WO2017113885A1 - 一种模拟通道测量方法及基站 - Google Patents

一种模拟通道测量方法及基站 Download PDF

Info

Publication number
WO2017113885A1
WO2017113885A1 PCT/CN2016/098761 CN2016098761W WO2017113885A1 WO 2017113885 A1 WO2017113885 A1 WO 2017113885A1 CN 2016098761 W CN2016098761 W CN 2016098761W WO 2017113885 A1 WO2017113885 A1 WO 2017113885A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog
analog channel
base station
reference signal
digital
Prior art date
Application number
PCT/CN2016/098761
Other languages
English (en)
French (fr)
Inventor
苏昕
宋扬
李传军
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US16/066,506 priority Critical patent/US10644781B2/en
Priority to EP16880678.4A priority patent/EP3399657A4/en
Publication of WO2017113885A1 publication Critical patent/WO2017113885A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an analog channel measurement method and a base station.
  • MIMO Multiple Input Multiple Output
  • LTE long-term evolution
  • LTE-based evolution LTE-Advanced
  • OFDM Orthogonal Frequency Division Multiplexing
  • Rel-9 focuses on multi-user (MU)-MIMO technology, and the transmission mode (TM)-8 MU-MIMO transmission can support up to four downlink data layers.
  • Rel-10 adopts 8-port channel state information-reference signal (CSI-RS), terminal-specific reference signal (UES; User Equipment, UE) and multi-granularity codebook.
  • CSI-RS channel state information-reference signal
  • UES terminal-specific reference signal
  • SU single-user
  • each antenna port corresponds to an independent radio frequency-intermediate frequency-baseband channel, and each antenna port corresponds to The vertical dimension of the multiple layers is connected by RF cables. Therefore, the existing MIMO technology can only optimize the horizontal dimensional characteristics of each terminal signal by adjusting the relative amplitude and/or phase between different ports in the horizontal dimension, and can only adopt the uniform sector level in the vertical dimension. Forming.
  • the base station antenna system can obtain greater degrees of freedom in the vertical dimension, and can realize the signal optimization of the UE level in the three-dimensional space.
  • Massive MIMO technology requires the use of large-scale antenna arrays. Although an all-digital array can achieve maximum spatial resolution and optimal MU-MIMO performance, this architecture requires a large number of Analog-Digital (AD)/Digita-Analogl (DA) conversion devices. RF-baseband processing channels, whether it is equipment cost or baseband processing complexity, will be a huge burden. This problem is particularly prominent in high frequency bands and large bandwidths. In order to reduce the implementation cost and equipment complexity of Massive MIMO technology, digital-analog hybrid beamforming technology has been proposed in recent years.
  • AD Analog-Digital
  • DA Digital-analogl
  • the so-called digital-analog hybrid beamforming refers to adding a first-order beamforming to the RF signal near the front end of the antenna system based on Digital Beam Forming (DBF).
  • Digital Beam Forming (ABF).
  • Analog beamforming enables a relatively coarse match between the transmitted signal and the channel in a relatively simple manner.
  • the dimension of the equivalent digital channel formed after the analog beamforming is smaller than the actual number of antennas, which can greatly reduce the AD/DA conversion device, the number of digital channels, and the corresponding baseband processing complexity.
  • the interference of the simulated beamforming residuals can be processed in the digital domain to ensure the quality of the MU-MIMO transmission.
  • digital-analog hybrid beamforming is a compromise between performance and complexity. It has a high practical prospect in systems with high bandwidth and large number of antennas.
  • the accuracy of the channel state information obtained by the network side directly determines the accuracy of the precoding/beamforming and the performance of the scheduling algorithm, thereby affecting the overall system performance. Therefore, the acquisition of channel state information is one of the core issues in the standardization of MIMO technology.
  • the channel state required for digital beamforming can be obtained by performing channel estimation based on the reference signal in the baseband signal. Since the multiple analog channels of the analog beamforming portion are equivalent to one digital channel, the number of digital channels is less than the actual number of antennas, and the channel matrix obtained by digital channel estimation through the reference signal has a dimension far lower than the antenna channel matrix. The dimension, therefore, the analog beamforming portion cannot directly utilize the channel state information obtained by the digital domain. Moreover, since the reference signal is corresponding to the digital channel, when the number of analog channels is different from the number of digital channels, the channel state information of the analog channel cannot be directly measured according to the reference signal.
  • Embodiments of the present invention provide an analog channel measurement method and a base station, which are used to implement a log-mode hybrid beamforming system. Measurement of the analog channel.
  • An embodiment of the present invention provides an analog channel measurement method, including:
  • the base station receives a reference signal, the base station includes a digital-analog hybrid beamforming antenna system, and the digital-analog hybrid beamforming antenna system includes a digital channel and an analog channel;
  • the base station selects an analog channel group from the set of analog channel groups according to the reference signal, and uses the reference signal to measure each analog channel in the selected analog channel group, wherein the simulation included in each analog channel group
  • the number of channels is equal to the number of digital channels in the digital-analog hybrid beamforming antenna system.
  • the base station selects a simulated channel group from the set of analog channel groups according to the reference signal, including:
  • the base station selects a simulated channel group from the set of analog channel groups according to the reference signal, including:
  • the base station determines a frequency at which the reference signal is transmitted, and selects a simulated channel group corresponding to the frequency from the set of analog channel groups.
  • the base station selects a simulated channel group from the set of analog channel groups according to the reference signal, including:
  • the base station selects, according to a time resource that is received by the reference signal, a subset of the analog channel group corresponding to the time resource from the group of analog channels, where the subset of the analog channel group includes a set number Analog channel group;
  • the base station determines a frequency at which the reference signal is transmitted, and selects an analog channel group corresponding to the frequency from the selected subset of analog channel groups.
  • the set of analog channel groups is obtained by grouping analog channels in the digital-analog hybrid beamforming antenna system
  • analog channels included in each of the analog channel groups do not overlap.
  • the method further includes:
  • the base station maintains the analog channel included in the selected analog channel group in the digital-analog hybrid beamforming antenna system when the reference signal is used to measure each of the selected analog channel groups.
  • the other analog channels are off.
  • the time resource occupied by the reference signal is pre-arranged by the base station and the terminal.
  • the frequency is pre-arranged by the base station and the terminal.
  • a base station is further provided in the embodiment of the present invention, including:
  • a receiving module configured to receive a reference signal
  • the base station includes a digital-analog hybrid beamforming antenna system, the digital-analog
  • the hybrid beamforming antenna system includes a digital channel and an analog channel;
  • a processing module configured to select, according to the reference signal, an analog channel group from the set of analog channel groups, and use the reference signal to measure each of the selected analog channel groups, where each analog channel group includes The number of analog channels is equal to the number of digital channels in the digital-analog hybrid beamforming antenna system.
  • the processing module is specifically configured to:
  • the processing module is specifically configured to:
  • the processing module is specifically configured to:
  • the set of analog channel groups is obtained by grouping analog channels in the digital-analog hybrid beamforming antenna system
  • analog channels included in each of the analog channel groups do not overlap.
  • processing module is further configured to:
  • the time resource occupied by the reference signal is pre-arranged by the base station and the terminal.
  • the frequency is pre-arranged by the base station and the terminal.
  • the embodiment of the present invention further provides another base station, which mainly includes a processor, a memory, and a transceiver, wherein the transceiver is configured to receive and transmit data under the control of the processor, and the preset program is stored in the memory.
  • the processor is used to read a program saved in the memory, and the following process is performed according to the program:
  • the base station comprising a digital-analog hybrid beamforming antenna system, wherein the digital-analog hybrid beamforming antenna system comprises a digital channel and an analog channel;
  • the processor is based on the time resource occupied by receiving the reference signal, and the analog channel is The analog channel group corresponding to the time resource is selected in the track group set.
  • the processor determines a frequency at which the reference signal is transmitted, and selects a simulated channel group corresponding to the frequency from the set of analog channel groups.
  • the processor selects, according to a time resource that is received by the reference signal, a subset of the analog channel group corresponding to the time resource, where the subset of the analog channel group includes Setting a number of analog channel groups; determining a frequency at which the reference signal is transmitted, and selecting a simulated channel group corresponding to the frequency from the selected subset of analog channel groups.
  • the analog channel group set is obtained by grouping the analog channels in the log-mode hybrid beamforming antenna system; wherein the analog channels included in each analog channel group do not overlap.
  • the time resource occupied by the reference signal is pre-arranged by the base station and the terminal.
  • the frequency used for transmitting the reference signal is pre-agreed by the base station and the terminal.
  • the analog channels in the digital-analog hybrid beamforming antenna system are grouped, and the number of analog channels included in each analog channel group is equal to the digital-analog hybrid beamforming antenna system.
  • the number of digital channels, the base station selects an analog channel group from the set of analog channel groups according to the reference signal, and uses the reference signal to measure each analog channel in the selected analog channel group, thereby realizing the log-mode hybrid beamforming Measurement of analog channels in the system.
  • FIG. 1 is a schematic structural diagram of a digital-analog hybrid beamforming antenna system
  • FIG. 2 is a schematic diagram of a process of performing analog channel measurement by a base station according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a process for a base station to perform measurement according to a time resource selection analog channel group according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a process in which a base station selects an analog channel group according to a time resource and a frequency resource according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the analog channels are in one-to-one correspondence with the antenna channels.
  • the detailed method for measuring the analog channel of the digital-analog hybrid beamforming antenna system by the base station is as follows:
  • Step 201 The base station receives the reference signal.
  • the base station includes a digital-analog hybrid beamforming antenna system, and the digital-analog hybrid beamforming antenna system includes a digital channel and an analog channel.
  • the reference signal is pre-agreed by the base station and the terminal.
  • Step 202 The base station selects an analog channel group from the set of analog channel groups according to the reference signal, and uses a reference signal to measure each analog channel in the selected analog channel group, wherein each of the analog channels included in each analog channel group The number is equal to the number of digital channels in the digital-analog hybrid beamforming antenna system.
  • the analog channels in the digital-analog hybrid beamforming antenna system except the analog channels included in the selected analog channel group are maintained. shut down.
  • one or more analog channel groups are obtained by grouping analog channels in a digital-analog hybrid beamforming antenna system, and the one or more analog channel groups constitute a set of analog channel groups, wherein each of the analog channel groups The included analog channels do not overlap, and each analog channel group contains the same number of analog channels, which are the number of digital channels in the digital-analog hybrid beamforming antenna system.
  • the digital-analog hybrid beamforming antenna system includes M digital channels and N t analog channels
  • the base station selects an analog channel group from the set of analog channel groups according to the reference signal, including but not limited to the following three implementation manners:
  • the base station selects, according to the time resource occupied by the reference signal, the analog channel group corresponding to the time resource occupied by the reference signal from the set of analog channel groups.
  • the time resource occupied by the reference signal is pre-agreed by the base station and the terminal.
  • the process of selecting, by the base station, the analog channel group according to the time resource occupied by the received reference signal is as follows:
  • Step 301 The base station sets the initial value of the counter n to 1;
  • Step 302 the base station, the terminal receives the uplink reference signal transmitted in time according to the configuration selected resource selection time t n is the time resources used for a current measurement;
  • Step 303 The base station selects an analog channel group corresponding to the time resource from a preset set of analog channel groups, and uses the received uplink reference signal to measure each analog channel in the selected analog channel group. All analog channels except the analog channel included in the selected analog channel group remain off;
  • the base station receives the reference signal transmitted by the terminal, and the base station determines the frequency used when transmitting the reference signal, and selects an analog channel group corresponding to the frequency used when transmitting the reference signal from the set of analog channel groups.
  • the frequency used when transmitting the reference signal is pre-agreed by the base station and the terminal.
  • the base station receives the reference signal. If the frequency used in determining the transmission reference signal belongs to the frequency range f 1 , the analog channel group corresponding to the frequency range f 1 is selected from the set of analog channel groups, and the selected reference signal pair is used. Each analog channel in the analog channel group is measured, and all analog channels except the analog channel included in the selected analog channel group remain off during measurement. By setting the frequency of the reference signal sent by the terminal and setting the frequency range corresponding to the analog channel group, measurement of each analog channel in each analog channel group in the analog channel group set can be achieved.
  • the base station selects, according to the time resource occupied by the reference signal, a subset of the analog channel group corresponding to the time resource occupied by the reference signal from the analog channel group, wherein the analog channel group subset includes the set number of analog channel groups.
  • the base station determines the frequency used when transmitting the reference signal, and selects the analog channel group corresponding to the frequency used when transmitting the reference signal from the selected subset of analog channel groups.
  • the time resource occupied by the reference signal is pre-agreed by the base station and the terminal, and the frequency used when transmitting the reference signal is pre-agreed by the base station and the terminal.
  • the analog channel subset includes a set number of analog channel groups, and each analog channel subset includes the same number of analog channel groups.
  • the process of the base station selecting the analog channel group according to the time resource occupied by the received reference signal and the frequency used by the transmission parameter signal is as follows:
  • Step 401 The base station sets the initial value of the counter n to 1;
  • Step 402 The base station selects the time resource for the measurement according to the configuration time t n , and receives the uplink reference signal sent by the terminal on the selected time resource, and the frequency used for transmitting the reference signal may correspond to a preset multiple different Frequency range, each frequency range corresponds to one analog channel group;
  • Step 403 The base station selects a subset of the analog channel group corresponding to the time resource from the preset set of analog channel groups, and assumes that the analog channel group subset includes N f analog channel groups, and each of the analog channel groups includes M simulations. aisle;
  • Step 404 The base station determines a frequency range to which the frequency used for transmitting the uplink reference signal belongs, selects an analog channel group corresponding to the frequency range from the selected subset of the analog channel group, and uses the reference signal to measure the selected analog channel group. , other analog channels except the analog channel included in the selected analog channel group are maintained during measurement shut down;
  • Step 405 The base station determines whether the measurement accuracy meets the requirement, or determines whether n ⁇ N f ⁇ M is equal to N t , and if yes, outputs the measured value of n ⁇ N f ⁇ M analog channels, and the analog channel measurement process ends; Otherwise, step 406 is performed;
  • the reference signals received by the base station on the same time resource can be simultaneously used to measure analog channels in the analog channel group corresponding to different frequency ranges, that is, multiple analog channel groups corresponding to different frequency ranges can be measured at the same time, so that At the same time, analog channels in multiple analog channel groups can be measured, reducing the time required for measurements.
  • the analog channels in the digital-analog hybrid beamforming antenna system are grouped, and the number of analog channels included in each analog channel group is equal to the digital-analog hybrid beamforming antenna system.
  • the number of digital channels, the base station selects an analog channel group from the set of analog channel groups according to the reference signal, and uses the reference signal to measure each analog channel in the selected analog channel group, thereby realizing the log-mode hybrid beamforming Measurement of analog channels in the system.
  • the base station mainly includes:
  • the receiving module 501 is configured to receive a reference signal, where the base station includes a digital-analog hybrid beamforming antenna system, where the digital-analog hybrid beamforming antenna system includes a digital channel and an analog channel;
  • the processing module 502 is configured to select, according to the reference signal, an analog channel group from the set of analog channel groups, and use the reference signal to measure each of the selected analog channel groups, where each analog channel group is The number of analog channels included is equal to the number of digital channels in the digital-to-analog hybrid beamforming antenna system.
  • the processing module is specifically configured to:
  • the processing module is specifically configured to:
  • the processing module is specifically configured to:
  • the analog channel group set is obtained by grouping the analog channels in the log-mode hybrid beamforming antenna system; wherein the analog channels included in each analog channel group do not overlap.
  • processing module is further configured to:
  • the time resource occupied by the reference signal is pre-arranged by the base station and the terminal.
  • the frequency used for transmitting the reference signal is pre-agreed by the base station and the terminal.
  • the base station mainly includes The processor 601, the memory 602, and the transceiver 603, wherein the transceiver 603 is configured to receive and transmit data under the control of the processor 601.
  • the memory 602 stores a preset program
  • the processor 601 is configured to read the memory 602.
  • the saved program according to the program performs the following process:
  • the base station comprising a digital-analog hybrid beamforming antenna system, wherein the digital-analog hybrid beamforming antenna system comprises a digital channel and an analog channel;
  • the processor selects the analog channel group corresponding to the time resource from the set of analog channel groups according to the time resource occupied by the reference signal.
  • the processor determines a frequency at which the reference signal is transmitted, and selects an analog channel group corresponding to the frequency from the set of analog channel groups.
  • the processor selects, according to a time resource that is received by the reference signal, a subset of the analog channel group corresponding to the time resource, where the subset of the analog channel group includes Setting a number of analog channel groups; determining a frequency at which the reference signal is transmitted, and selecting a simulated channel group corresponding to the frequency from the selected subset of analog channel groups.
  • the analog channel group set is obtained by grouping the analog channels in the log-mode hybrid beamforming antenna system; wherein the analog channels included in each analog channel group do not overlap.
  • the processor uses the reference signal to measure each of the selected analog channel groups, maintaining the analog channel included in the selected analog channel group in the digital-analog hybrid beamforming antenna system The other analog channels are off.
  • the time resource occupied by the reference signal is pre-arranged by the base station and the terminal.
  • the frequency used for transmitting the reference signal is pre-agreed by the base station and the terminal.
  • the processor, the memory and the transceiver are connected by a bus
  • the bus architecture may include any number of interconnected buses and bridges, and specifically, one or more processors represented by the processor and various circuits of the memory represented by the memory Linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种模拟通道测量方法及基站,用以实现对数模混合波束赋形系统中模拟通道的测量。该方法为:基站接收参考信号,所述基站包括数模混合波束赋形天线系统,所述数模混合波束赋形天线系统中包括数字通道以及模拟通道;所述基站根据所述参考信号从模拟通道组集合中选择模拟通道组,采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量,其中,每个模拟通道组中包含的模拟通道的个数等于数模混合波束赋形天线系统中数字通道的个数。

Description

一种模拟通道测量方法及基站
本申请要求在2015年12月28日提交中国专利局、申请号为201511001485.7、发明名称为“一种模拟通道测量方法及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种模拟通道测量方法及基站。
背景技术
鉴于多输入多输出(Multiple Input Multiple Output,MIMO)技术对于提高峰值速率以及系统频谱利用率的重要作用,长期演进(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced)等无线接入技术标准中都是以MIMO+正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术为基础构建起来的。MIMO技术的性能增益来自于多天线系统所能获得空间自由度,利用空间自由度获得更大的数据传输,因此,MIMO技术在标准化过程中的一个最重要的演进方向便是维度的扩展。
在LTE发布版本(Release,Rel)-8中,最多可以支持4层的MIMO传输。Rel-9重点对多用户(Multi-User,MU)-MIMO技术进行了增强,传输模式(Transmission Mode,TM)-8的MU-MIMO传输中最多可以支持4个下行数据层。Rel-10则通过8端口信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)、终端专用参考信号(UE-specific Reference Signal,URS;User Equipment,UE)与多颗粒度码本的引入进一步提高了信道状态信息的空间分辨率,并进一步将单用户(Single-User,SU)-MIMO的传输能力扩展至最多8个数据层。
采用传统无源天线系统(Passive Antenna System,PAS)结构的基站天线系统中,多个天线端口水平排列,其中,每个天线端口对应着独立的射频-中频-基带通道,而每个天线端口对应的垂直维的多个阵子之间由射频电缆连接。因此现有的MIMO技术只能在水平维通过对不同端口间的相对幅度和/或相位的调整实现对各个终端信号在水平维空间特性的优化,在垂直维则只能采用统一的扇区级赋形。移动通信系统中引入有源天线系统(Active Antenna System,AAS)技术之后,基站天线系统能够在垂直维获得更大的自由度,能够在三维空间实现对UE级的信号优化。
目前产业界正在进一步地将MIMO技术向着三维化和大规模化的方向推进。第三代合作伙伴项目(3rd Generation Partnership Project,3GPP)正在开展三维(3Dimensions,3D) 信道建模的研究项目,其后预计还将继续开展8个天线端口及以下的垂直波束赋形(Elevation Beamforming,EBF)与超过8个端口(如16、32或64)的全维度MIMO(Full Dimension MIMO,FD-MIMO)技术研究与标准化工作。而学术界则更为前瞻地开展了针对基于更大规模天线阵列(包含一百或数百根甚至更多阵子)的MIMO技术的研究与测试工作。学术研究与初步的信道实测结果表明,大规模(Massive)MIMO技术能够极大地提升系统频带利用效率,支持更大数量的接入用户。因此各大研究组织均将Massive MIMO技术视为下一代移动通信系统中最有潜力的物理层技术之一。
Massive MIMO技术需要使用大规模天线阵列。尽管采用全数字阵列可以实现最大化的空间分辨率以及最优MU-MIMO性能,但是这种结构需要大量的模数(Analog-Digital,AD)/数模(Digita-Analogl,DA)转换器件以及射频-基带处理通道,无论是设备成本还是基带处理复杂度都将是巨大的负担。这一问题在高频段、大带宽时显得尤为突出。为了降低Massive MIMO技术的实现成本与设备复杂度,近年来有人提出采用数模混合波束赋形技术。
如图1所示,所谓数模混合波束赋形,是指在数字波束赋形(Digital Beam Forming,DBF)的基础上,在靠近天线系统前端的射频信号上增加一级波束赋形,即模拟波束赋形(Analog Beam Forming,ABF)。模拟波束赋形能够通过较为简单的方式,使发送信号与信道实现较为粗略的匹配。模拟波束赋形后形成的等效数字信道的维度小于实际的天线数量,可以大大降低AD/DA转换器件、数字通道数以及相应的基带处理复杂度。模拟波束赋形残余的干扰可以在数字域进行处理,从而保证MU-MIMO传输的质量。
相对于全数字波束赋形而言,数模混合波束赋形是性能与复杂度的折中方案,在高频段大带宽或天线数量很大的系统中具有较高的实用前景。
MIMO技术中,尤其是对MU-MIMO技术而言,网络侧获得的信道状态信息的精度直接决定预编码/波束赋形的精度与调度算法的效能,从而影响到整体系统性能。因此,信道状态信息的获取是MIMO技术标准化中最核心的问题之一。
根据目前的LTE信号结构,可以根据基带信号中的参考信号进行信道估计获取数字波束赋形所需的信道状态。由于模拟波束赋形部分的多个模拟通道等效为一个数字通道,使得数字通道数少于实际天线数,通过参考信号进行数字信道估计获得的信道矩阵的维度已经远远低于天线端信道矩阵的维度,因此模拟波束赋形部分无法直接利用数字域获得的信道状态信息。并且,由于参考信号是与数字通道对应的,在模拟通道的个数与数字通道的个数不一致的情况下,无法直接根据参考信号测量得到模拟通道的信道状态信息。
发明内容
本发明实施例提供一种模拟通道测量方法及基站,用以实现对数模混合波束赋形系统 中模拟通道的测量。
本发明实施例提供的具体技术方案如下:
本发明实施例中提供了一种模拟通道测量方法,包括:
基站接收参考信号,所述基站包括数模混合波束赋形天线系统,所述数模混合波束赋形天线系统中包括数字通道以及模拟通道;
所述基站根据所述参考信号从模拟通道组集合中选择模拟通道组,采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量,其中,每个模拟通道组中包含的模拟通道的个数等于数模混合波束赋形天线系统中数字通道的个数。
可能的实施方式中,所述基站根据所述参考信号从模拟通道组集合中选择模拟通道组,包括:
所述基站根据接收所述参考信号所占用的时间资源,从所述模拟通道组集合中选择所述时间资源对应的模拟通道组。
可能的实施方式中,所述基站根据所述参考信号从模拟通道组集合中选择模拟通道组,包括:
所述基站确定传输所述参考信号采用的频率,从所述模拟通道组集合中选择与所述频率对应的模拟通道组。
可能的实施方式中,所述基站根据所述参考信号从模拟通道组集合中选择模拟通道组,包括:
所述基站根据接收所述参考信号所占用的时间资源,从所述模拟通道组中选择所述时间资源对应的模拟通道组子集,其中,所述模拟通道组子集中包括设定个数的模拟通道组;
所述基站确定传输所述参考信号采用的频率,从选择的模拟通道组子集中选择与所述频率对应的模拟通道组。
可能的实施方式中,模拟通道组集合为对所述数模混合波束赋形天线系统中的模拟通道进行分组得到;
其中,每个所述模拟通道组中包含的模拟通道不重叠。
可能的实施方式中,所述方法还包括:
所述基站采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量时,保持所述数模混合波束赋形天线系统中除选择的模拟通道组中包含的模拟通道之外的其它模拟通道关闭。
可能的实施方式中,所述参考信号占用的时间资源为所述基站与终端预先约定。
可能的实施方式中,所述频率为所述基站与终端预先约定。
本发明实施例中还提供了一种基站,包括:
接收模块,用于接收参考信号,所述基站包括数模混合波束赋形天线系统,所述数模 混合波束赋形天线系统中包括数字通道以及模拟通道;
处理模块,用于根据所述参考信号从模拟通道组集合中选择模拟通道组,采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量,其中,每个模拟通道组中包含的模拟通道的个数等于数模混合波束赋形天线系统中数字通道的个数。
可能的实施方式中,所述处理模块具体用于:
根据接收所述参考信号所占用的时间资源,从所述模拟通道组集合中选择所述时间资源对应的模拟通道组。
可能的实施方式中,所述处理模块具体用于:
确定传输所述参考信号采用的频率,从所述模拟通道组集合中选择与所述频率对应的模拟通道组。
可能的实施方式中,所述处理模块具体用于:
根据接收所述参考信号所占用的时间资源,从所述模拟通道组中选择所述时间资源对应的模拟通道组子集,其中,所述模拟通道组子集中包括设定个数的模拟通道组;
确定传输所述参考信号采用的频率,从选择的模拟通道组子集中选择与所述频率对应的模拟通道组。
可能的实施方式中,模拟通道组集合为对所述数模混合波束赋形天线系统中的模拟通道进行分组得到;
其中,每个所述模拟通道组中包含的模拟通道不重叠。
可能的实施方式中,所述处理模块还用于:
采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量时,保持所述数模混合波束赋形天线系统中除选择的模拟通道组中包含的模拟通道之外的其它模拟通道关闭。
可能的实施方式中,所述参考信号占用的时间资源为所述基站与终端预先约定。
可能的实施方式中,所述频率为所述基站与终端预先约定。
本发明实施例还提供了另一种基站,该基站主要包括处理器、存储器和收发机,其中,收发机用于在处理器的控制下接收和发送数据,存储器中保存有预设的程序,处理器用于读取存储器中保存的程序,按照该程序执行以下过程:
通过收发机接收参考信号,所述基站包括数模混合波束赋形天线系统,所述数模混合波束赋形天线系统中包括数字通道以及模拟通道;
根据所述参考信号从模拟通道组集合中选择模拟通道组,采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量,其中,每个模拟通道组中包含的模拟通道的个数等于数模混合波束赋形天线系统中数字通道的个数。
可能的实施方式中,处理器根据接收所述参考信号所占用的时间资源,从所述模拟通 道组集合中选择所述时间资源对应的模拟通道组。
可能的实施方式中,处理器确定传输所述参考信号采用的频率,从所述模拟通道组集合中选择与所述频率对应的模拟通道组。
可能的实施方式中,处理器根据接收所述参考信号所占用的时间资源,从所述模拟通道组中选择所述时间资源对应的模拟通道组子集,其中,所述模拟通道组子集中包括设定个数的模拟通道组;确定传输所述参考信号采用的频率,从选择的模拟通道组子集中选择与所述频率对应的模拟通道组。
可能的实施方式中,模拟通道组集合为对数模混合波束赋形天线系统中的模拟通道进行分组得到;其中,每个模拟通道组中包含的模拟通道不重叠。
可能的实施方式中,处理器采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量时,保持所述数模混合波束赋形天线系统中除选择的模拟通道组中包含的模拟通道之外的其它模拟通道关闭。
可能的实施方式中,所述参考信号占用的时间资源为所述基站与终端预先约定。
可能的实施方式中,传输参考信号采用的频率为基站与终端预先约定。
基于上述技术方案,本发明实施例中,通过对数模混合波束赋形天线系统中的模拟通道进行分组,每个模拟通道组包含的模拟通道的个数等于数模混合波束赋形天线系统中数字通道的个数,基站根据参考信号从模拟通道组集合中选择模拟通道组,采用该参考信号对选择的模拟通道组中的每个模拟通道进行测量,从而可以实现对数模混合波束赋形系统中模拟通道的测量。
附图说明
图1为数模混合波束赋形天线系统的结构示意图;
图2为本发明实施例中基站进行模拟通道测量的过程示意图;
图3为本发明实施例中基站根据时间资源选择模拟信道组进行测量的过程示意图;
图4为本发明实施例中基站根据时间资源以及频率资源选择模拟信道组进行测量的过程示意图;
图5为本发明实施例中基站的结构示意图;
图6为本发明实施例中另一基站的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。 基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
以下实施例中,模拟通道与天线通道一一对应。
本发明实施例中,如图2所示,基站对数模混合波束赋形天线系统的模拟信道进行测量的详细方法流程如下:
步骤201:基站接收参考信号。
其中,基站包括数模混合波束赋形天线系统,该数模混合波束赋形天线系统中包括数字通道以及模拟通道。
实施中,参考信号为基站与终端预先约定。
步骤202:基站根据参考信号从模拟通道组集合中选择模拟通道组,采用参考信号对选择的模拟通道组中的每个模拟通道进行测量,其中,每个模拟通道组中包含的模拟通道的个数等于数模混合波束赋形天线系统中数字通道的个数。
实施中,基站采用参考信号对选择的模拟通道组中的每个模拟通道进行测量时,保持数模混合波束赋形天线系统中除选择的模拟通道组中包含的模拟通道之外的其它模拟通道关闭。
实施中,通过对数模混合波束赋形天线系统中的模拟通道进行分组得到一个或多个模拟通道组,这一个或多个模拟通道组构成模拟通道组集合,其中,每个模拟通道组中包含的模拟通道不重叠,并且每个模拟通道组包含的模拟通道的个数相同,均为数模混合波束赋形天线系统中数字通道的个数。本发明实施例中,假设数模混合波束赋形天线系统中包括M个数字通道以及Nt个模拟通道,则将模拟通道划分为Na个模拟通道组,满足Na=Nt/M。
本发明实施例中,基站根据参考信号从模拟通道组集合中选择模拟通道组,包括但不限于以下三种实现方式:
第一,基站根据接收参考信号所占用的时间资源,从模拟通道组集合中选择参考信号占用的时间资源对应的模拟通道组。
其中,参考信号占用的时间资源为基站与终端预先约定。
具体地,如图3所示,基站根据接收参考信号所占用的时间资源选择模拟信道组进行测量的过程如下:
步骤301:基站设置计数器n的初始值为1;
步骤302:基站根据配置选择时刻tn为当前用于测量的时间资源,在选择的时间资源上接收终端发送的上行参考信号;
步骤303:基站从预先设定的模拟通道组集合中选择与该时间资源对应的模拟通道组,采用接收的上行参考信号对选择的模拟通道组中的每个模拟通道进行测量,测量时 除选择的模拟通道组中包含的模拟通道之外的其它模拟通道均保持关闭;
步骤304:基站判断测量精度是否满足需求,或者,判断是否满足n=Na,若是,输出n·M个模拟通道测量值,模拟通道测量过程结束;否则,执行步骤305;
步骤305:基站更新n=n+1,转去执行步骤302。
第二,基站接收终端传输的参考信号,基站确定在传输参考信号时所采用的频率,从模拟通道组集合中选择与在传输参考信号时所采用的频率对应的模拟通道组。
其中,在传输参考信号时所采用的频率为基站与终端预先约定的。
具体地,基站接收参考信号,若在确定传输参考信号时所采用的频率属于频率范围f1,则从模拟通道组集合中选择频率范围f1对应的模拟通道组,采用该参考信号对选择的模拟通道组中的每个模拟通道进行测量,在测量时除选择的模拟通道组中包含的模拟通道之外的其它模拟通道均保持关闭。通过设置终端发送的参考信号所采用的频率,以及设置模拟通道组对应的频率范围,可以实现对模拟通道组集合中的每个模拟通道组中的每个模拟通道的测量。
第三,基站根据接收参考信号所占用的时间资源,从模拟通道组中选择参考信号占用的时间资源对应的模拟通道组子集,其中,模拟通道组子集中包括设定个数的模拟通道组;基站确定传输参考信号时所采用的频率,从选择的模拟通道组子集中选择与传输参考信号时所采用的频率对应的模拟通道组。
其中,参考信号占用的时间资源为基站与终端预先约定,传输参考信号时所采用的频率为基站与终端预先约定。
其中,模拟通道子集中包括设定个数的模拟通道组,每个模拟通道子集包含的模拟通道组的个数相同。
具体地,如图4所示,基站根据接收参考信号所占用的时间资源以及传输参数信号采用的频率选择模拟信道组进行测量的过程如下:
步骤401:基站设置计数器n的初始值为1;
步骤402:基站根据配置选择时刻tn为当前用于测量的时间资源,在选择的时间资源上接收终端发送的上行参考信号,传输该参考信号所采用的频率可以对应预设的多个不同的频率范围,每个频率范围对应一个模拟通道组;
步骤403:基站从预先配置的模拟通道组集合中选择与该时间资源对应的模拟通道组子集,假设模拟通道组子集中包括Nf个模拟通道组,每个模拟通道组中包括M个模拟通道;
步骤404:基站确定传输上行参考信号时所采用的频率所属的频率范围,从选择的模拟通道组子集中选择与该频率范围对应的模拟通道组,采用参考信号对选择的该模拟通道组进行测量,在测量时除选择的模拟通道组中包含的模拟通道之外的其它模拟通道均保持 关闭;
步骤405:基站判断测量精度是否满足需求,或者,判断是否满足n×Nf×M等于Nt,若满足,则输出n×Nf×M个模拟通道的测量值,模拟通道测量过程结束;否则,执行步骤406;
步骤406:基站更新n=n+1,转去执行步骤402。
其中,基站在同一时间资源上接收的参考信号可以同时用于测量对应不同的频率范围的模拟通道组中的模拟通道,即在同一时间可以测量对应不同的频率范围的多个模拟通道组,使得同时可以测量多个模拟通道组中的模拟通道,缩短了测量所需的时间。
基于上述技术方案,本发明实施例中,通过对数模混合波束赋形天线系统中的模拟通道进行分组,每个模拟通道组包含的模拟通道的个数等于数模混合波束赋形天线系统中数字通道的个数,基站根据参考信号从模拟通道组集合中选择模拟通道组,采用该参考信号对选择的模拟通道组中的每个模拟通道进行测量,从而可以实现对数模混合波束赋形系统中模拟通道的测量。
基于同一发明构思,本发明实施例中还提供了一种基站,该基站的具体实施可参见上述方法实施例部分的描述,重复之处不再赘述,如图5所示,该基站主要包括:
接收模块501,用于接收参考信号,所述基站包括数模混合波束赋形天线系统,所述数模混合波束赋形天线系统中包括数字通道以及模拟通道;
处理模块502,用于根据所述参考信号从模拟通道组集合中选择模拟通道组,采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量,其中,每个模拟通道组中包含的模拟通道的个数等于数模混合波束赋形天线系统中数字通道的个数。
第一具体实施中,所述处理模块具体用于:
根据接收所述参考信号所占用的时间资源,从所述模拟通道组集合中选择所述时间资源对应的模拟通道组。
第二具体实施中,所述处理模块具体用于:
确定传输所述参考信号时所采用的频率,从所述模拟通道组集合中选择与所述频率对应的模拟通道组。
第三具体实施中,所述处理模块具体用于:
根据接收所述参考信号所占用的时间资源,从所述模拟通道组中选择所述时间资源对应的模拟通道组子集,其中,所述模拟通道组子集中包括设定个数的模拟通道组;
确定传输所述参考信号采用的频率,从选择的模拟通道组子集中选择与所述频率对应的模拟通道组。
实施中,模拟通道组集合为对数模混合波束赋形天线系统中的模拟通道进行分组得到;其中,每个模拟通道组中包含的模拟通道不重叠。
实施中,所述处理模块还用于:
采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量时,保持所述数模混合波束赋形天线系统中除选择的模拟通道组中包含的模拟通道之外的其它模拟通道关闭。
实施中,所述参考信号占用的时间资源为所述基站与终端预先约定。
实施中,传输参考信号采用的频率为基站与终端预先约定。
基于同一发明构思,本发明实施例中还提供了另外一种基站,该基站的具体实施可参见上述方法实施例部分的描述,重复之处不再赘述,如图6所示,该基站主要包括处理器601、存储器602和收发机603,其中,收发机603用于在处理器601的控制下接收和发送数据,存储器602中保存有预设的程序,处理器601用于读取存储器602中保存的程序,按照该程序执行以下过程:
通过收发机接收参考信号,所述基站包括数模混合波束赋形天线系统,所述数模混合波束赋形天线系统中包括数字通道以及模拟通道;
根据所述参考信号从模拟通道组集合中选择模拟通道组,采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量,其中,每个模拟通道组中包含的模拟通道的个数等于数模混合波束赋形天线系统中数字通道的个数。
第一具体实施中,处理器根据接收所述参考信号所占用的时间资源,从所述模拟通道组集合中选择所述时间资源对应的模拟通道组。
第二具体实施中,处理器确定传输所述参考信号采用的频率,从所述模拟通道组集合中选择与所述频率对应的模拟通道组。
第三具体实施中,处理器根据接收所述参考信号所占用的时间资源,从所述模拟通道组中选择所述时间资源对应的模拟通道组子集,其中,所述模拟通道组子集中包括设定个数的模拟通道组;确定传输所述参考信号采用的频率,从选择的模拟通道组子集中选择与所述频率对应的模拟通道组。
实施中,模拟通道组集合为对数模混合波束赋形天线系统中的模拟通道进行分组得到;其中,每个模拟通道组中包含的模拟通道不重叠。
实施中,处理器采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量时,保持所述数模混合波束赋形天线系统中除选择的模拟通道组中包含的模拟通道之外的其它模拟通道关闭。
实施中,所述参考信号占用的时间资源为所述基站与终端预先约定。
实施中,传输参考信号采用的频率为基站与终端预先约定。
其中,处理器、存储器和收发机之间通过总线连接,总线架构可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路 链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (16)

  1. 一种模拟通道测量方法,其特征在于,包括:
    基站接收参考信号,所述基站包括数模混合波束赋形天线系统,所述数模混合波束赋形天线系统中包括数字通道以及模拟通道;
    所述基站根据所述参考信号从模拟通道组集合中选择模拟通道组,采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量,其中,每个模拟通道组中包含的模拟通道的个数等于数模混合波束赋形天线系统中数字通道的个数。
  2. 如权利要求1所述的方法,其特征在于,所述基站根据所述参考信号从模拟通道组集合中选择模拟通道组,包括:
    所述基站根据接收所述参考信号所占用的时间资源,从所述模拟通道组集合中选择所述时间资源对应的模拟通道组。
  3. 如权利要求1所述的方法,其特征在于,所述基站根据所述参考信号从模拟通道组集合中选择模拟通道组,包括:
    所述基站确定传输所述参考信号采用的频率,从所述模拟通道组集合中选择与所述频率对应的模拟通道组。
  4. 如权利要求1所述的方法,其特征在于,所述基站根据所述参考信号从模拟通道组集合中选择模拟通道组,包括:
    所述基站根据接收所述参考信号所占用的时间资源,从所述模拟通道组中选择所述时间资源对应的模拟通道组子集,其中,所述模拟通道组子集中包括设定个数的模拟通道组;
    所述基站确定传输所述参考信号采用的频率,从选择的模拟通道组子集中选择与所述频率对应的模拟通道组。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述模拟通道组集合为对所述数模混合波束赋形天线系统中的模拟通道进行分组得到;
    其中,每个所述模拟通道组中包含的模拟通道不重叠。
  6. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述基站采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量时,保持所述数模混合波束赋形天线系统中除选择的模拟通道组中包含的模拟通道之外的其它模拟通道关闭。
  7. 如权利要求2或4所述的方法,其特征在于,所述参考信号占用的时间资源为所述基站与终端预先约定。
  8. 如权利要求3或4所述的方法,其特征在于,所述频率为所述基站与终端预先约定。
  9. 一种基站,其特征在于,包括:
    接收模块,用于接收参考信号,所述基站包括数模混合波束赋形天线系统,所述数模混合波束赋形天线系统中包括数字通道以及模拟通道;
    处理模块,用于根据所述参考信号从模拟通道组集合中选择模拟通道组,采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量,其中,每个模拟通道组中包含的模拟通道的个数等于数模混合波束赋形天线系统中数字通道的个数。
  10. 如权利要求9所述的基站,其特征在于,所述处理模块具体用于:
    根据接收所述参考信号所占用的时间资源,从所述模拟通道组集合中选择所述时间资源对应的模拟通道组。
  11. 如权利要求9所述的基站,其特征在于,所述处理模块具体用于:
    确定传输所述参考信号采用的频率,从所述模拟通道组集合中选择与所述频率对应的模拟通道组。
  12. 如权利要求9所述的基站,其特征在于,所述处理模块具体用于:
    根据接收所述参考信号所占用的时间资源,从所述模拟通道组中选择所述时间资源对应的模拟通道组子集,其中,所述模拟通道组子集中包括设定个数的模拟通道组;
    确定传输所述参考信号采用的频率,从选择的模拟通道组子集中选择与所述频率对应的模拟通道组。
  13. 如权利要求9-12任一项所述的基站,其特征在于,模拟通道组集合为对所述数模混合波束赋形天线系统中的模拟通道进行分组得到;
    其中,每个所述模拟通道组中包含的模拟通道不重叠。
  14. 如权利要求9-12任一项所述的基站,其特征在于,所述处理模块还用于:
    采用所述参考信号对选择的模拟通道组中的每个模拟通道进行测量时,保持所述数模混合波束赋形天线系统中除选择的模拟通道组中包含的模拟通道之外的其它模拟通道关闭。
  15. 如权利要求10或12所述的基站,其特征在于,所述参考信号占用的时间资源为所述基站与终端预先约定。
  16. 如权利要求11或12所述的基站,其特征在于,所述频率为所述基站与终端预先约定。
PCT/CN2016/098761 2015-12-28 2016-09-12 一种模拟通道测量方法及基站 WO2017113885A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/066,506 US10644781B2 (en) 2015-12-28 2016-09-12 Analog channel measurement method and base station
EP16880678.4A EP3399657A4 (en) 2015-12-28 2016-09-12 Analog channel measurement method and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511001485.7 2015-12-28
CN201511001485.7A CN106921990B (zh) 2015-12-28 2015-12-28 一种模拟通道测量方法及基站

Publications (1)

Publication Number Publication Date
WO2017113885A1 true WO2017113885A1 (zh) 2017-07-06

Family

ID=59224438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098761 WO2017113885A1 (zh) 2015-12-28 2016-09-12 一种模拟通道测量方法及基站

Country Status (4)

Country Link
US (1) US10644781B2 (zh)
EP (1) EP3399657A4 (zh)
CN (1) CN106921990B (zh)
WO (1) WO2017113885A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3610581A1 (en) 2017-04-13 2020-02-19 Sony Corporation Communication devices and methods with hybrid beamforming
CN111355521B (zh) 2018-12-21 2022-11-25 深圳市中兴微电子技术有限公司 混合波束赋形方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335966A (zh) * 2008-06-30 2008-12-31 华为技术有限公司 多天线校正方法、多天线收发装置及基站系统
CN101662817A (zh) * 2008-08-29 2010-03-03 中兴通讯股份有限公司 进行模间测量或异频测量的方法、多模无线通讯系统终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130017572A (ko) * 2011-08-11 2013-02-20 삼성전자주식회사 하이브리드 빔포밍 시스템에서 아날로그 빔 결정 방법 및 장치
EP2897307B1 (en) * 2012-09-14 2017-11-08 Mitsubishi Electric Corporation Relay device, satellite relay device, and satellite relay method
KR102277466B1 (ko) * 2013-05-17 2021-07-14 삼성전자주식회사 하이브리드 빔포밍을 이용하는 밀리미터파 통신 시스템에서의 선형 rf 빔 탐색을 위한 방법
US10084521B2 (en) * 2013-11-04 2018-09-25 Lg Electronics Inc. Method and apparatus for transmitting signal in wireless communication system
CN106063148B (zh) * 2014-03-24 2020-02-14 Lg电子株式会社 在无线通信系统中执行混合波束成形的方法及其设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335966A (zh) * 2008-06-30 2008-12-31 华为技术有限公司 多天线校正方法、多天线收发装置及基站系统
CN101662817A (zh) * 2008-08-29 2010-03-03 中兴通讯股份有限公司 进行模间测量或异频测量的方法、多模无线通讯系统终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3399657A4 *
TAKEHIRO NAKAMURA: "LTE Release 12 and Beyond", 3GPP TSG-RAN, NTT DOCOMO, 31 December 2013 (2013-12-31), pages 1 - 17, XP055519562 *

Also Published As

Publication number Publication date
EP3399657A4 (en) 2018-12-05
CN106921990A (zh) 2017-07-04
CN106921990B (zh) 2019-09-17
US10644781B2 (en) 2020-05-05
US20180367206A1 (en) 2018-12-20
EP3399657A1 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
TWI595759B (zh) Hybrid beamforming transmission method and network equipment
KR102332980B1 (ko) 통신 방법, 통신 장치 및 시스템
TWI556593B (zh) Channel status information measurement method and device
TWI681680B (zh) 一種獲取、回饋發送波束資訊的方法及裝置
WO2016145986A1 (zh) 大规模数模混合天线及信道状态信息反馈方法和装置
WO2015161795A1 (zh) 一种信道状态信息测量的方法、系统及设备
WO2015124072A1 (zh) 信道状态信息测量方法和装置、以及信号传输方法和装置
US20220094574A1 (en) Methods For Indicating And Determination Large-Scale Channel Parameter, Base Station And Terminal Device
TWI732261B (zh) 資料傳輸方法、終端及網路設備
WO2019140610A1 (en) Apparatuses and methods for non-linear precoding
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
CN110324070B (zh) 通信方法、通信装置和系统
WO2019101152A1 (zh) 一种用于执行预编码的方法和装置
WO2017114054A1 (zh) 一种确定模拟波束的方法和设备
US10554283B2 (en) Method and device for uplink information feedback and downlink data transmission
WO2017005086A1 (zh) 一种预编码方法及装置
US10461823B2 (en) Aperture constraint for new radio uplink multiple-input multiple-output
WO2018059095A1 (zh) 一种波束扫描方法及相关设备
WO2017113885A1 (zh) 一种模拟通道测量方法及基站
WO2018059235A1 (zh) 一种波束扫描和搜索跟踪方法及装置
CN107888258B (zh) 一种波束扫描与跟踪方法及装置
CN107888261A (zh) 一种信道矩阵确定方法及相关设备
Jiang et al. Design of joint spatial and power domain multiplexing scheme for massive MIMO systems
WO2022123300A1 (en) Dual codebook configuration and csi combining for large scale active antenna systems
CN115836479A (zh) 用于预编码信道状态信息参考信号(csi-rs)配置的动态信道状态信息参考信号(csi-rs)资源映射配置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016880678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016880678

Country of ref document: EP

Effective date: 20180730