WO2017069546A1 - Composition permettant une réduction d'une fonction de travail d'une couche collectrice d'électrons en oxyde métallique, cellule solaire organique inversée utilisant ladite composition, et procédé de préparation d'une cellule solaire organique inversée - Google Patents
Composition permettant une réduction d'une fonction de travail d'une couche collectrice d'électrons en oxyde métallique, cellule solaire organique inversée utilisant ladite composition, et procédé de préparation d'une cellule solaire organique inversée Download PDFInfo
- Publication number
- WO2017069546A1 WO2017069546A1 PCT/KR2016/011865 KR2016011865W WO2017069546A1 WO 2017069546 A1 WO2017069546 A1 WO 2017069546A1 KR 2016011865 W KR2016011865 W KR 2016011865W WO 2017069546 A1 WO2017069546 A1 WO 2017069546A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxide
- layer
- work function
- solar cell
- organic solar
- Prior art date
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 57
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 57
- 239000000203 mixture Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical group [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 66
- 239000011787 zinc oxide Substances 0.000 claims description 31
- 239000000758 substrate Substances 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 13
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 11
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 9
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 claims description 9
- 125000003545 alkoxy group Chemical group 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 6
- UNRNJMFGIMDYKL-UHFFFAOYSA-N aluminum copper oxygen(2-) Chemical compound [O-2].[Al+3].[Cu+2] UNRNJMFGIMDYKL-UHFFFAOYSA-N 0.000 claims description 4
- KYKLWYKWCAYAJY-UHFFFAOYSA-N oxotin;zinc Chemical compound [Zn].[Sn]=O KYKLWYKWCAYAJY-UHFFFAOYSA-N 0.000 claims description 4
- 239000002096 quantum dot Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000005751 Copper oxide Substances 0.000 claims description 3
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- QMVMBRVXQLUKPF-UHFFFAOYSA-N [Rh]=O.[Zn] Chemical compound [Rh]=O.[Zn] QMVMBRVXQLUKPF-UHFFFAOYSA-N 0.000 claims description 3
- 229910000431 copper oxide Inorganic materials 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 3
- 229910001887 tin oxide Inorganic materials 0.000 claims description 3
- 229910003437 indium oxide Inorganic materials 0.000 claims 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims 2
- SJLOMQIUPFZJAN-UHFFFAOYSA-N oxorhodium Chemical compound [Rh]=O SJLOMQIUPFZJAN-UHFFFAOYSA-N 0.000 claims 1
- 229910003450 rhodium oxide Inorganic materials 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 17
- 230000007935 neutral effect Effects 0.000 abstract description 8
- 239000000470 constituent Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 113
- 239000000463 material Substances 0.000 description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 10
- 239000011521 glass Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- -1 polyethylene terephthalate Polymers 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 238000004667 electrostatic force microscopy Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000005525 hole transport Effects 0.000 description 4
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 4
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920000548 poly(silane) polymer Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- ATBDZSAENDYQDW-UHFFFAOYSA-N 3-ethenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC(C=C)=C1 ATBDZSAENDYQDW-UHFFFAOYSA-N 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole Natural products C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001088 polycarbazole Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000004402 ultra-violet photoelectron spectroscopy Methods 0.000 description 1
- YZYKBQUWMPUVEN-UHFFFAOYSA-N zafuleptine Chemical compound OC(=O)CCCCCC(C(C)C)NCC1=CC=C(F)C=C1 YZYKBQUWMPUVEN-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/84—Layers having high charge carrier mobility
- H10K30/86—Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to a composition for reducing work function of a metal oxide electron collecting layer, an inverse structure organic solar cell using the same, and a method of manufacturing the inverse structure organic solar cell.
- Solar cells include solar cells that generate steam required to rotate turbines using solar heat, and solar cells that convert photons into electrical energy using the properties of semiconductors. Refers to an optical cell.
- the organic solar cell can be made into a thin film with a thickness of several hundred nm and can be applied to a flexible structure, which is expected to be applied to various applications such as presenting the potential as an energy source of the future mobile information system. .
- a general organic solar cell includes a lower electrode layer formed on a substrate, a hole transport layer formed in contact with the surface of the lower electrode layer, at least one active layer formed in contact with the surface of the hole transport layer, and an upper electrode layer formed on the active layer. do.
- positive charges holes
- negative charges electrons are moved to the electrode on the active layer, and holes are moved to the hole transport layer.
- the active layer of the conventional organic solar cell is an electron donor material poly (3-hexylthiophene) (hereinafter referred to as P3HT) and an electron acceptor material 1- (3-methoxycarbonyl) -propyl- It is prepared using a mixture of 1-phenyl- (6,6) C 61 (1- (3-methoxycarbonyl) -propyl-1-phenyl- (6,6) C 61 , hereinafter PCBM).
- an organic solar cell having an inverse structure is stable in air while utilizing metal oxides such as TiO 2 and ZnO to solve the problem. And, it is emerging as the most representative method that can be applied to the roll-to-roll process.
- Inversely structured organic solar cells contain electrons from transparent electrodes (e.g., ITO or FTO) in contrast to the collection of holes from transparent electrodes such as indium-tin oxide (ITO) in the device structure of conventional positive structure organic solar cells.
- transparent electrodes e.g., ITO or FTO
- ITO indium-tin oxide
- Collected to act as a cathode (cathode) the anode (Anode) may be used a metal such as Au, Ag.
- the device structure of the reverse structure organic solar cell as described above may not use a metal such as Ca or Al, which is a highly reactive electron collecting electrode (cathode) used in a general positive structure organic solar cell device, and both a positive electrode and a negative electrode may be used.
- a metal such as Ca or Al
- cathode highly reactive electron collecting electrode
- the high work-function allows the use of materials that are not reactive to air or moisture.
- the 1st aspect of this invention provides the composition for reducing work function of the metal oxide electron collection layer containing the compound represented by following formula (1).
- R is C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl or C 1-6 alkoxy,
- n is an integer of 50-10000.
- a second aspect of the present invention includes a first electrode, a metal oxide electron collecting layer, a work function reducing layer, a photoactive layer, a hole collecting layer and a second electrode sequentially stacked on a substrate, wherein the work function reducing layer is It provides an inverse structure organic solar cell characterized in that it comprises a compound represented by the formula (1).
- R is C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl or C 1-6 alkoxy,
- n is an integer of 50-10000.
- a third aspect of the invention the first step of depositing a first electrode on a substrate; Stacking a metal oxide electron collecting layer on the first electrode; A third step of forming a work function reduction layer by coating a work function reduction composition of the metal oxide electron collection layer including the compound represented by Formula 1 on the metal oxide electron collecting layer; Stacking a photoactive layer on the work function reduction layer; Stacking a hole collecting layer on the photoactive layer; And a sixth step of stacking a second electrode on the hole collecting layer.
- R is C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl or C 1-6 alkoxy,
- n is an integer of 50-10000.
- the work function of the metal oxide electron collecting layer is lowered.
- the efficiency of the inverse organic solar cell using the polymer is greatly improved. It was. That is, according to the present invention, when the poly (2-oxazoline) -based neutral polymer corresponding to the compound represented by Formula 1 is applied to the metal oxide electron collecting layer, the work function of the metal oxide electron collecting layer is reduced to reduce the metal oxide electron collecting layer. And the energy level between the photoactive layer and the photoactive layer were found to facilitate the transfer / collection of charge. The present invention is based on this.
- the present invention provides a composition for reducing the work function of a metal oxide electron collecting layer comprising a compound represented by the following Chemical Formula 1.
- R is C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl or C 1-6 alkoxy,
- n is an integer of 50-10000.
- n when n is outside the above range, the synthesis may not be easy and the solubility may be degraded.
- n is more preferably an integer of 100 to 6000.
- the compound represented by Formula 1 may have a weight average molecular weight of 10000 to 500000, for example, 50000 to 100000.
- the composition for reducing the work function of the metal oxide electron collecting layer according to the present invention may include a compound (PEOz) represented by the following formula (2).
- n is an integer from 50 to 10000.
- the metal oxide electron collecting layer may be used in an inverse structure organic solar cell, and in addition to this, the work function of the metal oxide electron collecting layer may be applied without limitation to an organic device.
- the metal oxide of the metal oxide electron collecting layer to which the work function reduction composition according to the present invention is applicable is zinc oxide (ZnO), titanium oxide (TiO x , where x is 1, 2 or 3), oxidation Indium (In 2 O 3 ), tin oxide (SnO 2 ), zinc tin oxide (Zinc Tin Oxide), gallium oxide (Ga 2 O 3 ), aluminum oxide, copper oxide (Copper (II) Oxide), copper aluminum oxide ( Copper aluminum oxide, zinc rhodium oxide, indium-gallium zinc oxide (IGZO) or mixtures thereof may be used, but is not limited thereto.
- the present invention includes a first electrode (cathode), a metal oxide electron collecting layer, a work function reduction layer, a photoactive layer, a hole collecting layer and a second electrode (anode) sequentially stacked on a substrate as shown in FIG. 1, It provides an inverse structure organic solar cell, characterized in that the work function reducing layer comprises a compound represented by the following formula (1).
- R is C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl or C 1-6 alkoxy,
- n is an integer of 50-10000.
- It may be prepared by a method comprising a sixth step of stacking a second electrode on the hole collecting layer.
- R is C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl or C 1-6 alkoxy,
- n is an integer of 50-10000.
- the compound represented by the formula (1) as a work function reducing layer to reduce the work function of the metal oxide electron collecting layer as shown in Figure 2 to control the energy structure of the overall reverse structure organic solar cell device, that is, It is possible to improve the performance of the inverse structure organic solar cell.
- the substrate may be a light-transmitting inorganic substrate or an organic substrate, or may be a substrate in which they are stacked in the same or different types.
- the substrate may be glass, quartz, polyethylene terephthalate (PET), polyethylene naphthelate (PEN), polyimide (PI), polycarbonate (PC), polystyrene ( polystylene (PS), polyoxyethlene (POM), acrylonitile styrene copolymer (AS resin), Triacetyl cellulose (TAC), or mixtures thereof.
- the first electrode is preferably a light transmissive material such that light passing through the substrate reaches the photoactive layer, and may serve as a cathode that receives electrons generated in the photoactive layer and transfers the electrons to the external circuit.
- the first electrode may be indium tin oxide (ITO), fluorinated tin oxide (FTO), indium zinc oxide (IZO), or aluminum-doped zinc oxide (Al-doped Zinc Oxide). , AZO), zinc oxide (ZnO), indium zinc oxide (IZTO), or mixtures thereof.
- the first electrode may be formed by applying a transparent electrode material to one surface of the substrate or coating in a film form using sputtering, E-Beam, thermal evaporation, spin coating, screen printing, inkjet printing, doctor blade or gravure printing. Can be.
- the metal oxide electron collecting layer may also be referred to as a metal oxide electron extraction layer, and may serve to receive electrons generated in the photoactive layer and transfer them to the first electrode.
- a metal oxide electron extraction layer As the metal oxide of the metal oxide electron collecting layer, various metal oxides mentioned in the work function reduction composition according to the present invention may be used without limitation.
- a work function reducing layer including the neutral polymer represented by Chemical Formula 1 is formed on the surface of the metal oxide electron collecting layer.
- the work function reduction layer may be formed in a nano-dot structure. As the work function reduction layer is formed in the nano-point structure, the area with the electrode can be increased, thereby collecting a larger amount of charge.
- the work function reduction layer may be formed by coating a solution having a concentration of 1 to 10 mg / ml of the compound represented by Chemical Formula 1 on the metal oxide electron collecting layer.
- a solution having a concentration of 2 to 5 mg / ml of the compound represented by Formula 1 in terms of work function reduction efficiency.
- the work function reduction layer is deposited on the metal oxide electron collecting layer through a solution process, for example, spin coating or spray coating, to form a coating layer on the surface of the metal oxide electron collecting layer and lower its work function.
- the coating solution for forming the work function reduction layer may use an organic solvent such as methanol, chlorobenzene, chloroform or para xylene as a solvent.
- a photoactive layer is formed on the work function reduction layer.
- the photoactive layer may be formed by applying a mixed solution of an electron acceptor material and an electron donor material onto the work function reduction layer and then drying the solvent.
- the coating process may use a known coating method such as spin coating, spray coating, doctor blade coating, and inkjet printing, and may be preferably performed by spin coating.
- the electron donor material refers to a material that absorbs sunlight to form electron-hole pairs (excitons) and moves holes separated at the pn junction interface between the electron donor material and the electron acceptor material toward the anode. .
- the electron donor material may be a conjugated polymer that can be used as a p-type semiconductor, polythiophene-based, polyfluorene-based, polyaniline-based, polycarbazole-based, polyvinylcarba It may be a sol (polyvinylcarbazole), polyphenylene (polyphenylene), polyphenylenevinylene (polyphenylenevinylene), polysilane (polysilane), polythiazole (polythiazole) or a copolymer thereof.
- electron donor materials include PBDTTT-C-T, PTB7-Th, PBDTT-S-TT, PBDT-TS1, PBDTTT-C, and PTB7.
- the electron acceptor material means a material that serves to move the electrons separated at the pn junction interface in the photoactive layer toward the cathode.
- the electron acceptor material is fullerene and PC61BM ([6,6] -phenyl-C61-butyric acid methyl ester), PC 71 BM ([6,6] -phenyl- which can be used as an n-type semiconductor. C 71 -butyric acid methyl ester), PC81BM ([6,6] -phenyl-C81-butyric acid methyl ester), and fullerene derivatives such as ICBA (indene-C60 bisadduct).
- the hole collecting layer is a p-type buffer layer that allows the holes generated in the photoactive layer to be easily transferred to the anode, also called a hole transport layer.
- the hole collecting layer may be a conductive metal oxide, a compounded organic of poly (3,4-ethylenedioxythiophene) [PEDOT] and poly (3-styrenesulfonate) [PSS], or a mixture thereof.
- a conductive metal oxide a compounded organic of poly (3,4-ethylenedioxythiophene) [PEDOT] and poly (3-styrenesulfonate) [PSS], or a mixture thereof.
- the conductive metal oxide at least one of WO 3 , V 2 O 3 , MoO 3 , and the like may be used.
- the second electrode is a layer serving as an anode that finally collects holes and delivers the holes to an external circuit.
- the second electrode may be any one selected from metals, alloys, conductive polymers, other conductive compounds, and combinations thereof.
- the second electrode is preferably a material having a high oxidation stability against exposure to the atmosphere.
- a material having a high work function such as Cu, Ag, Au, W, Ni, and Ti. desirable.
- each of the above layers may be formed by thermal image deposition, electron beam deposition, sputtering, ion plating or chemical vapor deposition, and the work function reduction layer may be formed by a solution process as described above.
- the electrodes may be formed by applying an electrode forming paste including a metal and then heat treatment.
- the present invention lowers the work function of the metal oxide by modifying the surface of the metal oxide electron collecting layer, which is a component of the inverse structure organic solar cell, using a neutral polymer, thereby increasing the built-in potential, and the neutral polymer.
- the efficiency of the inverse organic solar cell using the polymer can be greatly improved.
- it is expected to accelerate the commercialization of polymer solar cells by developing high efficiency organic solar cells of 10% or more, and is expected to play a big role in the development of organic solar cells that can be bent and worn on the body.
- FIG. 1 is a schematic diagram of an inverse structure organic solar cell according to the present invention.
- FIG. 2 is a schematic diagram of an energy structure of an inverse organic solar cell according to the present invention.
- Figure 3 shows the results of the UPS measurement on each surface according to the PEOz concentration control on the ZnO surface.
- Figure 4 shows the results of the EFM measurement on each surface according to the PEOz concentration control on the ZnO surface.
- FIG. 5 is a schematic diagram illustrating a lower work function of ZnO based on the results of UPS and EFM measurements.
- FIG. 6 is a schematic diagram showing a laminated structure of an inverse structure organic solar cell according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram showing the energy structure of an inverse structure organic solar cell according to an embodiment of the present invention.
- FIG. 8 is a current density-voltage graph of the device according to the concentration of PEOz for the organic solar cell of the inverse structure type fabricated in Example 2.
- FIG. 8 is a current density-voltage graph of the device according to the concentration of PEOz for the organic solar cell of the inverse structure type fabricated in Example 2.
- FIG. 11 is an AES imaging result of a work function reduction layer, that is, a PEOz layer (ZnO / PEOz 4 mg / ml) and an untreated ZnO surface, by adjusting the concentration of PEOz to 4 mg / ml.
- a work function reduction layer that is, a PEOz layer (ZnO / PEOz 4 mg / ml) and an untreated ZnO surface, by adjusting the concentration of PEOz to 4 mg / ml.
- FIG. 13 is a schematic view of an inverse structure organic solar cell according to the present invention including a PEOz layer having a nanopoint structure as a work function reduction layer.
- the UPS was measured using an ultra-high vacuum (UHV) UPS system (ESCALAB 250Xi, Thermo Scientific) at 1 ⁇ 10 ⁇ 9 mbar using a He I (21.2 eV) UV light source. All samples were biased at -5 V and the energy scale of the UPS spectrum was corrected to the Fermi level of the thermally-evaporated-cleaned Ag substrate.
- the valence band energy of the ZnO layer was obtained at 7.7 eV from the low binding energy portion of the corresponding UPS spectrum after calibration with the cleaned Ag reference electrode, and the conduction band energy of the ZnO layer was from the valence band energy (3.4 eV) Calculated by subtracting
- the valence band maximum of the PEOz-coated ZnO layer was calculated using the following equation:
- E VBM P IN - (E CF - E ON)
- E VBM , P IN , E CF and E ON are valence band maximum, incident photon energy (21.2 eV), binding energy in the cutoff region, and onset binding energy, respectively.
- ZnO surface was modified through the concentration control (thickness control) (0, 4, 8 mg / ml) of PEOz using methanol as a solvent, and the electrostatic force microscopy (EMF) was measured as follows.
- the work function was measured with EFM (XE-150, Park Systems) and calibrated with highly ordered pyrolytic graphite (HOPG).
- An organic solar cell of an inverse structure type having an energy structure as shown in FIG. 7 in a laminated structure as shown in FIG. 6 while using a PEOz-containing work function reduction coating solution was manufactured as follows.
- PC71BM purity> 99%
- DIO 1,8-dioodooctane
- CB chlorobenzene
- ZnO precursor solution was dissolved zinc acetate dihydrate (Sigma-Al
- ITO Indium-tin oxide
- sheet resistance 10 ⁇ / cm 2
- ZnO precursor solution was spin coated onto the cleaned ITO-glass substrate and the resulting ITO / ZnO sample was annealed at 200 ° C. for 1 hour in air.
- the PEOz solution was spin coated onto the surface of the ZnO layer and annealed at 120 ° C. for 15 minutes.
- PEOz-coated samples were placed in a nitrogen filled glove box for photoactive layer coating.
- the PTB7-Th: PC 71 BM BHJ layer was spin coated on top of the PEOz-coated ZnO layer and dried for 20 minutes inside the glove box.
- These samples were then placed in a vacuum chamber in an argon filled glove box. In the vacuum chamber, MoO 3 (10 nm) and Ag (80 nm) were sequentially deposited on top of the BHJ layer through a shadow mask at a vacuum of 2 ⁇ 10 ⁇ 6 Torr.
- the active area of the device was 0.05 cm 2 or 0.09 cm 2 .
- the current density-voltage graph of the device according to the concentration of PEOz was calculated using a solar simulator (92250A-1000, Newport-Oriel) and an electrometer (Model 2400, Keithley's solar cell measurement system was used.
- the external quantum efficiency (EQE) according to the concentration of PEOz for the inverse structure type organic solar cell manufactured in Example 2 is a light source (Tungsten-Halogen lamp, 150 W, ASBN-W, Spectral Products) And a special EQE measurement system equipped with a monochromatic spectrometer (CM110, Spectral Products).
- the concentration of PEOz was adjusted to 4 mg / ml, thereby modifying the ZnO surface on the glass substrate / ITO, that is, a PEOz layer (ZnO / PEOz 4 mg / ml) and untreated ZnO.
- Surfaces were measured by Auger Electron Spectroscopy (AES) imaging.
- a glass substrate / ITO / ZnO layer was laminated under the same conditions as in Example 2, and the surface of the ZnO was modified at a concentration of 4 mg / ml of PEOz. Then, AES imaging was measured.
- the PEOz layer is formed in a nano-dot structure.
- the PEOz layer is formed with a nano-dot structure.
- FIG. 13 A schematic diagram of the inverse structure organic solar cell according to the present invention including the PEOz layer having the nanopoint structure as the work function reduction layer is illustrated in FIG. 13.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
La présente invention concerne une composition permettant une réduction d'une fonction de travail d'une couche collectrice d'électrons en oxyde métallique, une cellule solaire organique inversée utilisant ladite composition et un procédé de préparation d'une cellule solaire organique inversée. Selon l'invention, la surface d'une couche collectrice d'électrons en oxyde métallique, qui est un élément constituant d'une cellule solaire organique inversée, est modifiée au moyen d'un polymère neutre et ainsi la fonction de travail de l'oxyde métallique est réduite et un potentiel intégré est augmenté. Des charges peuvent être facilement déplacées et collectées au moyen de la formation de nanoplots polymères grâce au polymère neutre. Par conséquent, le rendement d'une cellule solaire organique inversée utilisant un polymère peut être fortement augmenté.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150146959A KR102287878B1 (ko) | 2015-10-21 | 2015-10-21 | 금속 산화물 전자수집층의 일함수 저감용 조성물, 이를 이용한 역구조 유기 태양전지 및 상기 역구조 유기 태양전지의 제조방법 |
KR10-2015-0146959 | 2015-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017069546A1 true WO2017069546A1 (fr) | 2017-04-27 |
Family
ID=58557437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/011865 WO2017069546A1 (fr) | 2015-10-21 | 2016-10-21 | Composition permettant une réduction d'une fonction de travail d'une couche collectrice d'électrons en oxyde métallique, cellule solaire organique inversée utilisant ladite composition, et procédé de préparation d'une cellule solaire organique inversée |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102287878B1 (fr) |
WO (1) | WO2017069546A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102099455B1 (ko) * | 2018-01-05 | 2020-04-09 | 경북대학교 산학협력단 | 나노크기-분화구 형상을 가지는 전자수집층, 이를 포함하는 역구조 비-풀러렌 유기태양전지, 및 그 제조방법 |
KR102540847B1 (ko) | 2018-03-14 | 2023-06-05 | 삼성전자주식회사 | 전계 발광 소자 및 이를 포함하는 표시 장치 |
KR102011869B1 (ko) * | 2018-07-30 | 2019-08-19 | 국민대학교산학협력단 | 광전변환효율 및 장기안정성이 향상된 페로브스카이트 태양전지 및 이의 제조 방법 |
KR102670528B1 (ko) * | 2021-09-30 | 2024-05-29 | 한국화학연구원 | SnO2 전자수송층 및 이를 이용한 광소자 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120037316A (ko) * | 2010-10-11 | 2012-04-19 | 포항공과대학교 산학협력단 | 유기 태양 전지 및 이의 제조 방법 |
KR20140122655A (ko) * | 2013-04-10 | 2014-10-20 | 포항공과대학교 산학협력단 | 역구조 유기 발광 다이오드 및 이의 제조방법 |
KR20150002055A (ko) * | 2013-06-28 | 2015-01-07 | 서울대학교산학협력단 | Igzo를 포함하는 역구조 유기 태양전지 및 그의 제조 방법 |
KR101495764B1 (ko) * | 2014-03-21 | 2015-02-25 | 한국과학기술연구원 | 단일층 양자점 전자수송층을 가진 역구조 유기 태양전지소자 및 제작방법 |
KR20150030287A (ko) * | 2013-09-06 | 2015-03-20 | 주식회사 포스코 | 역구조 유기태양전지의 제조방법 및 이로부터 제조된 역구조 유기태양전지 |
-
2015
- 2015-10-21 KR KR1020150146959A patent/KR102287878B1/ko active IP Right Grant
-
2016
- 2016-10-21 WO PCT/KR2016/011865 patent/WO2017069546A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120037316A (ko) * | 2010-10-11 | 2012-04-19 | 포항공과대학교 산학협력단 | 유기 태양 전지 및 이의 제조 방법 |
KR20140122655A (ko) * | 2013-04-10 | 2014-10-20 | 포항공과대학교 산학협력단 | 역구조 유기 발광 다이오드 및 이의 제조방법 |
KR20150002055A (ko) * | 2013-06-28 | 2015-01-07 | 서울대학교산학협력단 | Igzo를 포함하는 역구조 유기 태양전지 및 그의 제조 방법 |
KR20150030287A (ko) * | 2013-09-06 | 2015-03-20 | 주식회사 포스코 | 역구조 유기태양전지의 제조방법 및 이로부터 제조된 역구조 유기태양전지 |
KR101495764B1 (ko) * | 2014-03-21 | 2015-02-25 | 한국과학기술연구원 | 단일층 양자점 전자수송층을 가진 역구조 유기 태양전지소자 및 제작방법 |
Non-Patent Citations (1)
Title |
---|
NAM, S. ET AL.: "Inverted Polymer Fullerene Solar Cells Exceeding 10% Efficiency with Poly (2-ethyl-2-oxazoline) Nanodots on Electron-collecting Buffer Layers", NATURE COMMUNICATIONS, vol. 6, 14 December 2015 (2015-12-14), pages 1 - 9, XP055376506 * |
Also Published As
Publication number | Publication date |
---|---|
KR102287878B1 (ko) | 2021-08-10 |
KR20170046877A (ko) | 2017-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stubhan et al. | Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer | |
WO2014109610A1 (fr) | Procédé de fabrication d'une cellule solaire hybride organique-inorganique à haut rendement | |
US10714270B2 (en) | Photoelectric conversion device and method for manufacturing the same | |
Zhou et al. | Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability | |
WO2011102677A2 (fr) | Procédé pour fabriquer une pile solaire à hétérojonction minérale/organique nanostructurée | |
WO2011102673A2 (fr) | Pile solaire à hétérojonction entièrement en semi-conducteurs | |
WO2017069546A1 (fr) | Composition permettant une réduction d'une fonction de travail d'une couche collectrice d'électrons en oxyde métallique, cellule solaire organique inversée utilisant ladite composition, et procédé de préparation d'une cellule solaire organique inversée | |
WO2015167225A1 (fr) | Cellule solaire organique et son procédé de fabrication | |
WO2014200312A1 (fr) | Cellule photovoltaïque organique et son procédé de fabrication | |
WO2010120082A2 (fr) | Pile solaire organique multicouche utilisant une couche polyélectrolytique, et procédé de fabrication de ladite pile | |
WO2014200309A1 (fr) | Cellule photovoltaïque organique et son procédé de fabrication | |
WO2011062457A2 (fr) | Cellule solaire hybride organique-inorganique et procédé de fabrication associé | |
WO2020009506A1 (fr) | Cellule solaire organique comprenant une couche de transport de charge de type à double couche ayant une photo-stabilité améliorée, et son procédé de fabrication | |
WO2015167230A1 (fr) | Cellule solaire et son procédé de fabrication | |
WO2013012271A2 (fr) | Procédé permettant de préparer une couche d'absorption de lumière destinée à une cellule solaire, cellule solaire incluant la couche d'absorption de lumière et son procédé de fabrication | |
Li et al. | Fully printable organic and perovskite solar cells with transfer-printed flexible electrodes | |
WO2022215990A1 (fr) | Cellule solaire en pérovskite et cellule solaire en tandem comprenant celle-ci | |
Jia et al. | Efficient polymer bulk heterojunction solar cells with cesium acetate as the cathode interfacial layer | |
WO2016209005A1 (fr) | Cellule solaire à base de pérovskite utilisant du graphène en tant qu'électrode transparente conductrice | |
WO2010107261A2 (fr) | Cellule solaire et procédé de production de celle-ci | |
WO2017217727A1 (fr) | Cellule solaire organique et son procédé de fabrication | |
WO2015163658A1 (fr) | Cellule solaire organique empilée | |
WO2010110590A2 (fr) | Cellule solaire et son procédé de fabrication | |
Jiang et al. | High-performance inverted solar cells with a controlled ZnO buffer layer | |
Aryal et al. | Efficient dual cathode interfacial layer for high performance organic and perovskite solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16857804 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16857804 Country of ref document: EP Kind code of ref document: A1 |