WO2017067084A1 - 体位阀装置、通气控制装置和呼吸面罩设备 - Google Patents

体位阀装置、通气控制装置和呼吸面罩设备 Download PDF

Info

Publication number
WO2017067084A1
WO2017067084A1 PCT/CN2015/100046 CN2015100046W WO2017067084A1 WO 2017067084 A1 WO2017067084 A1 WO 2017067084A1 CN 2015100046 W CN2015100046 W CN 2015100046W WO 2017067084 A1 WO2017067084 A1 WO 2017067084A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
patient
gravity
track
port
Prior art date
Application number
PCT/CN2015/100046
Other languages
English (en)
French (fr)
Inventor
马德东
庄志
周明钊
王亚杰
Original Assignee
北京怡和嘉业医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京怡和嘉业医疗科技有限公司 filed Critical 北京怡和嘉业医疗科技有限公司
Publication of WO2017067084A1 publication Critical patent/WO2017067084A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices

Definitions

  • the present invention relates to the field of respiratory masks, and in particular to a position valve device for a respiratory mask, a ventilation control device having the position valve device, and a respiratory mask device having such a position valve device or such a ventilation control device.
  • OSAHS obstructive sleep apnea hypopnea syndrome
  • CPAP continuous positive airway pressure
  • PEEP positive end-expiratory pressure
  • the most common method of surgery is uvulopalatopharyngoplasty and its improved surgery for upper airway oropharyngeal obstruction (including pharyngeal mucosal tissue hypertrophy, narrow pharyngeal cavity, uvula sulcus hypertrophy, soft palate too low, tonsil hypertrophy And apnea hypopnea index (AHI) ⁇ 20 times / hour.
  • upper airway oropharyngeal obstruction including pharyngeal mucosal tissue hypertrophy, narrow pharyngeal cavity, uvula sulcus hypertrophy, soft palate too low, tonsil hypertrophy And apnea hypopnea index (AHI) ⁇ 20 times / hour. Due to the need for surgery, the patient's acceptance is low, and the length of the surgical tissue may cause the disease to be repeated, and then the surgery cannot be performed again.
  • Oral orthoses are often used in patients with simple snoring and mild OSAHS (AHI ⁇ 15 times / hour), especially in patients with mandibular retraction.
  • the efficacy is unpredictable and can only be used.
  • Continuous positive pressure ventilation and positive end expiratory pressure usually use a respiratory mask. This non-invasive treatment is very popular in the clinic.
  • the respiratory mask 110 is connected to the CPAP ventilator 130 through a connecting line 120, and the respiratory mask 110 is worn to the face of the patient.
  • the CPAP ventilator 130 produces a continuous positive pressure flow that provides physiological pressure support to the patient's upper airway to treat the OSAHS.
  • the results of related pathological studies showed that patients with OSAHS had no obstruction in the lateral airway and only had obstruction in the supine position.
  • the existing breathing mask is in the patient's supine or lateral position.
  • the same ventilation method results in poor compliance of the breathing mask, which reduces the comfort of the patient.
  • a positional valve device for a respiratory mask for a respiratory mask, a ventilation control device having the positional valve device, and a respiratory mask device having such a positional valve device or such a ventilation control device to at least partially address the above mentioned The problem.
  • the present invention provides a position valve device, a ventilation control device, and a respiratory mask device.
  • a position valve device for a respiratory mask includes: a connection interface connectable to a mouth and/or a nose of a patient; and a body position valve, the connection interface being mounted on the body position valve, wherein When the first angle of the patient flipping from the supine position to the left is greater than the first predetermined value, the position valve is turned on; and when the second angle of the patient flipping from the supine position to the right is greater than the second predetermined value, the position valve is turned on
  • the connecting interface can communicate with the atmosphere through the position valve when the position valve is turned on.
  • the position valve comprises: a housing, the connection interface is disposed in the housing and in communication with the housing; a first valve disposed on the housing, wherein the first angle is greater than The first valve is turned on when the first predetermined value is; and the second valve is disposed on the housing, wherein the second valve is turned on when the second angle is greater than the second predetermined value .
  • the first valve and the second valve are respectively located on both sides of an axis of the connection interface.
  • the first valve comprises: a first valve port, the first valve port is disposed on the housing; a first valve, the first valve is engaged with the first valve port and is a pivotally pivotally mounted shaft on the housing, the first valve closing the first valve port when the patient is supine, wherein the first center of gravity of the first valve passes An angle between a line connecting the first center of gravity and the first pivot and a direction of gravity is the first predetermined value, in a plane perpendicular to a longitudinal axis of the patient,
  • the second valve comprises: a second valve port, the second valve port is disposed on the housing; a second valve, the second valve is engaged with the second valve port and is second a pivot shaft pivotally mounted to the housing, the second valve closing the second valve port when the patient is supine, wherein the second center of gravity passes the second valve and is vertical
  • the angle between the line connecting the second center of gravity and the second pivot and the direction of gravity is the second predetermined value in a plane of the longitudinal axis of the patient.
  • the first valve comprises: a first valve port, the first valve port is disposed on the housing; a first valve, the first valve is engaged with the first valve port and is first The pivot is pivotally mounted to the shaft On the housing, the first valve closes the first valve port when the patient is supine, and the second valve is disposed on the first valve, wherein the first center of gravity passes and is perpendicular to the In the plane of the longitudinal axis of the patient, the angle between the line connecting the first center of gravity and the first pivot and the direction of gravity is the first predetermined value, and the first center of gravity is the first valve and the The center of gravity of the second valve is described.
  • the second valve comprises: a second valve port disposed on the first valve and communicating with the first valve port; a second valve, the second valve and the second valve
  • the second valve port is fitted and pivotally mounted on the first valve with a second pivot axis, the second valve closing the second valve port when the patient is supine, wherein
  • the second center of gravity of the second valve is perpendicular to a plane of the longitudinal axis of the patient, and the angle between the line connecting the second center of gravity and the second pivot and the direction of gravity is a second predetermined value.
  • a plane of the first upper opening of the first valve port is inclined, the first pivot is located above or below the first upper opening, and the second upper opening of the second valve opening The plane in which is located is inclined, the second pivot is located above or below the second upper opening, wherein the first center of gravity is located to the left of the first gravity line passing the top end of the first upper opening
  • the second center of gravity is located to the right of the second gravity line passing the top end of the second upper opening; when the first center of gravity is located to the right of the first gravity line, the second center of gravity is located The left side of the second gravity line is described.
  • the first valve includes: a first track having a first angle with a horizontal plane, the first track being provided with a first passage connecting the atmosphere and the connection interface; and first a valve ball, the first valve ball is freely rollable in the first track, and the first valve ball is located at a lowest point of the first track to enable the first passage to be closed, the first valve The first passage is electrically conductive when the ball is at the highest point of the first track.
  • the second valve comprises: a second track having a second angle with a horizontal plane, the second track being provided with a second passage connecting the atmosphere and the connection interface; and a second a valve ball, the second valve ball is freely rollable in the second track, and the second valve ball is capable of closing the second passage when the second ball is at a lowest point of the second track, the second valve When the ball is at the highest point of the second track, the second path can be turned on.
  • the first passage and the second passage include: a first opening disposed at a lowest point of the first rail and the second rail to pass the first rail and the first a second track connected to the atmosphere; and a second opening disposed at a non-lowest point of the first track and the second track to communicate the first track and the second track to the connection interface
  • the first valve ball and the second valve The first opening can be closed when the ball is at the lowest point.
  • the first passage and the second passage include: a first opening disposed at a highest point of the first rail and the second rail, wherein the first opening is respectively provided with a vent valve And a second opening disposed at a non-highest point of the first track and the second track, one of the first opening and the second opening being in communication with the atmosphere, and the other being connected to the The connection interface, wherein the first valve ball and the second valve ball are located at the highest point to enable the ventilation valve to be turned on.
  • first rail and the second rail are connected in a V shape, and the first valve ball and the second valve ball are the same valve ball.
  • a ventilation control apparatus for a respiratory mask includes: a cavity having a body position valve interface and one or more gas delivery ports; as described above, the body position valve device passes The connection interface is in communication with the position valve interface; and a valve assembly is disposed at at least one of the air delivery ports, the valve assembly configured to maintain a pressure in the cavity greater than atmospheric pressure when exhaling, wherein The body position valve or the cavity is provided with a mask vent for ventilating the breathing mask.
  • a respiratory mask apparatus includes: a respiratory mask; and a position valve device as described above, the connection interface of the position valve device being coupled to the respiratory mask and passing through the connection interface Venting with the breathing mask.
  • a respiratory mask apparatus comprising: a respiratory mask; and a ventilation control device as described above, the ventilation control device being coupled to the respiratory mask and passing through the mask vent and the breathing The mask is ventilated.
  • the position valve provided by the invention has strong compliance, and can conform to the characteristics that the OSAHS patient has no obstruction in the lateral airway and only has a obstruction in the supine position. That is, the function of the valve assembly on the respiratory mask that it wears does not affect the first angle at which the patient flips from the supine position to the left does not exceed the first predetermined value and the second angle that flips to the right does not exceed the second predetermined value. , for example, inspiratory no resistance or small resistance and positive expiratory pressure; when the first angle of the patient flipping from the supine position to the left exceeds the first predetermined value or the second angle turned to the right exceeds the second predetermined value, inhalation and There is no resistance or little resistance to exhalation.
  • Figure 1 is a schematic view of a conventional continuous positive pressure ventilation system
  • FIG. 2A is a side view of a respiratory mask having a ventilation control device according to a first embodiment of the present invention
  • FIG. 2B is a cross-sectional view of the respiratory mask and the positional valve taken along line B-B of FIG. 2A, and for ease of understanding, the breathing mask and the positional valve have been rotated to a state in which the patient is wearing them on their back;
  • Figure 3A is a side view of a respiratory mask having a ventilation control device in accordance with a second embodiment of the present invention
  • 3B is a cross-sectional view taken along line B-B of FIG. 3A, and for ease of understanding, the breathing mask and the positional valve have been rotated to a state in which the patient is wearing them on their backs;
  • Figure 4 is a cross-sectional view of a respiratory mask having a body position valve in accordance with a third embodiment of the present invention.
  • Figure 5 is a cross-sectional view of a respiratory mask having a body position valve in accordance with a fourth embodiment of the present invention.
  • Figure 6 is a cross-sectional view of a respiratory mask having a body position valve in accordance with a fifth embodiment of the present invention.
  • Figure 7 is a cross-sectional view of a respiratory mask having a body position valve in accordance with a sixth embodiment of the present invention.
  • Figure 8 is a cross-sectional view of a cavity and valve assembly in accordance with a seventh embodiment of the present invention.
  • Figure 9 is a cross-sectional view of a cavity and valve assembly in accordance with an eighth embodiment of the present invention.
  • Figure 10 is a cross-sectional view of a cavity and valve assembly in accordance with a ninth embodiment of the present invention.
  • Figure 11 is a cross-sectional view of a cavity and valve assembly in accordance with a tenth embodiment of the present invention.
  • Figure 12 is a cross-sectional view of a cavity and valve assembly in accordance with an eleventh embodiment of the present invention.
  • a position valve device for a respiratory mask a ventilation control device having the position valve device (hereinafter referred to as a ventilation control device), and a respiratory mask device having the ventilation control device are provided.
  • a ventilation control device having the position valve device
  • a respiratory mask device having the ventilation control device are provided.
  • the breathing mask included in the respiratory mask device will be briefly described herein.
  • the nasal mask type breathing mask shown in the drawings is merely exemplary, and the ventilation control device provided herein is not limited to being applied only to the nasal mask type breathing mask, which can also be applied to the nose. Breathing mask in the form of a hood, full face mask or nasal plug.
  • the respiratory mask 20 includes a mask body 21, a cushion assembly 22, and a forehead support 24.
  • the respiratory mask 20 may also not include one or both of the components, such as not including the forehead support 24.
  • a mask through hole (not shown) is provided on the mask body 21.
  • the pad assembly 22 is mounted to the mask body 21 on.
  • the mask body 21 and the cushion assembly 22 together form a cavity.
  • the cushion assembly 22 can be fixedly or detachably coupled to the mask body 21.
  • the cushion assembly 22 can also form the cavity separately, in which case the mask body 21 can support the cushion assembly 22 outside of the cushion assembly 22.
  • the mask body 21 and pad assembly 22 will form a seal with the patient's face (including the cheeks, bridge of the nose, upper and lower mouth, etc.) to allow the cavity to communicate with the nasal or nasal cavity of the patient.
  • the mask body 21 may be made of a rigid material or a flexible material.
  • the cushion assembly 22 is preferably made of a flexible material.
  • the cushion assembly 22 can be an air bag or a membrane structure.
  • the membrane structure can be a single layer or a separate bilayer.
  • the cushion assembly 22 can also include adhesives (e.g., stickers, etc.) to enhance patient feel and sealing.
  • the shape of the mask body 21 and the cushion assembly 22 as viewed from the front may be generally triangular or pear-shaped or trapezoidal or the like.
  • the mask body 21 and the pad assembly 22 may also take a shape that matches the shape of the nose and the like.
  • the cushion assembly 22 can also be designed as a conical film-shaped nasal plug that is sealed from the nasal orifice, and the structure can also have a single layer or a separate two-layer membrane structure.
  • a nasal plug type nasal plug can also be combined with a mouth mask type design.
  • the cushion assembly 22 includes a support portion 23.
  • the support portion 23 can be designed with wrinkles, bellows, partial thinning, bending, curved, etc. to achieve a better fit of the respiratory mask 20 to the face, and even to achieve the cushion portion and mask of the cushion assembly 22.
  • the main body 21 is suspended so that the angle of fit of the pad to the face can be adapted and the gas pressure in the cavity is used to assist the sealing.
  • the support portion employs a balloon or gel and can have an adaptive face function.
  • the respiratory mask 20 also includes fasteners for attaching the securing assembly, such as snaps, strap loops, and the like.
  • the fixing member may be attached to the mask body 21 as a separate component or may be integrally formed with the mask body 21.
  • the fixation assembly is used to secure the respiratory mask 20 in place on the patient's face, which may be a variety of existing headbands.
  • the headband may have a structure that is connected to the mask body 21, such as a buckle and a Velcro strap.
  • the material of the headband may be a braid, an elastomer or the like (wherein the elastomer may be foam, silica gel, etc.), or a multilayer structure in which the braid and the elastomer are composited to improve elasticity, gas permeability and human compliance.
  • the shape of the headband can be made into various shapes such as a Y-shape, an I-shape, and the like, and parts which are relatively rigid in some directions and flexible in some other directions can be added to better fix the respiratory mask 20.
  • the fixation component may also be a structure that is directly attached to the face, the outside of the nose, or the nasal cavity, such as a fixed structure that may be an adhesive member (eg, a sticker, etc.).
  • the forehead support 24 abuts against the patient's forehead when in use.
  • the connection between the forehead support 24 and the mask body 21 can be fixed or detachable, and the split embodiment is for example by snapping.
  • the forehead support 24 includes a soft forehead contact.
  • the forehead support 24 can also have an adjustment device to Adjust the distance from the forehead to ensure that you can adapt to different face types.
  • the above rigid material may be plastic, alloy, etc.
  • the flexible material may be silica gel, gel, foam, air bag, textile, etc., and the definition of this material is also applicable to subsequent parts.
  • the various components included in the respiratory mask 20 can be constructed in a manner known in the art and therefore will not be described in further detail herein.
  • FIG. 2A shows the ventilation control device 200 coupled to the respiratory mask 20.
  • the ventilation control device 200 includes a cavity 210, a valve assembly 220, and a position valve device.
  • 2B is a cross-sectional view of the respiratory mask 20 and the positional valve device taken along line BB of FIG. 2A, and for ease of understanding, the respiratory mask 20 and the positional valve device have been rotated to a state in which the patient is wearing them on their back, wherein the arrow CC is gravity The direction.
  • the cavity 210 has a gas delivery port 211 and a body position valve interface 212.
  • the cavity 210 is generally cylindrical in shape, in other embodiments not shown, the cavity 210 may have any other shape as long as a sealed space that can be vented with the respiratory mask 20 can be formed. can.
  • the volume of the cavity 210 is not limited, and it is preferable to wear comfort.
  • the cavity 210 can be made of a flexible material or a rigid material.
  • One or more gas delivery ports may be provided in the cavity 210. An embodiment in which only one gas delivery port 211 is provided is shown in Figures 2A-2B. An embodiment in which a plurality of gas outlets are provided will be described later.
  • the position valve interface 212 is used to connect the position valve device.
  • the body position valve interface 212 may also not be provided on the cavity 210, and the body position valve device may be directly connected to the respiratory mask 20. That is, the cavity 210 and the valve assembly 220 thereon are separately coupled to the respiratory mask 20 from the positional valve device. In this case, the cavity 210 may also be integral with the cavity formed by the frame body 21 of the respiratory mask 20. This embodiment will be described later in conjunction with the drawings.
  • the valve assembly 220 is disposed at at least one of the one or more gas delivery ports 211. Through the cooperation of the valve assembly and the gas delivery port, all or part of the gas delivery ports can be used as both an air inlet and an exhaust port, or one or several of the air ports can be used as an air inlet. The rest is used as an exhaust port.
  • the valve assembly 220 can act as a valve that controls the flow of gas throughout the gas delivery ports. The valve assembly can also control the flow of gas to a portion of the gas delivery port, such as when the valve assembly is closed, another portion of the gas delivery port can be vented. When there are multiple gas outlets, the valve assembly can be combined in the two ways described above.
  • valve assembly 220 can have a variety of configurations, and some embodiments of valve assemblies are described below.
  • the position valve device is disposed at the position valve interface 212.
  • the position valve device has an on and off state.
  • gas exchange can be performed between the cavity 210 and the atmosphere through the position valve device.
  • the position valve device or cavity 210 is provided with a mask vent for venting with the respiratory mask.
  • the breathing mask can be in direct communication with the atmosphere through the position valve device.
  • the mask vent 250 is disposed on the position valve device.
  • the position valve device can also be placed directly on the respiratory mask 20. In this embodiment, the configuration of the cavity 210 is unchanged, except that the position valve interface on the cavity 210 acts directly as a mask vent to the respiratory mask.
  • the position valve device can include a connection interface 240 and a position valve 230.
  • the connection interface 240 can be in communication with the patient's mouth and/or nose.
  • the connection interface 240 is mounted on the position valve 230.
  • the connection interface 240 is for connection with the position valve interface 212 on the cavity 210 to communicate the position valve device with the cavity 210.
  • the connection interface of the positional valve device is for connection to the respiratory mask such that both can be vented.
  • the position valve 230 has an on state and an off state. When the position valve 230 is turned on, the connection interface 240 can communicate with the atmosphere through the position valve 230.
  • connection interface 240 cannot communicate with the atmosphere through the position valve 230.
  • the body position valve 230 is only turned on when the first angle at which the patient flips from the supine position to the left is greater than the first predetermined value, and when the second angle from the supine position to the right is greater than the second predetermined value. That is, when the angle at which the patient is turned from the supine position to the left lateral position (ie, the first angle) exceeds the first predetermined value, the body position valve 230 is turned on. When the angle at which the patient is turned from the supine position to the right lateral position (ie, the second angle) exceeds the second predetermined value, the body position valve 230 is also turned on.
  • the body position valve 230 is turned off, and the valve assembly 220 is not normally operated to achieve the positive expiratory pressure function.
  • the body position valve 230 is turned on, and the patient can inhale and exhale through the position valve 230.
  • the position valve device is detachably coupled to the position valve interface 212 and/or detachably coupled to the respiratory mask.
  • the position valve interface 212 can include detachably attaching the position valve device to The connection structure of the cavity 210.
  • the connecting structure may adopt a tapered shaft hole pressing and fixing structure, a screw connection structure, a plug structure, an elastic body fastening structure or a snap connection structure, and the like.
  • the position valve device and the cavity 210 can also be made integral and non-detachable.
  • the body position valve device is also provided with a mask vent 250 for venting the respiratory mask 20.
  • a connection structure 251 can be provided at the mask vent 250.
  • the connection structure 251 is for detachably connecting the position valve device to the respiratory mask 20. Since the cavity 210 is coupled to the positional valve device, the detachable attachment of the positional valve device to the respiratory mask 20 means that the ventilation control device 200 is detachably coupled to the respiratory mask 20.
  • the connecting structure 251 can be, for example, a snap connection structure, a screw connection structure, or an elastic body fastening connection structure.
  • the body position valve device or the entire ventilation control device 200 can be changed at any time, and the ventilation control device 200 can be designed to be directly applied to an existing CPAP breathing mask to reduce the cost of use of the patient.
  • the position valve device can be made to be removably coupled between the respiratory mask 20 and the cavity 210.
  • the cavity 210 can be directly coupled to the respiratory mask 20 when the positional valve device is removed. In this way, the patient can decide whether or not to install the position valve device as needed.
  • the position valve can include a housing, a first valve, and a second valve.
  • the connection interface can be provided on the housing.
  • the connection interface is in communication with the housing.
  • the first valve and the second valve are also disposed on the housing.
  • the first valve is turned on when the patient is lying to the left side at an angle greater than the first predetermined value with respect to the vertical direction.
  • the second valve conducts when the patient lies to the right side at an angle greater than a second predetermined value with respect to the vertical direction.
  • the first valve and the second valve may have various structures as long as the above conditions can be satisfied.
  • the first valve and the second valve may include a sensor that senses the lateral angle of the patient and an electrical component that controls the valve to conduct.
  • first valve and the second valve may also be implemented to be mechanically turned on and off when the sensor detects the above conditions.
  • the first valve and the second valve may not comprise electronic components.
  • the two-valve mechanically controls the conduction on the left side and the conduction on the right side, respectively, which makes the structure of the position valve relatively simple to design.
  • the first valve and the second valve are respectively located on opposite sides of the axis of the connection interface to simplify the structure of the position valve.
  • the body position valve 230 can include a housing 231, a first valve, and a second valve.
  • the first valve has a first valve port 231A disposed on the housing 231 and a first valve 232.
  • the first valve 232 is mated with the first valve port 231A and pivotally mounted on the housing with the first pivot P1 as an axis.
  • the first valve port 231A is closed or opened by pivoting of the first valve 232.
  • the second valve has a second valve port 231B and a second valve 233 disposed on the housing 231.
  • the second valve 233 cooperates with the second valve port 231B And pivotally mounted on the housing with the second pivot P2 as an axis.
  • the second valve port 231B is closed or opened by the pivoting of the second valve 233.
  • first valve port 231A and the second valve port 231B are shown as opposite arrangements in the figure, respectively located on the left and right sides of the patient (in the case of supine), the opening and closing of the valve provided below is independent of the position of the valve port setting, so The positions of one of the valve ports 231A and the second valve port 231B may be interchanged or may be disposed on the same side or other positions. It should be noted that the structure is described in the case where the patient wears the respiratory mask with the position valve device and is in the supine position. Therefore, the orientation terms mentioned herein are "left”, “right”, “ “Up”, “Bottom”, etc.
  • the first valve 232 and the second valve 233 are capable of closing the first valve port 231A and the second valve port 231B, respectively, when the patient is lying on his or her back.
  • the line connecting the first center of gravity with the first pivot P1 is also the center of gravity and the A line connecting the intersection of the pivot P1 and the aforementioned plane, the angle A1 of the line with the direction of gravity (i.e., the direction vertically downward) is a first predetermined value.
  • longitudinal axis of a patient refers to an axis along the height of the patient.
  • the longitudinal axis of the patient extends in a horizontal direction perpendicular to the plane of the paper in Figure 2B.
  • "Flat plane perpendicular to the longitudinal axis of the patient” refers to a plane that is perpendicular to the height direction of the patient. The plane extends perpendicular to the ground when the patient is supine and extends along the left and right direction of the patient.
  • the line connecting the center of gravity with the second pivot P2 is the center of gravity and the second pivot P2.
  • the line connecting the intersection of the aforementioned plane and the angle A2 of the line with the direction of gravity is a second predetermined value.
  • the angle A1 gradually decreases.
  • the first center of gravity of the first valve 232 and the plane of the first pivot P1 are rotated to the vertical direction
  • the first valve 232 no longer rotates due to gravity, and the first valve port 231A is opened.
  • the first angle 231A is opened when the first angle of the patient flipped from the supine position to the left is greater than the first predetermined value, and the patient can inhale and exhale through the first valve port 231A to achieve inhalation and call. There is no resistance or small resistance in the gas.
  • the first valve 232 closes the first valve port 231A, thereby not affecting the function of the valve assembly, and the positive expiratory pressure can be achieved.
  • the angle A2 is gradually decreased.
  • the patient flips from the supine position to the right by an angle having a second predetermined value (ie, flipping to an angle A2 equal to zero) The second center of gravity of the second valve 233 and the plane in which the second pivot P2 is located are rotated to the vertical direction, after which the patient continues to flip, the second valve 233 is no longer rotated by gravity, and the second valve port 231B is opened.
  • the second angle 231B is opened when the second angle of the patient flipped from the supine position to the right is greater than the second predetermined value, and the patient can inhale and exhale through the second valve port 231B to achieve inhalation and call. There is no resistance or small resistance in the gas.
  • the second valve 233 closes the second valve port 231B, thereby not affecting the function of the valve assembly, and the positive expiratory pressure can be achieved.
  • the first valve 232 and the second valve 233 are closed, and the expiratory positive is not affected. Pressure.
  • the first valve 232 and the second valve 233 may cause the first valve 232 and the second valve 233 to open against their own gravity due to the large difference between the inner and outer air pressures, but still do not affect the resistance or small when inhaling. Resistance requirements.
  • the first predetermined value and the second predetermined value may be selected according to the condition of the patient.
  • the first predetermined value and the second predetermined value may be equal or unequal.
  • the first predetermined value may be in the range of 30-60 degrees.
  • the second predetermined value may also be in the range of 30-60 degrees.
  • the first predetermined value and the second predetermined value may also be outside the range as long as the positional valve can be closed when the airway of the OSAHS patient is blocked, so that the valve assembly can function.
  • the plane in which the upper opening (also referred to as the first upper opening) of the first valve port 231A lies is inclined when the patient is supine.
  • the first pivot P1 is located above the first upper opening.
  • the first valve 232 covers the first valve port 231A to close the first valve port 231A.
  • the plane in which the upper opening (also referred to as the second upper opening) of the second valve port 231B is located is also inclined when the patient is lying on his or her back.
  • the second pivot P2 is located above the second upper opening.
  • the second valve 233 is overlaid on the second valve port 231B to close the second valve port 231B.
  • first pivot P1 and the second pivot P2 may also be located below the first upper opening and the second upper opening, respectively. It is also possible that one of the first pivot P1 and the second pivot P2 is located above the upper opening of the corresponding valve port and the other is located below the upper opening of the corresponding valve port.
  • the first valve 232 and the second valve 233 may be made of a rigid or non-rigid material or a combination of two materials.
  • the first center of gravity of the first valve 232 and the second center of gravity of the second valve 233 are respectively located on opposite sides of the line of gravity passing through the top end of the upper opening of the respective valve port.
  • the center of gravity of the second valve 233 is located at the second valve port 231B.
  • the right side of the second line of gravity of the top of the upper opening as shown in Figure 2B.
  • the center of gravity of the first valve 232 is located above
  • the center of gravity of the second valve 233 is located to the left of the second gravity line.
  • the gravity line referred to herein refers to a virtual line extending in the same direction as the direction of gravity (ie, the vertical direction).
  • the first gravity line refers to a virtual line extending in the direction of gravity passing through the tip end of the first upper opening of the first valve port.
  • the second line of gravity refers to a virtual line extending in the direction of gravity through the tip end of the second upper opening of the second valve port.
  • the first valve 232 and the second valve 233 are made of a metal having a certain weight and a flexible material wrapped around the metal.
  • the first valve 232 and the second valve 233 have both a certain amount of gravity to achieve free pivoting, and can avoid collision with other components to generate noise, and the external flexible material can also function as a seal when the valve is closed.
  • the first pivot P1 is parallel to the longitudinal axis of the patient when the patient is supine to simplify the design of the position valve.
  • the second pivot P2 extends along the longitudinal axis of the patient while the patient is supine. It can be understood that the first pivot P1 and the second pivot P2 may also not extend along the longitudinal axis of the patient, as long as the settings of the first valve and the second valve are satisfied to be opened under the above conditions, but such a setting manner Leading to a relatively complex design.
  • the central axis of the body position valve 230 illustrated in Figures 2A-2B extends in a vertical direction when the patient is supine
  • the center axis of the body position valve may also extend horizontally or along the patient when lying supine. Any other direction extension, as long as the first valve and the second valve are arranged to meet the above requirements.
  • this also applies to other embodiments of the positional valve that will be described below, and that other components included in the vent control device may need to be simply modified when transforming the central axis of the positional valve.
  • FIG. 3A-3B show an embodiment in which the central axis of the positional valve extends in the horizontal direction when the patient is supine, and for ease of understanding, the respiratory mask 20 and the positional valve device of Fig. 3B have been rotated to the state where the patient is wearing them on their backs.
  • arrow CC is the direction of gravity.
  • the position valve device includes a connection interface 340 and a position valve 330.
  • the position valve 330 can be communicated to the respiratory mask 20, for example, via an elbow 350.
  • the position valve 330 can also be coupled to the cavity 210 while the cavity 210 is directly coupled to the respiratory mask.
  • the cavity 210 and valve assembly 220 can have the structure described above. As shown in FIG.
  • the housing 331 of the body position valve 330 is provided with a first valve port 331A and a second valve port 331B.
  • the first valve 332 and the second valve 333 are pivotally coupled to the first valve port 331A and the second valve port 331B with the first pivot P1 and the second number axis P2, respectively.
  • the first valve 332 and the second valve 333 cooperate with the first valve port 331A and the second valve port 331B, respectively, to turn the body position valve on or off.
  • the angle A1 between the line connecting the center of gravity and the first pivot P1 and the direction of gravity is a first predetermined value; in the plane passing through the center of gravity of the second valve 333 and perpendicular to the longitudinal axis of the patient, the center of gravity of the second valve 333
  • the angle A2 between the line connecting the two pivots P2 and the direction of gravity is a second predetermined value.
  • the plane in which the first upper opening of the first valve port 331A is located is inclined when the patient is supine.
  • the first pivot P1 is located above the first upper opening when the patient is lying supine.
  • the first valve 332 can close the first valve port 331A while the patient is lying on his or her back.
  • the plane in which the second upper opening of the second valve port 331B is located is also inclined when the patient is lying on his or her back.
  • the second pivot P2 is also located above the second upper opening when the patient is lying on his or her back.
  • the second valve 333 can close the second valve port 331B while the patient is lying on his or her back.
  • the second center of gravity of the second valve 333 is located through the second valve port 331B.
  • the right side of the second gravity line of the top end of the second upper opening as shown in Fig. 3B.
  • the first center of gravity of the first valve 332 may also be located on the right side of the first gravity line.
  • the second center of gravity of the second valve 333 is located to the left of the second gravity line.
  • the first pivot P1 extends along the longitudinal axis of the patient while the patient is supine.
  • the second pivot P2 extends along the longitudinal axis of the patient when the patient is supine.
  • FIG. 4 illustrates another embodiment of a body position valve, the other components of which are substantially identical to the embodiment illustrated in FIGS. 2A-2B, and thus only the body position valve 430 will be described in detail herein.
  • the breathing mask 20 and the position valve 430 have been rotated to the state in which the patient is wearing them on their back, in which the arrow C-C is the direction of gravity.
  • the position valve 430 includes a housing 431, a first valve, and a second valve.
  • the first valve includes a first valve port 431A and a first valve 432.
  • the first valve port 431A is disposed on the housing 431 to connect the internal space of the housing 431 to the atmosphere.
  • the first valve port 431A is shown in the figure as being located on the left side of the patient (at the time of supine), the opening and closing of the valve provided below is independent of the valve port setting position, and the first valve port 431A may be disposed on the right side or other position.
  • the first valve 432 is mated with the first valve port 431A and pivotally mounted on the housing with the first pivot P1 as an axis.
  • the first valve port 431A is closed or opened by pivoting of the first valve 432.
  • the first valve 432 closes the first valve port 431A when the patient is lying on his or her back.
  • the second valve is disposed on the first valve 432.
  • the second valve includes a second valve port 432A and a second valve 433.
  • the second valve port 431B is disposed on the first valve 432 and is in communication with the first valve port 431A.
  • the second valve 433 is engaged with the second valve port 431B and pivotally mounted on the first valve 432 with the second pivot P2 as an axis, and the second valve port 431B is closed or opened by the pivoting of the second valve 433.
  • the second valve 433 closes the second valve port 431B when the patient is lying on his or her back.
  • the first and second valves of the position valve 430 are combined.
  • the first valve 432 and the second valve 433 collectively close the first valve port 431A.
  • the first center of gravity is in a plane passing through the center of gravity of the first valve 432 and the second valve (ie, the center of gravity of the first valve 432 and the second valve as a whole, also referred to as the first center of gravity) and perpendicular to the longitudinal axis of the patient
  • the angle between the line connecting the first pivot P1 and the direction of gravity is a first predetermined value.
  • the angle A2 between the line connecting the second center of gravity and the second pivot P2 and the direction of gravity is the second Predetermined value.
  • the first pivot P1 and/or the second pivot P2 extend along the longitudinal axis of the patient while the patient is supine. When the patient is turned to the left by the supine position described in FIG. 4, the first angle A1 gradually decreases.
  • the first angle of the patient flipping from the supine position to the left is equal to the first predetermined value
  • the first center of gravity of the first valve 432 and the second valve and the plane of the first pivot P1 are rotated to the vertical direction, after which the patient continues to flip
  • the first valve 432 and the second valve are no longer rotated due to gravity, and the first valve port 431A is opened.
  • the patient continues to invert after flipping the supine position to the left by the first angle having the first predetermined value, the first valve port 431A is opened, and the patient can inhale and exhale through the first valve port 431A to achieve inhalation and call.
  • the first valve port 431A When the first angle of the patient flipped from the supine position to the left is between 0 and the first predetermined value, the first valve port 431A is closed, so that the function of the valve assembly is not affected, and no resistance or small resistance and call can be achieved when inhaling. Positive gas pressure.
  • the second valve 433 closes the second valve port 432A.
  • the line connecting the second center of gravity of the second valve 433 and the second pivot P2 has a second angle A2 with the vertical direction.
  • the second pivot P2 extends along the longitudinal axis of the patient while the patient is supine.
  • the second angle A2 is gradually decreased.
  • the center of gravity of the second valve 433 and the plane of the second pivot P2 are rotated to the vertical direction, and then the flipping continues, then the second valve 433 Since the gravity does not rotate any more, the second valve port 432A is opened.
  • the patient continues to invert after flipping the supine position to the right with an angle of the second predetermined value, the second valve port 432A is opened, and the patient can inhale and exhale through the second valve port 432A to achieve both inhalation and exhalation. No resistance or small resistance.
  • the second valve 433 closes the second valve port 432A, thereby not affecting the function of the valve assembly, and can achieve no resistance when inhaling or Small resistance and positive expiratory pressure.
  • the first valve 432 and the second valve 433 are closed, and the expiratory positive is not affected. Pressure.
  • the first valve 432 and/or the second valve 433 may cause the first valve 432 and/or the second valve 433 to open against their own gravity due to the large difference between the internal and external air pressures, but still does not affect the inhalation. Unobstructed Force or small resistance requirements.
  • the plane in which the first upper opening of the first valve port 431A is located is inclined.
  • the first pivot P1 is located below the first upper opening when the patient is lying supine.
  • the plane in which the second upper opening of the second valve port 431B is located is also inclined.
  • the second pivot P2 is located above the second upper opening when the patient is lying supine.
  • the first pivot P1 and the second pivot P2 may also be located above or below the first upper opening and the second upper opening. It is also possible that the first pivot P1 is located above the first upper opening and the second pivot P2 is located below the second upper opening.
  • the first center of gravity and the second center of gravity are respectively located on opposite sides of the line of gravity passing through the top end of the upper opening of the respective valve port.
  • the first center of gravity of the first valve 432 and the second valve are located to the left of the first gravity line passing the top end of the upper surface of the first valve port 431A
  • the second center of gravity of the second valve 433 is located through the second valve
  • the right side of the second gravity line of the top end of the upper surface of the port 432A is as shown in FIG.
  • the first center of gravity of the first valve 432 and the second valve may also be located to the right of the first gravity line, at which time the second center of gravity of the second valve 433 is located to the left of the second line of gravity.
  • first pivot P1 and the second pivot P2 may also not extend along the longitudinal axis of the patient, as long as the first valve and the second valve are made to open under the above conditions, but such a setting may lead to design Relatively complicated.
  • the cross section of the first valve 432 is triangular in FIG. 4, in other embodiments not shown, the cross section may be trapezoidal or fan shaped or the like.
  • the first valve 432 should include two surfaces, a first surface and a second surface. The first surface is for abutting against the first valve port 431A and the second surface is for abutting the second valve 433.
  • the second valve port 432A extends from the first surface to the second surface.
  • the angle of inclination of the first surface can be satisfied when the patient is supine: the first center of gravity is connected to the first pivot P1 in a plane passing through the first center of gravity of the first valve 432 and the second valve and perpendicular to the longitudinal axis of the patient
  • the angle between the line and the direction of gravity is a first predetermined value.
  • the angle of inclination of the second surface can be satisfied when the patient is supine: the line connecting the second center of gravity to the second pivot P2 and the direction of gravity in a plane passing the second center of gravity of the second valve 433 and perpendicular to the longitudinal axis of the patient
  • the angle A2 is a second predetermined value.
  • the cavity 510 is provided with a mask vent 511, a gas delivery port 512, and a position valve interface (not shown).
  • the cavity 510 is shown as being generally cylindrical, in other embodiments not shown, the cavity 510 can have any other shape.
  • the volume of the cavity 510 is not limited, and it is preferable to wear comfort.
  • the cavity 510 can be made of a flexible material or a rigid material.
  • the cavity 510 can even The cavity 510 is integrally formed with the frame body 21 by a molding process, for example, in a cavity formed with the frame body 21 of the respiratory mask 20.
  • the cavity 510 and the cavity can be formed as two distinctly distinguishable cavities.
  • the cavity 510 can also be formed as part of a cavity, that is, for the embodiment shown in Figure 5, a portion of the cavity of the breathing mask can be utilized as the cavity 510, the gas delivery port 512 and the body position valve
  • the interface is formed directly on the frame body 21. In other embodiments, this approach can also be employed.
  • the position valve 530 includes a first rail 531, a second rail 532, and a valve ball 533.
  • the first track 531 has a first angle A1 with the horizontal plane.
  • the first track 531 lies in a vertical plane perpendicular to the longitudinal axis of the patient (i.e., extending in a direction parallel to the plane of the paper) when the patient is supine, such that the first angle A1 is equal to The first predetermined value.
  • the second track 532 has a second angle A2 with the horizontal plane.
  • the second track 532 lies in a vertical plane perpendicular to the longitudinal axis of the patient when the patient is supine, such that the second angle A2 is equal to the second predetermined value.
  • the first angle A1 may be located to the left of the lowest point of the first track 531, and the second angle A2 may be located to the right of the lowest point of the second track 532.
  • the first angle A1 may also be located to the right of the lowest point of the first track 531, and the second angle A2 may also be located to the left of the lowest point of the second track 532.
  • a first passage is disposed on the first rail 531. The first passage is connectable to the atmosphere and the connection interface.
  • a second passage is disposed on the second rail 532.
  • the second path is also capable of communicating with the atmosphere and the connection interface.
  • the valve ball 533 is free to roll in the first rail 531 and the second rail 532.
  • the valve ball 533 is located at the lowest point of the first rail 531 and the second rail 532 to enable the first passage and the second passage to close.
  • the valve ball 533 is able to open the first passage and/or the second passage when it leaves the lowest point of the first rail 531 and the second rail 532 to enable the connection interface to communicate with the atmosphere.
  • the first track 531 and the second track 532 have a first opening 534 at the lowest point of the patient's supine position.
  • the first rail 531 and the second rail 532 shown in FIG. 5 are connected in a V shape. Thus, only one first opening 534 can be provided at the lowest point.
  • the first track 531 and the second track 532 can also share a single ball. That is, the first valve ball included in the first valve and the second valve ball included in the second valve may be the same.
  • a second opening 535 is also disposed on the first track 531 and/or the second track 532. Two second openings 535 are provided in the figure, but the number of second openings may be one or more.
  • the first opening 534 connects the first rail 531 and the second rail 532 to the atmosphere.
  • the second opening 535 communicates the first rail 531 and the second rail 532 to the connection interface of the position valve device, thereby communicating to the position valve interface of the cavity 510.
  • the valve ball 533 is rollable in the first track 531 and the second track 532, and can close the first opening 534 when the valve ball 533 is at the lowest point.
  • the valve ball 533 can be made of a rigid or non-rigid material or a combination of two materials.
  • the valve ball 533 is made of a metal having a certain weight and a flexible material wrapped around the metal. In this way, the valve ball 533 Both have a certain amount of gravity to achieve free rolling, and can avoid collision with other components to produce noise, and the external flexible material can also play a role in sealing when the valve is closed.
  • the valve ball 533 When the patient is lying on his back, the valve ball 533 is rolled to the lowest point due to gravity, and the first opening 534 is closed.
  • the first angle A1 of the first track 531 and the horizontal plane gradually decreases.
  • the first track 531 When the first angle of the patient flipping from the supine position to the left is equal to the first predetermined value, the first track 531 is in a horizontal state, and then continues to flip, the valve ball 533 rolls along the first track 531 due to gravity, and the first opening 534 Was opened. Thereby, the patient can inhale and exhale through the first opening 534 and the second opening 535, achieving no resistance or small resistance for both inhalation and exhalation.
  • the valve ball 533 When the first angle of the patient flipped from the supine position to the left is between 0 and the first predetermined value, the valve ball 533 always closes the first opening 534, thereby not affecting the function of the valve assembly, and can achieve no resistance or small when inhaling. Resistance and positive expiratory pressure.
  • the second angle of the patient flipping from the supine position to the right is equal to the second predetermined value, the second track 532 is in a horizontal state, and then continues to flip, the valve ball 533 rolls along the second track 532 due to gravity, An opening 534 is opened. Thereby, the patient can inhale and exhale through the first opening 534 and the second opening 535, achieving no resistance or small resistance for both inhalation and exhalation.
  • valve ball 533 When the second angle of the patient flipping from the supine position to the right is between 0 and the second predetermined value, the valve ball 533 always closes the first opening 534, thereby not affecting the function of the valve assembly, and can achieve no resistance or small when inhaling. Resistance and positive expiratory pressure.
  • valve ball 533 when the first angle of the patient flipped from the supine position to the left does not exceed the first predetermined value or the second angle that is turned to the right does not exceed the second predetermined value, the valve ball 533 always closes the first opening 534 without affecting Exhale positive pressure.
  • the valve ball 533 may cause the first opening 534 and the second opening 535 to ventilate due to the large difference between the inner and outer air pressures, causing the valve ball 533 to move upward along the first rail 531 or the second rail 532 against its own gravity. However, it still does not affect the non-resistance or small resistance requirements during inhalation.
  • first track 531 and/or the second track 532 may not be located in the above-mentioned vertical plane (ie, a plane perpendicular to the longitudinal axis of the patient), but such a setting may result in a relatively complicated design and is not easy to visualize.
  • the angle between the first angle and the second angle is selected.
  • the first track 531 and the second track 532 are connected in a V shape and share the same first outlet.
  • the above function can be realized by simply placing a valve ball 533 in the track, and the structure is relatively simple.
  • the present invention does not exclude an embodiment in which the first rail 531 and the second rail 532 are separately provided.
  • the first track 531 and the second track 532 may be spaced apart. In this case, both the first track and the second track need to be provided with a first opening and a second opening, and a valve ball is placed in each track.
  • Figure 6 shows a first spaced apart arrangement of the first track 631 and the second track 632. An embodiment. As shown in FIG.
  • the first track 631 and the second track 632 have first openings 634A and 634B and second openings 635A and 635B, respectively.
  • the first opening 634A and the second opening 635A form a first passage.
  • the first opening 634B and the second opening 635B form a second passage.
  • a first valve ball 633A and a second valve ball 633B are disposed in the first rail 631 and the second rail 632, respectively.
  • the valve ball 633A rolls along the first track 631 due to gravity, and the first opening 634A is opened. Thereby, the patient can inhale and exhale through the first opening 634A and the second opening 635A, achieving no resistance or small resistance for both inhalation and exhalation.
  • the second valve ball 633B is always at a low point, closing the first opening 634B, keeping the second passage closed.
  • the first angle A2 of the second track 632 with the horizontal plane gradually decreases.
  • the second valve ball 633B rolls along the second track 632 due to gravity, and the first opening 634B is opened. Thereby, the patient can inhale and exhale through the first opening 634B and the second opening 635B, thereby achieving no resistance or small resistance for both inhalation and exhalation.
  • the first valve ball 633A is always at a low point, closing the first opening 634A, keeping the first passage closed.
  • the rail and valve ball valves shown in Figures 5-6 can be used in combination with the valve port and valve type valves shown in Figures 2-4.
  • the patient may be placed on the left side with a valve in the form of a track and a ball to achieve the first predetermined value to open the position valve, and the patient to the right side may use a valve in the form of a valve port and a valve to achieve the second predetermined The value causes the position valve to open. vice versa.
  • those skilled in the art can use valves of different configurations in combination, and these combinations are all within the scope of the present invention.
  • the position valve 730 includes a first track 731, a second track 732, and a valve ball 733.
  • the first track 731 has a first angle A1 with the horizontal plane.
  • the first track 731 is located in a vertical plane perpendicular to the longitudinal axis of the patient when the patient is supine, such that the first angle A1 is equal to the first predetermined value.
  • the second track 732 has a second angle A2 from the horizontal plane.
  • the second track 732 is located in a vertical plane perpendicular to the longitudinal axis of the patient when the patient is supine so that the second angle A2 is equal to the second predetermined value.
  • the first track 731 and the second track 732 are respectively located on both sides of the respective lowest points.
  • the first track 731 and the second track 732 each have a first opening at a highest point when the patient is supine, and vent valves 734 and 735 are respectively disposed at the first opening.
  • a second opening 736 is also provided at a non-highest point of the first track 731 and/or the second track 732. Two second openings 736 are provided in the figure, but the number of second openings may be one or more.
  • first opening and the second opening is in communication with the atmosphere and the other is connected to the connection interface.
  • first opening is in communication with the connection interface and the second opening 736 is in communication with the atmosphere.
  • vent valves 734 and/or 735 may be substituted for intake valves in the valve assembly (eg, intake valves 830 and 930 in Figures 8 and 9) to achieve small resistance during inspiration.
  • at least one of the vent valves 734 and 735 is configured to open when the patient inhales.
  • the first opening can be in communication with the atmosphere and the second opening 736 can be in communication with the connection interface.
  • vent valves 734 and 735 are configured to open when the difference between the pressure in the first track 731 and the second track 732 and the atmospheric pressure is greater than or equal to a predetermined value to avoid the patient being supine due to the first track 731 and the first Excessive pressure within the two rails 732 opens the venting valves 734 and 735 and affects the positive expiratory pressure function of the valve assembly.
  • vent valves 734 and 735 can be used in place of an exhaust valve (eg, vent valve 830 in FIG. 8) in the valve assembly to achieve a positive expiratory pressure function, which may be an exhaust valve The predetermined value of 830 is turned on.
  • valve ball 733 rolls along the first track 731 due to gravity, and the valve ball 733 opens the vent valve 734. Thereby, the patient can inhale and exhale through the first opening and the second opening 736, achieving no resistance or small resistance for both inhalation and exhalation.
  • the valve ball 733 rolls along the second track 732 due to gravity, and the valve ball 733 opens the vent valve 735. Thereby, the patient can inhale and exhale through the first opening and the second opening, achieving no resistance or small resistance for both inhalation and exhalation.
  • first track 731 and the second track 732 in FIG. 7 can also be disposed separately as shown in FIG. 6.
  • first ball and the second ball 732 are respectively provided with a first ball and a second ball
  • first rail 731 and the second rail 732 have respective first and second passages, respectively.
  • Other variations to the positional valve may also be made by those skilled in the art based on the above-described embodiments, and the present invention encompasses these modified embodiments.
  • valve assembly may include an intake valve 820 disposed at the gas delivery port 812A and an exhaust valve 830 disposed at the gas delivery port 812B.
  • the intake valve 820 can be opened so that the gas enters the chamber 810 from the gas delivery port 812A.
  • the intake valve 820 can be closed, and the exhaust valve 830 can be opened under certain conditions. For example, when the difference between the pressure P 1 and the atmospheric pressure P 0 in the cavity 810 is greater than a predetermined value, the exhaust valve 830 is opened to allow the gas to exit the cavity 810 from the gas delivery port 812B. This maintains the pressure P 1 within the cavity 810 greater than the atmospheric pressure P 0 . Further, as shown in FIG.
  • the opening area of the gas delivery port 912B may be set small so that the gas discharge rate is smaller than the patient's expiratory rate to form a positive expiratory pressure during exhalation.
  • the intake valve 920 is the same as or similar to that of FIG. When inhaling, the intake valve 920 opens the gas delivery port 912A, and the gas delivery port 912B also functions to assist the intake air. In this way, it is possible to achieve no resistance or small resistance when inhaling.
  • intake valve 820 can include a valve flap made of an elastomeric material or a morphological memory material.
  • the valve flap is for example directly connected to the wall of the cavity 810 or to the cavity 810 by an intermediate member 821 (for example in Figure 8).
  • the intake valve 820 can be opened in one direction, that is, when the pressure P 1 in the cavity 810 is less than or equal to the atmospheric pressure P 0 , the intake valve 820 is opened to the inside of the cavity 810 , and air enters the cavity 810 through the air inlet 812A.
  • the intake valve may have other arrangements as long as the air inlet 812A can be opened when the pressure P 1 in the cavity 810 is less than or equal to the atmospheric pressure P 0 .
  • the seal between the intake valve 820 and the gas delivery port 812A can be of various forms, and the shape of the sealing surface includes line and plane fit, plane and plane fit, line and cylindrical fit, cylindrical and cylindrical fit, line and Spherical fit, spherical and spherical fit, line and conical fit, conical and conical fits, etc.
  • the material of the sealing surface can be a flexible combination of rigidity and flexibility.
  • the shape and material of the above sealing surface can also be applied to various valves as described below.
  • the exhaust valve 830 may employ a structure similar to the intake valve 820.
  • the exhaust valve 830 may also include an exhaust valve seat 831, an exhaust valve spool 832, and an exhaust valve biasing member 833.
  • the exhaust valve seat 831 is connected to the gas delivery port 812B, and the exhaust valve seat 831 is provided with an air outlet 834.
  • the exhaust spool 832 is movably disposed within the exhaust valve seat 831 between its closed position and its open position. The movement includes translation and rotation.
  • Figure 8 illustrates an embodiment of a translational movement.
  • the exhaust spool 832 can close the gas delivery port 812B when in its closed position and can have the gas delivery port 812B in fluid communication with the gas outlet 834 in its open position to form an exhaust passage.
  • the exhaust valve biasing member 833 abuts against the exhaust spool 832 to provide the exhaust spool 832 with movement resistance from the closed position to the open position. That is, when exhaling, it is necessary to overcome the resistance generated by the exhaust valve biasing member 833 to move the exhaust valve plug 832 from its closed position to its open position to enable the exhaled gas to escape.
  • An exhaust valve biasing member 833 may be disposed at the exhaust valve spool 832 It faces away from one side of the cavity 810 and applies pressure to the exhaust spool 832 as it is in the closed position.
  • the exhaust valve biasing member may be disposed on a side of the exhaust spool 832 that faces the cavity 810 and apply a pulling force to the exhaust spool 832 when it is in the closed position.
  • the exhaust valve biasing member 833 may be a spring or other elastomer or the like, and may also be made of a shape memory material such as an alloy or plastic having a shape memory property.
  • the intake and exhaust valves may be combined.
  • a valve assembly 1020 is disposed at the air port 1012 of the cavity 1010 to control the venting area of the air port 1012.
  • the valve assembly 1020 includes an intake passage and an exhaust passage.
  • the valve assembly 1020 is configured to conduct the intake passage when the pressure P 1 within the cavity 1010 is less than or equal to the atmospheric pressure P 0 ; and the difference ⁇ P between the pressure P 1 and the atmospheric pressure P 0 within the cavity 1010 is greater than or equal to a predetermined value When the exhaust passage is turned on.
  • the intake passage is only turned on when the pressure P 1 in the chamber 1010 is less than or equal to the atmospheric pressure P 0 , and is immediately turned off once the pressure P 1 in the chamber 1010 is greater than the atmospheric pressure P 0 .
  • the exhaust passage is turned on only when the difference ⁇ P between the pressure P 1 and the atmospheric pressure P 0 in the cavity 1010 is greater than or equal to a predetermined value, and the difference ⁇ P between the pressure P 1 and the atmospheric pressure P 0 in the cavity 1010 is less than The predetermined value is immediately turned off.
  • the air pressure P 1 in the cavity 1010 decreases, lower than the atmospheric pressure P 0 , and the intake passage is turned on, at which time the exhaust passage is closed, corresponding to the inspiratory phase of the patient.
  • the air pressure P 1 within the cavity 1010 increases above the atmospheric pressure P 0 .
  • the exhaust passage is turned on, and the intake passage is closed, corresponding to the expiratory phase of the patient.
  • the valve assembly 1020 includes a first valve mechanism 1022 and a second valve mechanism 1023.
  • the first valve mechanism 1022 is disposed at the air inlet 1012.
  • the first valve mechanism 1022 has a first closed position that closes the air inlet 1012 and a first open position that opens the air inlet 1012.
  • a through hole 1022A is provided in the first valve mechanism 1022.
  • the second valve mechanism 1023 is disposed at the through hole 1022A.
  • the second valve mechanism 223 has a second closed position that closes the through hole 1022A and a second open position that opens the through hole 1022A.
  • the patient's intake air flow and exhalation air flow can be used to automatically control their opening and closing, thereby achieving inspiratory no resistance or small resistance and positive expiratory pressure.
  • the first valve mechanism 1022 and the second valve mechanism 1023 can cooperate to move between an original position and a venting position.
  • the home position refers to a state in which an external force is not applied to the first valve mechanism 1022 and the second valve mechanism 1023 due to respiration.
  • both the first valve mechanism 1022 and the second valve mechanism 1023 are in their respective closed positions.
  • the air inlet 412 is closed.
  • the second valve mechanism 1023 moves along with the first valve mechanism 1022 to the aeration position (moving to the right). At this point the first valve mechanism 1022 is in the first open position and the second valve mechanism 1023 is in the second closed position.
  • the gas delivery port 1012 is opened to form an exhaust passage.
  • the opening and closing action of the second valve mechanism 1023 itself can form an intake passage when the patient inhales. At the time of inhalation, the pressure P 1 in the cavity 1010 is continuously reduced.
  • the second valve mechanism 1023 opens the through hole 1022A to form an intake passage.
  • the pressure P 1 in the chamber 1010 is increased.
  • the second valve mechanism 1023 closes the through hole 1022A and repeats the above process. Since the difference ⁇ P between the pressure P 1 and the atmospheric pressure P 0 in the cavity 1010 at the time of inhalation does not reach the above predetermined value, the first valve mechanism 1022 is maintained in the closed position.
  • the first valve mechanism 1022 and the second valve mechanism 1023 have various embodiments, and the present invention will be described with respect to some preferred embodiments in conjunction with the drawings.
  • Valve assembly 1020 can also include a valve seat 1021.
  • the valve seat 1021 is connected at the gas delivery port 1012.
  • the first valve mechanism 1022 and the second valve mechanism 1023 may both be disposed within the valve seat 1021.
  • An air outlet 1024 is disposed on the valve seat 1021.
  • the air outlet 1024 may be disposed at the distal end of the valve seat 1021 or may be disposed on the side wall of the valve seat 1021.
  • the proximal and distal ends described herein are relative to the patient wearing the respiratory mask, and the end adjacent the patient is referred to as the proximal end, and vice versa.
  • the first valve mechanism 1022 can include a first spool and a first biasing member 1026.
  • the first biasing member 1026 applies a resistance to the first spool at the closed position shown in the figure to form a positive expiratory pressure.
  • the second valve mechanism 1023 can include a valve flap made of an elastomeric material or a morphological memory material. It can be understood that the first valve mechanism 1022 can also adopt a configuration similar to the second valve mechanism 1023, that is, including a valve flap made of an elastic material or a shape memory material; similarly, the second valve mechanism 1023 can also A configuration similar to that of the first valve mechanism 1022 described above is employed, that is, includes a spool and a biasing member.
  • the valve assembly may further include adjustment means for adjusting the predetermined value.
  • the adjustment device includes a valve cover 1025 and a positioning structure.
  • the valve cover 1025 is movably coupled to the valve seat 1021 and positions the valve cover 1025 relative to the valve seat 1021 by a positioning structure.
  • the positioning structure can be a mating thread disposed on the valve seat 1021 and the valve cover 1025. In other embodiments not shown, the positioning structure can be a snap, a securing pin, or the like.
  • One end of the first biasing member 1026 can be coupled or abutted to the first spool and the other end can be coupled or abutted to the valve cover 1025.
  • the resistance of the biasing member 1026 can be adjusted to adjust the predetermined value.
  • the bonnet 1025 can also be removed to adjust the predetermined value by replacing the first biasing member 1026 that provides a different biasing force.
  • the air holes 1024 may be disposed on the valve cover 1025.
  • the ventilation control device is provided with a pointing device (not shown) for indicating the adjusted predetermined value.
  • the pointing device may be a mechanical identifier, such as a scale, a color logo, etc., or may be an electronic logo, such as by light, sound, electricity, or the like.
  • the valve assembly 1120 can include a first valve mechanism 1121 and a second valve mechanism 1122.
  • the first valve mechanism 1121 is disposed at the air inlet 1112 of the cavity 1110, and the first valve mechanism 1121 has a first closed position that closes the air inlet 1112 and a first open position that opens the air inlet 1112.
  • a through hole 1123 is provided in the first valve mechanism 1121.
  • the second valve mechanism 1122 is disposed at the through hole 1123.
  • the second valve mechanism 1122 has a second closed position that closes the through hole 1123 and a second open position that opens the through hole 1123.
  • the first valve mechanism 1121 and the second valve mechanism 1122 cooperate to move between an original position and a venting position.
  • the first valve mechanism 1121 and the second valve mechanism 1122 move together to the venting position.
  • the first valve mechanism 1121 and the second valve mechanism 1122 are moved to the left, a gap is formed between the first valve mechanism 1121 and the air inlet 1112, and the air inlet 1112 is opened to form an intake air. Channel, corresponding to the patient's inspiratory phase.
  • the first valve mechanism 1121 is in the first closed position.
  • the pressure P 1 in the cavity 1110 gradually increases.
  • the first valve mechanism 1121 Since the pressure P 1 in the cavity 1110 is greater than the atmospheric pressure P 0 , the first valve mechanism 1121 remains in the first closed state. position.
  • the second valve mechanism 1122 moves to the second open position, and the through hole 1123 is opened to form an exhaust passage.
  • the difference ⁇ P between the pressure P 1 and the atmospheric pressure P 0 in the cavity 1110 is smaller than the predetermined value, the second valve mechanism 1122 is in a state in which the through hole 1123 is closed.
  • the valve assembly 1220 can include a valve seat 1221, a first valve mechanism 1222, and a second valve mechanism 1223.
  • the first valve mechanism 1222 is provided with a through hole 1222B.
  • the first valve mechanism 1222 and the second valve mechanism 1223 are movable between a home position and a venting position. Both the first valve mechanism 1222 and the second valve mechanism 1223 are controlled by a biasing member.
  • the first valve mechanism 1222 can include a first spool 1222A and a first biasing member 1222C.
  • the through hole 1222B is disposed on the first valve body 1222A.
  • the second valve mechanism 1223 can include a second spool 1223A and a second biasing member 1223B.
  • the second spool 1223A can close the through hole 1222B on the first spool 1222A.
  • the second biasing member 1223B is for providing the second spool 1223A with a movement resistance from the second closed position to the second open position.
  • the second biasing member 1223B may be disposed on a side of the second spool 1223A facing the cavity 1210 and apply pressure to the second spool 1223A as it moves from its closed position to its open position (ie, to the left).
  • the second biasing member may be disposed on a side of the second spool that faces away from the cavity 1210 and in a second open position of the second spool 1223A from its second closed position Apply tension to the movement (ie to the left).
  • the first biasing member 1222C and the second biasing member 1223B may be springs or other elastomers, etc., and may also be formed by a morphological memory material such as an alloy or plastic having morphological memory properties.
  • a morphological memory material such as an alloy or plastic having morphological memory properties.
  • the second spool 1223A and the first spool 1222A move together to the right.
  • the internal and external air pressure difference ⁇ P generated by the exhalation is to overcome the resultant force of the movement resistance generated by the first biasing member 1222C and the second biasing member 1223B. Since the resistance of the second biasing member moving 1223B produced only for realizing the pressure within the chamber 1210 P 1 is equal to or less than atmospheric pressure P 0 is turned on, so movement resistance generated by second biasing member 1223B may be small.
  • an adjustment device can be added to the valve assembly for adjusting the difference in air pressure that causes the exhaust passage to open, that is, adjusting the predetermined value. Similar to FIG. 10, the adjustment device can include a valve cover 1225. One end of the first biasing member 1222C is coupled to or abuts the first spool 1222A and the other end is coupled to or abuts the valve cover 1225. The valve cover 1225 is movably coupled to the valve seat 1221 to adjust the resistance to movement of the first biasing member 1222C.
  • the adjustment device also includes a positioning structure for positioning the valve cover 1225 relative to the valve seat 1221. Alternatively, different resistances can be provided by replacing the different first biasing members 1222C.
  • the invention also provides a respiratory mask device.
  • the respiratory mask apparatus includes any of the respiratory masks described above and any of the positional valve devices described above.
  • the position valve device is connected to the breathing mask through its connection interface to ventilate the breathing mask through the connection interface.
  • the present invention further provides a respiratory mask apparatus, which may also include any of the respiratory masks described above, as well as any of the ventilation control devices described above.
  • the ventilation control is connected to the breathing mask and is vented through the mask vent with the breathing mask.
  • the position valve provided by the invention has strong compliance, and can conform to the characteristics that the OSAHS patient has no obstruction in the lateral airway and only has a obstruction in the supine position. That is, the function of the valve assembly on the respiratory mask that it wears does not affect the first angle at which the patient flips from the supine position to the left does not exceed the first predetermined value and the second angle that flips to the right does not exceed the second predetermined value. , for example, inspiratory no resistance or small resistance and positive expiratory pressure; when the first angle of the patient flipping from the supine position to the left exceeds the first predetermined value or the second angle turned to the right exceeds the second predetermined value, inhalation and There is no resistance or little resistance to exhalation.

Abstract

一种体位阀装置、通气控制装置(200)和呼吸面罩(20)。体位阀装置包括:可与患者的口和/或鼻连通的连接接口(240);体位阀(230),连接接口(240)安装在体位阀(230)上,其中患者从仰卧位向左翻转的第一角度大于第一预定值时,体位阀(230)导通;且患者从仰卧位向右翻转的第二角度大于第二预定值时,体位阀(230)导通,体位阀(230)导通时连接接口(240)能够通过体位阀(230)与大气连通。体位阀(230)具有较强的顺应性,能够顺应OSAHS患者在侧卧位气道没有阻塞,只在仰卧位时有阻塞的特点,即患者向左翻转的角度不超过第一预定值且向右翻转的角度不超过第二预定值时,不影响其佩戴的呼吸面罩(20)上的阀组件(220)的功能;当患者向左翻转的角度超过第一预定值或向右翻转的角度超过第二预定值时,吸气和呼气都无阻力或小阻力。

Description

体位阀装置、通气控制装置和呼吸面罩设备
相关申请的交叉引用
本申请要求享有于2015年10月23日提交的名称为“体位阀装置、通气控制装置和呼吸面罩设备”的中国专利申请CN201510698830.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及呼吸面罩技术领域,具体地涉及一种用于呼吸面罩的体位阀装置、具有该体位阀装置的通气控制装置以及具有这种体位阀装置或这种通气控制装置的呼吸面罩设备。
背景技术
目前治疗阻塞性睡眠呼吸暂停低通气综合症(OSAHS)的方法主要有外科手术、口腔矫正器、持续正压通气(CPAP)和呼气终末正压(positive end-expiratory pressure,PEEP)治疗等等。
外科手术最常用的方式是悬雍垂腭咽成形术及其改良手术,用于上气道口咽部阻塞(包括咽部粘膜组织肥厚、咽腔狭小、悬雍垂肥大、软腭过低、扁桃体肥大)并且呼吸暂停低通气指数(AHI)<20次/小时。这种方法由于需动手术,患者接受度低,而且手术组织再长会造成病情反复,而之后无法再次手术。
口腔矫形器常用于单纯鼾症及轻度OSAHS患者(AHI<15次/小时),特别是下颌后缩者,其疗效无法预计,只能试用。
持续正压通气和呼气终末正压通常采用呼吸面罩,这种非介入式的治疗方法在临床上非常受欢迎。以持续正压通气为例,如图1所示,呼吸面罩110通过连接管路120连接至CPAP呼吸机130,并将该呼吸面罩110佩戴至患者的面部。CPAP呼吸机130产生持续的正压气流,从而给患者的上气道提供生理性压力支撑,进而治疗OSAHS。然而相关病理研究成果表明,OSAHS患者在侧卧位气道没有阻塞,只在仰卧位时有阻塞。而现有的呼吸面罩无论在患者仰卧还是侧卧均 采用相同的通气方式,导致呼吸面罩的顺应性较差,减低了患者佩戴的舒适度。
因此,需要一种用于呼吸面罩的体位阀装置、具有该体位阀装置的通气控制装置以及具有这种体位阀装置或这种通气控制装置的呼吸面罩设备,以至少部分地解决上文提到的问题。
发明内容
为了至少部分地解决现有技术中存在的问题,本发明提供一种体位阀装置、通气控制装置和呼吸面罩设备。
根据本发明的一个方面提供的用于呼吸面罩的体位阀装置,包括:可与患者的口和/或鼻连通的连接接口;以及体位阀,所述连接接口安装在所述体位阀上,其中患者从仰卧位向左翻转的第一角度大于第一预定值时,所述体位阀导通;且患者从仰卧位向右翻转的第二角度大于第二预定值时,所述体位阀导通,所述体位阀导通时所述连接接口能够通过所述体位阀与大气连通。
优选地,所述体位阀包括:壳体,所述连接接口设置在所述壳体并与所述壳体连通;第一阀,其设置在所述壳体上,其中所述第一角度大于所述第一预定值时所述第一阀导通;以及第二阀,其设置在所述壳体上,其中所述第二角度大于所述第二预定值时所述第二阀导通。
优选地,所述第一阀和所述第二阀分别位于所述连接接口的轴线的两侧。
优选地,其中所述第一阀包括:第一阀口,所述第一阀口设置在所述壳体上;第一阀门,所述第一阀门与所述第一阀口配合且以第一枢轴为轴可枢转地安装在所述壳体上,所述第一阀门在所述患者仰卧时关闭所述第一阀口,其中,在经过所述第一阀门的第一重心且垂直于所述患者的纵向轴线的平面内,所述第一重心和所述第一枢轴的连线与重力方向的夹角为所述第一预定值,
优选地,所述第二阀包括:第二阀口,所述第二阀口设置在所述壳体上;第二阀门,所述第二阀门与所述第二阀口配合且以第二枢轴为轴可枢转地安装在所述壳体上,所述第二阀门在所述患者仰卧时关闭所述第二阀口,其中,在经过所述第二阀门的第二重心且垂直于所述患者的纵向轴线的平面内,所述第二重心和所述第二枢轴的连线与重力方向的夹角为所述第二预定值。
优选地,所述第一阀包括:第一阀口,所述第一阀口设置在所述壳体上;第一阀门,所述第一阀门与所述第一阀口配合且以第一枢轴为轴可枢转地安装在所 述壳体上,所述第一阀门在所述患者仰卧时关闭所述第一阀口,所述第二阀设置在所述第一阀门上,其中,在经过第一重心且垂直于所述患者的纵向轴线的平面内,所述第一重心与所述第一枢轴的连线与重力方向的夹角为所述第一预定值,所述第一重心为所述第一阀门和所述第二阀的重心。
优选地,所述第二阀包括:第二阀口,所述第二阀口设置在所述第一阀门上且与所述第一阀口连通;第二阀门,所述第二阀门与所述第二阀口配合且以第二枢轴为轴可枢转地安装在所述第一阀门上,所述第二阀门在所述患者仰卧时关闭所述第二阀口,其中,在经过所述第二阀门的第二重心且垂直于所述患者的纵向轴线的平面内,所述第二重心与所述第二枢轴的连线与重力方向的夹角为第二预定值。
优选地,所述第一阀口的第一上开口所在的平面是倾斜的,所述第一枢轴位于所述第一上开口的上方或下方,所述第二阀口的第二上开口所在的平面是倾斜的,所述第二枢轴位于所述第二上开口的上方或下方,其中,所述第一重心位于经过所述第一上开口的顶端的第一重力线的左侧时,所述第二重心位于经过所述第二上开口的顶端的第二重力线的右侧;所述第一重心位于所述第一重力线的右侧时,所述第二重心位于所述第二重力线的左侧。
优选地,所述第一阀包括:第一轨道,所述第一轨道与水平面具有第一夹角,所述第一轨道上设置有连通大气和所述连接接口的第一通路;以及第一阀球,所述第一阀球在所述第一轨道中可自由滚动,所述第一阀球位于所述第一轨道的最低点时能够使所述第一通路关闭,所述第一阀球位于所述第一轨道的最高点时能够使所述第一通路导通。
优选地,所述第二阀包括:第二轨道,所述第二轨道与水平面具有第二夹角,所述第二轨道上设置有连通大气和所述连接接口的第二通路;以及第二阀球,所述第二阀球在所述第二轨道中可自由滚动,所述第二阀球位于所述第二轨道的最低点时能够使所述第二通路关闭,所述第二阀球位于所述第二轨道的最高点时能够使所述第二通路导通。
优选地,所述第一通路和所述第二通路包括:第一开口,其设置在所述第一轨道和所述第二轨道的最低点处,以将所述第一轨道和所述第二轨道连通至大气;以及第二开口,其设置在所述第一轨道和所述第二轨道的非最低点处,以将所述第一轨道和所述第二轨道连通至所述连接接口;其中所述第一阀球和所述第二阀 球位于所述最低点时能够封闭所述第一开口。
优选地,所述第一通路和所述第二通路包括:第一开口,其设置在所述第一轨道和所述第二轨道的最高点处,所述第一开口处分别设置有通气阀;以及第二开口,其设置在所述第一轨道和所述第二轨道的非最高点处,所述第一开口和所述第二开口中的一个与大气连通,且另一个连通至所述连接接口,其中所述第一阀球和所述第二阀球位于所述最高点时能够使所述通气阀导通。
优选地,所述第一轨道和所述第二轨道连接成V形,且所述第一阀球和所述第二阀球为同一阀球。
根据本发明的另一个方面提供的用于呼吸面罩的通气控制装置,包括:腔体,其具有体位阀接口以及一个或多个输气口;如上所述体位阀装置,所述体位阀装置通过所述连接接口连通至所述体位阀接口;以及阀组件,其设置在所述输气口的至少一个处,所述阀组件构造为呼气时能够保持所述腔体内的压力大于大气压,其中,所述体位阀或所述腔体上设置有用于与呼吸面罩通气的面罩通气口。
根据本发明的又一个方面提供的呼吸面罩设备,包括:呼吸面罩;以及如上所述的体位阀装置,所述体位阀装置的所述连接接口连接至所述呼吸面罩,并通过所述连接接口与所述呼吸面罩通气。
根据本发明的再一个方面提供的呼吸面罩设备,包括:呼吸面罩;以及如上所述的通气控制装置,所述通气控制装置连接至所述呼吸面罩,并通过所述面罩通气口与所述呼吸面罩通气。
本发明提供的体位阀具有较强的顺应性,能够顺应OSAHS患者在侧卧位气道没有阻塞,只在仰卧位时有阻塞的特点。也就是,在患者由仰卧位向左翻转的第一角度不超过第一预定值且向右翻转的第二角度不超过第二预定值时,不影响其佩戴的呼吸面罩上的阀组件的功能,例如吸气无阻力或小阻力以及呼气正压;当患者由仰卧位向左翻转的第一角度超过第一预定值或向右翻转的第二角度超过第二预定值时,吸气和呼气都无阻力或小阻力。
在发明内容中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
以下结合附图,详细说明本发明的优点和特征。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施方式及其描述,用来解释本发明的原理。在附图中,
图1为现有的持续正压通气系统的示意图;
图2A为具有根据本发明第一实施例的通气控制装置的呼吸面罩的侧视图;
图2B为沿着图2A中线B-B所截的呼吸面罩和体位阀的剖视图,并且为了便于理解,呼吸面罩和体位阀已被旋转至患者仰卧佩戴它们的状态;
图3A为具有根据本发明第二实施例的通气控制装置的呼吸面罩的侧视图;
图3B为沿着图3A中线B-B所截的剖视图,并且为了便于理解,呼吸面罩和体位阀已被旋转至患者仰卧佩戴它们的状态;
图4为具有根据本发明第三实施例的体位阀的呼吸面罩的剖视图;
图5为具有根据本发明第四实施例的体位阀的呼吸面罩的剖视图;
图6为具有根据本发明第五实施例的体位阀的呼吸面罩的剖视图;
图7为具有根据本发明第六实施例的体位阀的呼吸面罩的剖视图;
图8为根据本发明第七实施例的腔体和阀组件的剖视图;
图9为根据本发明第八实施例的腔体和阀组件的剖视图;
图10为根据本发明第九实施例的腔体和阀组件的剖视图;
图11为根据本发明第十实施例的腔体和阀组件的剖视图;以及
图12为根据本发明第十一实施例的腔体和阀组件的剖视图。
110、呼吸面罩;120、连接管路;130、CPAP呼吸机;20、呼吸面罩;21、面罩主体;22、衬垫组件;23、支撑部分;24、前额支撑件;200、通气控制装置;210、腔体;211、输气口;212、体位阀接口;220、阀组件;230、体位阀;231、壳体;231A、第一阀口;231B、第二阀口;232、第一阀门;233、第二阀门;240、连接接口;250、面罩通气口;251、连接结构;330、体位阀;331、壳体;331A、第一阀口;331B、第二阀口;332、第一阀门;333、第二阀门;340、连接接口;350、弯管;430、体位阀;431、壳体;431A、第一阀口;432、第一阀门;432A、第二阀口;433、第二阀门;510、腔体;511、面罩通气口;512、输气口;530、体位阀;531、第一轨道;532、第二轨道;533、阀球;534、第 一开口;535、第二开口;630、体位阀;631、第一轨道;632、第二轨道;633A、第一阀球;633B、第二阀球;634A、634B、第一开口;635A、635B、第二开口;730、体位阀;731、第一轨道;732、第二轨道;733、阀球;734、735、通气阀;736、第二开口;810、腔体;811、面罩通气口;812A、812B、输气口;820、进气阀;821、中间部件;830、排气阀;831、排气阀座;832、排气阀芯;833、排气阀偏置构件;834、出气口;910、腔体;912A、912B、输气口;920、进气阀;1010、腔体;1012、输气口;1020、阀组件;1021、阀座;1022、第一阀机构;1022A、通孔;1023、第二阀机构;1024、出气口;1025、阀盖;1026、第一偏置构件;1110、腔体;1112、输气口;1020、阀组件;1121、第一阀机构;1122、第二阀机构;1123、通孔;1210、腔体;1212、输气口;1220、阀组件;1221、阀座;1222、第一阀机构;1222A、第一阀芯;1222B、通孔;1222C、第一偏置构件;1223、第二阀机构;1223A、第二阀芯;1223B、第二偏置构件;1225、阀盖。
具体实施方式
在下文的描述中,提供了大量的细节以便能够彻底地理解本发明。然而,本领域技术人员可以了解,如下描述仅示例性地示出了本发明的优选实施例,本发明可以无需一个或多个这样的细节而得以实施。此外,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行详细描述。
根据本发明的一个方面,提供一种用于呼吸面罩的体位阀装置、具有该体位阀装置的通气控制装置(以下简称通气控制装置)以及具有该通气控制装置的呼吸面罩设备。为了能够准确、完整地理解该体位阀装置和通气控制装置,本文将首先对呼吸面罩设备包含的呼吸面罩进行简单描述。可以理解的是,附图中所示出的口鼻罩型呼吸面罩仅为示例性的,本文提供的通气控制装置并不限于仅应用至该口鼻罩型呼吸面罩,其还可以应用至鼻罩型、全脸罩型或鼻塞型等形式的呼吸面罩。
如图2A的侧视图所示,呼吸面罩20包括面罩主体21、衬垫组件22和前额支撑件24。未示出的其它实施例中,呼吸面罩20也可能不包括其中的一个或两个部件,例如不包括前额支撑件24。
面罩主体21上设置有面罩通孔(未标示出)。衬垫组件22安装在面罩主体 21上。面罩主体21和衬垫组件22共同形成空腔。衬垫组件22可以固定地连接或可拆卸地连接到面罩主体21。衬垫组件22也可以单独形成该空腔,在此实施例中面罩主体21可以在衬垫组件22的外部支撑衬垫组件22。在使用时,面罩主体21和衬垫组件22将与患者的脸部(包括脸颊、鼻梁、嘴巴上下部等)形成密封,以使该空腔与患者的鼻腔或者口鼻腔连通。面罩主体21可以由刚性材料制成,也可以由柔性材料制成。衬垫组件22优选地由柔性材料制成。衬垫组件22可以是气囊,也可以是膜结构。膜结构可以是单层或分离的双层。衬垫组件22也可包括粘合件(例如不干胶等),以提升患者感受和密封效果。面罩主体21和衬垫组件22的从正面看的形状可以为大体三角形或梨形或梯形等等。面罩主体21和衬垫组件22还可以采用与口鼻部形状相适配的形状等等。在鼻塞型呼吸面罩中,衬垫组件22也可以设计成与鼻孔口密封的锥形膜形状的鼻塞,此结构同样可具有单层或分离的双层膜结构。在口鼻型呼吸面罩中,还可以将鼻塞型的鼻塞与口部罩型设计相结合。衬垫组件22包括支撑部分23。支撑部分23可设计皱褶、波纹管、局部减薄、弯折、弧形等结构,以实现此呼吸面罩20与脸部更好的贴合,甚至实现衬垫组件22的软垫部分与面罩主体21间悬浮,从而可自适应衬垫与脸部的贴合角度,并利用腔内气体压力辅助密封。作为一个实例,支撑部分采用气囊或凝胶,可具有自适应脸型的功能。
此外,该呼吸面罩20还包含用于连接固定组件的固定件,例如卡扣、绑带环等。固定件可以作为单独零件连接于面罩主体21上,也可与面罩主体21一体形成。固定组件用于把呼吸面罩20固定在患者面部的适当位置,可以是现有的各种头带。头带上可以有与面罩主体21连接的结构,比如扣、带魔术贴的绑带。头带的材料可以用编织物、弹性体等(其中弹性体可以是泡沫、硅胶等),也可以采用编织物和弹性体复合的多层结构,以提高其弹性、透气性及人体顺应性。头带的形状可做成Y字形、工字形等各种形态,同时可加入某些方向相对刚性而另外某些方向柔性的零件,以更好固定该呼吸面罩20。固定组件也可以是直接固定于脸部、鼻子外部或鼻腔内的结构,比如可以是粘合件(例如不干胶等)的固定结构。
前额支撑件24在使用时抵靠在患者的额头上。前额支撑件24与面罩主体21之间的连接可以是固定式的或可分拆式的,分拆式的实施例例如是通过扣位。前额支撑件24包含柔软的额头接触部。该前额支撑件24还可以具有调整装置,以 调整与额头距离,保证适应不同面型。
上述刚性材料可以是塑料、合金等,柔性材料可以是硅胶、凝胶、泡沫、气囊、纺织品等,此材料定义也适用于后续各部分内容。
呼吸面罩20所包含的各个部件都可以采用本领域已知的构造,因此这里不再进一步详细描述。
下面将结合附图对本发明提供的体位阀装置和通气控制装置的多个优选实施例进行详细描述。图2A示出了连接至呼吸面罩20的通气控制装置200。如图2A所示,该通气控制装置200包括腔体210、阀组件220和体位阀装置。图2B为沿着图2A中线B-B所截的呼吸面罩20和体位阀装置的剖视图,并且为了便于理解,呼吸面罩20和体位阀装置已被旋转至患者仰卧佩戴它们的状态,其中箭头C-C是重力的方向。
腔体210具有输气口211和体位阀接口212。虽然图中示出的腔体210大体上呈圆柱形,但是在未示出的其他实施例中,腔体210还可以具有其他任意形状,只要能够形成可以与呼吸面罩20进行通气的密封空间即可。腔体210的体积不限,以佩戴舒适为佳。腔体210可以由柔性材料或刚性材料制成。腔体210上可以设置一个或多个输气口。图2A-2B中示出了仅设置一个输气口211的实施例。后文还将介绍设置多个输气口的实施例。体位阀接口212用于连接体位阀装置。腔体210上也可以不设置体位阀接口212,体位阀装置可以直接连接到呼吸面罩20。也就是说,腔体210及其上的阀组件220与体位阀装置分开地连接至呼吸面罩20。在此情况下,腔体210还可以与呼吸面罩20的框架主体21形成的空腔成一体。后文将结合附图来说明该实施例。
阀组件220设置在一个或多个输气口211中的至少一个处。通过阀组件与输气口的配合可以使这些输气口的全部或部分既用作进气口又用作排气口,或者可以使这些输气口中的一个或几个用作进气口而其余的用作排气口。阀组件220可以作为控制全部输气口的气体流通的阀门。阀组件还可以控制输气口的一部分的气体流通,例如阀组件关闭时输气口的另一部分是可以通气的。当存在多个输气口时,阀组件可以采用上述两种方式的结合。只要阀组件220与输气口配合能够在呼气时保持腔体210内的压力P1大于大气压P0,以实现呼气时在腔体210内存在呼气正压即可。相关病理研究成果表明,OSAHS患者在吸气时气道没有阻塞,只在呼气时有阻塞。本发明采用呼气正压来防止上呼吸道塌陷,进而对OSAHS 起到治疗作用。阀组件220可以具有各种构造,后文将对一些阀组件的实施例进行描述。
体位阀装置设置在体位阀接口212处。体位阀装置具有导通和关断状态。体位阀装置导通时,腔体210与大气之间通过体位阀装置能够进行气体交换。在此情况下,体位阀装置或腔体210上设置有面罩通气口,用于与呼吸面罩进行通气。由此,体位阀装置导通时,呼吸面罩可以通过体位阀装置与大气直接连通。在图2A-2B所示的实施例中,面罩通气口250设置在体位阀装置上。后文还将介绍面罩通气口设置在腔体210上的实施例。此外,体位阀装置也可以直接设置在呼吸面罩20上。在此实施例中,腔体210的结构不变,只是腔体210上的体位阀接口直接用作面罩通气口,连接至呼吸面罩。
体位阀装置可以包括连接接口240和体位阀230。连接接口240可与患者的口和/或鼻连通。连接接口240安装在体位阀230上。在图2A-2B所示的实施例中,连接接口240用于与腔体210上的体位阀接口212连接,以使体位阀装置与腔体210连通。在体位阀装置与腔体分开地连接至呼吸面罩的实施例中,体位阀装置的连接接口用于连接至呼吸面罩,以使两者可以通气。体位阀230具有导通状态和关断状态。体位阀230导通时,连接接口240能通过该体位阀230与大气连通。反之,连接接口240不能通过该体位阀230与大气连通。体位阀230仅在以下情况下导通:即患者从仰卧位向左翻转的第一角度大于第一预定值时,以及从仰卧位向右翻转的第二角度大于第二预定值时。也就是说,患者由仰卧位向左侧卧位翻转的角度(即第一角度)超过第一预定值时,体位阀230导通。患者由仰卧位向右侧卧位翻转的角度(即第二角度)超过第二预定值时,体位阀230也导通。这样,患者在仰卧位向左侧和右侧翻转的角度分别不大于第一预定值和第二预定值时,体位阀230关断,不影响阀组件220正常工作,实现呼气正压功能。而在侧卧位时,即向左侧卧翻转角度超过第一预定值或者向右侧卧翻转角度超过第二预定值时,体位阀230导通,患者可以通过体位阀230吸气与呼气,吸气和呼气都无阻力或小阻力。研究表明,OSAHS患者在侧卧位气道没有阻塞,只在仰卧位时有阻塞。通过上述体位阀和阀组件的配合,既达到了预期的OSAHS治疗功能,也提高了设备对患者的顺应性。
优选地,体位阀装置可拆卸地连接至体位阀接口212、和/或可拆卸地连接至呼吸面罩。作为示例,体位阀接口212处可以包括将体位阀装置可拆卸地连接至 腔体210的连接结构。连接结构可以采用锥形轴孔压紧固定结构、螺纹连接结构、插接结构、弹性体抱紧连接结构或卡扣连接结构等等。此外,体位阀装置与腔体210也可以制作成一体不可拆分的。
在图2A-2B所示的实施例中,体位阀装置上还设置有用于与呼吸面罩20通气的面罩通气口250。面罩通气口250处可以设置连接结构251。该连接结构251用于将体位阀装置可拆卸地连接至呼吸面罩20。由于腔体210连接至体位阀装置,因此体位阀装置可拆卸地连接至呼吸面罩20意味着通气控制装置200可拆卸地连接至呼吸面罩20。连接结构251例如可以为卡扣连接结构、螺纹连接结构或弹性体抱紧连接结构等。这样,可以随时更换体位阀装置或整个通气控制装置200,并且可以将该通气控制装置200设计成可以直接应用于现有的CPAP呼吸面罩,以降低患者的使用成本。在图2A-2B所示的实施例中,可以将体位阀装置制作成可拆卸地连接在呼吸面罩20和腔体210之间。当将体位阀装置拆卸下来之后,腔体210可以直接连接至呼吸面罩20。这样,可以根据需要由患者决定是否安装体位阀装置。
在一组实施例中,体位阀可以包括壳体、第一阀和第二阀。连接接口可以设置在壳体上。连接接口与壳体连通。第一阀和第二阀也设置在壳体上。并且,第一阀在患者相对于竖直方向以大于第一预定值的角度左侧卧时导通。第二阀在患者相对于竖直方向以大于第二预定值的角度右侧卧时导通。第一阀和第二阀可以具有各种结构,只要能够满足上述条件即可。作为示例,第一阀和第二阀可以包括感测患者的侧卧角度的传感器以及控制阀导通的电元件。当然,采用这种传感器和电元件的情况下,也可以只设置一个阀来实现左侧卧和右侧卧时导通。此外,第一阀和第二阀也可以实施为在传感器监测到上述条件时机械地导通和关断。优选地,第一阀和第二阀可以不包含电子元件。通过两个阀来分别机械地控制左侧卧时导通和右侧卧时导通,可以使体位阀的结构设计起来相对简单。优选地,第一阀和第二阀分别位于连接接口的轴线的两侧,以简化体位阀的结构。
在一个优选实施例中,如图2B所示,体位阀230可以包括壳体231、第一阀和第二阀。第一阀具有设置在壳体231上的第一阀口231A以及第一阀门232。第一阀门232与第一阀口231A配合且以第一枢轴P1为轴可枢转地安装在壳体上。通过第一阀门232的枢转来关闭或开启第一阀口231A。第二阀具有设置在壳体231上的第二阀口231B以及第二阀门233。第二阀门233与第二阀口231B配合 且以第二枢轴P2为轴可枢转地安装在壳体上。通过第二阀门233的枢转来关闭或开启第二阀口231B。虽然第一阀口231A和第二阀口231B在图中示出为相对设置,分别位于患者(仰卧时)的左右两侧,但是以下提供的阀门的开闭与阀口设置位置无关,因此第一阀口231A和第二阀口231B的位置可以互换,或者可以设置在同侧或其它位置。需要说明的是,本文是在患者佩戴具有该体位阀装置的呼吸面罩并且处于仰卧位的情况下对它们的结构进行描述的,因此,本文提到的方位术语“左”、“右”、“上”、“下”等均是在佩戴呼吸面罩的患者仰卧时相对于患者而言的。除非特别指明,患者已翻转至左侧卧位或右侧卧位。第一阀门232和第二阀门233在患者仰卧时能够分别关闭第一阀口231A和第二阀口231B。
此外,患者仰卧时,在经过第一阀门232的重心(即第一重心)且垂直于患者的纵向轴线的平面内,该第一重心与第一枢轴P1的连线也就是该重心与第一枢轴P1和前述平面的交点的连线,该连线与重力方向(即竖直向下的方向)的夹角A1为第一预定值。本文所提到的“患者的纵向轴线”是指沿着患者的高度方向的轴线。患者仰卧时,患者的纵向轴向在图2B中沿垂直于纸面的水平方向延伸。“垂直于患者的纵向轴线的平面”是指垂直于患者的高度方向的平面。该平面在患者仰卧时垂直于地面并且沿着患者的左右方向延伸。患者仰卧时,在经过第二阀门233的重心(即第二重心)且垂直于患者的纵向轴线的平面内,该重心与第二枢轴P2的连线也就是该重心与第二枢轴P2和前述平面的交点的连线,该连线与重力方向的夹角A2为第二预定值。
当患者由图2B中所示的仰卧位向左翻转时,夹角A1逐渐减小。当患者由仰卧位向左翻转了具有第一预定值的角度(也就是翻转到夹角A1等于零)时,第一阀门232的第一重心和第一枢轴P1所在的平面旋转到竖直方向,之后患者继续翻转,则第一阀门232由于重力作用不再旋转,第一阀口231A被开启。由此,患者由仰卧位向左翻转的第一角度大于第一预定值之后继续翻转的,第一阀口231A开启,患者可以经由第一阀口231A吸气和呼气,实现吸气和呼气均无阻力或小阻力。而患者由仰卧位向左翻转的第一角度在0到第一预定值之间时,第一阀门232关闭第一阀口231A,因而不影响阀组件的功能,可以实现呼气正压。
当患者由图2B中所示的仰卧位向右翻转时,夹角A2逐渐减小。当患者由仰卧位向右翻转了具有第二预定值的角度(也就是翻转到夹角A2等于零)时,第 二阀门233的第二重心和第二枢轴P2所在的平面旋转到竖直方向,之后患者继续翻转,则第二阀门233由于重力作用不再旋转,第二阀口231B被开启。由此,患者由仰卧位向右翻转的第二角度大于第二预定值之后继续翻转的,第二阀口231B开启,患者可以经由第二阀口231B吸气和呼气,实现吸气和呼气均无阻力或小阻力。而患者由仰卧位向右翻转的第二角度在0到第二预定值之间时,第二阀门233关闭第二阀口231B,因而不影响阀组件的功能,可以实现呼气正压。
当患者由仰卧位向左翻转的第一角度不超过第一预定值或向右翻转的第二角度不超过第二预定值时,第一阀门232和第二阀门233关闭,不影响呼气正压。而吸气时,第一阀门232和第二阀门233有可能会由于内外气压差较大使第一阀门232和第二阀门233克服自身的重力开启,但是仍然不影响吸气时的无阻力或小阻力要求。
第一预定值和第二预定值可以根据患者的情况来选择。第一预定值和第二预定值可以相等,也可以不等。作为示例,第一预定值可以在30-60度范围内。第二预定值也可以在30-60度范围内。当然,第一预定值和第二预定值也可以在该范围之外,只要在OSAHS患者的气道阻塞时能够使体位阀关闭,以使阀组件发挥作用即可。
在更进一步优选的实施例中,第一阀口231A的上开口(也称第一上开口)所在的平面在患者仰卧时是倾斜的。第一枢轴P1位于第一上开口的上方。这样,在患者仰卧时,第一阀门232覆盖在第一阀口231A上,以关闭第一阀口231A。第二阀口231B的上开口(也称第二上开口)所在的平面在患者仰卧时也是倾斜的。第二枢轴P2位于第二上开口的上方。这样,在患者仰卧时,第二阀门233覆盖在第二阀口231B上,以关闭第二阀口231B。在未示出的其他实施例中,第一枢轴P1和第二枢轴P2还可以分别位于第一上开口和第二上开口的下方。也可以是,第一枢轴P1和第二枢轴P2中的一个位于相应阀口的上开口的上方,另一个位于相应阀口的上开口的下方。第一阀门232和第二阀门233可以由刚性或非刚性材料制成,或由两种材料组合制成。第一阀门232的第一重心和第二阀门233的第二重心分别位于经过各自阀口的上开口顶端的重力线的两侧。也就是,第一阀门232的第一重心位于经过第一阀口231A的第一上开口的顶端的第一重力线的左侧时,第二阀门233的重心位于经过第二阀口231B的第二上开口的顶端的第二重力线的右侧,如图2B中所示。反过来,第一阀门232的重心位于上述第 一重力线的右侧时,第二阀门233的重心位于上述第二重力线的左侧。此处所说的重力线是指沿着与重力方向相同的方向(即竖直方向)延伸的虚拟线。第一重力线是指经过第一阀口的第一上开口的顶端的沿重力方向延伸的虚拟线。类似地,第二重力线是指经过第二阀口的第二上开口的顶端的沿重力方向延伸的虚拟线。
优选地,第一阀门232和第二阀门233由具有一定重量的金属以及包在金属外面的柔性材料制成。这样,第一阀门232和第二阀门233既具有一定的重力来实现自由枢转,又可以避免与其他部件碰撞产生噪音,而且外部的柔性材料在阀门关闭时还能够起到密封的作用。
优选地,如图2B所示,第一枢轴P1在患者仰卧时与患者的纵向轴线平行,以使该体位阀的设计简单化。同样优选地,第二枢轴P2在患者仰卧时沿患者的纵向轴线延伸。可以理解,第一枢轴P1和第二枢轴P2也可以不沿患者的纵向轴线延伸,只要使第一阀门和第二阀门的设置满足在上述条件下开启即可,但是这样的设置方式会导致设计相对复杂。
虽然图2A-2B中示出的体位阀230的中心轴线在患者仰卧时沿着竖直方向延伸,但是在其他实施例中,体位阀的中心轴线在患者仰卧时也可以沿水平方向延伸或者沿其他任意方向延伸,只要第一阀门和第二阀门的设置满足上述要求即可。本领域的技术人员可以理解,这也适用于下文将要描述的体位阀的其他实施例,并且对体位阀的中心轴线进行变换时可能需要对通气控制装置包含的其他部件进行简单变型。
图3A-3B给出了体位阀的中心轴线在患者仰卧时沿水平方向延伸的实施例,并且为了便于理解,图3B中的呼吸面罩20和体位阀装置已被旋转至患者仰卧佩戴它们的状态,其中箭头C-C是重力的方向。体位阀装置包括连接接口340和体位阀330。体位阀330例如可以通过弯管350连通至呼吸面罩20。当然,体位阀330也可以连接至腔体210,而腔体210直接连接至呼吸面罩。腔体210和阀组件220可以具有上文所描述的结构。如图3B所示,体位阀330的壳体331上设置有第一阀口331A和第二阀口331B。第一阀门332和第二阀门333分别以第一枢轴P1和第二数轴P2为轴可枢转地连接在第一阀口331A和第二阀口331B处。第一阀门332和第二阀门333分别与第一阀口331A和第二阀口331B配合,以使体位阀导通或关断。患者仰卧时,在经过第一阀门332的重心且垂直于患者的纵向轴线(在图3B中沿垂直于纸面的水平方向延伸)的平面内,第一阀门332的 重心与第一枢轴P1的连线与重力方向的夹角A1为第一预定值;在经过第二阀门333的重心且垂直于患者的纵向轴线的平面内,第二阀门333的重心与第二枢轴P2的连线与重力方向的夹角A2为第二预定值。
进一步地,第一阀口331A的第一上开口所在的平面在患者仰卧时是倾斜的。在患者仰卧时,第一枢轴P1位于该第一上开口的上方。这样,在患者仰卧时,第一阀门332可以关闭第一阀口331A。第二阀口331B的第二上开口所在的平面在患者仰卧时也是倾斜的。在患者仰卧时,第二枢轴P2也位于该第二上开口的上方。这样,在患者仰卧时,第二阀门333可以关闭第二阀口331B。此外,第一阀门332的第一重心位于经过第一阀口331A的第一上开口的顶端的第一重力线的左侧时,第二阀门333的第二重心位于经过第二阀口331B的第二上开口的顶端的第二重力线的右侧,如图3B所示。此外,第一阀门332的第一重心也可以位于上述第一重力线的右侧,此时,第二阀门333的第二重心位于上述第二重力线的左侧。优选地,如图3B所示,第一枢轴P1在患者仰卧时沿患者的纵向轴线延伸。优选地,第二枢轴P2在患者仰卧时沿患者的纵向轴线延伸。
图4示出了体位阀的另一实施例,该实施例中的其他部件与图2A-2B所示的实施例基本相同,因此这里仅对体位阀430进行详细描述。图4中呼吸面罩20和体位阀430已被旋转至患者仰卧佩戴它们的状态,其中箭头C-C是重力的方向。体位阀430包括壳体431、第一阀和第二阀。第一阀包括第一阀口431A和第一阀门432。第一阀口431A设置在壳体431上,以将壳体431的内部空间连通至大气。虽然第一阀口431A在图中示出为位于患者(仰卧时)的左侧,但是以下提供的阀门的开闭与阀口设置位置无关,第一阀口431A可以设置在右侧或其它位置。第一阀门432与第一阀口431A配合且以第一枢轴P1为轴可枢转地安装在壳体上。通过第一阀门432的枢转来关闭或开启第一阀口431A。第一阀门432在患者仰卧时关闭第一阀口431A。第二阀设置在第一阀门432上。第二阀包括第二阀口432A和第二阀门433。第二阀口431B设置在第一阀门432上,且与第一阀口431A连通。第二阀门433与第二阀口431B配合且以第二枢轴P2为轴可枢转地安装在第一阀门432上,通过第二阀门433的枢转来关闭或开启第二阀口431B。第二阀门433在患者仰卧时关闭第二阀口431B。不同于体位阀230和330(它们采用分体的第一阀和第二阀),该体位阀430的第一阀和第二阀组合在一起。
患者仰卧时,第一阀门432和第二阀门433共同关闭第一阀口431A。在经过第一阀门432和第二阀的重心(即第一阀门432和第二阀作为整体的重心,也称为第一重心)且垂直于患者的纵向轴线的平面内,该第一重心与第一枢轴P1的连线与重力方向的夹角为第一预定值。在经过第二阀门433的重心(也称为第二重心)且垂直于患者的纵向轴线的平面内,该第二重心与第二枢轴P2的连线与重力方向的夹角A2为第二预定值。优选地,如图4所示,第一枢轴P1和/或第二枢轴P2在患者仰卧时沿患者的纵向轴线延伸。当患者由图4中所述的仰卧位向左翻转时,第一夹角A1逐渐减小。当患者由仰卧位向左翻转的第一角度等于第一预定值时,第一阀门432和第二阀的第一重心和第一枢轴P1所在的平面旋转到竖直方向,之后患者继续翻转,则第一阀门432和第二阀由于重力作用不再旋转,第一阀口431A被开启。由此,患者由仰卧位向左翻转具有第一预定值的第一角度之后继续翻转的,第一阀口431A开启,患者可以经由第一阀口431A吸气和呼气,实现吸气和呼气均无阻力或小阻力。而患者由仰卧位向左翻转的第一角度在0到第一预定值之间时,第一阀口431A关闭,因而不影响阀组件的功能,可以实现吸气时无阻力或小阻力和呼气正压。
患者仰卧时,第二阀门433关闭第二阀口432A。第二阀门433的第二重心与第二枢轴P2的连线与竖直方向具有第二夹角A2。优选地,如图4所示,第二枢轴P2在患者仰卧时沿患者的纵向轴线延伸。当患者由图4中所述的仰卧位向右翻转时,第二夹角A2逐渐减小。当患者由仰卧位向右翻转了具有第二预定值的第二角度时,第二阀门433的重心和第二枢轴P2所在的平面旋转到竖直方向,之后继续翻转,则第二阀门433由于重力作用不再旋转,第二阀口432A被开启。由此,患者由仰卧位向右翻转具有第二预定值的角度之后继续翻转的,第二阀口432A开启,患者可以经由第二阀口432A吸气和呼气,实现吸气和呼气均无阻力或小阻力。而患者由仰卧位向右翻转的第二角度在0到第二预定值之间时,第二阀门433关闭第二阀口432A,因而不影响阀组件的功能,可以实现吸气时无阻力或小阻力和呼气正压。
当患者由仰卧位向左翻转的第一角度不超过第一预定值或向右翻转的第二角度不超过第二预定值时,第一阀门432和第二阀门433关闭,不影响呼气正压。而吸气时,第一阀门432和/或第二阀门433有可能会由于内外气压差较大使第一阀门432和/或第二阀门433克服自身的重力开启,但是仍然不影响吸气时的无阻 力或小阻力要求。
第一阀口431A的第一上开口所在的平面是倾斜的。在患者仰卧时,第一枢轴P1位于第一上开口的下方。第二阀口431B的第二上开口所在的平面也是倾斜的。在患者仰卧时,第二枢轴P2位于第二上开口的上方。在未示出的其他实施例中,第一枢轴P1和第二枢轴P2还可以均位于第一上开口和第二上开口的上方或下方。也可以是,第一枢轴P1位于第一上开口的上方而第二枢轴P2位于第二上开口的下方。第一重心和第二重心分别位于经过各自阀口的上开口顶端的重力线的两侧。也就是,第一阀门432和第二阀的第一重心位于经过第一阀口431A的上表面的顶端的第一重力线的左侧时,第二阀门433的第二重心位于经过第二阀口432A的上表面的顶端的第二重力线的右侧,如图4所示。第一阀门432和第二阀的第一重心也可以位于第一重力线的右侧,此时,第二阀门433的第二重心位于第二重力线的左侧。
可以理解,第一枢轴P1和第二枢轴P2也可以不沿患者的纵向轴线延伸,只要使第一阀门和第二阀门满足在上述条件下开启即可,但是这样的设置方式会导致设计相对复杂。
虽然在图4中第一阀门432的截面呈三角形,但是在未示出的其他实施例中,该截面还可以呈梯形或扇形等。实质上,第一阀门432应包括两个表面,第一表面和第二表面。第一表面用于抵靠第一阀口431A,第二表面用于使第二阀门433抵靠。第二阀口432A从第一表面延伸到第二表面。第一表面的倾斜角度在患者仰卧时能够满足:在经过第一阀门432和第二阀的第一重心且垂直于患者的纵向轴线的平面内,该第一重心与第一枢轴P1的连线与重力方向的夹角为第一预定值。第二表面的倾斜角度在患者仰卧时能够满足:在经过第二阀门433的第二重心且垂直于患者的纵向轴线的平面内,该第二重心与第二枢轴P2的连线与重力方向的夹角A2为第二预定值。
图5为具有根据本发明一个实施例的体位阀的呼吸面罩的剖视图,其中呼吸面罩20和体位阀530已被旋转至患者仰卧佩戴它们的状态,其中箭头C-C是重力的方向。在该实施例中,腔体510上设置有面罩通气口511、输气口512以及体位阀接口(未示出)。虽然图中示出的腔体510大体上呈圆柱形,但是在未示出的其他实施例中,腔体510还可以具有其他任意形状。腔体510的体积不限,以佩戴舒适为佳。腔体510可以由柔性材料或刚性材料制成。该腔体510甚至可 以与呼吸面罩20的框架主体21形成的空腔成一体,例如采用模制工艺使腔体510与框架主体21一体成型。作为示例,腔体510与空腔可以形成为两个可以明显区分的腔。作为示例,腔体510也可以做成空腔的一部分,也就是说,针对图5所示的实施例,可以利用呼吸面罩的空腔的一部分作为腔体510,将输气口512和体位阀接口直接形成在框架主体21上。在其他实施例中,也可以采用该方案。
体位阀530包括第一轨道531、第二轨道532和阀球533。患者仰卧时,第一轨道531与水平面具有第一夹角A1。优选地,如图5所示,第一轨道531在患者仰卧时位于垂直于患者的纵向轴线(即沿着平行于纸面的方向延伸)的竖直平面内,以使第一夹角A1等于第一预定值。第二轨道532与水平面具有第二夹角A2。优选地,如图5所示,第二轨道532在患者仰卧时位于垂直于患者的纵向轴线的竖直平面内,以使第二夹角A2等于第二预定值。第一夹角A1可以位于第一轨道531的最低点的左侧,且第二夹角A2可以位于第二轨道532的最低点的右侧。类似地,第一夹角A1也可以位于第一轨道531的最低点的右侧,且第二夹角A2也可以位于第二轨道532的最低点的左侧。第一轨道531上设置有第一通路。该第一通路能够连通大气和连接接口。第二轨道532上设置有第二通路。该第二通路也能够连通大气和连接接口。阀球533在第一轨道531和第二轨道532中可自由滚动。阀球533位于第一轨道531和第二轨道532的最低点时能够使第一通路和第二通路关闭。阀球533离开第一轨道531和第二轨道532的最低点时能够使第一通路和/或第二通路开启,以使连接接口能够与大气连通。
第一轨道531和第二轨道532的在患者仰卧时的最低点处具有第一开口534。图5中示出的第一轨道531和第二轨道532连接成V形。这样,最低点处可以仅设置一个第一开口534。第一轨道531和第二轨道532还可以共用一个阀球。也就是说,第一阀包含的第一阀球和第二阀包含的第二阀球可以为同一个。第一轨道531和/或第二轨道532上还设置有第二开口535。图中设置了两个第二开口535,但是第二开口的数量可以为一个或更多个。第一开口534将第一轨道531和第二轨道532连通至大气。第二开口535将第一轨道531和第二轨道532连通至体位阀装置的连接接口,进而连通至腔体510的体位阀接口。阀球533在第一轨道531和第二轨道532中可滚动,且在阀球533位于最低点时能够封闭第一开口534。阀球533可以由刚性或非刚性材料制成,或由两种材料组合制成。优选地,阀球533由具有一定重量的金属以及包在金属外面的柔性材料制成。这样,阀球533 既具有一定的重力来实现自由滚动,又可以避免与其他部件碰撞产生噪音,而且外部的柔性材料在阀门关闭时还能够起到密封的作用。
患者仰卧时,阀球533由于重力作用滚到最低点,封闭第一开口534。当患者由图5中所述的仰卧位向左翻转时,第一轨道531与水平面的第一夹角A1逐渐减小。当患者由仰卧位向左翻转的第一角度等于第一预定值时,第一轨道531处于水平状态,之后继续翻转,则阀球533由于重力作用沿着第一轨道531滚动,第一开口534被开启。由此,患者可以经由第一开口534和第二开口535吸气和呼气,实现吸气和呼气均无阻力或小阻力。而患者由仰卧位向左翻转的第一角度在0到第一预定值之间时,阀球533始终封闭第一开口534,因而不影响阀组件的功能,可以实现吸气时无阻力或小阻力和呼气正压。类似地,当患者由仰卧位向右翻转的第二角度等于第二预定值时,第二轨道532处于水平状态,之后继续翻转,则阀球533由于重力作用沿着第二轨道532滚动,第一开口534被开启。由此,患者可以经由第一开口534和第二开口535吸气和呼气,实现吸气和呼气均无阻力或小阻力。而患者由仰卧位向右翻转的第二角度在0到第二预定值之间时,阀球533始终封闭第一开口534,因而不影响阀组件的功能,可以实现吸气时无阻力或小阻力和呼气正压。
由此可见,当患者由仰卧位向左翻转的第一角度不超过第一预定值或向右翻转的第二角度不超过第二预定值时,阀球533始终封闭第一开口534,不影响呼气正压。而吸气时,阀球533有可能会由于内外气压差较大使阀球533克服自身的重力沿着第一轨道531或第二轨道532向上移动而使第一开口534和第二开口535通气,但是仍然不影响吸气时的无阻力或小阻力要求。
可以理解,第一轨道531和/或第二轨道532也可以不位于上述的竖直平面(即垂直于患者的纵向轴线的平面)内,但是这样的设置方式会导致设计相对复杂,不容易直观地选择第一夹角和第二夹角的角度。
在上述优选实施例中,第一轨道531和第二轨道532连接成V形,且共用相同的第一出口。这样,可以仅在轨道内放置一个阀球533就能够实现上述功能,结构相对简单。但是本发明并不排除第一轨道531和第二轨道532分开设置的实施例。在图5的基础上,第一轨道531和第二轨道532可以间隔开设置。在此情况下,第一轨道和第二轨道上均需要设置有第一开口和第二开口,并且在每个轨道内都放置一个阀球。图6给出了第一轨道631和第二轨道632间隔开设置的一 个实施例。如图6所示,第一轨道631和第二轨道632分别具有第一开口634A和634B以及第二开口635A和635B。第一开口634A和第二开口635A形成第一通路。第一开口634B和第二开口635B形成第二通路。第一轨道631和第二轨道632内分别设置有第一阀球633A和第二阀球633B。当患者由图6中所述的仰卧位向左翻转时,第一轨道631与水平面的第一夹角A1逐渐减小。当患者由仰卧位向左翻转的第一角度等于第一预定值之后继续翻转,则阀球633A由于重力作用沿着第一轨道631滚动,第一开口634A被开启。由此,患者可以经由第一开口634A和第二开口635A吸气和呼气,实现吸气和呼气均无阻力或小阻力。在上述过程中,第二阀球633B始终位于低点,封闭第一开口634B,保持第二通路关闭。类似地,当患者由图6中所述的仰卧位向右翻转时,第二轨道632与水平面的第一夹角A2逐渐减小。当患者由仰卧位向右翻转的第二角度等于第二预定值之后继续翻转,则第二阀球633B由于重力作用沿着第二轨道632滚动,第一开口634B被开启。由此,患者可以经由第一开口634B和第二开口635B吸气和呼气,实现吸气和呼气均无阻力或小阻力。在上述过程中,第一阀球633A始终位于低点,封闭第一开口634A,保持第一通路关闭。
需要说明的是,图5-6中所示的轨道与阀球形式的阀可以与图2-4中所示的阀口和阀门形式的阀组合起来使用。例如,患者向左侧卧可以采用轨道与阀球形式的阀来实现达到第一预定值时使体位阀开启,而患者向右侧卧可以采用阀口和阀门形式的阀来实现达到第二预定值时使体位阀开启。反之亦然。本领域的技术人员在对本发明理解的基础上,可以将不同结构的阀组合使用,并且这些组合均在本发明的保护范围之内。
在另一组实施例中,如图7所示,体位阀730包括第一轨道731、第二轨道732和阀球733。患者仰卧时,第一轨道731与水平面具有第一夹角A1。优选地,如图7所示,第一轨道731在患者仰卧时位于垂直于患者的纵向轴线的竖直平面内,以使第一夹角A1等于第一预定值。第二轨道732与水平面具有第二角度A2。优选地,如图7所示,第二轨道732在患者仰卧时位于垂直于患者的纵向轴线的竖直平面内,以使第二夹角A2等于第二预定值。如上所述的,第一轨道731和第二轨道732分别位于各自的最低点的两侧。第一轨道731和第二轨道732的在患者仰卧时的最高点处分别具有第一开口,并且在第一开口处分别设置有通气阀734和735。第一轨道731和/或第二轨道732的非最高点处还设置有第二开口736。 图中设置了两个第二开口736,但是第二开口的数量可以为一个或更多个。第一开口和第二开口中的一个与大气连通,且另一个连通至连接接口。在图示的实施例中,第一开口连通至连接接口,而第二开口736与大气连通。在此情况下,通气阀734和/或735可以代替阀组件中的进气阀(例如图8和9中的进气阀830和930)来实现吸气时小阻力。由此,通气阀734和735中的至少一个构造为在患者吸气时开启。在未示出的实施例中,可以使第一开口与大气连通,而第二开口736连通至连接接口。阀球733在第一轨道731和第二轨道732中可自由滚动,且在阀球733位于最高点时能够开启通气阀734或735。在此情况下,通气阀734和735构造为在第一轨道731和第二轨道732内的压力与大气压之差大于或等于预定值时才开启,以避免患者仰卧时由于第一轨道731和第二轨道732内的压力过大冲开通气阀734和735而影响阀组件的呼气正压功能。在另一实施例中,通气阀734和735可以代替阀组件中的排气阀(例如图8中的排气阀830)来实现呼气正压功能,所述预定值可以为使排气阀830开启的预定值。
当患者由仰卧位向左翻转的第一角度等于第一预定值之后继续翻转,则阀球733由于重力作用沿着第一轨道731滚动,阀球733开启通气阀734。由此,患者可以经由第一开口和第二开口736吸气和呼气,实现吸气和呼气均无阻力或小阻力。类似地,当患者由仰卧位向右翻转的第二角度等于第一预定值之后继续翻转,则阀球733由于重力作用沿着第二轨道732滚动,阀球733开启通气阀735。由此,患者可以经由第一开口和第二开口吸气和呼气,实现吸气和呼气均无阻力或小阻力。
当然,图7中的第一轨道731和第二轨道732也可以类似于图6所示地分开设置。分开设置时,第一轨道731和第二轨道732内需分别设置第一阀球和第二阀球,并且第一轨道731和第二轨道732分别具有各自的第一通路和第二通路。本领域的技术人员在上述实施例的基础上还可以对体位阀进行其它变型,本发明包含这些变型后的实施例。
下面将对阀组件的多个实施例进行简单描述。如示出了根据本发明一个实施例的腔体和阀组件的图8所示,腔体810上可以设置有两个输气口812A和812B。其中,输气口812A用作进气口,而输气口812B用作出气口。在未示出的其他实施例中,输气口的数量可以为一个或更多个。后文还将介绍设置一个和更多个输气口的实施例。阀组件可以包括设置在输气口812A处的进气阀820和设置在输 气口812B处的排气阀830。当腔体810内的压力P1小于或等于大气压P0时,可以令进气阀820开启,气体从输气口812A进入腔体810内。当腔体810内的压力P1大于大气压P0时,可以令进气阀820关闭,令排气阀830在一定情况下开启。例如在腔体810内的压力P1与大气压P0之差大于预定值时令排气阀830开启,以使气体从输气口812B排出腔体810。这样可以保持腔体810内的压力P1大于大气压P0。此外,如图9所示,还可以将输气口912B的开口面积设置得较小,使气体的排出速率小于患者的呼气速率,以在呼气时形成呼气正压。而进气阀920与图8相同或相似。吸气时,进气阀920开启输气口912A,输气口912B还能起到辅助进气的作用。这样,可以实现吸气时无阻力或小阻力。
在一个实施例中,返回再参见图8,进气阀820可以包括由弹性材料或形态记忆材料制成的阀瓣。阀瓣例如直接连接在腔体810的壁上或者通过中间部件821(例如图8中)连接到腔体810上。进气阀820可以单向开启,即当腔体810内的压力P1小于或等于大气压P0时,进气阀820向腔体810内侧开启,空气通过输气口812A进入腔体810内。当然,进气阀还可以具有其他设置方式,只要能够在腔体810内的压力P1小于或等于大气压P0时开启输气口812A即可。进气阀820与输气口812A之间的密封可以采用多种形式的设计,密封面形状包括线和平面配合、平面和平面配合、线和圆柱面配合、圆柱面和圆柱面配合、线和球面配合、球面和球面配合、线和圆锥面配合、圆锥面和圆锥面配合等等形状。密封面配合的材质可为刚性、柔性的灵活组合。上述密封面的形状和材质也可应用到下述的各种阀门中。在一个实施例中,排气阀830可以采用类似于进气阀820的结构。
排气阀830还可以包括排气阀座831、排气阀芯832和排气阀偏置构件833。排气阀座831连接至输气口812B,且排气阀座831上设置有出气口834。排气阀芯832在其关闭位置和其开启位置之间可移动地设置在排气阀座831内。所述移动包括平移和旋转。图8示出了平移移动的实施例。排气阀芯832在其关闭位置时能够关闭输气口812B,且在其开启位置时能够使输气口812B与出气口834流体连通,以形成排气通道。排气阀偏置构件833抵顶在排气阀芯832上,以为排气阀芯832提供从关闭位置到开启位置的移动阻力。也就是说,当呼气时,需要克服排气阀偏置构件833产生的阻力使排气阀芯832从其关闭位置移动到其开启位置才能够使呼出的气体排出。排气阀偏置构件833可以设置在排气阀芯832的 背离腔体810的一侧,并在排气阀芯832处于关闭位置时对其施加压力。在未示出的其他实施例中,排气阀偏置构件可以设置在排气阀芯832的面向腔体810的一侧,并在排气阀芯832处于关闭位置时对其施加拉力。排气阀偏置构件833可以为弹簧或其他弹性体等,还可以由形态记忆材料制成,形态记忆材料例如是具有形态记忆性能的合金或塑料等。
此外,在另一组实施例中,进气阀和排气阀可以组合在一起。如图10所示,阀组件1020设置在腔体1010的输气口1012处,以控制输气口1012的通气面积。该阀组件1020包括进气通道和排气通道。阀组件1020构造为在腔体1010内的压力P1小于或等于大气压P0时使进气通道导通;且在腔体1010内的压力P1与大气压P0之差ΔP大于或等于预定值时使排气通道导通。也就是说,进气通道只有在腔体1010内的压力P1小于或等于大气压P0时才导通,一旦腔体1010内的压力P1大于大气压P0立即关断。同样地,排气通道只有在腔体1010内的压力P1与大气压P0之差ΔP大于或等于预定值时才导通,一旦腔体1010内的压力P1与大气压P0之差ΔP小于预定值立即关断。当患者吸气时,腔体1010内的气压P1降低,低于大气压P0,进气通道导通,此时排气通道关断,对应患者的吸气相。当患者呼气时,腔体1010内的气压P1增大,高于大气压P0。当腔体1010内的气压P1增大到与大气压P0之差ΔP高于某一预定值时,排气通道导通,此时进气通道关断,对应患者的呼气相。
在一个实施例中,阀组件1020包括第一阀机构1022和第二阀机构1023。如图10所示,第一阀机构1022设置在输气口1012处。第一阀机构1022具有关闭输气口1012的第一关闭位置和打开输气口1012的第一开启位置。在第一阀机构1022上设置有通孔1022A。第二阀机构1023设置在通孔1022A处。第二阀机构223具有关闭通孔1022A的第二关闭位置和打开通孔1022A的第二开启位置。通过两个阀机构的相互配合,可以利用患者的进气气流和呼气气流自动地控制它们的开启和关闭,进而实现吸气无阻力或小阻力和呼气正压。一方面,第一阀机构1022和第二阀机构1023可以相互协作,在原始位置和通气位置之间可移动。原始位置是指未由于呼吸作用对第一阀机构1022和第二阀机构1023施加外力的状态。此时第一阀机构1022和第二阀机构1023均处于各自的关闭位置。第一阀机构1022和第二阀机构1023处于该原始位置时,输气口412关闭。腔体1010内的压力P1与大气压P0之差ΔP大于或等于该预定值时,第二阀机构1023跟随第 一阀机构1022一起移动至通气位置(向右移动)。此时第一阀机构1022处于第一开启位置,而第二阀机构1023处于第二关闭位置。输气口1012开启,形成排气通道。另一方面,第二阀机构1023自身的开启和关闭动作能够在患者吸气时形成进气通道。吸气时,腔体1010内的压力P1不断减小。当腔体1010内的压力P1小于或等于大气压P0时,第二阀机构1023开启通孔1022A,以形成进气通道。吸气转为呼气时,腔体1010内的压力P1增大,当压力P1大于大气压P0,第二阀机构1023就会关闭通孔1022A并重复上述过程。由于吸气时腔体1010内的压力P1与大气压P0之差ΔP达不到上述预定值,因此第一阀机构1022保持在关闭位置。第一阀机构1022和第二阀机构1023有多种实施方式,本发明将结合附图对一些优选实施方式进行描述。
阀组件1020还可以包括阀座1021。阀座1021连接在输气口1012处。第一阀机构1022和第二阀机构1023可以均设置在阀座1021内。阀座1021上设置有出气口1024。出气口1024可以设置在阀座1021的远端,也可以设置在阀座1021的侧壁上。本文所述的近端和远端是相对于佩戴该呼吸面罩的患者而言的,靠近患者的一端称为近端,反之称为远端。
第一阀机构1022可以包括第一阀芯和第一偏置构件1026。第一偏置构件1026在图中所示的关闭位置就对第一阀芯施加阻力,以形成呼气正压。第二阀机构1023可以包括由弹性材料或形态记忆材料制成的阀瓣。可以理解的是,第一阀机构1022也可以采用类似于第二阀机构1023的这种构造,即包括由弹性材料或形态记忆材料制成的阀瓣;同样地,第二阀机构1023也可以采用与上述第一阀机构1022类似的构造,即包括阀芯和偏置构件。
在一个优选实施例中,阀组件还可以包括调节装置,用于调节上述预定值。作为示例,如图10所示,调节装置包括阀盖1025和定位结构。阀盖1025可移动地连接至阀座1021,并通过定位结构相对于阀座1021定位阀盖1025的位置。定位结构可以是设置在阀座1021和阀盖1025上的相互匹配的螺纹。在未示出的其他实施例中,定位结构可以是卡扣、固定销等等。第一偏置构件1026的一端可以连接或抵靠至第一阀芯,而另一端可以连接或抵靠至阀盖1025。这样通过调节阀盖1025相对于排气阀座1021的位置,就能够调节偏置构件1026的阻力,进而调节预定值。另外,还可以将阀盖1025移除,通过更换提供不同偏置力的第一偏置构件1026来调节预定值。另外,需要说明的是,当存在阀盖1025的情 况下,气孔1024可以设置在阀盖1025上。
类似地,上述调节装置也可以增加到图8所示的实施例以及下述可能的实施例中。在未示出的其他实施例中,还可以采用其他方式来调节所述预定值。
进一步优选地,通气控制装置上设置有指示装置(未示出),用于指示调节后的预定值。该指示装置可以是机械标识,例如刻度、颜色标识等,还可以是电子标识,例如通过光、声、电等信号来显示。
在另一实施例中,如图11所示,阀组件1120可以包括第一阀机构1121和第二阀机构1122。第一阀机构1121设置在腔体1110的输气口1112处,且第一阀机构1121具有关闭输气口1112的第一关闭位置和打开输气口1112的第一开启位置。第一阀机构1121上设置有通孔1123。第二阀机构1122设置在通孔1123处。第二阀机构1122具有关闭通孔1123的第二关闭位置和打开通孔1123的第二开启位置。一方面,第一阀机构1121和第二阀机构1122相互协作,在原始位置和通气位置之间可移动。当腔体1110内的压力P1小于或等于大气压P0时,第一阀机构1121和第二阀机构1122一起移动至通气位置。在图11所示的实施例中,第一阀机构1121和第二阀机构1122向左移动,第一阀机构1121与输气口1112之间产生缝隙,输气口1112开启,以形成进气通道,对应患者的吸气相。当腔体1110内的压力P1大于大气压P0,第一阀机构1121处于第一关闭位置。当患者由吸气相转为呼气相后,腔体1110内的压力P1逐渐增大,由于腔体1110内的压力P1大于大气压P0,因此第一阀机构1121保持在第一关闭位置。而当腔体1110内的压力P1增大到与大气压P0之差ΔP大于或等于该预定值时,第二阀机构1122移动至第二开启位置,开启通孔1123,以形成排气通道。当腔体1110内的压力P1与大气压P0之差ΔP小于该预定值时,第二阀机构1122则处于关闭通孔1123的状态。
在又一实施例中,参见图12,阀组件1220可以包括阀座1221、第一阀机构1222和第二阀机构1223。第一阀机构1222上设置有通孔1222B。第一阀机构1222和第二阀机构1223在原始位置和通气位置之间可移动。第一阀机构1222和第二阀机构1223均通过偏置构件来控制。第一阀机构1222可以包括第一阀芯1222A和第一偏置构件1222C。通孔1222B设置在第一阀芯1222A上。第二阀机构1223可以包括第二阀芯1223A和第二偏置构件1223B。第二阀芯1223A可关闭第一阀芯1222A上的通孔1222B。第二偏置构件1223B用于为第二阀芯1223A提供从 第二关闭位置到第二开启位置的移动阻力。第二偏置构件1223B可以设置在第二阀芯1223A的面向腔体1210的一侧,并在第二阀芯1223A从其关闭位置向其开启位置移动(即向左)时对其施加压力。在未示出的其他实施例中,第二偏置构件可以设置在第二阀芯的背离腔体1210的一侧,并在第二阀芯1223A从其第二关闭位置向其第二开启位置移动(即向左)时对其施加拉力。第一偏置构件1222C和第二偏置构件1223B可以为弹簧或其他弹性体等,还可以由形态记忆材料,比如具有形态记忆性能的合金或塑料等。在该实施例中,呼气时,第二阀芯1223A和第一阀芯1222A一起向右移动。此时呼气产生的内外气压差ΔP要克服第一偏置构件1222C和第二偏置构件1223B产生的移动阻力的合力。由于第二偏置构件1223B产生的移动阻力仅用于实现腔体1210内的压力P1等于或者小于大气压P0就开启,因此第二偏置构件1223B产生的移动阻力可以较小。
此外,还可以在阀组件中增加调节装置,用于调节使排气通道开启的气压差,即调节上述预定值。类似于图10,该调节装置可以包括阀盖1225。第一偏置构件1222C的一端连接或抵靠第一阀芯1222A且另一端连接或抵靠阀盖1225。阀盖1225可移动地连接至阀座1221,以调节第一偏置构件1222C的移动阻力。此外,该调节装置还包括定位结构,其用于相对于阀座1221定位阀盖1225的位置。或者,可以通过更换不同的第一偏置构件1222C来提供不同的阻力。
本发明还提供一种呼吸面罩设备。该呼吸面罩设备包括上文所述的任一种呼吸面罩以及上文所述的任一种体位阀装置。体位阀装置通过其连接接口连接至呼吸面罩,以通过该连接接口与呼吸面罩通气。本发明另外提供一种呼吸面罩设备,该呼吸面罩设备还可以包括上文所述的任一种呼吸面罩以及上文所述的任一种通气控制装置。通气控制装置连接至呼吸面罩,并通过面罩通气口与呼吸面罩通气。对于它们所包含的各个部件、结构可以参照上文相应部分的描述。
本发明提供的体位阀具有较强的顺应性,能够顺应OSAHS患者在侧卧位气道没有阻塞,只在仰卧位时有阻塞的特点。也就是,在患者由仰卧位向左翻转的第一角度不超过第一预定值且向右翻转的第二角度不超过第二预定值时,不影响其佩戴的呼吸面罩上的阀组件的功能,例如吸气无阻力或小阻力以及呼气正压;当患者由仰卧位向左翻转的第一角度超过第一预定值或向右翻转的第二角度超过第二预定值时,吸气和呼气都无阻力或小阻力。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是 用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。

Claims (15)

  1. 一种用于呼吸面罩的体位阀装置,其中,所述体位阀装置包括:
    可与患者的口和/或鼻连通的连接接口;以及
    体位阀,所述连接接口安装在所述体位阀上,其中患者从仰卧位向左翻转的第一角度大于第一预定值时,所述体位阀导通;患者从仰卧位向右翻转的第二角度大于第二预定值时,所述体位阀导通,所述体位阀导通时所述连接接口能够通过所述体位阀与大气连通。
  2. 如权利要求1所述的体位阀装置,其中,所述体位阀包括:
    壳体,所述连接接口设置在所述壳体并与所述壳体连通;
    第一阀,其设置在所述壳体上,其中所述第一角度大于所述第一预定值时,所述第一阀导通;以及
    第二阀,其设置在所述壳体上,其中所述第二角度大于所述第二预定值时,所述第二阀导通。
  3. 如权利要求2所述的体位阀装置,其中,所述第一阀和所述第二阀分别位于所述连接接口的轴线的两侧。
  4. 如权利要求2所述的体位阀装置,其中,其中
    所述第一阀包括:
    第一阀口,所述第一阀口设置在所述壳体上;
    第一阀门,所述第一阀门与所述第一阀口配合且以第一枢轴为轴可枢转地安装在所述壳体上,所述第一阀门在所述患者仰卧时关闭所述第一阀口,
    其中,在经过所述第一阀门的第一重心且垂直于所述患者的纵向轴线的平面内,所述第一重心和所述第一枢轴的连线与重力方向的夹角为所述第一预定值;
    和/或所述第二阀包括:
    第二阀口,所述第二阀口设置在所述壳体上;
    第二阀门,所述第二阀门与所述第二阀口配合且以第二枢轴为轴可枢转地安装在所述壳体上,所述第二阀门在所述患者仰卧时关闭所述第二阀口,
    其中,在经过所述第二阀门的第二重心且垂直于所述患者的纵向轴线的平面内,所述第二重心和所述第二枢轴的连线与重力方向的夹角为所述第二预定值。
  5. 如权利要求2所述的体位阀装置,其中,所述第一阀包括:
    第一阀口,所述第一阀口设置在所述壳体上;
    第一阀门,所述第一阀门与所述第一阀口配合且以第一枢轴为轴可枢转地安装在所述壳体上,所述第一阀门在所述患者仰卧时关闭所述第一阀口,所述第二阀设置在所述第一阀门上,
    其中,在经过第一重心且垂直于所述患者的纵向轴线的平面内,所述第一重心与所述第一枢轴的连线与重力方向的夹角为所述第一预定值,所述第一重心为所述第一阀门和所述第二阀的重心。
  6. 如权利要求5所述的体位阀装置,其中,所述第二阀包括:
    第二阀口,所述第二阀口设置在所述第一阀门上且与所述第一阀口连通;
    第二阀门,所述第二阀门与所述第二阀口配合且以第二枢轴为轴可枢转地安装在所述第一阀门上,所述第二阀门在所述患者仰卧时关闭所述第二阀口,
    其中,在经过所述第二阀门的第二重心且垂直于所述患者的纵向轴线的平面内,所述第二重心与所述第二枢轴的连线与重力方向的夹角为第二预定值。
  7. 如权利要求4或6所述的体位阀装置,其中,
    所述第一阀口的第一上开口所在的平面是倾斜的,所述第一枢轴位于所述第一上开口的上方或下方,
    所述第二阀口的第二上开口所在的平面是倾斜的,所述第二枢轴位于所述第二上开口的上方或下方,
    其中,所述第一重心位于经过所述第一上开口的顶端的第一重力线的左侧时,所述第二重心位于经过所述第二上开口的顶端的第二重力线的右侧;所述第一重心位于所述第一重力线的右侧时,所述第二重心位于所述第二重力线的左侧。
  8. 如权利要求2所述的体位阀装置,其中,所述第一阀包括:
    第一轨道,所述第一轨道与水平面具有第一夹角,所述第一轨道上设置有连通大气和所述连接接口的第一通路;以及
    第一阀球,所述第一阀球在所述第一轨道中可自由滚动,所述第一阀球位于所述第一轨道的最低点时能够使所述第一通路关闭,所述第一阀球位于所述第一轨道的最高点时能够使所述第一通路导通。
  9. 如权利要求8所述的体位阀装置,其中,所述第二阀包括:
    第二轨道,所述第二轨道与水平面具有第二夹角,所述第二轨道上设置有连通大气和所述连接接口的第二通路;以及
    第二阀球,所述第二阀球在所述第二轨道中可自由滚动,所述第二阀球位于所述第二轨道的最低点时能够使所述第二通路关闭,所述第二阀球位于所述第二轨道的最高点时能够使所述第二通路导通。
  10. 如权利要求9所述的体位阀装置,其中,所述第一通路和所述第二通路包括:
    第一开口,其设置在所述第一轨道和所述第二轨道的最低点处,以将所述第一轨道和所述第二轨道连通至大气;以及
    第二开口,其设置在所述第一轨道和所述第二轨道的非最低点处,以将所述第一轨道和所述第二轨道连通至所述连接接口;
    其中所述第一阀球和所述第二阀球位于所述最低点时能够封闭所述第一开口。
  11. 如权利要求9所述的体位阀装置,其中,所述第一通路和所述第二通路包括:
    第一开口,其设置在所述第一轨道和所述第二轨道的最高点处,所述第一开口处分别设置有通气阀;以及
    第二开口,其设置在所述第一轨道和所述第二轨道的非最高点处,所述第一开口和所述第二开口中的一个与大气连通,且另一个连通至所述连接接口,
    其中所述第一阀球和所述第二阀球位于所述最高点时能够使所述通气阀导通。
  12. 如权利要求9-11中任一项所述的体位阀装置,其中,所述第一轨道和所述第二轨道连接成V形,且所述第一阀球和所述第二阀球为同一阀球。
  13. 一种用于呼吸面罩的通气控制装置,其中,包括:
    腔体,其具有体位阀接口以及一个或多个输气口;
    如权利要求1-12中任一项所述体位阀装置,所述体位阀装置通过所述连接接口连通至所述体位阀接口;以及
    阀组件,其设置在所述输气口的至少一个处,所述阀组件构造为呼气时能够保持所述腔体内的压力大于大气压,
    其中,所述体位阀或所述腔体上设置有用于与呼吸面罩通气的面罩通气口。
  14. 一种呼吸面罩设备,其中,包括:
    呼吸面罩;以及
    如权利要求1-12中任一项所述的体位阀装置,所述体位阀装置的所述连接接口连接至所述呼吸面罩,并通过所述连接接口与所述呼吸面罩通气。
  15. 一种呼吸面罩设备,其中,包括:
    呼吸面罩;以及
    如权利要求13所述的通气控制装置,所述通气控制装置连接至所述呼吸面罩,并通过所述面罩通气口与所述呼吸面罩通气。
PCT/CN2015/100046 2015-10-23 2015-12-31 体位阀装置、通气控制装置和呼吸面罩设备 WO2017067084A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510698830.0A CN105169538B (zh) 2015-10-23 2015-10-23 体位阀装置、通气控制装置和呼吸面罩设备
CN201510698830.0 2015-10-23

Publications (1)

Publication Number Publication Date
WO2017067084A1 true WO2017067084A1 (zh) 2017-04-27

Family

ID=54892266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100046 WO2017067084A1 (zh) 2015-10-23 2015-12-31 体位阀装置、通气控制装置和呼吸面罩设备

Country Status (2)

Country Link
CN (1) CN105169538B (zh)
WO (1) WO2017067084A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105169538B (zh) * 2015-10-23 2017-11-24 北京怡和嘉业医疗科技股份有限公司 体位阀装置、通气控制装置和呼吸面罩设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040154620A1 (en) * 2001-10-19 2004-08-12 Gale Peter P. Pneumatic oxygen conserving device
EP2601994A2 (en) * 2011-12-09 2013-06-12 Intersurgical AG Valve for respiratory masks
CN203043231U (zh) * 2013-02-20 2013-07-10 宋智敏 单肺持续正压通气装置
CN103405843A (zh) * 2013-08-02 2013-11-27 山东大学 一种随体位变化调节呼气正压的通气面罩
CN105169538A (zh) * 2015-10-23 2015-12-23 北京怡和嘉业医疗科技有限公司 体位阀装置、通气控制装置和呼吸面罩设备
CN205084142U (zh) * 2015-10-23 2016-03-16 北京怡和嘉业医疗科技有限公司 体位阀装置、通气控制装置和呼吸面罩设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040154620A1 (en) * 2001-10-19 2004-08-12 Gale Peter P. Pneumatic oxygen conserving device
EP2601994A2 (en) * 2011-12-09 2013-06-12 Intersurgical AG Valve for respiratory masks
CN203043231U (zh) * 2013-02-20 2013-07-10 宋智敏 单肺持续正压通气装置
CN103405843A (zh) * 2013-08-02 2013-11-27 山东大学 一种随体位变化调节呼气正压的通气面罩
CN105169538A (zh) * 2015-10-23 2015-12-23 北京怡和嘉业医疗科技有限公司 体位阀装置、通气控制装置和呼吸面罩设备
CN205084142U (zh) * 2015-10-23 2016-03-16 北京怡和嘉业医疗科技有限公司 体位阀装置、通气控制装置和呼吸面罩设备

Also Published As

Publication number Publication date
CN105169538B (zh) 2017-11-24
CN105169538A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
JP7353316B2 (ja) エルボーアセンブリ
JP7404579B2 (ja) 患者インターフェースのための調節可能なヘッドギアチュービング
JP6797066B2 (ja) 鼻マスクシステム
JP7302042B2 (ja) 患者インターフェース用の導管ヘッドギアコネクタ
JP6608847B2 (ja) 患者インタフェース
JP6681339B2 (ja) 加圧マスク、システムおよび方法
JP2019514542A (ja) 患者インターフェース
JP2017518125A (ja) 呼吸治療法のための患者インタフェース
WO2017067081A1 (zh) 通气控制装置和具有该通气控制装置的呼吸面罩设备
JP2019528990A (ja) 口腔用器具およびそのコネクタ・システムを含む呼吸補助システム
CN113557048A (zh) 用于患者接口的充气室插入件
WO2017067085A1 (zh) 通气控制装置和具有该通气控制装置的呼吸面罩设备
CN105194781B (zh) 通气控制装置和具有该通气控制装置的呼吸面罩设备
CN105148375B (zh) 通气控制装置和具有该通气控制装置的呼吸面罩设备
CN205127060U (zh) 通气控制装置和具有该通气控制装置的呼吸面罩设备
WO2017067086A1 (zh) 通气控制装置和具有该通气控制装置的呼吸面罩设备
WO2017067084A1 (zh) 体位阀装置、通气控制装置和呼吸面罩设备
JP7259135B2 (ja) 発泡体クッションを備えた患者インターフェース
CN205084142U (zh) 体位阀装置、通气控制装置和呼吸面罩设备
CN205127059U (zh) 通气控制装置和具有该通气控制装置的呼吸面罩设备
CN205145332U (zh) 通气控制装置和具有该通气控制装置的呼吸面罩设备
CN205084159U (zh) 通气控制装置和具有该通气控制装置的呼吸面罩设备
CN117355350A (zh) 用于呼吸系统的通气口
WO2022067374A1 (en) Variable flow vent assembly for a conduit mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15906600

Country of ref document: EP

Kind code of ref document: A1