 네트워크가 마지막 성공적인 어태치 또는 TAU 절차 동안에 eDRX 사이클의 사용에 대한 요청을 수락한 경우에만, UE가 eDRX 사이클을 사용할 수 있다.
ISR 활성/비활성 제어 방법
상술한 바와 같이, 단말이 eDRX을 사용하고 있는 경우, S-GW가 하향링크 데이터를 MME/SGSN에게 DDN를 전송하게 된다. 이때, MME 혹은 SGSN은 단말이 eDRX 모드라는 것을 인지하고 있기 때문에 MME 혹은 SGSN은 DDN 거절(DDN reject) 메시지를 S-GW에게 전송하고 단말에게 페이징(paging)을 전송하지 않는다.
그런데, 만약 ISR activated 환경에서, 일부 네트워크(MME 혹은 SGSN)가 eDRX를 지원하지 않는 경우, 다음과 같이 단말 종단(MT: mobile terminated) 콜/데이터(call/data)를 단말에게 전송 시 문제가 발생할 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 10 및 도 11은 ISR이 활성화되어 있는 상황에서, eDRX 모드 사용 시의 문제점을 설명하기 위한 도면이다.
도 10 및 도 11에서는 MME가 eDRX를 지원하고, SGSN은 eDRX를 지원하지 않으며, ISR 활성화(activate)되고, UE가 현재 eDRX 모드인 것을 가정한다.
1. S-GW는 downlink data를 수신한다.
2. S-GW는 하향링크 데이터 통지(DDN)을 MME 및 SGSN에게 전송한다.
3. MME는 S-GW에게 downlink data의 저장을 위한 기간 정보(duration information)와 함께 DDN을 거절한다. 즉, MME는 거절 원인(reject cause)와 downlink data의 저장을 위한 기간 정보(duration information)를 포함하는 DDN 확인(acknowledge) 메시지를 S-GW에게 전송한다.
따라서, MME는 UE에게 페이징을 전송하지 않는다.
4-5. 반면, SGSN은 UE가 현재 eDRX 모드인지 모르기 때문에 UE에게 페이징(paging)한다.
다시 말해, eDRX mode에서는 MME는 단말이 eDRX mode에 있는 것을 인지하고 있으므로 DDN 거절(reject) 메시지(downlink data의 저장을 위한 기간 정보(duration information)와 함께)를 S-GW에게 전송하지만, SGSN은 종래와 같이 단말에게 paging을 전송하게 된다.
이때, SGSN은 S-GW로부터 페이징 중단(stop paging) 메시지를 수신하거나 일정 기간(period)동안 페이징 실패로 인하여 UE가 접근 가능하지 않다(unreachable)고 확인(acknowledge)할 때까지 UE에게 계속하여 paging을 전송할 수 있다.
즉, SGSN은 단말이 eDRX 모드(mode)에 있는 것을 인지하지 못하기 때문에, 일정 시간 동안 혹은 시도 제한 횟수만큼 단말에게 paging을 전송하게 된다.
그러나, UE가 서비스 요청(Service Request) 절차를 통해 paging에 응답하여야만, S-GW는 stop paging을 SGSN에게 전송할 수 있다. 그러므로, SGSN의 UE로의 paging은 불필요하고(useless)하고, 자원 낭비를 초래한다.
UE는 SGSN에게 페이징에 대한 응답에 실패할 수 있으며, MT call/data를 수신하는데 실패할 수 있다.
다시 말해, eDRX으로 동작하는 단말은 eDRX 사이클(cycle) 동안에 특정 프레임 시점에서만 paging을 수신하여 응답을 할 수 있지만, SGSN과 단말 사이에서 paging 수신을 위한 특정 frame 시점을 서로 잘못 이해하고 있기 때문에(즉, 동기가 맞지 않은), paging 수신 실패 확률이 높다.
따라서, 이러한 상황에서는 SGSN의 UE로의 paging은 불필요한 동작이며, 이로 인하여 불필요한 네트워크 자원 낭비를 초래한다. 더불어, 단말과 SGSN의 paging 수신 시점의 불일치로 인한 paging 수신 실패 및 결과적으로 MT call/data 수신 실패가 발생한다.
반대의 경우(즉, SGSN은 eDRX을 지원하지만, MME가 eDRX를 지원하지 않는 경우)에도, 마찬가지로 위와 동일한 문제가 발생한다. 즉, MME의 UE로의 paging은 불필요한 동작이며, 이로 인하여 불필요한 네트워크 자원 낭비를 초래한다.
위와 같은 문제점을 해결하기 위하여, 본 발명에서는 ISR이 활성화된(activated) 환경에서, 일부 네트워크가 eDRX를 지원하지 않는 경우, 불필요한 자원 낭비를 방지하기 위하여 단말 혹은 네트워크 처리 방안을 제안한다.
A-1) 본 발명의 일 실시예에 따르면, ISR 활성화 절차(ISR activation procedure)(앞서 도 8 참조)에서 네트워크 노드들(예를 들어, MME와 SGSN)이 상호 eDRX 능력(capability)(즉, eDRX 지원 여부)를 확인함으로써, 최종적으로 단말의 ISR 활성(activation)/비활성(deactivation) 여부가 결정될 수 있다.
도 12는 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 12를 참조하면, UE는 어태치 요청(Attach Request) 메시지를 MME에게 전송함으로써 어태치 절차를 개시한다(S1201).
여기서, Attach Request 메시지는 이전 GUTI(old GUTI)(즉, 실제(real) GUTI 또는 P-TMSI와 매핑된 GUTI) 등을 포함할 수 있다.
MME는 HSS와 상호작용(interaction)을 수행할 수 있으며(S1202), MME는 HSS에 등록(register)될 수 있다(S1203).
MME는 어태치 요청(Attach Request) 메시지에 대한 응답으로 어태치 승인(Attach Accept) 메시지를 단말에게 전송한다(S1204).
여기서, Attach Accept 메시지는 GUTI를 포함할 수 있다.
Attach Accept 메시지는 ISR 활성(ISR activation)을 지시하지 않으며, 따라서, UE는 TIN을 GUTI로 셋팅한다(S1205).
앞서 S1201 단계 내지 S1205 단계는 어떠한 잠재적인(potential) 이전 ISR 상태(old ISR state)도 비활성화된 것 이외에 ISR을 위한 특수한 것이 존재하지 않는 일반적인 Attach procedure에 해당한다.
도 12에서는 위와 같이 UE가 E-UTRAN에 attach되어 있는 상태를 가정한다. 또한, MME와 SGSN 모두 ISR을 지원하고, MME는 eDRX를 지원하지만, SGSN은 eDRX를 지원하지 않는다고 가정한다.
UE는 RAU procedure를 개시한다(S1206).
이때, UE는 eDRX 파라미터(parameter)를 포함하는 RAU Request을 SGSN에게 전송할 수 있다.
여기서, 앞서 S1205 단계와 같이 TIN이 "GUTI"로 셋팅되어 있으므로, RAU Request는 GUTI와 매핑된 "P-TMSI"를 포함할 수 있다.
SGSN은 MME에게 UE 컨텍스트(UE context)를 요청하면서, eDRX 지원을 위한 지시 없이, 자신이 ISR을 지원가능(capable)하다고 지시한다(S1207).
즉, SGSN은 eDRX를 지원하지 않기 때문에 SGSN은 MME에게 자신이 eDRX capable하다고 지시하지 않는다(즉, no eDRX capability indication).
다시 말해, SGSN은 eDRX를 지원하지 않음을 지시(즉, no eDRX capability indication)와 ISR을 지원함을 지시(즉, ISR capability indication)를 포함하는 UE 컨텍스트 요청(UE Context Request) 메시지를 MME에게 전송한다.
MME는 UE context를 응답하면서, SGSN에게 자신이 ISR capable하지 않으며, eDRX는 capable하다고 지시한다(S1208).
즉, 앞서 S1107 단계에서 SGSN이 MME에게 eDRX capable하다고 지시하지 않았으므로, MME는 SGSN이 eDRX를 지원하지 않는다고 알기 때문에, 자신이 ISR capable하지 않으며, eDRX를 capable하다고 지시한다. 다시 말해, MME는 자신이 ISR을 지원함에도 불구하고, SGSN이 eDRX를 지원하지 않으므로, 자신이 ISR capable하지 않다고 지시한다.
다시 말해, MME는 ISR을 지원하지 않음을 지시(즉, no ISR capability indication) 및 eDRX를 지원함을 지시(즉, eDRX capability indication)를 포함하는 UE 컨텍스트 응답(UE Context Response) 메시지를 SGSN에게 전송한다.
또 다른 일례로, MME는 eDRX를 지원함을 지시(즉, eDRX capability indication)와 ISR을 지원함을 지시(즉, ISR capability indication)를 포함하는 UE 컨텍스트 응답(UE Context Response) 메시지를 SGSN에게 전송할 수도 있다.
SGSN은 MME에게 ISR이 활성화되지 않는다고 확인(acknowledge)한다(S1209).
즉, SGSN은 ISR 비활성 지시(ISR no active indication)을 포함하는 UE 컨텍스트 확인(UE Context Acknowledge) 메시지를 MME에게 전송한다.
다시 말해, SGSN은 MME로부터 ISR을 지원하지 않음을 수신하였으므로, MME에게 ISR이 활성화되지 않는다고 확인(acknowledge) 할 수 있다.
또는, eDRX를 지원하지 않는 SGSN은 MME로부터의 ISR 확인 지시와 상관 없이 MME로부터 eDRX capability indication 또는 no eDRX capability indication을 무시하고, MME에게 ISR이 활성화되지 않는다고 확인(acknowledge) 할 수도 있다.
MME는 SGSN ID를 저장할 수 있으며(S1210), SGSN은 MME ID를 저장할 수 있다(S1211).
SGSN은 HSS와 상호작용(interaction)을 수행할 수 있으며(S1212), SGSN은 HSS에 등록(register)될 수 있다(S1213).
SGSN은 UE에게 RAU procedure가 성공적이며, ISR이 활성화되지 않았다고 알려준다(S1214).
즉, SGSN은 ISR 비활성 지시(No ISR activation indication)를 포함하는 RAU 승인(RAU Accept) 메시지를 UE에게 전송한다.
이때, SGSN은 eDRX를 지원하지 않으므로, RAU Accept 메시지는 eDRX를 지원하기 위한 eDRX 파라미터를 포함하지 않게 된다.
RAU Accept 메시지 내에서 ISR 비활성(No ISR activation)을 지시하므로, UE는 ISR을 활성화하지 않는다(S1215).
이때, UE는 TIN을 "RAT-related TMSI"이 아닌 "P-TMSI"로 셋팅할 수 있다.
만약, S1207 단계에서 SGSN이 eDRX capability indication를 포함하는 UE Context Request 메시지를 MME에게 전송한다면, MME는 SGSN이 eDRX 지원함을 인지할 수 있다. 이 경우, MME도 eDRX를 지원하므로, S1214 단계에서 eDRX 지원을 수반한 ISR 활성(ISR activation with eDRX support)이 수행될 수 있다. 즉, SGSN은 RAU Accept 메시지 내에서 eDRX 모드를 위한 파라미터 및 ISR 활성(activation) 지시를 포함시켜 UE에게 전송할 수 있다.
한편, 도 12에서는 UE가 E-UTRAN에 attach 되어 있는 상황에서 UTRAN의 커버리지로 이동함으로써 RAU 절차를 수행하는 경우를 예시하고 있으나, 이와 반대로 UE가 UTRAN에 attach 되어 있는 상황에서 E-UTRAN 커버리지로 이동함으로써 TAU 절차를 수행하는 경우에도 동일하게 적용될 수 있다. 즉, 도 12에서 MME가 SGSN로 대체되고, SGSN이 MME로 대체된 경우에 다음과 같이 ISR 제어 방법이 수행될 수 있다.
이하, 앞서 S1201 단계 내지 S1205 단계와 같은 절차를 통해 UE가 UTRAN에 attach되어 있는 상태를 가정한다. 또한, MME와 SGSN 모두 ISR을 지원하고, MME는 eDRX를 지원하지만, SGSN은 eDRX를 지원하지 않는다고 가정한다.
UE는 TAU procedure를 개시한다(S1206).
이때, UE는 eDRX 파라미터(parameter)를 포함하는 TAU Request을 MME에게 전송할 수 있다.
MME는 SGSN에게 UE context를 요청하면서, 자신이 ISR 지원가능(capable)하고, eDRX 지원가능(capable)하다고 지시한다(S1207).
즉, MME는 ISR을 지원함을 지시(즉, ISR capability indication) 및 eDRX를 지원함을 지시(즉, eDRX capability indication)를 포함하는 UE 컨텍스트 요청(UE Context Request) 메시지를 SGSN에게 전송한다.
SGSN은 UE context를 응답하면서, MME에게 eDRX 지원을 위한 지시 없이 자신이 ISR을 지원가능(capable)하다고 지시한다(S1208).
즉, SGSN은 eDRX를 지원하지 않으므로, SGSN은 MME에게 자신이 eDRX capable하다고 지시하지 않는다(즉, no eDRX capability indication).
다시 말해, SGSN은 eDRX를 지원하지 않음을 지시(즉, no eDRX capability indication) 및 ISR을 지원함을 지시(즉, ISR capability indication)를 포함하는 UE 컨텍스트 응답(UE Context Response) 메시지를 MME에게 전송한다.
MME는 앞서 S1208 단계에서 SGSN이 MME에게 자신이 eDRX capable하다고 지시하지 않았으므로, SGSN이 eDRX를 지원하지 않음을 알 수 있다. 따라서, MME는 SGSN에게 ISR이 활성화되지 않는다고 확인(acknowledge)한다(S1209).
즉, MME는 ISR 비활성 지시(ISR no active indication)을 포함하는 UE 컨텍스트 확인(UE Context Acknowledge) 메시지를 SGSN에게 전송한다.
SGSN은 MME ID를 저장할 수 있으며(S1210), MME는 SGSN ID를 저장할 수 있다(S1211).
MME는 HSS와 상호작용(interaction)을 수행할 수 있으며(S1212), MME는 HSS에 등록(register)될 수 있다(S1213).
MME는 UE에게 TAU procedure가 성공적이며, ISR이 활성화되지 않았다고 알려준다(S1214).
즉, MME는 ISR 비활성 지시(No ISR activation indication)를 포함하는 TAU 승인(TAU Accept) 메시지를 UE에게 전송한다.
이때, MME는 eDRX 모드를 지원하므로, TAU Accept 메시지는 eDRX를 위한 파라미터를 포함할 수 있다.
TAU Accept 메시지 내에서 ISR 비활성(No ISR activation)을 지시하므로, UE는 ISR을 활성화하지 않는다(S1215).
이때, UE는 TIN을 "RAT-related TMSI"이 아닌 "GUTI"로 셋팅할 수 있다.
이때, TAU Accept 메시지에 eDRX 지원을 위한 파라미터가 포함되면, UE는 eDRX를 활성화할 수 있다.
만약, S1208 단계에서 SGSN이 eDRX capability indication를 포함하는 UE Context Response 메시지를 MME에게 전송한다면, MME는 SGSN이 eDRX 지원함을 인지할 수 있다. 이 경우, MME도 eDRX를 지원하므로, S1214 단계에서 eDRX 지원을 수반한 ISR 활성(ISR activation with eDRX support)이 수행될 수 있다. 즉, MME는 TAU Accept 메시지 내에서 eDRX 모드를 위한 파라미터 및 ISR 활성(activation) 지시를 포함시켜 UE에게 전송할 수 있다.
한편, 도 12에서 예시하는 실시예에서는 MME가 eDRX를 지원하고 SGSN이 eDRX를 지원하는 경우를 가정하고 있으나, 이와 반대로 MME가 eDRX를 지원하지 않고 SGSN이 eDRX를 지원하는 경우에도 동일하게 적용할 수 있다.
A-2) 본 발명의 다른 일 실시예에 따르면, ISR activation procedure(앞서 도 8 참조)에서 네트워크 노드들(예를 들어, MME와 SGSN)이 상호 eDRX 능력(capability)(즉, eDRX 지원 여부)를 확인함으로써, 최종적으로 단말의 ISR 활성(activation)/비활성(deactivation) 여부가 결정될 수 있다.
도 13은 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 13을 참조하면, UE는 어태치 요청(Attach Request) 메시지를 MME에게 전송함으로써 어태치 절차를 개시한다(S1301).
여기서, Attach Request 메시지는 이전 GUTI(old GUTI)(즉, 실제(real) GUTI 또는 P-TMSI와 매핑된 GUTI) 등을 포함할 수 있다.
MME는 HSS와 상호작용(interaction)을 수행할 수 있으며(S1302), MME는 HSS에 등록(register)될 수 있다(S1303).
MME는 어태치 요청(Attach Request) 메시지에 대한 응답으로 어태치 승인(Attach Accept) 메시지를 단말에게 전송한다(S1304).
여기서, Attach Accept 메시지는 GUTI를 포함할 수 있다.
Attach Accept 메시지는 ISR 활성(ISR activation)을 지시하지 않으며, 따라서, UE는 TIN을 GUTI로 셋팅한다(S1305).
앞서 S1301 단계 내지 S1305 단계는 어떠한 잠재적인(potential) 이전 ISR 상태(old ISR state)도 비활성화된 것 이외에 ISR을 위한 특수한 것이 존재하지 않는 일반적인 Attach procedure에 해당한다.
도 13에서는 위와 같이 UE가 E-UTRAN에 attach되어 있는 상태를 가정한다. 또한, MME와 SGSN 모두 ISR을 지원하고, MME는 eDRX를 지원하지만, SGSN은 eDRX를 지원하지 않는다고 가정한다.
UE는 RAU procedure를 개시한다(S1306).
이때, UE는 eDRX 파라미터(parameter)를 포함하는 RAU Request을 SGSN에게 전송할 수 있다.
여기서, 앞서 S1305 단계와 같이 TIN이 "GUTI"로 셋팅되어 있으므로, RAU Request는 GUTI와 매핑된 "P-TMSI"를 포함할 수 있다.
SGSN은 MME에게 UE 컨텍스트(UE context)를 요청하면서, 자신이 ISR을 지원가능(capable)하다고 지시한다(S1307).
즉, SGSN은 ISR을 지원함을 지시(즉, ISR capability indication)를 포함하는 UE 컨텍스트 요청(UE Context Request) 메시지를 MME에게 전송한다.
MME는 UE context를 응답하면서, SGSN에게 자신이 ISR capable하지 않다고 지시한다(S1308).
즉, MME는 ISR을 지원함을 지시(즉, ISR capability indication)를 포함하는 UE 컨텍스트 응답(UE Context Response) 메시지를 SGSN에게 전송한다.
SGSN은 MME에게 ISR이 활성화되었다고 확인(acknowledge)한다(S1309).
즉, SGSN은 ISR 활성화되었다는 지시(ISR actived)를 포함하는 UE 컨텍스트 확인(UE Context Acknowledge) 메시지를 MME에게 전송한다.
MME는 SGSN ID를 저장할 수 있으며(S1310), SGSN은 MME ID를 저장할 수 있다(S1311).
SGSN은 HSS와 상호작용(interaction)을 수행할 수 있으며(S1312), SGSN은 HSS에 등록(register)될 수 있다(S1313).
SGSN은 UE에게 RAU procedure가 성공적이며, eDRX를 지원하기 위한 eDRX 파라미터 없이 ISR이 활성화되었다고 알려준다(S1314).
즉, SGSN은 eDRX 파라미터 없이 ISR 활성 지시(ISR activation indication)를 포함하는 RAU 승인(RAU Accept) 메시지를 UE에게 전송한다.
UE는 RAU Accept 메시지에 의해 ISR이 활성화되었으나, eDRX 파라미터가 RAU Accept에 존재하지 않으므로, 현재 SGSN은 eDRX를 지원하지 않는다고 알 수 있다. 따라서, UE는 독자적으로(locally) ISR 및 eDRX를 비활성화한다(S1315).
이때, UE는 TIN을 "RAT-related TMSI"이 아닌 "P-TMSI"로 셋팅할 수 있다.
만약 S1314 단계에서 SGSN이 eDRX 지원을 위한 eDRX 파라미터를 UE에게 제공한다면, UE는 SGSN이 eDRX 지원함을 인지할 수 있다. 따라서, S1315 단계에서 eDRX 지원을 수반한 ISR 활성(ISR activation with eDRX support)이 수행될 수 있다.
한편, 도 13에서는 UE가 E-UTRAN에 attach 되어 있는 상황에서 UTRAN의 커버리지로 이동함으로써 RAU 절차를 수행하는 경우를 예시하고 있으나, 이와 반대로 UE가 UTRAN에 attach 되어 있는 상황에서 E-UTRAN 커버리지로 이동함으로써 TAU 절차를 수행하는 경우에도 동일하게 적용될 수 있다. 즉, 도 13에서 MME가 SGSN로 대체되고, SGSN이 MME로 대체된 경우에 다음과 같이 ISR 제어 방법이 수행될 수 있다.
이하, 앞서 S1301 단계 내지 S1305 단계와 같은 절차를 통해 UE가 UTRAN에 attach되어 있는 상태를 가정한다. 또한, MME와 SGSN 모두 ISR을 지원하고, MME는 eDRX를 지원하지만, SGSN은 eDRX를 지원하지 않는다고 가정한다.
UE는 TAU procedure를 개시한다(S1306).
이때, UE는 eDRX 파라미터(parameter)를 포함하는 TAU Request을 MME에게 전송할 수 있다.
MME는 SGSN에게 UE 컨텍스트(UE context)를 요청하면서, 자신이 ISR을 지원가능(capable)하다고 지시한다(S1307).
즉, MME는 ISR을 지원함을 지시(즉, ISR capability indication)를 포함하는 UE 컨텍스트 요청(UE Context Request) 메시지를 SGSN에게 전송한다.
SGSN은 UE context를 응답하고, MME에게 자신이 ISR capable하다고 지시한다(S1308).
즉, SGSN은 ISR을 지원함을 지시(즉, ISR capability indication)를 포함하는 UE 컨텍스트 응답(UE Context Response) 메시지를 SGSN에게 전송한다.
MME는 SGSN에게 ISR이 활성화되었다고 확인(acknowledge)한다(S1309).
즉, MME는 ISR 활성화되었다는 지시를 포함하는 UE 컨텍스트 확인(UE Context Acknowledge) 메시지를 SGSN에게 전송한다.
SGSN은 SGSN ID를 저장할 수 있으며(S1310), MME는 MME ID를 저장할 수 있다(S1311).
MME는 HSS와 상호작용(interaction)을 수행할 수 있으며(S1312), MME는 HSS에 등록(register)될 수 있다(S1313).
MME는 UE에게 TAU procedure가 성공적이며, eDRX 파라미터와 함께 ISR이 활성화되었다고 알려준다(S1314).
즉, MME는 eDRX 파라미터와 함께 ISR 활성 지시(ISR activation indication)를 포함하는 TAU 승인(TAU Accept) 메시지를 UE에게 전송한다.
UE는 ISR이 활성화되었으나, 이전 SGSN은 eDRX를 지원하지 않고 현재 MME는 eDRX를 지원한다고 알 수 있다. 예를 들어, UE는 이전에 attach 되어 있던 기지국(즉, UTRAN)으로부터 수신한 시스템 정보 블록(SIB: System Information Block) 내 하이퍼 프레임에 대한 정보(예를 들어, 하이퍼 프레임 번호(HFN: Hyper Frame Number) 또는 하이퍼 시스템 프레임 번호(H-SFN: Hyper-System Frame Number)에 대한 정보)가 존재하는지 여부에 따라 기지국(즉, UTRAN)이 eDRX를 지원하는지 여부를 판단할 수 있다.
따라서, UE는 독자적(locally) ISR를 비활성화한다(S1315).
이때, UE는 TIN을 "RAT-related TMSI"이 아닌 "GUTI"로 셋팅할 수 있다.
반면, TAU Accept 내 eDRX를 지원하기 위한 eDRX 파라미터가 포함되었으므로, UE는 eDRX를 활성화할 수 있다.
만약 SGSN이 eDRX 지원을 위한 파라미터를 UE에게 제공한다면, UE는 SGSN이 eDRX 지원함을 인지할 수 있다. 따라서, S1315 단계에서 eDRX 지원을 수반한 ISR 활성(ISR activation with eDRX support)이 수행될 수 있다.
한편, 도 13에서 예시하는 실시예에서는 MME가 eDRX를 지원하고 SGSN이 eDRX를 지원하는 경우를 가정하고 있으나, 이와 반대로 MME가 eDRX를 지원하지 않고 SGSN이 eDRX를 지원하는 경우에도 동일하게 적용할 수 있다.
A-3) 본 발명의 다른 일 실시예에 따르면, ISR activation procedure(앞서 도 8 참조)에서 네트워크 노드들(예를 들어, MME와 SGSN)의 eDRX 능력(capability)(즉, eDRX 지원 여부)를 확인함으로써, 최종적으로 UE가 지역적으로(locally) ISR 활성(activation)/비활성(deactivation) 여부를 결정할 수 있다.
도 14는 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 14를 참조하면, UE는 어태치 요청(Attach Request) 메시지를 MME에게 전송함으로써 어태치 절차를 개시한다(S1401).
여기서, Attach Request 메시지는 이전 GUTI(old GUTI)(즉, 실제(real) GUTI 또는 P-TMSI와 매핑된 GUTI) 등을 포함할 수 있다.
MME는 HSS와 상호작용(interaction)을 수행할 수 있으며(S1402), MME는 HSS에 등록(register)될 수 있다(S1403).
MME는 어태치 요청(Attach Request) 메시지에 대한 응답으로 어태치 승인(Attach Accept) 메시지를 단말에게 전송한다(S1404).
여기서, Attach Accept 메시지는 GUTI를 포함할 수 있다.
Attach Accept 메시지는 ISR 활성(ISR activation)을 지시하지 않으며, 따라서, UE는 TIN을 GUTI로 셋팅한다(S1405).
앞서 S1301 단계 내지 S1405 단계는 어떠한 잠재적인(potential) 이전 ISR 상태(old ISR state)도 비활성화된 것 이외에 ISR을 위한 특수한 것이 존재하지 않는 일반적인 Attach procedure에 해당한다.
도 14에서는 위와 같이 UE가 E-UTRAN에 attach되어 있는 상태를 가정한다. 또한, MME와 SGSN 모두 ISR을 지원하고, MME는 eDRX를 지원하지만, SGSN은 eDRX를 지원하지 않는다고 가정한다.
또한, UE는 RAT에 캠프-온(camp-on) 했을 때 해당 RAT에서의 eDRX 지원 여부를 인지한다고 가정한다. 즉, UE가 RAT에 캠프-온(camp-on) 하였을 때, UE는 해당 RAT(즉, 기지국)로부터 수신한 SIB를 통해 해당 RAT이 eDRX 모드를 지원하는지 여부를 알 수 있다. 즉, UE는 SIB 내 하이퍼 프레임에 대한 정보(예를 들어, HFN 또는 H-SFN에 대한 정보)가 존재하는지 여부에 따라 해당 RAT이 eDRX 모드를 지원하는지 여부를 판단할 수 있다.
도 14에서는 SGSN은 eDRX를 지원하지 않는다고 가정하였으므로, 기지국(즉, UTRAN)으로부터 수신한 SIB 내 하이퍼 프레임에 대한 정보(예를 들어, HFN 또는 H-SFN에 대한 정보)가 존재하지 않게 되고, UE는 이를 통해 UTRAN이 eDRX를 지원하지 않는다는 것을 알 수 있다.
UE는 RAU procedure를 개시한다(S1406).
이때, RAU Request는 eDRX 파라미터(parameter)를 포함하지 않으며, 상기 단말이 ISR을 지원하지 않음을 지시하는 지시(즉, no ISR support indication)를 포함할 수 있다. 또는, RAU Request는 eDRX 파라미터(parameter)를 포함하지 않으며, TIN이 "P-TMSI"로 셋팅될 수 있다.
SGSN은 MME에게 UE 컨텍스트(UE context)를 요청하면서, 자신이 ISR을 지원가능(capable)하지 않다고 지시한다(S1407).
즉, SGSN은 ISR을 지원하지 않음을 지시(즉, no ISR capability indication)를 포함하는 UE 컨텍스트 요청(UE Context Request) 메시지를 MME에게 전송한다.
MME는 UE context를 응답하면서, SGSN에게 자신이 ISR capable하지 않다고 지시한다(S1408).
즉, MME는 ISR을 지원하지 않음을 지시(즉, no ISR capability indication)를 포함하는 UE 컨텍스트 응답(UE Context Response) 메시지를 SGSN에게 전송한다.
SGSN은 MME에게 ISR이 활성화되지 않았다고 확인(acknowledge)한다(S1409).
즉, SGSN은 ISR 활성화되지 않았다는 지시(ISR not actived)를 포함하는 UE 컨텍스트 확인(UE Context Acknowledge) 메시지를 MME에게 전송한다.
MME는 SGSN ID를 저장할 수 있으며(S1410), SGSN은 MME ID를 저장할 수 있다(S1411).
SGSN은 HSS와 상호작용(interaction)을 수행할 수 있으며(S1412), SGSN은 HSS에 등록(register)될 수 있다(S1413).
SGSN은 UE에게 RAU procedure가 성공적이며, eDRX를 지원하기 위한 eDRX 파라미터 없이 ISR이 활성화되지 않았다고 알려준다(S1414).
즉, SGSN은 eDRX 파라미터 없이 ISR 비활성 지시(No ISR activation indication)를 포함하는 RAU 승인(RAU Accept) 메시지를 UE에게 전송한다.
RAU Accept 메시지 내에서 ISR 비활성(No ISR activation)을 지시하므로, UE는 ISR 및 eDRX를 활성화하지 않는다(S1415).
이때, UE는 TIN을 "RAT-related TMSI"이 아닌 "P-TMSI"로 셋팅할 수 있다.
한편, 도 14에서는 UE가 E-UTRAN에 attach 되어 있는 상황에서 UTRAN의 커버리지로 이동함으로써 RAU 절차를 수행하는 경우를 예시하고 있으나, 이와 반대로 UE가 UTRAN에 attach 되어 있는 상황에서 E-UTRAN 커버리지로 이동함으로써 TAU 절차를 수행하는 경우에도 동일하게 적용될 수 있다. 즉, 도 14에서 MME가 SGSN로 대체되고, SGSN이 MME로 대체된 경우에 다음과 같이 ISR 제어 방법이 수행될 수 있다.
이하, 앞서 S1401 단계 내지 S1405 단계와 같은 절차를 통해 UE가 UTRAN에 attach되어 있는 상태를 가정한다. 또한, MME와 SGSN 모두 ISR을 지원하고, MME는 eDRX를 지원하지만, SGSN은 eDRX를 지원하지 않는다고 가정한다.
UE는 TAU procedure를 개시한다(S1406).
이때, TAU Request는 eDRX 파라미터(parameter)를 포함하지 않으며, 상기 단말이 ISR을 지원하지 않음을 지시하는 지시(즉, no ISR support indication)를 포함할 수 있다. 또는, TAU Request는 eDRX 파라미터(parameter)를 포함하지 않으며, TIN이 "GUTI"로 셋팅될 수 있다.
MME는 SGSN에게 UE context를 요청하면서, 자신이 ISR을 지원가능(capable)하지 않다고 지시한다(S1407).
즉, MME는 ISR을 지원하지 않음을 지시(즉, no ISR capability indication)를 포함하는 UE 컨텍스트 요청(UE Context Request) 메시지를 SGSN에게 전송한다.
SGSN은 UE context를 응답하면서, MME에게 자신이 ISR capable하지 않다고 지시한다(S1408).
즉, SGSN은 ISR을 지원하지 않음을 지시(즉, no ISR capability indication)를 포함하는 UE 컨텍스트 응답(UE Context Response) 메시지를 MME에게 전송한다.
MME는 SGSN에게 ISR이 활성화되지 않았다고 확인(acknowledge)한다(S1409).
즉, MME는 ISR 활성화되지 않았다는 지시(ISR not actived)를 포함하는 UE 컨텍스트 확인(UE Context Acknowledge) 메시지를 SGSN에게 전송한다.
SGSN은 MME ID를 저장할 수 있으며(S1410), MME는 SGSN ID를 저장할 수 있다(S1411).
MME는 HSS와 상호작용(interaction)을 수행할 수 있으며(S1412), MME는 HSS에 등록(register)될 수 있다(S1413).
MME는 UE에게 TAU procedure가 성공적이며, eDRX를 지원하기 위한 eDRX 파라미터와 함께 ISR이 활성화되지 않았다고 알려준다(S1414).
즉, MME는 eDRX 파라미터와 함께 ISR 비활성 지시(No ISR activation indication)를 포함하는 TAU 승인(TAU Accept) 메시지를 UE에게 전송한다.
TAU Accept 메시지 내에서 ISR 비활성(No ISR activation)을 지시하므로, UE는 ISR를 활성화하지 않는다(S1415).
이때, UE는 TIN을 "RAT-related TMSI"이 아닌 "GUTI"로 셋팅할 수 있다.
반면, TAU Accept 내 eDRX를 지원하기 위한 eDRX 파라미터가 포함되었으므로, UE는 eDRX를 활성화할 수 있다.
한편, 도 14에서 예시하는 실시예에서는 MME가 eDRX를 지원하고 SGSN이 eDRX를 지원하는 경우를 가정하고 있으나, 이와 반대로 MME가 eDRX를 지원하지 않고 SGSN이 eDRX를 지원하는 경우에도 동일하게 적용할 수 있다.
앞서 설명한 A-1) 실시예에 따른 제안 방법, A-2) 실시예에 따른 제안 방법, A-3) 실시예에 따른 제안 방법은 서로 독립적으로 적용될 수도 있으나, 하나 이상의 제안 방법이 조합하여 적용될 수 있다.
도 15는 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 15에서는 UE가 GERAN/UTRAN에 어태치(attach)되어 있는 상황에서 E-UTRAN의 커버리지도 이동함에 따라 또는 그 반대로 이동함에 따라 UE에 의해 수행되는 위치 영역 업데이트(LAU: Location Area Update) 절차를 예시한다.
본 명세서에서 위치 영역 업데이트(LAU: Location Area Update)는 라우팅 업데이트(RAU: Routing Area Update) 또는 트래킹 영역 업데이트 절차(TAU: Tracking Area Update)를 포함할 수 있다.
여기서, 제1 네트워크 노드는 UE가 현재 LAU 절차를 수행하는 노드를 의미하고, 제2 네트워크 노드(즉, 이전(old) MME 또는 SGSN)는 UE가 이전에 등록되었던 노드를 의미한다.
즉, UE가 GERAN/UTRAN에 어태치(attach)되어 있는 상황에서 E-UTRAN의 커버리지도 이동하는 경우, 제1 네트워크 노드는 MME, 제2 네트워크 노드는 SGSN, LAU 절차는 TAU에 해당할 수 있다. 반대로, UE가 E-UTRAN에 어태치(attach)되어 있는 상황에서 GERAN/UTRAN의 커버리지도 이동하는 경우, 제1 네트워크 노드는 SGSN, 제2 네트워크 노드는 MME, LAU 절차는 RAU에 해당할 수 있다.
도 15를 참조하면, 제1 네트워크 노드는 UE로부터 LAU 요청(LAU Request) 메시지(즉, RAU Request 메시지 또는 TAU Request 메시지)를 수신한다(S1501).
이때, LAU 요청 메시지는 eDRX 지원을 위한 파라미터를 포함할 수 있다.
제1 네트워크 노드는 제2 네트워크 노드에게 컨텍스트 요청(Context Request) 메시지를 전송한다(S1502).
즉, 제1 네트워크와 제2 네트워크의 타입이 서로 상이한 경우, 제1 네트워크는 UE의 사용자 정보(user information)을 획득하기 위하여 컨텍스트 요청(Context Request) 메시지를 제2 네트워크 노드에게 전송할 수 있다.
이때, 제1 네트워크 노드가 eDRX 모드를 지원하면, 컨텍스트(Context) 요청 메시지는 제1 네트워크 노드가 eDRX를 지원함을 지시하는 제1 eDRX 능력 지시를 포함할 수 있다.
또한, 컨텍스트(Context) 요청 메시지는 제1 네트워크 노드가 ISR을 지원하는지 여부를 지시하는 제1 ISR 능력 지시를 더 포함할 수 있다.
제1 네트워크 노드는 컨텍스트 요청 메시지에 대한 응답으로 제2 네트워크 노드로부터 컨텍스트 응답(Context Response) 메시지를 수신한다(S1503).
이때, 제2 네트워크 노드가 eDRX 모드를 지원하면, 컨텍스트 응답(Context Response) 메시지는 제2 네트워크 노드가 eDRX를 지원함을 지시하는 제2 eDRX 능력 지시를 포함할 수 있다.
또한, 컨텍스트 응답 메시지는 제2 네트워크 노드가 ISR을 지원하는지 여부를 지시하는 제2 ISR 능력 지시를 더 포함할 수 있다.
제1 네트워크 노드는 제1 eDRX 능력 지시 및 제2 eDRX 능력 지시를 기반으로 UE의 ISR 모드의 활성화 여부를 결정할 수 있다(S1504).
즉, 제1 네트워크 노드 및 제2 네트워크 노드 중 적어도 어느 하나가 eDRX 모드를 지원하지 않으면(즉, 제1 eDRX 능력 지시 및 제2 eDRX 능력 지시 중 적어도 어느 하나가 존재하지 않은 경우), UE의 ISR를 활성화하지 않을 수 있다(즉, 비활성화한다).
이때, 제1 네트워크 노드는 제1 ISR 능력 지시 및 제2 ISR 능력 지시와 무관하게 UE의 ISR 모드의 활성화 여부를 결정할 수 있다. 즉, 제1 네트워크 노드와 제2 네트워크 노드가 모두 ISR을 지원하더라도, 제1 네트워크 노드는 제1 eDRX 능력 지시 및 제2 eDRX 능력 지시를 기반으로 UE의 ISR를 활성화하지 않을 수 있다.
이후, UE의 ISR이 ISR이 활성화되지 않으면, 제1 네트워크 노드는 UE의 ISR이 비활성화되었음을 지시하는 ISR 비활성 지시를 포함하는 컨텍스트 확인(Context Acknowledge) 메시지를 제2 네트워크 노드에게 전송할 수 있다. 여기서, UE의 ISR이 활성화되었음을 지시하는 ISR 활성 지시(ISR Activated indication)가 컨텍스트 확인(Context Acknowledge) 메시지에 포함하지 않으면, 제2 네트워크 노드는 ISR 비활성 지시라고 인식할 수도 있다.
이후, UE의 ISR이 ISR이 활성화되지 않으면, 제1 네트워크 노드는 LAU 요청 메시지에 대한 응답으로 UE의 ISR이 비활성화되었음을 지시하는 ISR 비활성 지시를 포함하는 LAU 승인(Accept) 메시지(즉, RAU Accept 메시지 또는 TAU Accept 메시지)를 UE에게 전송할 수 있다. 여기서, UE의 ISR이 활성화되었음을 지시하는 ISR 활성 지시(ISR Activated indication)가 포함하지 않으면, UE는 ISR 비활성 지시라고 인식할 수 있다.
도 16은 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 16에서는 UE가 GERAN/UTRAN에 어태치(attach)되어 있는 상황에서 E-UTRAN의 커버리지도 이동함에 따라 또는 그 반대로 이동함에 따라 UE에 의해 수행되는 LAU 절차를 예시한다.
UE가 GERAN/UTRAN에 어태치(attach)되어 있는 상황에서 E-UTRAN의 커버리지도 이동하는 경우, 네트워크 노드는 MME, LAU 절차는 TAU에 해당할 수 있다. 반대로, UE가 E-UTRAN에 어태치(attach)되어 있는 상황에서 GERAN/UTRAN의 커버리지도 이동하는 경우, 네트워크 노드는 SGSN, LAU 절차는 RAU에 해당할 수 있다.
도 16을 참조하면, UE는 자신이 캠핑 중인 기지국이 eDRX 모드를 지원하는지 여부를 판단한다(S1601).
UE는 기지국이 eDRX 모드를 지원하는지 여부에 대하여, 해당 기지국으로부터 전송되는 SIB 내 하이퍼 프레임에 대한 정보(예를 들어, HFN 또는 H-SFN)를 포함하는지 여부에 따라 기지국이 eDRX 모드를 지원하는지 여부를 판단할 수 있다. 즉, 기지국으로부터 전송되는 SIB 내 하이퍼 프레임에 대한 정보가 포함되면 해당 기지국이 eDRX 모드를 지원한다고 판단하고, SIB 내 하이퍼 프레임에 대한 정보가 포함되지 않으면 해당 기지국이 eDRX 모드를 지원하지 않는다고 판단할 수 있다.
네트워크가 eDRX 모드를 지원하지 않으면, UE가 ISR를 지원하지 않는다는 지시(no ISR supported indication)를 포함하는 LAU 요청 메시지(즉, RAU Request 메시지 또는 TAU Request 메시지)를 네트워크 노드(즉, MME 또는 SGSN)에게 전송함으로써 LAU 절차를 개시한다(S1602).
이후, UE는 네트워크 노드로부터 LAU 요청 메시지에 대한 응답으로 UE의 ISR이 비활성화되었음을 지시하는 ISR 비활성 지시를 포함하는 LAU 승인(LAU Accept) 메시지(즉, RAU Accept 메시지 또는 TAU Accept 메시지)를 수신할 수 있다. 여기서, UE의 ISR이 활성화되었음을 지시하는 ISR 활성 지시(ISR Activated indication)가 포함하지 않으면, UE는 ISR 비활성 지시라고 인식할 수 있다.
한편, 앞서 설명한 A-1), A-2), A-3) 실시예에는 UE의 ISR이 활성화되기 전에, 네트워크의 노드들의 eDRX 지원 여부 등을 기반으로 UE의 ISR의 활성/비활성을 결정하는 실시예를 설명하였다.
이하, 본 발명에서는 ISR이 활성화된(activated) 환경에서, 일부 네트워크의 노드들은 eDRX를 지원하지 않는 경우, 불필요한 자원 낭비를 위한 단말 혹은 네트워크 처리 방안을 제안한다.
B-1) 본 발명의 일 실시예에 따르면, ISR이 활성화된(activated) 상황에서 eDRX 모드로 동작하게 되는 경우, 페이징 전송이 제어(handling)될 수 있다.
도 17은 본 발명의 일 실시예에 따른 페이징 제어를 위한 방법을 예시하는 도면이다.
도 17에서는 네트워크(즉, MME, SGSN 및 S-GW) 내 ISR이 활성화되어 있고, UE가 현재 eDRX 모드라고 가정한다. 또한, 이러한 상황에서 UE가 TAI 및 RAI에 속하지 않은 TA 또는 RA에 어태치(attach)함으로써 일부 네트워크(MME 또는 SGSN)가 eDRX를 지원하지 않게 되는 경우를 가정한다. 도 16에서는 SGSN이 eDRX를 지원하지 않는 경우를 예시한다.
S-GW가 하향링크 데이터를 수신한 경우(S1701), S-GW는 MME와 SGSN에게 DDN(Downlink Data Notification) 메시지를 전송한다(S1702, S1703).
만약, MME와 SGSN이 S-GW로부터 DDN 메시지를 수신하는 경우, eDRX를 지원하는 네트워크는 DDN 거절(DDN reject) 메시지(예를 들어, 거절 원인(Reject cause)을 포함하는 DDN 확인(DDN Acknowledge) 메시지 혹은 새로운 DDN 거절(Reject) 메시지)를 S-GW에게 전송하지만, eDRX를 지원하지 않는 네트워크는 UE에게 paging을 전송하게 된다.
다시 말해, eDRX를 지원하는 네트워크 (MME 또는 SGSN)의 경우, 단말이 현재 eDRX 상태에 있음을 인지할 수 있다. 따라서, 페이징 절차의 수행을 멈출 수 있다. 하지만, eDRX를 지원하지 않는 네트워크 (MME 또는 SGSN)의 경우, 단말이 현재 eDRX 상태에 있음을 인지 할 수 없다. 따라서 페이징 절차의 수행을 그대로 진행하게 된다.
도 17의 경우 MME는 eDRX를 지원하나, SGSN은 eDRX를 지원하지 않는 경우를 예시하고 있으므로, MME는 S-GW에게 DDN 거절(DDN reject) 메시지를 전송한다(S1704).
예를 들어, MME는 거절 원인(Reject cause)을 포함하는 DDN 확인(DDN Acknowledge) 메시지를 S-GW에게 전송할 수 있다. 이때, DDN 확인 메시지에 포함되는 거절 원인(Reject cause)는 페이징 불가(Unable to page UE) 또는 eDRX 모드로 인한 페이징 불가(Unable to page UE due to eDRX mode)로 정의되는 거절 원인일 수 있다.
이때, DDN 거절(DDN reject) 메시지는 하향링크 데이터의 저장 기간(downlink data storing duration) 정보를 포함할 수 있다.
MME로부터 하향링크 데이터의 저장 기간(downlink data storing duration) 정보를 포함하는 DDN 거절(DDN reject) 메시지를 수신한 S-GW는 하향링크 데이터를 저장(버퍼링)하고, DDN 전송을 보류(pending)한다.
반면, SGSN은 S-GW로부터 DDN 메시지를 수신한 후, RNC/BSC를 통해 UE에게 페이징을 전송한다(S1705, S1706).
ISR 활성화된(activated) 환경에서, S-GW는 MME 혹은 SGSN 어느 한쪽으로부터 DDN 거절 메시지 (예를 들어, 거절 원인(Reject cause)을 포함하는 DDN 확인(DDN Acknowledge) 메시지 또는 새로운 DDN 거절 메시지)를 수신하는 경우, DDN 거절 메시지 (예를 들어, 거절 원인(Reject cause)을 포함하는 DDN 확인(DDN Acknowledge) 메시지 또는 새로운 DDN 거절 메시지)를 수신하지 못한 다른 네트워크에게 페이징 중단 지시(Stop Paging Indication) 메시지를 전송한다. 즉, S-GW는 다른 네트워크는 eDRX를 지원하지 않는다고 간주한다.
또는, S-GW는 DDN 거절 메시지 (예를 들어, 거절 원인(Reject cause)을 포함하는 DDN 확인(DDN Acknowledge) 메시지 또는 새로운 DDN 거절 메시지)를 수신하지 못한 다른 네트워크에게 일정 시간 동안 기다린 후, (예를 들어, 타이머를 동작한 후, 즉, 타이머 동작이 만료(expired)된 후)에 페이징 중단 지시(Stop Paging Indication) 메시지를 전송할 수도 있다. 이는 도 17의 절차의 진행 중에 UE가 MME의 TA 영역에서 SGSN의 RA 영역으로 이동하는 경우에, UE가 SGSN의 페이징을 수신할 수 있도록 하기 위함이다.
도 17의 경우 S-GW는 SGSN에게 페이징 중단 지시(Stop Paging Indication) 메시지를 전송한다(S1707). 이때, S-GW는 페이징 중단 지시 메시지에 에러 원인(error cause)(또는 거절 원인), 예를 들어, MME 내 eDRX 지원으로 인한 에러 원인 등과 같은 원인 값(cause value)을 추가 할 수도 있다.
S-GW로부터 페이징 중단 지시(Stop Paging Indication) 메시지를 수신한 네트워크 노드(즉, SGSN)는 페이징 전송을 중단한다(S1708, S1709).
만약, 페이징 중단 지시(Stop Paging Indication) 메시지 내 MME 내 eDRX 지원으로 인한 에러 원인 등과 같은 원인 값(cause value)이 포함된 경우, SGSN은 특정 타이머를 동작킨다. 이후, 특정 타이머가 동작하는 동안에만, SGSN은 페이징을 단말에게 전송하게 되며, 특정 타이머 동작이 완료한 후, 페이징 전송을 멈출 수도 있다. 이 또한 도 17의 절차의 진행 중에 UE가 MME의 TA 영역에서 SGSN의 RA 영역으로 이동하는 경우에, UE가 SGSN의 페이징을 수신할 수 있도록 하기 위함이다.
즉, 이후 MME/SGSN 모두 페이징 전송을 멈추게 된다. 이것은 MT 서비스 (하향링크 데이터 서비스)를 보류하게 됨을 의미한다.
만약, MME 또는 SGSN 내 eDRX 지원으로 인한 에러 원인 등과 같은 원인 값(cause value)이 포함된 페이징 중단 지시(Stop Paging Indication) 메시지를 수신한 MME/SGSN은 일정 시간 동안 이후 페이징 전송을 멈출 수도 있다(즉, 미리 정해진 타이머 구동하고, 타이머 만료된 후에서 비로서 페이징 전송을 멈출 수도 있다.).
이후, UE는 현재 캠핑(camping)되어 있는 기지국(eNodeB 혹은 NodeB)에서 제공되는 SIB 정보의 하이퍼 프레임(hyper frame) 정보(예를 들어, HFN 또는 H-SFN에 대한 정보)을 통해 자신이 어태치된 네트워크에서 eDRX 모드를 지원하는지 여부를 인지할 수 있다.
eDRX를 지원하기 위하여 새로운 하이퍼 프레임이 정의되었기 때문이다. 보다 구체적으로 살펴보면, UE가 eDRX를 적용하면, UE는 특정한 페이징 하이퍼프레임(PH: Paging Hyperframe)에서 페이징에 의해 접근 가능(reachable)하다. PH는 하이퍼-시스템 프레임 번호(H-SFN: Hyper-System Frame Number) 값의 특정 세트를 의미하며, PH는 확장된 아이들 모드 DRX 사이클, 단말 특정 식별자(예를 들어, IMSI)를 이용하여 계산될 수 있다. H-SFN 프레임 구조는 일반적인 아이들 모드 DRX를 위해 사용되는 SFN의 최고값으로 정의된다. 즉, 하나의 하이퍼 프레임(Hyper-frame)은 1024개 무선 프레임(즉, 10.24 초)으로 구성된다. 따라서, SFN이 랩-어라운드(wrap around)될 때 H-SFN은 1씩 증가된다.
따라서, 현재 캠핑되어 있는 기지국(eNodeB 혹은 NodeB)에서 eDRX를 지원하지 않으며 UE가 eDRX 사이클에서 특정 프레임 시점에서 깨어나 이를 인지한 경우, UE는 독자적으로(locally) eDRX 비활성화(deactivation)한다. 즉, UE는 eDRX 모드 동작을 해제한다.
이후, 아래와 같이 a) 과정 또는 b) 과정이 진행될 수 있다.
a) 더불어, 단말은 TAU 혹은 RAU 절차를 수행할 수 있다. 이때, TAU 혹은 RAU 절차 중에서, MME 혹은 SGSN은 S-GW에게 단말이 현재 eDRX 모드가 아님을 알리는 정보/지시를 전송할 수 있다. 이때, 예를 들어, 세션 생성 요청(Create Session Request) 메시지 혹은 베어러 수정 요청(Modify Bearer Request) 메시지 혹은 액세스 베어러 수정 요청(Modify Access Bearers Request) 메시지 혹은 새로운 메시지가 이용될 수 있다. S-GW는 보류했던 DDN 전송을 MME와 SGSN에 다시 재개할 수 있다.
S-GW로부터 DDN을 수신한 MME와 SGSN은 다시 페이징 전송을 수행하게 되고, 단말이 페이징을 수신하게 되면, 페이징 응답을 위한 서비스 요청 절차(Service Request procedure)를 수행할 수 있다.
최종적으로, 서비스 요청 절차(Service Request procedure) 후에, S-GW는 페이징 중단(paging stop) 메시지를 MME와 SGSN에 전송할 수 있다. 그리고, S-GW는 하향링크 데이터를 해당 네트워크(페이징 응답이 전송된 네트워크)에 전송함으로써, 단말이 하향링크 데이터를 수신할 수 있다(즉, MT 콜/데이터 수신).
b) 또는, 단말은 독자적으로(locally) ISR 비활성을 수반한 TAU 혹은 RAU 절차를 수행할 수 있다. 즉, UE는 TIN을 "P-TMSI"(UE가 UTRAN에 캠핑 중인 경우) 또는 "GUTI"(UE가 E-UTRAN에 캠핑 중인 경우)로 셋팅할 수 있다.
예를 들어, TAU Request 혹은 RAU Request는 UE가 ISR을 지원하지 않음을 지시하는 지시(즉, no ISR support indication)를 포함할 수 있다.
TAU 혹은 RAU 절차 중에서, MME 혹은 SGSN은 S-GW에게 단말이 현재 eDRX 모드가 아님을 알리는 정보/지시와 ISR이 활성화되지 않음을 지시하는 정보/지시(ISR not activated information/indication)를 전송할 수 있다. 이때, 예를 들어, 세션 생성 요청(Create Session Request) 메시지 혹은 베어러 수정 요청(Modify Bearer Request) 메시지 혹은 액세스 베어러 수정 요청(Modify Access Bearers Request) 메시지 혹은 새로운 메시지가 이용될 수 있다. S-GW는 보류했던 DDN 전송을 MME에게만 다시 재개하거나(TAU 경우) 혹은 SGSN에게만 다시 재개할 수 있다(RAU 경우).
S-GW로부터 DDN을 수신한 MME 혹은 SGSN은 다시 페이징 전송을 수행하게 되고, 단말이 페이징을 수신하게 되면, 페이징 응답을 위한 서비스 요청 절차(Service Request procedure)를 수행할 수 있다.
최종적으로, 서비스 요청 절차(Service Request procedure) 후에, S-GW는 페이징 중단(paging stop) 메시지를 MME 혹은 SGSN에 전송할 수 있다. 그리고, S-GW는 하향링크 데이터를 해당 네트워크(페이징 응답이 전송된 네트워크)에 전송함으로써, 단말이 하향링크 데이터를 수신할 수 있다(즉, MT 콜/데이터 수신).
B-2) 본 발명의 다른 일 실시예에 따르면, ISR이 활성화된(activated) 상황에서 eDRX 모드로 동작하게 되는 경우, 페이징 전송이 제어(handling)될 수 있다.
도 18은 본 발명의 일 실시예에 따른 페이징 제어를 위한 방법을 예시하는 도면이다.
도 18에서는 네트워크(즉, MME, SGSN 및 S-GW) 내 ISR이 활성화되어 있고, UE가 현재 eDRX 모드라고 가정한다. 또한, ISR이 활성화된 상태에서, UE가 TAI 및 RAI에 속하지 않은 TA 또는 RA에 어태치(attach)함으로써 일부 네트워크(MME 또는 SGSN)가 eDRX를 지원하지 않는 경우를 가정한다. 도 17에서는 SGSN이 eDRX를 지원하지 않는 경우를 예시한다.
S-GW가 하향링크 데이터를 수신한 경우(S1801), S-GW는 MME와 SGSN에게 DDN(Downlink Data Notification) 메시지를 전송한다(S1802, S1803).
만약, MME와 SGSN이 S-GW로부터 DDN 메시지를 수신하는 경우, eDRX를 지원하는 네트워크는 DDN 거절(DDN reject) 메시지(예를 들어, 거절 원인(Reject cause)을 포함하는 DDN 확인(DDN Acknowledge) 메시지 혹은 새로운 DDN 거절(Reject) 메시지)를 S-GW에게 전송하지만, eDRX를 지원하지 않는 네트워크는 UE에게 paging을 전송하게 된다.
다시 말해, eDRX를 지원하는 네트워크 (MME 또는 SGSN)의 경우, 단말이 현재 eDRX 상태에 있음을 인지할 수 있다. 따라서, 페이징 절차의 수행을 멈출 수 있다. 하지만, eDRX를 지원하지 않는 네트워크 (MME 또는 SGSN)의 경우, 단말이 현재 eDRX 상태에 있음을 인지 할 수 없다. 따라서 페이징 절차의 수행을 그대로 진행하게 된다.
도 18의 경우 MME는 eDRX를 지원하나, SGSN은 eDRX를 지원하지 않는 경우를 예시하고 있으므로, MME는 S-GW에게 DDN 거절(DDN reject) 메시지를 전송한다(S1804).
예를 들어, MME는 거절 원인(Reject cause)을 포함하는 DDN 확인(DDN Acknowledge) 메시지를 S-GW에게 전송할 수 있다. 이때, DDN 확인 메시지에 포함되는 거절 원인(Reject cause)는 페이징 불가(Unable to page UE) 또는 eDRX 모드로 인한 페이징 불가(Unable to page UE due to eDRX mode)로 정의되는 거절 원인일 수 있다.
이때, DDN 거절(DDN reject) 메시지는 하향링크 데이터의 저장 기간(downlink data storing duration) 정보를 포함할 수 있다.
MME로부터 하향링크 데이터의 저장 기간(downlink data storing duration) 정보를 포함하는 DDN 거절(DDN reject) 메시지를 수신한 S-GW는 하향링크 데이터를 저장(버퍼링)하고, DDN 전송을 보류(pending)한다.
반면, SGSN은 S-GW로부터 DDN 메시지를 수신한 후, RNC/BSC를 통해 UE에게 페이징을 전송한다(S1805, S1806).
이때, SGSN은 UE로부터 응답을 수신하지 못하면, 페이징을 반복하여 전송한다.
다만, ISR activated 환경에서, UE가 eDRX를 지원하지 않는 네트워크에 현재 캠핑(camping) 되어 있는 경우, SGSN은 UE로부터 페이징 응답을 수신하지 못하여 결국 페이징 실패가 발생한다.
즉, SGSN은 페이징 반복 절차 이후에도 UE로부터 응답을 수신하지 못하면, S-GW에게 페이징 실패를 알리기 위하여 DDN 거절 메시지(거절 원인: 페이징 실패)를 전송한다(S1807).
하지만, S-GW는 페이징 실패가 발생하더라도 곧바로 저장하고 있는 하향링크 데이터를 폐기하지 않는다. 그 이유는, eDRX를 지원하는 네트워크 (MME 또는 SGSN)에서 S-GW에게 하향링크 데이터 저장 기간 정보를 제공하였기 때문이다.
이후, UE는 현재 캠핑(camping)되어 있는 기지국(eNodeB 혹은 NodeB)에서 제공되는 SIB 정보의 하이퍼 프레임(hyper frame) 정보(예를 들어, HFN 또는 H-SFN에 대한 정보)을 통해 자신이 어태치된 네트워크에서 eDRX 모드를 지원하는지 여부를 인지할 수 있다. 따라서 현재 캠핑되어 있는 기지국(eNodeB 혹은 NodeB)에서 eDRX를 지원하지 않으며 UE가 eDRX 사이클에서 특정 프레임 시점에서 깨어나 이를 인지한 경우, UE는 독자적으로(locally) eDRX 비활성화(deactivation)한다. 즉, UE는 eDRX 모드 동작을 해제한다.
이후, 아래와 같이 a) 과정 또는 b) 과정이 진행될 수 있다.
a) 더불어, 단말은 TAU 혹은 RAU 절차를 수행할 수 있다. 이때, TAU 혹은 RAU 절차 중에서, MME 혹은 SGSN은 S-GW에게 단말이 현재 eDRX 모드가 아님을 알리는 정보/지시를 전송할 수 있다. 이때, 예를 들어, (예를 들어, 세션 생성 요청(Create Session Request) 메시지 혹은 베어러 수정 요청(Modify Bearer Request) 메시지 혹은 액세스 베어러 수정 요청(Modify Access Bearers Request) 메시지 혹은 새로운 메시지가 이용될 수 있다. S-GW는 보류했던 DDN 전송을 MME와 SGSN에 다시 재개할 수 있다.
S-GW로부터 DDN을 수신한 MME와 SGSN은 다시 페이징 전송을 수행하게 되고, 단말이 페이징을 수신하게 되면, 페이징 응답을 위한 서비스 요청 절차(Service Request procedure)를 수행할 수 있다.
최종적으로, 서비스 요청 절차(Service Request procedure) 후에, S-GW는 페이징 중단(paging stop) 메시지를 MME와 SGSN에 전송할 수 있다. 그리고, S-GW는 하향링크 데이터를 해당 네트워크(페이징 응답이 전송된 네트워크)에 전송함으로써, 단말이 하향링크 데이터를 수신할 수 있다(즉, MT 콜/데이터 수신).
b) 또는, 단말은 독자적으로(locally) ISR 비활성을 수반한 TAU 혹은 RAU 절차를 수행할 수 있다. 즉, UE는 TIN을 "P-TMSI"(UE가 UTRAN에 캠핑 중인 경우) 또는 "GUTI"(UE가 E-UTRAN에 캠핑 중인 경우)로 셋팅할 수 있다.
예를 들어, TAU Request 혹은 RAU Request는 UE가 ISR을 지원하지 않음을 지시하는 지시(즉, no ISR support indication)를 포함할 수 있다.
TAU 혹은 RAU 절차 중에서, MME 혹은 SGSN은 S-GW에게 단말이 현재 eDRX 모드가 아님을 알리는 정보/지시와 ISR이 활성화되지 않음을 지시하는 정보/지시(ISR not activated information/indication)를 전송할 수 있다. 이때, 예를 들어, 세션 생성 요청(Create Session Request) 메시지 혹은 베어러 수정 요청(Modify Bearer Request) 메시지 혹은 액세스 베어러 수정 요청(Modify Access Bearers Request) 메시지 혹은 새로운 메시지가 이용될 수 있다. S-GW는 보류했던 DDN 전송을 MME에게만 다시 재개하거나(TAU 경우) 혹은 SGSN에게만 다시 재개할 수 있다(RAU 경우).
S-GW로부터 DDN을 수신한 MME 혹은 SGSN은 다시 페이징 전송을 수행하게 되고, 단말이 페이징을 수신하게 되면, 페이징 응답을 위한 서비스 요청 절차(Service Request procedure)를 수행할 수 있다.
최종적으로, 서비스 요청 절차(Service Request procedure) 후에, S-GW는 페이징 중단(paging stop) 메시지를 MME 혹은 SGSN에 전송할 수 있다. 그리고, S-GW는 하향링크 데이터를 해당 네트워크(페이징 응답이 전송된 네트워크)에 전송함으로써, 단말이 하향링크 데이터를 수신할 수 있다(즉, MT 콜/데이터 수신).
B-3) 본 발명의 다른 일 실시예에 따르면, ISR이 활성화된(activated) 상황에서 eDRX 모드로 동작하게 되는 경우, ISR을 비활성화(deactivation)할 수 있다.
도 19는 본 발명의 일 실시예에 따른 ISR 활성/비활성 제어를 위한 방법을 예시하는 도면이다.
도 19에서는 네트워크(즉, MME, SGSN 및 S-GW) 내 ISR이 활성화되어 있는 상태라고 가정한다. 또한, MME는 eDRX를 지원하고, SGSN은 eDRX를 지원하지 않는다고 가정한다. 그리고, UE가 E-UTRAN에 캠핑하고 있는 경우를 예시한다.
도 18을 참조하면, UE가 eDRX으로 동작하기를 원하는 경우, UE는 TAU request 메시지를 MME에게 전송한다(S1901).
이때, TAU request 메시지는 eDRX 모드를 위한 eDRX 파라미터를 포함한다.
MME는 수신한 TAU request 메시지로부터 UE가 요청한 eDRX parameter의 존재 여부에 따라서 eDRX 요청을 인지할 수 있다.
그리고, MME는 S3 인터페이스 메시지 (예를 들어, 기존의 정의된 제어 메시지(Context Request/Context Response message) 또는 새로운 제어 메시지)를 통해서 이전(old) 네트워크 노드(도 19의 경우, SGSN)와 eDRX 지원가능(capable)한지 여부를 서로 교환한다.
MME는 Context Request 메시지(혹은 새로운 제어 메시지)에 eDRX 능력 지원 지시(eDRX capability supported indication)를 포함시켜 SGSN에게 전송한다(S1902).
즉, MME는 eDRX 능력을 지원하면, eDRX capability supported indication을 1로 셋팅하고, 지원하지 않으면 eDRX capability supported indication을 0으로 셋팅할 수 있다.
SGSN은 Context Response 메시지(혹은 새로운 제어 메시지)에 eDRX 능력 지원 지시(eDRX capability supported indication)를 포함시켜 MME에게 전송한다(S1903).
즉, SGSN은 eDRX 능력을 지원하면 eDRX capability supported indication을 1로 셋팅하고, 지원하지 않으면 eDRX capability supported indication을 0으로 셋팅할 수 있다.
만약, 어느 한쪽 네트워크(즉, MME 또는 SGSN)가 eDRX 지원 가능하지 않은 경우(즉, eDRX capability supported indication이 '0'으로 셋팅된 경우), MME는 Context Acknowledge 메시지(혹은 새로운 제어 메시지)에 ISR이 비활성화되었음을 지시하는 ISR 비활성 지시(ISR not activated indication/information)를 포함하여 SGSN에게 전송한다(S1904).
여기서, UE의 ISR이 활성화되었음을 지시하는 ISR 활성 지시(ISR Activated indication)가 컨텍스트 확인(Context Acknowledge) 메시지에 포함하지 않으면, ISR 비활성 지시라고 인식될 수도 있다.
이렇게 함으로써, MME와 SGSN은 모두 ISR 비활성화(deactivation)하게 된다.
만약, 어느 한쪽 네트워크가 eDRX 지원가능(capable)하지 않는 경우 (즉, eDRX capability supported indication이 '0'으로 셋팅된 경우), MME는 TAU accept 메시지에 ISR이 비활성화되었음을 지시하는 ISR 비활성 지시(ISR not activated indication/information)를 포함하여 UE에게 전송한다(S1905).
이때, TAU accept 메시지는 eDRX 파라미터를 포함할 수 있다.
이후, 단말과 네트워크는 ISR 비활성화(deactivation) 동작을 따른다. 이때, UE는 TIN을 "GUTI"로 셋팅할 수 있다.
한편, 추가적으로 UE는 독자적으로(locally) eDRX를 비활성화(deactivation) 할 수 있다.
보다 구체적으로 UE는 현재 캠핑(camping)되어 있는 기지국(eNodeB 혹은 NodeB)에서 제공되는 SIB 정보의 하이퍼 프레임(hyper frame) 정보(예를 들어, HFN 또는 H-SFN에 대한 정보)을 통해 자신이 어태치된 네트워크에서 eDRX 모드를 지원하는지 여부를 인지할 수 있다. 따라서 현재 캠핑되어 있는 기지국(eNodeB 혹은 NodeB)에서 eDRX를 지원하지 않으며 UE가 eDRX 사이클에서 특정 프레임 시점에서 깨어나 이를 인지한 경우, UE는 독자적으로(locally) eDRX 비활성화(deactivation)한다. 즉, UE는 eDRX 모드 동작을 해제한다.
이와 함께, 단말은 eDRX 파라미터를 포함하지 않는 TAU 혹은 RAU 절차를 수행할 수 있다.
한편, 도 19에서는 MME는 eDRX를 지원하고, SGSN은 eDRX를 지원하지 않으며, UE가 E-UTRAN에 캠핑하고 있는 경우를 예시하고 있으나, 이와 반대로 SGSN은 eDRX를 지원하고, MME는 eDRX를 지원하지 않으며, UE가 UTRAN에 캠핑하고 있는 경우에도 동일하게 적용될 수 있다. 즉, 도 19에서 MME가 SGSN으로 대체되고, SGSN이 MME로 대체된 경우에 다음과 같이 ISR 제어를 위한 방법이 수행될 수 있다.
UE가 eDRX으로 동작하기를 원하는 경우, UE는 RAU request 메시지를 SGSN에게 전송한다(S1901).
이때, RAU request 메시지는 eDRX 모드를 위한 eDRX 파라미터를 포함한다.
SGSN은 수신한 RAU request 메시지로부터 UE가 요청한 eDRX parameter의 존재 여부에 따라서 eDRX 요청을 인지할 수 있다.
그리고, SGSN은 S3 인터페이스 메시지 (예를 들어, 기존의 정의된 제어 메시지(Context Request/Context Response message) 또는 새로운 제어 메시지)를 통해서 이전(old) 네트워크 노드(도 19의 경우, MME)와 eDRX 지원가능(capable)한지 여부를 서로 교환한다.
SGSN은 Context Request 메시지(혹은 새로운 제어 메시지)에 eDRX 능력 지원 지시(eDRX capability supported indication)를 포함시켜 MME에게 전송한다(S1902).
즉, SGSN은 eDRX 능력을 지원하면, eDRX capability supported indication을 1로 셋팅하고, 지원하지 않으면 eDRX capability supported indication을 0으로 셋팅할 수 있다.
MME는 Context Response 메시지(혹은 새로운 제어 메시지)에 eDRX 능력 지원 지시(eDRX capability supported indication)를 포함시켜 SGSN에게 전송한다(S1903).
즉, MME는 eDRX 능력을 지원하면 eDRX capability supported indication을 1로 셋팅하고, 지원하지 않으면 eDRX capability supported indication을 0으로 셋팅할 수 있다.
만약, 어느 한쪽 네트워크(즉, MME 또는 SGSN)가 eDRX 지원 가능하지 않은 경우(즉, eDRX capability supported indication이 '0'으로 셋팅된 경우), SGSN은 Context Acknowledge 메시지(혹은 새로운 제어 메시지)에 ISR이 비활성화되었음을 지시하는 ISR 비활성 지시(ISR not activated indication/information)를 포함하여 MME에게 전송한다(S1904).
여기서, UE의 ISR이 활성화되었음을 지시하는 ISR 활성 지시(ISR Activated indication)가 컨텍스트 확인(Context Acknowledge) 메시지에 포함하지 않으면, ISR 비활성 지시라고 인식될 수도 있다.
이렇게 함으로써, MME와 SGSN은 모두 ISR 비활성화(deactivation)하게 된다.
만약, 어느 한쪽 네트워크가 eDRX 지원가능(capable)하지 않는 경우 (즉, eDRX capability supported indication이 '0'으로 셋팅된 경우), SGSN은 RAU accept 메시지에 ISR이 비활성화되었음을 지시하는 ISR 비활성 지시(ISR not activated indication/information)를 포함하여 UE에게 전송한다(S1905).
이때, RAU accept 메시지는 eDRX 파라미터를 포함할 수 있다.
이후, 단말과 네트워크는 ISR 비활성화(deactivation) 동작을 따른다. 이때, UE는 TIN을 "P-TMSI"로 셋팅할 수 있다.
한편, 추가적으로 UE는 독자적으로(locally) eDRX를 비활성화(deactivation) 할 수 있다.
보다 구체적으로 UE는 현재 캠핑(camping)되어 있는 기지국(eNodeB 혹은 NodeB)에서 제공되는 SIB 정보의 하이퍼 프레임(hyper frame) 정보(예를 들어, HFN 또는 H-SFN에 대한 정보)을 통해 자신이 어태치된 네트워크에서 eDRX 모드를 지원하는지 여부를 인지할 수 있다. 따라서 현재 캠핑되어 있는 기지국(eNodeB 혹은 NodeB)에서 eDRX를 지원하지 않으며 UE가 eDRX 사이클에서 특정 프레임 시점에서 깨어나 이를 인지한 경우, UE는 독자적으로(locally) eDRX 비활성화(deactivation)한다. 즉, UE는 eDRX 모드 동작을 해제한다.
이와 함께, UE는 eDRX 파라미터를 포함하지 않는 TAU 혹은 RAU 절차를 수행할 수 있다.
B-4) 본 발명의 다른 일 실시예에 따르면, ISR 활성화된 상황에서 eDRX 모드로 동작하게 되는 경우, UE가 독자적으로(locally) eDRX 및/또는 ISR을 비활성화할 수 있다.
UE는 현재 캠핑(camping)되어 있는 기지국(eNodeB 혹은 NodeB)에서 제공되는 SIB 정보의 하이퍼 프레임(hyper frame) 정보(예를 들어, HFN 또는 H-SFN에 대한 정보)을 통해 자신이 어태치된 네트워크에서 eDRX 모드를 지원하는지 여부를 인지할 수 있다. 따라서 현재 캠핑되어 있는 기지국(eNodeB 혹은 NodeB)에서 eDRX를 지원하지 않으며 UE가 eDRX 사이클에서 특정 프레임 시점에서 깨어나 이를 인지한 경우, UE는 독자적으로(locally) eDRX 비활성화(deactivation)한다. 즉, UE는 eDRX 모드 동작을 해제한다.
이와 함께, UE는 독자적으로(locally) ISR을 비활성화(deactivation) 할 수 있다. 즉, UE는 TIN을 "P-TMSI"(UE가 UTRAN에 캠핑 중인 경우) 또는 "GUTI"(UE가 E-UTRAN에 캠핑 중인 경우)로 셋팅할 수 있다.
또한, 이와 함께, UE는 eDRX 파라미터를 포함하지 않는 TAU 혹은 RAU 절차를 수행할 수 있다.
앞서 본 발명에 대한 설명에 있어서, UE가 독자적으로(locally) ISR을 비활성화한다는 것은 UE가 TA와 RA 영역 간 이동 했을 때, (무조건) TAU request와 RAU request를 수행함을 의미한다.
앞서 설명한 B-1) 실시예에 따른 제안 방법, B-2) 실시예에 따른 제안 방법, B-3) 실시예에 따른 제안 방법은 서로 독립적으로 적용될 수도 있으나, 하나 이상의 제안 방법이 조합하여 적용될 수 있다.
또한, A-1), A-2), A-3) 실시예는 ISR의 활성/비활성을 초기에 설정할 때 ISR 활성/비활성을 결정하기 위한 방법이고, B-1), B-2), B-3), B-4) 실시예는 ISR이 활성화된 상태에서의 ISR 활성/비활성을 결정하기 위한 방법이므로, 서로 조합하여 적용될 수 있다.
도 20은 본 발명의 일 실시예에 따른 페이징 제어 방법을 예시하는 도면이다.
도 20에서는 네트워크(즉, MME, SGSN 및 S-GW) 내 ISR이 활성화되어 있고, UE가 현재 eDRX 모드라고 가정한다. 또한, 이러한 상황에서 UE가 TAI 및 RAI에 속하지 않은 TA 또는 RA에 어태치(attach)함으로써 일부 네트워크(MME 또는 SGSN)가 eDRX를 지원하지 않게 되는 경우를 가정한다.
S-GW는 P-GW로부터 하향링크 데이터를 수신하면(S2001), S-GW는 제1 네트워크 노드 및 제2 네트워크 노드에게 DDN(Downlink Data Notification) 메시지를 전송한다(S2002).
여기서, 제1 네트워크 노드가 MME인 경우 제2 네트워크 노드는 SGSN에 해당하고, 제1 네트워크 노드가 SGSN인 경우 제1 네트워크 노드는 MME에 해당할 수 있다.
S-GW는 제1 네트워크 노드 및 제2 네트워크 노드 중 어느 하나의 노드로부터 DDN 메시지에 대한 응답으로 DDN 거절(DDN Reject) 메시지를 수신하면, 나머지 하나의 노드에게 페이징 중단 지시(Stop Paging Indication) 메시지를 전송한다(S2003). 이때, DDN 거절(DDN Reject) 메시지를 수신한 시점으로부터 일정 시간 이후에 (예를 들어, 미리 정해진 타이머 구동하고, 타이머가 만료된 후에), 나머지 하나의 노드에게 페이징 중단 지시 메시지를 전송할 수도 있다.
또한, 페이징 중단 지시(Stop Paging Indication) 메시지는 거절 원인(reject cause)로서, DDN 거절(DDN Reject) 메시지를 전송한 네트워크 노드의 eDRX 지원으로 인한 페이징 중단 지시를 포함할 수 있다. 이 경우, 페이징 중단 지시 메시지를 수신한 나머지 네트워크 노드는, 페이징 중단 지시 메시지를 수신한 시점으로부터 일정 시간 이후에 페이징 전송을 중단할 수 있다. 예를 들어, 페이징 중단 지시 메시지를 수신하면 미리 정해진 타이머 구동하고, 타이머가 만료하면 페이징 전송을 중단할 수 있다.
이때, DDN 거절(DDN Reject) 메시지의 일례로, (예를 들어, 거절 원인(Reject cause)으로서 UE의 eDRX 모드로 인한 페이징 불가를 포함하는 DDN 확인(DDN Acknowledge) 메시지 혹은 새로운 DDN 거절(Reject) 메시지가 해당될 수 있다.
또한, DDN 거절(DDN reject) 메시지는 하향링크 데이터의 저장 기간(downlink data storing duration) 정보를 포함할 수 있다.
MME로부터 하향링크 데이터의 저장 기간(downlink data storing duration) 정보를 포함하는 DDN 거절(DDN reject) 메시지를 수신한 S-GW는 저장 기간 동안 하향링크 데이터를 저장(버퍼링)하고, 또한 DDN 전송을 보류(pending)할 수 있다.
이후, 제1 네트워크 노드 또는 제2 네트워크 노드로부터 UE가 eDRX가 아님을 알리는 정보/지시를 수신하면, S-GW는 DDN 메시지를 제1 네트워크 노드 및 제2 네트워크 노드 모두에게 DDN 전송을 재개할 수 있다.
또는, 제1 네트워크 노드 또는 제2 네트워크 노드로부터 UE가 eDRX가 아님을 알리는 정보/지시를 수신하면, S-GW는 상기 정보를 전송한 노드에게만 DDN 메시지의 전송을 재개할 수 있다.
이때, 예를 들어, 상기 정보는 RAU 또는 TAU 절차 중에 세션 생성 요청(Create Session Request) 메시지 혹은 베어러 수정 요청(Modify Bearer Request) 메시지 혹은 액세스 베어러 수정 요청(Modify Access Bearers Request) 메시지 혹은 새로운 메시지를 통해 전송될 수 있다.
S-GW로부터 DDN을 수신한 제1 네트워크 노드 및/또는 제2 네트워크 노드는 다시 페이징 전송을 수행하게 되고, UE가 페이징을 수신하게 되면, 페이징 응답을 위한 서비스 요청 절차(Service Request procedure)를 수행할 수 있다.
최종적으로, 서비스 요청 절차(Service Request procedure) 후에, S-GW는 페이징 중단(paging stop) 메시지를 제1 네트워크 노드 또는 제2 네트워크 노드에 전송할 수 있다. 그리고, S-GW는 하향링크 데이터를 해당 네트워크(페이징 응답이 전송된 네트워크)에 전송함으로써, UE가 하향링크 데이터를 수신할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 21은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 21을 참조하면, 무선 통신 시스템은 네트워크 노드(2110)와 다수의 단말(UE)(2120)을 포함한다.
네트워크 노드(2110)는 프로세서(processor, 2111), 메모리(memory, 2112) 및 통신 모듈(communication module, 2113)을 포함한다. 프로세서(2111)는 앞서 도 1 내지 도 20에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(2111)에 의해 구현될 수 있다. 메모리(2112)는 프로세서(2111)와 연결되어, 프로세서(2111)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2113)은 프로세서(2111)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다. 네트워크 노드(2110)의 일례로, 기지국, MME, HSS, S-GW, PGW, SCEF, SCS/AS 등이 이에 해당될 수 있다. 특히, 네트워크 노드(2110)가 기지국인 경우, 통신 모듈(2113)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(2120)은 프로세서(2121), 메모리(2122) 및 통신 모듈(또는 RF부)(2123)을 포함한다. 프로세서(2121)는 앞서 도 1 내지 도 20에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2121)에 의해 구현될 수 있다. 메모리(2122)는 프로세서(2121)와 연결되어, 프로세서(2121)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(2123)는 프로세서(2121)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(2112, 2122)는 프로세서(2111, 2121) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2111, 2121)와 연결될 수 있다. 또한, 네트워크 노드(2110)(기지국인 경우) 및/또는 단말(2120)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 22는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 22에서는 앞서 도 14의 단말을 보다 상세히 예시하는 도면이다.
도 22를 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(2210), RF 모듈(RF module)(또는 RF 유닛)(2235), 파워 관리 모듈(power management module)(2205), 안테나(antenna)(2240), 배터리(battery)(2255), 디스플레이(display)(2215), 키패드(keypad)(2220), 메모리(memory)(2230), 심카드(SIM(Subscriber Identification Module) card)(2225)(이 구성은 선택적임), 스피커(speaker)(2245) 및 마이크로폰(microphone)(2250)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(2210)는 앞서 도 1 내지 도 20에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(2210)에 의해 구현될 수 있다.
메모리(2230)는 프로세서(2210)와 연결되고, 프로세서(2210)의 동작과 관련된 정보를 저장한다. 메모리(2230)는 프로세서(2210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2210)와 연결될 수 있다.
사용자는 예를 들어, 키패드(2220)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(2250)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(2210)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(2225) 또는 메모리(2230)로부터 추출할 수 있다. 또한, 프로세서(2210)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(2215) 상에 디스플레이할 수 있다.
RF 모듈(2235)는 프로세서(2210)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(2210)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(2235)에 전달한다. RF 모듈(2235)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(2240)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(2235)은 프로세서(2210)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(2245)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 무선 통신 시스템에서 제1 네트워크 노드가 단말의 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)의 활성(activation)/비활성(deactivation)을 제어하기 위한 방법에 있어서,
    단말로부터 위치 영역 업데이트 요청(LAU Request: Location Area Update Request) 메시지를 수신하면, 제2 네트워크 노드에게 상기 단말의 사용자 정보(user information)을 획득하기 위하여 컨텍스트 요청(Context Request) 메시지를 전송하는 단계; 및
    상기 컨텍스트 요청 메시지에 대한 응답으로 상기 제2 네트워크 노드로부터 컨텍스트 응답(Context Response) 메시지를 수신하는 단계를 포함하고,
    상기 제1 네트워크 노드가 확장된 아이들 모드 불연속 수신(eDRX: Extended Idle mode Discontinuous Reception) 모드를 지원하면, 상기 컨텍스트 요청 메시지는 상기 제1 네트워크 노드가 eDRX를 지원함을 지시하는 제1 eDRX 능력 지시를 포함하고,
    상기 제2 네트워크 노드가 eDRX 모드를 지원하면, 상기 컨텍스트 응답 메시지는 상기 제2 네트워크 노드가 eDRX를 지원함을 지시하는 제2 eDRX 능력 지시를 포함하고,
    상기 제1 네트워크 노드 및 상기 제2 네트워크 노드 중 적어도 어느 하나가 eDRX 모드를 지원하지 않으면, 상기 단말의 ISR가 활성화되지 않는 ISR 제어 방법.
  2. 제1항에 있어서,
    상기 단말의 ISR이 활성화되지 않으면, 상기 LAU 요청 메시지에 대한 응답으로 상기 단말의 ISR이 비활성화되었음을 지시하는 ISR 비활성 지시를 포함하는 LAU 승인(LAU Accept) 메시지를 상기 단말에게 전송하는 단계를 포함하는 ISR 제어 방법.
  3. 제1항에 있어서,
    상기 단말의 ISR이 활성화되지 않으면, 상기 단말의 ISR이 비활성화되었음을 지시하는 ISR 비활성 지시를 포함하는 컨텍스트 확인(Context Acknowledge) 메시지를 상기 제2 네트워크 노드에게 전송하는 단계를 더 포함하는 ISR 제어 방법.
  4. 제1항에 있어서,
    상기 컨텍스트 요청 메시지는 상기 제1 네트워크 노드가 ISR을 지원하는지 여부를 지시하는 제1 ISR 능력 지시를 포함하는 ISR 제어 방법.
  5. 제1항에 있어서,
    상기 컨텍스트 응답 메시지는 상기 제2 네트워크 노드가 ISR을 지원하는지 여부를 지시하는 제2 ISR 능력 지시를 포함하는 ISR 제어 방법.
  6. 제1항에 있어서,
    상기 제1 네트워크 노드 및 상기 제2 네트워크 노드 모두 ISR을 지원하더라도 상기 단말의 ISR가 활성화되지 않는 ISR 제어 방법.
  7. 무선 통신 시스템에서 단말이 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)의 활성(activation)/비활성(deactivation)을 제어하기 위한 방법에 있어서,
    상기 단말이 캠핑(camping) 중인 기지국이 확장된 아이들 모드 불연속 수신(eDRX: Extended Idle mode Discontinuous Reception) 모드를 지원하는지 여부를 판단하는 단계; 및
    상기 기지국이 eDRX 모드를 지원하지 않으면, 상기 단말이 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)를 지원하지 않는다는 지시를 포함하는 LAU 요청(LAU Request) 메시지를 네트워크 노드에게 전송함으로써 LAU 절차를 개시하는 단계를 포함하는 ISR 제어 방법.
  8. 제1항에 있어서,
    상기 기지국으로부터 전송되는 시스템 정보 블록(SIB: System Information Block)에 하이퍼 프레임(Hyper Frame)에 대한 정보가 포함되는지 여부에 따라 상기 기지국이 eDRX 모드를 지원하는지 여부가 판단되는 ISR 제어 방법.
  9. 무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)의 활성(activation)/비활성(deactivation)을 제어하기 위한 제1 네트워크 노드에 있어서,
    신호를 송수신하기 위한 통신 모듈(communication module); 및
    상기 통신 모듈을 제어하는 프로세서를 포함하고,
    상기 프로세서는 단말로부터 위치 영역 업데이트 요청(LAU Request: Location Area Update Request) 메시지를 수신하면, 제2 네트워크 노드에게 상기 단말의 사용자 정보(user information)을 획득하기 위하여 컨텍스트 요청(Context Request) 메시지를 전송하고, 상기 컨텍스트 요청 메시지에 대한 응답으로 상기 제2 네트워크 노드로부터 컨텍스트 응답(Context Response) 메시지를 수신하도록 구성되고,
    상기 제1 네트워크 노드가 확장된 아이들 모드 불연속 수신(eDRX: Extended Idle mode Discontinuous Reception) 모드를 지원하면, 상기 컨텍스트 요청 메시지는 상기 제1 네트워크 노드가 eDRX를 지원함을 지시하는 제1 eDRX 능력 지시를 포함하고,
    상기 제2 네트워크 노드가 eDRX 모드를 지원하면, 상기 컨텍스트 응답 메시지는 상기 제2 네트워크 노드가 eDRX를 지원함을 지시하는 제2 eDRX 능력 지시를 포함하고,
    상기 제1 네트워크 노드 및 상기 제2 네트워크 노드 중 적어도 어느 하나가 eDRX 모드를 지원하지 않으면, 상기 단말의 ISR가 활성화되지 않는 네트워크 노드.
  10. 무선 통신 시스템에서 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)의 활성(activation)/비활성(deactivation)을 제어하기 위한 단말에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및
    상기 RF 유닛을 제어하는 프로세서를 포함하고,
    상기 프로세서는 상기 단말이 캠핑(camping) 중인 기지국이 확장된 아이들 모드 불연속 수신(eDRX: Extended Idle mode Discontinuous Reception) 모드를 지원하는지 여부를 판단하고,
    상기 기지국이 eDRX 모드를 지원하지 않으면, 상기 단말이 아이들 모드 시그널링 감소(ISR: Idle-mode Signaling Reduction)를 지원하지 않는다는 지시를 포함하는 LAU 요청(LAU Request) 메시지를 네트워크 노드에게 전송함으로써 LAU 절차를 개시하도록 구성되는 단말.
PCT/KR2016/011984 2015-10-23 2016-10-24 무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소를 제어하기 위한 방법 및 이를 위한 장치 WO2017069597A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562245283P 2015-10-23 2015-10-23
US62/245,283 2015-10-23
US201562246562P 2015-10-26 2015-10-26
US62/246,562 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017069597A1 true WO2017069597A1 (ko) 2017-04-27

Family

ID=58557341

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2016/011985 WO2017069598A1 (ko) 2015-10-23 2016-10-24 무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소를 제어하기 위한 방법 및 이를 위한 장치
PCT/KR2016/011984 WO2017069597A1 (ko) 2015-10-23 2016-10-24 무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소를 제어하기 위한 방법 및 이를 위한 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011985 WO2017069598A1 (ko) 2015-10-23 2016-10-24 무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소를 제어하기 위한 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US10575278B2 (ko)
EP (1) EP3367735B1 (ko)
CN (1) CN108141842B (ko)
WO (2) WO2017069598A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004692A1 (en) * 2017-06-27 2019-01-03 Lg Electronics Inc. METHOD FOR IMPLEMENTING A RLEAU PROCEDURE AND DEVICE SUPPORTING SAID METHOD
WO2019221563A1 (ko) * 2018-05-18 2019-11-21 삼성전자 주식회사 사업자의 제한적인 서비스에 대한 망접속 제어 방법 및 장치
CN110545571A (zh) * 2018-05-29 2019-12-06 中国电信股份有限公司 物联网终端及其功能开关方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205251B (zh) * 2016-03-18 2020-03-06 北京佰才邦技术有限公司 一种终端接入网络的方法、装置及终端
US10687279B2 (en) * 2017-08-25 2020-06-16 Verizon Patent And Licensing Inc. System and method of optimizing user equipment reachability notifications
US10285048B2 (en) 2017-09-06 2019-05-07 Verizon Patent And Licensing Inc. Mobility management node selection to support cloud-centric environments
WO2020032050A1 (en) * 2018-08-09 2020-02-13 Sharp Kabushiki Kaisha Modifying wake up signaling state of a wireless terminal
US10945120B2 (en) 2019-02-27 2021-03-09 Oracle International Corporation Methods, systems, and computer readable media for dynamically provisioning and using public land mobile network (PLMN) location mappings in service capability exposure function (SCEF) or network exposure function (NEF)
US11902838B2 (en) 2019-03-28 2024-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Transferring monitoring event information during a mobility procedure
US10972368B2 (en) * 2019-05-17 2021-04-06 Oracle International Corporation Methods, systems, and computer readable media for providing reduced signaling internet of things (IoT) device monitoring
CN113966638A (zh) * 2019-06-17 2022-01-21 索尼集团公司 实现无线设备与网络节点之间的下行链路数据通信的方法、无线设备和网络节点
US11259324B2 (en) * 2019-07-03 2022-02-22 Sony Group Corporation MU-MIMO pre-packet arrival channel contention
JP7438225B2 (ja) * 2019-08-30 2024-02-26 株式会社Nttドコモ 交換機及び通信方法
CN114616878B (zh) * 2019-11-06 2024-01-19 Lg电子株式会社 在无线通信系统中发送和接收用户设备和基站的信号的方法和设备
WO2021120032A1 (en) * 2019-12-18 2021-06-24 Qualcomm Incorporated Fast connection release after paging response
CN111315003B (zh) * 2020-02-16 2022-08-19 重庆邮电大学 一种psm以及edrx掉电睡眠方法及其终端
US11381955B2 (en) 2020-07-17 2022-07-05 Oracle International Corporation Methods, systems, and computer readable media for monitoring machine type communications (MTC) device related information
US11445525B1 (en) * 2021-02-04 2022-09-13 Juniper Networks, Inc. Network data traffic buffering in mobile networks
BR102022011599A2 (pt) * 2021-06-18 2022-12-27 Apple Inc. Recuperação do serviço em uma tecnologia de acesso por rádio (rat) para um equipamento de usuário (ue) multimodo
US11895080B2 (en) 2021-06-23 2024-02-06 Oracle International Corporation Methods, systems, and computer readable media for resolution of inter-network domain names

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009137B1 (ko) * 2001-10-19 2011-01-18 지멘스 악티엔게젤샤프트 제 1 통신 노드로부터 제 2 통신 노드로 이동 통신 유닛을 전환하기 위한 방법
KR20110043405A (ko) * 2009-10-21 2011-04-27 엘지전자 주식회사 이동통신 시스템에서의 isr 활성화 결정 방법
US20140221001A1 (en) * 2011-09-30 2014-08-07 Zte Corporation Tracking Area Update Method and System
KR20140143456A (ko) * 2012-05-11 2014-12-16 인텔 코포레이션 무선 통신 시스템에서 강화된 사용자 장비 보조 정보를 위한 시스템 및 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8515465B2 (en) * 2009-09-02 2013-08-20 Telefonaktiebolaget L M Ericsson (Publ) Solution for paging differentiation in communication network
JP5514908B2 (ja) * 2009-10-30 2014-06-04 パナソニック株式会社 ステータス依存型移動体サービス用通信システム及び装置
JP4767357B1 (ja) * 2010-07-30 2011-09-07 株式会社エヌ・ティ・ティ・ドコモ 呼び出し方法、コアネットワーク装置、無線アクセスネットワーク装置及びゲートウェイ装置
CN102986261B (zh) * 2011-07-15 2015-11-25 华为技术有限公司 处理寻呼的方法、用户设备和系统
KR20140035785A (ko) 2012-09-14 2014-03-24 삼성전자주식회사 무선 통신 시스템에서 망 혼잡상황에서 특정 서비스를 제어하는 방법 및 장치
US9060294B2 (en) * 2012-10-08 2015-06-16 Cisco Technology, Inc. System and method for throttling downlink data notifications in a network environment
US9999020B2 (en) * 2014-01-13 2018-06-12 Lg Electronics Inc. Downlink data transfer method and location update procedure execution method
EP3281366B1 (en) * 2015-04-07 2020-04-01 Nokia Solutions and Networks Oy Method and apparatus to address user equipment power consumption
CN106714133B (zh) * 2015-08-14 2020-09-15 中兴通讯股份有限公司 网关的恢复处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009137B1 (ko) * 2001-10-19 2011-01-18 지멘스 악티엔게젤샤프트 제 1 통신 노드로부터 제 2 통신 노드로 이동 통신 유닛을 전환하기 위한 방법
KR20110043405A (ko) * 2009-10-21 2011-04-27 엘지전자 주식회사 이동통신 시스템에서의 isr 활성화 결정 방법
US20140221001A1 (en) * 2011-09-30 2014-08-07 Zte Corporation Tracking Area Update Method and System
KR20140143456A (ko) * 2012-05-11 2014-12-16 인텔 코포레이션 무선 통신 시스템에서 강화된 사용자 장비 보조 정보를 위한 시스템 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSG CN ; Mobile Radio Interface Layer 3 Specification; Core Network Protocols; Stage 3 (Release 13)", 3GPP TS 24.008 V13.3.0, 25 September 2015 (2015-09-25), XP050996317 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004692A1 (en) * 2017-06-27 2019-01-03 Lg Electronics Inc. METHOD FOR IMPLEMENTING A RLEAU PROCEDURE AND DEVICE SUPPORTING SAID METHOD
WO2019221563A1 (ko) * 2018-05-18 2019-11-21 삼성전자 주식회사 사업자의 제한적인 서비스에 대한 망접속 제어 방법 및 장치
CN110545571A (zh) * 2018-05-29 2019-12-06 中国电信股份有限公司 物联网终端及其功能开关方法

Also Published As

Publication number Publication date
CN108141842A (zh) 2018-06-08
WO2017069598A1 (ko) 2017-04-27
CN108141842B (zh) 2021-02-23
US10575278B2 (en) 2020-02-25
EP3367735A1 (en) 2018-08-29
US20180317200A1 (en) 2018-11-01
EP3367735A4 (en) 2019-04-24
EP3367735B1 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
WO2017069597A1 (ko) 무선 통신 시스템에서 단말의 아이들 모드 시그널링 감소를 제어하기 위한 방법 및 이를 위한 장치
WO2018131984A1 (ko) 무선 통신 시스템에서 ue 설정 업데이트 방법 및 이를 위한 장치
WO2018147698A1 (ko) 무선 통신 시스템에서 nas 메시지 송수신 방법 및 이를 위한 장치
WO2017078485A1 (ko) 무선 통신 시스템에서 서빙 노드 이전 방법 및 이를 위한 장치
WO2018044144A1 (ko) 무선 통신 시스템에서 서비스 요청 절차를 수행하기 위한 방법 및 이를 위한 장치
WO2017126922A1 (ko) 무선 통신 시스템에서 연결 재개 방법 및 이를 위한 장치
WO2018164552A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018231027A1 (ko) 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
WO2018080230A1 (ko) 무선 통신 시스템에서 emm 모드를 결정하는 방법 및 이를 위한 장치
WO2017200269A1 (ko) 무선 통신 시스템에서 착신 데이터 제어 방법 및 이를 위한 장치
WO2017164679A1 (ko) 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치
WO2018128528A1 (ko) 무선 통신 시스템에서 pdu 세션 관리 방법 및 이를 위한 장치
WO2016208997A1 (ko) 무선 통신 시스템에서 단말의 영역 관리 방법 및 이를 위한 장치
WO2017126884A1 (ko) 무선 통신 시스템에서 혼잡 제어 방법 및 이를 위한 장치
WO2018174525A1 (ko) 무선 통신 시스템에서 계층간 상호작용 방법 및 이를 위한 장치
WO2017188758A1 (ko) 무선 통신 시스템에서 nas 시그널링 유보/재개를 수행하기 위한 방법 및 이를 위한 장치
WO2017003235A1 (ko) 무선 통신 시스템에서 그룹 메시지를 전송하기 위한 방법 및 이를 위한 장치
WO2017119802A1 (ko) 무선 통신 시스템에서 nidd(non-ip data delivery) 구성 설정 방법 및 이를 위한 장치
WO2018155908A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018128529A1 (ko) 무선 통신 시스템에서 네트워크간 상호연동 방법 및 이를 위한 장치
WO2017086717A1 (ko) 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신 활성화 지원 방법 및 이를 위한 장치
WO2016111591A1 (ko) 무선 통신 시스템에서 페이징 전송 방법 및 이를 위한 장치
WO2018231029A1 (ko) 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
WO2018169244A1 (ko) 무선 통신 시스템에서 이동성 이벤트 통지 방법 및 이를 위한 장치
WO2017048042A1 (ko) 무선 통신 시스템에서의 페이징 절차를 수행하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857854

Country of ref document: EP

Kind code of ref document: A1