WO2017067379A1 - 一种下行数据传输方法、设备及系统 - Google Patents

一种下行数据传输方法、设备及系统 Download PDF

Info

Publication number
WO2017067379A1
WO2017067379A1 PCT/CN2016/100847 CN2016100847W WO2017067379A1 WO 2017067379 A1 WO2017067379 A1 WO 2017067379A1 CN 2016100847 W CN2016100847 W CN 2016100847W WO 2017067379 A1 WO2017067379 A1 WO 2017067379A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
scheduled terminal
processing
scheduled
terminal
Prior art date
Application number
PCT/CN2016/100847
Other languages
English (en)
French (fr)
Inventor
苏昕
宋扬
李传军
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US15/770,167 priority Critical patent/US20180302898A1/en
Priority to EP16856812.9A priority patent/EP3367584B1/en
Publication of WO2017067379A1 publication Critical patent/WO2017067379A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a downlink data transmission method, device, and system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced, LTE evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • the performance gain of MIMO technology comes from the spatial freedom that multi-antenna systems can obtain. Therefore, one of the most important evolution directions of MIMO technology in the development of standardization is the expansion of dimensions.
  • a base station antenna system using a conventional PAS Passive Antenna System
  • a plurality of antenna ports are horizontally arranged, and a plurality of antennas corresponding to vertical dimensions of each antenna port are connected by an RF cable, wherein each The antenna port corresponds to an independent RF-IF-baseband channel. Therefore, the existing MIMO technology can only optimize the horizontal dimensional characteristics of each terminal signal in the horizontal dimension by adjusting the relative amplitude or phase between different antenna ports. In the vertical dimension, only uniform sectors can be used. Level shaping.
  • the base station antenna system can obtain greater degrees of freedom in the vertical dimension, and can implement the UE (User Equipment, also called the terminal) in the three-dimensional space. Level signal optimization.
  • Massive MIMO massive MIMO
  • the interface between the antenna and the baseband unit (BBU) faces enormous data traffic pressure. This interface is also called the fronthaul interface.
  • the current solutions mainly have the following three types:
  • the common interface protocol between the ground baseband equipment in the base station system and the radio equipment (RRU) on the tower is the Common Public Radio Interface (CPRI) protocol.
  • CPRI Common Public Radio Interface
  • 8B/10B means input 8 bits, output 10 bits, or input 8 bytes, output 10 bytes.
  • For downlink transmission one 10G fiber or two 5G or 6G fiber is needed when the base station uses 8 antenna ports.
  • the base station uses 128 antenna ports, if it is not compressed, 32 5G or 6G fibers or 16 10G fibers are required.
  • the system may have a system bandwidth of more than 1 GHz in the time domain, and the data transmission pressure faced by the fronthaul interface will also increase sharply, and the amount of optical fiber data will increase, for the active antenna.
  • the miniaturization of the system's equipment and the installation and operation and maintenance will have extremely adverse effects.
  • the BBU function of the base station is integrated into the AAS system.
  • This method is equivalent to integrating all the base station functions, namely BBU+RRU+PAS, into the AAS, and is therefore also referred to as an active integrated base station.
  • the scheme completes a large amount of data interaction on the fronthaul interface in the AAS. In fact, the fronthaul interface disappears with the high integration of the base station functions. In the data transmission from the AAS to the core network, the data redundancy is greatly reduced. It can better control the backhaul link between the base station and the core network, that is, the data rate of the fronthaul interface.
  • due to the high integration of AAS it is limited by the volume and heat dissipation, and it is unfavorable for the improvement of the total transmit power and the implementation of high-performance complex baseband processing algorithms.
  • DWDM Dense Wave Division Multiplexing
  • ROF Radio Over Fiber
  • This approach can reduce the number of fibers required, but adds to the complexity and cost of the device to a large extent.
  • Embodiments of the present invention provide a downlink data transmission method, device, and system, which are used to reduce data transmission pressure of a data preamble interface.
  • a downlink data transmission method including:
  • the first device performs second airspace pre-processing on the data of the scheduled terminal
  • the first device converts the data obtained by the second airspace pre-processing into a radio frequency signal, and sends the radio frequency signal.
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal;
  • the second airspace preprocessing includes at least:
  • a process of beamforming or precoding processing the data of the scheduled terminal is a process of beamforming or precoding processing the data of the scheduled terminal.
  • the method further includes:
  • the first device receives, by using a preamble interface, a resource allocation manner of the scheduled terminal sent by the second device, and a beamforming vector or a precoding matrix used by the scheduled terminal in the resource allocation manner.
  • the first device performs a second airspace pre-processing on the data of the scheduled terminal, including:
  • the first device performs beamforming on the data of the scheduled terminal according to the beamforming vector, or performs precoding processing on the data of the scheduled terminal according to the precoding matrix to shape a beam or
  • the data of the scheduled terminal after the precoding process performs subcarrier mapping.
  • the first device performs beamforming on the data of the scheduled terminal according to the beamforming vector, or performs precoding processing on the data of the scheduled terminal according to the precoding matrix.
  • the method further includes:
  • the first device maps data of the scheduled terminal from a data layer to a reference symbol port according to a mapping relationship between a data layer and a reference symbol port.
  • the method before the mapping, by the first device, the data of the scheduled terminal from the data layer to the reference symbol port, the method further includes:
  • the first device maps data of the scheduled terminal to a plurality of data layers according to the number of parallel data streams that can be supported.
  • a downlink data transmission method including:
  • the second device After the second device performs the first spatial domain pre-processing on the baseband data of the scheduled terminal, the data of the scheduled terminal is obtained;
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal;
  • the second airspace preprocessing includes at least:
  • a process of beamforming or precoding processing the data of the scheduled terminal is a process of beamforming or precoding processing the data of the scheduled terminal.
  • the method further includes:
  • the second device performs the first airspace pre-processing on the baseband data of the scheduled terminal to obtain the data of the scheduled terminal, including:
  • the second device scrambles and modulates the baseband data of the scheduled terminal to obtain data of the scheduled terminal.
  • the method further includes:
  • the second device maps the scrambled and modulated data of the scheduled terminal to a plurality of data layers according to the number of parallel data streams that can be supported.
  • the method further includes:
  • the data of the scheduled terminal is mapped from the data layer to the reference symbol port according to a mapping relationship between the data layer and the reference symbol port.
  • a downlink data transmission system including:
  • a second device configured to perform data processing on the base station data of the scheduled terminal to obtain the data of the scheduled terminal, and send the data of the scheduled terminal to the first device by using a forward transmission interface
  • a first device configured to receive data of the scheduled terminal sent by the second device by using the forward interface, perform second airspace pre-processing on data of the scheduled terminal, and obtain a second airspace pre-processed
  • the data is converted to a radio frequency signal and the radio frequency signal is transmitted.
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal;
  • the second airspace preprocessing includes at least:
  • a process of beamforming or precoding processing the data of the scheduled terminal is a process of beamforming or precoding processing the data of the scheduled terminal.
  • the second device is further configured to:
  • the first device is further configured to:
  • the second device performs the first airspace pre-processing on the baseband data of the scheduled terminal, specifically:
  • the first device performs a second airspace pre-processing on the data of the scheduled terminal, specifically:
  • Mapping the data of the scheduled terminal to a plurality of data layers according to the number of parallel data streams that can be supported, and mapping the data of the scheduled terminal from the data layer to the data layer according to a mapping relationship between the data layer and the reference symbol port Referring to the symbol port, performing beamforming on the data of the scheduled terminal according to the beamforming vector, or precoding the data of the scheduled terminal according to the precoding matrix to shape or pre-beam
  • the data of the scheduled terminal after the encoding process performs subcarrier mapping.
  • the second device performs the first airspace pre-processing on the baseband data of the scheduled terminal, specifically:
  • the first device performs a second airspace pre-processing on the data of the scheduled terminal, specifically:
  • mapping the data of the scheduled terminal from the data layer to the reference symbol port according to the mapping relationship between the data layer and the reference symbol port and performing beamforming on the data of the scheduled terminal according to the beamforming vector, Or performing precoding processing on the data of the scheduled terminal according to the precoding matrix, and performing subcarrier mapping on data of the scheduled terminal after beamforming or precoding processing.
  • the second device performs the first airspace pre-processing on the baseband data of the scheduled terminal, specifically:
  • the first device performs a second airspace pre-processing on the data of the scheduled terminal, specifically:
  • the data of the scheduled terminal performs subcarrier mapping.
  • a downlink data transmission device including:
  • a receiving module configured to receive data of the scheduled terminal sent by the second device by using the preamble interface, where the data of the scheduled terminal is obtained by the second device performing pre-processing of the baseband data of the scheduled terminal The data;
  • a processing module configured to perform second airspace pre-processing on data of the scheduled terminal received by the receiving module
  • a sending module configured to convert the data obtained by the processing module to the second airspace pre-processing into a radio frequency signal, and send the radio frequency signal.
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal;
  • the second airspace preprocessing includes at least:
  • a process of beamforming or precoding processing the data of the scheduled terminal is a process of beamforming or precoding processing the data of the scheduled terminal.
  • the receiving module is further configured to:
  • the processing module is specifically configured to:
  • the data of the scheduled terminal performs subcarrier mapping.
  • processing module is further configured to:
  • mapping data of the scheduled terminal from a data layer to a reference symbol port.
  • processing module is further configured to:
  • the data of the scheduled terminal is mapped to a plurality of data layers according to the number of parallel data streams that can be supported.
  • a downlink data transmission device including:
  • a processing module configured to perform first airspace pre-processing on the baseband data of the scheduled terminal to obtain data of the scheduled terminal
  • a sending module configured to send the data of the scheduled terminal to the first device by using a pre-transmission interface, where the first device performs the second airspace pre-processing on the data of the scheduled terminal, and converts the obtained data into a radio frequency Signaling, and transmitting, by the first device, the radio frequency signal.
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal;
  • the second airspace preprocessing includes at least:
  • a process of beamforming or precoding processing the data of the scheduled terminal is a process of beamforming or precoding processing the data of the scheduled terminal.
  • processing module is further configured to:
  • the sending module is further configured to:
  • the processing module is specifically configured to:
  • Baseband data of the scheduled terminal is scrambled and modulated to obtain data of the scheduled terminal.
  • processing module is further configured to:
  • the scrambled and modulated obtained scheduling terminal is obtained according to the number of parallel data streams that can be supported. Data is mapped to multiple data layers.
  • processing module is further configured to:
  • the data of the scheduled terminal is mapped from the data layer to the reference symbol port.
  • a sixth aspect provides a downlink data processing device, including a processor, a memory, and a transceiver.
  • the transceiver is configured to send and receive data under the control of the processor, where the preset program is stored in the memory, and the processor reads A program in memory that performs the following processes in accordance with the program:
  • the data of the scheduled terminal sent by the second device is received by the pre-transmission interface, where the data of the scheduled terminal is data obtained by the second device performing the first spatial domain pre-processing on the baseband data of the scheduled terminal;
  • the data obtained by preprocessing the second airspace is converted into a radio frequency signal, and the radio frequency signal is transmitted through the transceiver.
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal;
  • the second airspace preprocessing includes at least:
  • a process of beamforming or precoding processing the data of the scheduled terminal is a process of beamforming or precoding processing the data of the scheduled terminal.
  • the processor is configured to receive, by using a preamble interface, a resource allocation manner of the scheduled terminal sent by the second device, and a beamforming vector or a preset used by the scheduled terminal in the resource allocation manner. Encoding matrix.
  • the processor is specifically used to:
  • the data of the scheduled terminal performs subcarrier mapping.
  • the processor is also used to:
  • mapping data of the scheduled terminal from a data layer to a reference symbol port.
  • the processor is also used to:
  • the data of the scheduled terminal is mapped to a plurality of data layers according to the number of parallel data streams that can be supported.
  • a downlink data data transmission device includes a processor and a memory, wherein a preset program is stored in the memory, the processor reads a program in the memory, and the following process is performed according to the program:
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal;
  • the second airspace preprocessing includes at least:
  • a process of beamforming or precoding processing the data of the scheduled terminal is a process of beamforming or precoding processing the data of the scheduled terminal.
  • the processor is further configured to:
  • the processor is specifically configured to:
  • Baseband data of the scheduled terminal is scrambled and modulated to obtain data of the scheduled terminal.
  • the processor is further configured to:
  • the scrambled and modulated obtained scheduling terminal is obtained according to the number of parallel data streams that can be supported. Data is mapped to multiple data layers.
  • the processor is further configured to:
  • the data of the scheduled terminal is mapped from the data layer to the reference symbol port.
  • the second device after performing the first airspace pre-processing on the baseband data of the scheduled terminal, the second device sends the data obtained by the first airspace pre-processing to the first device by using the pre-transmission interface, where the first device Performing a second airspace pre-processing on the data of the scheduled terminal received through the pre-transmission interface, and the first device and the second device cooperate to complete the entire airspace pre-processing process, and the spatial pre-processing process that generates the partial redundancy is completed by the first device. It reduces the redundancy of data transmitted through the preamble interface and reduces the data transmission pressure of the data preamble interface.
  • the structure can adapt to a C-RAN network structure centered on collaboration, centralized, and cloud computing, thereby enabling the network side to coordinate and optimize at a higher level, a larger scope, and more comprehensively.
  • FIG. 1 is a schematic flowchart of a method for downlink data transmission according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of another method for downlink data transmission according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a downlink data transmission system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a downlink data transmission device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another downlink data transmission device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another downlink data transmission device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another downlink data transmission device according to an embodiment of the present invention.
  • the BBU's work at the physical layer mainly includes:
  • Code word (CW) scrambling and modulation scrambling and modulation, scrambling a transport block (TB) issued by a higher layer, and mapping the data into a modulation symbol according to a modulation format;
  • Layer mapping converting the code string into multiple data layers according to the condition of the channel and/or the number of parallel data streams that can be supported by the feedback of the terminal;
  • Layer-virtual antenna port mapping maps the data layer to the reference symbol port according to the transmission mode, for example, mapping to CRS (Cell for TM1, 2, 3, 4, 5, 6) -Specific Reference Signal, the port, TM7, 8, 9, 10 are mapped to the DMRS (DeModulation Reference Signal) port;
  • CRS Cell for TM1, 2, 3, 4, 5, 6
  • DMRS DeModulation Reference Signal
  • mapping of the virtual antenna port-TX/RU (Transmitter/Receiver Unit) port the mapping represents the baseband sector level for the CRS-based transmission mode, and the mapping is based on the DMRS-based transmission mode.
  • the baseband forms a user-level shaped beam
  • Resource mapping and OFDM signal generation mapping each user's information to corresponding subcarriers according to scheduling conditions on each TX/RU port, and then performing OFDM modulation on frequency domain samples in the system bandwidth to obtain time domain signals Sample.
  • the work required to connect the BBU to the RRU or AAS interface mainly includes:
  • the I/Q branches of the time domain sample signals are separately sampled and encoded, and the transmitted data is compressed as needed;
  • the received data is decompressed and decoded to recover the time domain sample signal.
  • y TRU is an N TRU ⁇ 1 dimensional vector representing the signal vector input to the TX/RU port.
  • x RS is an N RS ⁇ 1 dimensional vector representing a signal vector from a virtual antenna port, and the mapping relationship between the two is determined by the shaping matrix W of the N TRU ⁇ N RS dimension.
  • the N TRU is much larger than the N RS .
  • the N RS is at most 8.
  • N is the number of possible TRU 64,128,256 or more.
  • the mapping of layer-virtual antenna ports introduces some redundancy.
  • the possible values of the number of layers and the number of virtual antenna ports are 1, 2, 4, and 8, and the number of layers is less than or equal to the number of virtual antenna ports.
  • the number of virtual antenna ports exceeds the number of layers, each data symbol in each layer is repeatedly mapped to all virtual antenna ports after being transformed or weighted. If the number of virtual ports is relatively low, redundancy is acceptable. However, it is currently impossible to rule out that the number of virtual antenna ports will be further expanded in the LTE specification, which may result in a corresponding increase in redundancy.
  • the core idea of the present invention is: in the downlink data transmission process, the baseband processing function is jointly performed by the first device and the second device, and the first device and the second device are connected through a preamble interface, that is, a part of the baseband
  • the processing function is transferred to the RRU or the AAS, and the data transmission pressure of the data pre-transmission interface is reduced by reducing the redundancy of the data of each scheduled terminal that needs to be transmitted in the BBU to the RRU or the preamble interface of the BBU to the AAS.
  • the first device in the embodiments of the present invention refers to an outdoor part of a downlink data transmission system (for example, a base station), that is, an AAU or an RRU, and the second device refers to an indoor part of the downlink data transmission system, that is, a BBU.
  • a base station for example, a base station
  • the second device refers to an indoor part of the downlink data transmission system, that is, a BBU.
  • Step 101 The first device receives the data of the scheduled terminal sent by the second device by using the pre-transmission interface, where the data of the scheduled terminal is data obtained by the second device performing the first spatial domain pre-processing on the baseband data of the scheduled terminal.
  • the first device receives, by using the preamble interface, a resource allocation manner of the scheduled terminal sent by the second device, and a beamforming vector or a precoding matrix used by the scheduled terminal in the resource allocation manner.
  • Step 102 The first device performs second airspace preprocessing on the data of the scheduled terminal.
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal; and the second spatial domain pre-processing at least includes: beamforming or pre-coding the data of the scheduled terminal. The process of processing.
  • the process of performing the second airspace pre-processing on the data of the scheduled terminal by the first device includes but is not limited to the following implementation manners:
  • the first device performs beamforming on the data of the scheduled terminal according to the beamforming vector, or performs precoding processing on the data of the scheduled terminal according to the precoding matrix, and performs scheduling after beamforming or precoding processing.
  • the data of the terminal performs subcarrier mapping.
  • the first device performs beamforming on the data of the scheduled terminal according to the beamforming vector, or performs precoding processing on the data of the scheduled terminal according to the precoding matrix, that is, the virtual antenna port in the airspace preprocessing-TX/RU Port mapping.
  • the first device performs subcarrier mapping on the data of the scheduled terminal after beamforming or precoding, that is, the first device is scheduled on each TX/RU port according to the scheduling situation.
  • the information of the terminal is mapped to the corresponding subcarrier, and the frequency domain sample within the system bandwidth is OFDM modulated to obtain a time domain signal sample, that is, resource mapping and OFDM signal generation in the spatial domain preprocessing.
  • the first device performs beamforming on the data of the scheduled terminal according to the beamforming vector transmitted by the second device through the preamble interface, or the precoding matrix transmitted by the second device through the preamble interface to the scheduled terminal.
  • the data is precoded.
  • the process of performing the first spatial domain pre-processing on the baseband data of the scheduled terminal by the second device is:
  • the second device scrambles and modulates the baseband data of the scheduled terminal to obtain data of the scheduled terminal; and maps the data of the scheduled terminal that is scrambled and modulated according to the number of parallel data streams that can be supported.
  • Data layer according to the mapping relationship between the data layer and the reference symbol port, the data of the scheduled terminal is mapped from the data layer to the reference symbol port.
  • the second device scrambles and modulates the baseband data of the scheduled terminal, that is, the scrambling and modulation of the codeword in the spatial domain preprocessing.
  • the second device maps the scrambled and modulated data of the scheduled terminal to a plurality of data layers according to the number of parallel data streams that can be supported, that is, the layer mapping in the spatial domain preprocessing.
  • the second device maps the data of the scheduled terminal from the data layer to the reference symbol port according to the mapping relationship between the data layer and the reference symbol port, that is, the mapping of the layer-virtual antenna port in the spatial domain preprocessing.
  • the first device maps the data of the scheduled terminal from the data layer to the reference symbol port according to the mapping relationship between the data layer and the reference symbol port; and performs beamforming on the data of the scheduled terminal according to the beamforming vector, Or performing precoding processing on the data of the scheduled terminal according to the precoding matrix, and performing subcarrier mapping on the data of the scheduled terminal after beamforming or precoding processing.
  • the first device maps the data of the scheduled terminal from the data layer to the reference symbol port, that is, the mapping of the layer-virtual antenna port in the spatial domain pre-processing.
  • the first device performs beamforming on the data of the scheduled terminal according to the beamforming vector, or performs precoding processing on the data of the scheduled terminal according to the precoding matrix, that is, the virtual antenna port in the airspace preprocessing - TX/RU port Mapping.
  • the data of the scheduled terminal after beamforming or precoding is subjected to subcarrier mapping, that is, resource mapping and OFDM signal generation in spatial domain preprocessing.
  • the process of performing the first spatial domain pre-processing on the baseband data of the scheduled terminal by the second device is:
  • the second device scrambles and modulates the baseband data of the scheduled terminal to obtain data of the scheduled terminal; and maps the data of the scheduled terminal that is scrambled and modulated according to the number of parallel data streams that can be supported. Data layers.
  • the second device scrambles and modulates the baseband data of the scheduled terminal, that is, the scrambling and modulation of the codeword in the spatial domain preprocessing.
  • the second device maps the scrambled and modulated data of the scheduled terminal to a plurality of data layers according to the number of parallel data streams that can be supported, that is, the layer mapping in the spatial domain preprocessing.
  • the first device maps the data of the scheduled terminal to multiple data layers according to the number of parallel data streams that can be supported; according to the mapping relationship between the data layer and the reference symbol port, the data of the scheduled terminal is The data layer is mapped to the reference symbol port; the data of the scheduled terminal is beamformed according to the beamforming vector, or the data of the scheduled terminal is pre-coded according to the precoding matrix, and the beam is shaped or precoded.
  • the data of the scheduled terminal performs subcarrier mapping.
  • the first device maps the data of the scheduled terminal to multiple data layers according to the number of parallel data streams that can be supported, that is, the layer mapping in the spatial domain preprocessing.
  • the first device maps the data of the scheduled terminal from the data layer to the reference symbol port, that is, the mapping of the layer-virtual antenna port in the spatial domain pre-processing. For example, for TM1, 2, 3, 4, 5, 6 mapped to the CRS port, for TM7, 8, 9, 10 mapped to the DMRS port.
  • the first device performs beamforming on the data of the scheduled terminal according to the beamforming vector, or performs precoding processing on the data of the scheduled terminal according to the precoding matrix, that is, the virtual antenna port-TX/RU port in the airspace preprocessing Mapping.
  • the first device performs subcarrier mapping, that is, resource mapping in the spatial preprocessing and OFDM signal generation, on the data of the scheduled terminal after beamforming or precoding processing.
  • the process of performing the first spatial domain pre-processing on the baseband data of the scheduled terminal by the second device is:
  • the second device scrambles and modulates the baseband data of the scheduled terminal to obtain data of the scheduled terminal, that is, scrambling and modulation of the codeword in the spatial domain preprocessing.
  • Step 103 The first device converts data obtained by preprocessing the second airspace into a radio frequency signal, and sends the radio frequency signal.
  • the mapping of the virtual antenna port to the TX/RU port and the subsequent resource mapping and subcarrier mapping are performed by the first device, so that the data transmitted by the second device through the preamble interface is performed.
  • the amount of redundancy is greatly reduced.
  • the mapping of the virtual antenna port to the TX/RU port in the BBU and the subsequent resource mapping and OFDM signal generation steps are transferred to the RRU or AAS, which greatly reduces the BBU to the RRU or The amount of data redundancy on the AAS's preamble interface.
  • the second device is responsible for partial airspace preprocessing, such as resource allocation, resource scheduling, beamforming vector, or calculation of a precoding matrix
  • the first device is responsible for partial spatial domain preprocessing, such as layer mapping, layer-virtual antenna port. All or part of the mapping, virtual antenna port-TX/RU port mapping, the structure can adapt to the C-RAN network structure centered on collaboration, centralized and cloud computing, so that the network side can be higher Level, greater scope, more comprehensive coordination and optimization.
  • the operations on the first device are relatively simple, so that the integration degree, complexity, power consumption, and cost of the first device are effectively controlled.
  • Step 201 The second device performs pre-processing on the baseband data of the scheduled terminal to obtain data of the scheduled terminal.
  • the first spatial domain pre-processing comprises at least scrambling and modulating baseband data of the scheduled terminal.
  • the second device performs the first airspace pre-processing on the baseband data of the scheduled terminal, including but not limited to the following implementation manners:
  • the second device scrambles and modulates the baseband data of the scheduled terminal to obtain data of the scheduled terminal.
  • the second device scrambles and modulates the baseband data of the scheduled terminal to obtain data of the scheduled terminal; and the scheduled terminal obtained by scrambling and modulating according to the number of parallel data streams that can be supported
  • the data is mapped to multiple data layers.
  • the second device scrambles and modulates the baseband data of the scheduled terminal to obtain data of the scheduled terminal; and the scheduled terminal obtained by scrambling and modulating according to the number of parallel data streams that can be supported
  • the data is mapped to multiple data layers; according to the mapping relationship between the data layer and the reference symbol port, the data of the scheduled terminal is mapped from the data layer to the reference symbol port.
  • Step 202 The second device sends the data of the scheduled terminal to the first device by using the pre-transmission interface, and the first device performs the second spatial domain pre-processing on the data of the scheduled terminal, and converts the obtained data into a radio frequency signal. And transmitting, by the first device, the radio frequency signal.
  • the second spatial domain pre-processing includes at least a process of performing beamforming or pre-coding processing on data of the scheduled terminal.
  • the second device determines a resource allocation manner of the scheduled terminal, and a beamforming vector or a precoding matrix used by the scheduled terminal in the resource allocation manner; the second device uses the preamble interface to transmit the scheduled terminal.
  • the resource allocation mode and the beamforming vector or precoding matrix used by the scheduled terminal on the resource allocation mode are sent to the first device.
  • the process of performing the first spatial domain pre-processing on the baseband data of the scheduled terminal is performed by the second device, and the process of performing the second spatial domain pre-processing on the data of the scheduled terminal by the first device includes but is not limited to the following implementations. the way:
  • the first device performs the second airspace pre-processing on the data of the scheduled terminal, specifically:
  • the first device maps data of the scheduled terminal to multiple data layers according to the number of parallel data streams that can be supported; and maps data of the scheduled terminal from the data layer according to a mapping relationship between the data layer and the reference symbol port To the reference symbol port; beamforming the data of the scheduled terminal according to the beamforming vector, or precoding the data of the scheduled terminal according to the precoding matrix, and shaping or precoding the processed terminal after beamforming
  • the data is subcarrier mapped.
  • the first device performs the second airspace pre-processing on the data of the scheduled terminal, specifically:
  • the first device maps data of the scheduled terminal from the data layer to the reference symbol port according to the mapping relationship between the data layer and the reference symbol port; performs beamforming on the data of the scheduled terminal according to the beamforming vector, or according to the pre-
  • the coding matrix performs precoding processing on the data of the scheduled terminal, and performs subcarrier mapping on the data of the scheduled terminal after beamforming or precoding processing.
  • the third implementation manner of performing the first airspace pre-processing on the data of the scheduled terminal by the second device corresponding to the second device performing the first spatial domain pre-processing on the baseband data of the scheduled terminal specifically:
  • the first device performs beamforming on the data of the scheduled terminal according to the beamforming vector, or performs precoding processing on the data of the scheduled terminal according to the precoding matrix, and data of the scheduled terminal after beamforming or precoding processing Perform subcarrier mapping.
  • the embodiment of the present invention further provides a downlink data transmission system.
  • the system mainly includes a first device 301 and a second device 302, where:
  • the second device 302 is configured to perform the first airspace pre-processing on the baseband data of the scheduled terminal to obtain the data of the scheduled terminal, and send the data of the scheduled terminal to the first device 301 through the pre-transmission interface;
  • the first device 301 is configured to receive data of the scheduled terminal sent by the second device 302 through the preamble interface, perform second airspace preprocessing on the data of the scheduled terminal, and convert data obtained by preprocessing the second airspace into a radio frequency. Signal and send the RF signal.
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal; and the second spatial domain pre-processing at least: performing beamforming or pre-coding processing on data of the scheduled terminal the process of.
  • the second device 302 is further configured to:
  • the beamforming vector or precoding matrix used in the resource allocation manner is sent to the first device 301;
  • the first device 301 is further configured to:
  • the second device 302 performs the first spatial domain pre-processing on the baseband data of the scheduled terminal, specifically: scrambling and modulating the baseband data of the scheduled terminal;
  • the first device 301 performs second airspace pre-processing on the data of the scheduled terminal, specifically:
  • Mapping the data of the scheduled terminal to a plurality of data layers according to the number of parallel data streams that can be supported, and mapping the data of the scheduled terminal from the data layer to the data layer according to a mapping relationship between the data layer and the reference symbol port Referring to the symbol port, performing beamforming on the data of the scheduled terminal according to the beamforming vector, or precoding the data of the scheduled terminal according to the precoding matrix to shape or pre-beam
  • the data of the scheduled terminal after the encoding process performs subcarrier mapping.
  • the second device 302 performs the first spatial domain pre-processing on the baseband data of the scheduled terminal, specifically:
  • the first device 301 performs second airspace pre-processing on the data of the scheduled terminal, specifically:
  • mapping the data of the scheduled terminal from the data layer to the reference symbol port according to the mapping relationship between the data layer and the reference symbol port and performing beamforming on the data of the scheduled terminal according to the beamforming vector, Or performing precoding processing on the data of the scheduled terminal according to the precoding matrix, and performing subcarrier mapping on data of the scheduled terminal after beamforming or precoding processing.
  • the second device 302 performs the first spatial domain pre-processing on the baseband data of the scheduled terminal, specifically:
  • the first device 301 performs second airspace pre-processing on the data of the scheduled terminal, specifically:
  • Performing beamforming on the data of the scheduled terminal according to the beamforming vector, or precoding the data of the scheduled terminal according to the precoding matrix, and shaping or precoding the data of the scheduled terminal after processing Perform subcarrier mapping.
  • a downlink data transmission device is also provided in the embodiment of the present invention.
  • the equipment mainly includes:
  • the receiving module 401 is configured to receive data of the scheduled terminal sent by the second device by using the pre-transmission interface, where the data of the scheduled terminal is after the first device performs the first airspace pre-processing on the baseband data of the scheduled terminal. The data obtained;
  • the processing module 402 is configured to perform second airspace pre-processing on the data of the scheduled terminal received by the receiving module 401.
  • the sending module 403 is configured to convert the data obtained by the processing module 402 to the second airspace pre-processing into a radio frequency signal, and send the radio frequency signal.
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal; and the second spatial domain pre-processing at least: performing beamforming or pre-coding processing on data of the scheduled terminal the process of.
  • the receiving module 401 is further configured to:
  • the processing module 402 performs a second spatial domain pre-processing process on the data of the scheduled terminal, including but not limited to the following implementation manners:
  • the processing module 402 is specifically configured to: perform beamforming on the data of the scheduled terminal according to the beamforming vector, or perform precoding processing on data of the scheduled terminal according to the precoding matrix, Performing subcarrier mapping on the data of the scheduled terminal after beamforming or precoding processing.
  • processing module 402 is specifically configured to:
  • mapping the data of the scheduled terminal from the data layer to the reference symbol port according to the mapping relationship between the data layer and the reference symbol port and performing beamforming on the data of the scheduled terminal according to the beamforming vector, Or performing precoding processing on the data of the scheduled terminal according to the precoding matrix.
  • processing module is specifically used to:
  • the first device is an RRU or an AAS.
  • a downlink data transmission device is also provided in the embodiment of the present invention.
  • the equipment mainly includes:
  • the processing module 501 is configured to perform, after performing the first spatial domain pre-processing on the baseband data of the scheduled terminal, to obtain data of the scheduled terminal.
  • the sending module 502 is configured to send the data of the scheduled terminal to the first device by using the pre-transmission interface, and the data obtained by the first device performing the second spatial domain pre-processing on the data of the scheduled terminal is converted into a radio frequency signal, and the radio frequency signal is transmitted by the first device.
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal;
  • the second spatial domain pre-processing includes at least a process of beamforming or pre-coding the data of the scheduled terminal.
  • processing module 501 is further configured to:
  • the sending module 502 is further configured to:
  • the processing module 501 performs the process of the first spatial domain pre-processing on the baseband data of the scheduled terminal, including but not limited to the following implementation manners:
  • the processing module 501 is specifically configured to perform scrambling and modulation on the baseband data of the scheduled terminal to obtain data of the scheduled terminal.
  • the processing module 501 is specifically configured to:
  • processing module 501 is specifically configured to:
  • the second device is a BBU.
  • a downlink data transmission device is also provided in the embodiment of the present invention.
  • the device mainly includes a processor 601, a memory 602, and a transceiver 603.
  • the transceiver 603 is configured to receive and send data under the control of the processor 601.
  • the memory 602 stores a preset program, and the processor 601 reads
  • the program in the memory 602 executes the following process according to the program:
  • the data of the scheduled terminal sent by the second device is received by the pre-transmission interface, where the data of the scheduled terminal is data obtained by the second device performing the first spatial domain pre-processing on the baseband data of the scheduled terminal;
  • the data obtained by the second airspace pre-processing is converted into a radio frequency signal, and the radio frequency signal is transmitted through the transceiver 603.
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal; and the second spatial domain pre-processing at least: performing beamforming or pre-coding processing on data of the scheduled terminal the process of.
  • the processor 601 receives, by using a preamble interface, a resource allocation manner of the scheduled terminal sent by the second device, and a beamforming vector or precoding used by the scheduled terminal in the resource allocation manner. matrix.
  • the processor 601 performs a second spatial domain pre-processing process on the data of the scheduled terminal, including but not limited to the following implementation manners:
  • the processor 601 performs beamforming on the data of the scheduled terminal according to the beamforming vector, or performs precoding processing on the data of the scheduled terminal according to the precoding matrix to shape the beam. Or the pre-coded data of the scheduled terminal performs subcarrier mapping.
  • the processor 601 maps data of the scheduled terminal from a data layer to a reference symbol port according to a mapping relationship between the data layer and the reference symbol port, and performs, according to the beamforming vector, the scheduled terminal.
  • the data is beamformed, or the data of the scheduled terminal is precoded according to the precoding matrix.
  • the processor 601 maps the data of the scheduled terminal to multiple data layers according to the number of parallel data streams that can be supported; according to the mapping relationship between the data layer and the reference symbol port, the scheduled terminal is The data is mapped from the data layer to the reference symbol port, and the data of the scheduled terminal is beamformed according to the beamforming vector, or the data of the scheduled terminal is pre-coded according to the precoding matrix.
  • the processor 601, the memory 602, and the transceiver 603 are connected by a bus.
  • the bus architecture may include any number of interconnected buses and bridges, and specifically, various circuits of the memory represented by one or more processors and memories represented by the processor. Linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • a downlink data transmission device is also provided in the embodiment of the present invention.
  • the device mainly includes a processor 701 and a memory 702, wherein the memory 702 stores a preset program, and the processor 701 reads the program in the memory 702, and executes the following process according to the program:
  • the first spatial domain pre-processing includes: scrambling and modulating baseband data of the scheduled terminal; and the second spatial domain pre-processing at least: performing beamforming or pre-coding processing on data of the scheduled terminal the process of.
  • the processor 701 determines a resource allocation manner of the scheduled terminal, and a beamforming vector or a precoding matrix used by the scheduled terminal in the resource allocation manner;
  • the process of performing the first spatial domain pre-processing on the baseband data of the scheduled terminal by the processor 701 includes but is not limited to the following implementation manners:
  • the processor 701 scrambles and modulates the baseband data of the scheduled terminal to obtain data of the scheduled terminal.
  • the processor 701 scrambles and modulates the baseband data of the scheduled terminal to obtain data of the scheduled terminal, and obtains the scrambled and modulated information according to the number of parallel data streams that can be supported.
  • the data of the scheduled terminal is mapped to a plurality of data layers.
  • the processor 701 scrambles and modulates the baseband data of the scheduled terminal to obtain data of the scheduled terminal, and obtains the scrambled and modulated information according to the number of parallel data streams that can be supported.
  • the data of the scheduled terminal is converted to a plurality of data layers, and the data of the scheduled terminal is mapped from the data layer to the reference symbol port according to a mapping relationship between the data layer and the reference symbol port.
  • the processor 701 and the memory 702 are connected by a bus, and the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor and various circuits of the memory represented by the memory.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • the second device after performing the first airspace pre-processing on the baseband data of the scheduled terminal, the second device sends the data obtained by the first airspace pre-processing to the first device by using the pre-transmission interface, where the first device Performing a second airspace pre-processing on the data of the scheduled terminal received through the pre-transmission interface, and the first device and the second device cooperate to complete the entire airspace pre-processing process, and the spatial pre-processing process that generates the partial redundancy is completed by the first device. It reduces the redundancy of data transmitted through the preamble interface and reduces the data transmission pressure of the data preamble interface.
  • the second device transmits the resource mapping rule of each scheduled terminal and the necessary information such as a beamforming vector or a precoding matrix through the preamble interface, and the core computing salary is borne by the second device, and the first device
  • the partial airspace preprocessing process which is relatively simple to calculate, does not have a fundamental impact on the integration, complexity, power consumption and cost of the first device.
  • the structure can adapt to the C-RAN network structure centered on collaboration, centralized and cloud computing, so that the network side can coordinate and optimize at a higher level, a larger scope and more comprehensively.
  • the first device assumes part of the airspace preprocessing process, which reduces the redundancy of data transmitted by the preamble interface, and can reduce the number of fibers between the first device and the second device.
  • embodiments of the present invention can be provided as a method, system, or computer program product.
  • the present invention can be implemented in an entirely hardware embodiment, an entirely software embodiment, or in combination with software and hardware.
  • the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本发明公开了一种下行数据传输方法、设备及系统,用以降低数据前传接口的数据传输压力。方法为:第一设备通过前传接口接收第二设备发送的被调度终端的数据,所述被调度终端的数据为所述第二设备对所述被调度终端的基带数据进行第一空域预处理后得到的数据;第一设备对所述被调度终端的数据进行第二空域预处理;第一设备将第二空域预处理后得到的数据转换为射频信号,并发送所述射频信号。

Description

一种下行数据传输方法、设备及系统
本申请要求在2015年10月20日提交中国专利局、申请号为201510683971.5、发明名称为“一种下行数据传输方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种下行数据传输方法、设备及系统。
背景技术
鉴于MIMO(Multi-Input Multi-Output,多输入多输出)技术对于提高峰值速率与系统频谱利用率的重要作用,LTE(Long Term Evolution,长期演进)和LTE-A(LTE-Advanced,LTE的演进)等无线接入技术标准都是以MIMO结合OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)技术为基础构建起来的。
MIMO技术的性能增益来自于多天线系统所能获得的空间自由度,因此MIMO技术在标准化发展过程中的一个最重要的演进方向便是维度的扩展。
采用传统PAS(Passive Antenna System,无源天线系统)结构的基站天线系统中,多个天线端口水平排列,每个天线端口对应的垂直维的多个阵子之间由射频电缆连接,其中,每个天线端口对应着独立的射频-中频-基带通道。因此现有的MIMO技术只能在水平维,通过对不同天线端口间的相对幅度或相位的调整,实现对各个终端信号在水平维空间特性的优化,在垂直维则只能采用统一的扇区级赋形。移动通信系统中引入AAS(Active Antenna System,有源天线系统)技术之后,基站天线系统能够在垂直维获得更大的自由度,能够在三维空间实现对UE(User Equipment,用户设备,也称终端)级的信号优化。
在上述研究、标准化与天线技术发展基础之上,产业界正在进一步地将MIMO技术向着三维化和大规模化的方向推进。Massive MIMO(大规模MIMO)技术将能够极大地提升系统频带利用效率,支持更大数量的接入用户。
但是随着天线规模的增大,天线与基带设备(Base Band Unit,BBU)之间的接口会面临巨大的数据流量压力,该接口也称为前传(fronthaul)接口。
目前的解决方案主要有以下三种:
第一,增加光纤数量或者更换高带宽的光纤。
目前基站系统中地面基带设备与塔架上的射频设备(Remote Radio Unit,RRU)之间常用的接口协议为通用无线接口(Common Public Radio Interface,CPRI)协议。根据该协议,以20MHz带宽为例,数据采样率为30.72MHz时,分别对OFDM调制符号的I/Q支 路样点进行16bit采样以及8B/10B编码后,单个天线端口上的数据所需要的数据速率为30.72×16×2×10/8=1228.8Mbps。其中,8B/10B表示输入8比特、输出10比特,或者,输入8字节、输出10字节,对于下行传输,在基站使用8个天线端口时需要1根10G光纤或2根5G或6G光纤,在基站使用128个天线端口时,若不压缩则需要32根5G或6G光纤,或者16根10G光纤。当天线规模或带宽进一步扩展时,例如未来系统可能会时域超过1GHz的系统带宽,fronthaul接口所面临的数据传输压力还会急剧增长,随之带来的光纤数据量的增加,对于有源天线系统的设备体积小型化以及安装和运营维护都会带来极为不利的影响。
第二,将基站的BBU功能集成至AAS系统中。
该方式相当于将全部基站功能,即BBU+RRU+PAS,全部集成到了AAS中,因而又称为有源一体化基站。该方案将fronthaul接口上的大量数据交互在AAS内部完成,实际上该fronthaul接口随着基站功能的高度集成而消失,在AAS到核心网的数据传输中,由于数据冗余度的大大降低,从而能够较好地控制基站至核心网之间的回传链路,即fronthaul接口的数据速率。但是由于AAS集成度非常高,受到体积、散热等方面的限制,对于总发射功率的提升以及高性能的复杂基带处理算法的实施较为不利。并且,全部的基带处理功能均以分布式的方式在各扇区内独立实施,不利于接入节点之间的同步与网络化协作处理,制约了在异构及密集化组网环境中的整体性能。更为重要的是,这一结构与以AAS+云计算为核心的C-RAN(Centralized/Cooperative/Cloud/Clean-Radio Access Network)架构中的协作化与集中式基带处理的思路相违背。另外,高集成度的工艺与设计要求不利于控制成本。
第三,采用DWDM(Dense Wave Division Multiplexing,密集型光波复用)或ROF(Radio Over Fiber,光载无线通信)技术。
该方式可以降低所需的光纤数量,但是在很大程度上增加了设备的复杂度以及成本。
发明内容
本发明实施例提供一种下行数据传输方法、设备及系统,用以降低数据前传接口的数据传输压力。
本发明实施例提供的具体技术方案如下:
第一方面,提供了一种下行数据传输方法,包括:
第一设备通过前传接口接收第二设备发送的被调度终端的数据,所述被调度终端的数据为所述第二设备对所述被调度终端的基带数据进行第一空域预处理后得到的数据;
第一设备对所述被调度终端的数据进行第二空域预处理;
第一设备将第二空域预处理后得到的数据转换为射频信号,并发送所述射频信号。
实施中,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
所述第二空域预处理至少包括:
对所述被调度终端的数据进行波束赋形或预编码处理的过程。
实施中,所述方法还包括:
所述第一设备通过前传接口接收所述第二设备发送的所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵。
可能的实施中,所述第一设备对所述被调度终端的数据进行第二空域预处理,包括:
所述第一设备根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
可能的实施中,所述第一设备根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理之前,所述方法还包括:
所述第一设备根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
可能的实施中,所述第一设备根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口之前,所述方法还包括:
所述第一设备根据能够支持的并行数据流的数量,将所述被调度终端的数据映射到多个数据层。
第二方面,提供了一种下行数据传输方法,包括:
第二设备对被调度终端的基带数据进行第一空域预处理后得到所述被调度终端的数据;
所述第二设备通过前传接口将所述被调度终端的数据发送给第一设备,由所述第一设备对所述被调度终端的数据进行第二空域预处理后将得到的数据转换为射频信号,并由所述第一设备发送所述射频信号。
实施中,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
所述第二空域预处理至少包括:
对所述被调度终端的数据进行波束赋形或预编码处理的过程。
实施中,所述方法还包括:
所述第二设备确定所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵;
所述第二设备通过所述前传接口将所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵发送给所述第一设备。
可能的实施中,所述第二设备对被调度终端的基带数据进行第一空域预处理后得到所述被调度终端的数据,包括:
所述第二设备对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据。
可能的实施中,所述第二设备对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据之后,所述方法还包括:
所述第二设备根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据映射到多个数据层。
可能的实施中,所述第二设备根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据转换到多个数据层之后,所述方法还包括:
根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
第三方面,提供了一种下行数据传输系统,包括:
第二设备,用于对被调度终端的基带数据进行第一空域预处理后得到所述被调度终端的数据,将所述被调度终端的数据通过前传接口发送所述第一设备;
第一设备,用于通过所述前传接口接收所述第二设备发送的所述被调度终端的数据,对所述被调度终端的数据进行第二空域预处理,将第二空域预处理后得到的数据转换为射频信号,并发送所述射频信号。
实施中,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
所述第二空域预处理至少包括:
对所述被调度终端的数据进行波束赋形或预编码处理的过程。
实施中,所述第二设备还用于:
确定所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵,通过所述前传接口将所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵发送给所述第一设备;
所述第一设备还用于:
通过前传接口接收所述第二设备发送的所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵。
可能的实施中,所述第二设备对被调度终端的基带数据进行第一空域预处理,具体为:
对所述被调度终端的基带数据进行加扰以及调制;
所述第一设备对所述被调度终端的数据进行第二空域预处理,具体为:
根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口,根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
可能的实施中,所述第二设备对被调度终端的基带数据进行第一空域预处理,具体为:
对所述被调度终端的基带数据进行加扰以及调制得到所述被调度终端的数据,根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层;
所述第一设备对所述被调度终端的数据进行第二空域预处理,具体为:
根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口,根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
可能的实施中,所述第二设备对被调度终端的基带数据进行第一空域预处理,具体为:
对所述被调度终端的基带数据进行加扰以及调制得到所述被调度终端的数据,根据能够支持的并行数据流的数量将所述被调度终端的数据转换到多个数据层,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口;
所述第一设备对所述被调度终端的数据进行第二空域预处理,具体为:
根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
第四方面,提供了一种下行数据传输设备,包括:
接收模块,用于通过前传接口接收第二设备发送的被调度终端的数据,所述被调度终端的数据为所述第二设备对所述被调度终端的基带数据进行第一空域预处理后得到的数据;
处理模块,用于对所述接收模块接收的所述被调度终端的数据进行第二空域预处理;
发送模块,用于将所述处理模块进行第二空域预处理后得到的数据转换为射频信号,并发送所述射频信号。
实施中,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
所述第二空域预处理至少包括:
对所述被调度终端的数据进行波束赋形或预编码处理的过程。
可能的实施中,所述接收模块还用于:
通过前传接口接收所述第二设备发送的所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵。
可能的实施中,所述处理模块具体用于:
根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
可能的实施中,所述处理模块还用于:
根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理之前,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
可能的实施中,所述处理模块还用于:
根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层。
第五方面,提供了一种下行数据传输设备,包括:
处理模块,用于对被调度终端的基带数据进行第一空域预处理后得到所述被调度终端的数据;
发送模块,用于通过前传接口将所述被调度终端的数据发送给第一设备,由所述第一设备对所述被调度终端的数据进行第二空域预处理后将得到的数据转换为射频信号,并由所述第一设备发送所述射频信号。
实施中,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
所述第二空域预处理至少包括:
对所述被调度终端的数据进行波束赋形或预编码处理的过程。
可能的实施中,所述处理模块还用于:
确定所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵;
所述发送模块还用于:
通过所述前传接口将所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵发送给所述第一设备。
可能的实施中,所述处理模块具体用于:
对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据。
可能的实施中,所述处理模块还用于:
对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据之后,根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据映射到多个数据层。
可能的实施中,所述处理模块还用于:
根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据转换到多个数据层之后,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
第六方面,提供了一种下行数据处理设备,包括处理器、存储器和收发机,收发机用于在处理器的控制下发送和接收数据,存储器中保存有预设的程序,处理器读取存储器中的程序,按照该程序执行以下过程:
通过前传接口接收第二设备发送的被调度终端的数据,所述被调度终端的数据为所述第二设备对所述被调度终端的基带数据进行第一空域预处理后得到的数据;
对所述被调度终端的数据进行第二空域预处理;
将第二空域预处理后得到的数据转换为射频信号,并通过收发机发送所述射频信号。
实施中,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
所述第二空域预处理至少包括:
对所述被调度终端的数据进行波束赋形或预编码处理的过程。
可能的实施中,处理器用于通过前传接口接收所述第二设备发送的所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵。
可能的实施中,处理器具体用于:
根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
可能的实施中,处理器还用于:
根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理之前,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
可能的实施中,处理器还用于:
根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层。
第七方面,提供了一种下行数据数据传输设备,包括处理器和存储器,存储器中保存有预设的程序,处理器读取存储器中的程序,按照该程序执行以下过程:
对被调度终端的基带数据进行第一空域预处理后得到所述被调度终端的数据;
通过前传接口将所述被调度终端的数据发送给第一设备,由所述第一设备对所述被调度终端的数据进行第二空域预处理后将得到的数据转换为射频信号,并由所述第一设备发送所述射频信号。
实施中,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
所述第二空域预处理至少包括:
对所述被调度终端的数据进行波束赋形或预编码处理的过程。
可能的实施中,所述处理器还用于:
确定所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵;
通过所述前传接口将所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵发送给所述第一设备。
可能的实施中,所述处理器具体用于:
对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据。
可能的实施中,所述处理器还用于:
对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据之后,根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据映射到多个数据层。
可能的实施中,所述处理器还用于:
根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据转换到多个数据层之后,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
基于上述技术方案,本发明实施例中,第二设备对被调度终端的基带数据进行第一空域预处理后,将第一空域预处理得到的数据通过前传接口发送给第一设备,第一设备对通过前传接口接收的被调度终端的数据进行第二空域预处理,由第一设备和第二设备协作完成整个空域预处理过程,将产生部分冗余的空域预处理过程由第一设备完成,减少了通过前传接口传输的数据的冗余,降低数据前传接口的数据传输压力。并且,该结构可以适应以协作化、集中式和云计算为中心的C-RAN式网络结构,从而能够使网络侧在更高的层面、更大的范围、更为全面地进行协调和优化。
附图说明
图1为本发明实施例中下行数据传输的方法流程示意图;
图2为本发明实施例中另一下行数据传输的方法流程示意图;
图3为本发明实施例中下行数据传输系统架构示意图;
图4为本发明实施例中下行数据传输设备结构示意图;
图5为本发明实施例中另一下行数据传输设备结构示意图;
图6为本发明实施例中另一下行数据传输设备结构示意图;
图7为本发明实施例中另一下行数据传输设备结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在BBU+RRU+PAS或BBU+AAS的基站架构中,在下行链路中,BBU在物理层承担的工作主要包括:
码字(Code Word,CW)的加扰与调制,对高层发放的传输块(Transport Block,TB)进行加扰,根据调制格式将数据映射为调制符号;
层映射,根据信道的条件和/或终端的反馈所确定的能够支持的并行数据流的数量,将码字串转换为多个数据层;
层-虚拟天线端口的映射,虚拟天线端口也称为参考符号端口,根据传输模式,将数据层映射到参考符号端口上,例如对于TM1、2、3、4、5、6映射到CRS(Cell-Specific Reference Signal,小区专用参考信号)端口,TM7、8、9、10映射到DMRS(DeModulation Reference Signal,解调参考信号)端口;
虚拟天线端口-TX/RU(Transmitter/Receiver Unit,发送/接收单元)端口的映射,对于基于CRS的传输模式该映射代表的为基带的扇区级赋形,对于基于DMRS的传输模式该映射在基带形成了用户级的赋形波束;
资源映射与OFDM信号产生,在每一TX/RU端口上根据调度情况,将各用户的信息映射到相应的子载波上,然后对系统带宽内的频域样点进行OFDM调制,得到时域信号样点。
连接BBU与RRU或AAS的接口上需要进行的工作主要包括:
针对BBU侧,对时域样点信号的I/Q支路分别进行采样以及编码,并根据需要对发送数据进行压缩;
针对RRU侧或AAS侧,对接收数据进行解压缩和译码,恢复时域样点信号。
通过分析发现,fronthaul接口上传输的数据存在极大的冗余,该冗余主要产生于虚拟 天线端口至TX/RU端口的映射过程中。具体地,假设虚拟天线端口数为NRS,TX/RU端口数为NTRU,对于使用线性波束赋形的方案,虚拟天线端口-TX/RU端口的映射过程可以表示为:yTRU=W·xRS。其中yTRU为NTRU×1维向量,表示输入TX/RU端口的信号向量。xRS为NRS×1维向量,表示来自虚拟天线端口的信号向量,两者之间的映射关系由NTRU×NRS维的赋形矩阵W所决定。对于massive MIMO系统而言,通常NTRU远大于NRS。根据现有LTE规范,NRS最多为8。为了获得显著的性能增益,NTRU数量可能为64、128、256甚至更多。经过了上述映射之后,xRS中每一个数据符号实际上都被W赋予了不同的权值,然后重复地出现在了NTRU个TX/RU上。
类似地,除了虚拟天线端口至TX/RU端口的映射过程之外,层-虚拟天线端口的映射也会引入一定的冗余。例如现有LTE规范中,层数和虚拟天线端口数的可能取值均为1、2、4、8,且层数小于等于虚拟天线端口数。当虚拟天线端口数超过层数时,每层中的每个数据符号经过变换或加权值后会重复映射到所有虚拟天线端口上。如果虚拟端口数量相对较低,则冗余度尚可接受。但是目前也不能排除LTE规范中会进一步扩展虚拟天线端口的数量,将导致冗余度可能会相应的增加。
基于以上分析,本发明的核心思想为:在下行数据传输过程中,基带处理功能由第一设备和第二设备共同完成,该第一设备和第二设备之间通过前传接口连接,即将部分基带处理功能转移至RRU或AAS,通过降低BBU至RRU,或BBU至AAS的前传接口中需要传输的每个被调度终端的数据的冗余,达到降低数据前传接口的数据传输压力的目的。
在一个可能的实现中,本发明各实施例中第一设备是指下行数据传输系统(例如基站)的室外部分,即AAU或RRU,第二设备是指下行数据传输系统的室内部分,即BBU。需要说明的是,此处仅为举例说明,本发明各实施例所提供的方案可以应用于其它形式的下行数据传输系统。
基于以上分析,本发明实施例中,如图1所示,下行数据传输的详细方法流程如下:
步骤101:第一设备通过前传接口接收第二设备发送的被调度终端的数据,该被调度终端的数据为第二设备对被调度终端的基带数据进行第一空域预处理后得到的数据。
较佳地,第一设备通过前传接口接收第二设备发送的该被调度终端的资源分配方式,以及该被调度终端在该资源分配方式上使用的波束赋形向量或预编码矩阵。
步骤102:第一设备对该被调度终端的数据进行第二空域预处理。
其中,第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;所述第二空域预处理至少包括:对所述被调度终端的数据进行波束赋形或预编码处理的过程。
具体实施中,第一设备对被调度终端的数据进行第二空域预处理的过程,包括但不限于以下几种实施方式:
第一,第一设备根据波束赋形向量对被调度终端的数据进行波束赋形,或根据预编码矩阵对被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的被调度终端的数据进行子载波映射。
其中,第一设备根据波束赋形向量对被调度终端的数据进行波束赋形,或根据预编码矩阵对被调度终端的数据进行预编码处理,即为空域预处理中虚拟天线端口-TX/RU端口的映射。
在可能的实现中,第一设备将波束赋形或预编码处理后的被调度终端的数据进行子载波映射,即为第一设备在每个TX/RU端口上根据调度情况,将各被调度终端的信息映射到相应的子载波上,对系统带宽内的频域样点进行OFDM调制,得到时域信号样点,即空域预处理中的资源映射与OFDM信号产生。
具体实施中,第一设备根据第二设备通过前传接口传送的波束赋形向量对被调度终端的数据进行波束赋形,或者,根据第二设备通过前传接口传送的预编码矩阵对被调度终端的数据进行预编码处理。
第一实施方式中,相应地,第二设备对被调度终端的基带数据进行第一空域预处理的过程为:
第二设备对被调度终端的基带数据进行加扰以及调制,得到该被调度终端的数据;根据能够支持的并行数据流的数量将该加扰以及调制后得到的被调度终端的数据映射到多个数据层;根据数据层与参考符号端口之间的映射关系,将该被调度终端的数据从数据层映射至参考符号端口。
其中,第二设备对被调度终端的基带数据进行加扰以及调制,即为空域预处理中码字的加扰与调制。第二设备根据能够支持的并行数据流的数量将该加扰以及调制后得到的被调度终端的数据映射到多个数据层,即为空域预处理中的层映射。第二设备根据数据层与参考符号端口之间的映射关系,将该被调度终端的数据从数据层映射至参考符号端口,即为空域预处理中的层-虚拟天线端口的映射。
第二,第一设备根据数据层与参考符号端口之间的映射关系,将被调度终端的数据从数据层映射至参考符号端口;根据波束赋形向量对被调度终端的数据进行波束赋形,或根据预编码矩阵对被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的被调度终端的数据进行子载波映射。
其中,第一设备将被调度终端的数据从数据层映射至参考符号端口,即为空域预处理中的层-虚拟天线端口的映射。第一设备根据波束赋形向量对被调度终端的数据进行波束赋形,或根据预编码矩阵对被调度终端的数据进行预编码处理,即为空域预处理中的虚拟天线端口-TX/RU端口的映射。在可能的实现中,将波束赋形或预编码处理后的被调度终端的数据进行子载波映射,即为空域预处理中的资源映射与OFDM信号产生。
第二实施方式中,相应地,第二设备对被调度终端的基带数据进行第一空域预处理的过程为:
第二设备对被调度终端的基带数据进行加扰以及调制,得到该被调度终端的数据;根据能够支持的并行数据流的数量将该加扰以及调制后得到的被调度终端的数据映射到多个数据层。
其中,第二设备对被调度终端的基带数据进行加扰以及调制,即为空域预处理中码字的加扰与调制。第二设备根据能够支持的并行数据流的数量将该加扰以及调制后得到的被调度终端的数据映射到多个数据层,即为空域预处理中的层映射。
第三,第一设备根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层;根据数据层与参考符号端口之间的映射关系,将被调度终端的数据从数据层映射至参考符号端口;根据波束赋形向量对被调度终端的数据进行波束赋形,或根据预编码矩阵对被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的被调度终端的数据进行子载波映射。
其中,第一设备根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层,即为空域预处理中的层映射。
第一设备将被调度终端的数据从数据层映射至参考符号端口,即为空域预处理中的层-虚拟天线端口的映射。例如,对于TM1、2、3、4、5、6映射到CRS端口,对于TM7、8、9、10映射到DMRS端口。
第一设备根据波束赋形向量对被调度终端的数据进行波束赋形,或根据预编码矩阵对被调度终端的数据进行预编码处理,即为空域预处理中虚拟天线端口-TX/RU端口的映射。在可能的实现中,第一设备将波束赋形或预编码处理后的被调度终端的数据进行子载波映射,即空域预处理中的资源映射与OFDM信号产生。
第三实施方式中,相应地,第二设备对被调度终端的基带数据进行第一空域预处理的过程为:
第二设备对被调度终端的基带数据进行加扰以及调制,得到该被调度终端的数据,即为空域预处理中码字的加扰与调制。
步骤103:第一设备将第二空域预处理后得到的数据转换为射频信号,并发送该射频信号。
以上三种实施方式中,将产生较大冗余的虚拟天线端口至TX/RU端口的映射以及后续的资源映射和子载波映射等步骤由第一设备完成,使得第二设备通过前传接口传递的数据的冗余量大幅度减少。例如,在一种可能的应用场景中,将BBU中的虚拟天线端口至TX/RU端口的映射以及后续的资源映射和OFDM信号产生的步骤转移至RRU或AAS,大幅度降低了BBU至RRU或AAS的前传接口上的数据冗余量。
并且,由于第二设备负责部分空域预处理,例如资源分配、资源调度、波束赋形向量或预编码矩阵的计算等操作,第一设备负责部分空域预处理,例如层映射、层-虚拟天线端口的映射、虚拟天线端口-TX/RU端口的映射中的全部或部分,该结构可以适应以协作化、集中式和云计算为中心的C-RAN式网络结构,从而能够使网络侧在更高的层面、更大的范围、更为全面地进行协调和优化。
同时,由于空域预处理的核心计算工作在第二设备上完成,第一设备上的操作均较为简单,使得第一设备的集成度、复杂度、功耗和成本得到有效控制。
基于同一发明构思,本发明实施例中,如图2所示,下行数据传输的详细方法流程如下:
步骤201:第二设备对被调度终端的基带数据进行第一空域预处理后得到该被调度终端的数据。
实施中,第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制。
实施中,第二设备对被调度终端的基带数据进行第一空域预处理的过程,包括但不限于以下几种实施方式:
第一,第二设备对被调度终端的基带数据进行加扰以及调制,得到被调度终端的数据。
第二,第二设备对被调度终端的基带数据进行加扰以及调制,得到被调度终端的数据;根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据映射到多个数据层。
第三,第二设备对被调度终端的基带数据进行加扰以及调制,得到被调度终端的数据;根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据映射到多个数据层;根据数据层与参考符号端口之间的映射关系,将被调度终端的数据从数据层映射至参考符号端口。
步骤202:第二设备通过前传接口将该被调度终端的数据发送给第一设备,由该第一设备对该被调度终端的数据进行第二空域预处理后将得到的数据转换为射频信号,并由该第一设备发送该射频信号。
实施中,第二空域预处理至少包括:对所述被调度终端的数据进行波束赋形或预编码处理的过程。
较佳地,第二设备确定被调度终端的资源分配方式,以及该被调度终端在该资源分配方式上使用的波束赋形向量或预编码矩阵;第二设备通过前传接口将该被调度终端的资源分配方式,以及该被调度终端在该资源分配方式上使用的波束赋形向量或预编码矩阵发送给第一设备。
实施中,相应于第二设备对被调度终端的基带数据进行第一空域预处理的过程,第一设备对该被调度终端的数据进行第二空域预处理的过程包括但不限于以下几种实施方式:
第一,相应于第二设备对被调度终端的基带数据进行第一空域预处理的第一种实施方式,第一设备对该被调度终端的数据进行第二空域预处理的过程,具体为:
第一设备根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层;根据数据层与参考符号端口之间的映射关系,将被调度终端的数据从数据层映射至参考符号端口;根据波束赋形向量对被调度终端的数据进行波束赋形,或根据预编码矩阵对被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的被调度终端的数据进行子载波映射。
第二,相应于第二设备对被调度终端的基带数据进行第一空域预处理的第二种实施方式,第一设备对该被调度终端的数据进行第二空域预处理的过程,具体为:
第一设备根据数据层与参考符号端口之间的映射关系,将被调度终端的数据从数据层映射至参考符号端口;根据波束赋形向量对被调度终端的数据进行波束赋形,或根据预编码矩阵对被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的被调度终端的数据进行子载波映射。
第三,相应于第二设备对被调度终端的基带数据进行第一空域预处理的第三种实施方式,第一设备对该被调度终端的数据进行第二空域预处理的过程,具体为:
第一设备根据波束赋形向量对被调度终端的数据进行波束赋形,或根据预编码矩阵对被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的被调度终端的数据进行子载波映射。
基于同一发明构思,本发明实施例中还提供了一种下行数据传输系统,如图3所示,该系统主要包括第一设备301和第二设备302,其中:
第二设备302,用于对被调度终端的基带数据进行第一空域预处理后得到该被调度终端的数据,将该被调度终端的数据通过前传接口发送给第一设备301;
第一设备301,用于通过前传接口接收第二设备302发送的被调度终端的数据,对该被调度终端的数据进行第二空域预处理,将第二空域预处理后得到的数据转换为射频信号,并发送该射频信号。
实施中,第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;第二空域预处理至少包括:对所述被调度终端的数据进行波束赋形或预编码处理的过程。
较佳地,第二设备302还用于:
确定被调度终端的资源分配方式,以及该被调度终端在该资源分配方式上使用的波束赋形向量或预编码矩阵,通过前传接口将该被调度终端的资源分配方式,以及该被调度终端在该资源分配方式上使用的波束赋形向量或预编码矩阵发送给第一设备301;
第一设备301还用于:
通过前传接口接收第二设备302发送的该被调度终端的资源分配方式,以及该被调度 终端在该资源分配方式上使用的波束赋形向量或预编码矩阵。
实施中,根据第一设备和第二设备各自进行的空域预处理过程的不同,有以下几种具体实施方式:
第一,第二设备302对被调度终端的基带数据进行第一空域预处理,具体为:对所述被调度终端的基带数据进行加扰以及调制;
第一设备301对被调度终端的数据进行第二空域预处理,具体为:
根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口,根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
第二,第二设备302对被调度终端的基带数据进行第一空域预处理,具体为:
对被调度终端的基带数据进行加扰以及调制得到该被调度终端的数据,根据能够支持的并行数据流的数量将该被调度终端的数据映射到多个数据层;
第一设备301对被调度终端的数据进行第二空域预处理,具体为:
根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口,根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
第三,第二设备302对被调度终端的基带数据进行第一空域预处理,具体为:
对被调度终端的基带数据进行加扰以及调制得到该被调度终端的数据,根据能够支持的并行数据流的数量将该被调度终端的数据转换到多个数据层,根据数据层与参考符号端口之间的映射关系,将该被调度终端的数据从数据层映射至参考符号端口;
第一设备301对被调度终端的数据进行第二空域预处理,具体为:
根据波束赋形向量对该被调度终端的数据进行波束赋形,或根据预编码矩阵对该被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的该被调度终端的数据进行子载波映射。
基于同一发明构思,本发明实施例中还提供了一种下行数据传输设备,该设备的具体实施可参见上述各实施中关于第一设备的描述,重复之处不再赘述,如图4所示,该设备主要包括:
接收模块401,用于通过前传接口接收第二设备发送的被调度终端的数据,所述被调度终端的数据为所述第二设备对所述被调度终端的基带数据进行第一空域预处理后得到的数据;
处理模块402,用于对所述接收模块401接收的所述被调度终端的数据进行第二空域预处理;
发送模块403,用于将所述处理模块402进行第二空域预处理后得到的数据转换为射频信号,并发送所述射频信号。
实施中,第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;第二空域预处理至少包括:对所述被调度终端的数据进行波束赋形或预编码处理的过程。
较佳地,接收模块401还用于:
通过前传接口接收所述第二设备发送的所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵。
具体实施中,处理模块402对被调度终端的数据进行第二空域预处理的过程,包括但不限于以下几种实施方式:
第一,处理模块402具体用于:根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
第二,处理模块402具体用于:
根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口,根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理。
第三,处理模块具体用于:
根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层;根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口,根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理。
可能的实施方式中,第一设备为RRU或AAS。
基于同一发明构思,本发明实施例中还提供了一种下行数据传输设备,该设备的具体实施可参见上述各实施中关于第二设备的描述,重复之处不再赘述,如图5所示,该设备主要包括:
处理模块501,用于对被调度终端的基带数据进行第一空域预处理后得到所述被调度终端的数据;
发送模块502,用于通过前传接口将所述被调度终端的数据发送给第一设备,由所述第一设备对所述被调度终端的数据进行第二空域预处理后将得到的数据转换为射频信号,并由所述第一设备发送所述射频信号。
实施中,第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制; 第二空域预处理至少包括:对所述被调度终端的数据进行波束赋形或预编码处理的过程。
较佳地,处理模块501还用于:
确定所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵;
发送模块502还用于:
通过所述前传接口将所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵发送给所述第一设备。
实施中,处理模块501对被调度终端的基带数据进行第一空域预处理的过程,包括但不限于以下几种实施方式:
第一,处理模块501具体用于对被调度终端的基带数据进行加扰以及调制,得到被调度终端的数据。
第二,处理模块501具体用于:
对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据,根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据映射到多个数据层。
第三,处理模块501具体用于:
对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据,根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据转换到多个数据层,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
可能的实施方式中,第二设备为BBU。
基于同一发明构思,本发明实施例中还提供了一种下行数据传输设备,该设备的具体实施可参见上述各实施中关于第一设备的描述,重复之处不再赘述,如图6所示,该设备主要包括处理器601、存储器602以及收发机603,收发机603用于在处理器601的控制下接收和发送数据,其中,存储器602中保存有预设的程序,处理器601读取存储器602中的程序,按照该程序执行以下过程:
通过前传接口接收第二设备发送的被调度终端的数据,所述被调度终端的数据为所述第二设备对所述被调度终端的基带数据进行第一空域预处理后得到的数据;
对接收的所述被调度终端的数据进行第二空域预处理;
将第二空域预处理后得到的数据转换为射频信号,并通过收发机603发送所述射频信号。
实施中,第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;第二空域预处理至少包括:对所述被调度终端的数据进行波束赋形或预编码处理的过程。
较佳地,处理器601通过前传接口接收所述第二设备发送的所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵。
具体实施中,处理器601对被调度终端的数据进行第二空域预处理的过程,包括但不限于以下几种实施方式:
第一,处理器601根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
第二,处理器601根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口,根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理。
第三,处理器601根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层;根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口,根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理。
其中,处理器601、存储器602以及收发机603通过总线连接,总线架构可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
基于同一发明构思,本发明实施例中还提供了一种下行数据传输设备,该设备的具体实施可参见上述各实施中关于第二设备的描述,重复之处不再赘述,如图7所示,该设备主要包括处理器701和存储器702,其中,存储器702中保存有预设的程序,处理器701读取存储器702中的程序,按照该程序执行以下过程:
对被调度终端的基带数据进行第一空域预处理后得到所述被调度终端的数据;
通过前传接口将所述被调度终端的数据发送给第一设备,由所述第一设备对所述被调度终端的数据进行第二空域预处理后将得到的数据转换为射频信号,并由所述第一设备发送所述射频信号。
实施中,第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;第二空域预处理至少包括:对所述被调度终端的数据进行波束赋形或预编码处理的过程。
较佳地,处理器701确定所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵;
通过所述前传接口将所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵发送给所述第一设备。
实施中,处理器701对被调度终端的基带数据进行第一空域预处理的过程,包括但不限于以下几种实施方式:
第一,处理器701对被调度终端的基带数据进行加扰以及调制,得到被调度终端的数据。
第二,处理器701对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据,根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据映射到多个数据层。
第三,处理器701对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据,根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据转换到多个数据层,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
其中,处理器701和存储器702通过总线连接,总线架构可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
基于上述技术方案,本发明实施例中,第二设备对被调度终端的基带数据进行第一空域预处理后,将第一空域预处理得到的数据通过前传接口发送给第一设备,第一设备对通过前传接口接收的被调度终端的数据进行第二空域预处理,由第一设备和第二设备协作完成整个空域预处理过程,将产生部分冗余的空域预处理过程由第一设备完成,减少了通过前传接口传输的数据的冗余,降低数据前传接口的数据传输压力。
并且,本发明实施例中第二设备通过前传接口传输每个被调度终端的资源映射规则以及波束赋形向量或预编码矩阵等必要的信息,核心的计算工资由第二设备承担,第一设备上承担计算较为简单的部分空域预处理过程,对第一设备的集成度、复杂度、功耗和成本不会造成根本的影响。该结构可以适应以协作化、集中式和云计算为中心的C-RAN式网络结构,从而能够使网络侧在更高的层面、更大的范围、更为全面地进行协调和优化。
同时,由第一设备承担部分空域预处理过程,降低了前传接口传输的数据的冗余,可以降低第一设备和第二设备之间的光纤数量。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实 施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (30)

  1. 一种下行数据传输方法,其特征在于,包括:
    第一设备通过前传接口接收第二设备发送的被调度终端的数据,所述被调度终端的数据为所述第二设备对所述被调度终端的基带数据进行第一空域预处理后得到的数据;
    第一设备对所述被调度终端的数据进行第二空域预处理;
    第一设备将第二空域预处理后得到的数据转换为射频信号,并发送所述射频信号。
  2. 如权利要求1所述的方法,其特征在于,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
    所述第二空域预处理至少包括:
    对所述被调度终端的数据进行波束赋形或预编码处理的过程。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一设备通过前传接口接收所述第二设备发送的所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵。
  4. 如权利要求3所述的方法,其特征在于,所述第一设备对所述被调度终端的数据进行第二空域预处理,包括:
    所述第一设备根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
  5. 如权利要求4所述的方法,其特征在于,所述第一设备根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理之前,所述方法还包括:
    所述第一设备根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
  6. 如权利要求5所述的方法,其特征在于,所述第一设备根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口之前,所述方法还包括:
    所述第一设备根据能够支持的并行数据流的数量,将所述被调度终端的数据映射到多个数据层。
  7. 一种下行数据传输方法,其特征在于,包括:
    第二设备对被调度终端的基带数据进行第一空域预处理后得到所述被调度终端的数据;
    所述第二设备通过前传接口将所述被调度终端的数据发送给第一设备,由所述第一设 备对所述被调度终端的数据进行第二空域预处理后将得到的数据转换为射频信号,并由所述第一设备发送所述射频信号。
  8. 如权利要求7所述的方法,其特征在于,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
    所述第二空域预处理至少包括:
    对所述被调度终端的数据进行波束赋形或预编码处理的过程。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第二设备确定所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵;
    所述第二设备通过所述前传接口将所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵发送给所述第一设备。
  10. 如权利要求9所述的方法,其特征在于,所述第二设备对被调度终端的基带数据进行第一空域预处理后得到所述被调度终端的数据,包括:
    所述第二设备对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据。
  11. 如权利要求10所述的方法,其特征在于,所述第二设备对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据之后,所述方法还包括:
    所述第二设备根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据映射到多个数据层。
  12. 如权利要求11所述的方法,其特征在于,所述第二设备根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据转换到多个数据层之后,所述方法还包括:
    根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
  13. 一种下行数据传输系统,其特征在于,包括:
    第二设备,用于对被调度终端的基带数据进行第一空域预处理后得到所述被调度终端的数据,将所述被调度终端的数据通过前传接口发送所述第一设备;
    第一设备,用于通过所述前传接口接收所述第二设备发送的所述被调度终端的数据,对所述被调度终端的数据进行第二空域预处理,将第二空域预处理后得到的数据转换为射频信号,并发送所述射频信号。
  14. 如权利要求13所述的系统,其特征在于,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
    所述第二空域预处理至少包括:
    对所述被调度终端的数据进行波束赋形或预编码处理的过程。
  15. 如权利要求14所述的系统,其特征在于,所述第二设备还用于:
    确定所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵,通过所述前传接口将所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵发送给所述第一设备;
    所述第一设备还用于:
    通过前传接口接收所述第二设备发送的所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵。
  16. 如权利要求15所述的系统,其特征在于,所述第二设备对被调度终端的基带数据进行第一空域预处理,具体为:
    对所述被调度终端的基带数据进行加扰以及调制;
    所述第一设备对所述被调度终端的数据进行第二空域预处理,具体为:
    根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口,根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
  17. 如权利要求15所述的系统,其特征在于,所述第二设备对被调度终端的基带数据进行第一空域预处理,具体为:
    对所述被调度终端的基带数据进行加扰以及调制得到所述被调度终端的数据,根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层;
    所述第一设备对所述被调度终端的数据进行第二空域预处理,具体为:
    根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口,根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
  18. 如权利要求15所述的系统,其特征在于,所述第二设备对被调度终端的基带数据进行第一空域预处理,具体为:
    对所述被调度终端的基带数据进行加扰以及调制得到所述被调度终端的数据,根据能够支持的并行数据流的数量将所述被调度终端的数据转换到多个数据层,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口;
    所述第一设备对所述被调度终端的数据进行第二空域预处理,具体为:
    根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
  19. 一种下行数据传输设备,其特征在于,包括:
    接收模块,用于通过前传接口接收第二设备发送的被调度终端的数据,所述被调度终端的数据为所述第二设备对所述被调度终端的基带数据进行第一空域预处理后得到的数据;
    处理模块,用于对所述接收模块接收的所述被调度终端的数据进行第二空域预处理;
    发送模块,用于将所述处理模块进行第二空域预处理后得到的数据转换为射频信号,并发送所述射频信号。
  20. 如权利要求19所述的设备,其特征在于,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
    所述第二空域预处理至少包括:
    对所述被调度终端的数据进行波束赋形或预编码处理的过程。
  21. 如权利要求20所述的设备,其特征在于,所述接收模块还用于:
    通过前传接口接收所述第二设备发送的所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵。
  22. 如权利要求21所述的设备,其特征在于,所述处理模块具体用于:
    根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理,将波束赋形或预编码处理后的所述被调度终端的数据进行子载波映射。
  23. 如权利要求22所述的设备,其特征在于,所述处理模块还用于:
    根据所述波束赋形向量对所述被调度终端的数据进行波束赋形,或根据所述预编码矩阵对所述被调度终端的数据进行预编码处理之前,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
  24. 如权利要求23所述的设备,其特征在于,所述处理模块还用于:
    根据能够支持的并行数据流的数量将所述被调度终端的数据映射到多个数据层。
  25. 一种下行数据传输设备,其特征在于,包括:
    处理模块,用于对被调度终端的基带数据进行第一空域预处理后得到所述被调度终端的数据;
    发送模块,用于通过前传接口将所述被调度终端的数据发送给第一设备,由所述第一设备对所述被调度终端的数据进行第二空域预处理后将得到的数据转换为射频信号,并由所述第一设备发送所述射频信号。
  26. 如权利要求25所述的设备,其特征在于,所述第一空域预处理至少包括:对所述被调度终端的基带数据进行加扰以及调制;
    所述第二空域预处理至少包括:
    对所述被调度终端的数据进行波束赋形或预编码处理的过程。
  27. 如权利要求26所述的设备,其特征在于,所述处理模块还用于:
    确定所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵;
    所述发送模块还用于:
    通过所述前传接口将所述被调度终端的资源分配方式,以及所述被调度终端在所述资源分配方式上使用的波束赋形向量或预编码矩阵发送给所述第一设备。
  28. 如权利要求27所述的设备,其特征在于,所述处理模块具体用于:
    对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据。
  29. 如权利要求28所述的设备,其特征在于,所述处理模块还用于:
    对所述被调度终端的基带数据进行加扰以及调制,得到所述被调度终端的数据之后,根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据映射到多个数据层。
  30. 如权利要求29所述的设备,其特征在于,所述处理模块还用于:
    根据能够支持的并行数据流的数量将所述加扰以及调制后得到的所述被调度终端的数据转换到多个数据层之后,根据数据层与参考符号端口之间的映射关系,将所述被调度终端的数据从数据层映射至参考符号端口。
PCT/CN2016/100847 2015-10-20 2016-09-29 一种下行数据传输方法、设备及系统 WO2017067379A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/770,167 US20180302898A1 (en) 2015-10-20 2016-09-29 Downlink data transmission method, equipment, and system
EP16856812.9A EP3367584B1 (en) 2015-10-20 2016-09-29 Downlink data transmission method, equipment, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510683971.5A CN106612136A (zh) 2015-10-20 2015-10-20 一种下行数据传输方法、设备及系统
CN201510683971.5 2015-10-20

Publications (1)

Publication Number Publication Date
WO2017067379A1 true WO2017067379A1 (zh) 2017-04-27

Family

ID=58556646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100847 WO2017067379A1 (zh) 2015-10-20 2016-09-29 一种下行数据传输方法、设备及系统

Country Status (4)

Country Link
US (1) US20180302898A1 (zh)
EP (1) EP3367584B1 (zh)
CN (1) CN106612136A (zh)
WO (1) WO2017067379A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629596B (zh) * 2016-08-11 2018-07-11 祥碩科技股份有限公司 橋接模組及資料傳輸方法
CN110838857B (zh) * 2018-08-17 2022-01-07 大唐移动通信设备有限公司 一种数据传输方法、终端及网络设备
WO2020078182A1 (zh) * 2018-10-19 2020-04-23 华为技术有限公司 数据发送的方法及装置
CN109560891B (zh) * 2018-11-16 2020-07-21 烽火通信科技股份有限公司 实现波分复用光信号分路的方法及装置
CN110212986A (zh) * 2019-06-13 2019-09-06 苏州市职业大学 一种基于合波传输的5g光信号前传架构
CN112583455B (zh) * 2019-09-29 2022-05-06 上海华为技术有限公司 一种信号处理方法以及基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291855A (zh) * 2010-06-18 2011-12-21 普天信息技术研究院有限公司 一种降低Ir接口带宽的方法及分布式基站
CN103546412A (zh) * 2012-07-11 2014-01-29 华为技术有限公司 一种数据传输方法和系统
CN103731884A (zh) * 2012-10-12 2014-04-16 华为技术有限公司 一种bbu、rru及其数据传输方法和无线接入系统
CN104079329A (zh) * 2014-06-26 2014-10-01 华为技术有限公司 一种虚拟天线端口的映射方法和基站

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546080B (zh) * 2010-12-21 2014-06-25 华为技术有限公司 一种下行基带信号生成方法及相关设备、系统
CN102821489A (zh) * 2011-06-08 2012-12-12 中兴通讯股份有限公司 基站及基站侧数据压缩方法
CN102316055A (zh) * 2011-09-06 2012-01-11 中兴通讯股份有限公司 一种基带单元、bbu、rru及基站
CN103841591B (zh) * 2012-11-26 2018-08-24 上海诺基亚贝尔股份有限公司 一种在bbu池系统中用于实现基带数据处理的方法与设备
US10341229B2 (en) * 2013-10-04 2019-07-02 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for configuring optical network nodes
US9806926B2 (en) * 2013-11-04 2017-10-31 Samsung Electronics Co., Ltd. Multistage beamforming of multiple-antenna communication system
JP2017509213A (ja) * 2014-01-22 2017-03-30 華為技術有限公司Huawei Technologies Co.,Ltd. 情報処理装置、ネットワークノード、および情報処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291855A (zh) * 2010-06-18 2011-12-21 普天信息技术研究院有限公司 一种降低Ir接口带宽的方法及分布式基站
CN103546412A (zh) * 2012-07-11 2014-01-29 华为技术有限公司 一种数据传输方法和系统
CN103731884A (zh) * 2012-10-12 2014-04-16 华为技术有限公司 一种bbu、rru及其数据传输方法和无线接入系统
CN104079329A (zh) * 2014-06-26 2014-10-01 华为技术有限公司 一种虚拟天线端口的映射方法和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3367584A4 *

Also Published As

Publication number Publication date
CN106612136A (zh) 2017-05-03
US20180302898A1 (en) 2018-10-18
EP3367584A4 (en) 2018-11-07
EP3367584A1 (en) 2018-08-29
EP3367584B1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2017067379A1 (zh) 一种下行数据传输方法、设备及系统
KR101971844B1 (ko) 분산 처리를 통한 백홀 통신에 의한 다운링크 신호 전송 방법
US9602182B2 (en) Baseband processing apparatus in radio communication system and radio communication
JP7241707B2 (ja) データ伝送方法、装置、ネットワーク側機器およびユーザ機器
WO2019105484A1 (zh) 数据传输的方法和设备
CN105007106B (zh) 一种信号压缩方法、bbu及其分布式基站系统
US20170237831A1 (en) Compressing/decompressing frequency domain signals
US10178012B2 (en) Systems and methods for a sounding frame in an IEEE 802.11ax compliant network
CN114270923B (zh) 用于在无线通信系统中报告信道状态信息的方法及其设备
CN107332597B (zh) 一种基于3d mimo的无线传输的方法及装置
WO2017215467A1 (zh) 一种处理装置、bbu、rru及天线校正方法
WO2019208992A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
JP2022553031A (ja) 無線通信システムにおける基地局のラジオユニットのリソースを管理するための装置及び方法
CN101594177B (zh) 上行系统多天线的信号处理方法及装置
WO2018040020A1 (zh) 调节天线信号功率的方法及基站
WO2012094948A1 (zh) 一种协作预编码方法、协作信息交互方法及系统
WO2017114053A1 (zh) 一种信号处理方法及装置
US11889486B2 (en) Data transmission control method, apparatus, and access network device
WO2017113885A1 (zh) 一种模拟通道测量方法及基站
WO2020015874A1 (en) Exploiting receiver antenna correlation in spatial compression based csi feedback scheme
KR102150547B1 (ko) 다중 셀 중첩환경에서 다중 안테나를 이용한 실용적인 간섭정렬 방법
Simeone et al. Cloud radio access networks: Uplink channel estimation and downlink precoding
WO2022204970A1 (zh) 一种参考信号的传输方法、装置及设备
CN108599829B (zh) 一种实用化的干扰对齐与删除方法、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770167

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016856812

Country of ref document: EP