WO2016106706A1 - 一种阵列天线波束调整装置和方法 - Google Patents

一种阵列天线波束调整装置和方法 Download PDF

Info

Publication number
WO2016106706A1
WO2016106706A1 PCT/CN2014/095958 CN2014095958W WO2016106706A1 WO 2016106706 A1 WO2016106706 A1 WO 2016106706A1 CN 2014095958 W CN2014095958 W CN 2014095958W WO 2016106706 A1 WO2016106706 A1 WO 2016106706A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
signals
transmit
digital
Prior art date
Application number
PCT/CN2014/095958
Other languages
English (en)
French (fr)
Inventor
吕瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480081217.8A priority Critical patent/CN106688194B/zh
Priority to ES14909514T priority patent/ES2730731T3/es
Priority to EP14909514.3A priority patent/EP3229381B1/en
Priority to PCT/CN2014/095958 priority patent/WO2016106706A1/zh
Publication of WO2016106706A1 publication Critical patent/WO2016106706A1/zh
Priority to US15/640,172 priority patent/US10243643B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an array antenna beam adjusting apparatus and method.
  • the microwave communication system with beamforming function can dynamically adjust the orientation or shape of the antenna beam by changing the phase or gain of multiple signals in the array antenna, and automatically adapt to changes in the environment and interference on the link, which is extremely flexible and Very low maintenance costs.
  • the beam control unit performs beam control judgment according to the signal after the combining, and the speed and flexibility of beam steering are not ideal.
  • Embodiments of the present invention provide an array antenna beam adjusting apparatus and method for flexibly adjusting an array antenna beam.
  • an embodiment of the present invention provides an array antenna beam adjusting apparatus, where the array antenna includes N receiving array elements, wherein the adjusting apparatus includes a receiving weight adjuster, a combiner, an analog-to-digital conversion, and Baseband processor, N anti-aliasing filters, N low-speed analog-to-digital converters, spatial domain filters, signal optimizers, and receive weight determiners,
  • the receiving weight adjuster is configured to receive N received signals from the N receiving array elements, and perform receiving weight adjustment on the N received signals according to the receiving weight adjustment coefficient to obtain a received signal with N receiving weight adjustments;
  • the combiner is configured to receive the received signal of the N-channel receiving weight adjustment, and combine the received signals of the N-channel receiving weight adjustment to obtain the combined received signal;
  • the analog-to-digital conversion and the baseband processor receive the combined received signal, and perform analog-to-digital conversion and baseband processing on the combined received signal;
  • the N anti-aliasing filters are respectively configured to receive a signal coupled from the N-channel receiving weight-adjusted received signal, and respectively perform anti-aliasing processing on the N-channel coupled signal to obtain an N-channel anti-aliasing processed signal;
  • N low-speed analog-to-digital converters are used to respectively receive N-channel anti-aliasing signals, and respectively perform low-speed analog-to-digital conversion to obtain N digital signals;
  • the spatial domain filter is configured to receive N digital signals, and perform spatial filtering on the N digital signals according to the spatial domain filter coefficients to obtain N filtered signals in the spatial domain;
  • the signal optimizer is configured to receive the N-channel spatially filtered signal, and obtain an adjustment coefficient of the spatial domain filter coefficient according to the N-channel spatially filtered signal, and send the adjustment coefficient of the spatial domain filter coefficient to the spatial domain filter;
  • the receiving weight determiner is configured to receive the spatial domain filter coefficient, and obtain a receiving weight adjustment coefficient according to the spatial domain filter coefficient decision, and send the receiving weight adjustment coefficient to the receiving weight adjuster.
  • a sampling phase adjuster is further included between the N low-speed analog-to-digital converters and the spatial domain filter, and the sampling phase adjuster is configured to receive N digital signals according to N low speeds.
  • the sampling phase deviation between the analog-to-digital converters delays the N digital signals to obtain N digital signals after the sampling phase alignment, and sends the N digital signals after the sampling phase alignment to the spatial domain filter.
  • the signal optimizer is specifically configured to perform a signal-to-noise ratio on the N-channel spatially filtered signal or The signal-to-interference ratio is calculated, and the adjustment coefficient of the spatial domain filter coefficient is obtained according to the calculation result, so that the signal-to-noise ratio or the signal-to-interference ratio of the filtered signal of the N-channel spatial domain increases.
  • the receiving weight determiner is specifically configured to determine a phase or an amplitude of the spatial domain filter coefficient to obtain a receiving weight adjustment coefficient.
  • the array antenna further includes M transmit array elements
  • the adjusting device further includes a baseband Processing and digital to analog converters, splitters, transmit weight adjusters, and transmit weight determiners
  • the baseband processing and the digital-to-analog converter are used for performing baseband processing and digital-to-analog conversion on the transmitted signal, and transmitting the digital-to-analog converted one-way transmitting signal to the splitter;
  • the splitter is configured to receive the one-way transmit signal, and divide the one-way transmit signal into an M-way to obtain an M-channel transmit signal;
  • the transmit weight adjuster is configured to receive the M-channel transmit signal, and perform transmit weight adjustment on the M transmit signals according to the transmit weight adjustment coefficient, to obtain the M-channel transmit signal after the transmit weight adjustment, and respectively transmit the transmit weights through the M transmit array elements. Adjusted M-channel transmit signal;
  • the transmit weight determiner is configured to receive the spatial filter coefficient, and determine a wave angle of the received signal according to the spatial filter coefficient, and determine a transmit weight adjustment coefficient according to the wave angle.
  • the receiving weight adjustment coefficient includes one or both of a phase and an amplitude
  • the transmission weight adjustment coefficient includes one or both of a phase and an amplitude
  • an embodiment of the present invention provides an array antenna beam adjustment method, where the array antenna includes N receiving array elements, including:
  • the received signals adjusted from the N channels are respectively coupled with one signal to obtain an N-channel coupled signal
  • the N-channel coupled signals are respectively subjected to anti-aliasing filtering processing to obtain N-channel anti-aliasing processed signals;
  • the N-channel digital signal is spatially filtered to obtain N-channel spatial filtering.
  • the receiving weight adjustment coefficient is obtained according to the spatial domain filter coefficient decision.
  • the method before performing spatial filtering on the N digital signals according to the spatial domain filter coefficients, the method further includes:
  • the N-channel digital signals are delayed-compensated according to the sampling phase deviation between the analog-to-digital conversions of the N-channel coupled signals, and the N-channel digital signals after the sampling phase alignment are obtained.
  • the adjusting coefficient of the spatial domain filter coefficient is obtained according to the N-channel spatially filtered signal ,include:
  • the signal-to-noise ratio or the signal-to-interference ratio is calculated for the N-channel filtered signal, and the adjustment coefficient of the spatial-domain filter coefficient is obtained according to the calculation result, so that the signal-to-noise ratio or the signal-to-interference ratio of the filtered signal of the N-channel spatial domain increases.
  • determining the receiving weight adjustment coefficient according to the spatial domain filter coefficient includes:
  • the array antenna further includes M transmit array elements, performing baseband processing and digital-to-analog conversion
  • the transmission signal is divided into M transmission signals, and the transmission weights of the M transmission signals are adjusted according to the transmission weight adjustment coefficient, and the M-channel transmission signals after the transmission weight adjustment are obtained, and the transmission weights are respectively transmitted through the M transmission array elements.
  • the M way transmits a signal, and the method further includes:
  • the wave angle of the received signal is determined according to the spatial domain filter coefficient, and the transmit weight adjustment coefficient is determined according to the wave angle.
  • the method includes: the receiving weight adjustment coefficient includes one or more of a phase and an amplitude, where the transmission weight adjustment coefficient includes a phase and an amplitude. One or more.
  • the array antenna beam adjusting device couples N receiving signals before combining analog-to-digital conversion, performs low-speed small-bandwidth analog-to-digital conversion on the N receiving signals, and performs spatial filtering and adjustment according to the analog-to-digital converted signals.
  • the filter coefficient adjusts the weight of the received signal according to the filter coefficient to adjust the receive beam.
  • the performance requirement of the analog-to-digital converter is low, and the beam control is performed according to the N received signals, and the speed and flexibility of the beam control are greatly improved.
  • FIG. 1 is a structural diagram of an array antenna beam adjusting apparatus according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of a receiving weight adjuster according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for adjusting an array antenna beam according to an embodiment of the present invention.
  • FIG. 1 is a structural diagram of an array antenna beam adjusting apparatus according to an embodiment of the present invention, including an array antenna, a receiving weight adjuster, a combiner, an analog-to-digital conversion and a baseband processor, and N anti-aliasing Anti-Aliase Filter (AAF), N low-speed analog-to-digital converters (LowRate ADC), sampling phase adjuster, spatial domain filter, signal optimizer, receive weight determiner, transmit weight determiner, and baseband Processing and digital to analog converters, splitters, transmit weight adjusters.
  • AAF Anti-Aliase Filter
  • LowRate ADC Low-speed analog-to-digital converters
  • the connection relationship is that the array antenna is connected to the receiving weight adjuster, the receiving weight adjuster is connected to the combiner, the combiner and the analog-to-digital converter are connected to the baseband processor, and the N anti-aliasing filters respectively receive the coupling before the combiner N-channel signals, N low-speed analog-to-digital conversion periods are respectively connected to N anti-aliasing filters, sampling phase adjusters are connected to N low-speed filters, spatial domain filters are connected to sampling phase adjusters, signal optimizers and airspace
  • the filter is connected, the receiving weight determiner is connected to the spatial domain filter, the receiving weight determiner is connected to the receiving weight adjuster, the transmitting weight determiner is connected to the spatial domain filter, the transmitting weight determiner is connected to the transmitting weight determiner, and further, the branching is
  • the baseband processing is connected to the digital-to-analog converter, the transmit weight adjuster is connected to the splitter, and the array antenna is connected to the transmit weight adjuster.
  • each device may not include some devices, for example, may not include a transmitting portion, and thus does not include a transmission weight adjuster, etc., of course, each device Other devices may be included between the receiving weight adjuster and the array antenna. Some other devices may be included in the receiving antenna to perform some simple processing on the received signal, such as shaping, which is not limited in the embodiment of the present invention.
  • each device can also adopt other working modes and working principles, as long as the requirements can be met.
  • the array antenna includes N receiving array elements, which are not shown in FIG. 1.
  • Each receiving array element can receive one receiving signal
  • the receiving weight adjuster can receive N receiving signals from N receiving array elements, and according to receiving weights.
  • the adjustment coefficient respectively performs receiving weight adjustment on the N received signals to obtain a received signal adjusted by N receiving weights, and the receiving weight adjuster weights the analog signals in the multiple channels to adjust the phase and/or amplitude.
  • the phase shifter adjusts the phase of the N received signals
  • the adjustable amplifier adjusts the amplitude of the N received signals.
  • any of the adjustable amplifiers can be included.
  • the combiner is configured to receive the received signal of the N-channel receiving weight adjustment, and combine the received signals of the N-channel receiving weight adjustment to obtain the combined received signal.
  • the analog-to-digital conversion and the baseband processor receive the combined received signal and combine the received signals Perform analog to digital conversion and baseband processing. Since the baseband processing is required, the analog-to-digital conversion needs to adapt the rate and bandwidth of the normal communication signal to perform high-performance analog-to-digital conversion processing. Analog-to-digital conversion and baseband processors do not require the ability to sense beam steering.
  • the N anti-aliasing filters are respectively configured to receive a signal coupled from the N-channel receiving weight-adjusted received signal, and respectively perform anti-aliasing processing on the N-channel coupled signal to obtain an N-channel anti-aliasing processed signal;
  • the coupling process is only a part of the signal, and will not affect the receiving process of the signal after the combiner.
  • the anti-aliasing filter anti-aliasing the coupled signal to fit the subsequent low-speed analog-to-digital conversion sampling.
  • the working principle of the anti-aliasing filter can be expressed as
  • Si(f) is the spectrum of the coupled signal corresponding to the ith receiving channel
  • SFi(f) is the spectrum of the ith AAF filtered output signal
  • AAFi(f) represents the frequency domain response of the ith AAF filter, It features low-pass filtering that limits the bandwidth of the input signal to match the sampling rate of the low-speed analog-to-digital converter
  • N represents the number of channels received.
  • N low-speed analog-to-digital converters are used to respectively receive N anti-aliasing signals, and respectively perform low-speed analog-to-digital conversion to obtain N digital signals, and the output N signals may also be referred to as N sub-sampling signals.
  • the N low-speed analog-to-digital converters drive the signal at a low speed, driven by the same sample clock signal.
  • the low-speed analog-to-digital converter is a low-rate and small-bandwidth analog-to-digital converter that samples the analog signal and converts it into a low-speed digital signal output to the sampling phase adjuster.
  • the working principle of the low-speed analog-to-digital converter can be expressed as:
  • t denotes the time variable of the continuous signal
  • n denotes the time variable of the discrete signal
  • w denotes the frequency variable of the discrete signal
  • (j) denotes the imaginary part of the complex number
  • SFi(t) is the continuous signal output by the i-th AAF filter
  • SSi(n) is the discrete signal obtained by sampling the i-th low-speed analog-to-digital converter.
  • ⁇ i (t-nT) is the ith low-speed modulus.
  • the sampling function of the converter ⁇ (t-nT) represents the sampling function of an ideal low-speed analog-to-digital converter
  • T represents the sampling period of the low-speed analog-to-digital converter
  • ⁇ i is the sampling delay of the ith low-speed analog-to-digital converter
  • SFi(w) represents the input frequency domain signal of the i-th low-speed analog-to-digital converter
  • SSi(w) represents the ith low-speed analog-to-digital converter.
  • the frequency domain signal is obtained after sampling.
  • the sampling phase adjuster is configured to receive N digital signals, and delay-compensate the N digital signals according to the phase deviation between the N low-speed analog-to-digital converters to obtain N digital signals after sampling phase alignment, and align the sampling phases.
  • the N digital signals are sent to the spatial domain filter.
  • the N-channel sub-sampling signal is simultaneously input to a sampling phase adjuster, and the output obtains the sub-sampling signal after the N-channel sampling phase alignment.
  • the sampling phase adjuster delay-compensates the N-channel sub-sampled signals according to the sampling phase deviation of the N low-speed analog-to-digital converters, aligns the sampling time of the N signals, and eliminates the sampling phase deviation.
  • the acquisition of the phase deviation of the sampling parameters of the N low-speed analog-to-digital converters in the sampling phase adjuster can be estimated by transmitting the training signal in an offline or online state.
  • the sampling phase adjuster is used to compensate the sampling phase deviation caused by different driving clock phases during sampling of a plurality of low-speed analog-to-digital converters, and the working principle can be as follows
  • SFi(w) represents the input frequency domain signal of the i-th low-speed analog-to-digital converter
  • SSi(w) represents that the i-th low-speed analog-to-digital converter samples the frequency domain signal
  • SAi(w) represents the ith low-speed mode. After sampling by the digital converter, the frequency domain signal of the frequency domain signal after sampling phase adjustment is obtained. The sampling phase difference between the ith low-speed analog-to-digital converter and the first low-speed analog-to-digital converter.
  • the input of the sampling phase adjuster is a vector composed of N sampling signals, and the output is N phase-aligned sampling signals.
  • sampling phase adjuster may not be included in other embodiments.
  • the spatial domain filter is configured to receive N digital signals, and perform spatial filtering on the N digital signals according to the spatial domain filter coefficients to obtain N filtered signals in the spatial domain;
  • the spatial domain filter in the embodiment of the present invention may be a selective spatial filter, and may perform selective spatial filtering on the signal sampled by the multi-channel low-speed analog-to-digital converter.
  • the principle of spatial filtering can be:
  • soi(n) denotes the filtered signal of the i-th airspace
  • SAi(n) denotes the i-th digital signal input
  • wi(n) denotes the i-th spatial filter coefficient
  • denotes the Hadamard product, ie vector or matrix The corresponding elements are multiplied.
  • the airspace filter is updated according to the feedback of the signal optimizer.
  • the update principle is as follows
  • W is the spatial domain filter coefficient
  • is the step size parameter when the weight is updated
  • e is the weight update parameter fed back by the signal optimizer
  • sel is the sample selection parameter, when the median value of the input sample vector modulus is greater than a certain threshold Thr When it is determined to be a valid sample, when it is determined to be a valid sample, the spatial domain filter coefficient is updated; * indicates that the signal is conjugated.
  • the spatial domain filter coefficient includes N complex weight coefficients, and the initial values thereof may all be set to 1, and the N sample signals input at the same time are regarded as one sample vector, and N elements are calculated for each input sample vector.
  • the median of the magnitude, the sample vector whose median is greater than a certain threshold is used as the effective vector, and the effective vector is weighted by N spatial filtering weight coefficients to obtain N valid spatially filtered signals, and the selective spatial filtering is performed.
  • the spatial domain filter receives the adjustment coefficient of the spatial filter coefficient obtained from the signal optimizer, and corrects the weight coefficients of the N complex numbers of the spatial filter coefficients according to the adjustment coefficient.
  • the signal optimizer is configured to receive the N-channel spatially filtered signal, and obtain an adjustment coefficient of the spatial domain filter coefficient according to the N-channel spatially filtered signal, and adjust the spatial domain filter coefficient Sent to the airspace filter;
  • the signal optimizer estimates the signal-to-noise ratio or the signal-to-interference ratio of the superimposed signal outputted by the spatial domain filter, obtains the update direction of the filter coefficient vector of the spatial filter through the autocorrelation and cross-correlation statistics of the signal, and feedbacks the coefficient of the spatial domain filter.
  • the signal-to-noise ratio or signal-to-interference ratio of the filtered signal is maximized.
  • the signal optimizer receives the N-channel filtered signal and outputs a parameter signal updated by the spatial domain filter; wherein C represents an optimization criterion of the optimizer, and the power of the received signal is increased as an example, and C is represented as
  • the receiving weight determiner is configured to receive the spatial domain filter coefficient, and obtain a receiving weight adjustment coefficient according to the spatial domain filter coefficient decision, and send the receiving weight adjustment coefficient to the receiving weight adjuster.
  • the receiving weight determiner receives the coefficients of the spatial domain filter, extracts the phase and amplitude of the filter coefficients, determines the receiving weight adjustment coefficient, and adjusts the phase and amplitude of the received signal, so that the receiving beam can optimize the quality of the received signal.
  • the receiving weight adjuster can be synchronously adjusted according to the clock of the signal processing.
  • the baseband processing and the digital-to-analog converter are used for performing baseband processing and digital-to-analog conversion on the transmitted signal, and transmitting the digital-to-analog converted one-way transmitting signal to the splitter;
  • the splitter is configured to receive the one-way transmit signal, and divide the one-way transmit signal into an M-way to obtain an M-channel transmit signal;
  • the transmit weight adjuster is configured to receive the M-channel transmit signal, and perform transmit weight adjustment on the M transmit signals according to the transmit weight adjustment coefficient, to obtain the M-channel transmit signal after the transmit weight adjustment, and respectively transmit the transmit weights through the M transmit array elements. Adjusted M-channel transmit signal;
  • the transmit weight determiner is configured to receive the spatial filter coefficient, and determine a wave angle of the received signal according to the spatial filter coefficient, and determine a transmit weight adjustment coefficient according to the wave angle.
  • the feature vector of the receiving array with respect to the spatial angle is pre-calculated according to the array parameters of the receiving array. Taking a linear array as an example, the feature vector is: Where ⁇ is the wavelength of the signal carrier and d is the spacing between the elements.
  • the received signal R on the array can be expressed as:
  • the signal after spatially filtering the received signal R on the array is:
  • the input of the transmit weight determiner is the coefficient vector W of the spatial domain filter, which is decomposed.
  • the value with the largest coefficient ⁇ is selected as the angle of the wave, that is, ⁇ m is selected as the wave angle of the output.
  • the feature vector of the receiving array with respect to the spatial angle is calculated according to the array parameters of the receiving array, and then the maximum component of the received signal is estimated by calculating the maximum component decomposed on the receiving array feature vector by the coefficient of the spatial domain filter. Corresponding Dapo angle.
  • the transmit weight determiner generates the transmit array weight coefficients according to the estimated vector of the transmit array using the estimated Dap angle.
  • the transmission weight adjustment coefficient is adjusted according to the transmission array weight coefficient.
  • the array antenna beam adjusting device couples N receiving signals before combining analog-to-digital conversion, performs low-speed small-bandwidth analog-to-digital conversion on the N receiving signals, and performs spatial filtering and adjustment according to the analog-to-digital converted signals.
  • the filter coefficient adjusts the weight of the received signal according to the filter coefficient to adjust the receive beam.
  • beam control is performed according to N received signals, and the speed and flexibility of the beam control are greatly improved, and the signal of the low-speed analog-to-digital converter is not required to be subjected to baseband processing, so the performance of the analog-to-digital converter is performed. Low requirements and low costs.
  • the array antenna includes N receiving array elements, including:
  • S301 Receive N received signals from N receiving array elements.
  • the received signals adjusted from the N channels are respectively coupled with one signal to obtain an N-channel coupled signal.
  • the method may further include:
  • the N-channel digital signals are delayed-compensated according to the sampling phase deviation between the analog-to-digital conversions of the N-channel coupled signals, and the N-channel digital signals after the sampling phase alignment are obtained.
  • the obtaining the adjustment coefficient of the spatial filter coefficient according to the N-channel spatially filtered signal may include:
  • the signal-to-noise ratio or the signal-to-interference ratio is calculated for the N-channel filtered signal, and the adjustment coefficient of the spatial-domain filter coefficient is obtained according to the calculation result, so that the signal-to-noise ratio or the signal-to-interference ratio of the filtered signal of the N-channel spatial domain increases.
  • the determining the receiving weight adjustment coefficient according to the spatial domain filter coefficient in step S308 may include:
  • the array antenna further includes M transmit array elements, and the transmit signals after baseband processing and digital-to-analog conversion are divided into M transmit signals, and the transmit weights are adjusted according to the transmit weight adjustment coefficients to obtain transmit weight adjustment.
  • the M-channel transmitting signal is sent by the M transmitting array elements respectively to transmit the M-channel transmitting signal after the transmission weight adjustment, and the method may further include:
  • the wave angle of the received signal is determined according to the spatial domain filter coefficient, and the transmit weight adjustment coefficient is determined according to the wave angle.
  • the receiving weight adjustment coefficient includes one or more of a phase and an amplitude
  • the transmission weight adjustment coefficient includes one or more of a phase and an amplitude
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling through some interface, device or unit.
  • a communication connection which may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.

Abstract

本发明实施例提供了一种阵列天线波束调整装置,该阵列天线波束调整装置在合路模数转换之前耦合出N路接收信号,对N路接收信号进行低速小带宽模数转换,根据模数转换后的信号进行空域滤波并调整滤波系数,根据滤波系数调整接收信号的权重从而调整接收波束。本发明实施例中根据N路接收信号进行波束控制,波束控制的速度和灵活性都得到大幅提高。

Description

一种阵列天线波束调整装置和方法 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种阵列天线波束调整装置和方法。
背景技术
具有波束成形功能的微波通信系统能够通过改变阵列天线中多路信号的相位或增益,动态地调节天线波束的指向或形状,自动适应链路上环境和干扰的变化,具有极大的灵活性和极低的维护成本。
现有技术中波束控制单元根据合路之后的信号进行波束控制判断,其波束控制的速度和灵活性都不理想。
发明内容
本发明实施例提供一种阵列天线波束调整装置和方法,用于灵活的调整阵列天线波束。
第一方面,本发明实施例提供一种阵列天线波束调整装置,所述阵列天线包括N个接收阵元,其特征在于,所述调整装置包括接收权重调整器、合路器、模数转换和基带处理器、N个抗混叠滤波器、N个低速模数转换器、空域滤波器、信号优化器和接收权重判决器,
接收权重调整器用于接收来自N个接收阵元的N路接收信号,并根据接收权重调整系数对所述N路接收信号分别进行接收权重调整,得到N路接收权重调整后的接收信号;
合路器用于接收N路接收权重调整后的接收信号,并对N路接收权重调整后的接收信号进行合路,得到合路后的接收信号;
模数转换和基带处理器接收合路后的接收信号,并对合路后的接收信号进行模数转换和基带处理;
N个抗混叠滤波器用于分别接收从N路接收权重调整后的接收信号中耦合出一路信号,并分别对N路耦合信号进行抗混叠处理,得到N路抗混叠处理后的信号;
N个低速模数转换器用于分别接收N路抗混叠处理后的信号,并分别进行低速模数转换,得到N路数字信号;
空域滤波器用于接收N路数字信号,并根据空域滤波系数对N路数字信号进行空域滤波,得到N路空域滤波后的信号;
信号优化器用于接收N路空域滤波后的信号,并根据N路空域滤波后的信号得到所述空域滤波系数的调整系数,将所述空域滤波系数的调整系数发送给空域滤波器;
接收权重判决器用于接收空域滤波系数,并根据空域滤波系数判决得到接收权重调整系数,并将接收权重调整系数发送给接收权重调整器。
在第一方面的第一种可能的实现方式中,N个低速模数转换器和空域滤波器之间还包括采样相位调整器,采样相位调整器用于接收N路数字信号,并根据N个低速模数转换器之间的采样相位偏差对N路数字信号进行延迟补偿,得到采样相位对齐后的N路数字信号,将采样相位对齐后的N路数字信号发送到空域滤波器。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,信号优化器具体用于对N路空域滤波后的信号进行信号噪声比或者信号干扰比计算,根据计算结果得到所述空域滤波系数的调整系数,使得N路空域滤波后的信号的信号噪声比或者信号干扰比增大。
在第一方面的第三种可能的实现方式中,接收权重判决器具体用于判决空域滤波系数的相位或幅度,得到接收权重调整系数。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述阵列天线还包括M个发射阵元,所述调整装置还包括基带处理和数模转换器、分路器、发射权重调整器和发射权重判决器,
基带处理和数模转换器用于对发射信号进行基带处理和数模转换,并将数模转换后的一路发射信号发送给分路器;
分路器用于接收所述一路发射信号,并将所述一路发射信号分成M路,得到M路发射信号;
发射权重调整器用于接收M路发射信号,并根据发射权重调整系数对所述M个发射信号进行发射权重调整,得到发射权重调整后的M路发射信号,通过M个发射阵元分别发送发射权重调整后的M路发射信号;
发射权重判决器用于接收空域滤波系数,并根据空域滤波系数确定接收信号的达波角,根据达波角确定发射权重调整系数。
在第一方面的第五种可能的实现方式中,所述接收权重调整系数包括相位和幅度中的一种或两种,所述发射权重调整系数包括相位和幅度中的一种或两种。
第二方面,本发明实施例提供一种阵列天线波束调整方法,所述阵列天线包括N个接收阵元,包括:
接收来自N个接收阵元的N路接收信号;
根据接收权重调整系数对所述N路接收信号分别进行接收权重调整,得到N路接收权重调整后的接收信号,将N路接收权重调整后的接收信号进行合路得到合路后的接收信号,对合路后的接收信号进行模数转换和基带处理;
从N路接收权重调整后的接收信号分别耦合出一路信号得到N路耦合信号;
对N路耦合信号分别进行抗混叠滤波处理,得到N路抗混叠处理后的信号;
对N路抗混叠处理后的信号分别进行低速模数转换,得到N路数字信号;
根据空域滤波系数对N路数字信号进行空域滤波,得到N路空域滤波 后的信号;
根据N路空域滤波后的信号得到所述空域滤波系数的调整系数;
根据空域滤波系数判决得到接收权重调整系数。
在第二方面的第一种可能的实现方式中,根据空域滤波系数对N路数字信号进行空域滤波之前还包括:
根据N路耦合信号模数转换之间的采样相位偏差对N路数字信号进行延迟补偿,得到采样相位对齐后的N路数字信号。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述根据N路空域滤波后的信号得到所述空域滤波系数的调整系数,包括:
对N路空域滤波后的信号进行信号噪声比或者信号干扰比计算,根据计算结果得到所述空域滤波系数的调整系数,使得N路空域滤波后的信号的信号噪声比或者信号干扰比增大。
在第二方面的第三种可能的实现方式中,根据空域滤波系数确定接收权重调整系数,包括:
计算空域滤波系数的相位或幅度,得到接收权重调整系数。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,所述阵列天线还包括M个发射阵元,经过基带处理和数模转换的发射信号被分成M个发射信号,根据发射权重调整系数对所述M个发射信号进行发射权重调整,得到发射权重调整后的M路发射信号,通过M个发射阵元分别发送发射权重调整后的M路发射信号,所述方法还包括:
根据空域滤波系数确定接收信号的达波角,根据达波角确定发射权重调整系数。
在第二方面的第五种可能的实现方式中,包括:所述接收权重调整系数包括相位和幅度中的一种或多种,所述发射权重调整系数包括相位和幅度中 的一种或多种。
本发明实施例中,阵列天线波束调整装置在合路模数转换之前耦合出N路接收信号,对N路接收信号进行低速小带宽模数转换,根据模数转换后的信号进行空域滤波并调整滤波系数,根据滤波系数调整接收信号的权重从而调整接收波束。本发明实施例中对模数转换器的性能要求低,根据N路接收信号进行波束控制,波束控制的速度和灵活性都得到大幅提高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的一种阵列天线波束调整装置的结构图。
图2为本发明实施例的一种接收权重调整器的结构图。
图3为本发明实施例的一种阵列天线波束调整方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
如图1所示,为本发明实施例的一种阵列天线波束调整装置的结构图,其中包括阵列天线、接收权重调整器、合路器、模数转换和基带处理器、N个抗混叠滤波器(Anti-Aliase Filter,AAF)、N个低速模数转换器器(LowRate ADC)、采样相位调整器、空域滤波器、信号优化器、接收权重判决器、发射权重判决器,还包括基带处理和数模转换器、分路器、发射权重调整器。 其中的连接关系为阵列天线和接收权重调整器相连,接收权重调整器和合路器相连,合路器和模数转换和基带处理器相连,N个抗混叠滤波器分别接收合路器之前耦合的N路信号,N个低速模数转换期分别和N个抗混叠滤波器相连,采样相位调整器和N个低速滤波器相连,空域滤波器和采样相位调整器相连,信号优化器和空域滤波器相连,接收权重判决器和空域滤波器相连,接收权重判决器和接收权重调整器相连,发射权重判决器和空域滤波器相连,发射权重判决器和发射权重判决器相连,此外,分路器和基带处理和数模转换器相连,发射权重调整器和分路器相连,阵列天线和发射权重调整器相连。以上只是一种较优的结构和连接关系,本发明实施例对此并不做限定,其中可以不包括某些器件,例如可以不包括发射部分,因此不包括发射权重调整器等,当然各个器件之间还可以包括其他器件,例如接收权重调整器和阵列天线之间可以包括某些其它器件对接收信号进行一些简单处理,例如整形等,本发明实施例对此不做限定。
为了方便理解,下面对图1中各器件的工作方式和工作原理进行介绍,当然各器件也可以采用其它工作方式和工作原理,只要能够满足需求即可。
其中阵列天线包括N个接收阵元,图1中没有示出,每个接收阵元可以接收一路接收信号,接收权重调整器可以接收来自N个接收阵元的N路接收信号,并根据接收权重调整系数对所述N路接收信号分别进行接收权重调整,得到N路接收权重调整后的接收信号,接收权重调整器对多通道中的模拟信号进行加权,可以调整相位和/或幅度。例如可以如图2所示,包括相移器和可调放大器,相移器对N路接收信号的相位进行调整,可调放大器对N路接收信号的幅度进行调整,当然可以仅包括相移器和可调放大器中的任意一个。
合路器用于接收N路接收权重调整后的接收信号,并对N路接收权重调整后的接收信号进行合路,得到合路后的接收信号。
模数转换和基带处理器接收合路后的接收信号,并对合路后的接收信号 进行模数转换和基带处理。因为需要进行基带处理,因此其中模数转换需要适配正常通信信号的速率和带宽,完成高性能的模数转换处理。模数转换和基带处理器无需感知波束控制的功能。
N个抗混叠滤波器用于分别接收从N路接收权重调整后的接收信号中耦合出一路信号,并分别对N路耦合信号进行抗混叠处理,得到N路抗混叠处理后的信号;耦合处理的仅是一部分信号,不会对合路器后信号的接收处理产生影响。
抗混叠滤波器对耦合出来的信号进行抗混叠滤波,以适配后面的低速模数转换采样。抗混叠滤波器的工作原理可表示为
SFi(f)=AAFi(f)·Si(f),i=1,2,...,N
其中Si(f)为第i个接收通道对应的耦合信号的频谱;SFi(f)为第i个AAF滤波输出信号的频谱;AAFi(f)表示第i个AAF滤波器的频域响应,它具有低通滤波的特性,它可以将输入信号的带宽限制到与低速模数转换器的采样速率相匹配的程度;N表示接收通道数。
N个低速模数转换器用于分别接收N路抗混叠处理后的信号,并分别进行低速模数转换,得到N路数字信号,输出的N路信号也可以叫做N路亚采样信号。N个低速模数转换器在同一个采样时钟信号的驱动下对信号进行低速采样。
低速模数转换器是一种低速率小带宽的模数转换器,对模拟信号采样后转换成低速的数字信号输出给采样相位调整器;低速模数转换器的工作原理可表示为:
SSi(n)=δi(t-nT)·SFi(t)=δ(t-nT+σi)·SFi(t)=SFi(n-σi),i=1,2,...,N
其频域响应表示为
Figure PCTCN2014095958-appb-000001
其中,t表示连续信号的时间变量,n表示离散信号的时间变量,w表示离散信号的频率变量,(j)表示复数的虚部
Figure PCTCN2014095958-appb-000002
SFi(t)为第i个AAF滤波器输出的连续信号,SSi(n)为第i个低速模数转换器采样后得到的离散信号, δi(t-nT)为第i个低速模数转换器的采样函数,δ(t-nT)表示一个理想的低速模数转换器的采样函数,T表示低速模数转换器的采样周期,σi为第i个低速模数转换器的采样延迟,
Figure PCTCN2014095958-appb-000003
为第i个低速模数转换器采样延迟导致的相位偏置量,SFi(w)表示第i个低速模数转换器的输入频域信号,SSi(w)表示第i个低速模数转换器采样后得到频域信号。
采样相位调整器用于接收N路数字信号,并根据N个低速模数转换器之间的相位偏差对N路数字信号进行延迟补偿,得到采样相位对齐后的N路数字信号,将采样相位对齐后的N路数字信号发送到空域滤波器。
N路亚采样信号同时输入一个采样相位调整器,输出得到N路采样相位对齐后的亚采样信号。采样相位调整器根据N个低速模数转换器的采样相位偏差,对N路亚采样信号进行延迟补偿,对齐N个信号的采样时间,消除采样相位偏差。采样相位调整器中对N个低速模数转换器采样相位偏差的获取,可以通过在离线或在线状态下发送训练信号的方式进行估计得到。
采样相位调整器用于补偿多个低速模数转换器在采样时,由于驱动时钟相位不同所造成的采样相位偏差,其工作原理可以如下式所示
Figure PCTCN2014095958-appb-000004
其中SFi(w)表示第i个低速模数转换器的输入频域信号,SSi(w)表示第i个低速模数转换器采样后得到频域信号,SAi(w)表示第i个低速模数转换器采样后得到频域信号经过采样相位调整后的频域信号,
Figure PCTCN2014095958-appb-000005
为第i个低速模数转换器与第1个低速模数转换器之间的采样相位差异。
采样相位调整器的输入为N路采样信号构成的矢量,输出为N路相位对齐后的采样信号。
当然在其它实施例中也可以不包括采样相位调整器。
空域滤波器用于接收N路数字信号,并根据空域滤波系数对N路数字信号进行空域滤波,得到N路空域滤波后的信号;
本发明实施例中的空域滤波器可以为选择性空域滤波器(Selective Spatial Filter),可以对多路低速模数转换器采样得到的信号进行选择性空域滤波。
空域滤波原理可以为:
Figure PCTCN2014095958-appb-000006
其中soi(n)表示第i路空域滤波后的信号,SAi(n)表示输入的第i个数字信号,wi(n)表示第i个空域滤波系数,⊙表示哈达玛积,即矢量或矩阵的对应元素相乘。
其中空域滤波器会根据信号优化器的反馈进行更新,更新原理如下
Figure PCTCN2014095958-appb-000007
其中,W为空域滤波系数,μ为权重更新时的步长参数;e为信号优化器反馈的权重更新参数;sel为样点选择参数,当输入样本矢量模值的中值大于某一阈值Thr时,判定为有效样本,当判定为有效样本的时候,进行空域滤波系数更新;*表示取信号的共轭。
其中,空域滤波系数包括N个复数的权重系数,其初始值可以全部设为1,同一时间输入的N个采样信号视为一个样点矢量,对每个输入的样点矢量计算其N个元素的幅度的中值,该中值大于某一阈值的样点矢量作为有效矢量,有效矢量经过N个空域滤波权重系数加权后,得到N个有效的空域滤波后的信号,并从选择性空域滤波器中输出到信号优化器。空域滤波器接收从信号优化器得到的空域滤波系数的调整系数,根据该调整系数修正空域滤波系数的N个复数的权重系数。
信号优化器用于接收N路空域滤波后的信号,并根据N路空域滤波后的信号得到所述空域滤波系数的调整系数,将所述空域滤波系数的调整系数 发送给空域滤波器;
信号优化器对空域滤波输出的叠加信号进行信号噪声比或信号干扰比估计,通过信号的自相关和互相关统计,获取空域滤波器滤波系数矢量的更新方向,并反馈调节空域滤波器的系数,使得滤波后的信号的信噪比或信干比最大。
下面给出一种信号优化器驱动空域滤波系数更新的原理:
Figure PCTCN2014095958-appb-000008
信号优化器接收N路空域滤波后的信号,输出一个空域滤波器更新的参数信号;其中,C表示优化器的优化准则,以提升接收信号的功率为例,C表示为
Figure PCTCN2014095958-appb-000009
接收权重判决器用于接收空域滤波系数,并根据空域滤波系数判决得到接收权重调整系数,并将接收权重调整系数发送给接收权重调整器。
接收权重判决器接收空域滤波器的系数,通过提取滤波器系数的相位和幅度,判决得到接收权重调整系数,调整接收信号的相位和幅度,使得接收波束能够最优化接收信号的质量。优选的,可以根据信号处理的时钟对接收权重调整器进行同步调整。
基带处理和数模转换器用于对发射信号进行基带处理和数模转换,并将数模转换后的一路发射信号发送给分路器;
分路器用于接收所述一路发射信号,并将所述一路发射信号分成M路,得到M路发射信号;
发射权重调整器用于接收M路发射信号,并根据发射权重调整系数对所述M个发射信号进行发射权重调整,得到发射权重调整后的M路发射信号,通过M个发射阵元分别发送发射权重调整后的M路发射信号;
发射权重判决器用于接收空域滤波系数,并根据空域滤波系数确定接收信号的达波角,根据达波角确定发射权重调整系数。
首先根据接收阵列的阵列参数预先计算得到接收阵列关于空间角度的特征矢量,以一个线性排列的阵列为例,其特征矢量为:
Figure PCTCN2014095958-appb-000010
其中λ为信号载波的波长,d为阵元间的间距。
对于一个阵列特征矢量为A(θ)的接收阵列,当达波角为θin的波束入射阵列时,阵列上接收得到信号R可表示为:
Figure PCTCN2014095958-appb-000011
由空域滤波的原理可知,对阵列上接收得到信号R进行空域滤波后的信号为:
Figure PCTCN2014095958-appb-000012
在合成接收功率最大的驱动下,当空域滤波器收敛后,W=A(θin)*
实际系统中,由于噪声等影响,发射权重判决器的的输入为空域滤波器的系数矢量W,分解得到
W=α1·A(θ1)*2·A(θ2)*+...
此时选择系数α最大的值对应角度作为达波角,即选择θm作为输出的达波角,此时
Figure PCTCN2014095958-appb-000013
也就是说,预先根据接收阵列的阵列参数计算得到接收阵列关于空间角度的特征矢量,然后通过计算空域滤波器的系数在接收阵列特征矢量上分解得到的最大分量,估计接收信号中最强平面波分量对应的达波角。
发射权重判决器利用估计得到的达波角,根据发送阵列的特征矢量生成发射阵列权重系数。
即根据输入的达波角θm,按照发送阵列的特征矢量生成权重矢量 Wtx=Atxm)*,发送阵列的特征矢量的获取方式可以参考接收阵列的特征矢量采用相同的获取方式。
根据发射阵列权重系数调整发射权重调整系数。
本发明实施例中,阵列天线波束调整装置在合路模数转换之前耦合出N路接收信号,对N路接收信号进行低速小带宽模数转换,根据模数转换后的信号进行空域滤波并调整滤波系数,根据滤波系数调整接收信号的权重从而调整接收波束。本发明实施例中,根据N路接收信号进行波束控制,波束控制的速度和灵活性都得到大幅提高,不需要对低速模数转换器后的信号进行基带处理,因此对模数转换器的性能要求低,成本也不高。
如图3所示,提供了一种阵列天线波束调整方法流程图,所述阵列天线包括N个接收阵元,包括:
S301、接收来自N个接收阵元的N路接收信号;
S302、根据接收权重调整系数对所述N路接收信号分别进行接收权重调整,得到N路接收权重调整后的接收信号,将N路接收权重调整后的接收信号进行合路得到合路后的接收信号,对合路后的接收信号进行模数转换和基带处理;
S303、从N路接收权重调整后的接收信号分别耦合出一路信号得到N路耦合信号;
S304、对N路耦合信号分别进行抗混叠滤波处理,得到N路抗混叠处理后的信号;
S305、对N路抗混叠处理后的信号分别进行低速模数转换,得到N路数字信号;
S306、根据空域滤波系数对N路数字信号进行空域滤波,得到N路空域滤波后的信号;
S307、根据N路空域滤波后的信号得到所述空域滤波系数的调整系数;
S308、根据空域滤波系数判决得到接收权重调整系数。
步骤S306之前还可以包括:
根据N路耦合信号模数转换之间的采样相位偏差对N路数字信号进行延迟补偿,得到采样相位对齐后的N路数字信号。
步骤S307所述根据N路空域滤波后的信号得到所述空域滤波系数的调整系数可以包括:
对N路空域滤波后的信号进行信号噪声比或者信号干扰比计算,根据计算结果得到所述空域滤波系数的调整系数,使得N路空域滤波后的信号的信号噪声比或者信号干扰比增大。
步骤S308中根据空域滤波系数确定接收权重调整系数可以包括:
计算空域滤波系数的相位或幅度,得到接收权重调整系数。
所述阵列天线还包括M个发射阵元,经过基带处理和数模转换的发射信号被分成M个发射信号,根据发射权重调整系数对所述M个发射信号进行发射权重调整,得到发射权重调整后的M路发射信号,通过M个发射阵元分别发送发射权重调整后的M路发射信号,所述方法还可以包括:
根据空域滤波系数确定接收信号的达波角,根据达波角确定发射权重调整系数。
所述接收权重调整系数包括相位和幅度中的一种或多种,所述发射权重调整系数包括相位和幅度中的一种或多种。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和器件以及方法之间可以相互参考。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合 或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

Claims (12)

  1. 一种阵列天线波束调整装置,所述阵列天线包括N个接收阵元,其特征在于,所述调整装置包括接收权重调整器、合路器、模数转换和基带处理器、N个抗混叠滤波器、N个低速模数转换器、空域滤波器、信号优化器和接收权重判决器,
    接收权重调整器用于接收来自N个接收阵元的N路接收信号,并根据接收权重调整系数对所述N路接收信号分别进行接收权重调整,得到N路接收权重调整后的接收信号;
    合路器用于接收N路接收权重调整后的接收信号,并对N路接收权重调整后的接收信号进行合路,得到合路后的接收信号;
    模数转换和基带处理器接收合路后的接收信号,并对合路后的接收信号进行模数转换和基带处理;
    N个抗混叠滤波器用于分别接收从N路接收权重调整后的接收信号中耦合出一路信号,并分别对N路耦合信号进行抗混叠处理,得到N路抗混叠处理后的信号;
    N个低速模数转换器用于分别接收N路抗混叠处理后的信号,并分别进行低速模数转换,得到N路数字信号;
    空域滤波器用于接收N路数字信号,并根据空域滤波系数对N路数字信号进行空域滤波,得到N路空域滤波后的信号;
    信号优化器用于接收N路空域滤波后的信号,并根据N路空域滤波后的信号得到所述空域滤波系数的调整系数,将所述空域滤波系数的调整系数发送给空域滤波器;
    接收权重判决器用于接收空域滤波系数,并根据空域滤波系数判决得到接收权重调整系数,并将接收权重调整系数发送给接收权重调整器。
  2. 根据权利要求1所述的装置,其特征在于,N个低速模数转换器和空域滤波器之间还包括采样相位调整器,采样相位调整器用于接收N路数字 信号,并根据N个低速模数转换器之间的采样相位偏差对N路数字信号进行延迟补偿,得到采样相位对齐后的N路数字信号,将采样相位对齐后的N路数字信号发送到空域滤波器。
  3. 根据权利要求1或2所述的装置,其特征在于,信号优化器具体用于对N路空域滤波后的信号进行信号噪声比或者信号干扰比计算,根据计算结果得到所述空域滤波系数的调整系数,使得N路空域滤波后的信号的信号噪声比或者信号干扰比增大。
  4. 根据权利要求1所述的装置,其特征在于,接收权重判决器具体用于判决空域滤波系数的相位或幅度,得到接收权重调整系数。
  5. 根据权利要求1或2所述的装置,其特征在于,所述阵列天线还包括M个发射阵元,所述调整装置还包括基带处理和数模转换器、分路器、发射权重调整器和发射权重判决器,
    基带处理和数模转换器用于对发射信号进行基带处理和数模转换,并将数模转换后的一路发射信号发送给分路器;
    分路器用于接收所述一路发射信号,并将所述一路发射信号分成M路,得到M路发射信号;
    发射权重调整器用于接收M路发射信号,并根据发射权重调整系数对所述M个发射信号进行发射权重调整,得到发射权重调整后的M路发射信号,通过M个发射阵元分别发送发射权重调整后的M路发射信号;
    发射权重判决器用于接收空域滤波系数,并根据空域滤波系数确定接收信号的达波角,根据达波角确定发射权重调整系数。
  6. 根据权利要求1所述的装置,其特征在于,所述接收权重调整系数包括相位和幅度中的一种或两种,所述发射权重调整系数包括相位和幅度中的一种或两种。
  7. 一种阵列天线波束调整方法,所述阵列天线包括N个接收阵元,其特征在于,包括:
    接收来自N个接收阵元的N路接收信号;
    根据接收权重调整系数对所述N路接收信号分别进行接收权重调整,得到N路接收权重调整后的接收信号,将N路接收权重调整后的接收信号进行合路得到合路后的接收信号,对合路后的接收信号进行模数转换和基带处理;
    从N路接收权重调整后的接收信号分别耦合出一路信号得到N路耦合信号;
    对N路耦合信号分别进行抗混叠滤波处理,得到N路抗混叠处理后的信号;
    对N路抗混叠处理后的信号分别进行低速模数转换,得到N路数字信号;
    根据空域滤波系数对N路数字信号进行空域滤波,得到N路空域滤波后的信号;
    根据N路空域滤波后的信号得到所述空域滤波系数的调整系数;
    根据空域滤波系数判决得到接收权重调整系数。
  8. 根据权利要求7所述的方法,其特征在于,根据空域滤波系数对N路数字信号进行空域滤波之前还包括:
    根据N路耦合信号模数转换之间的采样相位偏差对N路数字信号进行延迟补偿,得到采样相位对齐后的N路数字信号。
  9. 根据权利要求7或8所述的方法,其特征在于,所述根据N路空域滤波后的信号得到所述空域滤波系数的调整系数,包括:
    对N路空域滤波后的信号进行信号噪声比或者信号干扰比计算,根据计算结果得到所述空域滤波系数的调整系数,使得N路空域滤波后的信号的信号噪声比或者信号干扰比增大。
  10. 根据权利要求7所述的方法,其特征在于,根据空域滤波系数确定接收权重调整系数,包括:
    计算空域滤波系数的相位或幅度,得到接收权重调整系数。
  11. 根据权利要求7或8所述的方法,其特征在于,所述阵列天线还包括M个发射阵元,经过基带处理和数模转换的发射信号被分成M个发射信号,根据发射权重调整系数对所述M个发射信号进行发射权重调整,得到发射权重调整后的M路发射信号,通过M个发射阵元分别发送发射权重调整后的M路发射信号,所述方法还包括:
    根据空域滤波系数确定接收信号的达波角,根据达波角确定发射权重调整系数。
  12. 根据权利要求7所述的方法,其特征在于,包括:所述接收权重调整系数包括相位和幅度中的一种或多种,所述发射权重调整系数包括相位和幅度中的一种或多种。
PCT/CN2014/095958 2014-12-31 2014-12-31 一种阵列天线波束调整装置和方法 WO2016106706A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480081217.8A CN106688194B (zh) 2014-12-31 2014-12-31 一种阵列天线波束调整装置和方法
ES14909514T ES2730731T3 (es) 2014-12-31 2014-12-31 Dispositivo y método de ajuste de haz de antena de matriz
EP14909514.3A EP3229381B1 (en) 2014-12-31 2014-12-31 Array antenna beam adjustment device and method
PCT/CN2014/095958 WO2016106706A1 (zh) 2014-12-31 2014-12-31 一种阵列天线波束调整装置和方法
US15/640,172 US10243643B2 (en) 2014-12-31 2017-06-30 Beam adjustment apparatus and method for array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095958 WO2016106706A1 (zh) 2014-12-31 2014-12-31 一种阵列天线波束调整装置和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/640,172 Continuation US10243643B2 (en) 2014-12-31 2017-06-30 Beam adjustment apparatus and method for array antenna

Publications (1)

Publication Number Publication Date
WO2016106706A1 true WO2016106706A1 (zh) 2016-07-07

Family

ID=56283979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095958 WO2016106706A1 (zh) 2014-12-31 2014-12-31 一种阵列天线波束调整装置和方法

Country Status (5)

Country Link
US (1) US10243643B2 (zh)
EP (1) EP3229381B1 (zh)
CN (1) CN106688194B (zh)
ES (1) ES2730731T3 (zh)
WO (1) WO2016106706A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107896122A (zh) * 2016-09-30 2018-04-10 电信科学技术研究院 一种波束扫描和搜索跟踪方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109603A1 (en) * 2016-12-13 2018-06-21 Amimon Ltd. Analog signal transmission with multiple antennas
CN111540371B (zh) * 2020-04-22 2020-11-03 深圳市友杰智新科技有限公司 麦克风阵列波束成形的方法、装置和计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549473A (zh) * 2003-05-07 2004-11-24 中兴通讯股份有限公司 一种适用于宽带码分多址系统中的波束形成方法
US7702000B1 (en) * 2005-02-10 2010-04-20 Motia Inc. Method and system for weight generation in an adaptive array with spread spectrum
CN101931449A (zh) * 2010-08-27 2010-12-29 中国科学院上海微系统与信息技术研究所 分布式数字波束形成网络及数字波束形成处理方法
CN102026362A (zh) * 2010-12-10 2011-04-20 大唐移动通信设备有限公司 一种调整赋形加权系数的方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095814B2 (en) * 2000-10-11 2006-08-22 Electronics And Telecommunications Research Institute Apparatus and method for very high performance space-time array reception processing using chip-level beamforming and fading rate adaptation
JP3895228B2 (ja) * 2002-05-07 2007-03-22 松下電器産業株式会社 無線通信装置および到来方向推定方法
CN100444531C (zh) * 2003-03-31 2008-12-17 富士通株式会社 接收装置
JP2006287757A (ja) * 2005-04-01 2006-10-19 Ntt Docomo Inc 下りリンクチャネル用の送信装置及び送信方法
CA2576778C (en) * 2006-02-07 2014-09-02 Xinping Huang Self-calibrating multi-port circuit and method
US7965234B2 (en) * 2009-08-06 2011-06-21 Samsung Electro-Mechanics Co., Ltd. Beamforming apparatus and method for multi-antenna system
US8743914B1 (en) * 2011-04-28 2014-06-03 Rockwell Collins, Inc. Simultaneous independent multi-beam analog beamformer
CN102496787B (zh) * 2011-12-04 2014-02-26 北京航空航天大学 集成频域滤波的宽带方向图可重构天线系统
KR20130127347A (ko) * 2012-05-10 2013-11-22 삼성전자주식회사 아날로그 및 디지털 하이브리드 빔포밍을 통한 통신 방법 및 장치
EP2860927A4 (en) * 2012-06-11 2015-09-23 Huawei Tech Co Ltd DECODER PROCESS AND DECORER FOR RECEIVING A SIGNAL IN A MICROWAVE MIMO SYSTEM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549473A (zh) * 2003-05-07 2004-11-24 中兴通讯股份有限公司 一种适用于宽带码分多址系统中的波束形成方法
US7702000B1 (en) * 2005-02-10 2010-04-20 Motia Inc. Method and system for weight generation in an adaptive array with spread spectrum
CN101931449A (zh) * 2010-08-27 2010-12-29 中国科学院上海微系统与信息技术研究所 分布式数字波束形成网络及数字波束形成处理方法
CN102026362A (zh) * 2010-12-10 2011-04-20 大唐移动通信设备有限公司 一种调整赋形加权系数的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3229381A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107896122A (zh) * 2016-09-30 2018-04-10 电信科学技术研究院 一种波束扫描和搜索跟踪方法及装置
CN107896122B (zh) * 2016-09-30 2020-10-20 电信科学技术研究院 一种波束扫描和搜索跟踪方法及装置

Also Published As

Publication number Publication date
ES2730731T3 (es) 2019-11-12
EP3229381B1 (en) 2019-04-24
US10243643B2 (en) 2019-03-26
EP3229381A4 (en) 2018-01-17
US20170302357A1 (en) 2017-10-19
CN106688194A (zh) 2017-05-17
EP3229381A1 (en) 2017-10-11
CN106688194B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
JP2561031B2 (ja) 送受信装置
IL261538A (en) Digital beacon design and method
CN108886400B (zh) 接收装置、接收方法以及计算机能读取的记录介质
WO2016106706A1 (zh) 一种阵列天线波束调整装置和方法
WO2004112262A3 (en) Compensation techniques for group delay effects in transmit beamforming
WO2016026394A1 (en) Analog compensation circuit and method
TW200531345A (en) Beamforming method and device for broadband antenna
US20020041695A1 (en) Method and apparatus for an adaptive binaural beamforming system
US20140036765A1 (en) Relay satellite and satellite communication system
US10880132B1 (en) Distortion cancellation
JP2009522908A (ja) 干渉除去型無線中継器
KR20050014136A (ko) 공간 다이버시티 및 빔형성을 이용한 디지털 tv신호를수신하는 방법 및 장치
KR20000070387A (ko) 다중 소스들을 가진 오디오 처리 장치
US10698083B2 (en) Method and apparatus of digital beamforming for a radar system
WO2017008542A1 (zh) 同时同频全双工终端和系统
WO2010101156A1 (ja) 無線通信システム、送信装置および受信装置
US9148318B2 (en) Equalization method and equalizer for received signals in microwave MIMO system
WO2004083885A3 (en) Time delaybeamformer and method of time delay beamforming
JPWO2013145663A1 (ja) 角度ダイバーシチ受信装置及び角度ダイバーシチ受信方法
JP5339450B2 (ja) 無線通信装置および無線通信方法
CN106569780B (zh) 一种多通道数字音频信号实时音效处理方法及系统
JPH11289213A (ja) アダプティブ受信装置
CN210243826U (zh) 一种雷达多通道信号预处理装置及其脉冲压缩单元
CN104779969B (zh) 一种具有高动态接收机的全双工系统及其使用方法
KR20080006509A (ko) 적응 원형 마이크로폰 어레이를 이용한 다자간 회의시스템의 개발

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014909514

Country of ref document: EP