WO2017067039A1 - 一种硅基oled图像收发装置及其制作方法 - Google Patents

一种硅基oled图像收发装置及其制作方法 Download PDF

Info

Publication number
WO2017067039A1
WO2017067039A1 PCT/CN2015/095512 CN2015095512W WO2017067039A1 WO 2017067039 A1 WO2017067039 A1 WO 2017067039A1 CN 2015095512 W CN2015095512 W CN 2015095512W WO 2017067039 A1 WO2017067039 A1 WO 2017067039A1
Authority
WO
WIPO (PCT)
Prior art keywords
oled
exposure
substrate
organic light
layer
Prior art date
Application number
PCT/CN2015/095512
Other languages
English (en)
French (fr)
Inventor
刘萍
Original Assignee
深圳典邦科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳典邦科技有限公司 filed Critical 深圳典邦科技有限公司
Publication of WO2017067039A1 publication Critical patent/WO2017067039A1/zh
Priority to US15/958,890 priority Critical patent/US10418421B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to an OLED display technology, and in particular, to a silicon-based OLED image transceiver device and a method of fabricating the same.
  • the organic light-emitting device has high luminance, low driving voltage, fast response, no viewing angle limitation, low power consumption, ultra-light and ultra-thin, and can have any shape, and the color output is red, green, blue, monochrome or white, and has a long life. Such advantages have great application prospects in the fields of displays and the like.
  • the OLED image transceiving device combined with the silicon-based CMOS driving circuit can integrate functions such as image display, image pickup, signal processing and control.
  • An OLED image transceiving device having an image transceiving function which is placed next to the OLED illumination source and spaced apart from each other, can simultaneously integrate the functions of the OLED display function and the image sensor.
  • Existing OLED image transceiving devices have a problem of low sensitivity.
  • the maximum area of a typical OLED image transceiving device is determined by the exposure field, which is generally much smaller than the area of the silicon wafer, so that hundreds of OLED image transceiving devices can be fabricated on one silicon wafer.
  • High-resolution, large-area display and imaging can be applied in different fields.
  • the mainstream exposure mode is step-wise or scanning exposure.
  • the technical problem to be solved by the present invention is to make up for the deficiencies of the above prior art, and to provide a silicon-based OLED image transmitting and receiving device and a manufacturing method thereof, and the obtained OLED image transmitting and receiving device has high sensitivity.
  • a silicon-based OLED image transceiving device comprises a substrate, a plurality of photodiodes for sensitization and a plurality of OLEDs for illuminating; the OLED comprises a metal interconnect anode, a hole transport layer, an organic luminescent layer, and an electron transport a layer and a transparent cathode layer, the hole transport layer, the organic light emitting layer, the electron transport layer and the transparent cathode layer are sequentially formed on the metal interconnect anode, the organic light emitting layer being located only on the metal interconnect line
  • the region corresponding to the anode does not extend over the region corresponding to the photodiode; the plurality of photodiodes and the organic light-emitting layers of the plurality of OLEDs are arranged to form a pixel matrix of the image transceiving device.
  • a method for fabricating a silicon-based OLED image transceiving device includes the steps of forming a photodiode and an OLED on a substrate.
  • the step of forming an OLED sequentially forming a hole transport layer and an organic light emitting layer on the anode of the metal interconnect line An electron transport layer and a transparent cathode layer, the organic light-emitting layer being located only above a region corresponding to the metal interconnect line, not extending over a region corresponding to the photodiode; a plurality of photodiodes and a plurality of The organic light emitting layers of the OLED are arranged to form a pixel matrix of the image transceiving device.
  • the organic light-emitting layer is only located on the anode region of the metal interconnection of the OLED, there is no light-emitting layer on the corresponding region of the photodiode, thereby reducing the incident light of the OLED. Attenuation, thereby increasing the sensitivity of the photodiode.
  • the OLED includes a red OLED, a green OLED, and a blue OLED, so that a subsequent color filter and a glass cover package are not required, and the thin film package is directly overlaid on the OLED to form a protection, thereby improving the OLED luminous efficiency, and further Improve the sensitivity of the photodiode, simplify the process and improve reliability.
  • FIG. 1 is a schematic cross-sectional view showing an illuminating sub-pixel and a photosensitive unit of an OLED image transmitting and receiving apparatus according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of an effective area divided by an OLED image transceiving device according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a pixel layout of an active area in an OLED image transmitting and receiving apparatus according to a first embodiment of the present invention
  • FIG. 4 is a schematic diagram of an effective area divided by an OLED image transceiving device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a pixel layout of an active area in an OLED image transceiving unit according to Embodiment 2 of the present invention.
  • the present embodiment provides an OLED image transceiving device that integrates a photodiode as a photosensitive unit, the device comprising a silicon substrate, a plurality of photodiodes for sensitization, and a plurality of OLEDs for emitting light.
  • FIG. 1 is a cross-sectional view showing a light-emitting sub-pixel and a photosensitive unit in a pixel of an OLED image transmitting and receiving apparatus in the specific embodiment.
  • An n well 5 is formed on the p-Si substrate 1, and the p-Si substrate 1 and the n well 5 form a photodiode.
  • the interlayer insulating layer 6 forming a plug 3 in the interlayer insulating layer, and the n-well 5 and the contact 2 Connected and connected to the metal interconnection 4 through the plug 3, the metal interconnection 4 is formed on the interlayer insulating layer 6.
  • An inter-metal insulating layer 7 is formed on the interlayer insulating layer 6 and the metal interconnection 4, and a metal interconnection anode 8 is formed on the inter-metal insulating layer 7, and the metal interconnection anode 8 is connected to the leakage of the field effect transistor through the interposer Extreme (not shown).
  • the metal interconnect anode 8 acts as a reflective anode for the OLED.
  • the OLED includes a metal interconnection anode 8, a hole transport layer 12, an organic light-emitting layer 9, an electron transport layer 13, and a transparent cathode 10.
  • the material of the metal interconnect anode 8 may be silver, gold, chromium, aluminum, copper, molybdenum, tantalum, tungsten, or the like or various alloys formed of these materials.
  • Layer layers are sequentially formed on the metal interconnect anode 8, and the organic light-emitting layer 9 is located on the region of the metal interconnect anode 8, and a transparent conductive layer is formed on the electron transport layer 13 as the transparent cathode 10.
  • the transparent conductive layer may be
  • the transparent conductive film like ITO or IZO may be a transparent conductive layer formed of a thin metal film.
  • the organic light-emitting layer 9 When a voltage is applied across the anode and cathode of the OLED, light is emitted from the organic light-emitting layer 9, and a portion becomes external output light 21, and the incident light 24 is unblocked and can be detected by the photodiode. Since the luminescent layer is only located in the anode region of the OLED, there is no luminescent layer at the photodiode, which reduces the attenuation of the incident light 24, and the sensitivity of the photodiode can be improved.
  • the organic light-emitting layer 9 may be a red light-emitting layer or a blue light-emitting layer or a green light-emitting layer.
  • a transparent thin film encapsulation layer 11 is formed on the transparent cathode 10 instead of forming a glass cover package to protect the underlying OLED. Since the OLED directly emits red, green, and blue light, subsequent color filters and glass cover packages are not required, and the thin film package 11 is directly overlaid on the OLED to form a protection, thereby further improving the luminous efficiency of the OLED and the sensitivity of the photodiode. Simplifies the process and increases reliability.
  • the above describes a schematic cross-sectional structure of a single illuminating sub-pixel (organic luminescent layer) and a photosensitive unit (photodiode).
  • a pixel matrix of the image transceiving device is formed.
  • the patterning of the plurality of organic light-emitting layers in the plurality of OLEDs on the substrate is masked or laser-transferred, and the PDMS elastomer is used to form a shadow mask mask, the opening size of which is defined by the photoresist pattern.
  • the PDMS is tightly bonded to the substrate, and the formed organic light-emitting layer has a pattern size as small as 5 ⁇ m.
  • the organic light-emitting layer of the OLED is formed by exposure splicing.
  • the effective area of the image transceiving device is defined, including a display area where the OLED organic light emitting layer is located and a photosensitive area for image sensing where the photodiode is located.
  • the effective area is also the area where the corresponding pixel matrix is located.
  • the pixel matrix region has a width to length ratio of 4:3 and a diagonal dimension greater than 1.2 inches.
  • an OLED image transceiving device of a silicon-based large size such as the above-described large-sized (greater than 1.2-inch) pixel matrix can be realized by multiple exposures through a reasonable pixel matrix layout design and exposure field splicing.
  • the effective area of the substrate is decomposed into a plurality of effective areas for exposure.
  • Each of the decomposed effective areas is within a light field of the stepwise exposure system.
  • a set of masks is used to expose the divided units, and then stepped to the next position for second. Secondary exposure.
  • the splicing is realized by the alignment system of the exposure system, and finally the exposure within the effective area of the entire image transceiving device is completed.
  • the method of dividing into a plurality of active areas for exposure respectively facilitates the formation of an image transceiving device having a diagonal size of 1.2 inches or more, for example, 1.2 inches to 2 inches.
  • the effective area of the image transceiving device is vertically divided into two parts in the vertical direction, which are the first effective area 81 and the second effective area 82, respectively.
  • the splicing complete effective area is formed by the method of exposure splicing.
  • FIG. 3 a schematic diagram of a pixel matrix layout of an active area of the present embodiment.
  • the pixel matrix includes a plurality of pixel sub-units, each of which is designed in a square shape, including a red sub-pixel 40, a green sub-pixel 43, a blue sub-pixel 41, and a photosensitive unit 42.
  • the red, green, and blue sub-pixels are respectively connected to the corresponding CMOS drive unit anodes.
  • the red organic light-emitting layer, the blue organic light-emitting layer, and the green organic light-emitting layer are respectively formed in a region of the effective region by using a PDMS mask to serve as a red sub-pixel 40, a blue sub-pixel 41, and a green sub-pixel 43, respectively.
  • a red, blue and green organic light-emitting layer is formed on the corresponding area of the substrate by using a mechanical mask to form a pixel layout of the active area of the complete OLED image transceiver unit.
  • the formed large-sized image transmitting and receiving device also has a function of color display.
  • a continuous electron transport layer, a transparent conductive layer and a thin film encapsulation layer are sequentially formed on the substrate, thereby completing the pixel layout of the effective area of the OLED image transceiving unit.
  • the specific embodiment differs from the first embodiment in that: in the specific embodiment, the four active areas are divided for exposure, and at the same time, each set of masks can be exposed for exposure in each of the two active areas, thereby saving manufacturing costs. .
  • a single crystal silicon CMOS-driven OLED image transceiving device provided in this embodiment includes four units. Each unit is a complete OLED image transceiver, an OLED image transceiver The effective area can be up to 1 inch.
  • the CMOS substrate of the OLED image transceiving device is formed by a method of exposure splicing. Likewise, by varying the diagonal dimension of the active area of the CMOS substrate, a rectangular pixel matrix display having a diagonal dimension greater than 1.2 inches, such as 1.2 inches to 2 inches, can be formed.
  • FIG. 4 is a schematic diagram of an effective area of an OLED image transmitting and receiving apparatus according to an embodiment of the present invention.
  • the exposure is divided into four CMOS substrate active areas 50, 51, 52, and 53 respectively.
  • the area of each active area is designed to achieve exposure in an exposure field, so each active area can be up to 1 inch diagonal.
  • the peripheral circuits are respectively located on adjacent sides of the active area (not shown in the figure), and there are no electronic components on the other sides of the active area to be spliced.
  • FIG. 5 A schematic diagram of a pixel matrix layout of an effective area of the OLED image transceiving device is shown in FIG. 5.
  • the pixels respectively constitute four complete active areas 60, 70, 80, 90, respectively corresponding to the active areas 50, 51, 52, 53 divided on the CMOS substrate.
  • each pixel sub-unit is composed of a red sub-pixel 62, a green sub-pixel 61, a blue sub-pixel 63, and a photosensitive unit 64, all of which are designed in a square shape.
  • the red, blue, and green organic light-emitting layers to be formed at corresponding positions in the pixel sub-unit are formed by the PDMS mask, and similarly, there is no organic light-emitting layer at a position corresponding to the photosensitive unit 64, that is, above the region where the photodiode is located.
  • the area where the pixel matrix is located is defined as an effective area, and at least two or more effective areas are respectively exposed for exposure, and the spliced effective area is formed by exposure splicing.
  • the effective areas 50, 51, 52, and 53 of the four CMOS substrates are sequentially exposed.
  • the active area 50 of the CMOS substrate is exposed to an active area 50 of the CMOS substrate using a set of masks within a range of light fields of the stepper exposure system.
  • the reticle is then used to stepwise move the wafer to a diagonally opposite next exposure field for a second exposure that is rotated 180[deg.] relative to the active area 50 of the CMOS substrate to form an active region 52 of the CMOS substrate.
  • Another set of masks is used, and the other set of masks is bilaterally symmetric with respect to the previous set of masks, and the silicon wafers are stepped to the next exposure field for a third exposure to form an effective area of the CMOS substrate.
  • 51 is bilaterally symmetric with the effective area 50 of the CMOS substrate.
  • the silicon wafer is stepped to the obliquely opposite next exposure field position for a fourth exposure, which is rotated 180° with respect to the active area 51 of the CMOS substrate to form an effective CMOS substrate. District 53.
  • a hole transport layer is then formed on the entire CMOS substrate, and a red organic light-emitting layer 62, a blue organic light-emitting layer 63, and a green layer are formed at corresponding positions in the active region 50 of the CMOS substrate by using a PDMS mask.
  • the illuminating layer 61 constitutes an effective area 60 of the OLED image transceiving unit.
  • a red, blue and green organic light-emitting layer is also formed on the active area 51 of the CMOS substrate by mechanical mask splicing to form an effective area of the OLED image transceiver unit 70.
  • the fabrication of the red, blue, and green organic light-emitting layers in the remaining two active regions 52, 53 is accomplished by analogy to form the OLED image transceiving unit active regions 80, 90, respectively.
  • a continuous electron transport layer, a transparent conductive layer and a thin film encapsulation layer are formed, and the pixel layout of the active regions 60, 70, 80, 90 of the four complete OLED image transceiving units is completed.

Abstract

提供了一种硅基OLED图像收发装置及其制作方法,硅基OLED图像收发装置包括基板(1)、多个用于感光的光电二极管和多个用于发光的OLED;所述OLED包括金属互连线阳极(8)、空穴传输层(12)、有机发光层(9)、电子传输层(13)和透明阴极层(10),所述金属互连线阳极(8)上按顺序依次形成所述空穴传输层(12)、有机发光层(9)、电子传输层(13)和透明阴极层(10),所述有机发光层(9)仅位于所述金属互连线阳极(8)所对应的区域之上,不延伸至所述光电二极管所对应的区域之上;多个光电二极管和多个OLED的有机发光层(9)排列形成图像收发装置的像素矩阵。该硅基OLED图像收发装置,具有较高的光电二极管的灵敏度。

Description

一种硅基OLED图像收发装置及其制作方法 【技术领域】
本发明涉及OLED显示技术,尤其涉及一种硅基OLED图像收发装置及其制作方法。
【背景技术】
有机发光器件(OLED)具有发光亮度高、驱动电压低、响应速度快、无视角限制、低功耗、超轻超薄、可具备任何形状,颜色输出为红绿蓝单色或白色,寿命长等优点,在显示器等领域具有巨大的应用前景。结合硅基CMOS驱动电路的OLED图像收发装置,可以整合图像显示、图像摄取、信号处理与控制等功能。
具有图像收发功能的OLED图像收发装置,在OLED发光源旁边放置光电二极管并且彼此隔开,可以同时集成OLED显示功能和图像传感器的功能。现有的OLED图像收发装置存在灵敏度不高的问题。且另一方面,典型的OLED图像收发装置的最大面积由曝光场决定,一般来说远小于硅片面积,因此一个硅片上可以制作出上百个OLED图像收发装置。高分辨率、大面积显示与成像可以应用在不同的领域,目前主流曝光方式是步进式或扫描式曝光,随着OLED图像收发装置尺寸的逐渐增大,步进式曝光机的有效曝光面积是有限的,掩膜板的有效区域无法覆盖整个有效区域,因此如何实现1.2英寸以上的OLED图像收发装置的曝光,是需要解决的技术问题。
【发明内容】
本发明所要解决的技术问题是:弥补上述现有技术的不足,提出一种硅基OLED图像收发装置及其制作方法,得到的OLED图像收发装置的灵敏度较高。
本发明的技术问题通过以下的技术方案予以解决:
一种硅基OLED图像收发装置,包括基板、多个用于感光的光电二极管和多个用于发光的OLED;所述OLED包括金属互连线阳极、空穴传输层、有机发光层、电子传输层和透明阴极层,所述金属互连线阳极上按顺序依次形成所述空穴传输层、有机发光层、电子传输层和透明阴极层,所述有机发光层仅位于所述金属互连线阳极所对应的区域之上,不延伸至所述光电二极管所对应的区域之上;多个光电二极管和多个OLED的有机发光层排列形成图像收发装置的像素矩阵。
一种硅基OLED图像收发装置的制作方法,包括在基板上形成光电二极管和OLED的步骤,在形成OLED的步骤中,在金属互连线阳极上按顺序依次形成空穴传输层、有机发光层、电子传输层和透明阴极层,所述有机发光层仅位于所述金属互连线所对应的区域之上,不延伸至所述光电二极管所对应的区域之上;多个光电二极管和多个OLED的有机发光层排列形成图像收发装置的像素矩阵。
本发明与现有技术对比的有益效果是:
本发明的硅基OLED图像收发装置及其制作方法,由于有机发光层仅仅位于OLED的金属互连线阳极区域之上,在光电二极管对应的区域上没有发光层,因此可减少OLED对入射光的衰减,从而提高光电二极管的灵敏度。优选方案中,OLED包括红光OLED、绿光OLED和蓝光OLED,因此不需要后续的滤色片以及玻璃盖封装,直接采用薄膜封装覆盖在OLED之上形成保护,提高了OLED的发光效率,进一步提高光电二极管的灵敏度,简化了工艺,提高了可靠性。
【附图说明】
图1是本发明具体实施方式一的OLED图像收发装置的一个发光子像素和感光单元的剖面示意图;
图2是本发明具体实施方式一的OLED图像收发装置曝光时划分的有效区的示意图;
图3是本发明具体实施方式一的OLED图像收发装置中有效区的像素布局示意图;
图4是本发明具体实施方式二的OLED图像收发装置曝光时划分的有效区的示意图;
图5是本发明具体实施方式二的OLED图像收发单元中有效区的像素布局示意图。
【具体实施方式】
下面结合具体实施方式并对照附图对本发明做进一步详细说明。
具体实施方式一
本具体实施方式提供一种集成光电二极管作为感光单元的OLED图像收发装置,该装置包括硅基板,多个用于感光的光电二极管,多个用于发光的OLED。
如图1所示,为本具体实施方式中的OLED图像收发装置的像素中一个发光子像素和感光单元的剖面示意图。在p-Si基板1上形成n阱5,p-Si基板1与n阱5形成光电二极管。继续形成层间绝缘层6,在层间绝缘层中形成插拴3,n阱5与接触件2相 连,并通过插拴3连接到金属互连线4,金属互连线4形成在层间绝缘层6上。金属间绝缘层7形成在层间绝缘层6和金属互连线4上面,金属互连线阳极8形成在金属间绝缘层7上,金属互连线阳极8通过插拴连接到场效应管的漏电极(图中未示出)。金属互连线阳极8作为OLED的反射阳极。
OLED包括金属互连线阳极8、空穴传输层12、有机发光层9、电子传输层13和透明阴极10构成。金属互连线阳极8的材料可以是银、金、铬、铝、铜、钼、钽、钨等或由这些材料形成的各类合金。在金属互连线阳极8上顺序形成各层结构,有机发光层9位于金属互连线阳极8所在区域上,在电子传输层13上形成透明导电层作为透明阴极10,透明导电层可以是如ITO、IZO一样的透明导电膜,也可以是由薄金属膜形成的透明导电层。
当在OLED的阳极和阴极两端加上电压后,光从有机发光层9中发出,一部分成为外输出光21,入射的光24不受阻挡,可以被光电二极管探测到。由于该发光层仅仅位于OLED阳极区域,在光电二极管处没有发光层,减少了对入射光24的衰减,可以提高光电二极管的灵敏度。
为了实现彩色化,该有机发光层9可以是红光发光层、也可以是蓝光发光层或绿光发光层。当多个OLED分别有红光OLED,绿光OLED和蓝光OLED时,在透明阴极10上形成透明的薄膜封装层11,而非形成玻璃盖封装,以保护下面的OLED。由于OLED直接发射红、绿、蓝色光,所以不需要后续的滤色片以及玻璃盖封装,直接采用薄膜封装11覆盖在OLED之上形成保护,进一步提高了OLED的发光效率和光电二极管的灵敏度,简化了工艺,提高了可靠性。
上述描述了单个发光子像素(有机发光层)和感光单元(光电二极管)的剖面结构示意图。当多个发光子像素和感光单元排列收,形成图像收发装置的像素矩阵。
基板上多个OLED中的多个有机发光层的图形化采用掩膜或激光转移,优化的采用PDMS弹性体形成荫罩掩膜,其开口尺寸由光刻胶图形来定义。在一个典型方案中,PDMS与基板形成紧密结合,所形成的有机发光层图形尺寸小至5μm。
本实施方式中的基于CMOS驱动的OLED图像收发装置,通过曝光拼接的方式形成OLED的有机发光层。定义图像收发装置的有效区,包含OLED有机发光层所在的显示区域和光电二极管所在的用于图像传感的感光区域。该有效区域也即对应像素矩阵所在的区域。优选地,像素矩阵区域的宽长比为4:3,对角线尺寸大于1.2英寸。
具体地,可通过合理的像素矩阵版图设计和曝光场拼接,通过多次曝光实现硅基大尺寸,例如上述大尺寸(大于1.2英寸)的像素矩阵的OLED图像收发装置。在曝光时,将基板的有效区分解成若干个有效区分别进行曝光。每个分解后的有效区在步进式曝光系统的一个光场范围内,在具体实施过程中,分别采用一套掩模板曝光分割后的单元,再步进移动至下一个位置处进行第二次曝光。如此对应不同的曝光区域,采用不同的掩膜版,利用曝光系统的对位系统实现拼接,最后完成整个图像收发装置的有效区范围内的曝光。划分成若干个有效区分别进行曝光的方法有助于形成对角线尺寸在1.2英寸以上,例如1.2英寸至2英寸有效区的图像收发装置。
在本具体实施方式中,如图2所示,图像收发装置的有效区按照竖直方向纵向分为两个部分,分别是第一有效区81和第二有效区82。采用曝光拼接的方法形成一个拼接完整的有效区。
曝光后,接着在整个基板的有效区上形成空穴传输层。如图3所示,本具体实施方式的有效区的像素矩阵布局示意图。像素矩阵包括多个像素子单元,各个像素子单元44均设计成正方形,包括红色子像素40、绿色子像素43、蓝色子像素41和感光单元42。红、绿、蓝色子像素分别与对应的CMOS驱动单元阳极相连。利用PDMS掩模板在有效区的区域内分别形成该红色有机发光层、蓝色有机发光层和绿色有机发光层,从而分别作为红色子像素40、蓝色子像素41和绿色子像素43。采用机械掩膜的办法在基板相应区域上形成红色、蓝色和绿色有机发光层,进而形成完整的OLED图像收发单元有效区的像素布局。这样,形成的大尺寸的图像收发装置也具有彩色显示的功能。
之后在基板上依次形成连续的电子传输层、透明导电层和薄膜封装层,从而完成OLED图像收发单元有效区的像素布局。
具体实施方式二
本具体实施方式与实施方式一的不同之处在于:本具体实施方式中划分为4个有效区进行曝光,同时曝光时每两个有效区可共用一套掩膜板进行曝光,从而节约制造成本。
本具体实施方式中提供的一种基于单晶硅CMOS驱动的OLED图像收发装置包括4个单元。每一个单元是一个完整的OLED图像收发装置,一个OLED图像收发装置 的有效区域最大可以达到1英寸。该OLED图像收发装置的CMOS基板采用曝光拼接的方法形成。同样地,改变CMOS基板有效区域的对角线尺寸,可以形成对角线尺寸大于1.2英寸,例如1.2英寸至2英寸范围的矩形像素矩阵显示屏。
如图4所示,为本具体实施方式的OLED图像收发装置的有效区示意图。划分为四个CMOS基板有效区50、51、52、53分别进行曝光。每一个有效区的区域设计成可以在一个曝光场中完成曝光,因此每一个有效区域最大可以达到1英寸对角线。外围电路分别位于有效区的相邻两侧(图中未示意出),在需要拼接的有效区另外两侧没有电子元器件。
该OLED图像收发装置的有效区域的像素矩阵布局示意图如图5所示。像素分别构成4个完整的有效区60、70、80、90,与CMOS基板上划分的有效区50、51、52、53分别对应。
OLED图像收发单元有效区60中,各个像素子单元由红色子像素62、绿色子像素61、蓝色子像素63和感光单元64构成,所有像素子单元设计成正方形。
像素子单元中对应位置需形成的红色、蓝色和绿色有机发光层由PDMS掩模板形成,同样地,在感光单元64对应的位置,也即光电二极管所在区域的上方没有有机发光层。
制造过程中,将像素矩阵所在的区域定义为有效区,划分为至少两个以上的有效区分别进行曝光,通过曝光拼接的方法形成拼接的有效区。具体曝光时,依次对4个CMOS基板的有效区50、51、52、53分别进行曝光。
CMOS基板的有效区50在步进式曝光系统的一个光场范围内,采用一套掩模板实现CMOS基板的有效区50的曝光。然后利用该掩模板,硅片被步进移动至斜对面下一个曝光场位置处进行第二次曝光,该位置相对于CMOS基板的有效区50旋转180°形成CMOS基板的有效区52。再利用另一套掩模板,另一套掩模板相对于前一套掩模板呈左右对称,硅片被步进移动至下一个曝光场位置处进行第三次曝光,形成的CMOS基板的有效区51与CMOS基板的有效区50呈左右对称。最后,继续利用该另一套掩模板,硅片被步进移动至斜对面下一个曝光场位置处进行第四次曝光,该位置相对于CMOS基板的有效区51旋转180°形成CMOS基板的有效区53。
曝光后,接着在整个CMOS基板上形成空穴传输层,利用PDMS掩模板在CMOS基板的有效区50内的相应位置形成红色有机发光层62、蓝色有机发光层63和绿色有 机发光层61,构成OLED图像收发单元有效区60。
移动PDMS掩模板至CMOS基板的有效区51对应的位置,采用机械掩膜拼接的办法在CMOS基板的有效区51上同样形成红色、蓝色和绿色有机发光层,构成OLED图像收发单元有效区70。以此类推完成其余两个有效区域52、53中红色、蓝色和绿色有机发光层的制作,分别构成OLED图像收发单元有效区80、90。
之后再形成连续的电子传输层、透明导电层和薄膜封装层,而完成4个完整的OLED图像收发单元有效区60、70、80、90的像素布局。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种硅基OLED图像收发装置,其特征在于:包括基板、多个用于感光的光电二极管和多个用于发光的OLED;所述OLED包括金属互连线阳极、空穴传输层、有机发光层、电子传输层和透明阴极层,所述金属互连线阳极上按顺序依次形成所述空穴传输层、有机发光层、电子传输层和透明阴极层,所述有机发光层仅位于所述金属互连线阳极所对应的区域之上,不延伸至所述光电二极管所对应的区域之上;多个光电二极管和多个OLED的有机发光层排列形成图像收发装置的像素矩阵。
  2. 根据权利要求1所述的硅基OLED图像收发装置,其特征在于:多个OLED包括红光OLED,绿光OLED和蓝光OLED;所述OLED还包括薄膜封装层,所述薄膜封装层设置在所述透明阴极层上。
  3. 根据权利要求1所述的硅基OLED图像收发装置,其特征在于:所述像素矩阵的宽长比为4:3。
  4. 根据权利要求1所述的硅基OLED图像收发装置,其特征在于:所述像素矩阵的对角线尺寸大于1.2英寸。
  5. 根据权利要求1所述的硅基OLED图像收发装置,其特征在于:所述像素矩阵包括多个像素子单元,各个像素子单元设计成正方形,包括红色子像素、绿色子像素、蓝色子像素和感光单元;所述红色子像素、绿色子像素和蓝色子像素均为OLED的发光层,所述感光单元为所述光电二极管。
  6. 一种硅基OLED图像收发装置的制作方法,包括在基板上形成光电二极管和OLED的步骤,其特征在于:在形成OLED的步骤中,在金属互连线阳极上按顺序依次形成空穴传输层、有机发光层、电子传输层和透明阴极层,所述有机发光层仅位于所述金属互连线所对应的区域之上,不延伸至所述光电二极管所对应的区域之上;多个光电二极管和多个OLED的有机发光层排列形成图像收发装置的像素矩阵。
  7. 根据权利要求6所述的硅基OLED图像收发装置的制作方法,其特征在于:形成OLED的有机发光层的步骤中,在基板上相应位置分别形成红色有机发光层、绿色有机发光层和蓝色有机发光层;形成OLED后,还包括在所述透明阴极层上形成薄膜封装层的步骤。
  8. 根据权利要求6所述的硅基OLED图像收发装置的制作方法,其特征在于:形 成OLED的有机发光层的具体步骤包括:将基板的像素矩阵所在的区域定义为有效区,划分为至少两个以上的有效区分别进行曝光,通过曝光拼接的方法形成拼接的有效区;接着在整个基板的有效区上形成空穴传输层,然后采用机械掩膜拼接的方法在基板的各个有效区上形成红色有机发光层、绿色有机发光层和蓝色有机发光层。
  9. 根据权利要求8所述的硅基OLED图像收发装置的制作方法,其特征在于:曝光时,每个有效区在曝光系统的一个光场范围内,对各有效区采用各自对应的掩模板进行依次曝光,其中在曝光完一个有效区后,再将所述基板移动至下一个有效区的曝光位置处进行曝光,如此对应不同的有效区采用不同的掩膜版曝光,通过曝光区域拼接,最终完成整个基板的曝光。
  10. 根据权利要求8所述的硅基OLED图像收发装置的制作方法,其特征在于:将基板划分为按正方形排列的四个有效区分别进行曝光,四个有效区均在曝光系统的一个光场范围内,采用第一套掩膜板曝光第一有效区;然后,将基板移动至第二曝光场位置处,继续利用所述第一套掩模板进行第二次曝光;所述第二曝光场位置使得相对于所述基板的第一有效区旋转180°形成所述基板的第二有效区;接着,将基板移动至第三曝光场位置处,利用第二套掩模板进行第三次曝光;所述第二套掩模板相对于所述第一套掩模板呈左右对称,所述第三曝光场位置使得相对于所述基板的第一有效区呈左右对称地形成所述基板的第三有效区;最后,将基板移动至第四曝光场位置处,继续利用所述第二套掩膜板进行第四次曝光;所述第四曝光场位置使得相对于所述基板的第三有效区旋转180°形成所述基板的第四有效区。
PCT/CN2015/095512 2015-10-20 2015-11-25 一种硅基oled图像收发装置及其制作方法 WO2017067039A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/958,890 US10418421B2 (en) 2015-10-20 2018-04-20 Silicon-based OLED image transceiving device and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510684007.4A CN105304682B (zh) 2015-10-20 2015-10-20 一种硅基oled图像收发装置及其制作方法
CN201510684007.4 2015-10-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/958,890 Continuation US10418421B2 (en) 2015-10-20 2018-04-20 Silicon-based OLED image transceiving device and manufacture method thereof

Publications (1)

Publication Number Publication Date
WO2017067039A1 true WO2017067039A1 (zh) 2017-04-27

Family

ID=55201707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095512 WO2017067039A1 (zh) 2015-10-20 2015-11-25 一种硅基oled图像收发装置及其制作方法

Country Status (3)

Country Link
US (1) US10418421B2 (zh)
CN (1) CN105304682B (zh)
WO (1) WO2017067039A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244230B2 (en) * 2017-03-01 2019-03-26 Avalon Holographics Inc. Directional pixel for multiple view display
CN107392171B (zh) 2017-08-01 2020-08-07 京东方科技集团股份有限公司 显示基板、显示面板及显示装置
CN108155221A (zh) * 2018-01-30 2018-06-12 上海瀚莅电子科技有限公司 硅基oled显示器模组及其制备方法
US11196969B2 (en) * 2018-09-14 2021-12-07 Google Llc Image capture display
CN110416276B (zh) * 2019-08-05 2022-07-12 京东方科技集团股份有限公司 一种电致发光显示面板、显示装置和图像采集方法
CN111223411B (zh) * 2019-12-11 2022-04-05 京东方科技集团股份有限公司 一种用于微型led显示面板的基板及其制造方法
CN111627963B (zh) * 2020-05-19 2022-07-12 武汉华星光电半导体显示技术有限公司 一种像素单元及显示面板
CN112418047B (zh) * 2020-11-18 2023-07-28 武汉华星光电半导体显示技术有限公司 显示面板、指纹识别的驱动方法及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100201275A1 (en) * 2009-02-06 2010-08-12 Cok Ronald S Light sensing in display device
CN102983154A (zh) * 2012-11-05 2013-03-20 深圳典邦科技有限公司 一种集成透明oled微显示的图像收发装置及其制作方法
CN103022076A (zh) * 2012-11-22 2013-04-03 深圳典邦科技有限公司 一种集成的微显示oled图像收发装置及其制作方法
US20130313533A1 (en) * 2012-05-28 2013-11-28 Ultimate Image Corporation Organic Light Emitting Diode Illuminating Device
CN104377315A (zh) * 2014-11-07 2015-02-25 南京邮电大学 一种白光oled器件及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925984B1 (ko) * 2004-10-26 2009-11-10 엘지디스플레이 주식회사 액정표시장치 제조방법
JP2007334432A (ja) * 2006-06-12 2007-12-27 Nec Electronics Corp 情報処理装置及びそのアクセス制御方法
DE102006040790B4 (de) * 2006-08-31 2012-04-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reflexkoppler mit integriertem organischen Lichtemitter sowie Verwendung eines solchen Reflexkopplers
CN101252101B (zh) * 2008-01-17 2010-08-11 中电华清微电子工程中心有限公司 采用曝光场拼接技术制作超大功率智能器件的方法
CN101609647A (zh) * 2009-07-30 2009-12-23 友达光电股份有限公司 触控式有机发光二极管显示装置及影像单元
CN103337503B (zh) * 2013-05-30 2015-08-12 深圳典邦科技有限公司 一种集成的oled图像收发装置及其像素排列结构
US9836165B2 (en) * 2014-05-16 2017-12-05 Apple Inc. Integrated silicon-OLED display and touch sensor panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100201275A1 (en) * 2009-02-06 2010-08-12 Cok Ronald S Light sensing in display device
US20130313533A1 (en) * 2012-05-28 2013-11-28 Ultimate Image Corporation Organic Light Emitting Diode Illuminating Device
CN102983154A (zh) * 2012-11-05 2013-03-20 深圳典邦科技有限公司 一种集成透明oled微显示的图像收发装置及其制作方法
CN103022076A (zh) * 2012-11-22 2013-04-03 深圳典邦科技有限公司 一种集成的微显示oled图像收发装置及其制作方法
CN104377315A (zh) * 2014-11-07 2015-02-25 南京邮电大学 一种白光oled器件及其制备方法

Also Published As

Publication number Publication date
CN105304682A (zh) 2016-02-03
US20180240851A1 (en) 2018-08-23
US10418421B2 (en) 2019-09-17
CN105304682B (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2017067039A1 (zh) 一种硅基oled图像收发装置及其制作方法
US11228014B2 (en) OLED display panel and manufacturing method thereof
US9209231B2 (en) Array substrate, method for fabricating the same, and OLED display device
TWI647837B (zh) 發光顯示裝置及其製造方法
JP5323667B2 (ja) 有機電界発光素子及びその製造方法
CN108922916B (zh) 发光装置以及电子设备
US7834543B2 (en) Organic EL display apparatus and method of manufacturing the same
US8410682B2 (en) Organic light emitting display and method of fabricating the same
US11362150B2 (en) Display device having lens corresponding to pixel, and electronic apparatus
US20190165065A1 (en) Organic light-emitting display device
KR20150042367A (ko) 유기전계 발광소자 및 이의 제조 방법
CN110911446B (zh) 有机发光显示装置
KR101723880B1 (ko) 유기발광다이오드 표시장치 및 그의 제조 방법
US11552274B2 (en) Display device having pixel electrode and color filter, and electronic apparatus
WO2021017094A1 (zh) 一种阵列基板及 oled 显示装置
WO2019085108A1 (zh) Oled显示器及其制作方法
US20180226595A1 (en) Silicon-based large-sized oled image transceiving device and manufacturing method
US20230165051A1 (en) Display device, display panel and manufacturing method thereof, driving circuit and driving method
CN111415963B (zh) 显示面板及其制备方法
KR20180077856A (ko) 전계발광 표시장치
KR20100000405A (ko) 발광 표시 패널 및 그의 제조 방법
KR20160060835A (ko) 유기발광다이오드 표시장치 및 그 제조방법
WO2019064548A1 (ja) 表示デバイス、露光装置、表示デバイスの製造方法
US11539034B2 (en) Display device and electronic apparatus having lenses disposed correspondingly to respective pixel electrodes
CN110098227B (zh) Oled显示面板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/09/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15906555

Country of ref document: EP

Kind code of ref document: A1