WO2017065597A2 - Composición polimérica - Google Patents

Composición polimérica Download PDF

Info

Publication number
WO2017065597A2
WO2017065597A2 PCT/MX2016/000108 MX2016000108W WO2017065597A2 WO 2017065597 A2 WO2017065597 A2 WO 2017065597A2 MX 2016000108 W MX2016000108 W MX 2016000108W WO 2017065597 A2 WO2017065597 A2 WO 2017065597A2
Authority
WO
WIPO (PCT)
Prior art keywords
pectin
polymer
polymer composition
pva
preparation
Prior art date
Application number
PCT/MX2016/000108
Other languages
English (en)
French (fr)
Other versions
WO2017065597A3 (es
Inventor
Zaira Yunuén GARCÍA CARVAJAL
Hugo ESPINOSA ANDREWS
Marisela GONZÁLEZ ÁVILA
Sara Elisa HERRERA RODRÍGUEZ
Rodolfo HERNÁNDEZ GUTIÉRREZ
Rogelio RODRÍGUEZ RODRÍGUEZ
Marco Eduardo Andrés TORRES ROSAS
Ana Gabriela FLETES VARGAS
Original Assignee
Centro De Investigación Y Asistencia En Tecnología Y Diseño Del Estado De Jalisco A.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigación Y Asistencia En Tecnología Y Diseño Del Estado De Jalisco A.C. filed Critical Centro De Investigación Y Asistencia En Tecnología Y Diseño Del Estado De Jalisco A.C.
Priority to US15/768,627 priority Critical patent/US20180303942A1/en
Priority to JP2018539219A priority patent/JP2018538421A/ja
Priority to EP16855814.6A priority patent/EP3363861A4/en
Priority to BR112018007616A priority patent/BR112018007616A2/pt
Priority to CN201680073021.3A priority patent/CN108431127A/zh
Publication of WO2017065597A2 publication Critical patent/WO2017065597A2/es
Publication of WO2017065597A3 publication Critical patent/WO2017065597A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6903Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being semi-solid, e.g. an ointment, a gel, a hydrogel or a solidifying gel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0065Forms with gastric retention, e.g. floating on gastric juice, adhering to gastric mucosa, expanding to prevent passage through the pylorus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/286Polysaccharides, e.g. gums; Cyclodextrin

Definitions

  • the present invention has its field of application in the biotechnological area, particularly in the development of products for the pharmaceutical industry and the food industry.
  • Polyvinyl alcohol is a water soluble synthetic polymer; Unlike most polymers derived from vinyl, PVA is not prepared by polymerization of the corresponding monomer, vinyl alcohol. Instead, it is prepared by partial or complete hydrolysis of the polyvinyl acetate. The reaction with the ethyl group can be controlled and the physical characteristics of the resulting PVA will depend on both the degree of polymerization and the degree of hydrolysis of the starting polyvinyl acetate. Its solubility in water is limited and it is considered optimal between 87-89% hydrolysis of the ethyl group. In the most advanced hydrolysis, PVA has a high tendency to form an association of hydrogen bonds, which leads to the formation of gels easily.
  • PVA is already used in areas such as food chemistry, pharmaceuticals, medicine and biotechnology.
  • PVA is a polymer of great interest for various pharmaceutical and biomedical applications.
  • PVA-based microspheres have already been approved by the Food and Drug Administration (FDA) and other regulatory agencies for embolization.
  • FDA Food and Drug Administration
  • the PVA has excellent adhesive, film-forming properties; formation of hydrogels, cryogels, emulsifiers.
  • PVA-based materials can be prepared by molding in the presence of a suitable plasticizer.
  • the physical crosslinking of PVA has also been carried out by freezing and thawing cycles, with the formation of rather soft hydrogels (Gutiérrez, M. C, Garc ⁇ a-Carvajal, ZY, Jobbágy, M., Rubio, F., Yuste, L , Rojo, F., Ferrer, ML and Del Monte, F .. 2007).
  • pectin is a polysaccharide consisting of D-galacturonic acid units linked by bonds (at 1-4) with branching points composed of rhamnose and arabinose residues.
  • Pectin has been applied in the synthesis of polymeric matrices for controlled drug release, protein and cell immobilization (Seixas F. L, Fukuda D. L, Turbiani FRB, et al., 2014; Wikiera A., Mika M. , Starzyriska-Janiszewska A., Stodolak B., 2015).
  • Pectin is classified among soluble fibers, which are resistant to the hydrolysis of digestive enzymes, although in ruminants, enzymes produced by the rumen's own microorganisms cause pectin fragmentation; which allows to be applied as an interesting alternative for a ruminal supply system, since this natural polymer remains intact until reaching the ruminal environment (Cruz M., Femandes K., Cysneiros C, Nassar R., and Caramori S. , 2015). Pectin has been used in multiple applications in the food industry, because it is a gelling agent, thickener and stabilizing properties. Pectins are used in the production of jams, fruit jellies, acidified milk, protein drinks, yogurts and other dairy products, among others.
  • pectin is also applied in the non-food industry: such as medicine and pharmacy (Lewandowska K., Dabrowska A., Kaczmarek H., 2012).
  • Pectin-PVA films were prepared in different proportions and physicochemical interactions were studied by infrared spectroscopy of the films.
  • the starting polymer composition consisted of 2% w / v Pectin and 2% w / v PVA (98% hydrolysis, average molecular weight of 85,000-146,000 g / mol).
  • the proportions of the mixtures for the preparation of the films were 70:30, 50:50 and 30:70, Pectin: PVA.
  • the Pectin-PVA mixture is capable of forming films and that although it has the same concentration of polymer and different proportions of it, some intermolecular interactions appear (hydrogen bonds, dipole-dipole type ) between PVA -pectin macromolecules, which modify the mechanical properties (in this case flexibility) thereof.
  • These properties will depend on many factors, such as: chemical composition of the sample, accessibility and conformational arrangement of functional groups, spherical impediments, etc. These interactions being crucial for the improvement of mechanical properties; again stating that the composition and proportion of this mixture play a critical role.
  • the impact of the composition on industrial functionality is not demonstrated (Kaczmarek, H., Da.browska, A.
  • Pectin-PVA is capable of forming film-like cryogels for use in an antibiotic release system (enrofloxacin).
  • This system contained 15% w / w PVA, 0.1% pectin and 1.0% w / w and an enrofloxacin load of 5-35
  • WO 2014/014348 A1 refers to the invention of a floating drug delivery system. These systems should ideally have a prolonged gastric residence time; However, it's not always like that.
  • This invention relates to the coating of the floating system, which comprises a polymer selected from the group consisting of hydrophilic cellulose derivatives, such as HPMC, HPC, MC, HEC, CMC, sodium-CMC, PVP, PVA, carboxyvinyl polymer ( carbomer), poly (ethylene oxide) (Polyox WSR), alginates, pectins, guar gum, vinyl pyrrolidone-vinyl acetate compolymer, dextrans, carrageenan, gellan, hyaluronic acid, pululane, scleroglucan, xanthan, and xyloglucan.
  • hydrophilic cellulose derivatives such as HPMC, HPC, MC, HEC, CMC, sodium-CMC, PVP, PVA, carboxyviny
  • US 20040176535 A1 refers to a polymer composition based on PVA, which is substantially composed of PVA of 50 to 99.9% w / w, with an average molecular weight of 5,000 to 25,000 and with a degree of hydrolysis of 79 to 99.9%. Two examples are described in which the pectin-PVA mixture with different emulsifiers is included and to which the viscosity was measured.
  • WO 1997011113 A1 describes the preparation of flexible films from a pectin-PVA mixture as a plasticizing potential. This combination is advantageous because it increases biodegradability.
  • pectin has a high molecular weight, large turning radius, has a low degree of methyl esterification and is of high intrinsic viscosity.
  • the PVA used is of molecular weight of 124,000-186,000 with 99% degree of hydrolysis and between 10-90% w / v.
  • the use of pectin provides the effective use of an agricultural product.
  • WO 2002017886 A1 refers to the composition of a film comprising a) pectin, b) a second film-forming polymer and c) a system of adjustment.
  • the second film-forming polymer is selected from gelatin, pululane, polyvinyl alcohol, hydroxypropylated starch, hydroxyethylated starch, hydroxypropyl methylcellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxyethyl methylcellulose, or mixtures thereof.
  • the pectin content used was 5 to 50%, but 10 to 40% is preferred, and the content of the second polymer is from 60 to 95%, but preferably 50 to 85%.
  • This fixing system is intended for use in pharmaceutical, veterinary, food, cosmetic or other products such as food wrap films, jellies or jellies, preferably for pre-dosed formulations such as soft or hard capsules, as well as aqueous solutions of the compositions for the manufacture of said products.
  • compositions described herein may be similar to those proposed in the invention, it should be emphasized that the proportions of Pectin-PVA disclosed in WO 2002017886 A1 are far from those concerning this invention.
  • WO 2006/122835 A1 describes oral administration devices for colonic release of adsorbents, comprising: a) an adsorbent capable of adsorbing antibiotics, a bacterial or fungal toxin, or a pharmaceutically active agent that can cause adverse side effects when they arrive to the colon, and b) a drug delivery device based on pectin beads, which may be crosslinked with metal ions such as Ca and / or Zn.
  • the delivery system protects the adsorbent and prevents its adsorption effect on the upper gastro-intestinal tract. When the particles reach the colon, proteolytic enzymes degrade pectin, allowing the adsorbent to release and exert its activity.
  • the crosslinked pectin contains polyethyleneimine (as a crosslinking agent); In addition, it is based on a solution comprising 1-10% (w / v) pectin and 2-12% (w / v) zinc acetate or calcium chloride.
  • the system proposed in this invention has the advantage over that disclosed in WO 2006/122835 A1, which with the optimum proportions of PVA- Pectin the expected effects are achieved without the need for chemical crosslinkers.
  • the invention provides for the preparation and use of a film type coating. Tablets that promote digestion were coated.
  • This formulation contains an energetic (Jianweixiaoshi sheet).
  • This invention belongs to the technical field of medicinal production: when hydroxypropyl methylcellulose is used as a pharmaceutical coating of tablets or tablets, it is easy for the tablets to stick together with each other causing cracks and bulges in the coatings and this has the consequence that during the chewing process of the tablets, the films are detached from the tablets and the mouthfeel of the product is influenced.
  • the film type coating mainly comprises lactose, pectin and polyethylene glycol 4000.
  • PVA and pectin are accepted as food additives.
  • PVA has been accepted as a film coating agent for food supplements, particularly in applications where moisture protection is required; while pectin is accepted as a stabilizing agent (Official Journal of the European Union. COMMISSION DIRECTIVE 2010/69 / EU of 22 October 2010. Amending the Annexes to European Parliament and Council Directive 95/2 / EC on food additives other than colors and sweeteners).
  • pectin and its mixtures plasticized by glycerol can be extruded successfully for the formation of films with good mechanical properties.
  • the complex structure of pectin gel aggregates has been investigated in detail by atomic force microscopy. Therefore, the relevance of determining the behavior and properties of polymers to make better use of them is revealed. This objective is possible to realize, according to the invention, without the application of very sophisticated methods, often inaccessible and expensive, simply based on the study of the rheological properties of polymers and their combinations. Flow properties of the mixing solutions that depend on their composition, temperature and shear rate, among others, were used.
  • Figure 1 Shows the treatments used in the different systems: Number of coating layers applied to the system: 0 and 2; and Heat treatment: A) not subjected to freeze / thaw cycle; B) undergoing freeze / thaw cycle.
  • Figure 2 It is shown: A) PVA / Pectin film coated systems with freeze / thaw cycle, B) PVA / Pectin film coated systems without freeze / thaw cycle, C) Uncoated systems.
  • Figure 5 Photographs showing: A) the system with treatment A, the PVA / Pectin film failed to adhere properly, B) approach of system A, the PVA / Pectin film detached is observed.
  • Figure 6 The solubility of the systems at different study times in the gastrointestinal simulator is shown: A) after 4 min, B) after 9 min and, C) at 20 min.
  • Figure 7. The criteria followed for the evaluation of the release profile of the carmine red dye in the hydrogels are shown: A) the dye was deposited inside the hydrogel in amounts of 25, 50, 100mg. B) the dye was combined with the PVA-Pectin formulation in amounts of 20mg.
  • Figure 8. The release kinetics of the dye incorporated into the PVA-Pectin formulation during hydrogel processing is shown. The first two hours of evaluation correspond to the Stomach simulator, while the remaining four hours correspond to the Intestine simulator
  • FIG. 9 The release kinetics of the dye deposited in the cube-shaped hydrogels is shown. The release of dye in the hydrogel occurs in large quantities after 20 hours in simulation, in the transverse colon section.
  • the present invention relates to gelled polymeric compositions that admit the incorporation of different substances in order to be a transport to the intestinal system, allowing their release in the colon or somewhere else along the gastrointestinal tract.
  • substances that are allowed to be incorporated into the gelled polymeric compositions according to the invention include, for example: chemical compounds, pharmaceutical substances, bioactive substances, nutrients, food additives, colorants, gels, capsules, granules, spheres, particles , nanoparticles, being possible the individual or combined incorporation of these or other substances.
  • the polymer composition according to the invention provides a controlled release means that allows eliminating or reducing unexpected effects, for example, that the released substance exceeds the therapeutic requirements or nutrients causing toxicity, or that it is effective by not being delivered in the required doses.
  • controlled release means provided with the present invention, allows the release directed to specific places, guaranteeing that the substance (s) of interest is released at the required place, maintaining its integrity until that moment.
  • a gelled polymer composition to be used as the basis for the preparation of, for example: a controlled pharmaceutical release system, an excipient included in some pharmaceutical form, an active release vehicle that could have functional elements in the food and confectionery industry. Or, to be used for example as an edible coating, transparent or with added color.
  • the polymer composition contains a natural polymer that is selected from the group of polysaccharides such as: pectin, fructans, chitosan, chitin, celluloses, starches, modified starches, amylases, amylopectins, mannans, galactomannans, and arabinocylanes. And it also contains a water-soluble synthetic polymer selected from the group of: polyethylene glycol, polyvinyl alcohol, polyvinyl pyrolidone, polyacrylic acid, and polyphosphates.
  • the polymer composition according to the invention improves the mechanical properties of the gels, which will be used as vehicles, films, coatings, gels, hydrogels and / or polymer conjugates, as it is a biocompatible, biodegradable and non-toxic composition.
  • the polymeric composition of the invention when in a gelled form, supports acidic pHs, making it possible to have formulations with a potential application as carrier systems for bioactive substances, drugs, nutrients, among others. As well as potential polymer coatings for the protection of them.
  • the entire composition allows the incorporation of assets for their potential release in any part of the gastrointestinal system being very useful in the food industry and / or in the pharmaceutical industry.
  • the polymer composition is formed from a natural polymer such as pectin, present in a percentage ranging from 1 to 6%; and a synthetic polymer such as polyvinyl alcohol with a molecular weight of 89,000 to 98,000 KDa, and which is present in a percentage ranging from 5 to 15%.
  • a mixture of polymers PVA (7.8%) and pectin (5%) was made. First, the PVA in 100 ml of water was added little by little at 80 ° C, stirring until completely dispersed. Subsequently, citrus pectin was added slowly, in order to avoid lump formation. The gel formed was allowed to cool for later use.
  • Coating test systems a. Products of the pharmaceutical industry: commercially available tablets. b. Coating on food industry products: rubber tablets also known as gummies or jelly beans, commercially available. C. Coating on food industry products: commercially available bar chocolate.
  • the gastrointestinal simulator consisted of a solution of distilled water adjusted to a pH of 2.50 at a temperature of 37 ° C and constant stirring for 2 h.
  • Figure 1 shows the different treatments systems with 0 and 2 layers of coating.
  • Panel A) shows the systems not subjected to treatment thermal (freeze / defrost cycle); in panel B) the systems subjected to heat treatment (freeze / thaw cycle) are observed.
  • Figure 2A shows that there is a rapid solubility of the system, because the film that covers them remained in the form of a hydrogel with a high water content, which in this way did not adhere on the surface, however, in Figure 2B, the film remained adhered on the surface, because it was dehydrated (Figure 3).
  • Polymeric films, dehydrated, formed from the polymeric composition of the invention showed greater adhesion on the surface of the systems, suggesting greater protection against solubility in the gastrointestinal simulator.
  • the ex vivo gastrointestinal simulator in which the release evaluation was carried out consists of 5 reactors corresponding to Stomach, Small Intestine and the three sections of the Colon (Ascending, Transverse and Descending). The system maintains physiological conditions (with the characteristic enzymes of each section and at the appropriate pH) and constant temperature at 37 ° C.
  • the stomach medium was adjusted to an initial pH of 2 to 2.5, Pepsin was added and the hydrogels were left for two hours.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Medicinal Preparation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Se describen en la presente invención composiciones poliméricas gelificadas para la liberación controlada, que admiten la incorporación de una gama de sustancias químicas, farmacéuticas o alimenticias, con la finalidad de ser un transporte hacia el tracto gastrointestinal. Las composiciones poliméricas gelificadas como se describen en la invención son utilizadas como base para la elaboración de por ejemplo: excipientes, vehículos, recubrimientos, películas, hidrogeles, entre otros, siendo así altamente provechosos para el desarrollo de productos para la industria farmacéutica y/o la industria de alimentos.

Description

COMPOSICIÓN POLIMÉRICA
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención tiene su campo de aplicación en el área biotecnológica, particularmente en el desarrollo de productos para la industria farmacéutica y la industria de alimentos.
ANTECEDENTES DE LA INVENCIÓN
El alcohol polivinílíco (PVA) es un polímero sintético soluble en agua; a diferencia de la mayoría de los polímeros derivados de los vinilos, el PVA no se prepara por polimerización del monómero correspondiente, el alcohol vinílico. En su lugar, se prepara mediante hidrólisis parcial o completa del poli (acetato de vinilo). La reacción con el grupo etilo se puede controlar y las características físicas del PVA resultante dependerá tanto del grado de polimerización y del grado de hidrólisis del poli (acetato de vinilo) de partida. Su solubilidad en agua es limitada y se considera óptimo entre el 87 - 89% de hidrólisis del grupo etilo. En la hidrólisis más avanzada, el PVA presenta una alta tendencia a formar asociación de enlaces hidrógeno, lo cual conlleva a la formación de geles fácilmente. El PVA ya se utiliza en áreas como la química de los alimentos, los productos farmacéuticos, la medicina y la biotecnología. En particular, el PVA es un polímero de gran interés para diversas aplicaciones farmacéuticas y biomédicas. Las microesferas a base de PVA ya han sido aprobadas por la Administración de Alimentos y Medicamentos (FDA) y otros organismos reguladores para la embolización. Más aún, el PVA tiene excelentes propiedades adhesivas, de formación de película; formación de hidrogeles, críogeles, emulsionantes. Además, dependiendo del tipo de aditivos que pudieran contener, podrán ser considerados como biocompatibles y no irritantes para los tejidos blandos al entrar en contacto con ellos, haciéndolos adecuados para muchas aplicaciones biomédicas (Marc Chaouat, Catherine Le Visage, Wilms E. Baille, Brigitte Escoubet, Frédéric Chaubet, Mircea Alexandru Mateescu, and Didier Letoumeur., 2008). Varios métodos han sido descritos para la preparación de materiales a base de PVA. Por ejemplo, películas de PVA de alto rendimiento se pueden preparar por moldeo en presencia de un plastificante adecuado. La reticulación física de PVA se ha realizado también por ciclos de congelamiento y deshielo, con la formación de hidrogeles más bien blandos (Gutiérrez, M. C, García-Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L, Rojo, F., Ferrer, M. L. y Del Monte, F.. 2007).
Por otro lado, la pectina es un polisacárído constituido por unidades de ácido D- galacturónico unidos por enlaces (a 1-4) con puntos de ramificación compuestas de residuos de ramnosa y arabinosa. La pectina ha sido aplicada en la síntesis de matrices poliméricas para la liberación controlada de drogas, inmovilización de proteínas y células (Seixas F. L, Fukuda D. L, Turbiani F. R. B., et al., 2014; Wikiera A., Mika M., Starzyriska-Janiszewska A., Stodolak B., 2015). La pectina se clasifica entre las fibras solubles, que son resistentes a la hidrólisis de las enzimas digestivas, aunque en rumiantes, las enzimas producidas por los microorganismos propios del rumen ocasionan la fragmentación de la pectina; lo cual permite ser aplicada como una alternativa interesante para un sistema de suministro ruminal, ya que este polímero natural se mantiene intacto hasta alcanzar el medio ambiente ruminal (Cruz M., Femandes K., Cysneiros C, Nassar R., y Caramori S., 2015). La pectina se ha empleado en múltiples aplicaciones en la industria alimentaría, debido a que es un agente gelificante, espesante y con propiedades estabilizantes. Las pectinas se utilizan en la producción de mermeladas, jaleas de frutas, leche acidificada, bebidas de proteína, yogures y otros productos lácteos, entre otros. Hoy en día la pectina también se aplica en la industria no alimentaría: como lo son la medicina y la farmacia (Lewandowska K., Dabrowska A., Kaczmarek H., 2012).
Las propiedades físico-químicas, tanto de la pectina como del PVA, pueden ser modificadas de varías maneras. Una manera sencilla es simplemente mezclar con otros compuestos macromoleculares en diferentes concentraciones. Esto condicionará que la mezcla en diferentes proporciones y concentraciones tenga un efecto no tan obvio en las aplicaciones para las cuales se requerirá (Lewandowska K., Dabrowska A., Kaczmarek H., 2012).
En el documento Lewandowska, K., et al 2012, se estudiaron las propiedades Teológicas de mezclas de Pectina-PVA. Se prepararon varías mezclas a proporciones de 70:30, 50:50, 30:70 (Pectina:PVA). La concentración de PVA fue de 7.8% p/v y la de Pectina al 3% p/v. El PVA empleado tiene un peso molecular de 30,000-70,000 g/mol y la pectina tiene un 27.8% de esterificación. Los resultados obtenidos demostraron que las propiedades de flujo de las soluciones de las mezclas dependen de su composición, temperatura y la velocidad de cizallamiento, debido a que existen cambios conformacionales de las macromoléculas debido a las interacciones químicas. A pesar de esto, en este documento no se demuestra una aplicación para la industria.
En el documento Kaczmarek, H., et al., 2011, se prepararon películas de Pectina- PVA a diferentes proporciones y se estudiaron las interacciones fisicoquímicas mediante espectroscopia de infrarrojo de las películas. La composición polimérica de partida consistió de Pectina al 2% p/v y PVA al 2% p/v (98% de hidrólisis, peso molecular promedio de 85,000-146,000 g/mol). Las proporciones de las mezclas para la preparación de las películas fueron de 70:30, 50:50 y 30:70, Pectina: PVA. En este trabajo de investigación se demostró que la mezcla Pectina-PVA es capaz de formar películas y que a pesar de que se tiene una misma concentración de polímero y diferentes proporciones del mismo, aparecen algunas interacciones intermoleculares (enlaces de hidrógeno, tipo dipolo-dipolo) entre macromoléculas de PVA -pectina, las cuales modifican las propiedades mecánicas (en este caso flexibilidad) de las mismas. Estas propiedades dependerán de muchos factores, como lo son: composición química de la muestra, accesibilidad y disposición conformacional de los grupos funcionales, impedimentos esféricos, etc. Siendo estas interacciones cruciales para la mejora de las propiedades mecánicas; poniendo nuevamente de manifestó que la composición y proporción de esta mezcla juegan un papel crítico. Sin embargo, en este trabajo de investigación no se demuestra el impacto que tiene la composición sobre la funcionalidad industrial (Kaczmarek, H., Da.browska, A. y Vukovió-Kwiatkowska, I., 2011). En el documento Martínez YN, Pifluel L, Castro GR, Breccia JD Martínez YN, 2012, se demostró que la mezcla polimérica Pectina-PVA es capaz de formar críogeles tipo películas para su uso en un sistema de liberación de un antibiótico (enrofloxacino). Este sistema contenía PVA al 15% p/p, pectina al 0.1 y 1.0 % p/p y una carga de enrofloxacino de 5-35 |ig. Para evaluar el impacto de los críogeles sobre el perfil de liberación del enrofloxacino, estos se colocaron sobre un sistema manual de difusión, sugiriendo su aplicación como un sistema de liberación vía tópica (dérmica). En los resultados mostrados se observa que la liberación del 100% del enrofloxacino encapsulado se alcanzó en las primeras horas de la experimentación. Este trabajo pone de manifiesto la utilidad de esta mezcla en forma de críogeles como un sistema de liberación controlada vía tópica de sustancias bioactivas. Cabe señalar, que la composición de la mezcla polimérica descrita en este documento no corresponde a la propuesta de la presente invención.
El documento WO 2014/014348 A1 se refiere a la invención de un sistema de administración de fármacos flotante. Esto sistemas idealmente deberían tener un tiempo de permanencia gástrica prolongado; sin embargo, esto no siempre es así. Esta invención se refiere al recubrimiento del sistema flotante, el cual comprende un polímero seleccionado del grupo que consiste en derivados de celulosa hidrófilos, tales como HPMC, HPC, MC, HEC, CMC, sodio-CMC, PVP, PVA, polímero de carboxivinilo (carbómero), poli (óxido de etileno) (Polyox WSR), alginatos, pectinas, goma guar, vinilpirrolidona-acetato de vinilo compolymer, dextranos, carragenina, gellan, ácido hialurónico, pululano, escleroglucano, xantana, y xiloglucano. Además, comprende una o más capas de revestimiento que comprenden una combinación de HPMC y almidón como material de recubrimiento en una proporción dentro del intervalo de 8:1 - 1 :1. A pesar que en esta formulación se compromete el PVA y la pectina, no se indica ni la composición ni la proporción de los mismos en dicho documento de patente. El documento US 20040176535 A1 se refiere a una composición polimérica basada en PVA, que sustantivamente se compone de PVA del 50 a 99,9% p/p, con un peso molecular promedio de 5 000 a 25 000 y con un grado de hidrólisis de 79 a 99,9%. Se describen 2 ejemplos en los que se incluye a la mezcla pectina-PVA con diferentes emulsificantes y a las cuales se les midió la viscosidad. Además, se incluyen ejemplos comparativos en donde la pectina no se encuentra presente en la composición, esto con la finalidad de comparar el efecto que tiene la pectina sobre la viscosidad de las suspensiones obtenidas. Tanto la pectina como el PVA se agregaron en diferentes proporciones (el PVA empleado en US 2004 0176535 A1 es distinto al de la invención que se propone). Como es de esperar la viscosidad de las composiciones poliméricas es diferente, poniendo de manifiesto nuevamente que las proporciones de estos dos polímeros juegan un rol importante en las propiedades fisicoquímicas y mecánicas.
En el documento WO 1997011113 A1 de describe la preparación de películas flexibles a partir de una mezcla de pectina-PVA como un potencial plastificante. Esta combinación es ventajosa debido a que aumenta la biodegradabilidad. En este caso, la pectina tiene un alto peso molecular, gran radio de giro, tiene un arto grado de esterificación de metilos y es de alta viscosidad intrínseca. El PVA empleado es de peso molecular de 124,000-186,000 con 99% grado de hidrólisis y entre 10-90% p/v. Además, el uso de pectina proporciona la utilización eficaz de un producto agrícola.
En el documento WO 2002017886 A1 se refiere la composición de una película que comprende a) pectina, b) un segundo polímero formador de película y c) un sistema de ajuste. El segundo polímero formador de película se selecciona de gelatina, pululano, alcohol de polivinilo, almidón hidroxipropilado, almidón hidroxietilado, hidroxipropil metilcelulosa, hidroxipropil celulosa, metil celulosa, hidroxietil celulosa, hidroxietil metilcelulosa, o sus mezclas. El contenido de pectina empleado fue de 5 a 50%, pero se prefiere del 10 a 40%, y el contenido del segundo polímero es a partir de 60 a 95%, pero preferiblemente de 50 a 85%. Este sistema de fijación está pensado para su uso en productos farmacéuticos, veterinarios, alimenticios, cosméticos u otros productos como películas para envolver alimentos, gelatinas o jaleas, preferiblemente para formulaciones pre-dosifícadas como cápsulas blandas o duras, así como soluciones acuosas de las composiciones para la fabricación de dichos productos. Aunque las composiciones descritas en este documento pudieran ser parecidas a las propuestas en la invención, debe ponerse énfasis en que las proporciones de Pectina-PVA divulgadas en WO 2002017886 A1 distan mucho de las que se conciernen a esta invención. El documento WO 2006/122835 A1 describe dispositivos de administración oral para la liberación colónica de adsorbentes, que comprende: a) un adsorbente capaz de adsorber antibióticos, una toxina bacteriana o fúngica, o un agente farmacéuticamente activo que puede causar efectos secundarios adversos cuando llegan al colon, y b) un dispositivo de suministro de fármacos a base de perlas de pectina, que pueden estar reticuladas con iones metálicos como el Ca y/o Zn. El sistema de suministro protege al adsorbente y evita su efecto de adsorción en el tracto gastro-intestinal superior. Cuando las partículas llegan al colon, enzimas proteolíticas degradan la pectina, permitiendo que el adsorbente se libere y ejerza su actividad. En este sistema, la pectina reticulada contiene polietilenimina (como agente reticulante); además, se parte de una solución que comprende del 1-10% (w/v) de pectina y del 2-12% (w/v) de acetato de cinc o cloruro de calcio. El sistema propuesto en esta invención tiene la ventaja respecto a lo divulgado en el documento WO 2006/122835 A1, que con las proporciones óptimas de PVA- Pectina se logran los efectos esperados sin que sean necesarios los entrecruzantes químicos.
En el documento CN102343054 A, la invención proporciona la preparación y el uso de un recubrimiento tipo película. Se recubrieron tabletas que promocionan la digestión. Esta formulación contiene un energético (hoja de Jianweixiaoshi). Esta invención pertenece al campo técnico de la producción medicinal: cuando se emplea la hidroxipropilmetilcelulosa como recubrimiento farmacéutico de comprimidos o tabletas, es fácil que las tabletas queden pegadas la una con la otra provocando grietas y abultamientos en los recubrimientos y esto tiene como consecuencia que durante el proceso de masticación de los comprimidos, las películas se despeguen de los comprimidos y la sensación en la boca del producto se vea influenciada. El recubrimiento tipo película comprende principalmente lactosa, pectina y polietilenglicol 4000.
Tanto el PVA como la pectina son aceptados como aditivos alimentarios. El PVA se ha aceptado como agente de recubrimiento de película para los suplementos alimenticios, en particular en aplicaciones donde la protección contra la humedad sea requerida; mientras que la pectina es aceptada como agente estabilizante (Official Journal of the European Union. COMMISSION DIRECTIVE 2010/69/EU of 22 October 2010. Amending the Annexes to European Parliament and Council Directivo 95/2/EC on food additives other than colours and sweeteners).
Se ha demostrado recientemente que la pectina y sus mezclas plastificadas por glicerol se pueden extruir con éxito para la formación de películas con buenas propiedades mecánicas. La compleja estructura de los agregados de gel de pectina se ha investigado en detalle por microscopía de fuerza atómica. Por lo anterior, se pone de manifiesto la relevancia en determinar el comportamiento y las propiedades de los polímeros para hacer un mejor uso de los mismos. Este objetivo es posible de realizar, de acuerdo con la invención, sin la aplicación de métodos muy sofisticados, a menudo inaccesibles y caros, simplemente con una base en el estudio de las propiedades reológicas de los polímeros y de sus combinaciones. Se utilizaron propiedades de flujo de las soluciones de mezcla que dependen de su composición, la temperatura y la velocidad de cizallamiento entre otros.
DESCRIPCIÓN BREVE DE LA FIGURAS
Figura 1. Muestra los tratamientos utilizados en los diferentes sistemas: Número de capas de recubrimiento aplicadas al sistema: 0 y 2; y Tratamiento térmico: A) no sometidos a ciclo de congelamiento/descongelamiento; B) sometidos a ciclo de congelamiento/descongelamiento.
Figura 2. Se muestra: A) sistemas recubiertos con película PVA/Pectina con ciclo congelamiento/descongelamiento, B) sistemas recubiertos con película PVA/Pectina sin ciclo congelamiento/descongelamiento, C) sistemas sin recubrimiento.
Figura 3. A) Se observa la solubilidad que permite la película de PVA/Pectina en los diferentes sistemas y diferentes tratamientos, B) acercamiento del tratamiento B, donde se observa la película de PVA/Pectina aún adherida a los sistemas.
Figura 4. Se observan los sistemas tratados con PVA/pectina después de 20 min en el simulador ex vivo gastrointestinal.
Figura 5. Fotografías que muestran: A) el sistema con tratamiento A, la película de PVA/Pectina no logró adherirse de manera adecuada, B) acercamiento del sistema A, se observa la película PVA/Pectina desprendida.
Figura 6. Se muestra la solubilidad de los sistemas a diferentes tiempos de estudio en el simulador gastrointestinal: A) después de 4 min, B) tras 9 min y, C) a los 20 min. Figura 7. Se muestran los criterios seguidos para la evaluación del perfil de liberación del colorante rojo carmín en los hidrogeles: A) el colorante se depositó dentro del hidrogel en cantidades de 25, 50, 100mg. B) el colorante se combinó con la formulación de PVA-Pectina en cantidades de 20mg. Figura 8. Se muestra la cinética de liberación del colorante incorporado en la formulación de PVA-Pectina durante la elaboración del hidrogel. Las primeras dos horas de evaluación corresponden al simulador de Estómago, mientras que las cuatro horas restantes corresponden al simulador de Intestino
Figura 9. Se muestra la cinética de liberación del colorante depositado en los hidrogeles en forma de cubo. La liberación de colorante en el hidrogel se presenta en gran cantidad después de 20 horas en simulación, en la sección de colon transverso.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere a composiciones poliméricas gelificadas que admiten la incorporación de diferentes sustancias con la finalidad de ser un transporte hacia el sistema intestinal, permitiendo una liberación de las mismas en el colon o en algún otro sitio a lo largo del tracto gastrointestinal. Dentro de la gama de sustancias que se permite incorporar a las composiciones poliméricas gelificadas de conformidad con la invención se incluyen por ejemplo: compuestos químicos, sustancias farmacéuticas, sustancias bioactivas, nutrientes, aditivos alimentarios, colorantes, geles, cápsulas, granulados, esferas, partículas, nanopartículas, siendo posible la incorporación individual o combinada de estas u otras sustancias.
La composición poliméríca de conformidad con la invención proporciona un medio de liberación controlada que permite eliminar o reducir efectos no esperados por ejemplo que la sustancia liberada exceda los requerimientos terapéuticos o nutrícíonales causando toxicidad, o bien que sea eficaz al no ser entregado en las dosis requeridas.
Adicionalmente, el medio de liberación controlada que se proporciona con la presente invención, permite la liberación dirigida a lugares específicos, garantizando que la(s) sustancia(s) de interés sea(n) liberada(s) en el lugar requerido, manteniendo su integridad hasta ese momento.
Asi, como un objeto de la invención se tiene el de proporcionar una composición polimérica gelificada a ser utilizada como base para la elaboración de por ejemplo: un sistema de liberación farmacéutica controlada, un excipiente incluido en alguna forma farmacéutica, un vehículo para liberación de activos que pudieran tener elementos funcionales en la industria de alimentos y confitería. O bien, para ser utilizada por ejemplo como un recubrimiento comestible, transparente o con color agregado.
De acuerdo con la invención, la composición polimérica contiene un polímero natural que se selecciona del grupo de polisacáridos tales como: pectina, fructanos, quitosana, quitina, celulosas, almidones, almidones modificados, amilosas, amilopectinas, mananos, galactomananos, y arabinocilanos. Y contiene además un polímero sintético soluble en agua seleccionado del grupo de: polietilenglicol, alcohol polivinílico, polivinil pirolidona, ácido poliacrílico, y polifosfatos. La composición polimérica de conformidad con la invención mejora las propiedades mecánicas de los geles, que habrán de ser utilizados como vehículos, películas, recubrimientos, geles, hidrogeles y/o conjugados poliméricos, al tratarse de una composición biocompatible, biodegradable y no tóxica.
La composición polimérica de la invención, cuando se encuentra en una forma gelificada soporta pHs ácidos, haciendo posible tener formulaciones con una potencial aplicación como sistemas acarreadores de sustancias bioactivas, fármacos, nutrientes, entre otros. Así como potenciales recubrimientos poliméricos para la protección de los mismos. La composición íntegra permita la incorporación de activos para su potencial liberación en cualquier parte del sistema gastrointestinal siendo de gran utilidad en la industria alimenticia y/o en la industria farmacéutica. En una modalidad preferida de la invención, la composición polimérica se forma a partir de un polímero natural como la pectina, presente en un porcentaje que va del 1 al 6 %; y un polímero sintético como el alcohol polivinílico con peso molecular de 89 000 a 98 000 KDa, y que está presente en un porcentaje que va del 5 al 15 %.
MEJOR METODO PARA LA REALIZACIÓN DE LA INVENCIÓN
Con el propósito de permitir una mayor comprensión de la invención se proporciona detalle de algunos aspectos de la misma, así como los ejemplos no limitativos que se describen a continuación.
EJEMPLO 1 Composición polimérica de PVA/Pectina
Se realizó una mezcla de polímeros PVA (7.8%) y pectina (5%). Primeramente, se añadió poco a poco el PVA en 100 mi de agua a 80°C, agitando hasta su completa dispersión. Posteriormente, se agregó lentamente la pectina cítrica, con la finalidad de evitar la formación de grumos. El gel formado se dejó enfriar para su posterior uso.
Mediante el uso de un simulador ex vivo gastrointestinal se llevó a cabo la determinación del tiempo de erosión de un recubrimiento elaborado con la composición polimérica de conformidad con la invención, y dispuesto sobre diferentes sistemas de prueba consistentes en productos comestibles como: formas farmacéuticas en presentación de comprimidos, confites y chocolates. La erosión se realizó en un medio ácido simulando las condiciones del estómago. Los detalles de la metodología utilizada para la formulación de las películas poliméricas y/o recubrimientos elaborados con la composición polimérica de conformidad con la invención, asf como también las pruebas en el simulador del tracto digestivo se detallan a continuación.
Recubrimiento de los sistemas de prueba a. Productos de la industria farmacéutica: comprimidos disponibles comercialmente. b. Recubrimiento sobre productos de la industria alimenticia: pastillas de goma conocidas también como gomitas o gominolas, disponibles comercialmente. c. Recubrimiento sobre productos de la industria alimenticia: chocolate de barra disponible comercialmente.
Utilizando un pincel, se hicieron 0 y 2 capas de recubrimiento a cada sistema, una parte de ellos se sometió al proceso de congelamiento/descongelamiento y otro, únicamente se dejó secar a temperatura ambiente. Ambos procesos reposaron por 48 horas.
Una vez obtenidas las películas de cada sistema, se sometieron al simulador gastrointestinal. El simulador gastrointestinal consistió en una solución de agua destilada ajustada a un pH de 2.50 a una temperatura de 37°C y en agitación constante durante 2 h.
Los resultados mostraron un bajo índice de adherencia de las películas en cada uno de los sistemas, probablemente debido a un bajo índice de porosidad y a una superficie altamente lisa, lo que ocasionó que la película no permaneciera adherida a la superficie. La Figura 1 muestra los tratamientos diferentes sistemas con 0 y 2 capas de recubrimiento. En el panel A) se observan los sistemas no sometidos a tratamiento térmico (ciclo de congelamiento/descongelamiento); en el panel B) se observan los sistemas sometidos a tratamiento térmico (ciclo de congelamiento/descongelamiento).
Para todos los sistemas de prueba, después del período de 48 horas, se sometieron al simulador ex vivo gastrointestinal.
Posteriormente, los sistemas permanecieron en agitación constante; en la Figura 2A se muestra que hay una rápida solubilidad del sistema, debido a que la película que los recubre permaneció en forma de hidrogel con un alto contenido de agua, el cual en esta forma no se adhirió en la superficie, en cambio, en la Figura 2B, la película permaneció adherida en la superficie, debido a que estaba deshidratada (Figura 3).
Después de 20 minutos, la película logró desprenderse de la superficie en B, tal como se muestra en la Figura 4, pero se puntualiza en que los sistemas utilizados se solubilizaron completamente, en cambio la película que recubría los sistemas aún permanecieron sin disolverse en el simulador.
Para el recubrimiento con películas poliméricas PVA/pectina se requiere un sistema más poroso y menos liso en su superficie, con la finalidad de obtener mayor adherencia. Por esto se propuso el uso de gomitas recubiertas de azúcar y caramelos tipo tix-tix, los cuales poseen una superficie más rugosa y porosa, respectivamente.
Se realizó el mismo proceso de recubrimiento para ambos sistemas (cero y dos capas) y en las mismas condiciones en el simulador gastrointestinal (37°C, pH -2.5), obteniendo b siguiente:
A los pocos minutos, la película que recubría al sistema A comenzó a separarse de su superficie. Estos resultados probablemente se deben a la poca adherencia de la película a la superficie del sistema A, el cual aún estaba en forma de hidrogel, en cambio, la película formada en B fue totalmente adherida a la superficie debido a la formación de una película flexible y libre de humedad, lo que ocasionó una alta adherencia.
La adherencia de la película en B ocasionó una mayor protección a la solubilidad durante el proceso de simulación. Después de 4 minutos, se observó un incremento en la coloración de las soluciones, lo que indica un aumento en la solubilidad de los sistemas en el simulador.
Las películas poliméricas, deshidratadas, formadas a partir de la composición polimérica de la invención mostraron una mayor adherencia en la superficie de los sistemas, lo que sugiere una mayor protección contra la solubilidad en el simulador gastrointestinal.
EJEMPLO 2
Composición polimérica de PVA/Pectina
Se realizó una mezcla de polímeros PVA (7.5%) y pectina (5%). Se añadió poco a poco el PVA en 100 mi de agua a 80°C, se mantuvo en agitación constante hasta su completa disolución. Se agregó posteriormente la pectina cítrica, manteniendo en agitación constante a 80°C hasta su disolución.
Preparación de un hidrooel
Una vez enfriada la mezcla polimérica preparada de acuerdo a lo antes descrito, se vertió en tapas de tubos cónicos de 50 mL, utilizadas como moldes para el hidrogel, posteriormente se mantuvo en congelación (-80°C) durante 6 días.
Después del tiempo transcurrido los hidrogeles se perforaron con una espátula cuidadosamente para colocar dentro de ellos el colorante rojo carmín en una cantidad de 100, 50 y 25mg, posteriormente se cubrieron con la misma solución PVA-PECTINA y se congelaron nuevamente durante 2 días Perfil de liberación de colorante roio carmín en el hidrooel La liberación del colorante inmerso en los geles se evaluó haciendo uso de un simulador ex vivo gastrointestinal, y de acuerdo con los dos criterios siguientes:
1) Colorante ubicado dentro del hidrogel en cantidades de 25, 50, 100mg para A, B y C respectivamente; y 2) Colorante combinado con la formulación de PVA-Pectina en cantidades de 20mg para cada gel. (Figura 7)
El simulador ex vivo gastrointestinal en el que se llevó a cabo la evaluación de liberación consta de 5 reactores que corresponden a Estomago, Intestino delgado y las tres secciones del Colon (Ascendente, Transverso y Descendiente). El sistema mantiene condiciones fisiológicas (con las enzimas características de cada sección y al pH adecuado) y temperatura constante a 37° C.
El medio del estómago se ajustó a un pH inicial de 2 a 2.5, se le agregó Pepsina y se dejaron los hidrogeles durante dos horas.
Posteriormente se ajustó el medio a pH 5 - 5.5 (condiciones del intestino delgado) se le agregó Lipasa, Pancreatina y Bilis porcina (disponibles comercialmente), con una velocidad de agitación de 50 rpm, para así permitir la difusión del colorante rojo carmín contenido en los hidrogeles, la evaluación se mantuvo durante 4 horas. (Figuras 8 y 9).
La medición de liberación del colorante a partir de los hidrogeles se llevó a cabo por método colorimétríco empleando espectroscopia ultravioleta-visible, comparando contra una curva de calibración del colorante rojo carmín elaborada ex profeso. Los resultados demostraron que los hidrogeles preparados combinando el colorante con la formulación de la PVA-Pectina, presentaron un perfil de liberación más rápido (Figura 8) que los hidrogeles en la forma de cubos (Figura 9).

Claims

REIVINDICACIONES
1. Una composición poliméríca gelificada para la liberación controlada en el tracto digestivo que comprende:
a. un polímero natural seleccionado del grupo de: polisacárídos tales como pectina, fructanos, quitosana, quitina, celulosas, almidones, almidones modificados, amilosas, amilopectinas, mananos, galactomananos, y arabinocilanos;
b. un polímero sintético seleccionado del grupo de polímeros sintéticos solubles en agua tales como: polietilenglicol, alcohol polivinílico, polivinil pirolidona, ácido poliacrílico, polifosfatos.
2. Una composición poliméríca de acuerdo a la reivindicación 1 caracterizada porque el polímero natural es una pectina y en un porcentaje de 1 - 6%.
3. Una composición poliméríca de acuerdo a la reivindicación 1 caracterizada porque el polímero sintético es alcohol polivinílico de peso molecular 89,000 -
98,000 KDa y en un porcentaje de 5 - 15%.
4. Uso de la composición poliméríca como se describe en alguna de las reivindicaciones 1 - 3 para la elaboración de un vehículo para la industria farmacéutica.
5. Uso de la composición poliméríca como se describe en alguna de las reivindicaciones 1 - 3 para la elaboración de un vehículo para la industria alimenticia.
6. Uso de la composición poliméríca como se describe en alguna de las reivindicaciones 1 - 3 para la elaboración de una película.
7. Uso de la composición poliméríca como se describe en alguna de las reivindicaciones 1 - 3 para la elaboración de un hidrogel.
8. Uso de la composición poliméríca como se describe en alguna de las reivindicaciones 1 - 3 para la elaboración de un gel.
9. Uso de ia composición poiiméríca como se describe en alguna de las reivindicaciones 1 - 3 para la elaboración de un conjugado polimérico.
10. Uso de la composición polimérica como se describe en alguna de las reivindicaciones 1 - 3 para la elaboración de un recubrimiento.
11. Uso de la composición polimérica como se describe en alguna de las reivindicaciones anteriores para la incorporación de sustancias entre las que se incluyen: fármacos, aditivos alimentarios, sustancias bioactivas, nutrientes, colorantes, geles, cápsulas, granulados, esferas, partículas, nanopartículas y/o mezclas de los mismos.
PCT/MX2016/000108 2015-10-15 2016-10-11 Composición polimérica WO2017065597A2 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/768,627 US20180303942A1 (en) 2015-10-15 2016-10-11 Polymer composition
JP2018539219A JP2018538421A (ja) 2015-10-15 2016-10-11 ポリマー組成物
EP16855814.6A EP3363861A4 (en) 2015-10-15 2016-10-11 Polymer composition
BR112018007616A BR112018007616A2 (pt) 2015-10-15 2016-10-11 composição polimérica
CN201680073021.3A CN108431127A (zh) 2015-10-15 2016-10-11 聚合物组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2015014524A MX2015014524A (es) 2015-10-15 2015-10-15 Composición polimérica.
MXMX/A/2015/014524 2015-10-15

Publications (2)

Publication Number Publication Date
WO2017065597A2 true WO2017065597A2 (es) 2017-04-20
WO2017065597A3 WO2017065597A3 (es) 2017-08-24

Family

ID=58517515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2016/000108 WO2017065597A2 (es) 2015-10-15 2016-10-11 Composición polimérica

Country Status (7)

Country Link
US (1) US20180303942A1 (es)
EP (1) EP3363861A4 (es)
JP (1) JP2018538421A (es)
CN (1) CN108431127A (es)
BR (1) BR112018007616A2 (es)
MX (1) MX2015014524A (es)
WO (1) WO2017065597A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107286547A (zh) * 2017-07-31 2017-10-24 海南大学 一种甲壳素液化产物/聚乙烯醇共混膜的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763394A (zh) * 2019-04-01 2020-10-13 中国科学院化学研究所 一种抗菌膜及其制备方法与用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646206A (en) * 1993-04-23 1997-07-08 The United States Of America As Represented By The Secretary Of Agriculture Films fabricated from mixtures of pectin and poly(vinyl alchohol)
EP1184033A1 (en) * 2000-09-01 2002-03-06 Warner-Lambert Company Pectin film compositions
DE10309064A1 (de) * 2003-03-03 2004-09-16 Clariant Gmbh Polymere Zusammensetzung auf Basis von PVA
JP4694145B2 (ja) * 2004-05-17 2011-06-08 株式会社 メドレックス 経口腸溶性製剤
US20110150974A1 (en) * 2004-08-06 2011-06-23 Daiichi Pharmaceutical Co., Ltd. Agent For Oral Mucosal Administration
US20060257350A1 (en) * 2005-05-13 2006-11-16 The Gillette Company Shave composition containing three types of lubricants
CN101120953B (zh) * 2006-08-10 2012-05-23 上海新菲尔生物制药工程技术有限公司 中药片剂全水型薄膜包衣预混剂
CN101628117B (zh) * 2009-08-18 2011-02-16 北京航洋胶囊技术有限公司 一种咀嚼软胶囊皮、咀嚼软胶囊药物及其制备方法
CN102327246A (zh) * 2011-07-27 2012-01-25 连云港康力特药业有限公司 一种中药含片用薄膜包衣及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107286547A (zh) * 2017-07-31 2017-10-24 海南大学 一种甲壳素液化产物/聚乙烯醇共混膜的制备方法

Also Published As

Publication number Publication date
EP3363861A4 (en) 2018-11-07
CN108431127A (zh) 2018-08-21
BR112018007616A2 (pt) 2018-10-23
JP2018538421A (ja) 2018-12-27
US20180303942A1 (en) 2018-10-25
MX2015014524A (es) 2017-04-14
WO2017065597A3 (es) 2017-08-24
EP3363861A2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
Khotimchenko Pectin polymers for colon-targeted antitumor drug delivery
Sun et al. pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil
Jain et al. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research
Andishmand et al. Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol
Coviello et al. Polysaccharide hydrogels for modified release formulations
Tsai et al. Effect of gum arabic-modified alginate on physicochemical properties, release kinetics, and storage stability of liquid-core hydrogel beads
US20050226905A1 (en) Biocompatible compositions as carriers or excipients for pharmaceutical and nutraceutical formulations and for food protection
US20070087939A1 (en) Biopolymer compositions and products thereof
Selvakumaran et al. Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: Effect of cross linker
JP2000355534A (ja) 薬剤、塗料ボールおよび他の調合物に使用することのできる、ゼラチンを含まない可撓性のあるカプセル材
Ray et al. Alginate-based hydrogels for drug delivery applications
Tsirigotis-Maniecka et al. Microencapsulation of hesperidin in polyelectrolyte complex microbeads: Physico-chemical evaluation and release behavior
Khlibsuwan et al. Modification of alginate beads using gelatinized and ungelatinized arrowroot (Tacca leontopetaloides L. Kuntze) starch for drug delivery
JP6519930B2 (ja) 水溶性ヒアルロン酸ゲル及びその製造方法
Rao et al. Novel chitosan-based pH sensitive micro-networks for the controlled release of 5-fluorouracil
Chen et al. Novel porous starch/alginate hydrogels for controlled insulin release with dual response to pH and amylase
Pardeshi et al. Xyloglucan for drug delivery applications
Boateng et al. Composite sodium alginate and chitosan based wafers for buccal delivery of macromolecules.
WO2017065597A2 (es) Composición polimérica
Ren et al. Design and preparation of a novel colon-targeted tablet of hydrocortisone
JP5890110B2 (ja) 可食性ゼリー状組成物、ゼリー状製剤及びゼリー状製剤の製造方法
Hu et al. Preparation and characterization of alginate-hyaluronic acid-chitosan based composite gel beads
Ren et al. Design and preparation of a novel colon-targeted tablet of hydrocortisone
Waterhouse et al. Porous three-dimensional polymer composites for tailored delivery of bioactives and drugs
Hasnain et al. Graft copolymers of chitosan in drug delivery applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855814

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2018539219

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 15768627

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018007616

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016855814

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018007616

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180416