WO2018059235A1 - 一种波束扫描和搜索跟踪方法及装置 - Google Patents

一种波束扫描和搜索跟踪方法及装置 Download PDF

Info

Publication number
WO2018059235A1
WO2018059235A1 PCT/CN2017/101513 CN2017101513W WO2018059235A1 WO 2018059235 A1 WO2018059235 A1 WO 2018059235A1 CN 2017101513 W CN2017101513 W CN 2017101513W WO 2018059235 A1 WO2018059235 A1 WO 2018059235A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
analog
equivalent
information
communication node
Prior art date
Application number
PCT/CN2017/101513
Other languages
English (en)
French (fr)
Inventor
苏昕
高秋彬
塔玛拉卡拉盖施
陈润华
李传军
王蒙军
李辉
黄秋萍
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US16/337,373 priority Critical patent/US10778307B2/en
Priority to EP17854685.9A priority patent/EP3522584A4/en
Publication of WO2018059235A1 publication Critical patent/WO2018059235A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a beam scanning and search tracking method and apparatus.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • the radio access technology standards are based on MIMO+OFDM (Orthogonal Frequency Division Multiplexing) technology.
  • MIMO+OFDM Orthogonal Frequency Division Multiplexing
  • the performance gain of MIMO technology comes from the spatial freedom that multi-antenna systems can obtain. Therefore, one of the most important evolution directions of MIMO technology in the development of standardization is the expansion of dimensions.
  • LTE Rel RELEASE, version-8, up to 4 layers of MIMO transmission can be supported.
  • Rel-9 focuses on MU (Multi-User)-MIMO technology, and TM (Transmission Mode)-8 MU-MIMO transmission can support up to 4 downlink data layers.
  • Rel-10 passes the 8-port channel state information-reference signal CSI-RS (Channel State Information Reference Signal) (the channel state information may include a CQI-Channel Quality Indicator, a channel quality indicator; a PMI-Precoding Matrix Indicator, a precoding matrix indicator; RI-rank indication, rank indication, URS (UE-specific Reference Signal) and the introduction of multi-granularity codebook further improve the spatial resolution of channel state information, and further SU (Single-User , single-user) - MIMO transmission capacity is extended to a maximum of 8 data layers.
  • CSI-RS Channel State Information Reference Signal
  • a base station antenna system using a conventional PAS Passive Antenna System
  • multiple antenna ports (each port corresponding to an independent RF-IF-baseband channel) horizontal row Columns, and each of the ports corresponding to the vertical dimension of the multiple layers are connected by a radio frequency cable. Therefore, the existing MIMO technology can only optimize the horizontal dimensional characteristics of each terminal signal in the horizontal dimension by adjusting the relative amplitude/phase between different ports. In the vertical dimension, only a uniform sector level shaping can be adopted. .
  • the base station antenna system can obtain greater degrees of freedom in the vertical dimension, and can realize the signal to the UE (User Equipment) level in the three-dimensional space. optimization.
  • Massive MIMO technology requires the use of large-scale antenna arrays. Although an all-digital array can achieve maximum spatial resolution and optimal MU-MIMO performance, this architecture requires a large number of AD/DA (analog-to-digital-to-analog) conversion periods and a large number of complete RF-baseband processing channels. Both equipment cost and baseband processing complexity will be a huge burden. This problem is particularly prominent in high frequency bands and large bandwidths.
  • digital-analog hybrid beamforming technology has been proposed in recent years. The so-called digital-analog hybrid beamforming refers to adding a first-order beamforming to the radio frequency signal near the front end of the antenna system based on the traditional digital domain beamforming.
  • Analog shaping enables a relatively coarse match between the transmitted signal and the channel in a relatively simple manner.
  • the dimension of the equivalent channel formed after the analog shaping is smaller than the actual number of antennas, so the required AD/DA conversion device, the number of digital channels, and the corresponding baseband processing complexity can be greatly reduced.
  • the residual interference of the analog shaped portion can be processed again in the digital domain to ensure the quality of the MU-MIMO transmission.
  • digital-analog hybrid beamforming is a compromise between performance and complexity. It has a high practical prospect in systems with high bandwidth and large number of antennas.
  • the channel state information accuracy that can be obtained by the network side directly determines the accuracy of precoding/beamforming and the performance of the scheduling algorithm, thereby affecting the overall system performance. Therefore, the acquisition of channel state information has always been one of the core issues in the standardization of MIMO technology.
  • the channel state required for digital shaping can be obtained by channel estimation.
  • the number of equivalent digital channels formed by analog shaping is less than the actual number of antennas, the dimension of the channel matrix obtained by the reference signal is much lower than the dimension of the complete channel matrix experienced by the antenna end. Therefore, the spatial resolution and interference suppression capability that digital shaping can achieve is somewhat lost.
  • the processing is closer to the physical antenna side, and its MIMO channel has a higher degree of freedom than digital shaping.
  • the analog shaping part cannot directly utilize the channel state information obtained by the digital domain for both FDD (Frequency Division Duplex) and TDD (Time Division Duplex).
  • the selection of the analog beam can generally only be performed by means of searching (or training).
  • the transmitting end transmits a set of beams
  • the receiving end also uses a predetermined set of beams for tentative reception to determine the best combination of transmitting and receiving beams.
  • the channel conditions change (such as occlusion)
  • the system will re-enter the beam search phase, and a traversal search of the potential transceiver beam combination is required.
  • the existing beam search and tracking process is basically performed for the analog domain, and is mainly used for analog beam selection.
  • the measurement and feedback process of the channel state information of the digital domain is relatively independent from the operation of the analog domain.
  • the measurement of the reference signal and the calculation and feedback of the channel state information are performed for the transceiver beam that has been established.
  • the purpose of the disclosure is to provide a beam scanning and search tracking method and device, which solves the relative independence of the measurement and feedback mechanisms of the analog beam and the digital beam in the related art, and has large redundancy and system opening. The problem of sales.
  • an embodiment of the present disclosure provides a beam scanning and search tracking method, which is applied to a first communication node, and includes:
  • Beam scanning and search tracking are performed using the beam information and channel state information.
  • the step of constructing an analog beam and digitally shaping the analog beam to form an equivalent beam includes:
  • the step of transmitting the reference signal to the second communication node by using the equivalent beam includes:
  • the step of receiving, by the second communications node, the associated beam information and the corresponding channel state information of the equivalent beam fed back according to the reference signal includes:
  • the coverage of the equivalent beam is smaller than the coverage of the analog beam.
  • the identifier information of the equivalent beam includes the identifier information of the corresponding analog beam
  • the step of receiving the relevant beam information and the corresponding channel state information of the equivalent beam fed back by the second communication node according to the reference signal further includes:
  • the step of constructing an analog beam and digitally shaping the analog beam to form an equivalent beam includes:
  • the step of receiving, by the second communications node, the associated beam information and the corresponding channel state information of the equivalent beam fed back according to the reference signal includes:
  • the step of constructing an analog beam and digitally shaping the analog beam to form an equivalent beam includes:
  • the analog beam is constructed and beam scanned.
  • the beam scanning and search tracking method further includes:
  • the implicit feedback information includes at least one of a precoding matrix indication PMI, a rank indication RI, and a channel quality indicator CQI, the explicit feedback information including statistical information of a channel matrix or a channel matrix after quantization or transformation.
  • the step of sending the reference signal output by the reference signal port to the second communication node includes:
  • the step of performing analog beamforming on a set of reference signal ports according to one or more simulated beams determined after the completion of the search tracking includes:
  • the step of transmitting the reference signal output by the reference signal port to the second communication node includes:
  • the beam scanning and search tracking method further includes:
  • a set of reference signal ports are weighted by digital beamforming to construct an equivalent beam
  • the step of weighting a set of reference signal ports by digital beamforming according to one or more analog beams determined after the search tracking is completed, and the step of constructing an equivalent beam includes:
  • Each analog beam in the subset of beams is constructed as an equivalent beam using the reference signal port.
  • the identifier information of the equivalent beam includes the identifier information of the corresponding analog beam
  • the beam scanning and search tracking method further includes:
  • the present disclosure also provides a beam scanning and search tracking method, which is applied to a second communication node, including:
  • the step of receiving the reference signal sent by the first communication node by using the constructed equivalent beam includes:
  • the step of measuring the reference signal to obtain the relevant beam information and corresponding channel state information of the equivalent beam that meets the recommended condition includes:
  • the reference signal is measured to obtain identification information of an equivalent beam that meets the recommended condition, and corresponding channel state information.
  • the identifier information of the equivalent beam includes the identifier information of the corresponding analog beam
  • the step of measuring the reference signal to obtain the relevant beam information of the equivalent beam and the corresponding channel state information that meet the recommended condition further includes:
  • the reference signal is measured to obtain an equivalent beam corresponding to the recommended condition, and corresponding identification information of the analog beam.
  • the step of receiving the reference signal sent by the first communication node by using the constructed equivalent beam includes:
  • the step of measuring the reference signal to obtain the relevant beam information and corresponding channel state information of the equivalent beam that meets the recommended condition includes:
  • the reference signal is measured to obtain identification information and/or signal strength of the equivalent beam that meets the recommended conditions, and a corresponding channel quality indicator.
  • the step of receiving the reference signal sent by the first communication node by using the constructed equivalent beam includes:
  • the beam scanning and search tracking method further includes:
  • the implicit feedback information includes at least one of a precoding matrix indication PMI, a rank indication RI, and a channel quality indicator CQI, the explicit feedback information including statistical information of a channel matrix or a channel matrix after quantization or transformation.
  • the step of receiving the reference signal that is sent by the first communications node by using the simulated beam determined by the beam information includes:
  • the beam scanning and search tracking method further includes:
  • the receiving, by the first communications node, the reference signal that is sent according to the determined equivalent beam, and the reference signal includes:
  • a subset of the beam is centered on the determined one or more analog beams; and according to each of the analog beams in the beam subset, a set of reference signal ports is formed by digital beamforming Performing a weighting process; an equivalent beam constructed by the reference signal port, and a reference signal transmitted.
  • the identifier information of the equivalent beam includes the identifier information of the corresponding analog beam
  • the beam scanning and search tracking method further includes:
  • the present disclosure also provides a beam scanning and search tracking apparatus applied to a first communication node, including:
  • a first processing module configured to construct an analog beam, and digitally shape the analog beam to form an equivalent beam
  • a first sending module configured to send, by using the equivalent beam, a reference signal to the second communications node
  • a first receiving module configured to receive related beam information and corresponding channel state information of an equivalent beam fed back by the second communications node according to the reference signal
  • the second processing module is configured to perform beam scanning and search tracking by using the beam information and channel state information.
  • the first processing module includes:
  • a first processing submodule configured to perform weighting processing on a set of reference signal ports by digital beamforming
  • a second building submodule configured to construct the analog beam into an equivalent beam by using the reference signal port
  • the first sending module includes:
  • a first scanning submodule configured to carry the reference signal by using the equivalent beam, and perform scanning within a coverage determined by the corresponding analog beam
  • the first receiving module includes:
  • a first receiving submodule configured to receive identification information and channel state information of one or more equivalent beams fed back by the second communications node
  • the coverage of the equivalent beam is smaller than the coverage of the analog beam.
  • the identifier information of the equivalent beam includes the identifier information of the corresponding analog beam
  • the first receiving module further includes:
  • a second receiving submodule configured to receive identifier information of the analog beam that is fed back by the second communications node, where the identifier information of the analog beam corresponds to the identifier information of the equivalent beam.
  • the first processing module includes:
  • a second processing submodule configured to perform transmit diversity and/or weighting processing on the digital port
  • a fourth building submodule configured to construct the analog beam as an equivalent beam by using the digital port
  • the first receiving module includes:
  • a third receiving submodule configured to receive identification information and/or signal strength of the one or more equivalent beams fed back by the second communications node, and a channel quality indicator.
  • the first processing module includes:
  • the third processing sub-module is configured to construct an analog beam and perform beam scanning.
  • the beam scanning and search tracking device further includes:
  • a shaping module configured to perform analog beamforming on a set of reference signal ports according to one or more analog beams determined after the search tracking is completed;
  • a second sending module configured to send a reference signal output by the reference signal port to the second communications node
  • a second receiving module configured to receive implicit feedback information or explicit feedback information fed back by the second communication node
  • the implicit feedback information includes at least one of PMI, RI, and CQI
  • the explicit feedback information includes statistical information of a channel matrix or a channel matrix after quantization or transformation.
  • the second sending module includes:
  • a transmitting submodule configured to send a reference signal by using the analog beam, where the analog beam is not scanned;
  • the shaping module includes:
  • a fifth building sub-module configured to determine one or more analog beams, to construct a beam subset
  • a shaping sub-module configured to perform analog beamforming on a set of reference signal ports according to each analog beam in the beam subset
  • the second sending module includes:
  • a second scanning submodule configured to perform scanning in a coverage formed by the subset of the beams by using the analog beam to carry a reference signal output by the reference signal port.
  • the beam scanning and search tracking device further includes:
  • a third processing module configured to perform weighting processing on a set of reference signal ports by digital beamforming to construct an equivalent beam according to one or more analog beams determined after the search tracking is completed;
  • a fourth processing module configured to use the equivalent beam to carry a reference signal output by the reference signal port, scan within a coverage determined by the corresponding analog beam, and send the signal to the second communication node;
  • a third receiving module configured to receive identification information and channel state information of one or more equivalent beams fed back by the second communication node.
  • the third processing module includes:
  • a fourth processing sub-module configured to perform weighting processing on a set of reference signal ports by digital beamforming according to one or more analog beams determined after the search tracking is completed;
  • a sixth construction submodule configured to construct each determined analog beam as an equivalent beam by using the reference signal port
  • a seventh building submodule configured to construct a beam subset centering on one or more analog beams determined after the search tracking is completed
  • a fifth processing sub-module configured to perform weighting processing on a set of reference signal ports by digital beamforming
  • an eighth construction submodule configured to construct each analog beam in the subset of beams into an equivalent beam by using the reference signal port.
  • the identifier information of the equivalent beam includes the identifier information of the corresponding analog beam
  • the beam scanning and search tracking device further includes:
  • a fourth receiving module configured to receive identifier information of the analog beam that is fed back by the second communications node, where the identifier information of the analog beam corresponds to the identifier information of the equivalent beam.
  • the present disclosure also provides a beam scanning and search and tracking device, which is applied to a second communication node, and includes:
  • a fifth receiving module configured to receive a reference signal sent by the first communication node by using the constructed equivalent beam
  • a fifth processing module configured to measure the reference signal to obtain an equivalent that meets the recommended condition Correlated beam information of the beam and corresponding channel state information
  • the first feedback module is configured to feed back the related beam information and channel state information to the first communication node.
  • the fifth receiving module includes:
  • a fourth receiving submodule configured to receive a reference signal sent by the first communications node by means of equivalent beam scanning
  • the fifth processing module includes:
  • a sixth processing submodule configured to measure the reference signal, obtain identification information of an equivalent beam that meets the recommended condition, and corresponding channel state information.
  • the identifier information of the equivalent beam includes the identifier information of the corresponding analog beam
  • the fifth processing module further includes:
  • the seventh processing sub-module is configured to measure the reference signal to obtain an identifier of the corresponding analog beam corresponding to the equivalent beam that meets the recommended condition.
  • the fifth receiving module includes:
  • a fifth receiving submodule configured to receive a reference signal that is sent by the first communications node by using an equivalent beam, where the equivalent beam is not scanned;
  • the fifth processing module includes:
  • the eighth processing submodule is configured to measure the reference signal to obtain identification information and/or signal strength of the equivalent beam that meets the recommended condition, and a corresponding channel quality indicator.
  • the fifth receiving module includes:
  • a sixth receiving submodule configured to receive a reference signal sent by the first communication node through the constructed equivalent beam and a reference signal sent by the analog beam corresponding to the equivalent beam.
  • the beam scanning and search tracking device further includes:
  • a sixth receiving module configured to receive, by the first communications node, a reference signal that is sent by using an analog beam that is determined according to the beam information;
  • a sixth processing module configured to measure the reference signal, to obtain implicit feedback information or explicit feedback information corresponding to the analog beam
  • a second feedback module configured to feed back the implicit feedback information or the explicit feedback information to the first Communication node
  • the implicit feedback information includes at least one of a precoding matrix indication PMI, a rank indication RI, and a channel quality indicator CQI, the explicit feedback information including statistical information of a channel matrix or a channel matrix after quantization or transformation.
  • the sixth receiving module includes:
  • a seventh receiving submodule configured to receive, by the first communications node, a reference signal sent by using the determined analog beam, where the analog beam is not scanned;
  • an eighth receiving submodule configured to receive, by the first communications node, a reference signal that is sent by means of the determined analog beam scanning.
  • the beam scanning and search tracking device further includes:
  • a seventh receiving module configured to receive, by the first communications node, a reference signal that is sent according to the determined equivalent beam of the simulated beam;
  • a seventh processing module configured to measure the reference signal, obtain relevant beam information of the equivalent beam and corresponding channel state information that meet the recommended condition
  • a third feedback module configured to feed back the related beam information and channel state information to the first communication node.
  • the seventh receiving module includes:
  • a ninth receiving submodule configured to receive, by the first communication node, perform weighting processing on a set of reference signal ports by digital beamforming according to the determined one or more analog beams, and constructed by the reference signal port Equivalent beam, transmitted reference signal;
  • a tenth receiving submodule configured to receive, by the first communication node, one or more simulated beams as a center, construct a beam subset; and shape the digital beam according to each analog beam in the beam subset
  • the method performs weighting processing on a set of reference signal ports; an equivalent beam constructed by the reference signal port, and a reference signal transmitted.
  • the identifier information of the equivalent beam includes the identifier information of the corresponding analog beam
  • the beam scanning and search tracking device further includes:
  • An eighth processing module configured to measure the reference signal, obtain an equivalent beam that meets the recommended condition, and corresponding identifier information of the analog beam;
  • a fourth feedback module configured to feed back the identification information of the analog beam to the first communication node.
  • the present disclosure also provides a first communication node, including a transceiver, a processor, and a memory, wherein the processor is configured to construct an analog beam by executing a program or data stored in the memory, and The analog beam is digitally shaped to form an equivalent beam; the transceiver is configured to transmit a reference signal to the second communication node by using the equivalent beam, and receive feedback from the second communication node according to the reference signal Correlating beam information and corresponding channel state information; the processor is further configured to perform beam scanning and search tracking by using the beam information and channel state information received by the transceiver.
  • the present disclosure also provides a second communication node, including a transceiver, a processor, and a memory, wherein the transceiver is configured to receive a reference signal sent by the first communication node through the constructed equivalent beam; the processor And executing the program or data stored in the memory, for measuring the reference signal, obtaining relevant beam information of the equivalent beam and corresponding channel state information according to the recommended condition, and using the related beam information and Channel state information is fed back to the first communication node.
  • the beam scanning and search tracking method sends a reference signal to the second communication node by using the constructed equivalent beam, and accepts information fed back by the second communication node according to the reference signal, thereby completing beam scanning and search tracking.
  • the purpose of obtaining the channel state information required for digital beamforming while performing analog beam alignment with the second communication node, that is, the combination of the analog beam search and the measurement and feedback process of the digital domain channel state information CSI can be organically combined. It greatly reduces unnecessary operations and reduces the corresponding system overhead.
  • FIG. 1 is a schematic flow chart of a beam scanning and search tracking method according to Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic flowchart of a beam scanning and search tracking method according to Embodiment 2 of the present disclosure
  • FIG. 3 is a schematic structural diagram of a beam scanning and search tracking apparatus according to Embodiment 3 of the present disclosure
  • FIG. 4 is a schematic structural diagram of a first communication node according to Embodiment 4 of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a beam scanning and search tracking apparatus according to Embodiment 5 of the present disclosure
  • FIG. 6 is a schematic structural diagram of a second communication node according to Embodiment 6 of the present disclosure.
  • the present disclosure is directed to the prior art that the measurement and feedback mechanisms of the analog beam and the digital beam are relatively independent, and there are problems of large redundancy and system overhead, and various solutions are provided, as follows:
  • a beam scanning and search tracking method provided in Embodiment 1 of the present disclosure is applied to a first communication node, and the method includes:
  • Step 11 construct an analog beam, and digitally shape the analog beam to form an equivalent beam
  • Step 12 Send a reference signal to the second communication node by using the equivalent beam
  • Step 13 Receive relevant beam information and corresponding channel state information of the equivalent beam fed back by the second communication node according to the reference signal;
  • Step 14 Perform beam scanning and search tracking using the beam information and channel state information.
  • the beam scanning and search tracking method provided by Embodiment 1 of the present disclosure transmits a reference signal to a second communication node by using the constructed equivalent beam, and accepts information fed back by the second communication node according to the reference signal, thereby completing beam scanning and searching. Tracking, achieving the purpose of obtaining the channel state information required for digital beamforming while performing analog beam alignment with the second communication node, that is, the measurement and feedback process of the analog beam search and the digital domain channel state information CSI Organically combined, greatly reducing unnecessary operations and reducing the corresponding system overhead.
  • Step 11 can have the following two specific implementations.
  • the step of constructing an analog beam and digitally shaping the analog beam to form an equivalent beam comprises: constructing an analog beam; and weighting a set of reference signal ports by digital beamforming; Constructing the analog beam as an equivalent beam by using the reference signal port;
  • the step of transmitting the reference signal to the second communication node by using the equivalent beam comprises: using the equivalent beam to carry the reference signal, and scanning within a coverage determined by the corresponding analog beam;
  • the step of receiving, by the second communication node, the associated beam information and the corresponding channel state information of the equivalent beam fed back according to the reference signal comprising: receiving one of the feedbacks of the second communication node Or identification information of multiple equivalent beams and channel state information;
  • the coverage of the equivalent beam is smaller than the coverage of the analog beam.
  • the construction of the analog beam is performed in the analog domain to form an analog beam.
  • the specific process can be implemented by related technologies, and will not be described here.
  • the channel state information herein includes PMI, RI, and corresponding CQI.
  • Scanning with an equivalent beam can be periodic or non-periodic.
  • the specific configuration parameters may be indicated by the first communication node or the network; or in a preset manner.
  • the identifier information of the equivalent beam includes identification information of a corresponding analog beam
  • the step of receiving, by the second communication node, the associated beam information and the corresponding channel state information of the equivalent beam fed back by the reference signal further includes: receiving identifier information of the analog beam fed back by the second communication node, where The identification information of the analog beam corresponds to the identification information of the equivalent beam.
  • the feedback analog beam corresponds to the equivalent beam of the feedback.
  • the step of constructing an analog beam and digitally shaping the analog beam to form an equivalent beam comprises: constructing an analog beam; performing transmit diversity and/or weighting processing on the digital port; using the digital port Constructing the analog beam as an equivalent beam;
  • the step of receiving the relevant beam information and the corresponding channel state information of the equivalent beam fed back by the second communication node according to the reference signal comprises: receiving one or more feedbacks sent by the second communication node, etc. Identification information and/or signal strength of the effect beam, and channel quality indicators;
  • the difference between the coverage of the equivalent beam and the coverage of the corresponding analog beam is less than a preset threshold.
  • the construction of the analog beam is performed in the analog domain to form an analog beam.
  • the specific process can be implemented by related technologies, and will not be described here.
  • the transmit diversity of the digital port may be FSTD (Frequency Switch Transmit Diversity) or SFBC (Space Frequency Block Code) technology.
  • FSTD Frequency Switch Transmit Diversity
  • SFBC Space Frequency Block Code
  • the weighting process performed on the digital port here can form a relatively wide beam.
  • the use of the equivalent beam to transmit the reference signal to the second communication node may be periodic or non- Periodic.
  • the specific configuration parameters may be indicated by the first communication node or the network; or in a preset manner.
  • the step of constructing an analog beam and digitally shaping the analog beam to form an equivalent beam comprises: constructing an analog beam and performing beam scanning.
  • the present embodiment also provides the following two measures.
  • the beam scanning and search tracking method further comprises: performing analog beamforming on a set of reference signal ports according to the one or more simulated beams determined after the search tracking is completed; and outputting the reference signal of the reference signal port Sending to the second communication node; receiving implicit feedback information or explicit feedback information fed back by the second communication node; the implicit feedback information includes a precoding matrix indication PMI, a rank indication RI, and a channel quality indicator CQI At least one of the explicit feedback information includes statistical information of a channel matrix or a channel matrix after quantization or transformation.
  • the channel matrix may be a complete matrix, a partial sub-array, or a partial component;
  • the statistical information may include at least one of a correlation matrix, a feature vector, and an eigenvalue.
  • the step of transmitting the reference signal output by the reference signal port to the second communication node includes: transmitting a reference signal by using the analog beam, where the analog beam is not scanned.
  • the step of performing analog beamforming on a set of reference signal ports according to the one or more analog beams determined after the completion of the search tracking comprises: constructing a beam subset centered on the determined one or more analog beams; Each of the beam sets in the beam subset performs analog beamforming on a set of reference signal ports; correspondingly, the step of transmitting the reference signal output by the reference signal port to the second communication node includes: utilizing The analog beam carries a reference signal output by the reference signal port, and scans within a coverage formed by the subset of beams.
  • the beam scanning and search tracking method further includes: weighting a set of reference signal ports by digital beamforming to construct an equivalent beam according to one or more analog beams determined after the search tracking is completed. Using the equivalent beam to carry the reference signal output by the reference signal port, scanning within the coverage of the corresponding analog beam, sending to the second communication node; receiving feedback from the second communication node Identification information and channel state information of one or more equivalent beams;
  • the coverage of the equivalent beam is smaller than the coverage of the analog beam.
  • the channel state information herein includes PMI, RI, and corresponding CQI.
  • Scanning with an equivalent beam can be periodic or non-periodic.
  • the specific configuration parameters may be indicated by the first communication node or the network; or in a preset manner.
  • the step of weighting a set of reference signal ports by digital beamforming according to one or more analog beams determined after the search tracking is completed, and the step of constructing an equivalent beam includes:
  • the identifier information of the equivalent beam includes identification information of a corresponding analog beam.
  • the beam scanning and the search tracking method further includes: receiving identifier information of the analog beam fed back by the second communication node, where the identifier information of the analog beam corresponds to the identifier information of the equivalent beam.
  • the beam scanning and search tracking methods combine the analog beam scanning and the digital CSI measurement with the feedback to better solve the relative measurement and feedback mechanisms of the analog beam and the digital beam in the related art. Independent, there is a problem of large redundancy and system overhead.
  • the beam scanning and search tracking method provided in Embodiment 2 of the present disclosure is applied to a second communication node, and the method includes:
  • Step 21 Receive a reference signal that is sent by the first communication node by using the constructed equivalent beam.
  • Step 22 Perform measurement on the reference signal to obtain related beam information and corresponding channel state information of an equivalent beam that meets the recommended condition.
  • Step 23 Feed back the relevant beam information and channel state information to the first communication node.
  • the feedback operation may be periodic or non-periodic, and specific configuration parameters may be indicated by the node A or the network or in a preset manner.
  • the beam scanning and search tracking method provided by the second embodiment of the present disclosure receives the reference signal sent by the first communication node, and obtains relevant beam information and corresponding channel state information of the equivalent beam that meet the recommended condition, and performs feedback. Enabling the first communication node to perform simulation with the node At the same time of beam alignment, the channel state information required for digital beamforming is obtained, that is, the analog beam search and the measurement and feedback process of the digital domain channel state information CSI are organically combined, which can greatly reduce unnecessary operation links. , reduce the corresponding system overhead.
  • Step 21 can be implemented in two specific ways, as follows:
  • the step of receiving the reference signal sent by the first communication node through the constructed equivalent beam comprises: receiving a reference signal sent by the first communication node by means of equivalent beam scanning;
  • the step of measuring the reference signal to obtain the relevant beam information and the corresponding channel state information of the equivalent beam that meets the recommended condition comprises: measuring the reference signal to obtain an equivalent that meets the recommended condition The identification information of the beam and the corresponding channel state information.
  • the identifier information of the equivalent beam includes identification information of a corresponding analog beam
  • the step of measuring the reference signal to obtain the relevant beam information of the equivalent beam and the corresponding channel state information according to the recommended condition further includes: measuring the reference signal to obtain an equivalent beam that meets the recommended condition Corresponding identification information of the analog beam.
  • the step of receiving the reference signal sent by the first communication node through the constructed equivalent beam comprises: receiving a reference signal sent by the first communication node by using an equivalent beam, where the equivalent beam is not scanned;
  • the step of measuring the reference signal to obtain the relevant beam information and the corresponding channel state information of the equivalent beam that meets the recommended condition comprises: measuring the reference signal to obtain an equivalent that meets the recommended condition The identification information and/or signal strength of the beam, and the corresponding channel quality indicator.
  • the step of receiving the reference signal sent by the first communication node through the constructed equivalent beam comprises: receiving a reference signal sent by the first communication node through the constructed equivalent beam and a simulation corresponding to the equivalent beam The reference signal sent by the beam.
  • the embodiment also provides the following two measures:
  • the beam scanning and search tracking method further includes: receiving, by the first communication node, a reference signal that is sent by using an analog beam determined according to the beam information; and measuring the reference signal to obtain the simulation Implicit feedback information or explicit feedback information corresponding to the beam; feeding the implicit feedback information or explicit feedback information to the first communication node; the implicit feedback information includes precoding moments
  • the matrix indicates at least one of a PMI, a rank indication RI, and a channel quality indicator CQI, the explicit feedback information including statistical information of a channel matrix or a channel matrix after quantization or transformation.
  • the feedback operation may be periodic or aperiodic, and the specific configuration parameters may be indicated by the node A or the network or in a preset manner.
  • the channel matrix may be a complete matrix, a partial sub-array, or a partial component; the statistical information may include at least one of a correlation matrix, a feature vector, and an eigenvalue.
  • the step of receiving the reference signal transmitted by the first communication node by using the simulated beam determined according to the beam information includes: receiving a reference signal sent by the first communication node by using the determined analog beam, where The analog beam is not scanned; or the first communication node is received, and the reference signal is transmitted by means of the determined analog beam scanning.
  • the beam scanning and search tracking method further includes: receiving, by the first communication node, a reference signal transmitted according to the equivalent beam constructed by the determined analog beam; measuring the reference signal to obtain a recommended condition, etc. Correlated beam information of the effect beam and corresponding channel state information; feeding back the relevant beam information and channel state information to the first communication node.
  • the feedback operation may be periodic or aperiodic, and the specific configuration parameters may be indicated by the node A or the network or in a preset manner.
  • the receiving, by the first communications node, using the equivalent beam constructed according to the determined analog beam, the transmitting the reference signal includes: receiving, by the first communications node, using the digital signal according to the determined one or more analog beams Beamforming means weighting a set of reference signal ports, an equivalent beam constructed by the reference signal port, and transmitting a reference signal; or
  • a subset of the beam is centered on the determined one or more analog beams; and according to each of the analog beams in the beam subset, a set of reference signal ports is formed by digital beamforming Performing a weighting process; an equivalent beam constructed by the reference signal port, and a reference signal transmitted.
  • the identifier information of the equivalent beam includes the identifier information of the corresponding analog beam;
  • the beam scanning and search tracking method further includes: measuring the reference signal to obtain an equivalent beam corresponding to the recommended condition, and corresponding identification information of the simulated beam; and feeding back the identification information of the analog beam to the first Communication node.
  • the beam scanning and search tracking methods combine the analog beam scanning and the digital CSI measurement with the feedback to better solve the relative measurement and feedback mechanisms of the analog beam and the digital beam in the related art. Independent, there is a problem of large redundancy and system overhead.
  • the beam scanning and search tracking methods provided by the embodiments of the present disclosure are further described below in conjunction with the first communication node (hereinafter referred to as the communication node A) and the second communication node (hereinafter referred to as the communication node B).
  • the present disclosure organically combines analog beam search with digital domain CSI measurement and feedback processes to reduce unnecessary operational links and corresponding system overhead; as follows, it mainly includes two major parts:
  • the first part including two specific examples, is used to determine the analog beam while obtaining the channel state information required for digital shaping.
  • the communication node A operates through the analog domain to form an analog beam, and performs beam scanning within a certain range (beam range constructed according to a preset rule, such as a distance principle);
  • the communication node A On the basis of the beam formed by the above analog shaping, when each analog beam is used in the above scanning process, the communication node A further weights a set of reference signal ports (such as CSI-RS) by digital beamforming. deal with. Finally, an equivalent beam formed by carrying the above reference signal and subjected to digital-analog hybrid shaping is scanned within a beam range determined by each analog beam;
  • a set of reference signal ports such as CSI-RS
  • the communication node B feeds back the reference signal to the communication node A, and feeds back the identification information corresponding to one or more digital-analog mixed equivalent beams recommended by the communication node A (recommended according to parameters such as signal strength, signal-to-noise ratio, etc.), and calculates And report the PMI, RI and corresponding CQI for the recommended digital-analog mixed equivalent beam.
  • the communication node B may also report the identification information of the analog beam corresponding to one or more digital-analog mixed equivalent beams recommended by the communication node B, or the information may be implicitly corresponding to one or more digital-analog mixed equivalent beams recommended by the same. In the identification information;
  • the above beam scanning process may be performed in a periodic manner, and the specific parameter configuration may be indicated by the communication node A or the network or according to a preset manner;
  • step 3) The information in step 3) can be reported in a periodic manner, and the specific parameter configuration can be indicated by the communication node A or the network or in a preset manner.
  • this part of the operation can also be used in the following ways:
  • the communication node A operates through the analog domain to form an analog beam, and performs beam scanning within a certain range according to a preset rule, such as a distance principle, a beam range constructed;
  • the reference signal from the digital port can be operated to make the finally formed reference signal and pass through the digital domain and
  • the equivalent beam processed by the analog domain has similar coverage as the pure analog beam, for example:
  • Weighting processing can be performed on the digital port, and a relatively wide beam is formed by a certain weight design
  • the above beam scanning process may be performed in a periodic manner, and the specific parameter configuration may be indicated by the communication node A or the network or according to a preset manner;
  • step 3) The information in step 3) can be reported in a periodic manner, and the specific parameter configuration can be indicated by the communication node A or the network or in a preset manner.
  • the second part including four specific examples, is used to obtain more accurate channel state information required for digital shaping.
  • the two examples in the first part can be used separately or in combination with any of the examples in this section.
  • the first one is better than the first one.
  • the two examples are used in combination.
  • the communication node A performs analog beamforming on a set of reference signal ports (such as CSI-RS) according to one or more analog beams determined by the first majority.
  • a set of reference signal ports such as CSI-RS
  • the digital domain does not perform dynamic spatial weighting processing (dynamic beamforming or precoding);
  • the communication node B calculates and reports channel state information (implicit feedback information) such as PMI/RI/CQI based on the measurement of the above reference signal, or
  • channel matrix or its partial sub-array or partial component
  • Parameters such as correlation matrices, eigenvectors, eigenvalues, etc.
  • the process of transmitting the reference signal by the foregoing communication node A may be performed in a periodic or non-periodic manner, and the specific parameter configuration may be indicated by the communication node A or the network or according to a preset manner;
  • step 2) The information in step 2) can be reported in a periodic or aperiodic manner, and the specific parameter configuration can be indicated by the communication node A or the network or in a preset manner.
  • the communication node A performs a small-range (beam set coverage range) scan using a subset of the available analog beam sets centered on the one or more analog beams determined by the first majority;
  • the communication node B calculates and reports channel state information such as PMI/RI/CQI based on the measurement of the above reference signal, or
  • the explicit feedback information [channel matrix (or a partial sub-array or partial component thereof) or some statistical parameters thereof (such as correlation matrix, eigenvector, eigenvalue, etc.)] is quantized or transformed and then reported;
  • the process of transmitting the reference signal by the foregoing communication node A may be performed in a periodic or non-periodic manner, and the specific parameter configuration may be indicated by the communication node A or the network or according to a preset manner;
  • step 3) The information in step 3) can be reported in a periodic or non-periodic manner, and the specific parameter configuration can be indicated by the communication node A or the network or in a preset manner.
  • the communication node A performs a small-range scan using a subset of the available analog beam sets centered on the one or more analog beams determined by the first majority;
  • node A For each analog beam used in the scan, node A further weights a set of reference signal ports (such as CSI-RS) by digital beamforming. Finally, an equivalent beam formed by carrying the above reference signal and subjected to digital-analog hybrid shaping is scanned within a range determined by each analog beam;
  • a set of reference signal ports such as CSI-RS
  • the communication node B measures the above reference signal, and feeds back to node A one or more of its recommendations.
  • the identification information corresponding to the digital-analog mixed equivalent beam is calculated and reported, and the PMI, RI and corresponding CQI for the recommended digital-analog mixed equivalent beam are calculated and reported.
  • the Node B may also report the identification information of the analog beam corresponding to one or more digital-analog mixed equivalent beams that it recommends, or the information may be implicit in the one or more digital-analog mixed equivalent beams that it recommends.
  • identification information In the identification information;
  • the process of transmitting the reference signal by the foregoing communication node A may be performed in a periodic or non-periodic manner, and the specific parameter configuration may be indicated by the node A or the network or according to a preset manner;
  • step 3) The information in step 3) can be reported in a periodic or non-periodic manner, and the specific parameter configuration can be indicated by the communication node A or the network or in a preset manner.
  • the communication node A is based on one or more analog beam determined by the first majority, and the node A further weights a set of reference signal ports (such as CSI-RS) by digital beamforming. Finally, an equivalent beam formed by carrying the above reference signal and subjected to digital-analog hybrid shaping is scanned within a range determined by each analog beam;
  • the communication node B feeds the reference signal to the node A, and feeds back to the node A the identification information corresponding to one or more digital-analog mixed equivalent beams, and calculates and reports the PMI for the recommended digital-analog mixed equivalent beam. , RI and corresponding CQI;
  • the process of transmitting the reference signal by the foregoing communication node A may be performed in a periodic or aperiodic manner, and the specific parameter configuration may be indicated by the node A or the network or according to a preset manner;
  • step 2) The information in step 2) can be reported in a periodic or aperiodic manner, and the specific parameter configuration can be indicated by the communication node A or the network or in a preset manner.
  • the beam scanning and search tracking methods combine the analog beam scanning and the digital CSI measurement with the feedback to better solve the relative measurement and feedback mechanisms of the analog beam and the digital beam in the related art. Independent, there is a problem of large redundancy and system overhead.
  • the beam scanning and search tracking apparatus provided in Embodiment 3 of the present disclosure is applied to a first communication node, and the apparatus includes:
  • a first processing module 31 configured to construct an analog beam, and digitally shape the analog beam, Forming an equivalent beam
  • a first sending module 32 configured to send, by using the equivalent beam, a reference signal to the second communications node
  • the first receiving module 33 is configured to receive related beam information and corresponding channel state information of the equivalent beam fed back by the second communications node according to the reference signal;
  • the second processing module 34 is configured to perform beam scanning and search tracking by using the beam information and channel state information.
  • the beam scanning and search tracking apparatus transmits a reference signal to a second communication node by using the constructed equivalent beam, and accepts information fed back by the second communication node according to the reference signal, thereby completing beam scanning and searching. Tracking, achieving the purpose of obtaining the channel state information required for digital beamforming while performing analog beam alignment with the second communication node, that is, the measurement and feedback process of the analog beam search and the digital domain channel state information CSI Organically combined, greatly reducing unnecessary operations and reducing the corresponding system overhead.
  • the first processing module 31 can have two specific implementation manners, as follows:
  • the first processing module includes: a first building sub-module for constructing an analog beam; and a first processing sub-module for weighting a set of reference signal ports by digital beamforming; a second building submodule, configured to construct the analog beam into an equivalent beam by using the reference signal port;
  • the first sending module includes: a first scanning submodule, configured to use the equivalent beam to carry the reference signal, and scan within a coverage determined by the corresponding analog beam;
  • the first receiving module is configured to: receive, by the first receiving submodule, identifier information and channel state information of one or more equivalent beams fed back by the second communications node;
  • the coverage of the equivalent beam is smaller than the coverage of the analog beam.
  • the construction of the analog beam is performed in the analog domain to form an analog beam.
  • the specific process can be implemented by related technologies, and will not be described here.
  • the channel state information herein includes PMI, RI, and corresponding CQI.
  • Scanning with an equivalent beam can be periodic or non-periodic.
  • the specific configuration parameters may be indicated by the first communication node or the network; or in a preset manner.
  • the identifier information of the equivalent beam includes identification information of a corresponding analog beam
  • the first receiving module further includes: a second receiving submodule, configured to receive identification information of an analog beam that is fed back by the second communications node, where the identifier information of the analog beam corresponds to the identifier information of the equivalent beam .
  • the feedback analog beam corresponds to the equivalent beam of the feedback.
  • the first processing module includes: a third building sub-module for constructing an analog beam; a second processing sub-module for performing transmit diversity and/or weighting processing on the digital port; and a fourth building sub-module, And configured to construct the analog beam into an equivalent beam by using the digital port;
  • the first receiving module includes: a third receiving submodule, configured to receive identification information and/or signal strength of one or more equivalent beams fed back by the second communications node, and a channel quality indicator;
  • the difference between the coverage of the equivalent beam and the coverage of the corresponding analog beam is less than a preset threshold.
  • the construction of the analog beam is performed in the analog domain to form an analog beam.
  • the specific process can be implemented by related technologies, and will not be described here.
  • the transmit diversity of the digital port may be FSTD (Frequency Switch Transmit Diversity) or SFBC (Space Frequency Block Code) technology.
  • FSTD Frequency Switch Transmit Diversity
  • SFBC Space Frequency Block Code
  • the weighting process performed on the digital port here can form a relatively wide beam.
  • the use of the equivalent beam to transmit the reference signal to the second communication node may be periodic or non-periodic.
  • the specific configuration parameters may be indicated by the first communication node or the network; or in a preset manner.
  • the first processing module includes: a third processing submodule configured to construct an analog beam and perform beam scanning.
  • the embodiment also provides the following two measures:
  • the beam scanning and search tracking apparatus further includes: a shaping module, configured to perform analog beamforming on a set of reference signal ports according to the one or more analog beams determined after the search tracking is completed; the second sending module a reference signal for outputting the reference signal port to the second communication node;
  • a second receiving module configured to receive implicit feedback information or explicit feedback information fed back by the second communication node;
  • the implicit feedback information includes at least one of PMI, RI, and CQI, the explicit feedback information It includes statistical information of the channel matrix or channel matrix after quantization or transformation.
  • the channel matrix may be a complete matrix, a partial sub-array, or a partial component;
  • the statistical information may include at least one of a correlation matrix, a feature vector, and an eigenvalue.
  • the second sending module includes: a sending submodule, configured to send a reference signal by using the analog beam, where the analog beam is not scanned; or
  • the shaping module includes: a fifth building sub-module, configured to determine a one or more analog beams as a center, constructing a beam subset; and a shaping sub-module for each simulation according to the beam subset
  • the beam performs analog beamforming on a set of reference signal ports;
  • the second sending module includes: a second scanning submodule, configured to perform scanning in a coverage formed by the subset of the beams by using the analog beam to carry a reference signal output by the reference signal port.
  • the beam scanning and search tracking apparatus further includes: a third processing module, configured to perform a digital beamforming manner on a set of reference signal ports according to one or more analog beams determined after the search tracking is completed. Weighting processing to construct an equivalent beam;
  • a fourth processing module configured to use the equivalent beam to carry a reference signal output by the reference signal port, perform scanning in a coverage determined by the corresponding analog beam, and send the signal to the second communication node;
  • a receiving module configured to receive identification information and channel state information of one or more equivalent beams fed back by the second communication node.
  • the channel state information herein includes PMI, RI, and corresponding CQI.
  • Scanning with an equivalent beam can be periodic or non-periodic.
  • the specific configuration parameters may be indicated by the first communication node or the network; or in a preset manner.
  • the third processing module includes: a fourth processing sub-module, configured to perform weighting processing on a set of reference signal ports by digital beamforming according to the one or more analog beams determined after the search tracking is completed; a sixth construction submodule configured to construct each determined analog beam as an equivalent beam by using the reference signal port; or
  • a seventh building submodule configured to construct a beam subset centered on one or more analog beams determined after the search tracking is completed; and a fifth processing submodule for pairing by digital beamforming
  • the group reference signal port performs weighting processing; and the eighth construction submodule is configured to construct each analog beam in the beam subset into an equivalent beam by using the reference signal port.
  • the identifier information of the equivalent beam includes the identifier information of the corresponding analog beam;
  • the beam scanning and search tracking apparatus further includes: a fourth receiving module, configured to receive identification information of the analog beam fed back by the second communication node, where the identification information of the analog beam is related to the identification information of the equivalent beam correspond.
  • the beam scanning and search tracking apparatus provided by the embodiments of the present disclosure combines analog beam scanning and digital CSI measurement with feedback to better solve the relative measurement and feedback mechanisms of the analog beam and the digital beam in the related art. Independent, there is a problem of large redundancy and system overhead.
  • Embodiment 4 of the present disclosure provides a first communications node, including:
  • a processor 41 a processor 41; and a memory 43 connected to the processor 41 via a bus interface 42 for storing programs and data used by the processor 41 when performing operations, when the processor 41 calls and When executing the programs and data stored in the memory 43, the following processes are performed:
  • the transceiver 44 is coupled to the bus interface 42 for receiving and transmitting data under the control of the processor 41.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 41 and various circuits of memory represented by memory 43.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 44 can be a plurality of components, including A transmitter and transceiver provide means for communicating with various other devices on a transmission medium.
  • the user interface 45 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 41 is responsible for managing the bus architecture and the usual processing, and the memory 43 can store data used by the processor 41 when performing operations.
  • the beam scanning and search tracking apparatus provided in Embodiment 5 of the present disclosure is applied to a second communication node, and the apparatus includes:
  • a fifth receiving module 51 configured to receive a reference signal that is sent by the first communications node by using the constructed equivalent beam
  • the fifth processing module 52 is configured to perform measurement on the reference signal to obtain related beam information and corresponding channel state information of the equivalent beam that meet the recommended condition;
  • the first feedback module 53 is configured to feed back the related beam information and channel state information to the first communication node.
  • the feedback operation may be periodic or non-periodic, and specific configuration parameters may be indicated by the node A or the network or in a preset manner.
  • the beam scanning and search tracking apparatus receives the reference signal sent by the first communication node, and measures relevant beam information and corresponding channel state information of the equivalent beam that meet the recommended condition, and performs feedback.
  • the first communication node can obtain the channel state information required for digital beamforming while performing analog beam alignment with the local node, that is, the measurement and feedback process of the analog beam search and the digital domain channel state information CSI.
  • the combination of ground can greatly reduce unnecessary operation links and reduce the corresponding system overhead.
  • the fifth receiving module 51 can have two specific implementation manners, as follows:
  • the first receiving module includes: a fourth receiving submodule, configured to receive a reference signal that is sent by the first communications node by means of equivalent beam scanning;
  • the fifth processing module includes: a sixth processing submodule, configured to perform measurement on the reference signal, obtain identification information of an equivalent beam that meets the recommended condition, and corresponding channel state information.
  • the identifier information of the equivalent beam includes identification information of a corresponding analog beam
  • the fifth processing module further includes: a seventh processing submodule, configured to perform measurement on the reference signal, and obtain identifier information corresponding to the equivalent beam corresponding to the recommended condition and the corresponding analog beam.
  • the second receiving module includes: a fifth receiving submodule, configured to receive a reference signal that is sent by the first communications node by using an equivalent beam, where the equivalent beam is not scanned;
  • the fifth processing module includes: an eighth processing submodule, configured to measure the reference signal, obtain identifier information and/or signal strength of the equivalent beam that meets the recommended condition, and corresponding channel quality indicator .
  • the fifth receiving module includes: a sixth receiving submodule, configured to receive a reference signal sent by the first communication node through the constructed equivalent beam and a reference signal sent by the analog beam corresponding to the equivalent beam .
  • the embodiment also provides the following two measures:
  • the beam scanning and search tracking apparatus further includes: a sixth receiving module, configured to receive, by the first communications node, a reference signal that is sent by using an analog beam determined according to the beam information; and a sixth processing module The second reference module is configured to feed the implicit feedback information or the explicit feedback information to the First communication node;
  • the implicit feedback information includes at least one of a precoding matrix indication PMI, a rank indication RI, and a channel quality indicator CQI, the explicit feedback information including statistical information of a channel matrix or a channel matrix after quantization or transformation.
  • the feedback operation may be periodic or aperiodic, and the specific configuration parameters may be indicated by the node A or the network or in a preset manner.
  • the channel matrix may be a complete matrix, a partial sub-array, or a partial component; the statistical information may include at least one of a correlation matrix, a feature vector, and an eigenvalue.
  • the sixth receiving module includes: a seventh receiving submodule, configured to receive the first communications a reference signal sent by the determined analog beam, the analog beam is not scanned; or an eighth receiving submodule, configured to receive the reference signal sent by the first communication node by using a determined analog beam scanning manner .
  • the beam scanning and search tracking apparatus further includes: a seventh receiving module, configured to receive a reference signal that is transmitted by the first communication node and is used according to the determined equivalent beam, and a seventh processing module, For measuring the reference signal, obtaining relevant beam information of the equivalent beam and corresponding channel state information, and a third feedback module, configured to feed back the relevant beam information and channel state information to the first Communication node.
  • a seventh receiving module configured to receive a reference signal that is transmitted by the first communication node and is used according to the determined equivalent beam
  • a seventh processing module For measuring the reference signal, obtaining relevant beam information of the equivalent beam and corresponding channel state information
  • a third feedback module configured to feed back the relevant beam information and channel state information to the first Communication node.
  • the feedback operation may be periodic or aperiodic, and the specific configuration parameters may be indicated by the node A or the network or in a preset manner.
  • the seventh receiving module includes: a ninth receiving submodule, configured to receive, by the first communications node, perform a digital beamforming manner on a set of reference signal ports according to the determined one or more analog beams. Weighting processing, an equivalent beam constructed by the reference signal port, a reference signal transmitted; or
  • a tenth receiving submodule configured to receive, by the first communication node, one or more simulated beams as a center, construct a beam subset; and shape the digital beam according to each analog beam in the beam subset
  • the method performs weighting processing on a set of reference signal ports; an equivalent beam constructed by the reference signal port, and a reference signal transmitted.
  • the identifier information of the equivalent beam includes the identifier information of the corresponding analog beam;
  • the beam scanning and search and tracking device further includes: an eighth processing module, configured to measure the reference signal to obtain an equivalent beam corresponding to the recommended condition, and corresponding identifier information of the analog beam;
  • a fourth feedback module configured to feed back the identification information of the analog beam to the first communication node.
  • the beam scanning and search tracking apparatus provided by the embodiments of the present disclosure combines analog beam scanning and digital CSI measurement with feedback to better solve the relative measurement and feedback mechanisms of the analog beam and the digital beam in the related art. Independent, there is a problem of large redundancy and system overhead.
  • the embodiment provides a second communication node, including:
  • a processor 63 for storing programs and data used by the processor 61 when performing operations, when the processor 61 calls and When executing the programs and data stored in the memory 63, the following process is performed:
  • the correlation beam information and channel state information are fed back to the first communication node by the transceiver 64.
  • the transceiver 64 is coupled to the bus interface 62 for receiving and transmitting data under the control of the processor 61.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 61 and various circuits of memory represented by memory 63.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 64 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 61 is responsible for managing the bus architecture and the usual processing, and the memory 63 can store data used by the processor 61 when performing operations.
  • the embodiment of the present disclosure also provides a communication system including a first communication node as shown in FIG. 4 and a second communication node as shown in FIG. 6.
  • modules/sub-modules/units may be implemented in software for execution by various types of processors.
  • an identified executable code module can include a computer instruction One or more physical or logical blocks, for example, which can be constructed as objects, procedures or functions. Nonetheless, the executable code of the identified modules need not be physically located together, but may include different instructions stored in different bits that, when logically combined, constitute a module and implement the provisions of the module. purpose.
  • the executable code module can be a single instruction or a plurality of instructions, and can even be distributed across multiple different code segments, distributed among different programs, and distributed across multiple memory devices.
  • operational data may be identified within the modules and may be implemented in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed at different locations (including on different storage devices), and may at least partially exist as an electronic signal on a system or network.
  • the module can be implemented by software, considering the level of the existing hardware process, the module can be implemented in software, and the technician can construct a corresponding hardware circuit to implement the corresponding function without considering the cost.
  • the hardware circuitry includes conventional Very Large Scale Integration (VLSI) circuits or gate arrays as well as existing semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI Very Large Scale Integration
  • the modules can also be implemented with programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种波束扫描和搜索跟踪方法及装置,其中,波束扫描和搜索跟踪方法包括:构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束;利用所述等效波束向第二通信节点发送参考信号;接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息;利用所述波束信息及信道状态信息完成波束扫描和搜索跟踪。

Description

一种波束扫描和搜索跟踪方法及装置
相关申请的交叉引用
本申请主张于2016年9月30日提交中国专利局、申请号为201610875295.6的优先权,其全部内容据此通过引用并入本申请。
技术领域
本公开涉及通信技术领域,特别是指一种波束扫描和搜索跟踪方法及装置。
背景技术
鉴于MIMO(Multiple-Input Multiple-Output,多输入多输出)技术对于提高峰值速率与系统频谱利用率的重要作用,LTE(Long Term Evolution,长期演进)/LTE-A(LTE-Advanced,后续长期演进)等无线接入技术标准都是以MIMO+OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)技术为基础构建起来的。MIMO技术的性能增益来自于多天线系统所能获得的空间自由度,因此MIMO技术在标准化发展过程中的一个最重要的演进方向便是维度的扩展。在LTE Rel(RELEASE,版本)-8中,最多可以支持4层的MIMO传输。Rel-9重点对MU(Multi-User,多用户)-MIMO技术进行了增强,TM(Transmission Mode,传输模式)-8的MU-MIMO传输中最多可以支持4个下行数据层。Rel-10则通过8端口信道状态信息-参考信号CSI-RS(Channel State Information Reference Signal)(信道状态信息可以包括CQI-Channel Quality Indicator,信道质量指示;PMI-Precoding Matrix Indicator,预编码矩阵指示;RI-rank indication,秩指示)、URS(UE-specific Reference Signal,用户设备专用参考信号)与多颗粒度码本的引入进一步提高了信道状态信息的空间分辨率,并进一步将SU(Single-User,单用户)-MIMO的传输能力扩展至最多8个数据层。
采用传统PAS(Passive Antenna System,无源天线系统)结构的基站天线系统中,多个天线端口(每个端口对应着独立的射频-中频-基带通道)水平排 列,而每个端口对应的垂直维的多个阵子之间由射频电缆连接。因此现有的MIMO技术只能在水平维通过对不同端口间的相对幅度/相位的调整实现对各个终端信号在水平维空间特性的优化,在垂直维则只能采用统一的扇区级赋形。移动通信系统中引入AAS(Active Antenna System,有源天线系统)技术之后,基站天线系统能够在垂直维获得更大的自由度,能够在三维空间实现对UE(User Equipment,用户设备)级的信号优化。
在上述研究、标准化与天线技术发展基础之上,产业界正在进一步地将MIMO技术向着三维化和大规模化的方向推进。目前,3GPP正在开展FD-MIMO(Full Dimension MIMO,全维度MIMO)技术研究与标准化工作。而学术界则更为前瞻地开展了针对基于更大规模天线阵列的MIMO技术的研究与测试工作。学术研究与初步的信道实测结果表明,Massive(大规模)MIMO技术将能够极大地提升系统频带利用效率,支持更大数量的接入用户。因此各大研究组织均将Massive MIMO技术视为下一代移动通信系统中最有潜力的物理层技术之一。
Massive MIMO技术需要使用大规模天线阵列。尽管采用全数字阵列可以实现最大化的空间分辨率以及最优MU-MIMO性能,但是这种结构需要大量的AD/DA(模数/数模)转换期间以及大量完整的射频-基带处理通道,无论是设备成本还是基带处理复杂度都将是巨大的负担。这一问题在高频段、大带宽时显得尤为突出。为了降低Massive MIMO技术的实现成本与设备复杂度,近年来有人提出采用数模混合波束赋形技术。所谓数模混合波束赋形,是指在传统的数字域波束赋形基础上,在靠近天线系统的前端,在射频信号上增加一级波束赋形。模拟赋形能够通过较为简单的方式,使发送信号与信道实现较为粗略的匹配。模拟赋形后形成的等效信道的维度小于实际的天线数量,因此其后所需的AD/DA转换器件、数字通道数以及相应的基带处理复杂度都可以大为降低。模拟赋形部分残余的干扰可以在数字域再进行一次处理,从而保证MU-MIMO传输的质量。
相对于全数字赋形而言,数模混合波束赋形是性能与复杂度的一种折中方案,在高频段大带宽或天线数量很大的系统中具有较高的实用前景。
MIMO技术中,尤其是对MU-MIMO技术而言,网络侧能够获得的信道状态信息精度将直接决定预编码/波束赋形的精度与调度算法的效能,从而影响到整体系统性能。因此,信道状态信息的获取一直是MIMO技术标准化中最核心的问题之一。
根据目前的LTE信号结构,由于参考信号都是安插在基带的,因此可以通过信道估计获取数字赋形所需的信道状态。但是,由于模拟赋形形成的等效数字通道数少于实际天线数,通过参考信号获得的信道矩阵的维度已经远远低于天线端所经历的完整信道矩阵的维度。因此,数字赋形所能获得的空间分辨率以及干扰抑制能力受到了一定的损失。对于模拟赋形部分而言,其处理过程更靠近物理天线一侧,相对于数字赋形而言,其MIMO信道具有更高的自由度。然而,由于没有办法对基带插入的参考信号进行估计,因而无论对FDD(频分双工)还是TDD(时分双工),其模拟赋形部分都无法直接利用数字域获得的信道状态信息。
因此,一般而言数模混合波束赋形系统中,对模拟波束的选择一般只能通过搜索(或称训练)的方式进行。在这一过程中,发送端发射一组波束,接收端也使用一组预定的波束进行试探性的接收,以判断出最佳的收发波束组合。当信道条件发生变化(如遮挡)时,系统将重新进入波束搜索阶段,需要对潜在的收发波束组合进行遍历搜索。
对于数模混合波束赋形系统,现有的波束搜索与跟踪过程基本是针对模拟域进行的,主要用于模拟波束的选择。数字域信道状态信息的测量与反馈过程与模拟域操作相对独立,一般发生于模拟波束训练与跟踪上之后,针对已经建立起来的收发波束进行参考信号的测量以及信道状态信息的计算和反馈。这样两套分别针对模拟和数字域的相对独立的测量和反馈机制存在较大的冗余和系统开销。
发明内容
本公开的目的在于提供一种波束扫描和搜索跟踪方法及装置,解决相关技术中模拟波束和数字波束的测量和反馈机制相对独立,存在较大冗余和系统开 销的问题。
为了解决上述技术问题,本公开实施例提供一种波束扫描和搜索跟踪方法,应用于第一通信节点,包括:
构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束;
利用所述等效波束向第二通信节点发送参考信号;
接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息;
利用所述波束信息及信道状态信息完成波束扫描和搜索跟踪。
可选的,所述构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束的步骤包括:
构建模拟波束;
通过数字波束赋形的方式对一组参考信号端口进行加权处理;
利用所述参考信号端口将所述模拟波束构建为等效波束;
所述利用所述等效波束向第二通信节点发送参考信号的步骤包括:
利用所述等效波束承载所述参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描;
所述接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息的步骤包括:
接收所述第二通信节点反馈的一个或多个等效波束的标识信息及信道状态信息;
其中,所述等效波束的覆盖范围小于对应所述模拟波束的覆盖范围。
可选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息的步骤还包括:
接收所述第二通信节点反馈的模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
可选的,所述构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束的步骤包括:
构建模拟波束;
将数字端口进行发射分集和/或加权处理;
利用所述数字端口将所述模拟波束构建为等效波束;
所述接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息的步骤包括:
接收所述第二通信节点反馈的一个或多个等效波束的标识信息和/或信号强度,及信道质量指标。
可选的,所述构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束的步骤包括:
构建模拟波束,并进行波束扫描。
可选的,所述波束扫描和搜索跟踪方法还包括:
根据完成搜索跟踪后确定的一个或多个模拟波束对一组参考信号端口进行模拟波束赋形;
将所述参考信号端口输出的参考信号发送至所述第二通信节点;
接收所述第二通信节点反馈的隐式反馈信息或显式反馈信息;
所述隐式反馈信息包括预编码矩阵指示PMI、秩指示RI和信道质量指示CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
可选的,所述将所述参考信号端口输出的参考信号发送至所述第二通信节点的步骤包括:
利用所述模拟波束发送参考信号,所述模拟波束未进行扫描;或者
所述根据完成搜索跟踪后确定的一个或多个模拟波束对一组参考信号端口进行模拟波束赋形的步骤包括:
以确定的一个或多个模拟波束为中心,构建一个波束子集;
根据所述波束子集中的每一模拟波束对一组参考信号端口进行模拟波束赋形;
所述将所述参考信号端口输出的参考信号发送至所述第二通信节点的步骤包括:
利用所述模拟波束承载所述参考信号端口输出的参考信号,在所述波束子 集构成的覆盖范围内进行扫描。
可选的,所述波束扫描和搜索跟踪方法还包括:
根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,构建等效波束;
利用所述等效波束承载所述参考信号端口输出的参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描,发送至所述第二通信节点;
接收所述第二通信节点反馈的一个或多个等效波束的标识信息及信道状态信息。
可选的,所述根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,构建等效波束的步骤包括:
根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;
利用所述参考信号端口将每一确定的模拟波束构建为等效波束;或者
以完成搜索跟踪后确定的一个或多个模拟波束为中心,构建一个波束子集;
通过数字波束赋形的方式对一组参考信号端口进行加权处理;
利用所述参考信号端口将所述波束子集中的每一模拟波束构建为等效波束。
可选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述波束扫描和搜索跟踪方法还包括:
接收所述第二通信节点反馈的模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
本公开还提供了一种波束扫描和搜索跟踪方法,应用于第二通信节点,包括:
接收第一通信节点通过构建的等效波束发送的参考信号;
对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息;
将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
可选的,所述接收第一通信节点通过构建的等效波束发送的参考信号的步 骤包括:
接收所述第一通信节点通过等效波束扫描的方式,发送的参考信号;
所述对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息的步骤包括:
对所述参考信号进行测量,得到符合推荐条件的等效波束的标识信息,以及对应的信道状态信息。
可选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息的步骤还包括:
对所述参考信号进行测量,得到与符合推荐条件的等效波束,相对应的模拟波束的标识信息。
可选的,所述接收第一通信节点通过构建的等效波束发送的参考信号的步骤包括:
接收所述第一通信节点通过等效波束发送的参考信号,所述等效波束未进行扫描;
所述对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息的步骤包括:
对所述参考信号进行测量,得到符合推荐条件的等效波束的标识信息和/或信号强度,及对应的信道质量指标。
可选的,所述接收第一通信节点通过构建的等效波束发送的参考信号的步骤包括:
接收第一通信节点通过构建的等效波束发送的参考信号及与所述等效波束相对应的模拟波束发送的参考信号。
可选的,所述波束扫描和搜索跟踪方法还包括:
接收所述第一通信节点利用,根据所述波束信息确定的模拟波束,发送的参考信号;
测量所述参考信号,得到与所述模拟波束对应的隐式反馈信息或显式反馈信息;
将所述隐式反馈信息或显式反馈信息反馈至所述第一通信节点;
所述隐式反馈信息包括预编码矩阵指示PMI、秩指示RI和信道质量指示CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
可选的,所述接收所述第一通信节点利用,根据所述波束信息确定的模拟波束,发送的参考信号的步骤包括:
接收所述第一通信节点,利用确定的模拟波束发送的参考信号,所述模拟波束未进行扫描;或者
接收所述第一通信节点,通过确定的模拟波束扫描的方式,发送的参考信号。
可选的,所述波束扫描和搜索跟踪方法还包括:
接收第一通信节点利用,根据确定的模拟波束构建的等效波束,发送的参考信号;
测量所述参考信号,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息;
将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
可选的,所述接收第一通信节点利用,根据确定的模拟波束构建的等效波束,发送的参考信号的步骤包括:
接收第一通信节点利用,根据确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,由所述参考信号端口构建的等效波束,发送的参考信号;或者
接收第一通信节点利用,以确定的一个或多个模拟波束为中心,构建一个波束子集;根据所述波束子集中的每一模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;由所述参考信号端口构建的等效波束,发送的参考信号。
可选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述波束扫描和搜索跟踪方法还包括:
测量所述参考信号,得到与符合推荐条件的等效波束,相对应的模拟波束 的标识信息;
将所述模拟波束的标识信息反馈至所述第一通信节点。
本公开还提供了一种波束扫描和搜索跟踪装置,应用于第一通信节点,包括:
第一处理模块,用于构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束;
第一发送模块,用于利用所述等效波束向第二通信节点发送参考信号;
第一接收模块,用于接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息;
第二处理模块,用于利用所述波束信息及信道状态信息完成波束扫描和搜索跟踪。
可选的,所述第一处理模块包括:
第一构建子模块,用于构建模拟波束;
第一处理子模块,用于通过数字波束赋形的方式对一组参考信号端口进行加权处理;
第二构建子模块,用于利用所述参考信号端口将所述模拟波束构建为等效波束;
所述第一发送模块包括:
第一扫描子模块,用于利用所述等效波束承载所述参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描;
所述第一接收模块,包括:
第一接收子模块,用于接收所述第二通信节点反馈的一个或多个等效波束的标识信息及信道状态信息;
其中,所述等效波束的覆盖范围小于对应所述模拟波束的覆盖范围。
可选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述第一接收模块还包括:
第二接收子模块,用于接收所述第二通信节点反馈的模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
可选的,所述第一处理模块包括:
第三构建子模块,用于构建模拟波束;
第二处理子模块,用于将数字端口进行发射分集和/或加权处理;
第四构建子模块,用于利用所述数字端口将所述模拟波束构建为等效波束;
所述第一接收模块包括:
第三接收子模块,用于接收所述第二通信节点反馈的一个或多个等效波束的标识信息和/或信号强度,及信道质量指标。
可选的,所述第一处理模块包括:
第三处理子模块,用于构建模拟波束,并进行波束扫描。
可选的,所述波束扫描和搜索跟踪装置还包括:
赋形模块,用于根据完成搜索跟踪后确定的一个或多个模拟波束对一组参考信号端口进行模拟波束赋形;
第二发送模块,用于将所述参考信号端口输出的参考信号发送至所述第二通信节点;
第二接收模块,用于接收所述第二通信节点反馈的隐式反馈信息或显式反馈信息;
所述隐式反馈信息包括PMI、RI和CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
可选的,所述第二发送模块包括:
发送子模块,用于利用所述模拟波束发送参考信号,所述模拟波束未进行扫描;或者
所述赋形模块包括:
第五构建子模块,用于以确定的一个或多个模拟波束为中心,构建一个波束子集;
赋形子模块,用于根据所述波束子集中的每一模拟波束对一组参考信号端口进行模拟波束赋形;
所述第二发送模块包括:
第二扫描子模块,用于利用所述模拟波束承载所述参考信号端口输出的参考信号,在所述波束子集构成的覆盖范围内进行扫描。
可选的,所述波束扫描和搜索跟踪装置还包括:
第三处理模块,用于根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,构建等效波束;
第四处理模块,用于利用所述等效波束承载所述参考信号端口输出的参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描,发送至所述第二通信节点;
第三接收模块,用于接收所述第二通信节点反馈的一个或多个等效波束的标识信息及信道状态信息。
可选的,所述第三处理模块包括:
第四处理子模块,用于根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;
第六构建子模块,用于利用所述参考信号端口将每一确定的模拟波束构建为等效波束;或者
第七构建子模块,用于以完成搜索跟踪后确定的一个或多个模拟波束为中心,构建一个波束子集;
第五处理子模块,用于通过数字波束赋形的方式对一组参考信号端口进行加权处理;
第八构建子模块,用于利用所述参考信号端口将所述波束子集中的每一模拟波束构建为等效波束。
可选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述波束扫描和搜索跟踪装置还包括:
第四接收模块,用于接收所述第二通信节点反馈的模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
本公开还提供了一种波束扫描和搜索跟踪装置,应用于第二通信节点,包括:
第五接收模块,用于接收第一通信节点通过构建的等效波束发送的参考信号;
第五处理模块,用于对所述参考信号进行测量,得到符合推荐条件的等效 波束的相关波束信息及对应的信道状态信息;
第一反馈模块,用于将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
可选的,所述第五接收模块包括:
第四接收子模块,用于接收所述第一通信节点通过等效波束扫描的方式,发送的参考信号;
所述第五处理模块包括:
第六处理子模块,用于对所述参考信号进行测量,得到符合推荐条件的等效波束的标识信息,以及对应的信道状态信息。
可选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述第五处理模块还包括:
第七处理子模块,用于对所述参考信号进行测量,得到与符合推荐条件的等效波束,相对应的模拟波束的标识信息。
可选的,所述第五接收模块包括:
第五接收子模块,用于接收所述第一通信节点通过等效波束发送的参考信号,所述等效波束未进行扫描;
所述第五处理模块包括:
第八处理子模块,用于对所述参考信号进行测量,得到符合推荐条件的等效波束的标识信息和/或信号强度,及对应的信道质量指标。
可选的,所述第五接收模块包括:
第六接收子模块,用于接收第一通信节点通过构建的等效波束发送的参考信号及与所述等效波束相对应的模拟波束发送的参考信号。
可选的,所述波束扫描和搜索跟踪装置还包括:
第六接收模块,用于接收所述第一通信节点利用,根据所述波束信息确定的模拟波束,发送的参考信号;
第六处理模块,用于测量所述参考信号,得到与所述模拟波束对应的隐式反馈信息或显式反馈信息;
第二反馈模块,用于将所述隐式反馈信息或显式反馈信息反馈至所述第一 通信节点;
所述隐式反馈信息包括预编码矩阵指示PMI、秩指示RI和信道质量指示CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
可选的,所述第六接收模块包括:
第七接收子模块,用于接收所述第一通信节点,利用确定的模拟波束发送的参考信号,所述模拟波束未进行扫描;或者
第八接收子模块,用于接收所述第一通信节点,通过确定的模拟波束扫描的方式,发送的参考信号。
可选的,所述波束扫描和搜索跟踪装置还包括:
第七接收模块,用于接收第一通信节点利用,根据确定的模拟波束构建的等效波束,发送的参考信号;
第七处理模块,用于测量所述参考信号,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息;
第三反馈模块,用于将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
可选的,所述第七接收模块包括:
第九接收子模块,用于接收第一通信节点利用,根据确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,由所述参考信号端口构建的等效波束,发送的参考信号;或者
第十接收子模块,用于接收第一通信节点利用,以确定的一个或多个模拟波束为中心,构建一个波束子集;根据所述波束子集中的每一模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;由所述参考信号端口构建的等效波束,发送的参考信号。
可选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述波束扫描和搜索跟踪装置还包括:
第八处理模块,用于测量所述参考信号,得到与符合推荐条件的等效波束,相对应的模拟波束的标识信息;
第四反馈模块,用于将所述模拟波束的标识信息反馈至所述第一通信节点。
本公开还提供了一种第一通信节点,包括收发机,处理器以及存储器,其中所述处理器,通过执行所述存储器中所存储的程序或数据,用于构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束;所述收发机,用于利用所述等效波束向第二通信节点发送参考信号,和接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息;所述处理器,还用于利用所述收发机接收的所述波束信息及信道状态信息完成波束扫描和搜索跟踪。
本公开还提供了一种第二通信节点,包括收发机,处理器以及存储器,其中,所述收发机,用于接收第一通信节点通过构建的等效波束发送的参考信号;所述处理器,通过执行所述存储器中所存储的程序或数据,用于对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息,将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
本公开的上述技术方案的有益效果如下:
上述方案中,所述波束扫描和搜索跟踪方法通过利用构建的等效波束向第二通信节点发送参考信号,并接受第二通信节点根据参考信号反馈的信息,进而完成波束扫描和搜索跟踪,达到了与第二通信节点间进行模拟波束对齐的同时,得到数字波束赋形所需的信道状态信息的目的,也就是能够将模拟波束搜索与数字域信道状态信息CSI的测量与反馈过程有机地结合起来,大大减少不必要的操作环节,降低相应的系统开销。
附图说明
图1为本公开实施例一的波束扫描和搜索跟踪方法流程示意图;
图2为本公开实施例二的波束扫描和搜索跟踪方法流程示意图;
图3为本公开实施例三的波束扫描和搜索跟踪装置结构示意图;
图4为本公开实施例四的第一通信节点结构示意图;
图5为本公开实施例五的波束扫描和搜索跟踪装置结构示意图;
图6为本公开实施例六的第二通信节点结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开针对现有的技术中模拟波束和数字波束的测量和反馈机制相对独立,存在较大冗余和系统开销的问题,提供了多种解决方案,具体如下:
实施例一
如图1所示,本公开实施例一提供的波束扫描和搜索跟踪方法,应用于第一通信节点,所述方法包括:
步骤11:构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束;
步骤12:利用所述等效波束向第二通信节点发送参考信号;
步骤13:接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息;
步骤14:利用所述波束信息及信道状态信息完成波束扫描和搜索跟踪。
本公开实施例一提供的所述波束扫描和搜索跟踪方法通过利用构建的等效波束向第二通信节点发送参考信号,并接受第二通信节点根据参考信号反馈的信息,进而完成波束扫描和搜索跟踪,达到了与第二通信节点间进行模拟波束对齐的同时,得到数字波束赋形所需的信道状态信息的目的,也就是能够将模拟波束搜索与数字域信道状态信息CSI的测量与反馈过程有机地结合起来,大大减少不必要的操作环节,降低相应的系统开销。
步骤11可有如下两种具体实现方式。
第一种,所述构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束的步骤包括:构建模拟波束;通过数字波束赋形的方式对一组参考信号端口进行加权处理;利用所述参考信号端口将所述模拟波束构建为等效波束;
对应的,所述利用所述等效波束向第二通信节点发送参考信号的步骤包括:利用所述等效波束承载所述参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描;
所述接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息的步骤包括:接收所述第二通信节点反馈的一个 或多个等效波束的标识信息及信道状态信息;
其中,所述等效波束的覆盖范围小于对应所述模拟波束的覆盖范围。
构建模拟波束也就是进行模拟域操作,形成模拟波束,具体流程可采用相关技术实现,在此不再赘述。
此处的信道状态信息包括PMI、RI以及对应的CQI。
利用等效波束进行扫描可以是周期性的,也可以是非周期性的。具体的配置参数可由第一通信节点或网络进行指示;或者按照预先设定的方式进行。
优选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息的步骤还包括:接收所述第二通信节点反馈的模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
反馈的模拟波束与反馈的等效波束相对应。
第二种,所述构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束的步骤包括:构建模拟波束;将数字端口进行发射分集和/或加权处理;利用所述数字端口将所述模拟波束构建为等效波束;
对应的,所述接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息的步骤包括:接收所述第二通信节点反馈的一个或多个等效波束的标识信息和/或信号强度,及信道质量指标;
其中,所述等效波束的覆盖范围与对应所述模拟波束的覆盖范围间的差值小于预设阈值。
构建模拟波束也就是进行模拟域操作,形成模拟波束,具体流程可采用相关技术实现,在此不再赘述。
将数字端口进行发射分集可以是FSTD(Frequency Switch Transmit Diversity,频率切换发送分集)或SFBC(Space Frequency Block Code,空频区块)技术等。
此处对数字端口进行的加权处理,能够形成相对较宽的波束。
利用等效波束向第二通信节点发送参考信号可以是周期性的,也可以是非 周期性的。具体的配置参数可由第一通信节点或网络进行指示;或者按照预先设定的方式进行。
进一步的,所述构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束的步骤包括:构建模拟波束,并进行波束扫描。
可以理解为常规的模拟波束的选择过程(搜索跟踪)。
为了能够得到更加精准的结果,本实施例还提供了如下两种措施。
第一种,所述波束扫描和搜索跟踪方法还包括:根据完成搜索跟踪后确定的一个或多个模拟波束对一组参考信号端口进行模拟波束赋形;将所述参考信号端口输出的参考信号发送至所述第二通信节点;接收所述第二通信节点反馈的隐式反馈信息或显式反馈信息;所述隐式反馈信息包括预编码矩阵指示PMI、秩指示RI和信道质量指示CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
此处信道矩阵可以是完整的矩阵,也可以是部分子阵,还可以是部分分量;统计信息可以包括相关矩阵、特征向量、特征值中的至少一种。
其中,所述将所述参考信号端口输出的参考信号发送至所述第二通信节点的步骤包括:利用所述模拟波束发送参考信号,所述模拟波束未进行扫描。或者所述根据完成搜索跟踪后确定的一个或多个模拟波束对一组参考信号端口进行模拟波束赋形的步骤包括:以确定的一个或多个模拟波束为中心,构建一个波束子集;根据所述波束子集中的每一模拟波束对一组参考信号端口进行模拟波束赋形;对应的,所述将所述参考信号端口输出的参考信号发送至所述第二通信节点的步骤包括:利用所述模拟波束承载所述参考信号端口输出的参考信号,在所述波束子集构成的覆盖范围内进行扫描。
第二种,所述波束扫描和搜索跟踪方法还包括:根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,构建等效波束;利用所述等效波束承载所述参考信号端口输出的参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描,发送至所述第二通信节点;接收所述第二通信节点反馈的一个或多个等效波束的标识信息及信道状态信息;
其中,所述等效波束的覆盖范围小于对应所述模拟波束的覆盖范围。
此处的信道状态信息包括PMI、RI以及对应的CQI。
利用等效波束进行扫描可以是周期性的,也可以是非周期性的。具体的配置参数可由第一通信节点或网络进行指示;或者按照预先设定的方式进行。
具体的,所述根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,构建等效波束的步骤包括:
根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;利用所述参考信号端口将每一确定的模拟波束构建为等效波束;或者
以完成搜索跟踪后确定的一个或多个模拟波束为中心,构建一个波束子集;通过数字波束赋形的方式对一组参考信号端口进行加权处理;利用所述参考信号端口将所述波束子集中的每一模拟波束构建为等效波束。
进一步的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息。或者所述波束扫描和搜索跟踪方法还包括:接收所述第二通信节点反馈的模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
综上所述,本公开实施例提供的波束扫描和搜索跟踪方法通过将模拟波束扫描及数字CSI测量与反馈相结合,较好的解决了相关技术中模拟波束和数字波束的测量和反馈机制相对独立,存在较大冗余和系统开销的问题。
实施例二
如图2所示,本公开实施例二提供的波束扫描和搜索跟踪方法,应用于第二通信节点,所述方法包括:
步骤21:接收第一通信节点通过构建的等效波束发送的参考信号;
步骤22:对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息;
步骤23:将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
此处,反馈操作可以是周期性的,也可以是非周期性的,具体的配置参数可由节点A或网络进行指示或按照预先设定的方式进行。
本公开实施例二提供的所述波束扫描和搜索跟踪方法通过接收第一通信节点发送的参考信号,测量得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息,并进行反馈,使得第一通信节点能够在与本节点进行模拟 波束对齐的同时,得到数字波束赋形所需的信道状态信息的目的,也就是将模拟波束搜索与数字域信道状态信息CSI的测量与反馈过程有机地结合起来,可大大减少不必要的操作环节,降低相应的系统开销。
步骤21可有两种具体实现方式,如下:
第一种,所述接收第一通信节点通过构建的等效波束发送的参考信号的步骤包括:接收所述第一通信节点通过等效波束扫描的方式,发送的参考信号;
对应的,所述对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息的步骤包括:对所述参考信号进行测量,得到符合推荐条件的等效波束的标识信息,以及对应的信道状态信息。
优选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息的步骤还包括:对所述参考信号进行测量,得到与符合推荐条件的等效波束,相对应的模拟波束的标识信息。
第二种,所述接收第一通信节点通过构建的等效波束发送的参考信号的步骤包括:接收所述第一通信节点通过等效波束发送的参考信号,所述等效波束未进行扫描;
对应的,所述对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息的步骤包括:对所述参考信号进行测量,得到符合推荐条件的等效波束的标识信息和/或信号强度,及对应的信道质量指标。
进一步的,所述接收第一通信节点通过构建的等效波束发送的参考信号的步骤包括:接收第一通信节点通过构建的等效波束发送的参考信号及与所述等效波束相对应的模拟波束发送的参考信号。
为了能够得到更加精准的结果,本实施例还提供了如下两种措施:
第一种,所述波束扫描和搜索跟踪方法还包括:接收所述第一通信节点利用,根据所述波束信息确定的模拟波束,发送的参考信号;测量所述参考信号,得到与所述模拟波束对应的隐式反馈信息或显式反馈信息;将所述隐式反馈信息或显式反馈信息反馈至所述第一通信节点;所述隐式反馈信息包括预编码矩 阵指示PMI、秩指示RI和信道质量指示CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
此处反馈操作可以是周期性的,也可以是非周期性的,具体的配置参数可由节点A或网络进行指示或按照预先设定的方式进行。
信道矩阵可以是完整的矩阵,也可以是部分子阵,还可以是部分分量;统计信息可以包括相关矩阵、特征向量、特征值中的至少一种。
其中,所述接收所述第一通信节点利用,根据所述波束信息确定的模拟波束,发送的参考信号的步骤包括:接收所述第一通信节点,利用确定的模拟波束发送的参考信号,所述模拟波束未进行扫描;或者接收所述第一通信节点,通过确定的模拟波束扫描的方式,发送的参考信号。
第二种,所述波束扫描和搜索跟踪方法还包括:接收第一通信节点利用,根据确定的模拟波束构建的等效波束,发送的参考信号;测量所述参考信号,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息;将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
此处反馈操作可以是周期性的,也可以是非周期性的,具体的配置参数可由节点A或网络进行指示或按照预先设定的方式进行。
具体的,所述接收第一通信节点利用,根据确定的模拟波束构建的等效波束,发送的参考信号的步骤包括:接收第一通信节点利用,根据确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,由所述参考信号端口构建的等效波束,发送的参考信号;或者
接收第一通信节点利用,以确定的一个或多个模拟波束为中心,构建一个波束子集;根据所述波束子集中的每一模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;由所述参考信号端口构建的等效波束,发送的参考信号。
进一步的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述波束扫描和搜索跟踪方法还包括:测量所述参考信号,得到与符合推荐条件的等效波束,相对应的模拟波束的标识信息;将所述模拟波束的标识信息反馈至所述第一通信节点。
综上所述,本公开实施例提供的波束扫描和搜索跟踪方法通过将模拟波束扫描及数字CSI测量与反馈相结合,较好的解决了相关技术中模拟波束和数字波束的测量和反馈机制相对独立,存在较大冗余和系统开销的问题。
下面结合第一通信节点(以下描述为通信节点A)和第二通信节点(以下描述为通信节点B)双方对本公开实施例提供的波束扫描和搜索跟踪方法进行进一步说明。
概括来说,本公开将模拟波束搜索与数字域CSI测量与反馈过程有机地结合起来,来减少不必要的操作环节和相应的系统开销;具体如下,主要包括两大部分:
第一大部分,包括两种具体实例,用于确定模拟波束,同时得到数字赋形所需的信道状态信息。
第一实例
1)通信节点A通过模拟域操作,形成模拟波束,并在一定范围(根据预设规则,如距离原则,构建的波束范围)内进行波束扫描;
2)在上述模拟赋形形成的波束基础之上,上述扫描过程中使用每一个模拟波束时,通信节点A进一步通过数字波束赋形的方式对一组参考信号端口(如CSI-RS)进行加权处理。最终,承载上述参考信号且经过了数模混合赋形所形成的等效波束在每个模拟波束确定的波束范围内进行扫描;
3)通信节点B对上述参考信号的测量,向通信节点A反馈其推荐的一个或多个数模混合等效波束所对应的标识信息(根据信号强度、信噪比等参数进行推荐),计算并上报针对所推荐的数模混合等效波束的PMI、RI以及相应的CQI。通信节点B还可以上报其推荐的一个或多个数模混合等效波束所对应的模拟波束的标识信息,或者该信息可隐含在其推荐的一个或多个数模混合等效波束所对应的标识信息之中;
4)上述波束扫描过程可以为周期方式进行,具体的参数配置可由通信节点A或网络进行指示或按照预先设定的方式进行;
5)步骤3)中的信息可采用周期性的方式进行上报,具体的参数配置可由通信节点A或网络进行指示或按照预先设定的方式进行。
第二实例
除了第一实例中的方式,本部分操作还可以采用以下方式:
1)通信节点A通过模拟域操作,形成模拟波束,并在一定范围根据预设规则,如距离原则,构建的波束范围)内进行波束扫描;
2)在上述模拟赋形形成的波束基础之上,上述扫描过程中使用每一个模拟波束时,可以对来自数字端口的参考信号进行一定操作,使最终形成的承载参考信号且经过了数字域和模拟域处理的等效波束具有和单纯模拟波束类似的覆盖范围,例如:
a.可以在数字端口(其方向图由模拟波束确定)上,进行发射分集(如FSTD或SFBC等);
b.可以在数字端口上进行加权处理,通过一定的权值设计,形成相对较宽的波束;
3)通信节点B对上述参考信号的测量,向通信节点A反馈其推荐的一个或多个等效波束所对应的标识信息,或者还可上报其对应的信号强度;
4)上述波束扫描过程可以为周期方式进行,具体的参数配置可由通信节点A或网络进行指示或按照预先设定的方式进行;
5)步骤3)中的信息可采用周期性的方式进行上报,具体的参数配置可由通信节点A或网络进行指示或按照预先设定的方式进行。
第二大部分,包括四种具体实例,用于得到更为精准的数字赋形所需的信道状态信息。
第一大部分中的两种实例可分别单独使用,也可与本部分中任一实例进行组合使用,但是,对于本部分中的第四实例,较优的是与第一大部分中的第二实例组合使用。
第一实例
1)通信节点A根据第一大部分确定的一个或多个模拟波束对一组参考信号端口(如CSI-RS)进行模拟波束赋形。针对上述参考信号,数字域不进行动态的空域加权处理(动态波束赋形或预编码);
2)通信节点B基于对上述参考信号的测量,计算并上报PMI/RI/CQI等信道状态信息(隐式反馈信息),或者
对显式反馈信息[信道矩阵(或其部分子阵或部分分量)或其某些统计 参数(如相关矩阵、特征向量、特征值等)]进行量化或变换之后进行上报;
3)上述通信节点A发送参考信号的过程可以以周期性或非周期性的方式进行,具体的参数配置可由通信节点A或网络进行指示或按照预先设定的方式进行;
4)步骤2)中的信息可采用周期性或非周期性的方式进行上报,具体的参数配置可由通信节点A或网络进行指示或按照预先设定的方式进行。
第二实例
1)通信节点A根据第一大部分确定的一个或多个模拟波束为中心,使用可用的模拟波束集合的一个子集进行小范围(波束集合覆盖的范围)扫描;
2)根据扫描中使用的每一个模拟波束,分别对一组参考信号端口(如CSI-RS)进行模拟波束赋形。针对上述参考信号,数字域不进行动态的空域加权处理(动态波束赋形或预编码);
3)通信节点B基于对上述参考信号的测量,计算并上报PMI/RI/CQI等信道状态信息,或者
对显式反馈信息[信道矩阵(或其部分子阵或部分分量)或其某些统计参数(如相关矩阵、特征向量、特征值等)]进行量化或变换之后进行上报;
4)上述通信节点A发送参考信号的过程可以以周期性或非周期性的方式进行,具体的参数配置可由通信节点A或网络进行指示或按照预先设定的方式进行;
5)步骤3)中的信息可采用周期性或非周期性的方式进行上报,具体的参数配置可由通信节点A或网络进行指示或按照预先设定的方式进行。
第三实例
1)通信节点A根据第一大部分确定的一个或多个模拟波束为中心,使用可用的模拟波束集合的一个子集进行小范围扫描;
2)对于扫描中使用的每一个模拟波束,节点A进一步通过数字波束赋形的方式对一组参考信号端口(如CSI-RS)进行加权处理。最终,承载上述参考信号且经过了数模混合赋形所形成的等效波束在每个模拟波束确定的范围内进行扫描;
3)通信节点B对上述参考信号的测量,向节点A反馈其推荐的一个或多 个数模混合等效波束所对应的标识信息,计算并上报针对所推荐的数模混合等效波束的PMI、RI以及相应的CQI。节点B还可以上报其推荐的一个或多个数模混合等效波束所对应的模拟波束的标识信息,或者该信息可隐含在其推荐的一个或多个数模混合等效波束所对应的标识信息之中;
4)上述通信节点A发送参考信号的过程可以以周期性或非周期性的方式进行,具体的参数配置可由节点A或网络进行指示或按照预先设定的方式进行;
5)步骤3)中的信息可采用周期性或非周期性的方式进行上报,具体的参数配置可由通信节点A或网络进行指示或按照预先设定的方式进行。
第四实例
1)通信节点A根据第一大部分确定的一个或多个模拟波束基础之上,节点A进一步通过数字波束赋形的方式对一组参考信号端口(如CSI-RS)进行加权处理。最终,承载上述参考信号且经过了数模混合赋形所形成的等效波束在每个模拟波束确定的范围内进行扫描;
2)通信节点B对上述参考信号的测量,向节点A反馈其推荐的一个或多个数模混合等效波束所对应的标识信息,计算并上报针对所推荐的数模混合等效波束的PMI、RI以及相应的CQI;
3)上述通信节点A发送参考信号的过程可以以周期性或非周期性的方式进行,具体的参数配置可由节点A或网络进行指示或按照预先设定的方式进行;
4)步骤2)中的信息可采用周期性或非周期性的方式进行上报,具体的参数配置可由通信节点A或网络进行指示或按照预先设定的方式进行。
综上所述,本公开实施例提供的波束扫描和搜索跟踪方法通过将模拟波束扫描及数字CSI测量与反馈相结合,较好的解决了相关技术中模拟波束和数字波束的测量和反馈机制相对独立,存在较大冗余和系统开销的问题。
实施例三
如图3所示,本公开实施例三提供的波束扫描和搜索跟踪装置,应用于第一通信节点,所述装置包括:
第一处理模块31,用于构建模拟波束,并对所述模拟波束进行数字赋形, 形成等效波束;
第一发送模块32,用于利用所述等效波束向第二通信节点发送参考信号;
第一接收模块33,用于接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息;
第二处理模块34,用于利用所述波束信息及信道状态信息完成波束扫描和搜索跟踪。
本公开实施例三提供的所述波束扫描和搜索跟踪装置通过利用构建的等效波束向第二通信节点发送参考信号,并接受第二通信节点根据参考信号反馈的信息,进而完成波束扫描和搜索跟踪,达到了与第二通信节点间进行模拟波束对齐的同时,得到数字波束赋形所需的信道状态信息的目的,也就是能够将模拟波束搜索与数字域信道状态信息CSI的测量与反馈过程有机地结合起来,大大减少不必要的操作环节,降低相应的系统开销。
第一处理模块31可有两种具体实现方式,如下:
第一种,所述第一处理模块包括:第一构建子模块,用于构建模拟波束;第一处理子模块,用于通过数字波束赋形的方式对一组参考信号端口进行加权处理;第二构建子模块,用于利用所述参考信号端口将所述模拟波束构建为等效波束;
对应的,所述第一发送模块包括:第一扫描子模块,用于利用所述等效波束承载所述参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描;
所述第一接收模块,用于包括:第一接收子模块,用于接收所述第二通信节点反馈的一个或多个等效波束的标识信息及信道状态信息;
其中,所述等效波束的覆盖范围小于对应所述模拟波束的覆盖范围。
构建模拟波束也就是进行模拟域操作,形成模拟波束,具体流程可采用相关技术实现,在此不再赘述。
此处的信道状态信息包括PMI、RI以及对应的CQI。
利用等效波束进行扫描可以是周期性的,也可以是非周期性的。具体的配置参数可由第一通信节点或网络进行指示;或者按照预先设定的方式进行。
优选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述第一接收模块还包括:第二接收子模块,用于接收所述第二通信节点反馈的模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
反馈的模拟波束与反馈的等效波束相对应。
第二种,所述第一处理模块包括:第三构建子模块,用于构建模拟波束;第二处理子模块,用于将数字端口进行发射分集和/或加权处理;第四构建子模块,用于利用所述数字端口将所述模拟波束构建为等效波束;
对应的,所述第一接收模块包括:第三接收子模块,用于接收所述第二通信节点反馈的一个或多个等效波束的标识信息和/或信号强度,及信道质量指标;
其中,所述等效波束的覆盖范围与对应所述模拟波束的覆盖范围间的差值小于预设阈值。
构建模拟波束也就是进行模拟域操作,形成模拟波束,具体流程可采用相关技术实现,在此不再赘述。
将数字端口进行发射分集可以是FSTD(Frequency Switch Transmit Diversity,频率切换发送分集)或SFBC(Space Frequency Block Code,空频区块)技术等。
此处对数字端口进行的加权处理,能够形成相对较宽的波束。
利用等效波束向第二通信节点发送参考信号可以是周期性的,也可以是非周期性的。具体的配置参数可由第一通信节点或网络进行指示;或者按照预先设定的方式进行。
进一步的,所述第一处理模块包括:第三处理子模块,用于构建模拟波束,并进行波束扫描。
可以理解为常规的模拟波束的选择过程(搜索跟踪)。
为了能够得到更加精准的结果,本实施例还提供了如下两种措施:
第一种,所述波束扫描和搜索跟踪装置还包括:赋形模块,用于根据完成搜索跟踪后确定的一个或多个模拟波束对一组参考信号端口进行模拟波束赋形;第二发送模块,用于将所述参考信号端口输出的参考信号发送至所述第二通信节点;
第二接收模块,用于接收所述第二通信节点反馈的隐式反馈信息或显式反馈信息;所述隐式反馈信息包括PMI、RI和CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
此处信道矩阵可以是完整的矩阵,也可以是部分子阵,还可以是部分分量;统计信息可以包括相关矩阵、特征向量、特征值中的至少一种。
其中,所述第二发送模块包括:发送子模块,用于利用所述模拟波束发送参考信号,所述模拟波束未进行扫描;或者
所述赋形模块包括:第五构建子模块,用于以确定的一个或多个模拟波束为中心,构建一个波束子集;赋形子模块,用于根据所述波束子集中的每一模拟波束对一组参考信号端口进行模拟波束赋形;
对应,所述第二发送模块包括:第二扫描子模块,用于利用所述模拟波束承载所述参考信号端口输出的参考信号,在所述波束子集构成的覆盖范围内进行扫描。
第二种,所述波束扫描和搜索跟踪装置还包括:第三处理模块,用于根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,构建等效波束;
第四处理模块,用于利用所述等效波束承载所述参考信号端口输出的参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描,发送至所述第二通信节点;第三接收模块,用于接收所述第二通信节点反馈的一个或多个等效波束的标识信息及信道状态信息。
此处的信道状态信息包括PMI、RI以及对应的CQI。
利用等效波束进行扫描可以是周期性的,也可以是非周期性的。具体的配置参数可由第一通信节点或网络进行指示;或者按照预先设定的方式进行。
具体的,所述第三处理模块包括:第四处理子模块,用于根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;第六构建子模块,用于利用所述参考信号端口将每一确定的模拟波束构建为等效波束;或者
第七构建子模块,用于以完成搜索跟踪后确定的一个或多个模拟波束为中心,构建一个波束子集;第五处理子模块,用于通过数字波束赋形的方式对一 组参考信号端口进行加权处理;第八构建子模块,用于利用所述参考信号端口将所述波束子集中的每一模拟波束构建为等效波束。
进一步的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述波束扫描和搜索跟踪装置还包括:第四接收模块,用于接收所述第二通信节点反馈的模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
综上所述,本公开实施例提供的波束扫描和搜索跟踪装置通过将模拟波束扫描及数字CSI测量与反馈相结合,较好的解决了相关技术中模拟波束和数字波束的测量和反馈机制相对独立,存在较大冗余和系统开销的问题。
其中,上述波束扫描和搜索跟踪方法的所述实现实施例均适用于该波束扫描和搜索跟踪装置的实施例中,也能达到相同的技术效果。
实施例四
如图4所示,本公开实施例四提供一种第一通信节点,包括:
处理器41;以及通过总线接口42与所述处理器41相连接的存储器43,所述存储器43用于存储所述处理器41在执行操作时所使用的程序和数据,当处理器41调用并执行所述存储器43中所存储的程序和数据时,执行下列过程:
构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束;通过收发机44利用所述等效波束向第二通信节点发送参考信号;
通过收发机44接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息;利用所述波束信息及信道状态信息完成波束扫描和搜索跟踪。
其中,收发机44与总线接口42连接,用于在处理器41的控制下接收和发送数据。
需要说明的是,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器41代表的一个或多个处理器和存储器43代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机44可以是多个元件,即包括 发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口45还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器41负责管理总线架构和通常的处理,存储器43可以存储处理器41在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
实施例五
如图5所示,本公开实施例五提供的波束扫描和搜索跟踪装置,应用于第二通信节点,所述装置包括:
第五接收模块51,用于接收第一通信节点通过构建的等效波束发送的参考信号;
第五处理模块52,用于对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息;
第一反馈模块53,用于将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
此处,反馈操作可以是周期性的,也可以是非周期性的,具体的配置参数可由节点A或网络进行指示或按照预先设定的方式进行。
本公开实施例五提供的所述波束扫描和搜索跟踪装置通过接收第一通信节点发送的参考信号,测量得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息,并进行反馈,使得第一通信节点能够在与本节点进行模拟波束对齐的同时,得到数字波束赋形所需的信道状态信息的目的,也就是将模拟波束搜索与数字域信道状态信息CSI的测量与反馈过程有机地结合起来,可大大减少不必要的操作环节,降低相应的系统开销。
第五接收模块51可有两种具体实现方式,如下:
第一种,所述第五接收模块包括:第四接收子模块,用于接收所述第一通信节点通过等效波束扫描的方式,发送的参考信号;
对应的,所述第五处理模块包括:第六处理子模块,用于对所述参考信号进行测量,得到符合推荐条件的等效波束的标识信息,以及对应的信道状态信息。
优选的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述第五处理模块还包括:第七处理子模块,用于对所述参考信号进行测量,得到与符合推荐条件的等效波束,相对应的模拟波束的标识信息。
第二种,所述第五接收模块包括:第五接收子模块,用于接收所述第一通信节点通过等效波束发送的参考信号,所述等效波束未进行扫描;
对应的,所述第五处理模块包括:第八处理子模块,用于对所述参考信号进行测量,得到符合推荐条件的等效波束的标识信息和/或信号强度,及对应的信道质量指标。
进一步的,所述第五接收模块包括:第六接收子模块,用于接收第一通信节点通过构建的等效波束发送的参考信号及与所述等效波束相对应的模拟波束发送的参考信号。
为了能够得到更加精准的结果,本实施例还提供了如下两种措施:
第一种,所述波束扫描和搜索跟踪装置还包括:第六接收模块,用于接收所述第一通信节点利用,根据所述波束信息确定的模拟波束,发送的参考信号;第六处理模块,用于测量所述参考信号,得到与所述模拟波束对应的隐式反馈信息或显式反馈信息;第二反馈模块,用于将所述隐式反馈信息或显式反馈信息反馈至所述第一通信节点;
所述隐式反馈信息包括预编码矩阵指示PMI、秩指示RI和信道质量指示CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
此处反馈操作可以是周期性的,也可以是非周期性的,具体的配置参数可由节点A或网络进行指示或按照预先设定的方式进行。
信道矩阵可以是完整的矩阵,也可以是部分子阵,还可以是部分分量;统计信息可以包括相关矩阵、特征向量、特征值中的至少一种。
其中,所述第六接收模块包括:第七接收子模块,用于接收所述第一通信 节点,利用确定的模拟波束发送的参考信号,所述模拟波束未进行扫描;或者第八接收子模块,用于接收所述第一通信节点,通过确定的模拟波束扫描的方式,发送的参考信号。
第二种,所述波束扫描和搜索跟踪装置还包括:第七接收模块,用于接收第一通信节点利用,根据确定的模拟波束构建的等效波束,发送的参考信号;第七处理模块,用于测量所述参考信号,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息;第三反馈模块,用于将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
此处反馈操作可以是周期性的,也可以是非周期性的,具体的配置参数可由节点A或网络进行指示或按照预先设定的方式进行。
具体的,所述第七接收模块包括:第九接收子模块,用于接收第一通信节点利用,根据确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,由所述参考信号端口构建的等效波束,发送的参考信号;或者
第十接收子模块,用于接收第一通信节点利用,以确定的一个或多个模拟波束为中心,构建一个波束子集;根据所述波束子集中的每一模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;由所述参考信号端口构建的等效波束,发送的参考信号。
进一步的,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
所述波束扫描和搜索跟踪装置还包括:第八处理模块,用于测量所述参考信号,得到与符合推荐条件的等效波束,相对应的模拟波束的标识信息;
第四反馈模块,用于将所述模拟波束的标识信息反馈至所述第一通信节点。
综上所述,本公开实施例提供的波束扫描和搜索跟踪装置通过将模拟波束扫描及数字CSI测量与反馈相结合,较好的解决了相关技术中模拟波束和数字波束的测量和反馈机制相对独立,存在较大冗余和系统开销的问题。
其中,上述波束扫描和搜索跟踪方法的所述实现实施例均适用于该波束扫描和搜索跟踪装置的实施例中,也能达到相同的技术效果。
实施例六
如图6所示,本实施例提供一种第二通信节点,包括:
处理器61;以及通过总线接口62与所述处理器61相连接的存储器63,所述存储器63用于存储所述处理器61在执行操作时所使用的程序和数据,当处理器61调用并执行所述存储器63中所存储的程序和数据时,执行下列过程:
通过收发机64接收第一通信节点通过构建的等效波束发送的参考信号;
对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息;
通过收发机64将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
其中,收发机64与总线接口62连接,用于在处理器61的控制下接收和发送数据。
需要说明的是,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器61代表的一个或多个处理器和存储器63代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机64可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器61负责管理总线架构和通常的处理,存储器63可以存储处理器61在执行操作时所使用的数据。
本公开实施例还提供了一种通信系统,包括如图4所示的第一通信节点和如图6所示的第二通信节点。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
需要说明的是,此说明书中所描述的许多功能部件都被称为模块/子模块/单元,以便更加特别地强调其实现方式的独立性。
本公开实施例中,模块/子模块/单元可以用软件实现,以便由各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一 个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同位里上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到现有硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述原理前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (42)

  1. 一种波束扫描和搜索跟踪方法,应用于第一通信节点,包括:
    构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束;
    利用所述等效波束向第二通信节点发送参考信号;
    接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息;
    利用所述波束信息及信道状态信息完成波束扫描和搜索跟踪。
  2. 根据权利要求1所述的波束扫描和搜索跟踪方法,其中,所述构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束的步骤包括:
    构建所述模拟波束;
    通过数字波束赋形的方式对一组参考信号端口进行加权处理;
    利用所述参考信号端口将所述模拟波束构建为等效波束;
    所述利用所述等效波束向第二通信节点发送参考信号的步骤包括:
    利用所述等效波束承载所述参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描;
    所述接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息的步骤包括:
    接收所述第二通信节点反馈的一个或多个等效波束的标识信息及信道状态信息;
    其中,所述等效波束的覆盖范围小于对应所述模拟波束的覆盖范围。
  3. 根据权利要求2所述的波束扫描和搜索跟踪方法,其中,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
    所述接收所述第二通信节点根据所述参考信号反馈的所述等效波束的相关波束信息及对应的信道状态信息的步骤还包括:
    接收所述第二通信节点反馈的模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
  4. 根据权利要求1所述的波束扫描和搜索跟踪方法,其中,所述构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束的步骤包括:
    构建所述模拟波束;
    将数字端口进行发射分集和/或加权处理;
    利用所述数字端口将所述模拟波束构建为所述等效波束;
    所述接收所述第二通信节点根据所述参考信号反馈的所述等效波束的相关波束信息及对应的信道状态信息的步骤包括:
    接收所述第二通信节点反馈的一个或多个等效波束的标识信息和/或信号强度,及信道质量指标。
  5. 根据权利要求1所述的波束扫描和搜索跟踪方法,其中,所述构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束的步骤包括:
    构建所述模拟波束,并进行波束扫描。
  6. 根据权利要求1所述的波束扫描和搜索跟踪方法,还包括:
    根据完成搜索跟踪后确定的一个或多个模拟波束对一组参考信号端口进行模拟波束赋形;
    将所述参考信号端口输出的参考信号发送至所述第二通信节点;
    接收所述第二通信节点反馈的隐式反馈信息或显式反馈信息;
    其中所述隐式反馈信息包括预编码矩阵指示PMI、秩指示RI和信道质量指示CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
  7. 根据权利要求6所述的波束扫描和搜索跟踪方法,其中,
    所述将所述参考信号端口输出的参考信号发送至所述第二通信节点的步骤包括:
    利用所述模拟波束发送参考信号,所述模拟波束未进行扫描;或者
    所述根据完成搜索跟踪后确定的一个或多个模拟波束对一组参考信号端口进行模拟波束赋形的步骤包括:
    以确定的一个或多个模拟波束为中心,构建一个波束子集;
    根据所述波束子集中的每一模拟波束对一组参考信号端口进行模拟波束赋形;
    所述将所述参考信号端口输出的参考信号发送至所述第二通信节点的步骤包括:
    利用所述模拟波束承载所述参考信号端口输出的参考信号,在所述波束子集构成的覆盖范围内进行扫描。
  8. 根据权利要求1所述的波束扫描和搜索跟踪方法,还包括:
    根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,构建所述等效波束;
    利用所述等效波束承载所述参考信号端口输出的参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描,发送至所述第二通信节点;
    接收所述第二通信节点反馈的一个或多个等效波束的标识信息及信道状态信息。
  9. 根据权利要求8所述的波束扫描和搜索跟踪方法,其中,所述根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,构建等效波束的步骤包括:
    根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;利用所述参考信号端口将每一确定的模拟波束构建为所述等效波束;或者
    以完成搜索跟踪后确定的一个或多个模拟波束为中心,构建一个波束子集;通过数字波束赋形的方式对一组参考信号端口进行加权处理;利用所述参考信号端口将所述波束子集中的每一模拟波束构建为所述等效波束。
  10. 根据权利要求8所述的波束扫描和搜索跟踪方法,其中,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
    所述波束扫描和搜索跟踪方法还包括:
    接收所述第二通信节点反馈的所述模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
  11. 一种波束扫描和搜索跟踪方法,应用于第二通信节点,包括:
    接收第一通信节点通过构建的等效波束发送的参考信号;
    对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息;
    将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
  12. 根据权利要求11所述的波束扫描和搜索跟踪方法,其中,所述接收 第一通信节点通过构建的等效波束发送的参考信号的步骤包括:
    接收所述第一通信节点通过等效波束扫描的方式,发送的参考信号;
    所述对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息的步骤包括:
    对所述参考信号进行测量,得到符合推荐条件的等效波束的标识信息,以及对应的信道状态信息。
  13. 根据权利要求12所述的波束扫描和搜索跟踪方法,其中,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
    所述对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息的步骤还包括:
    对所述参考信号进行测量,得到与符合推荐条件的等效波束,相对应的模拟波束的标识信息。
  14. 根据权利要求11所述的波束扫描和搜索跟踪方法,其中,所述接收第一通信节点通过构建的等效波束发送的参考信号的步骤包括:
    接收所述第一通信节点通过所述等效波束发送的参考信号,所述等效波束未进行扫描;
    所述对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息的步骤包括:
    对所述参考信号进行测量,得到符合所述推荐条件的所述等效波束的标识信息和/或信号强度,及对应的信道质量指标。
  15. 根据权利要求11所述的波束扫描和搜索跟踪方法,其中,所述接收第一通信节点通过构建的等效波束发送的参考信号的步骤包括:
    接收所述第一通信节点通过构建的所述等效波束发送的参考信号及与所述等效波束相对应的模拟波束发送的参考信号。
  16. 根据权利要求11所述的波束扫描和搜索跟踪方法,还包括:
    接收所述第一通信节点利用,根据所述波束信息确定的模拟波束,发送的参考信号;
    测量所述参考信号,得到与所述模拟波束对应的隐式反馈信息或显式反馈信息;
    将所述隐式反馈信息或显式反馈信息反馈至所述第一通信节点;
    所述隐式反馈信息包括预编码矩阵指示PMI、秩指示RI和信道质量指示CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
  17. 根据权利要求16所述的波束扫描和搜索跟踪方法,其中,所述接收所述第一通信节点利用,根据所述波束信息确定的模拟波束,发送的参考信号的步骤包括:
    接收所述第一通信节点,利用确定的模拟波束发送的参考信号,所述模拟波束未进行扫描;或者
    接收所述第一通信节点,通过确定的模拟波束扫描的方式,发送的参考信号。
  18. 根据权利要求11所述的波束扫描和搜索跟踪方法,还包括:
    接收所述第一通信节点利用,根据确定的模拟波束构建的等效波束,发送的参考信号;
    测量所述参考信号,得到符合所述推荐条件的所述等效波束的相关波束信息及对应的信道状态信息;
    将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
  19. 根据权利要求18所述的波束扫描和搜索跟踪方法,其中,所述接收第一通信节点利用,根据确定的模拟波束构建的等效波束,发送的参考信号的步骤包括:
    接收所述第一通信节点利用,根据确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,由所述参考信号端口构建的等效波束,发送的参考信号;或者
    接收所述第一通信节点利用,以确定的一个或多个模拟波束为中心,构建一个波束子集;根据所述波束子集中的每一模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;由所述参考信号端口构建的等效波束,发送的参考信号。
  20. 根据权利要求18所述的波束扫描和搜索跟踪方法,其中,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
    所述波束扫描和搜索跟踪方法还包括:
    测量所述参考信号,得到与符合所述推荐条件的所述等效波束,相对应的模拟波束的标识信息;
    将所述模拟波束的标识信息反馈至所述第一通信节点。
  21. 一种波束扫描和搜索跟踪装置,应用于第一通信节点,包括:
    第一处理模块,用于构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束;
    第一发送模块,用于利用所述等效波束向第二通信节点发送参考信号;
    第一接收模块,用于接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息;
    第二处理模块,用于利用所述波束信息及信道状态信息完成波束扫描和搜索跟踪。
  22. 根据权利要求21所述的波束扫描和搜索跟踪装置,其中,所述第一处理模块包括:
    第一构建子模块,用于构建所述模拟波束;
    第一处理子模块,用于通过数字波束赋形的方式对一组参考信号端口进行加权处理;
    第二构建子模块,用于利用所述参考信号端口将所述模拟波束构建为等效波束;
    所述第一发送模块包括:
    第一扫描子模块,用于利用所述等效波束承载所述参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描;
    所述第一接收模块,用于包括:
    第一接收子模块,用于接收所述第二通信节点反馈的一个或多个等效波束的标识信息及信道状态信息;
    其中,所述等效波束的覆盖范围小于对应所述模拟波束的覆盖范围。
  23. 根据权利要求22所述的波束扫描和搜索跟踪装置,其中,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
    所述第一接收模块还包括:
    第二接收子模块,用于接收所述第二通信节点反馈的模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
  24. 根据权利要求21所述的波束扫描和搜索跟踪装置,其中,所述第一处理模块包括:
    第三构建子模块,用于构建所述模拟波束;
    第二处理子模块,用于将数字端口进行发射分集和/或加权处理;
    第四构建子模块,用于利用所述数字端口将所述模拟波束构建为所述等效波束;
    所述第一接收模块包括:
    第三接收子模块,用于接收所述第二通信节点反馈的一个或多个等效波束的标识信息和/或信号强度,及信道质量指标。
  25. 根据权利要求21所述的波束扫描和搜索跟踪装置,其中,所述第一处理模块包括:
    第三处理子模块,用于构建所述模拟波束,并进行波束扫描。
  26. 根据权利要求21所述的波束扫描和搜索跟踪装置,还包括:
    赋形模块,用于根据完成搜索跟踪后确定的一个或多个模拟波束对一组参考信号端口进行模拟波束赋形;
    第二发送模块,用于将所述参考信号端口输出的参考信号发送至所述第二通信节点;
    第二接收模块,用于接收所述第二通信节点反馈的隐式反馈信息或显式反馈信息;
    所述隐式反馈信息包括PMI、RI和CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
  27. 根据权利要求26所述的波束扫描和搜索跟踪装置,其中,
    所述第二发送模块包括:
    发送子模块,用于利用所述模拟波束发送参考信号,所述模拟波束未进行扫描;或者
    所述赋形模块包括:
    第五构建子模块,用于以确定的一个或多个模拟波束为中心,构建一个波 束子集;
    赋形子模块,用于根据所述波束子集中的每一模拟波束对一组参考信号端口进行模拟波束赋形;
    所述第二发送模块包括:
    第二扫描子模块,用于利用所述模拟波束承载所述参考信号端口输出的参考信号,在所述波束子集构成的覆盖范围内进行扫描。
  28. 根据权利要求21所述的波束扫描和搜索跟踪装置,还包括:
    第三处理模块,用于根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,构建所述等效波束;
    第四处理模块,用于利用所述等效波束承载所述参考信号端口输出的参考信号,在对应的所述模拟波束确定的覆盖范围内进行扫描,发送至所述第二通信节点;
    第三接收模块,用于接收所述第二通信节点反馈的一个或多个等效波束的标识信息及信道状态信息。
  29. 根据权利要求28所述的波束扫描和搜索跟踪装置,其中,所述第三处理模块包括:
    第四处理子模块,用于根据完成搜索跟踪后确定的一个或多个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;
    第六构建子模块,用于利用所述参考信号端口将每一确定的模拟波束构建为所述等效波束;或者
    第七构建子模块,用于以完成搜索跟踪后确定的一个或多个模拟波束为中心,构建一个波束子集;
    第五处理子模块,用于通过数字波束赋形的方式对一组参考信号端口进行加权处理;
    第八构建子模块,用于利用所述参考信号端口将所述波束子集中的每一模拟波束构建为所述等效波束。
  30. 根据权利要求28所述的波束扫描和搜索跟踪装置,其中,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
    所述波束扫描和搜索跟踪装置还包括:
    第四接收模块,用于接收所述第二通信节点反馈的所述模拟波束的标识信息,所述模拟波束的标识信息与所述等效波束的标识信息相对应。
  31. 一种波束扫描和搜索跟踪装置,应用于第二通信节点,其中,包括:
    第五接收模块,用于接收第一通信节点通过构建的等效波束发送的参考信号;
    第五处理模块,用于对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息;
    第一反馈模块,用于将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
  32. 根据权利要求31所述的波束扫描和搜索跟踪装置,其中,所述第五接收模块包括:
    第四接收子模块,用于接收所述第一通信节点通过等效波束扫描的方式,发送的参考信号;
    所述第五处理模块包括:
    第六处理子模块,用于对所述参考信号进行测量,得到符合所述推荐条件的等效波束的标识信息,以及对应的信道状态信息。
  33. 根据权利要求32所述的波束扫描和搜索跟踪装置,其中,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
    所述第五处理模块还包括:
    第七处理子模块,用于对所述参考信号进行测量,得到与符合所述推荐条件的所述等效波束,相对应的模拟波束的标识信息。
  34. 根据权利要求31所述的波束扫描和搜索跟踪装置,其中,所述第五接收模块包括:
    第五接收子模块,用于接收所述第一通信节点通过所述等效波束发送的参考信号,所述等效波束未进行扫描;
    所述第五处理模块包括:
    第八处理子模块,用于对所述参考信号进行测量,得到符合所述推荐条件的等效波束的标识信息和/或信号强度,及对应的信道质量指标。
  35. 根据权利要求31所述的波束扫描和搜索跟踪装置,其中,所述第五 接收模块包括:
    第六接收子模块,用于接收第一通信节点通过构建的所述等效波束发送的参考信号及与所述等效波束相对应的模拟波束发送的参考信号。
  36. 根据权利要求31所述的波束扫描和搜索跟踪装置,还包括:
    第六接收模块,用于接收所述第一通信节点利用,根据所述波束信息确定的模拟波束,发送的参考信号;
    第六处理模块,用于测量所述参考信号,得到与所述模拟波束对应的隐式反馈信息或显式反馈信息;
    第二反馈模块,用于将所述隐式反馈信息或显式反馈信息反馈至所述第一通信节点;
    所述隐式反馈信息包括预编码矩阵指示PMI、秩指示RI和信道质量指示CQI中的至少一种,所述显式反馈信息包括进行量化或变换之后的信道矩阵或信道矩阵的统计信息。
  37. 根据权利要求36所述的波束扫描和搜索跟踪装置,其中,所述第六接收模块包括:
    第七接收子模块,用于接收所述第一通信节点,利用确定的模拟波束发送的参考信号,所述模拟波束未进行扫描;或者
    第八接收子模块,用于接收所述第一通信节点,通过确定的模拟波束扫描的方式,发送的参考信号。
  38. 根据权利要求31所述的波束扫描和搜索跟踪装置,还包括:
    第七接收模块,用于接收所述第一通信节点利用,根据确定的模拟波束构建的等效波束,发送的参考信号;
    第七处理模块,用于测量所述参考信号,得到符合所述推荐条件的所述等效波束的相关波束信息及对应的信道状态信息;
    第三反馈模块,用于将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
  39. 根据权利要求38所述的波束扫描和搜索跟踪装置,其中,所述第七接收模块包括:
    第九接收子模块,用于接收所述第一通信节点利用,根据确定的一个或多 个模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理,由所述参考信号端口构建的等效波束,发送的参考信号;或者
    第十接收子模块,用于接收所述第一通信节点利用,以确定的一个或多个模拟波束为中心,构建一个波束子集;根据所述波束子集中的每一模拟波束,通过数字波束赋形的方式对一组参考信号端口进行加权处理;由所述参考信号端口构建的等效波束,发送的参考信号。
  40. 根据权利要求38所述的波束扫描和搜索跟踪装置,其中,所述等效波束的标识信息中包含相对应的模拟波束的标识信息;或者
    所述波束扫描和搜索跟踪装置还包括:
    第八处理模块,用于测量所述参考信号,得到与符合所述推荐条件的所述等效波束,相对应的模拟波束的标识信息;
    第四反馈模块,用于将所述模拟波束的标识信息反馈至所述第一通信节点。
  41. 一种第一通信节点,包括收发机,处理器以及存储器,其中
    所述处理器,通过执行所述存储器中所存储的程序或数据,用于构建模拟波束,并对所述模拟波束进行数字赋形,形成等效波束;
    所述收发机,用于利用所述等效波束向第二通信节点发送参考信号,和接收所述第二通信节点根据所述参考信号反馈的等效波束的相关波束信息及对应的信道状态信息;
    所述处理器,还用于利用所述收发机接收的所述波束信息及信道状态信息完成波束扫描和搜索跟踪。
  42. 一种第二通信节点,包括收发机,处理器以及存储器,其中
    所述收发机,用于接收第一通信节点通过构建的等效波束发送的参考信号;
    所述处理器,通过执行所述存储器中所存储的程序或数据,用于对所述参考信号进行测量,得到符合推荐条件的等效波束的相关波束信息及对应的信道状态信息,将所述相关波束信息及信道状态信息反馈至所述第一通信节点。
PCT/CN2017/101513 2016-09-30 2017-09-13 一种波束扫描和搜索跟踪方法及装置 WO2018059235A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/337,373 US10778307B2 (en) 2016-09-30 2017-09-13 Beam scanning and search tracking method and device
EP17854685.9A EP3522584A4 (en) 2016-09-30 2017-09-13 BEAM SCANNING AND SEARCHING PROCESS AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610875295.6A CN107896122B (zh) 2016-09-30 2016-09-30 一种波束扫描和搜索跟踪方法及装置
CN201610875295.6 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018059235A1 true WO2018059235A1 (zh) 2018-04-05

Family

ID=61762481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101513 WO2018059235A1 (zh) 2016-09-30 2017-09-13 一种波束扫描和搜索跟踪方法及装置

Country Status (4)

Country Link
US (1) US10778307B2 (zh)
EP (1) EP3522584A4 (zh)
CN (1) CN107896122B (zh)
WO (1) WO2018059235A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115567088A (zh) 2016-05-12 2023-01-03 交互数字专利控股公司 用于在毫米波无线局域网络中波束成形反馈的系统和方法
US10110284B2 (en) * 2016-11-03 2018-10-23 At&T Intellectual Property I, L.P. Providing a format indicator comprising rank indication and channel state information spatial domain resolution type
CN109104221B (zh) * 2018-06-19 2021-04-30 南京纳特通信电子有限公司 基于3D Massive MIMO的基站测试系统、方法及存储介质
CN113852452B (zh) * 2021-09-24 2024-06-07 重庆两江卫星移动通信有限公司 一种卫星通信系统波束扫描方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916171A (zh) * 2014-04-04 2014-07-09 电信科学技术研究院 一种波束赋形的控制方法、装置及系统
CN104052535A (zh) * 2014-06-23 2014-09-17 东南大学 基于空分多址与干扰抑制的毫米波大规模mimo系统多用户传输方法
CN105340132A (zh) * 2014-05-15 2016-02-17 联发科技股份有限公司 高效波束训练的方法及使用相同网络控制设备
WO2016028111A1 (ko) * 2014-08-21 2016-02-25 엘지전자 주식회사 하이브리드 빔포밍을 지원하는 무선접속시스템에서 아날로그 빔을 추정하기 위한 트레이닝 심볼 전송 방법 및 장치
CN105684321A (zh) * 2013-09-27 2016-06-15 三星电子株式会社 无线通信系统中发送和接收波束信息的装置及方法
CN106899334A (zh) * 2017-04-13 2017-06-27 北京墨丘科技有限公司 一种通信方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2388931B1 (en) * 2010-05-21 2017-09-13 Imec Method and system for mixed analog/digital beamforming in wireless communication systems
CN102624496B (zh) * 2011-01-30 2015-03-11 华为技术有限公司 预编码处理方法、基站和通信系统
US9214995B2 (en) * 2011-08-01 2015-12-15 Blackberry Limited Joint transmission using interference alignment
KR20130017572A (ko) * 2011-08-11 2013-02-20 삼성전자주식회사 하이브리드 빔포밍 시스템에서 아날로그 빔 결정 방법 및 장치
KR20130110396A (ko) * 2012-03-29 2013-10-10 삼성전자주식회사 아날로그/디지털 혼합 빔 포밍 시스템에서 기준 신호 생성을 위한 방법 및 장치
US9225401B2 (en) * 2012-05-22 2015-12-29 Mediatek Singapore Pte. Ltd. Method and apparatus of beam training for MIMO operation and multiple antenna beamforming operation
KR102182322B1 (ko) * 2012-07-31 2020-11-25 삼성전자주식회사 무선 통신 시스템에서 빔포밍을 이용한 통신 방법 및 장치
KR102011995B1 (ko) * 2012-11-23 2019-08-19 삼성전자주식회사 빔포밍 기반 무선통신 시스템에서 송수신 빔 패턴 변경에 따른 빔 이득 보상 운용을 위한 방법 및 장치
WO2014163796A1 (en) * 2013-03-13 2014-10-09 Kopin Corporation Eyewear spectacle with audio speaker in the temple
KR102195688B1 (ko) * 2014-02-20 2020-12-28 삼성전자 주식회사 빔포밍을 지원하는 무선 통신 시스템에서 피드백 정보 처리 방법 및 장치
US20170201303A9 (en) * 2014-12-30 2017-07-13 Electronics And Telecommunications Research Institute Control device for multiplexing antenna and beam forming device including the same
WO2016106706A1 (zh) * 2014-12-31 2016-07-07 华为技术有限公司 一种阵列天线波束调整装置和方法
CN106033989B (zh) * 2015-03-12 2019-09-17 电信科学技术研究院 一种混合波束赋形传输方法及网络设备
US10270514B2 (en) * 2016-01-14 2019-04-23 Samsung Electronics Co., Ltd. Method and apparatus for generating beam measurement information in a wireless communication system
US10425922B2 (en) * 2016-02-20 2019-09-24 Qualcomm Incorporated Communication of uplink control information
US10404342B2 (en) * 2016-06-29 2019-09-03 Futurewei Technologies, Inc. Multiuser MIMO for large antenna systems with hybrid beamforming
JP2020506563A (ja) * 2016-08-11 2020-02-27 株式会社Nttドコモ 無線通信方法およびユーザ装置
EP3497819A1 (en) * 2016-08-12 2019-06-19 Telefonaktiebolaget LM Ericsson (PUBL) Layer 1 and layer 2 channel state information rich reporting mechanisms

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105684321A (zh) * 2013-09-27 2016-06-15 三星电子株式会社 无线通信系统中发送和接收波束信息的装置及方法
CN103916171A (zh) * 2014-04-04 2014-07-09 电信科学技术研究院 一种波束赋形的控制方法、装置及系统
CN105340132A (zh) * 2014-05-15 2016-02-17 联发科技股份有限公司 高效波束训练的方法及使用相同网络控制设备
CN104052535A (zh) * 2014-06-23 2014-09-17 东南大学 基于空分多址与干扰抑制的毫米波大规模mimo系统多用户传输方法
WO2016028111A1 (ko) * 2014-08-21 2016-02-25 엘지전자 주식회사 하이브리드 빔포밍을 지원하는 무선접속시스템에서 아날로그 빔을 추정하기 위한 트레이닝 심볼 전송 방법 및 장치
CN106899334A (zh) * 2017-04-13 2017-06-27 北京墨丘科技有限公司 一种通信方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Digital Subsystem with Hybrid Beamforming", R1-167291, 3GPP TSG-RAN WG1#86, 22 August 2016 (2016-08-22), XP051125814 *
See also references of EP3522584A4 *

Also Published As

Publication number Publication date
EP3522584A1 (en) 2019-08-07
US20200036421A1 (en) 2020-01-30
US10778307B2 (en) 2020-09-15
CN107896122A (zh) 2018-04-10
CN107896122B (zh) 2020-10-20
EP3522584A4 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
US20230122302A1 (en) Measurement reporting method and apparatus
TWI595759B (zh) Hybrid beamforming transmission method and network equipment
CN108282321B (zh) 一种信息指示的方法、网络设备和终端设备
US11804884B2 (en) Precoding processing method and apparatus
CN105245310B (zh) 一种下行导频信号的处理方法及系统
TWI795336B (zh) 一種基於通道互易性的預編碼矩陣配置方法及裝置
WO2016145986A1 (zh) 大规模数模混合天线及信道状态信息反馈方法和装置
WO2018059235A1 (zh) 一种波束扫描和搜索跟踪方法及装置
CN108288989B (zh) 信道状态信息反馈方法、用户设备及基站
CN110958097B (zh) Csi的上报方法、装置、终端及网络侧设备
WO2017194007A1 (zh) 一种二级预编码方法及装置
US10615855B2 (en) Method and device for determining codebook
TWI622276B (zh) Channel state information acquisition method, channel state information feedback method and device
CN105450332B (zh) 一种三维信道状态信息确定方法及装置
CN105680999A (zh) 一种信道状态信息测量方法、终端和网络设备
US11483035B2 (en) Method and device for performing precoding
WO2017206527A1 (zh) 一种波束赋形方法、信号发射设备以及信号接收设备
CN110838857A (zh) 一种数据传输方法、终端及网络设备
US10141989B2 (en) System and method for quantization of angles for beamforming feedback
TW201628364A (zh) 一種導頻信號的發送、接收處理方法及裝置
CN106033990A (zh) 一种信道状态信息反馈方法、获取方法及装置
EP4274112A1 (en) Channel state information feedback method and communication apparatus
CN107888258B (zh) 一种波束扫描与跟踪方法及装置
CN107888261B (zh) 一种信道矩阵确定方法及相关设备
WO2024055150A1 (en) Method, network node and computer program for over the air calibration of an active antenna system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854685

Country of ref document: EP

Effective date: 20190430