WO2017069136A1 - Three-dimensional structural body manufacturing method, mold used in same, and electric contact - Google Patents

Three-dimensional structural body manufacturing method, mold used in same, and electric contact Download PDF

Info

Publication number
WO2017069136A1
WO2017069136A1 PCT/JP2016/080902 JP2016080902W WO2017069136A1 WO 2017069136 A1 WO2017069136 A1 WO 2017069136A1 JP 2016080902 W JP2016080902 W JP 2016080902W WO 2017069136 A1 WO2017069136 A1 WO 2017069136A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional structure
mold
shape
metal layer
flat plate
Prior art date
Application number
PCT/JP2016/080902
Other languages
French (fr)
Japanese (ja)
Inventor
永田 一志
利文 樊
Original Assignee
日本電子材料株式会社
学校法人立命館
有限会社堀口鉄工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電子材料株式会社, 学校法人立命館, 有限会社堀口鉄工所 filed Critical 日本電子材料株式会社
Priority to JP2017546560A priority Critical patent/JP6529599B2/en
Publication of WO2017069136A1 publication Critical patent/WO2017069136A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional structure, a mold used for the manufacturing, and an electric contact as a three-dimensional structure to be manufactured, and in particular, a fine metal having a recess formed by an inclined surface on the surface.
  • the present invention relates to a method of manufacturing the three-dimensional structure, a mold having an inclined surface for forming a shape of a depression on the surface of the three-dimensional structure, and an electric contact manufactured by the manufacturing method.
  • a method of creating a three-dimensional structure with a metal a method is generally employed in which a molten metal is poured into a plurality of combined molds, and after cooling, the mold is removed to create a desired three-dimensional structure.
  • the structure is a fine three-dimensional structure having a diameter of about 10 to several tens of microns and a length of about 100 microns.
  • a different method is performed.
  • the three-dimensional structure to be manufactured includes an upper part (tip part), a middle part (body part), a lower part (base part), etc.
  • a method of dividing the plurality of parts into a plurality of parts and stacking a body part and a base part in order from the tip part is performed.
  • this fine three-dimensional structure is required to have a unique shape like a probe, that is, in the probe, the tip is sharpened like a pyramid or inclined obliquely in order to contact the electrode of a semiconductor device.
  • Various shapes are required.
  • an inclined surface is formed at the tip, a recess having an inclined surface is formed on the substrate, a metal thin film is formed on the inner wall surface of the recess, and electroplating is performed using the metal thin film as an electrode to form a metal in the upper shape.
  • a layer is formed.
  • Patent Document 1 proposes that a metal three-dimensional structure having a predetermined pattern is formed by stacking metal layers on an exposed surface by electroforming, and the base metal layers are sequentially formed in the same manner.
  • the solid structure by a metal layer is created by removing a board
  • Patent Document 1 Although the three-dimensional structure shown in Patent Document 1 has been described that a hard tool such as a diamond indenter is pressed as a means for forming the shape of the protrusion on the upper part, there is a specific explanation. In addition, since the means of realization was not shown at all, photolithography became the mainstream and was stuck.
  • This method of manufacturing a three-dimensional structure by electroforming has no particular problem when a single structure is created. There was a problem with the production.
  • An object of the present invention is to provide a method of manufacturing a three-dimensional structure that can solve the above-described problems and can create a large number of three-dimensional structures with high accuracy in as short a time as possible.
  • the surface shape of the tip of the three-dimensional structure is pressed and molded on a resin flat plate by a mold having a shape in which the central portion of the predetermined region is depressed, and a metal layer is formed on the surface of the molded flat plate.
  • This is a manufacturing method of a three-dimensional structure in which a three-dimensional structure is manufactured by forming a.
  • the tip of the three-dimensional structure By molding the tip of the three-dimensional structure on the resin flat plate using a mold, a plurality of three-dimensional structures having the same surface shape can be repeatedly formed.
  • the first resist layer is formed on the resin flat plate. Since the reference board is formed by forming, it is possible to obtain an effect that the accuracy of the subsequent processes from the reference board can be maintained high.
  • FIG. 1 is a process diagram showing molding by a mold among the processes of Embodiment 1 of the present invention.
  • molding is performed by using a mold 1 and applying pressure to a first acrylic plate 2 as a resin plate.
  • the first acrylic plate 2 is heated to facilitate deformation. Further, the first acrylic plate 2 is easily deformed by heating the mold 1 as well.
  • the cross-sectional shape of the mold 1 used here is shown in FIG. 1, but the mold 1 is manufactured as shown in FIGS. First, as shown in FIG.
  • the through-hole 12 is provided in the central axis of the cylindrical main body 11 and etching is performed, thereby forming the inclined surface 13 at the opening of the through-hole 12 as shown in FIG. .
  • die 1 can be produced with the material which has nickel as a main component.
  • the mold 1 is formed with a desired inclined surface 13 formed by etching as shown in FIG.
  • the through hole 12 is provided in the central axis of the columnar body 11, which has a unique effect.
  • the mold 1 of the comparative example with respect to the mold 1 of the present invention has a shape without the through hole 12 as shown in FIG.
  • the mold 1 When the mold 1 is pressed against the first acrylic plate 2 and the first acrylic plate 2 starts to be molded, an air pocket is formed between the recess of the central portion of the mold 1 and the surface of the first acrylic plate 2. As a result, the pressurizing force of the mold 1 is not easily transmitted to the first acrylic plate 2, and the molding is not as expected. In order to prevent this air accumulation, the mold 1 needs a through hole 12 for venting air.
  • the mold shown in FIGS. 2 and 3 shows a cylindrical shape on the outside. However, the shape on the outside is not limited to this, and a mold for producing a plurality of structures simultaneously. As shown in FIG.
  • FIG. 5 illustrates a case where the mold 1 has a flat plate shape, and a part thereof is broken for convenience of understanding.
  • FIG. 7 shows the shape of the first acrylic plate 2 after molding in a perspective view. As shown in FIG. 7, the first acrylic plate 2 has an inclined surface 21 and a protruding portion 22.
  • a sacrificial metal layer 3 is formed on the surface of the first acrylic plate 2 after molding.
  • the sacrificial metal layer 3 serves as an electrode when the three-dimensional structure 100 is manufactured by electroplating.
  • the whole is covered with the resist layer 4, and as shown in FIG. 11, the resist layer 4 is masked to expose the sacrificial metal layer 3 of the inclined surface 21.
  • the surrounding resist layer 41 is left.
  • the main body metal layer 5 is formed on the surface of the sacrificial metal layer 3 surrounded by the inner wall surface of the resist layer 41 by electroplating.
  • the state of electroplating shown in FIG. 13 shows the case where there is a sacrificial metal layer on the bottom and central protruding portions. In this case, the plating layer is formed along the sacrificial layer, and the plating layer is formed from the bottom surface and the protruding wall surface.
  • the state of electroplating shown in FIG. 14 shows the case where the sacrificial layer is exposed only on the bottom surface. In this case, a plating layer parallel to the inclination of the bottom surface is formed.
  • the plating layer 15 shows a comparative example in the case where the sacrificial metal layer spreads on the inner wall surface of the depression.
  • the plating layer is formed from the bottom surface and the side surface, in some cases, the plating solution is confined in the plating layer.
  • the reference board 20 is a structure in which the structure of the upper part (tip part) of the three-dimensional structure 100 to be created is embedded. Based on this part, the intermediate part (leg part) and the lower part (base part) are sequentially formed. ) By electroplating.
  • the reference plate 20 is composed of the first acrylic plate 2, the sacrificial metal layer 3, the resist layer 4, and the main body metal layer 5.
  • the first acrylic plate 2 is pressurized at the time of molding, but the back surface of the first acrylic plate 2 is kept flat and the mold 1 has a predetermined depth of the first acrylic plate 2. It will go in. Therefore, the main body metal layer 5 is adjusted to a reference height by polishing the resist layer 4 and the main body metal layer 5 with the back surface of the first acrylic plate 2 as a reference.
  • the masking layer 6 is formed on the reference board 20 in order to create the intermediate part (leg part) of the three-dimensional structure 100, and the intermediate part (by the selective plating) Leg).
  • the probe since the probe is illustrated, a special shape is shown. However, even if other structures are used, various shapes can be realized if the reference board 20 is completed. Become.
  • the masking layer 6 is usually a layer obtained by superposing a resist layer on the reference plate 20 and removing a predetermined pattern from the resist layer.
  • the intermediate portion (leg portion) of the three-dimensional structure 100 is formed by laminating a metal layer on the pattern portion from which the resist layer has been removed by electroplating.
  • the second acrylic plate 7 is the thickness of the dimension of the intermediate part (leg part) of the three-dimensional structure 100, and is provided with a through hole 71 at a place corresponding to the leg part.
  • the second acrylic plate 7 can be overlaid on the reference plate 20, and a leg metal layer can be formed by electroplating using the main body metal layer 5 exposed in the through hole 71 as an electrode.
  • the second acrylic plate 7 used here has a very fine through hole 71, and therefore a special method is required to provide the through hole 71.
  • a method of providing the through hole 71 in the second acrylic plate 7 will be described.
  • a plate 70 thicker than the acrylic plate 7 to be used is prepared, and a hole 73 is formed by a through-hole mold 72 from the surface side of the thick plate 70.
  • the second acrylic plate 7 created in this way is adjusted on the reference board 20 with an alignment mark or the like, and then superimposed on a predetermined place.
  • the preparation of the second acrylic plate 7 is performed in parallel with the production of the reference board 20, and the process can be shortened by combining them when both structures are ready. Similar to the creation of the intermediate part (leg part) of the three-dimensional structure 100, the lower part (base part) is overlaid with the third acrylic plate 8 in which the through holes 81 having a predetermined pattern are formed, and electroplating is performed. The lower part (base part) of the three-dimensional structure 100 can be created.
  • the first acrylic plate 2, the sacrificial metal layer 3, the resist layer 41, the second acrylic plate 7, and the third acrylic plate 8 are removed, and FIG.
  • a three-dimensional structure 100 having a predetermined shape in which the upper (tip) structure, the intermediate (leg) structure, and the lower (base) structure are integrated can be obtained.
  • This manufacturing method of the three-dimensional structure 100 makes it possible to create a three-dimensional structure having a special shape at the tip.
  • a probe 101 having a special shape at the tip will be described as an example of a three-dimensional structure.
  • the probe 101 is in contact with the electrode of the semiconductor device and detects an electrical signal accompanying the operation of the semiconductor device, and needs to be surely in contact with the electrode of the semiconductor device. For this reason, various probe shapes have been considered.
  • the electrode of the semiconductor device has a ball shape, none has been configured to enclose the electrode.
  • the specially-shaped probe 101 is configured such that a plurality of vertically extending fingers 1011 are in contact with one electrode, as shown in FIG. Moreover, an inclined surface 1012 is provided at the tip of the finger so as to guide the ball-shaped electrode to the center of the tip positions of the plurality of fingers. That is, three or more fingers 1011 are provided, and the inclined surface 1012 is provided so as to go to the center of the tips of the plurality of fingers 1011.
  • Each finger 1011 has flexibility, and is configured to flexibly come into contact with the electrodes of the semiconductor device.
  • the overall shape of the probe 101 is similar to the wrist shape.
  • the pedestal portion 1013 is connected like a palm, and has a configuration in which the finger 1011 extends toward the contact target, and the tip of the finger 1011 is in contact with the electrode of the semiconductor device.
  • the shape of the probe 101 that comes in contact so as to envelop the electrode of the semiconductor device can be obtained.
  • this special shape can be used for structures other than probes.
  • it can be used as a structure for electrical connection as an electrical contact.
  • the structure is effective as a connection means to replace the lead frame and to make electrical connection with a plurality of fingers.
  • FIG. 21 shows a structure in which four fingers 1011 make contact.
  • contact with three fingers is more stable. There is an effect of doing. In other words, when four fingers are used, all fingers need to bend in order for all fingers to contact evenly. If not, one of the four fingers does not touch. There is. If the contact becomes unstable, it becomes an electronically minute discharge phenomenon, and a disturbance occurs in the electric signal to be handled. For this reason, it is meaningful to use three fingers for stable contact.
  • the material is the same.
  • the flexibility or the elastic force can be changed by changing one or two of the three cross-sectional areas. By changing the elastic force to make the finger easy to deform, it is possible to determine the direction in which the finger is moved when an external force is applied by an electrode of the semiconductor device or the like.
  • the shape of the mold according to the first embodiment is a shape in which a depression is provided in the center of a predetermined region, and is a shape obtained by cutting a conical shape from a cylindrical shape.
  • this Embodiment 2 in order to shorten the process after the molding of the resin plate by the mold, further examination is advanced, and the shape of the mold is based on the shape of the target three-dimensional structure. Is defined. That is, as shown in FIG. 21, the target three-dimensional structure is an electric contact, and the pedestal portion 1013 is connected like a palm, and the finger 1011 extends toward the contact object, The tip of the finger 1011 has a special shape in which an inclined surface 1012 is provided.
  • This specially-shaped three-dimensional structure is formed by molding the tip portion of the resin plate in a mold with a mold, and instead of the conical surface of the first embodiment, the tip portion of the finger that requires an inclined surface is used.
  • the mold has a protruding shape only. Specifically, as shown in FIG. 22, the mold 1 has a shape in which a protrusion 14 having an inclined surface 13 at the tip is provided on the main body 11.
  • the common point with the first embodiment is that the center portion of the predetermined region is recessed.
  • the structure in which the protrusions 14 are arranged at four positions is shown, but the number can be further increased or decreased.
  • the mold 1 is provided with a through hole 12 in the main body 11 to provide a resin escape path when the resin plate is molded.
  • a plurality of grooves 15 are provided on the side surface of the protrusion 14 of the mold 1 along the direction in which the protrusion 14 pushes the resin (the direction of the arrow in the figure).
  • the groove 15 is used to prevent the resin from vibrating due to pressing by the mold 1 and leaving a large number of pulsations in the resin.
  • the mold 1 can be arranged on a plurality of planes so as to mold a plurality of portions simultaneously. This state is as shown in FIG.
  • the tip portion of the protrusion 14 portion of the mold 1 shown in FIG. 22 has not only the inclined surface 13 but also a flat surface portion as shown in the figure. Even if this plane portion is not necessary as the shape of the intended three-dimensional structure, it is a necessary shape as a mold. In other words, in order to have the mechanical strength necessary for a mold, a block structure is required as much as possible. In this mold, if this portion is only an inclined surface, the protrusions are damaged.
  • the shape of the inclined surface of the tip portion of the three-dimensional structure as if the target three-dimensional structure was extracted was obtained. Obtainable.
  • the shape of the tip portion of the three-dimensional structure is formed by molding a resin flat plate with a mold.
  • a resin plate As a weight average molecular weight of 1,000 to 100,000 is preferable, and an acrylic plate having a weight average molecular weight of 30,000 or less is particularly suitable. This is because when the resin is molded by a mold, if the molecular weight is small, it is considered that memory of deformation at the time of molding tends to remain.

Abstract

In the present invention, using a mold having a shape in which the center portion of a prescribed region is recessed, the surface shape of a leading end of a three-dimensional structure is pressed into a resin plate to mold the same, and a metal layer is formed on the surface of the molded plate, thereby manufacturing a three-dimensional structural body.

Description

立体構造体の製作方法、それに使用する金型および電気接触子Manufacturing method of three-dimensional structure, mold and electric contactor used therefor
 この発明は、立体構造体の製作方法とその製作に使用する金型および製作される立体構造体としての電気接触子に関するもので、特に、傾斜面によって形成される窪みを表面に有する微細な金属の立体構造体を製作する方法と、立体構造体の表面の窪みの形状を形成するための傾斜面を持った金型と、この製作方法によって製作される電気接触子に関するものである。 The present invention relates to a method for manufacturing a three-dimensional structure, a mold used for the manufacturing, and an electric contact as a three-dimensional structure to be manufactured, and in particular, a fine metal having a recess formed by an inclined surface on the surface. The present invention relates to a method of manufacturing the three-dimensional structure, a mold having an inclined surface for forming a shape of a depression on the surface of the three-dimensional structure, and an electric contact manufactured by the manufacturing method.
金属で立体構造体を作成する方法としては、複数の組み合わされた鋳型に、熔融した金属を流し込み、冷却した後に、鋳型をはずして所望の立体構造体を作成する方法が一般的である。しかし、その構造体が、直径が10ミクロンから数10ミクロン程度で、長さが100ミクロン程度の大きさの微細な立体構造体の場合には、異なった手法が行われる。例えば、半導体デバイスの電気的な検査に使用される電気接触子(プローブ)を作成する場合には、製作する立体構造物を、上部(先端部)、中部(胴部)、下部(基部)などの複数の部分に分け、先端部から胴部、基部を順番に積み重ねて作成する方法が行われている。 As a method of creating a three-dimensional structure with a metal, a method is generally employed in which a molten metal is poured into a plurality of combined molds, and after cooling, the mold is removed to create a desired three-dimensional structure. However, when the structure is a fine three-dimensional structure having a diameter of about 10 to several tens of microns and a length of about 100 microns, a different method is performed. For example, when creating an electrical contact (probe) used for electrical inspection of a semiconductor device, the three-dimensional structure to be manufactured includes an upper part (tip part), a middle part (body part), a lower part (base part), etc. A method of dividing the plurality of parts into a plurality of parts and stacking a body part and a base part in order from the tip part is performed.
 この微細な立体構造物がプローブのように、独特の形状が要求される場合、すなわち、プローブでは、半導体デバイスの電極に接触させるため、先端部をピラミッドのように尖らせたり、斜めに傾斜させたり、様々な形状が要求される。先端に傾斜面を形成する場合には、基板に傾斜面を持った窪みを形成し、窪みの内壁面に金属薄膜を形成し、この金属薄膜を電極として電気めっきを行って上部の形状の金属層を形成することが行われる。 When this fine three-dimensional structure is required to have a unique shape like a probe, that is, in the probe, the tip is sharpened like a pyramid or inclined obliquely in order to contact the electrode of a semiconductor device. Various shapes are required. When an inclined surface is formed at the tip, a recess having an inclined surface is formed on the substrate, a metal thin film is formed on the inner wall surface of the recess, and electroplating is performed using the metal thin film as an electrode to form a metal in the upper shape. A layer is formed.
 そして、先端部の金属層を形成した後、胴部の金属層を形成するため、レジストを塗布し、これを所定のパターンで露光し、現像することによってパターンに応じた露出面を形成し、エレクトロフォーミングによって露出面上に金属層を積み重ねて所定パターンの金属の立体構造体を作り、同様にして、基部の金属層を順次形成していくことが特許文献1に提案されている。このようにして、先端部、胴部および基部の金属層を形成した後、基板、金属薄膜およびレジストを取り除くことによって金属層による立体構造体を作成するものである。しかし、特許文献1に示されている立体構造体は、上部に突起の形状を形成する手段として、ダイヤモンド圧子などの硬質の工具を圧接することを記載されてはいたが、具体的な説明がなく、実現の手段は全く示されていなかったためフォトリソグラフィが主流となり、行き詰っていた。 And after forming the metal layer of the tip part, in order to form the metal layer of the body part, a resist is applied, this is exposed with a predetermined pattern, and an exposed surface corresponding to the pattern is formed by developing, Patent Document 1 proposes that a metal three-dimensional structure having a predetermined pattern is formed by stacking metal layers on an exposed surface by electroforming, and the base metal layers are sequentially formed in the same manner. Thus, after forming the metal layer of a front-end | tip part, a trunk | drum, and a base, the solid structure by a metal layer is created by removing a board | substrate, a metal thin film, and a resist. However, although the three-dimensional structure shown in Patent Document 1 has been described that a hard tool such as a diamond indenter is pressed as a means for forming the shape of the protrusion on the upper part, there is a specific explanation. In addition, since the means of realization was not shown at all, photolithography became the mainstream and was stuck.
特開2003-121469号公報JP 2003-121469 A
 このエレクトロフォーミングによる立体構造体の製作方法は、一つの構造体を作成する場合には格別な問題はないが、数多くの立体構造体を同時に作成する場合には、特に、先端部の傾斜面の製作に問題があった。 This method of manufacturing a three-dimensional structure by electroforming has no particular problem when a single structure is created. There was a problem with the production.
 従来、基板に傾斜面を持った窪みを形成するには、窪みを形成する部分を露出させ、先端が尖ったダイヤモンド圧子などの硬質の工具を圧接するか、あるいはエッチングを行うことが一般的であるが、先端部が尖った形状の場合には、尖った形状の金型を押しつけて成型することによって所望の形状の先端部の型を得ることができるが、先端部の表面に窪みを形成する場合には、適切な形状の金型がないという問題があった。また、多層の積層によって傾斜面を階段状に形成することが考えられるが、できるだけ滑らかな面を作るには多数の層が必要になり、工程の時間が多くかかるという問題があった。さらに、先端に傾斜面を持った窪みを有する立体構造体を製作することは思いもよらないことであった。 Conventionally, in order to form a depression having an inclined surface on a substrate, it is common to expose a portion where the depression is formed and press a hard tool such as a diamond indenter with a sharp tip or perform etching. However, if the tip has a sharp shape, you can obtain a die with the desired shape by pressing the sharp-shaped mold and forming a dent on the surface of the tip. In this case, there is a problem that there is no mold having an appropriate shape. In addition, it is conceivable to form the inclined surfaces in a stepped manner by stacking multiple layers, but there is a problem that a large number of layers are required to make the surface as smooth as possible, and the process takes a long time. Furthermore, it was unexpected to produce a three-dimensional structure having a depression with an inclined surface at the tip.
 本発明は、前述の問題を解消して、多数の立体構造体をできるだけ短時間で高精度に作成することのできる立体構造体の製作方法を提供することを目的とするものである。 An object of the present invention is to provide a method of manufacturing a three-dimensional structure that can solve the above-described problems and can create a large number of three-dimensional structures with high accuracy in as short a time as possible.
 本発明は、所定領域の中央部分が窪んでいる形状の金型によって、樹脂の平板に、立体構造物の先端部の表面形状を押圧して成型し、成型された前記平板の表面に金属層を形成して立体構造体を製作するようにした立体構造体の製作方法である。 According to the present invention, the surface shape of the tip of the three-dimensional structure is pressed and molded on a resin flat plate by a mold having a shape in which the central portion of the predetermined region is depressed, and a metal layer is formed on the surface of the molded flat plate. This is a manufacturing method of a three-dimensional structure in which a three-dimensional structure is manufactured by forming a.
 樹脂の平板に、金型によって立体構造体の先端部を成型することによって、同じ表面形状の複数の立体構造体を繰り返して作成することができ、その樹脂の平板上に第1のレジスト層を形成して基準盤が形成されるため、基準盤から後の工程の精度を高く維持できるという効果を得ることができる。 By molding the tip of the three-dimensional structure on the resin flat plate using a mold, a plurality of three-dimensional structures having the same surface shape can be repeatedly formed. The first resist layer is formed on the resin flat plate. Since the reference board is formed by forming, it is possible to obtain an effect that the accuracy of the subsequent processes from the reference board can be maintained high.
本発明の立体構造体の製作工程を示す工程図である。It is process drawing which shows the manufacturing process of the three-dimensional structure of this invention. 本発明の製作工程に使用する金型の説明図である。It is explanatory drawing of the metal mold | die used for the manufacturing process of this invention. 本発明の製作工程に使用する金型の説明図である。It is explanatory drawing of the metal mold | die used for the manufacturing process of this invention. 金型の比較例を示す説明図である。It is explanatory drawing which shows the comparative example of a metal mold | die. 本発明の製作工程に使用する金型の説明図である。It is explanatory drawing of the metal mold | die used for the manufacturing process of this invention. 本発明の立体構造体の製作工程を示す工程図である。It is process drawing which shows the manufacturing process of the three-dimensional structure of this invention. 本発明の立体構造体の製作工程を示す工程図である。It is process drawing which shows the manufacturing process of the three-dimensional structure of this invention. 本発明の立体構造体の製作工程を示す工程図である。It is process drawing which shows the manufacturing process of the three-dimensional structure of this invention. 本発明の立体構造体の製作工程を示す工程図である。It is process drawing which shows the manufacturing process of the three-dimensional structure of this invention. 本発明の立体構造体の製作工程を示す工程図である。It is process drawing which shows the manufacturing process of the three-dimensional structure of this invention. 本発明の立体構造体の製作工程を示す工程図である。It is process drawing which shows the manufacturing process of the three-dimensional structure of this invention. 本発明の立体構造体の製作工程を示す工程図である。It is process drawing which shows the manufacturing process of the three-dimensional structure of this invention. 本発明の電気めっきの状態を示す概略図である。It is the schematic which shows the state of the electroplating of this invention. 本発明の電気めっきの状態を示す概略図である。It is the schematic which shows the state of the electroplating of this invention. 本発明の電気めっきの状態を示す概略図である。It is the schematic which shows the state of the electroplating of this invention. 本発明の立体構造体の製作工程を示す工程図である。It is process drawing which shows the manufacturing process of the three-dimensional structure of this invention. 本発明の立体構造体の製作工程を示す工程図である。It is process drawing which shows the manufacturing process of the three-dimensional structure of this invention. 本発明の平板に貫通孔を形成する状態を示す概略図である。It is the schematic which shows the state which forms a through-hole in the flat plate of this invention. 本発明の平板に貫通孔を形成する状態を示す概略図である。It is the schematic which shows the state which forms a through-hole in the flat plate of this invention. 本発明の立体構造体の製作工程を示す工程図である。It is process drawing which shows the manufacturing process of the three-dimensional structure of this invention. 本発明のプローブの事例を示す概略図である。It is the schematic which shows the example of the probe of this invention. 本発明の製作工程に使用する金型の説明図である。It is explanatory drawing of the metal mold | die used for the manufacturing process of this invention. 本発明の製作工程に使用する金型の説明図である。It is explanatory drawing of the metal mold | die used for the manufacturing process of this invention. 本発明の製作工程に使用する金型の説明図である。It is explanatory drawing of the metal mold | die used for the manufacturing process of this invention. 本発明の製作工程に使用する金型の説明図である。It is explanatory drawing of the metal mold | die used for the manufacturing process of this invention. 本発明の金型による成型の状態を示す概略図である。It is the schematic which shows the state of the shaping | molding by the metal mold | die of this invention.
実施の形態1
 図1は、本発明の実施の形態1の工程のうちの、金型による成型を示す工程図である。図に示すように、図1の工程においては、金型1を使用して、樹脂板としての第1のアクリル板2に圧力を加えて、成型を行う。この成型の際には、第1のアクリル板2を加熱し、変形し易くする。また、金型1も加熱することによって、第1のアクリル板2が変形され易くなる。ここで使用する金型1の断面形状は、図1に示しているが、この金型1の製作は、図2および図3に示すように行う。まず、図2に示すように、円柱形状の本体11の中心軸に貫通孔12を設け、エッチングを行うことによって、図3に示すように、貫通孔12の開口部に傾斜面13を形成する。なお、この金型1は、ニッケルを主成分とする材質で作成することができる。
Embodiment 1
FIG. 1 is a process diagram showing molding by a mold among the processes of Embodiment 1 of the present invention. As shown in the figure, in the process of FIG. 1, molding is performed by using a mold 1 and applying pressure to a first acrylic plate 2 as a resin plate. During this molding, the first acrylic plate 2 is heated to facilitate deformation. Further, the first acrylic plate 2 is easily deformed by heating the mold 1 as well. The cross-sectional shape of the mold 1 used here is shown in FIG. 1, but the mold 1 is manufactured as shown in FIGS. First, as shown in FIG. 2, the through-hole 12 is provided in the central axis of the cylindrical main body 11 and etching is performed, thereby forming the inclined surface 13 at the opening of the through-hole 12 as shown in FIG. . In addition, this metal mold | die 1 can be produced with the material which has nickel as a main component.
 この金型1は、図2に示すように、中心軸に貫通孔12を開けた後、図3に示すように、エッチングによって所望の傾斜面13を形成したものである。この図3に示すように、円柱形状の本体11の中心軸に貫通孔12を設けていることに独特の効果がある。 As shown in FIG. 2, the mold 1 is formed with a desired inclined surface 13 formed by etching as shown in FIG. As shown in FIG. 3, the through hole 12 is provided in the central axis of the columnar body 11, which has a unique effect.
 本発明の金型1に対する比較例の金型1は、図4に示すように、貫通孔12が無い形状となっている。この金型1を第1のアクリル板2に押しつけて、第1のアクリル板2が成型され始めると、金型1の中央部分の窪みと第1のアクリル板2の表面との間に空気溜まりが生じ、金型1の加圧力が第1のアクリル板2に伝わりにくくなって、成型が思い通りにならないということになる。この空気溜まりが生じないようにするために、金型1には、空気抜きとなる貫通孔12が必要になる。
 なお、図2および図3において示した金型は、外側が円柱形状になっているものを示しているが、外側の形状はそれに拘るものではなく、複数の構造物を同時に作成する場合の金型1としては、図5に示すように、平板形状の本体11の表面に複数の領域を設定して、各領域の中央部分に貫通孔12を設け、その貫通孔12を中心としてエッチングを行って傾斜面13を設けることもできる。なお、図5は、金型1を平板の形状とした場合を説明するもので、便宜的に断面を判りやすいように一部を破断して示している。
The mold 1 of the comparative example with respect to the mold 1 of the present invention has a shape without the through hole 12 as shown in FIG. When the mold 1 is pressed against the first acrylic plate 2 and the first acrylic plate 2 starts to be molded, an air pocket is formed between the recess of the central portion of the mold 1 and the surface of the first acrylic plate 2. As a result, the pressurizing force of the mold 1 is not easily transmitted to the first acrylic plate 2, and the molding is not as expected. In order to prevent this air accumulation, the mold 1 needs a through hole 12 for venting air.
The mold shown in FIGS. 2 and 3 shows a cylindrical shape on the outside. However, the shape on the outside is not limited to this, and a mold for producing a plurality of structures simultaneously. As shown in FIG. 5, as the mold 1, a plurality of regions are set on the surface of the plate-shaped main body 11, a through hole 12 is provided at the center of each region, and etching is performed with the through hole 12 as a center. The inclined surface 13 can also be provided. FIG. 5 illustrates a case where the mold 1 has a flat plate shape, and a part thereof is broken for convenience of understanding.
 この図3に示す金型1を使用して、第1のアクリル板2に圧力を加えた後、金型1を取り去ると、図6に示すように、第1のアクリル板2には金型1の傾斜面13の形状と同じ傾斜面21が残り、また、金型1の貫通孔12の部分は、成型時に第1のアクリル板2の逃げが出来るため、若干の突出部22が出来る。この図6に示す図は、断面図であるため、実際の形状が判り難いので、図7に成型後の第1のアクリル板2の形状を斜視図にて表わす。この図7に示すように、第1のアクリル板2には、傾斜面21と突出部22が出来ている。 When the mold 1 shown in FIG. 3 is used to apply pressure to the first acrylic plate 2 and then the mold 1 is removed, the first acrylic plate 2 has a mold as shown in FIG. The same inclined surface 21 as the shape of the inclined surface 13 remains, and the portion of the through hole 12 of the mold 1 allows the first acrylic plate 2 to escape during molding, so that a slight protrusion 22 is formed. Since the figure shown in FIG. 6 is a cross-sectional view and the actual shape is difficult to understand, FIG. 7 shows the shape of the first acrylic plate 2 after molding in a perspective view. As shown in FIG. 7, the first acrylic plate 2 has an inclined surface 21 and a protruding portion 22.
 なお、図7の成型の工程では、成型の部分を1か所しか示していないが、実際の加工時には、図8に示すように、同時に複数の部分を行うことによって効率を上げることが出来る。 In the molding process shown in FIG. 7, only one molding part is shown. However, in actual processing, the efficiency can be improved by performing a plurality of parts simultaneously as shown in FIG.
 図6の成型の工程の後、図9に示すように、犠牲金属層3を成型後の第1のアクリル板2の表面に形成する。この犠牲金属層3は、立体構造体100を電気めっきで製作する際の電極となる。次に、図10に示すように、全体をレジスト層4によって覆い、図11に示すように、レジスト層4にマスクをかけて、傾斜面21の犠牲金属層3を露出させ、傾斜面21の周囲のレジスト層41を残す。 After the molding step of FIG. 6, as shown in FIG. 9, a sacrificial metal layer 3 is formed on the surface of the first acrylic plate 2 after molding. The sacrificial metal layer 3 serves as an electrode when the three-dimensional structure 100 is manufactured by electroplating. Next, as shown in FIG. 10, the whole is covered with the resist layer 4, and as shown in FIG. 11, the resist layer 4 is masked to expose the sacrificial metal layer 3 of the inclined surface 21. The surrounding resist layer 41 is left.
 更に、図12に示すように、レジスト層41の内壁面に囲まれた犠牲金属層3の表面に電気めっきによって本体金属層5を形成する。 Further, as shown in FIG. 12, the main body metal layer 5 is formed on the surface of the sacrificial metal layer 3 surrounded by the inner wall surface of the resist layer 41 by electroplating.
 ここで、露出した犠牲金属層3を使って電気めっきを行う状態について、図13を使用して説明する。図13に示す電気めっきの状態は、底面と中央部の出っ張り部分に犠牲金属層がある場合を示している。この場合には犠牲層に沿ってめっき層が形成され、底面およびでっぱり部分の壁面からめっき層が形成されることになる。図14に示す電気めっきの状態は、犠牲層が底面にのみ露出している場合を示している。この場合には、底面の傾斜に対して平行なめっき層が形成されることになる。 Here, the state in which electroplating is performed using the exposed sacrificial metal layer 3 will be described with reference to FIG. The state of electroplating shown in FIG. 13 shows the case where there is a sacrificial metal layer on the bottom and central protruding portions. In this case, the plating layer is formed along the sacrificial layer, and the plating layer is formed from the bottom surface and the protruding wall surface. The state of electroplating shown in FIG. 14 shows the case where the sacrificial layer is exposed only on the bottom surface. In this case, a plating layer parallel to the inclination of the bottom surface is formed.
 図15に示す電気めっきの状態は、窪みの内壁面に犠牲金属層が広がっている場合の比較例を示している。この場合には、底面および側面からめっき層が形成されるため、場合によってはめっき層内にめっき液が閉じ込められることになる。 15 shows a comparative example in the case where the sacrificial metal layer spreads on the inner wall surface of the depression. In this case, since the plating layer is formed from the bottom surface and the side surface, in some cases, the plating solution is confined in the plating layer.
 本体金属層5を形成した後、第1のアクリル板2、レジスト層4、本体金属層5を一体構造として、図16に示すように研磨して、基準盤20を作成する。この基準盤20は、作成する立体構造体100の上部(先端部)の構造体が埋め込まれた状態の構造体となり、この部分を基礎として、順次、中間部(脚部)、下部(土台部)を電気めっきによって形成していく。 After forming the main body metal layer 5, the first acrylic plate 2, the resist layer 4, and the main body metal layer 5 are integrally formed and polished as shown in FIG. The reference board 20 is a structure in which the structure of the upper part (tip part) of the three-dimensional structure 100 to be created is embedded. Based on this part, the intermediate part (leg part) and the lower part (base part) are sequentially formed. ) By electroplating.
 基準盤20は、第1のアクリル板2、犠牲金属層3、レジスト層4および本体金属層5によって構成される。ここで、第1のアクリル板2は、成型時に加圧されるが、第1のアクリル板2の背面は、平面に維持されたままで、金型1が第1のアクリル板2の所定の深さまで入り込むことになる。したがって、第1のアクリル板2の背面を基準として、レジスト層4および本体金属層5の研磨が行われることによって、本体金属層5が基準の高さに調整されることとなる。 The reference plate 20 is composed of the first acrylic plate 2, the sacrificial metal layer 3, the resist layer 4, and the main body metal layer 5. Here, the first acrylic plate 2 is pressurized at the time of molding, but the back surface of the first acrylic plate 2 is kept flat and the mold 1 has a predetermined depth of the first acrylic plate 2. It will go in. Therefore, the main body metal layer 5 is adjusted to a reference height by polishing the resist layer 4 and the main body metal layer 5 with the back surface of the first acrylic plate 2 as a reference.
 基準盤20が出来上がれば、図17に示すように、その基準盤20に、立体構造体100の中間部(脚部)を作成するために、マスキング層6を形成し、選択めっきによって中間部(脚部)を形成する。この実施の形態1では、プローブを例示しているため、特殊な形状を示しているが、他の構造体であっても、基準盤20が出来上がれば、様々な形状を実現することが可能になる。 When the reference board 20 is completed, as shown in FIG. 17, the masking layer 6 is formed on the reference board 20 in order to create the intermediate part (leg part) of the three-dimensional structure 100, and the intermediate part (by the selective plating) Leg). In the first embodiment, since the probe is illustrated, a special shape is shown. However, even if other structures are used, various shapes can be realized if the reference board 20 is completed. Become.
 マスキング層6は、通常は、基準盤20にレジスト層を重ね、そのレジスト層から所定のパターンを取り除いたものを使用する。立体構造体100の中間部(脚部)は、レジスト層の取り除いたパターンの部分に電気めっきによって金属層を積層することによって形成する。 The masking layer 6 is usually a layer obtained by superposing a resist layer on the reference plate 20 and removing a predetermined pattern from the resist layer. The intermediate portion (leg portion) of the three-dimensional structure 100 is formed by laminating a metal layer on the pattern portion from which the resist layer has been removed by electroplating.
 しかし、マスキング層6として、レジスト層を使用する場合には、一挙に厚い層を形成することが出来ないため、レジスト層の形成、金属層の形成、研磨を繰り返して行うため、処理に時間が掛かるという問題がある。
 この問題に対しては、所定厚さの第2のアクリル板7を使用することで克服することができる。
However, when a resist layer is used as the masking layer 6, a thick layer cannot be formed at once. Therefore, the resist layer formation, the metal layer formation, and the polishing are repeated, so that the processing takes time. There is a problem of hanging.
This problem can be overcome by using the second acrylic plate 7 having a predetermined thickness.
 この第2のアクリル板7とは、立体構造体100の中間部(脚部)の寸法の厚さで、脚部に相当するところに貫通孔71を設けたものである。この第2のアクリル板7を基準盤20に重ね合わせ、貫通孔71に露出している本体金属層5を電極として電気めっきによって脚部金属層を形成することができる。 The second acrylic plate 7 is the thickness of the dimension of the intermediate part (leg part) of the three-dimensional structure 100, and is provided with a through hole 71 at a place corresponding to the leg part. The second acrylic plate 7 can be overlaid on the reference plate 20, and a leg metal layer can be formed by electroplating using the main body metal layer 5 exposed in the through hole 71 as an electrode.
 ここで使用する第2のアクリル板7は、貫通孔71が極めて微細なため、貫通孔71を設けるにあたっては、特殊な方法が必要であった。
 第2のアクリル板7に貫通孔71を設ける方法を説明する。図18に示すように、使用するアクリル板7よりも厚い板70を準備し、厚い板70の表面側から、貫通孔用金型72によって穴部73を形成する。穴部73を形成した後、図19に示すように、厚い板の裏面側から、所定の厚さになるまで研磨する。そして穴部73が貫通孔71になるまで研磨を繰り返す。このようにして作成した第2のアクリル板7を基準盤20にアライメントマークなどによって位置の調整を行ったうえで所定の場所に重ね合わせる。
The second acrylic plate 7 used here has a very fine through hole 71, and therefore a special method is required to provide the through hole 71.
A method of providing the through hole 71 in the second acrylic plate 7 will be described. As shown in FIG. 18, a plate 70 thicker than the acrylic plate 7 to be used is prepared, and a hole 73 is formed by a through-hole mold 72 from the surface side of the thick plate 70. After forming the hole 73, as shown in FIG. 19, it grind | polishes until it becomes a predetermined thickness from the back surface side of a thick board. The polishing is repeated until the hole 73 becomes the through hole 71. The second acrylic plate 7 created in this way is adjusted on the reference board 20 with an alignment mark or the like, and then superimposed on a predetermined place.
 第2のアクリル板7の準備は、基準盤20の製作と並行して行い、両方の構造体の準備が整った段階で合体することによって工程の短縮を図ることができる。
 この立体構造体100の中間部(脚部)の作成と同様に、下部(土台部)についても、所定のパターンの貫通孔81が形成された第3のアクリル板8を重ねて、電気めっきによって立体構造体100の下部(土台部)を作成することができる。
The preparation of the second acrylic plate 7 is performed in parallel with the production of the reference board 20, and the process can be shortened by combining them when both structures are ready.
Similar to the creation of the intermediate part (leg part) of the three-dimensional structure 100, the lower part (base part) is overlaid with the third acrylic plate 8 in which the through holes 81 having a predetermined pattern are formed, and electroplating is performed. The lower part (base part) of the three-dimensional structure 100 can be created.
 立体構造体100の下部(土台部)まで製作すると、第1のアクリル板2、犠牲金属層3、レジスト層41、第2のアクリル板7、第3のアクリル板8を取り除くことによって、図20に示すように、上部(先端部)の構造体、中間部(脚部)の構造体および下部(土台部)の構造体が一体化された所定形状の立体構造体100を得ることができる。 When the lower part (base part) of the three-dimensional structure 100 is manufactured, the first acrylic plate 2, the sacrificial metal layer 3, the resist layer 41, the second acrylic plate 7, and the third acrylic plate 8 are removed, and FIG. As shown in FIG. 2, a three-dimensional structure 100 having a predetermined shape in which the upper (tip) structure, the intermediate (leg) structure, and the lower (base) structure are integrated can be obtained.
 この立体構造体100の製作方法によって、先端に特殊な形状を持った立体構造体を作成することが可能になる。
 次に、立体構造の例として先端に特殊な形状を持ったプローブ101について説明する。
 プローブ101は半導体デバイスの電極に接触して、半導体デバイスの動作に伴う電気信号を検出するもので、半導体デバイスの電極に確実に接触する必要がある。このため、様々なプローブの形状が考えられてきたが、半導体デバイスの電極がボール形状の場合には、その電極を包み込むように構成したものはなかった。
This manufacturing method of the three-dimensional structure 100 makes it possible to create a three-dimensional structure having a special shape at the tip.
Next, a probe 101 having a special shape at the tip will be described as an example of a three-dimensional structure.
The probe 101 is in contact with the electrode of the semiconductor device and detects an electrical signal accompanying the operation of the semiconductor device, and needs to be surely in contact with the electrode of the semiconductor device. For this reason, various probe shapes have been considered. However, when the electrode of the semiconductor device has a ball shape, none has been configured to enclose the electrode.
 すなわち、この特殊な形状のプローブ101は、図21に示すように、垂直に伸びた複数の指1011が一つの電極に接するように構成している。しかも、ボール状の電極を複数の指の先端位置の中央部に案内するように、指の先端に傾斜面1012を持っている。すなわち、指1011が3本以上で、複数の指1011の先端の中心に向かうように傾斜面1012が設けられている。また、それぞれの指1011はそれぞれ可撓性を持っており、しなやかに半導体デバイスの電極に接触するように構成されている。 That is, the specially-shaped probe 101 is configured such that a plurality of vertically extending fingers 1011 are in contact with one electrode, as shown in FIG. Moreover, an inclined surface 1012 is provided at the tip of the finger so as to guide the ball-shaped electrode to the center of the tip positions of the plurality of fingers. That is, three or more fingers 1011 are provided, and the inclined surface 1012 is provided so as to go to the center of the tips of the plurality of fingers 1011. Each finger 1011 has flexibility, and is configured to flexibly come into contact with the electrodes of the semiconductor device.
 表現を変えて説明すると、プローブ101の全体的な形状は、手首の形状に似通っている。台座部分1013は手の平のように繋がっており、接触対象物に向かって指1011が伸びている形状で、指1011の先端で半導体デバイスの電極に接触する構成になっている。 In other words, the overall shape of the probe 101 is similar to the wrist shape. The pedestal portion 1013 is connected like a palm, and has a configuration in which the finger 1011 extends toward the contact target, and the tip of the finger 1011 is in contact with the electrode of the semiconductor device.
 このような構成とすることによって、半導体デバイスの電極を包み込むように接触するプローブ101の形状とすることができる。 By adopting such a configuration, the shape of the probe 101 that comes in contact so as to envelop the electrode of the semiconductor device can be obtained.
 また、この特殊な形状は、プローブ以外の構造にも使用することができる。例えば、電気的な接触子として、電気的な接続を行う構造物としても使用できる。すなわち、半導体デバイスの電極がボール状の場合に、リードフレームに代わる接続手段として、複数の指で電気的接続を図るものとして有効な構造物である。 Also, this special shape can be used for structures other than probes. For example, it can be used as a structure for electrical connection as an electrical contact. In other words, when the electrodes of the semiconductor device are ball-shaped, the structure is effective as a connection means to replace the lead frame and to make electrical connection with a plurality of fingers.
 なお、電気的接続を図る立体構造物として、図21に4本の指1011で接触する構造を示しているが、電気的接続を想定した場合、3本の指にした方が、接触が安定するという効果がある。すなわち、4本の指とした場合には、全ての指が均等に接触するには、全ての指が撓む必要があり、撓まない場合には、4本のうち1本は接触しない場合がある。もしも、接触が不安定になると、電子的に微小な放電現象となって、扱われる電気信号に外乱が生じることになる。このため、安定した接触とするために指を3本にすることに意味がある。 In addition, as a three-dimensional structure for electrical connection, FIG. 21 shows a structure in which four fingers 1011 make contact. However, assuming electrical connection, contact with three fingers is more stable. There is an effect of doing. In other words, when four fingers are used, all fingers need to bend in order for all fingers to contact evenly. If not, one of the four fingers does not touch. There is. If the contact becomes unstable, it becomes an electronically minute discharge phenomenon, and a disturbance occurs in the electric signal to be handled. For this reason, it is meaningful to use three fingers for stable contact.
 また、ここで3本の指は、電気めっきで形成されるため、材質は同じになる。ここで、3本のうち、1本あるいは2本の断面積を変えることによって可撓性あるいは弾性力を変えることができる。弾性力を変えて、変形し易い指とすることによって、半導体デバイスの電極などによって外力が加えられた場合に移動させられる方向を決めることが可能になるという効果がある。 Also, since the three fingers are formed by electroplating, the material is the same. Here, the flexibility or the elastic force can be changed by changing one or two of the three cross-sectional areas. By changing the elastic force to make the finger easy to deform, it is possible to determine the direction in which the finger is moved when an external force is applied by an electrode of the semiconductor device or the like.
実施の形態2
 実施の形態1の金型の形状は、所定領域の中央部に窪みを設けた形状で、円柱形から円錐形状を切り取った形状としている。これに対して、この実施の形態2においては、金型による樹脂板の成型の後の工程を短縮するため、さらに検討を進め、目的とする立体構造体の形状に基づいて、金型の形状を定めたものである。
 すなわち、目的とする立体構造体は、図21に示すように、電気接触子として、台座部分1013は、手の平のように繋がっており、接触対象物に向かって指1011が伸びている形状で、指1011の先端には傾斜面1012が設けられているという、特殊な形状となっている。
Embodiment 2
The shape of the mold according to the first embodiment is a shape in which a depression is provided in the center of a predetermined region, and is a shape obtained by cutting a conical shape from a cylindrical shape. On the other hand, in this Embodiment 2, in order to shorten the process after the molding of the resin plate by the mold, further examination is advanced, and the shape of the mold is based on the shape of the target three-dimensional structure. Is defined.
That is, as shown in FIG. 21, the target three-dimensional structure is an electric contact, and the pedestal portion 1013 is connected like a palm, and the finger 1011 extends toward the contact object, The tip of the finger 1011 has a special shape in which an inclined surface 1012 is provided.
 この特殊な形状の立体構造体は、特に先端部分の形状を、樹脂の平板に金型によって成型するもので、実施の形態1の円錐面に代えて傾斜面を必要とする指の先端部分に限って突出した形状の金型としたものである。
 具体的には、図22に示すように、金型1は、本体11に対して、傾斜面13を先端部分に持った突起14が設けられた形状となっている。実施の形態1との共通点としては、所定の領域の中央部分が窪んだ形状となっていることである。この実施の形態2では、突起14を4か所に配置した構造を示しているが、さらに数を増加させたり減少させたりすることができる。
This specially-shaped three-dimensional structure is formed by molding the tip portion of the resin plate in a mold with a mold, and instead of the conical surface of the first embodiment, the tip portion of the finger that requires an inclined surface is used. The mold has a protruding shape only.
Specifically, as shown in FIG. 22, the mold 1 has a shape in which a protrusion 14 having an inclined surface 13 at the tip is provided on the main body 11. The common point with the first embodiment is that the center portion of the predetermined region is recessed. In the second embodiment, the structure in which the protrusions 14 are arranged at four positions is shown, but the number can be further increased or decreased.
 この金型1は、一部を切り欠いた斜視図として図23に示すように、本体11に貫通孔12を設けて、樹脂板の成型の際の樹脂の逃げ路を設けている。また、金型1の突起14の側面には、図24に示すように、突起14によって樹脂を押す方向(図中、矢印の方向)に沿って複数の溝15を設けている。金型1を用いて樹脂を成型した場合、金型1による押圧によって樹脂が振動し、多数の脈動が樹脂内に残るのを防ぐための溝15である。
 この実施の形態2においても、実施の形態1と同様に、複数の部分を同時に成型するように金型1を複数平面上に配置させることができる。この状態は、図25に示すようになる。
As shown in FIG. 23 as a perspective view with a part cut away, the mold 1 is provided with a through hole 12 in the main body 11 to provide a resin escape path when the resin plate is molded. Further, as shown in FIG. 24, a plurality of grooves 15 are provided on the side surface of the protrusion 14 of the mold 1 along the direction in which the protrusion 14 pushes the resin (the direction of the arrow in the figure). When the resin is molded using the mold 1, the groove 15 is used to prevent the resin from vibrating due to pressing by the mold 1 and leaving a large number of pulsations in the resin.
Also in the second embodiment, as in the first embodiment, the mold 1 can be arranged on a plurality of planes so as to mold a plurality of portions simultaneously. This state is as shown in FIG.
 なお、図22に示した金型1の突起14部分の先端部分は、図に示すように、傾斜面13だけでなく、平面部分がある。この平面部分は、目的とする立体構造体の形状として必要でない場合であっても、金型としては必要な形状である。すなわち、金型として必要な機械強度を持つためには、できるだけブロックの構造が必要になり、この金型では、この部分を傾斜面だけにすると、突起の破損につながる。
 この実施の形態2の金型を用いて、樹脂の平板を成型すると、図26に示すように、目的とする立体構造体を抜き取ったような、立体構造体の先端部分の傾斜面の形を得ることができる。
Note that the tip portion of the protrusion 14 portion of the mold 1 shown in FIG. 22 has not only the inclined surface 13 but also a flat surface portion as shown in the figure. Even if this plane portion is not necessary as the shape of the intended three-dimensional structure, it is a necessary shape as a mold. In other words, in order to have the mechanical strength necessary for a mold, a block structure is required as much as possible. In this mold, if this portion is only an inclined surface, the protrusions are damaged.
When a resin flat plate is molded using the mold according to the second embodiment, as shown in FIG. 26, the shape of the inclined surface of the tip portion of the three-dimensional structure as if the target three-dimensional structure was extracted was obtained. Obtainable.
 この実施の形態1および2において、立体構造体の先端部の形状を、樹脂の平板を金型によって成型するようにしているが、金型を用いて樹脂の平板を成型するには、樹脂板として、重量平均分子量が1000から100000が好ましく、特に30000以下の重量平均分子量のアクリル板が適している。これは、金型によって樹脂を成型した場合、分子量が小さいと、成型時の変形の記憶が残留し易いと考えられるからである。 In the first and second embodiments, the shape of the tip portion of the three-dimensional structure is formed by molding a resin flat plate with a mold. To mold a resin flat plate with a mold, a resin plate As a weight average molecular weight of 1,000 to 100,000 is preferable, and an acrylic plate having a weight average molecular weight of 30,000 or less is particularly suitable. This is because when the resin is molded by a mold, if the molecular weight is small, it is considered that memory of deformation at the time of molding tends to remain.
 なお、この発明の実施の形態において、平板としてアクリル板を使用する事例を取り上げて説明したが、他の樹脂の平板を使用することも当然可能である。
 なお、この発明は、その発明の範囲内において、実施の形態を自由に組み合わせたり、実施の形態を適宜、変形、省略したりすることが可能である。
In the embodiment of the present invention, an example in which an acrylic plate is used as a flat plate has been described. However, it is naturally possible to use other resin flat plates.
It should be noted that within the scope of the present invention, the embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.

Claims (10)

  1.  所定領域の中央部分が窪んでいる形状の金型によって、樹脂の平板に、立体構造物の先端部の表面形状を押圧して成型し、成型された前記平板の表面に金属層を形成して立体構造体を製作するようにしたことを特徴とする立体構造体の製作方法。 By pressing the surface shape of the tip of the three-dimensional structure on a resin flat plate with a mold having a shape in which the central portion of the predetermined region is depressed, a metal layer is formed on the surface of the molded flat plate A method for producing a three-dimensional structure, characterized by producing a three-dimensional structure.
  2.  基準となる樹脂の第1の平板に、立体構造物の上部の表面形状を金型によって成型し、前記第1の平板の成型された表面に犠牲金属層を形成し、前記上部の表面形状の周囲に第1のレジスト層を形成し、前記第1のレジスト層の内壁面に囲まれた前記犠牲金属層の表面にめっきによって本体金属層を形成し、前記第1の平板と前記第1のレジスト層と前記本体金属層を一体の構造体とし、前記一体の構造体を研磨して基準盤として立体構造体を製作するようにした立体構造体の製作方法。 The upper surface shape of the three-dimensional structure is molded on the first flat plate of the resin as a reference by a mold, a sacrificial metal layer is formed on the molded surface of the first flat plate, and the upper surface shape A first resist layer is formed around the body, a body metal layer is formed by plating on the surface of the sacrificial metal layer surrounded by an inner wall surface of the first resist layer, and the first flat plate and the first A method for manufacturing a three-dimensional structure in which a resist layer and the main body metal layer are formed as an integral structure, and the integral structure is polished to produce a three-dimensional structure as a reference board.
  3.  前記樹脂は、重量平均分子量が1000以上100000以下であることを特徴とする請求項1または2に記載の立体構造体の製作方法。 The method for producing a three-dimensional structure according to claim 1 or 2, wherein the resin has a weight average molecular weight of 1,000 to 100,000.
  4.  前記樹脂は、重量平均分子量が1000以上30000以下であることを特徴とする請求項1または2に記載の立体構造体の製作方法。 The method for producing a three-dimensional structure according to claim 1 or 2, wherein the resin has a weight average molecular weight of 1000 or more and 30000 or less.
  5.  所定形状の貫通孔を有する第2の平板を前記基準盤に重ね、前記第2の平板の前記貫通孔を通して、前記基準盤の前記本体金属層を電極として金属めっき層を形成し、前記本体金属層に結合する第2の金属構造体を形成するようにしたことを特徴とする請求項2に記載の立体構造体の製作方法。 A second flat plate having a through hole of a predetermined shape is overlaid on the reference plate, and a metal plating layer is formed through the through hole of the second flat plate using the main body metal layer of the reference plate as an electrode. 3. The method for manufacturing a three-dimensional structure according to claim 2, wherein a second metal structure bonded to the layer is formed.
  6.  柱形状で、押圧面に押圧方向の貫通孔が設けられ、押圧面の周囲から前記貫通孔に向かって傾斜面が形成されていることを特徴とする立体構造体の製作に使用する金型。 A mold used for manufacturing a three-dimensional structure, which is columnar, has a through hole in the pressing direction on the pressing surface, and has an inclined surface from the periphery of the pressing surface toward the through hole.
  7.  押圧方向に沿った溝が側面に設けられていることを特徴とする請求項6に記載の金型。 7. The mold according to claim 6, wherein a groove along the pressing direction is provided on a side surface.
  8.  台座と、前記台座から垂直に伸びた複数の指とを備え、前記複数の指の先端に前記台座の前記複数の指の中央部に向かって傾斜している傾斜面を有することを特徴とする電気接触子。 The pedestal includes a plurality of fingers extending vertically from the pedestal, and has an inclined surface that is inclined toward the center of the plurality of fingers of the pedestal at the tips of the plurality of fingers. Electric contact.
  9.  前記複数の指が3本であることを特徴とする請求項8に記載の電気接触子。 The electrical contact according to claim 8, wherein the plurality of fingers are three.
  10.  前記複数の指のそれぞれの弾性力が異なっていることを特徴とする請求項8に記載の電気接触子。
     
    The electric contact according to claim 8, wherein the elastic forces of the plurality of fingers are different.
PCT/JP2016/080902 2015-10-20 2016-10-19 Three-dimensional structural body manufacturing method, mold used in same, and electric contact WO2017069136A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017546560A JP6529599B2 (en) 2015-10-20 2016-10-19 Electrical contacts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-206396 2015-10-20
JP2015206396 2015-10-20

Publications (1)

Publication Number Publication Date
WO2017069136A1 true WO2017069136A1 (en) 2017-04-27

Family

ID=58557111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080902 WO2017069136A1 (en) 2015-10-20 2016-10-19 Three-dimensional structural body manufacturing method, mold used in same, and electric contact

Country Status (3)

Country Link
JP (1) JP6529599B2 (en)
TW (1) TW201729969A (en)
WO (1) WO2017069136A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519285B1 (en) * 2021-02-22 2023-04-17 (주)포인트엔지니어링 The Electro-conductive Contact Pin, Manufacturing Method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191057A (en) * 1993-12-24 1995-07-28 Nippondenso Co Ltd Probe contact
JPH09267337A (en) * 1996-02-01 1997-10-14 Inamura Deitsupu:Kk Mold for dip molding and molding method utilizing the same
WO2000059274A1 (en) * 1999-03-26 2000-10-05 Mitsubishi Plastics, Inc. Method for manufacturing three-dimensional printed wiring board
JP2004291472A (en) * 2003-03-27 2004-10-21 Tokai Rubber Ind Ltd Mold for molding, method for manufacturing elastic roll using it and elastic roll obtained thereby
JP2006337202A (en) * 2005-06-02 2006-12-14 Akutowan:Kk Probe pin
JP2008089377A (en) * 2006-09-29 2008-04-17 Jsr Corp Sheet-like probe, its manufacturing method, and its application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104609A1 (en) * 2003-02-04 2005-05-19 Microfabrica Inc. Microprobe tips and methods for making
JP6665979B2 (en) * 2015-05-19 2020-03-13 日本電子材料株式会社 Electrical contact

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191057A (en) * 1993-12-24 1995-07-28 Nippondenso Co Ltd Probe contact
JPH09267337A (en) * 1996-02-01 1997-10-14 Inamura Deitsupu:Kk Mold for dip molding and molding method utilizing the same
WO2000059274A1 (en) * 1999-03-26 2000-10-05 Mitsubishi Plastics, Inc. Method for manufacturing three-dimensional printed wiring board
JP2004291472A (en) * 2003-03-27 2004-10-21 Tokai Rubber Ind Ltd Mold for molding, method for manufacturing elastic roll using it and elastic roll obtained thereby
JP2006337202A (en) * 2005-06-02 2006-12-14 Akutowan:Kk Probe pin
JP2008089377A (en) * 2006-09-29 2008-04-17 Jsr Corp Sheet-like probe, its manufacturing method, and its application

Also Published As

Publication number Publication date
JP6529599B2 (en) 2019-06-12
TW201729969A (en) 2017-09-01
JPWO2017069136A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
TWI776790B (en) Manufacturing method of contact probes for a testing head
JP2018511006A (en) Structured surface with adhesive strength switchable in multiple stages
CN104094140B (en) Diffraction grating and manufacture method thereof
WO2017069136A1 (en) Three-dimensional structural body manufacturing method, mold used in same, and electric contact
TWI814277B (en) Probe for probe card and manufacturing method thereof
KR101304143B1 (en) Method for fabricating polishing pad
WO2008001487A1 (en) Microstructural body and process for producing the same
JP4816939B2 (en) Microneedle manufacturing method and microneedle
JP2006341500A (en) Laminated structure, donor substrate and manufacturing method of laminated structure
JP5154705B1 (en) Manufacturing method of polishing pad molding die, polishing pad molding die manufactured by the method, and polishing pad manufactured by the die
JP5089107B2 (en) Manufacturing method of fine parts
JP6400468B2 (en) Manufacturing method of metal products
CN101799486A (en) Method for manufacturing probe and probe array thereof
KR20170024686A (en) Manufacturing method of mesh for screen printing
JP4326995B2 (en) Manufacturing method of electronic component holding plate and mold for manufacturing the same
JP6210904B2 (en) Electrode printing apparatus and electrode printing method
KR100987456B1 (en) A production method of A curved stamper having a curved surface
JP2015030107A (en) Nanoimprinting molding tool
JP2006297717A (en) Method and apparatus for inspecting thin film made of resin
KR101008647B1 (en) A production method of A curved stamper having a curved surface
JP2009008450A (en) Manufacturing method of probe, and manufacturing method of probe card
JP2923944B1 (en) Mold manufacturing method
JP6090741B2 (en) Mold for electroformed parts and method for producing electroformed parts
JP2012523128A (en) Carrier plate for external electrode formation and manufacturing method thereof
JP2001137975A (en) Method of manufacturing for punching tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857449

Country of ref document: EP

Kind code of ref document: A1