WO2017065118A1 - Hydraulic transmission device - Google Patents

Hydraulic transmission device Download PDF

Info

Publication number
WO2017065118A1
WO2017065118A1 PCT/JP2016/080030 JP2016080030W WO2017065118A1 WO 2017065118 A1 WO2017065118 A1 WO 2017065118A1 JP 2016080030 W JP2016080030 W JP 2016080030W WO 2017065118 A1 WO2017065118 A1 WO 2017065118A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
oil passage
hydraulic
continuously variable
gear
Prior art date
Application number
PCT/JP2016/080030
Other languages
French (fr)
Japanese (ja)
Inventor
智之 辻
Original Assignee
株式会社神崎高級工機製作所
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神崎高級工機製作所, ヤンマー株式会社 filed Critical 株式会社神崎高級工機製作所
Priority to JP2017545188A priority Critical patent/JP6934813B2/en
Priority to CN201680059099.XA priority patent/CN108138928B/en
Publication of WO2017065118A1 publication Critical patent/WO2017065118A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H39/00Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution
    • F16H39/04Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity

Definitions

  • the present invention relates to a hydraulic transmission.
  • a work vehicle such as a combiner includes a continuously variable transmission case incorporating a pair of hydraulic continuously variable transmissions that are a combination of a hydraulic pump and a hydraulic motor, and an oil passage block attached to one side of the continuously variable transmission case It is common practice to install a hydraulic transmission.
  • a technique in which a hydraulic servo mechanism for operating each hydraulic continuously variable transmission is built in a continuously variable transmission case is already known (see, for example, Patent Document 1).
  • the present invention has a technical problem of providing a hydraulic transmission that has been improved by examining the current situation as described above.
  • 1st aspect of this invention is equipped with the continuously variable transmission case which incorporated the pair of the hydraulic continuously variable transmission which combined a hydraulic pump and a hydraulic motor, and the oil path block attached to one side of the said continuously variable transmission case.
  • the hydraulic servo mechanism for operating each of the hydraulic continuously variable transmissions is distributed and arranged on both sides of the both hydraulic continuously variable transmissions in the continuously variable transmission case.
  • a closed loop oil passage for each of the hydraulic continuously variable transmissions and a charge oil passage connecting both the closed loop oil passages are formed, and a servo oil passage connecting the charge oil passage and each of the hydraulic servo mechanisms is formed.
  • the oil passage block is formed toward the continuously variable transmission case so as to extend perpendicular to the charge oil passage and in parallel with each other.
  • each closed loop oil passage is orthogonal to a bypass oil passage extending in parallel with the charge oil passage, and the closed loop oil passage and the charge A check valve is disposed at a position orthogonal to the oil passage, and a relief valve is disposed at a position orthogonal to each of the closed loop oil passage and the bypass oil passage.
  • a surplus relief valve that discharges surplus hydraulic oil in the charge oil passage is connected to one end side of the charge oil passage. It is that.
  • a hydraulic type comprising a continuously variable transmission case incorporating a pair of hydraulic continuously variable transmissions that are a combination of a hydraulic pump and a hydraulic motor, and an oil passage block attached to one side of the continuously variable transmission case.
  • a hydraulic servomechanism for operating each of the hydraulic continuously variable transmissions is arranged in the continuously variable transmission case so as to be distributed to both ends across the both hydraulic continuously variable transmissions.
  • the oil passage block is formed from the oil passage block toward the continuously variable transmission case so as to be orthogonal to the oil passage and parallel to each other, servo oil passages for the respective hydraulic servo mechanisms are provided.
  • the continuously variable transmission case along a side of each hydraulic servo mechanism closer can be formed by and reduced as much as possible into linearly. Therefore, the servo oil passages can be easily formed in the continuously variable transmission case or the oil passage block, the workability is good, and the manufacturing can be performed at low cost.
  • the check valve and the relief valve are separately arranged for each closed loop oil passage, an expensive check relief valve (having both a check function and a relief function) is provided. This also contributes to the cost reduction of the hydraulic transmission.
  • FIG. 1 It is an expanded sectional view of turning output in a mission case. It is a back sectional view of an auxiliary transmission gear mechanism. It is a back sectional view of a PTO boss part. It is a rear surface sectional view of another example in which a PTO shaft is attached to a PTO boss part. It is a back sectional view of a turning brake. It is a left view of the vehicle drive device which shows another example of a lubrication structure. It is sectional drawing of the axle front end side. It is sectional drawing of an oil path block. It is sectional drawing of a hydraulic transmission (a continuously variable transmission case and an oil path block).
  • FIG. 1 An expanded sectional view of turning output in a mission case. It is a back sectional view of an auxiliary transmission gear mechanism. It is a back sectional view of a PTO boss part. It is a rear surface sectional view of another example in which a PTO shaft is attached to a PTO boss part. It is a back sectional view of a
  • FIG. 2 is a partial cross-sectional view of a hydraulic transmission (a continuously variable transmission case and an oil passage block), in which (a) is a partial cross-sectional view of a side surface, and (b) is a combined cross-sectional view with a plane cross-section.
  • the left side in the forward direction of the traveling machine body 1 is simply referred to as the left side
  • the right side in the forward direction is also simply referred to as the right side.
  • a normal combine as a work vehicle includes a traveling machine body 1 supported by a pair of left and right crawler belts 2 made of rubber crawlers as a traveling portion.
  • a harvesting unit 3 for harvesting uncut rice grains such as rice, wheat, soybeans or corn while being harvested is mounted by a single-acting lifting hydraulic cylinder 4 so as to be adjustable up and down. .
  • a threshing unit 9 for threshing the harvested cereal meal supplied from the harvesting unit 3 is mounted on the left side of the traveling machine 1.
  • a grain sorting mechanism 10 for performing swing sorting and wind sorting is arranged in the lower part of the threshing unit 9.
  • a driver's cab 5 on which an operator is boarded is mounted on the front right side of the traveling machine body 1.
  • An engine 7 as a power source is disposed on the cab 5 (below the driver seat 42).
  • a discharge conveyor 8 is arranged.
  • the grain discharge conveyor 8 is tilted toward the outside of the machine so that the grains in the grain tank 6 are carried out by the grain discharge conveyor 8.
  • the mowing unit 3 includes a feeder house 11 that communicates with the handling port 9a of the front part of the threshing unit 9 and a horizontally long bucket-shaped grain header 12 that is provided continuously at the front end of the feeder house 11.
  • a scraping auger 13 platform auger
  • a take-up reel 14 with a tine bar is disposed above the front portion of the take-up auger 13.
  • a clipper-shaped first cutting blade 15 is disposed in front of the grain header 12.
  • Left and right weed bodies 16 are provided to project from the left and right sides of the front part of the grain header 12.
  • a supply conveyor 17 is installed in the feeder house 11.
  • a cutting port 9a positioned at the feed end side of the supply conveyor 17 is provided with a cutting grain input beater 18 (front rotor).
  • the lower surface portion of the feeder house 11 and the front end portion of the traveling machine body 1 are connected via an elevating hydraulic cylinder 4, and the mowing unit 3 uses an elevating fulcrum as a mowing input shaft 89 (feeder house conveyor shaft) described later.
  • the cylinder 4 moves up and down.
  • the tip side of the uncut grain culm between the left and right weed bodies 16 is scraped by the scraping reel 14, and the base side of the uncut grain culm is cut by the first cutting blade 15.
  • the harvested cereal grains are collected near the entrance of the feeder house 11 near the center of the grain header 12 in the lateral width.
  • the whole amount of the harvested cereal meal of the grain header 12 is conveyed by the supply conveyor 17 and is configured to be input to the handling port 9 a of the threshing unit 9 by the beater 18.
  • the grain header 12 is provided with a horizontal control hydraulic cylinder (not shown) that rotates about the horizontal control fulcrum shaft, and the grain header 12 is adjusted by the horizontal control hydraulic cylinder to adjust the horizontal inclination of the grain header 12. 12 and the first cutting blade 15 and the take-up reel 14 can be supported horizontally with respect to the field scene.
  • a handling cylinder 21 is rotatably provided in a handling chamber of the threshing unit 9.
  • a handling cylinder 21 is pivotally supported on a handling cylinder shaft 20 extended in the front-rear direction of the traveling machine body 1.
  • a receiving net 24 for allowing the grains to leak is stretched.
  • a spiral screw blade-shaped intake blade 25 projects outward in the radial direction on the outer peripheral surface of the front portion of the handling cylinder 21.
  • the harvested cereal straw introduced from the handling port 9 a by the beater 18 is conveyed toward the rear of the traveling machine body 1 by the rotation of the handling cylinder 21, and between the handling cylinder 21 and the receiving net 24. Kneaded and threshed.
  • the threshing of grains or the like smaller than the mesh of the receiving net 24 leaks from the receiving net 24.
  • the sawdust and the like that do not leak from the receiving net 24 are discharged from the dust outlet 23 at the rear of the threshing portion 9 to the field by the conveying action of the handling cylinder 21.
  • a plurality of dust feed valves (not shown) for adjusting the conveying speed of shed grains in the handling chamber are pivotally mounted on the upper side of the handling cylinder 21 so as to be rotatable. By adjusting the angle of the dust feed valve, the conveying speed (residence time) of threshing in the handling chamber can be adjusted according to the variety and properties of the harvested cereal.
  • the grain sorting mechanism 10 disposed below the threshing unit 9 includes a rocking sorter 26 for specific gravity sorting having Glen bread, chaff sheave, Glen sheave, Strollac, and the like. Further, as the grain sorting mechanism 10, a blower fan-shaped tongue 29 for supplying sorting wind to the swing sorting board 26 is provided. The threshing that has been threshed by the handling cylinder 21 and leaked from the receiving net 24 is caused by the specific gravity sorting action of the swing sorter 26 and the wind sorting action of the blower fan-shaped tang 29, so And the like), the mixture of grain and straw (second thing such as grain with branches), and sawdust and the like.
  • the first conveyor mechanism 30 and the second conveyor mechanism 31 are provided on the lower side of the swing sorter 26 as the grain sorting mechanism 10.
  • the grain (first thing) dropped from the swing sorter 26 by sorting the swing sorter 26 and the blower fan-shaped tongue 29 is collected in the glen tank 6 by the first conveyor mechanism 30 and the cereal conveyor 32. .
  • the mixture of grains and straw (second product) is returned to the sorting start end side of the swing sorting plate 26 through the second conveyor mechanism 31 and the second reduction conveyor 33 and is re-sorted by the swing sorting plate 26.
  • the sawdust and the like are configured to be discharged from the dust outlet 23 at the rear of the traveling machine body 1 to the field.
  • the cab 5 is provided with a control column 41 and a driver seat 42 on which an operator sits.
  • the steering column 41 includes an accelerator lever 40 that adjusts the rotational speed of the engine 5, a round steering handle 43 that changes the course of the traveling machine body 1 by a rotation operation by an operator, and a main body that switches the moving speed of the traveling machine body 1.
  • a shift lever 44 and a sub-shift lever 45, a cutting clutch lever 46 for driving or stopping the cutting unit 3, and a threshing clutch lever 47 for driving or stopping the threshing unit 9 are arranged.
  • a sunshade roof body 49 is attached to the front upper surface side of the Glen tank 6 via a sun visor support 48, and the sunshade roof body 49 covers the upper side of the cab 5.
  • left and right track frames 50 are arranged on the lower surface side of the traveling machine body 1.
  • the track frame 50 includes a drive sprocket 51 that transmits the power of the engine 7 to the crawler belt 2, a tension roller 52 that maintains the tension of the crawler belt 2, a plurality of track rollers 53 that hold the ground side of the crawler belt 2 in a grounded state, An intermediate roller 54 that holds the non-grounding side of the crawler belt 2 is provided.
  • the front side of the crawler belt 2 is supported by the drive sprocket 51, the rear side of the crawler belt 2 is supported by the tension roller 52, the ground side of the crawler belt 2 is supported by the track roller 53, and the non-ground side of the crawler belt 2 is supported by the intermediate roller 54 I am letting.
  • the transmission case 63 is provided with a linear hydraulic continuously variable transmission 64 for traveling speed change having a linear pump 64a and a linear motor 64b.
  • the engine 7 is mounted on the upper right side of the front part of the traveling machine body 1, and a mission case 63 is disposed on the front part of the traveling machine body 1 and on the left side of the engine 7.
  • An output shaft 65 protruding leftward from the engine 7 and a mission input shaft 66 protruding leftward from the mission case 63 are connected by an engine output belt 67 so that power can be transmitted.
  • the working unit charge pump 68 and the cooling fan 69 that drive the lifting hydraulic cylinder 4 and the like are arranged in the engine 7, and the working unit charge pump 68 and the cooling fan 69 are driven by the engine 7.
  • a turning hydraulic continuously variable transmission 70 for steering having a turning pump 70 a and a turning motor 70 b is provided in the mission case 63, and a straight hydraulic continuously variable transmission 64 and a turning hydraulic continuously variable transmission 70 are connected via a mission input shaft 66. While the output of the engine 7 is transmitted to the vehicle, the steering handle 43 and the main and auxiliary transmission levers 44 and 45 control the output of the straight hydraulic continuously variable transmission 64 and the swing hydraulic continuously variable transmission 70, so that the straight hydraulic continuously variable transmission is achieved.
  • the left and right crawler belts 2 are driven through the machine 64 and the turning hydraulic continuously variable transmission 70 to travel and move in the field.
  • straight and turning hydraulic continuously variable transmissions 64 and 70 are arranged on the upper right side of the mission case 63.
  • the straight and turning hydraulic continuously variable transmissions 64 and 70 and the transmission case 63 constitute the vehicle drive device of the present invention.
  • a handling cylinder drive case 71 that pivotally supports the front end side of the handling cylinder shaft 20 is disposed. Then, a horizontally long handling cylinder input shaft 72 for driving the handling cylinder 21 is pivotally supported on the handling cylinder drive case 71. Moreover, the counter shaft 73 penetrated in the right and left of the threshing part 9 is provided. A counter shaft 73 extending from the left and right sides of the threshing portion 9 to the left and right sides is provided so as to penetrate the threshing portion 9 in the left-right direction through the lower side of the handling cylinder 21. A working unit input pulley 83 is provided at the right end of the counter shaft 73. The right end portion of the counter shaft 73 is connected to the output shaft 65 of the engine 7 through a tension pulley type threshing clutch 84 and a working unit drive belt 85 so as to be able to transmit power.
  • a handling cylinder input shaft 72 extending in the lateral direction of the traveling machine body 1, a beater 18 arranged in the lateral direction of the traveling machine body 1, and a lateral direction of the traveling machine body 1
  • An extended cutting input shaft 89 is provided.
  • the cylinder input mechanism 90 that transmits the driving force of the counter shaft 73 to the cylinder input shaft 72 includes cylinder driving pulleys 86 and 87 and a cylinder driving belt 88, and the driving force from the engine 7 is transmitted.
  • a cylinder input mechanism 90 (cylinder driving pulleys 86 and 87 and a cylinder driving belt 88) is disposed at one end of the counter shaft 73 on the engine 7 side.
  • the cutting input mechanism 100 that transmits the driving force of the counter shaft 73 to the cutting input shaft 89 includes cutting drive pulleys 106 and 107 and a cutting drive belt 114, and one end portion on the engine 7 side where the barrel input mechanism 90 is disposed.
  • the mowing input mechanism 100 (the mowing driving pulleys 106 and 107 and the mowing driving belt 114) is disposed at the other end of the counter shaft 73 on the opposite side.
  • a cutting support frame 36 is installed in front of the threshing portion 9 on the upper surface side of the traveling machine body 1.
  • a cutting input shaft 89 is pivotally supported on the front side of the cutting support frame body 36 via a cutting bearing body in the left-right direction, and the beater shaft 82 is connected to the beater shaft 82 via a beater shaft 82.
  • 18 is pivotally supported.
  • the forward / reverse switching case 121 is attached to the left outer surface of the cutting support frame 36
  • the barrel driving case 71 is attached to the upper surface side of the cutting support frame 36.
  • a left-right cutting input shaft 89 for driving the supply conveyor 17 in the feeder house 11 is provided.
  • the cutting drive force transmitted from the engine 7 to one end of the counter shaft 73 on the engine 7 side is transferred from the other end of the counter shaft 73 opposite to the engine 7 to the forward / reverse transmission shaft 122 of the cutting forward / reverse switching case 121.
  • the beater shaft 82 is driven via the forward bevel gear 124 or the reverse bevel gear 125 of the cutting forward / reverse switching case 121. Further, the cutting drive force is transmitted to the cutting input shaft 89 from the beater shaft 82 on which the beater 18 is pivotally supported.
  • the beater 18 is pivotally supported on the beater shaft 82 facing left and right, and the driving force of the engine 7 is transmitted from the one end portion of the beater shaft 82 to the cutting unit 3.
  • the cutting forward / reverse rotation switching case 121 is disposed at the other left and right ends opposite to the engine 7 in 82, and the cutting forward / reverse rotation switching case 121 is connected to the cutting forward / reverse rotation switching case 121 from the other end of the counter shaft 73 opposite to the engine 7. 7 driving force is transmitted.
  • a handling cylinder input shaft 72 facing left and right is provided on the front side of the threshing section 9, and the driving force transmitted from the engine 7 to one end of the counter shaft 73 on the engine 7 side is transmitted to the handling cylinder input shaft 72.
  • a handling cylinder that is transmitted to one end of the engine 7 side, is provided with a handling cylinder input shaft 72 on the front side of the threshing part 9, the handling cylinder input shaft 72 is arranged in the lateral direction of the traveling machine body 1, and is arranged in the longitudinal direction of the traveling machine body 1
  • the handle cylinder 21 is pivotally supported on the shaft 20, and the front end side of the handle cylinder shaft 20 is connected to the left and right other end portions of the handle cylinder input shaft 72 opposite to the engine 7 via the bevel gear mechanism 75, and the counter shaft 73.
  • the driving force of the engine 7 is transmitted from the left and right other ends opposite to the engine 7 to the grain sorting mechanism 10 that sorts the grain after threshing and the cutting part 3.
  • the right end of the cylinder input shaft 72 is connected to the right end of the counter shaft 73 on the side close to the engine 7 via the cylinder driving pulleys 86 and 87 and the cylinder driving belt 88.
  • a front end side of the handling cylinder shaft 20 is connected to a left end portion of the handling cylinder input shaft 72 extending in the left-right direction via a bevel gear mechanism 75.
  • the power of the engine 7 is transmitted from the right end portion of the counter shaft 73 to the front end side of the barrel shaft 20 via the barrel input shaft 72, and the barrel 21 is rotationally driven in one direction.
  • the left end of the counter shaft 73 on the side away from the engine 7 is connected to the left end of the hot shaft 76 on which the blower fan-shaped hot spring 29 is supported via the hot drive pulleys 101 and 102 and the hot drive belt 103.
  • the parts are connected.
  • the power of the engine 7 is transmitted from the left end portion of the counter shaft 73 to the left end portion of the tang shaft 76, and the tang 29 is rotated in one direction.
  • the left end of the Karatsu shaft 76 is connected to the left end of the first conveyor shaft 77 of the first conveyor mechanism 30 and the left end of the second conveyor shaft 78 of the second conveyor mechanism 31 via the conveyor drive belt 111.
  • the parts are connected.
  • the left end portion of the second conveyor shaft 78 is connected to the left end portion of the crank-shaped swing drive shaft 79 pivotally supported by the rear portion of the swing sorting plate 26 via the swing sorting belt 112.
  • the threshing clutch 84 is controlled to be turned on and off by the operation of the threshing clutch lever 47 by the operator, and each part of the grain sorting mechanism 10 and the handling cylinder 21 are driven by the turning on operation of the threshing clutch 84.
  • the cereal conveyor 32 is driven via the first conveyor shaft 77, and the first selected grain of the first conveyor mechanism 30 is collected in the Glen tank 6.
  • the second reduction conveyor 33 is driven via the second conveyor shaft 78, and the second selected grain (second product) mixed with the sawdust from the second conveyor mechanism 31 is moved to the upper side of the swing sorter 26. Returned to Further, in a structure in which a dust spreader spreader (not shown) is provided in the dust outlet 23, the left end portion of the Karatsu shaft 76 is connected to the spreader via the spreader drive pulley 104 and the spreader drive belt 105.
  • a beater shaft 82 that pivotally supports the beater 18 is provided.
  • a forward / reverse switching case 121 is arranged at the left end of the beater shaft 82 on the side away from the engine 7.
  • a forward / reverse transmission shaft 122 and a forward / reverse switching shaft 123 are provided in the forward / reverse switching case 121 while the left end of the beater shaft 82 is inserted into the forward / reverse switching case 121.
  • the beater shaft 82 and the forward / reverse transmission shaft 122 are arranged on substantially the same axis.
  • the left end portion of the forward / reverse transmission shaft 122 is connected to the left end portion of the counter shaft 73 via the mowing drive pulleys 106 and 107, the mowing drive belt 114, and the mowing clutch 115 (tension pulley).
  • a cutting input shaft 89 is provided as a conveyor input shaft that pivotally supports the feed end side of the supply conveyor 17.
  • a header drive shaft 91 is rotatably supported on the right side rear side of the grain header 12. Via the cutting drive chain 116 and the sprockets 117 to 119, the right end of the beater shaft 82 and the right end of the cutting input shaft 89 can be transmitted to the left end of the header drive shaft 91 extending in the left-right direction.
  • a scraping shaft 93 that pivotally supports the scraping auger 13 is provided.
  • An intermediate portion of the header drive shaft 91 is connected to the right end portion of the drive shaft 93 via a drive drive chain 92.
  • a reel shaft 94 that pivotally supports the take-up reel 14.
  • the intermediate portion of the header drive shaft 91 is connected to the right end portion of the reel shaft 94 via an intermediate shaft 95 and reel drive chains 96 and 97.
  • the first cutting blade 15 is connected to the right end portion of the header drive shaft 91 via a first cutting blade drive crank mechanism 98.
  • the feed conveyor 17, the auger 13, the take-up reel 14 and the first cutting blade 15 are driven and controlled by the turning-on / off operation of the cutting clutch 115 so that the tip side of the uncut grain culm in the field is continuously cut. It is composed.
  • the forward rotation bevel gear 124 integrally formed with the forward / reverse transmission shaft 122, the reverse rotation bevel gear 125 rotatably supported on the cutting input shaft 89, and the reverse rotation bevel gear 125 are connected to the forward rotation bevel gear 124.
  • An intermediate bevel gear 126 is installed in the forward / reverse switching case 121.
  • the intermediate bevel gear 126 is always meshed with the forward bevel gear 124 and the reverse bevel gear 125.
  • a slider 127 is slidably supported on the beater shaft 82 by a spline engagement shaft.
  • the slider 127 is configured to be detachably engageable with the forward rotation bevel gear 124 via the claw clutch-shaped forward rotation clutch 128, and the slider 127 is engaged with the reverse rotation bevel gear 125 via the claw clutch-shaped reverse rotation clutch 129. It is configured to be detachably engageable.
  • a forward / reverse switching shaft 123 for sliding the slider 127 is provided, and a forward / reverse switching arm 130 is provided on the forward / reverse switching shaft 123, and the forward / reverse switching arm 130 is operated by operating a forward / reverse switching lever (forward / reverse operation tool).
  • the forward / reverse switching shaft 123 is swung to rotate, the slider 127 is brought into and out of contact with the forward rotation bevel gear 124 or the reverse rotation bevel gear 125, and the forward rotation bevel gear 124 or reverse rotation via the forward rotation clutch 128 or the reverse rotation clutch 129.
  • the slider 127 is selectively locked to the bevel gear 125, and the cutting input shaft 89 is connected to the forward / reverse transmission shaft 122 in the forward or reverse direction.
  • the right end of the auger drive shaft 58 is connected to the output shaft 65 of the engine 7 via a tension pulley type auger clutch 56 and an auger drive belt 57.
  • the front end side of the lateral feed auger 60 at the bottom of the Glen tank 6 is connected to the left end portion of the auger drive shaft 58 via a bevel gear mechanism 59.
  • a vertical feed auger 62 of the grain discharge conveyor 8 is connected to the rear end side of the horizontal feed auger 60 via a bevel gear mechanism 61.
  • the grain discharge lever 55 which turns on and off the auger clutch 56 is provided.
  • a grain discharge lever 55 is attached to the front surface of the Glen tank 6 behind the driver seat 42 so that the operator can operate the grain discharge lever 55 from the driver seat 42 side.
  • a clipper-shaped second cutting blade 133 having substantially the same length as the first clipper-shaped cutting blade 15 is provided.
  • a second cutting blade frame for mounting the second cutting blade 133 on the traveling machine body 1, 2, and 4, a clipper-shaped second cutting blade 133 having substantially the same length as the first clipper-shaped cutting blade 15 is provided.
  • a second cutting blade frame for mounting the second cutting blade 133 on the traveling machine body 1, a left frame 134, a right frame 135, and a central frame 136 are provided.
  • a second cutting blade base 137 is fixed to the leading end side of the left frame 134, the right frame 135, and the center frame 136, thereby constituting a second cutting blade mechanism 132.
  • Left and right grounding housings 138 are provided at both ends of the second cutting blade base 137.
  • the 2nd cutting blade 133 is attached between the left and right grounding housings 138 of the 2nd cutting blade base 137 so that reciprocation is possible.
  • the base end side of the right frame 135 is rotatably supported on the cab frame of the traveling machine body 1.
  • the base end side of the central frame 136 is rotatably supported on the front frame of the traveling machine body 1.
  • a second cutting blade drive mechanism 171 that transmits a driving force from the forward / reverse switching case 121 to the second cutting blade 133 is provided.
  • the second cutting blade drive mechanism 171 includes a second cutting blade drive shaft 172 that transmits a driving force to the second cutting blade 133, and an eccentric rotation shaft 174 that is connected to the second cutting blade drive shaft 172 via the bevel gear mechanism 173.
  • the second cutting blade drive crank mechanism 175 is connected to the eccentric rotation shaft 174.
  • One end side of the second cutting blade drive shaft 172 is inserted into the forward / reverse switching case 121, the intermediate bevel gear 126 is engaged with the second cutting blade drive shaft 172, and forward / reverse transmission is transmitted via the intermediate bevel gear 126.
  • a second cutting blade drive shaft 172 is connected to the shaft 122.
  • the second blade driving crank mechanism 175 includes an eccentric rotating body 177 provided on the eccentric rotating shaft 174, a swing rotating shaft 178 connected to the eccentric rotating body 177, and a swing driving arm 179 connected to the swing rotating shaft 178.
  • the push-pull rod 180 that connects the second cutting blade 133 to the swing drive arm 179 is provided.
  • a pair of sprockets and a transmission chain for connecting the eccentric rotation shaft 174 to the forward / reverse transmission shaft 122 are provided, and forward / reverse rotation is performed via the sprocket and the transmission chain.
  • the second cutting blade 133 driving force may be transmitted from the transmission shaft 122 to the second cutting blade driving crank mechanism 175.
  • the one-way rotation of the eccentric rotation shaft 174 is converted into the swing rotation of the swing rotation shaft 178 (reciprocating rotation that rotates forward and backward within a certain range), and the swing drive arm 179 is swung.
  • the second cutting blade 133 is slid back and forth through the push-pull rod 180, and the residue (the side of the culm stock) immediately after being cut by the first cutting blade 15 is removed by the second cutting blade 133. It is configured to cut and reduce the height of the stock that remains in the field.
  • a cylindrical transmission frame 181 having a second cutting blade drive shaft 172 and a square box-shaped bevel gear case 182 having a bevel gear mechanism 173 are provided.
  • One end side of the transmission frame 181 is detachably fastened to the forward / reverse switching case 121, and a bevel gear case 182 is detachably fastened to the other end side of the transmission frame 181. That is, the left frame 134 is supported on the forward / reverse switching case 121 via the eccentric rotating shaft 174, the bevel gear case 182, and the transmission frame 181.
  • the second blade driving crank mechanism 175 is disposed in a second blade driving cover 185 that is detachably supported by the left frame 134 (see FIGS. 1 and 3).
  • the cutting unit 3 is driven by the operation of engaging the cutting clutch 115, whereby the second cutting blade 133 is operated together with the first cutting blade 15, and the tip of the uncut grain culm in the field by the first cutting blade 15.
  • the side is cut off, the tip side of the grain pod is brought into the threshing unit 9 from the feeder house 11, and the grain is taken out from the grain sorting mechanism 10 to the grain tank 6.
  • the stumps (residues) remaining on the traces of the cereal crops harvested by the first cutting blade 15 are appropriately cut at the height by the second cutting blades 133, and the stumps remaining on the field after the harvesting work (stock sources) ) Are aligned to a substantially constant height.
  • a transmission hydraulic continuously variable transmission 64 having a linear pump 64a and a linear motor 64b and a steering hydraulic hydraulic continuously variable transmission for steering having a rotational pump 70a and a rotational motor 70b in a transmission case 63.
  • a machine 70 is provided.
  • the transmission input shaft 66 of the transmission case 63 is connected to the pump shaft 258 of the rectilinear pump 64a and the pump shaft 259 of the swing pump 70a, respectively, and is driven by gear connection.
  • An engine output belt 67 is wound around a mission input pulley 169 provided on the projecting end side of the mission input shaft 66 outside the mission case 63.
  • the output of the engine 7 is transmitted to the mission input pulley 169 via the engine output belt 67, and the linear pump 64a and the swing pump 70a are driven.
  • the driving force output from the output shaft 65 of the engine 7 is applied to the pump shaft 258 of the linear pump 64a and the pump shaft 259 of the swing pump 70a via the engine output belt 67 and the mission input shaft 66, respectively.
  • hydraulic oil is appropriately sent from the rectilinear pump 64a to the rectilinear motor 64b by the power transmitted to the pump shaft 258.
  • the swing hydraulic continuously variable transmission 70 hydraulic oil is appropriately sent from the swing pump 70a to the swing motor 70b by the power transmitted to the pump shaft 259.
  • a transmission charge pump 151 that supplies hydraulic oil to the linear pump 64a, the linear motor 64b, the rotary pump 70a, and the rotary motor 70b is attached to the pump shaft 259 of the rotary pump 70a.
  • the rectilinear hydraulic continuously variable transmission 64 moves straight by changing and adjusting the tilt angle of the rotary swash plate in the rectilinear pump 64a in accordance with the amount of rotation of the main transmission lever 44 and the steering handle 43 disposed in the steering column 41.
  • the discharge direction and discharge amount of the hydraulic oil to the motor 64b are changed.
  • the rotation direction and the number of rotations of the rectilinear motor shaft 260 protruding from the rectilinear motor 64b are arbitrarily adjusted.
  • the auxiliary transmission gear mechanism 251 includes an auxiliary transmission low speed gear 254, an auxiliary transmission intermediate speed gear 255, and an auxiliary transmission high speed gear 256 that are switched by auxiliary transmission shifters 252 and 253 that are linked to each other.
  • the low speed sub-shift shifter 252 is pivotally supported on a parking brake shaft 265 (sub-transmission output shaft) located on the output side of the sub transmission gear mechanism 251.
  • the high-speed auxiliary transmission shifter 253 is pivotally supported on an auxiliary transmission countershaft 270 that constitutes the linear transmission gear mechanism 250.
  • the output rotational speed of the linear motor shaft 260 is selectively switched to three speed stages, low speed, medium speed, and high speed.
  • a neutral position (a position at which the output of the sub shift becomes zero) is provided between the low speed and the medium speed of the sub shift.
  • the parking brake shaft 265 (sub-transmission output shaft) is provided with a drum-type parking brake 266.
  • the rotational power from the auxiliary transmission gear mechanism 251 is transmitted from the auxiliary transmission output gear 267 fixed to the parking brake shaft 265 to the left and right differential mechanisms 257.
  • Each of the left and right differential mechanisms 257 includes a planetary gear mechanism 268.
  • a straight traveling pulsar 292 is provided on the parking brake shaft 265.
  • a rectilinear vehicle speed sensor 293 (see FIG. 9) is disposed opposite to the outer peripheral side of the rectilinear pulser 292. The rectilinear vehicle speed sensor 293 detects the rotational speed of the rectilinear output (also referred to as the rectilinear vehicle speed and the shift output of the auxiliary transmission output gear 267).
  • each of the left and right planetary gear mechanisms 268 includes one sun gear 271 that meshes with the auxiliary transmission output gear 267, a plurality of planet gears 272 that mesh with the sun gear 271, a ring gear 273 that meshes with the planet gear 272, and a plurality of planets. And a carrier 274 in which a gear 272 is rotatably arranged on the same circumference.
  • the left and right carriers 274 are located opposite to each other with an appropriate space on the same axis (on the sun gear shaft 275 and the left and right forced differential output shafts 277 described later).
  • the left and right sun gears 271 are fixed to both ends of the sun gear shaft 275 in the axial direction.
  • a center gear 276 is fixed to an intermediate portion in the axial direction of the sun gear shaft 275.
  • the left and right ring gears 273 are arranged concentrically with the sun gear shaft 275 in a state where the inner teeth of the inner peripheral surface mesh with the plurality of planetary gears 272.
  • the external teeth on the outer peripheral surface of each ring gear 273 are connected to the steering output shaft 285 via intermediate gears 287 and 288 for left and right turning output described later.
  • Each ring gear 273 is rotatably fitted to the left and right forced differential output shafts 277 projecting left and right outward from the outer surface of the carrier 274.
  • the left and right axles 278 are connected to the left and right forced differential output shafts 277 via final gears 278a and 278b.
  • Drive sprockets 51 are attached to the left and right axles 278.
  • the rotational power transmitted from the auxiliary transmission gear mechanism 251 to the left and right planetary gear mechanisms 268 is transmitted from the left and right axles 278 to the drive sprockets 51 at the same rotational speed in the same direction, and the left and right crawler belts 2 are transmitted in the same direction.
  • the traveling machine body 1 moves straight (forward, backward).
  • the swing hydraulic continuously variable transmission 70 changes the tilt angle of the rotary swash plate in the swing pump 70a in accordance with the amount of rotation of the main transmission lever 44 and the steering handle 43 disposed in the control column 41, thereby turning.
  • the discharge direction and discharge amount of the hydraulic oil to the motor 70b are changed.
  • a turning pulser 294 is provided on the steering counter shaft 280 (details will be described later).
  • a turning vehicle speed sensor 295 (see FIG. 9) is disposed opposite to the outer peripheral side of the turning pulser 294. The turning vehicle speed sensor 295 detects the rotation speed of the turning output (also referred to as turning vehicle speed).
  • a wet multi-plate slewing brake 279 (steering brake) provided on the slewing motor shaft 261 (steering input shaft), and an upstream reduction gear on the slewing motor shaft 261.
  • Steering counter shaft 280 connected through 281, steering output shaft 285 connected to steering counter shaft 280 through downstream reduction gear 286, and steering output shaft 285 through reverse gear 284 to left ring gear 273.
  • a right input gear mechanism 283 in which a steering output shaft 285 is connected to the right ring gear 273.
  • Rotational power of the turning motor shaft 261 is transmitted to the steering counter shaft 280 via the upstream reduction gear 281.
  • the rotational power transmitted to the steering counter shaft 280 is transmitted to the left ring gear 273 as reverse rotational power via the left intermediate gear 287 and the reverse gear 284 of the left input gear mechanism 282, while the right input gear mechanism 283 It is transmitted to the right ring gear 273 as forward rotation power via the right intermediate gear 288.
  • auxiliary transmission gear mechanism 251 When the auxiliary transmission gear mechanism 251 is neutral, power transmission from the straight-ahead motor 64b to the left and right planetary gear mechanisms 268 is blocked.
  • sub-transmission gear mechanism 251 When the sub-transmission gear mechanism 251 is set to a gear position other than neutral, power is transmitted from the linear motor 64b to the left and right planetary gear mechanisms 268 via the sub-transmission low-speed gear 254, the sub-transmission medium speed gear 255, or the sub-transmission high speed gear 256. Communicated.
  • the left ring gear 273 rotates in the reverse direction (forward rotation) and the right ring gear 273 rotates in the forward direction (reverse rotation) at the same rotation speed in the opposite directions.
  • the shift output of each motor shaft 260, 261 is transmitted to the drive sprocket 51 of the left and right crawler belts 2 via the auxiliary transmission gear mechanism 251 or the left and right differential mechanisms 257, respectively, and the vehicle speed (travel Speed) and direction of travel are determined.
  • the rotational output of the rectilinear motor shaft 260 is transmitted to the left and right sun gears 271 at the same left and right rotational speed, and the planetary gear 272 is driven.
  • the left and right crawler belts 2 are driven at the same rotational speed in the same direction via the carrier 274, and the traveling machine body 1 travels straight.
  • the left ring gear 273 is rotated forward (reversely) by the rotational power of the turning motor shaft 261 and the right ring gear. 273 reversely rotates (forward rotation).
  • one of the drive sprockets 51 of the left and right crawler belts 2 rotates forward and the other rotates backward, and the traveling machine body 1 changes its direction on the spot (also referred to as a pivot or spin turn).
  • the traveling machine body 1 turns forward while moving forward or backward.
  • the turning radius at this time is determined according to the speed difference between the left and right crawler belts 2.
  • the engine 7 turns left or right while the driving force of the engine 7 is always transmitted to the left and right crawler belts 2.
  • the hydraulic circuit 200 of the vehicle drive device includes a rectilinear pump 64a, a rectilinear motor 64b, a swing pump 70a, a swing motor 70b, and a transmission charge pump 151.
  • the rectilinear pump 64a and the rectilinear motor 64b are connected in a closed loop by a rectilinear first oil passage 201a and a rectilinear second oil passage 201b.
  • a straight traveling first oil passage 201 a and a straight traveling second oil passage 201 b constitute a straight traveling oil passage 201.
  • the turning pump 70a and the turning motor 70b are connected in a closed loop by a turning first oil passage 202a and a turning second oil passage 202b.
  • the turning first oil passage 202 a and the turning second oil passage 202 b constitute the turning closed oil passage 202.
  • the hydraulic circuit 200 of the vehicle drive device is connected to the transmission charge pump 151 via the rectilinear valve 203 that switches in response to manual operation of the main transmission lever 44 and the rectilinear valve 203. And a rectilinear cylinder 204.
  • the rectilinear valve 203 is switched and operated, the rectilinear cylinder 204 is actuated to change the swash plate angle of the rectilinear pump 64a, and the rectilinear motor shaft 260 of the rectilinear motor 64b changes the rotational speed of the rectilinear motor shaft steplessly or reversely.
  • the action is executed.
  • the hydraulic circuit 200 of the vehicle drive device also includes a hydraulic servo mechanism 205 for linear shift.
  • the hydraulic servo mechanism 205 executes a feedback operation in which the rectilinear valve 203 returns to neutral by controlling the swash plate angle of the rectilinear pump 64a, and changes the swash plate angle of the rectilinear pump 64a in proportion to the manual operation amount of the main transmission lever 44, The rotational speed of the linear motor shaft 260 of the linear motor 60b is changed.
  • the hydraulic circuit 200 of the vehicle drive device includes a swing valve 206 that switches in response to manual operation of the steering handle 43 and a swing cylinder 207 that is connected to the transmission charge pump 151 via the swing valve 206. ing.
  • the swing valve 206 When the swing valve 206 is switched, the swing cylinder 207 is operated to change the swash plate angle of the swing pump 70a, and the left / right swing that continuously changes or reverses the rotation speed of the swing motor shaft 261 of the swing motor 70b.
  • the operation is executed, and the traveling machine body 1 changes the traveling direction to the left and right to change the direction at the field headland and to correct the course.
  • the hydraulic circuit 200 of the vehicle drive device also includes a hydraulic servo mechanism 208 for turning and shifting.
  • the hydraulic servo mechanism 208 performs a feedback operation in which the swing valve 206 returns to neutral by controlling the swash plate angle of the swing pump 70a, and changes the swash plate angle of the swing pump 70a in proportion to the amount of manual operation of the steering handle 43.
  • the rotation speed of the swing motor shaft 261 of the swing motor 70b is changed.
  • a charge branching oil passage 219 (details will be described later) is connected to all the oil passages 201a, 201b, 202a, 202b of both the closed oil passages 201, 202.
  • a check valve 211 for the straight traveling first oil passage 201a is provided between the charge branching oil passage 219 and the straight traveling first oil passage 201a.
  • a check valve 211 for the straight second oil passage 201b is provided between the charge branch oil passage 219 and the straight second oil passage 201b.
  • the straight oil closing path 201 includes two check valves 211.
  • a check valve 212 for the turning first oil passage 202a is provided between the charge branch oil passage 219 and the turning first oil passage 202a.
  • a check valve 212 for the turning second oil passage 202b is provided between the charge branch oil passage 219 and the turning second oil passage 202b. Therefore, the turning oil closing path 202 also includes two check valves 212.
  • a straight bypass oil passage 213 is connected to the straight advance first oil passage 201a and the straight advance second oil passage 201b.
  • a rectilinear side bidirectional relief valve 215 is provided in the rectilinear bypass oil passage 213.
  • a turning bypass oil passage 214 is connected to the turning first oil passage 202a and the turning second oil passage 202b.
  • a turning-side bidirectional relief valve 216 is provided in the turning bypass oil passage 214. Accordingly, each of the closed oil passages 201 and 202 includes one bidirectional relief valve 215 and 216.
  • the suction side of the transmission charge pump 151 is connected to a strainer 217 in the mission case 63.
  • a charge introduction oil passage 218 is connected to the discharge side of the transmission charge pump 151.
  • a charge branch oil passage 219 is connected to the downstream side of the charge introduction oil passage 218.
  • the charge branch oil passage 219 is connected to all the oil passages 201a, 201b, 202a, 202b of the both closed oil passages 201,202. Therefore, while the engine 7 is being driven, the hydraulic oil from the transmission charge pump 151 is always replenished to both the closed oil passages 201 and 202.
  • the charge branch oil passage 219 is connected to the rectilinear cylinder 204 via the rectilinear valve 203 and is also connected to the pivot cylinder 207 via the pivot valve 206.
  • the charge branch oil passage 219 is connected to a continuously variable transmission case 323 and a transmission case 63 to be described later via a surplus relief valve 220. Therefore, the excess hydraulic oil from the transmission charge pump 151 is returned to the transmission case 63 via the excessive relief valve 220 via the continuously variable transmission case 323.
  • a step frame 311 constituting a footrest flat portion for boarding an operator in the cab 5 is provided.
  • a plurality of support leg frames 312 are erected on the upper surface side of the traveling machine body 1, and a step frame 311 is installed on the upper end side of the support leg frame 312.
  • a step for getting on and off (not shown) is fixed to the side surface of the support frame 312 on the outer side of the right side of the step frame 311, and a hydraulic oil tank 315 is disposed on the inner side of the step for getting on and off (not shown).
  • a hydraulic valve unit body 314 is attached below the front end of the step frame 311 on the upper surface.
  • a steering case 318 having a steering operation shaft 316 and a continuously variable transmission operation shaft 317 is provided. Both ends of the case support horizontal frame 319 are connected between the left and right support frame 312 on the front lower surface side of the step frame 311, and the steering case 318 is detachably fastened to the substantially horizontal case support horizontal frame 319.
  • a steering case 318 is supported in a multistage manner via a case support lateral frame 319 immediately above the hydraulic valve unit body 314.
  • a steering operation shaft 316 protrudes upward from the upper surface of the steering case 318, and the steering operation shaft 316 is connected to the steering handle 43 via the steering shaft 321, and from the left side surface of the steering case 318 to the left side.
  • a continuously variable transmission operation shaft 317 is protruded toward the main transmission lever 44, and the continuously variable transmission operation shaft 317 is connected to the main transmission lever 44 via a continuously variable transmission operation rod 322.
  • a continuously variable transmission case 323 in which a straight hydraulic continuously variable transmission 64 and a swing hydraulic continuously variable transmission 70 are assembled is provided.
  • a continuously variable transmission case 323 is fixed to the upper right side of the transmission case 63, and the continuously variable transmission operation arm bodies 324 for straight travel and turning are arranged on the front and rear surfaces of the continuously variable transmission case 323.
  • Each of the continuously-advancing and turning continuously variable speed operation arm bodies 324 is connected to a straight-ahead control link 345 and a turning control link 346 provided on the rear side of the steering case 318, respectively, and the steering operation of the steering handle 43 and the main transmission lever 44 are connected.
  • the linear hydraulic continuously variable transmission 64 and the turning hydraulic continuously variable transmission 70 are controlled to change the course and the moving speed of the left and right crawler belts 2.
  • the hydraulic oil tank 315 is disposed below the right side of the rectangular step frame 311 in plan view, the continuously variable transmission case 323 is disposed below the left side of the step frame 311, and the hydraulic valve unit is disposed below the front portion of the step frame 311. Since the body 314 and the steering case 318 are arranged in the upper and lower multi-stage shape, the engine 7 (hydraulic oil pump) at the rear of the steering case 318 is interposed through a space formed between the hydraulic oil tank 315 and the continuously variable transmission case 323. It is possible to easily extend the hydraulic piping between the front hydraulic valve unit body 314, the hydraulic oil tank 315, and the hydraulic actuators (lifting hydraulic cylinder 4) of each part, and it is possible to improve the maintenance workability of the hydraulic equipment.
  • the engine 7 is mounted on the right side of the upper surface of the traveling machine body 1, and a mission case 63 is disposed in front of the center of the lateral width of the traveling machine body 1.
  • An engine output pulley 168 is pivotally supported on the left end portion of the output shaft 65 of the engine 7, and the engine output belt 67 is wound around the mission input pulley 169 and the engine output pulley 168 on the upper left side of the mission case 63.
  • the output of the engine 7 is transmitted to the hydraulic continuously variable transmissions 64 and 70 of the transmission case 63 via the engine output belt 67.
  • the mission case 63 has a bifurcated structure that is vertically long and can be divided into left and right, and has a substantially hollow box shape by fastening with a plurality of bolts.
  • the lower part of the mission case 63 has a bifurcated shape projecting outward in the left and right directions and projects downward, and is roughly a gate shape when viewed from the front.
  • Axle case 336 that protrudes left and right outwards is bolted to gear case portion 335 that protrudes downward from the lower left and right side surfaces of transmission case 63.
  • the axles 278 are rotatably supported in the left and right axle cases 336, respectively.
  • a drive sprocket 51 (see FIGS.
  • the bottom portions of the left and right gear case portions 335 are located below the bottom portion of the transmission case 63, and the bottom portions of the transmission case 63 are higher than the left and right axle cases 336.
  • a continuously variable transmission case 323 assembled with straight and turning hydraulic continuously variable transmissions 64 and 70 is attached on the upper right side of the mission case 63.
  • the rectilinear hydraulic continuously variable transmission 64 (the rectilinear pump 64a and the rectilinear motor 64b) is positioned on the front side in the continuously variable transmission case 323, and the swing hydraulic continuously variable transmission 70 (the swing pump 70a and the swivel) on the rear side.
  • the motor 70b) is located.
  • gear trains such as the auxiliary transmission gear mechanism 251 and the differential mechanism 257 described with reference to FIG. 6 are accommodated.
  • a linear operation shaft 325 for operating the swash plate of the linear pump 64a to change the discharge direction and discharge amount of the hydraulic oil to the linear motor 64b is projected forward on the front side of the continuously variable transmission case 323.
  • the rectilinear operation shaft 325 is rotated around the axis, the swash plate angle of the rectilinear pump 64a is changed, and the discharge direction and discharge amount of the hydraulic oil to the rectilinear motor 64b are changed.
  • a turning operation shaft 326 for operating the swash plate of the turning pump 70a to change the discharge direction and the discharge amount of hydraulic oil to the turning motor 70b is protruded rearward. If the turning operation shaft 326 is turned around the axis, the swash plate angle of the turning pump 70a is changed, and the discharge direction and the discharge amount of hydraulic oil to the turning motor 70b are changed.
  • a transmission charge pump 151 is attached to a portion corresponding to the turning pump 70a on the right outer surface of the continuously variable transmission case 323.
  • the transmission charge pump 151 is connected to a strainer 221 (see FIG. 7) on the inner bottom side of the transmission case 63 via a suction hose 337 extending vertically.
  • the transmission charge pump 151 is rotationally driven by the pump shaft 259 of the swing pump 70a.
  • the hydraulic oil on the inner bottom side of the transmission case 63 is sucked into the charge pump 151 via the strainer 221 and the suction hose 337 by the drive of the transmission charge pump 151, and the oil passages 201, 202, 211 of the hydraulic circuit 200 are sucked. , 212, 217 to 210, 222 to 224, etc.
  • a parking brake arm 338 for braking the parking brake 266 is provided on the right side surface of the mission case 63 below the turning motor 70b.
  • the parking brake shaft 265 and the auxiliary transmission output gear 267 are locked so as not to rotate, and the straight output toward the left and right drive sprockets 51 is stopped.
  • the turning brake 279 maintains the turning motor shaft 261 in a stopped (unrotatable) state. As a result, the output of the turning motor 70b, that is, the turning output toward the left and right drive sprockets 51 is stopped.
  • an auxiliary transmission arm 339 for operating the auxiliary transmission shifters 252 and 253 of the auxiliary transmission gear mechanism 251 is provided on the front side of the transmission case 63.
  • the auxiliary transmission arm 339 is interlocked with the auxiliary transmission lever 45 on the steering column 41.
  • the sub-transmission shifters 252 and 253 are switched in conjunction with each other, and the output rotational speed of the linear motor shaft 260 is in three stages: low speed, medium speed or high speed. It is alternatively switched to the gear stage.
  • a mission input shaft 66 which is connected to the straight pump 64a and the swing pump 70a so as to be able to transmit power, projects outwardly on the upper left side of the mission case 63.
  • a mission input pulley 169 is fixed to the projecting end side of the mission input shaft 66, and an engine output belt 67 is wound around the mission input pulley 169.
  • An oil sump 340 (see FIG. 11) is formed on the upper front side in the mission case 63. Although detailed illustration is omitted, one end side of the upper external pipe is connected to the upper surface side of the oil sump 340 in the transmission case 63, and the other end side of the upper external pipe is connected to the upper surface side of the continuously variable transmission case 323. Yes.
  • the hydraulic fluid sucked up by the transmission charge pump 151 from the inner bottom side of the transmission case 63 is used by the hydraulic continuously variable transmissions 64 and 70 in the continuously variable transmission case 323 and from the continuously variable transmission case 323 via the upper external pipe. Then, it flows into the oil sump 340 and is stored.
  • a lateral external pipe 341 is disposed below the mission input pulley 169 on the left side surface of the mission case 63.
  • the lateral external pipe 341 is externally attached to the mission case 63.
  • One end of the lateral external pipe 341 is connected to the oil sump 340 on the left side of the mission case 63.
  • the other end of the lateral external pipe 341 is connected to the turning motor shaft 261 (the turning brake 279) on the left side of the mission case 63.
  • the hydraulic oil in the oil sump 340 is sent directly to the turning brake 279 of the turning motor shaft 261.
  • the turning brake 279 is lubricated by the hydraulic oil from the oil sump 340.
  • a straight vehicle speed sensor 293 for the straight pulse 292 on the parking brake shaft 265 and a turning vehicle speed sensor 295 for the turning pulser 294 of the steering counter shaft 280 are provided below the lateral external pipe 341 on the left side surface of the transmission case 63.
  • Both vehicle speed sensors 293 and 295 are arranged in the front-rear direction on the left side surface of the mission case 63, and the straight vehicle speed sensor 293 is located on the front side and the turning vehicle speed sensor 295 is located on the rear side.
  • two vehicle speed sensors 293 and 295 are provided for each of the corresponding pulsers 292 and 294 from the viewpoint of fail-safe.
  • the straight-running pulser 292 has a diameter larger than that of a conventional structure (see, for example, Japanese Patent Application Laid-Open No. 2012-82918) and has a predetermined width (see FIGS. 12 and 14). Then, the straight outer pulsar 292 is configured to detect the thick outer peripheral side by the straight vehicle speed sensor 293. These are made for the purpose of avoiding the interference with the cutting portion 3 and the like so that the straight-running pulser 292 and the straight-traveling vehicle speed sensor 293 do not protrude greatly to the left outer side of the mission case 63.
  • FIG. 19 shows a mounting structure of the axle 278 and the drive sprocket 51 with respect to the axle case 336.
  • an axle 278 is rotatably supported in the axle case 336 via both shield type bearings 388.
  • the front end side of the axle shaft 278 protrudes outward from the axle case 336.
  • a spline portion 278c into which the boss portion 51a of the drive sprocket 51 is fitted and a screw portion 278d into which the nut 390 is screwed through a washer 389 are formed on the front end side of the axle shaft 278.
  • the boss 51a of the drive sprocket 51 is spline-fitted to the spline 278c of the axle 278, and the nut 390 is screwed into the screw 278d of the axle 278 via the washer 389, whereby the drive sprocket 51 is integrated with the front end of the axle 278. It is mounted to rotate.
  • a bearing oil seal 391 that seals the left and right outer sides of both shield type bearings 388 is fitted into the opening side of the axle case 336.
  • a bearing oil seal 391 is fitted on the outer peripheral side of a bearing seal collar 51 b that extends inward from the boss 51 a of the drive sprocket 51 in the left and right directions.
  • a bearing oil seal 391 closes the opening side of the axle case 336.
  • an annular anti-roll wheel 392 is formed so as to protrude inward in the left and right direction so as to be positioned concentrically with the bearing seal collar 51b.
  • the wrapping prevention ring body 392 is fitted on the stepped portion 336a on the outer peripheral side of the opening of the axle case 336.
  • a stop ring 393 for restricting the displacement of the two shield type bearings 388 to the left and right outer sides is detachably mounted on the inner peripheral side of the axle case 336.
  • a positioning collar 394 that restricts the displacement of the two shielded bearings 388 toward the left and right inner sides is fitted to the left and right inner parts of the axle shaft 278 relative to the two shielded bearings 388.
  • annular packing body 395 made of rubber is disposed between the front end side of the spline part 278c of the axle shaft 278 and the washer 389.
  • the packing body 395 is in close contact with the tip end side of the spline portion 278c and the washer 389.
  • lubricating oil grey or gear oil
  • the close contact structure of the packing body 395 suppresses leakage of lubricating oil from between the boss portion 51a and the spline portion 278c, and intrusion of muddy water or the like between the boss portion 51a and the spline portion 278c and eventually into the axle case 336. Is suppressed.
  • the packing body 395 the sealing performance between the boss portion 51a and the spline portion 278c is improved as compared with the conventional structure (for example, see Japanese Patent Application Laid-Open No. 2012-231707).
  • a pair of left and right differential mechanisms 257 are arranged on the inner bottom side of the mission case 63.
  • Each planetary gear mechanism 268 is placed on the left and right with a center gear 276 fixed to the sun gear shaft 275 extending in the left and right direction.
  • a parking brake shaft 265, a steering output shaft 285, and a rotating shaft of the reverse gear 284, which are positioned on the output side of the auxiliary transmission gear mechanism 251, are arranged side by side.
  • a central intermediate gear 289 that always meshes with the downstream reduction gear 286 is fixed to the middle part of the steering output shaft 285 (between the left intermediate gear 287 and the right intermediate gear 288).
  • the center gear 276 and the center intermediate gear 289 are in a positional relationship such that the center gear 276 interferes with the center intermediate gear 289 when the center gear 276 has a normal spur gear shape.
  • the center gear 276 of the embodiment has a substantially saddle shape with the outer peripheral portion curved to the left (the outer peripheral portion is offset from the rotation center to the left), and the center intermediate gear on the steering output shaft 285. Interference with 289 is avoided.
  • An auxiliary transmission countershaft 270 is disposed between the planetary gear mechanism 268 and the steering output shaft 285 in the front-rear direction and on the upper side.
  • a steering counter shaft 280 is disposed behind the auxiliary transmission counter shaft 270.
  • a rectilinear motor shaft 260 is disposed above the auxiliary transmission counter shaft 270.
  • a turning motor shaft 261 is disposed above the steering counter shaft 280.
  • a turning brake 279 is provided on the turning motor shaft 261.
  • a pump shaft 258 of the rectilinear pump 64a is disposed above the rectilinear motor shaft 260.
  • a pump shaft 259 of the swing pump 70a is disposed above the swing motor shaft 261.
  • a mission input shaft 66 is disposed between the front and rear directions of both pump shafts 258 and 259 and on the upper side.
  • the height position of the hydraulic oil surface during driving of the engine 7 is set such that the parking brake shaft 265 and the steering output shaft 285 are immersed in the hydraulic oil. Therefore, in the transmission case 63, the auxiliary transmission countershaft 270, the steering countershaft 280, and the shafts 66, 258 to 261 located above them are positioned above the hydraulic oil surface. These seven shafts 66, 258 to 261, 270, and 280 do not rotate while immersed in the hydraulic oil, and suppress an increase in stirring resistance (an increase in power loss).
  • the auxiliary transmission gear mechanism 251 which is an example of the transmission gear mechanism, is divided into an input side gear portion 351 and an output side gear portion 352.
  • a low-speed relay gear 354, a medium-speed relay gear 355, and a high-speed relay gear 356 are pivotally supported on an auxiliary transmission countershaft 270 that is an input-side transmission shaft as the input-side gear portion 351.
  • the low speed relay gear 354 and the medium speed relay gear 355 are fixed to the auxiliary transmission counter shaft 270.
  • the high-speed relay gear 356 is loosely fitted to the auxiliary transmission countershaft 270 so as to be rotatable.
  • the auxiliary transmission low speed gear 254, the auxiliary transmission medium speed gear 255, and the auxiliary transmission high speed gear 256 are pivotally supported on the parking brake shaft 265 that is the output side transmission shaft.
  • the auxiliary transmission low speed gear 254 and the auxiliary transmission intermediate speed gear 255 are loosely fitted to the parking brake shaft 265 so as to be rotatable.
  • the auxiliary transmission high speed gear 256 is fixed to the parking brake shaft 265.
  • the auxiliary transmission high speed gear 256 is connected to the auxiliary transmission counter shaft 270 by the sliding movement of the high speed auxiliary transmission shifter 253.
  • the auxiliary transmission countershaft 270 that is the input side of the auxiliary transmission is positioned above the parking brake shaft 265 that is the output side of the auxiliary transmission. Therefore, in the transmission case 63, the input side gear portion 351 (354 to 356) attached to the auxiliary transmission countershaft 270 and the output side gear portion 352 (254 to 256) attached to the parking brake shaft 265 are divided up and down. Are placed close together. Further, as described above, in the mission case 63, the height position of the hydraulic oil surface during driving of the engine 7 is set to such an extent that the parking brake shaft 265 is immersed in the hydraulic oil.
  • the input side gear portion 351 is located above the hydraulic oil surface in the mission case 63 and does not rotate in a state where it is immersed in the hydraulic oil.
  • the hydraulic oil splashed by the output side gear portion 352 (254 to 256) is guided to the input side gear portion 351 (354 to 356) to the auxiliary transmission countershaft 270 which is the input side of the subshift.
  • a T-shaped lubrication passage 357 is formed.
  • the fitting recesses 358 and 359 are formed in the left and right inner walls of the mission case 63.
  • One end of the auxiliary transmission countershaft 270 is rotatably fitted in the right fitting recess 358 via an open type bearing 360.
  • the other end side of the auxiliary transmission countershaft 270 is rotatably fitted in the left fitting recess 359 via an open type bearing 361.
  • An inlet 357 a of the lubrication passage 357 is opened at one end surface of the auxiliary transmission counter shaft 270.
  • the inflow port 357 a of the lubrication passage 357 faces the right fitting recess 358.
  • Two outlets 357 b of the lubricating passage 357 are opened on the outer peripheral surface of the auxiliary transmission counter shaft 270.
  • Each outlet 357 b of the lubrication passage 357 faces the inner peripheral side of the high-speed relay gear 356 close to the high-speed auxiliary transmission shifter 253.
  • the hydraulic fluid splashed by the output side gear portion 352 (254 to 256) splashes from the outer peripheral side to the input side gear portion 351 (354 to 356) including the high-speed auxiliary transmission shifter 253.
  • a part of the splashed hydraulic oil enters the right fitting recess 358 via the right open bearing 360, and the high speed relay gear 356 via the lubrication passage 357 communicating with the right fitting recess 358.
  • the high-speed auxiliary transmission shifter 253 in the vicinity thereof.
  • the high-speed relay gear 356 and the high-speed auxiliary transmission shifter 253 are lubricated.
  • the continuously variable transmissions 64, 70 that continuously change the power of the engine 7 and a plurality of shift outputs of the continuously variable transmissions 64, 70 are provided.
  • the transmission gear mechanism 251 is divided into an input side gear portion 351 and an output side gear portion 352, and the output side gear portion.
  • a part of 352 is immersed in the hydraulic oil in the mission case 63 and the input side gear portion 351 is positioned above the hydraulic oil surface in the mission case 63 in the mission case 63 so that the input side Since the gear portion 351 and the output side gear portion 352 are arranged close to each other in the vertical direction, the hydraulic oil surface is rotated by the rotation of the output side gear portion 352. Hydraulic oil can be splashed onto the input side gear portion 351 at a higher position, and therefore the input side can be operated without increasing the amount of hydraulic oil used by setting the hydraulic oil level in the transmission case 63 high.
  • the gear portion 351 can be reliably lubricated. Since the input side gear portion 351 is not immersed in the hydraulic oil, problems such as an increase in power loss and a significant increase in the hydraulic oil temperature can be suppressed.
  • hydraulic oil splashed by the output side gear portion 352 can be supplied to the inner peripheral side of the input side gear portion 351 via the lubrication passage 357 of the input side transmission shaft 270.
  • the lubricity of the gear portion 351 (specifically, the high-speed auxiliary transmission shifter 253 and the high-speed relay gear 356) can be further improved.
  • a PTO boss portion 365 as a cylindrical portion is integrally formed below the lateral external pipe 341 on the left side surface of the mission case 63.
  • a PTO shaft 366 (see FIG. 16) as a shaft member that transmits power to the reaping portion 3, the threshing portion 9, or the like can be attached to the PTO boss portion 365.
  • the ordinary combine according to the embodiment employs a configuration in which the driving force of the engine 7 is directly transmitted to the cutting unit 3, the threshing unit 9, and the like, so that the PTO shaft 366 is unnecessary. Therefore, the PTO boss portion 365 is not fitted with the PTO shaft 366, and the opening of the PTO boss portion 365 is closed with the sealing lid 364 (see FIGS. 12 and 15).
  • FIG. 16 shows an example in which the vehicle drive device of the present application is applied to a self-removable combine and a PTO shaft 366 is mounted on the PTO boss portion 365.
  • a PTO shaft 366 is rotatably supported on the PTO boss portion 365 via bearing bodies 367 and 368.
  • the bearing bodies 367 and 368 are paired in the axial direction of the PTO shaft 366.
  • a PTO pulley 369 is mounted on the outer end side of the PTO shaft (end portion outside the transmission case 63).
  • a PTO output gear 370 as a rotating member that transmits power from the auxiliary transmission countershaft 270 is mounted on the inner end side of the PTO shaft 366 (end portion in the transmission case 63).
  • a PTO input gear 371 is mounted between the low speed relay gear 354 and the medium speed relay gear 355 in the auxiliary transmission countershaft 270.
  • the PTO input gear 371 is always meshed with the PTO output gear 370. Therefore, the PTO shaft 366 is always driven to rotate while the engine 7 is driven by the driving force (the driving force of the linear motor 64b) via the linear motor shaft 260 and the auxiliary transmission counter shaft 270.
  • Step portions 373 and 374 projecting radially outward are formed on the inner peripheral side of the PTO boss portion 365.
  • a first step portion 373 corresponding to the first bearing body 367 is formed at a location outside the transmission case 63 on the inner peripheral side of the PTO boss portion 365.
  • a second stepped portion 374 corresponding to the second bearing body 368 is formed at a position closer to the inside of the mission case 63 on the inner peripheral side of the PTO boss portion 365.
  • a large-diameter portion 375 having a larger diameter than the inner diameter of the bearing bodies 367 and 368 is formed at the end of the PTO shaft 366, or a PTO output gear 370 having a larger diameter than the inner diameter of the bearing bodies 367 and 368 can be attached and detached.
  • a large diameter portion 375 having a larger diameter than the inner diameter of the first bearing body 367 is formed on the outer end side of the PTO shaft 366.
  • a PTO output gear 370 having a diameter larger than that of the second bearing body 368 is coupled to the inner end side of the PTO shaft 366 so as to be slidable in the axial direction and not relatively rotatable (spline fitting).
  • the first bearing body 367 is sandwiched from both sides in the axial direction by the large diameter portion 375 and the first step portion 373. Further, the second bearing body 368 is clamped from both sides in the axial direction by the PTO output gear 370 and the second stepped portion 374. That is, the bearing bodies 367 and 368 are sandwiched between the large diameter portion 375 or the PTO output gear 370 and the step portions 373 and 374 in the PTO boss portion 365.
  • a retaining ring 376 is detachably attached to a portion of the PTO shaft 366 closer to the inside of the transmission case 63 than the PTO output gear 370.
  • the PTO shaft 366 When configured as described above, the PTO shaft 366 can be easily pulled out from the PTO boss portion 365 by removing the retaining ring 376 with the mission case 63 separated into the left and right. Conversely, when mounting the PTO shaft 366 to the PTO boss portion 365, after mounting the pair of bearing bodies 367 and 368 on the PTO boss portion 365 with the transmission case 63 separated into the left and right sides, The retaining ring 376 may be mounted by inserting the PTO shaft 366 into the inner peripheral side of the bearing bodies 367 and 368 and spline-fitting the PTO output gear 370 to the inner end side of the PTO shaft 366. The presence of both stepped portions 373 and 374 makes it possible to restrict the positions of both bearing bodies 367 and 368 only by mounting the PTO shaft 366 and the PTO output gear 370.
  • the configuration of the vehicle drive device (mission case 63) can be simplified to the specifications with the PTO shaft 366 and the specifications without the PTO shaft 366 by attaching / detaching the PTO shaft 366, the PTO output gear 370, and the like and detaching the sealing lid 364. Can be changed.
  • One type of vehicle drive device (mission case 63) can be shared by two specifications for the self-removal combiner and the ordinary combiner, and the manufacturing cost can be reduced.
  • the shaft diameters on both sides of the large diameter portion 375 in the PTO shaft 366 are set to the same diameter.
  • a bearing is provided in the cylindrical portion 365 formed in the transmission case 63.
  • the shaft member 366 is rotatably supported via the bodies 367 and 368, and step portions 373 and 374 projecting radially inward are formed on the inner peripheral side of the cylindrical portion 365.
  • a large-diameter portion 375 having a larger diameter than the inner diameter of the bearing bodies 367 and 368 is formed at the end of the shaft member 366, or a rotating member 370 having a larger diameter than the inner diameter of the bearing bodies 367 and 368 can be attached and detached.
  • the bearing bodies 367 and 368 are sandwiched between the large-diameter portion 375 or the rotating member 370 and the step portions 373 and 374 in the cylindrical portion 365, so that the bearing body There is no need to use a dedicated parts of the snap ring or the like for the position regulation of 67,368. Therefore, the number of parts can be reduced, the shaft support structure of the shaft member 366 can be simplified, the assembly work can be rationalized, and the manufacturing cost can be reduced.
  • the bearing bodies 367 and 368 are paired in the axial direction of the shaft member 366, and the stepped portions 373 and 374 are the missions of the pair of bearing bodies 367 and 368.
  • the large-diameter portion 375 is formed at the end portion of the shaft member 366 on the outer side of the transmission case 63, and the end portion of the shaft member 366 on the inner side of the mission case 63 is formed.
  • the rotating member 370 is detachably attached to the first bearing body 367 by the large diameter portion 375 and the first step portion 373, and the rotation
  • the second bearing body 368 is sandwiched between the material 370 and the second stepped portion 374, and a retaining ring 376 is attached to a portion of the shaft member 366 that is further inside the transmission case 63 than the rotating member 370.
  • the shaft member 366, the pair of bearing bodies 367, 368, and the rotating member 370 can be appropriately attached to the cylindrical portion 365 of the transmission case 63 with only one retaining ring 376, and the The shaft member 366 can be assembled.
  • the maintainability of the shaft support structure of the shaft member 366 can be improved.
  • the shaft diameters on both sides of the large diameter portion 375 are set to the same diameter in the shaft member 366, the processing cost of the shaft member 366 can be reduced, which in turn contributes to the cost reduction of parts.
  • a wet multi-plate swing brake 279 is provided on the swing motor shaft 261 (see FIGS. 13 and 17).
  • the mounting hole 379 is opened in the upper and lower middle part of the left side surface of the mission case 63.
  • Bolts are fastened in a state in which a cylindrical brake housing 380 is fitted in the mounting hole 379.
  • the swing motor shaft 261 includes a cylindrical brake cylinder shaft portion 381.
  • the swing cylinder shaft 381 including the brake cylinder shaft 381 is extended into the transmission case 63 by spline fitting the brake cylinder shaft 381 to the protruding end of the swing motor shaft 261 protruding from the continuously variable transmission case 323. .
  • the right end side of the brake cylinder shaft portion 381 is rotatably supported on the right inner wall of the transmission case 63 via an open type bearing 382.
  • the brake cylinder shaft 381 enters the inside of the brake housing 380.
  • a mounting recess 383 is formed in the left bottom portion of the brake housing 380.
  • the left end side of the brake cylinder shaft portion 381 is rotatably fitted in the mounting recess 383 of the brake housing 380 via an open bearing 384. That is, in the mission case 63, the swing motor shaft 261 including the brake cylinder shaft portion 381 is rotatably supported via a pair of open bearings 382 and 384.
  • a turning input gear 385 that always meshes with the upstream reduction gear 281 on the steering counter shaft 280 is attached to the right end side of the brake cylinder shaft portion 381.
  • An inner hub 386 is spline-fitted to the middle part of the left and right sides of the brake cylinder shaft 381.
  • Friction plates 380a and 386a are alternately provided on the inner peripheral surface of the brake housing 380 and the outer peripheral surface of the inner hub 386.
  • a compression spring 399 is fitted between the left open bearing 384 and the inner hub 386 in the brake cylinder shaft 381.
  • a plurality of lubrication holes 387 for communicating the inside and outside of the brake cylinder shaft portion 381 are formed in the side peripheral portion of the brake cylinder shaft portion 381.
  • a group of lubrication holes 387 are opened toward the inner peripheral side (spline portion) of the inner hub 386 and the inner peripheral side of the turning input gear 385.
  • the hydraulic oil in the oil sump 340 is concentratedly supplied from the lateral external pipe 341 to the friction plates 380a and 386a through the mounting recess 383, the inner peripheral side of the brake cylinder shaft 381, and the lubricating holes 387. . That is, the turning brake 279 is lubricated by the hydraulic oil from the oil reservoir 340.
  • the brake housing 380 Since the brake housing 380 has a cylindrical shape, the hydraulic oil intensively supplied to the friction plates 380a and 386a easily collects inside the brake housing 380.
  • the left-side bearing 384 that supports the brake cylinder shaft 381 is an open type, but the left-side open type bearing 384 is reduced by reducing the slack of the mounting recess 383 with respect to the left-side open type bearing 384. The leakage of the hydraulic oil from 384 to the outside of the brake cylinder shaft portion 381 is suppressed.
  • the auxiliary transmission countershaft 270, the steering countershaft 280, and the shafts 66 and 258 to 261 above them do not rotate when immersed in hydraulic oil. For this reason, although it contributes to the reduction of power loss, there is a concern about wear, a decrease in life, and the like. Therefore, the structure shown in FIG. 18 may be adopted. That is, one end side of the second horizontal external pipe 396 is connected to the oil reservoir 340 on the left side of the mission case 63 separately from the horizontal external pipe 341, and the other end side of the second horizontal external pipe 396 is connected to the mission case 63.
  • the auxiliary transmission countershaft 270 is connected to the left side.
  • the transmission case 63 is formed with a first internal oil passage 397 that connects the oil reservoir 340 and the linear motor shaft 260 and the other end of the lateral external pipe 341 or the turning motor shaft 261 (the turning brake). 279) and the steering countershaft 280 are connected to form a second internal oil passage 398.
  • the linear motor shaft 260, the auxiliary transmission counter shaft 270, and the steering counter shaft 280 can also be lubricated by the hydraulic oil from the oil sump 340.
  • the hydraulic transmission according to the embodiment includes a continuously variable transmission case 323 including a pair of hydraulic continuously variable transmissions 64 and 70 formed by combining hydraulic pumps 64 a and 70 a and hydraulic motors 64 b and 70 b, and a continuously variable transmission case 323. And an oil passage block 401 attached to one side surface.
  • a continuously variable transmission case 323 is attached to the upper right side of the mission case 63 via an oil passage block 401.
  • the oil passage block 401 is held between the transmission case 63 and the continuously variable transmission case 323.
  • a linear hydraulic continuously variable transmission 64 including a linear pump 64a and a linear motor 64b is built in front of the midway part of the continuously variable transmission case 323.
  • the rectilinear pump 64a is positioned on the upper side in the continuously variable transmission case 323, and the rectilinear motor 64b is positioned on the lower side.
  • a swing hydraulic continuously variable transmission 70 including a swing pump 70a and a swing motor 70b is built in the rear of the continuously variable middle case 323 in the middle of the front and rear.
  • the swing pump 70a is positioned on the upper side in the continuously variable transmission case 323, and the swing motor 70b is positioned on the lower side.
  • the hydraulic pumps 64a and 70a are arranged in the front-rear direction, and the hydraulic motors 64b and 70b are also arranged in the front-rear direction.
  • the transmission charge pump 151 is located at a position corresponding to the turning pump 70a on the right outer surface of the continuously variable transmission case 323.
  • a hydraulic servo mechanism 205 for linear shift is disposed in front of the linear hydraulic continuously variable transmission 64 in the continuously variable transmission case 323.
  • a hydraulic servo mechanism 208 for turning and shifting is arranged behind the turning hydraulic continuously variable transmission 70. That is, in the continuously variable transmission case 323, hydraulic servo mechanisms 205 and 208 for operating the hydraulic continuously variable transmissions 64 and 70 are distributed and arranged on both ends of the both hydraulic continuously variable transmissions 64 and 70, respectively. .
  • the straight operation shaft 325 protrudes forward on the front outer surface of the continuously variable transmission case 323, and the straight operation shaft 325 protrudes rearward on the rear outer surface of the continuously variable transmission case 323.
  • a linearly variable continuously variable operating arm 324 (see FIG. 8) is connected to the linearly operating shaft 325, and a rotationally variable continuously variable operating arm 324 is connected to the swing operating shaft 326. ing.
  • the oil passage block 401 is formed with closed loop oil passages 201 and 202 for the hydraulic continuously variable transmissions 64 and 70 and a charge branch oil passage 219 connecting both the closed loop oil passages 201 and 202.
  • a vertically long straight oil passage 201a is formed on the front side across the straight pump 64a and the straight motor 64b, and a vertically long straight oil passage 201b is formed on the rear side.
  • the straight traveling first oil passage 201a and the straight traveling second oil passage 201b connect the straight traveling pump 64a and the straight traveling motor 64b in a closed loop shape.
  • the rectilinear first oil passage 201a and the rectilinear second oil passage 201b constitute a rectilinear closed oil passage 201 corresponding to a straight loop closed oil passage.
  • a vertically long swirl first oil passage 202a is formed on the front side with the swivel pump 70a and the swivel motor 70b interposed therebetween, and a vertically long swirl second oil passage 202b is formed on the rear side.
  • the turning first oil passage 202a and the turning second oil passage 202b connect the turning pump 70a and the turning motor 70b in a closed loop shape.
  • the turning first oil passage 202a and the turning second oil passage 202b constitute a turning closed oil passage 202 corresponding to a turning closed-loop oil passage. Accordingly, in the oil passage block 401, the first straight oil passage 201a, the second straight oil passage 201b, the turning first oil passage 202a, and the turning second oil passage 202b are arranged in this order from the front.
  • a charge branch oil passage 219 as a charge oil passage is formed to extend in the front-rear direction.
  • the charge branch oil passage 219 includes all the oil passages 201a, 201b, 202a, 202b of the both closed oil passages 201, 202, that is, the straight first oil passage 201a, the straight second oil passage 201b, the turning first oil passage 202a and the turning. It penetrates the upper side of the second oil passage 202b back and forth.
  • the charge branch oil passage 219 and the charge branch oil passage 219 are orthogonal to each other of all the oil passages 201a, 201b, 202a, 202b of the both closed oil passages 201,202.
  • the discharge side of the charge introduction oil passage 218 is communicated with the front and rear central portions of the charge branch oil passage 219. That is, the oil passage block 401 is provided with a communication port 218a that is connected to the discharge side of the charge introduction oil passage 218 in the upper surface portion above the front and rear central portions of the charge branch oil passage 219. A port 218a is drilled downward to communicate with the charge branch oil passage 219. Thereby, the charge introduction oil passage 218 communicated with the discharge side of the transmission charge pump 151 outside the oil passage block 401 communicates with the charge branch oil passage 219 in the oil passage block 401 via the communication port 218a.
  • the front and rear end portions of the charge branch oil passage 219 communicate with the corresponding hydraulic servo mechanisms 205 and 208 via the servo oil passages 402 and 403, respectively.
  • Servo oil passages 402 and 403 connecting the charge branch oil passage 219 and the respective hydraulic servo mechanisms 205 and 208 are continuously variable from the oil passage block 401 so as to extend perpendicular to the charge branch oil passage 219 and in parallel with each other. It is formed toward 323.
  • the linear servo oil passage 402 for the linear shift hydraulic servomechanism 205 is provided on the inner side of the front end of the continuously variable transmission case 323, and the front side surface of the continuously variable transmission case 323 (near the hydraulic servo mechanism 205 for linear shift). It is formed in a straight line extending in the horizontal direction along the side surface.
  • a turning servo oil passage 403 for the turning-speed hydraulic servomechanism 208 is provided inside the rear end of the infinitely-variable shifting case 323 on the rear side surface (side surface near the turning-speed changing hydraulic servo mechanism 208). It is formed in a straight line extending sideways along the side.
  • the servo oil passages 402 and 403 extend in a straight line in the horizontal direction in the plan view of FIG. 21 and are arranged in parallel to each other. Both hydraulic continuously variable transmissions 64 and 70 are located between both servo oil passages 402 and 403.
  • the servo oil passages 402 and 403 for the respective hydraulic servo mechanisms 205 and 208 are straight along the side surfaces (the front side surface and the rear side surface) near the respective hydraulic servo mechanisms 205 and 208 in the continuously variable transmission case 323. And can be formed as short as possible. Accordingly, the servo oil passages 402 and 403 can be easily formed in the continuously variable transmission case 323 and the oil passage block 401, the workability is good, and the manufacturing can be performed at low cost.
  • check valves 211, 212 are arranged at orthogonal positions between all the oil passages 201 a, 201 b, 202 a, 202 b of the both closed oil passages 201, 202 and the charge branch oil passage 219. .
  • all the oil passages 201a, 201b, 202a, 202b of both the closed oil passages 201, 202 are opened at the upper end surface side of the oil passage block 401, and the check valves 211, 212 are inserted downward from the opening. And wearing.
  • a check valve 211 for the straight traveling first oil passage 201a is mounted at an orthogonal position between the charge branch oil passage 219 and the straight traveling first oil passage 201a, and at a perpendicular position between the charge branch oil passage 219 and the straight traveling second oil passage 201b, A check valve 211 for the straight second oil passage 201b is mounted.
  • the check valve 212 with respect to the turning 1st oil path 202a is mounted in the orthogonal location of the charge branch oil path 219 and the turning 1st oil path 202a, and the orthogonal location of the charge branch oil path 219 and the turning 2nd oil path 202b
  • a check valve 212 for the turning second oil passage 202b is mounted.
  • each of the oil closed passages 201 and 202 includes two check valves 211 and 212.
  • the heads of the four check valves 211 and 212 are arranged in the front-rear direction.
  • a communication port 218 a is provided on the upper end surface of the oil passage block 401 between the second check valve 211 from the front and the third check valve 212 from the front, and is connected to the charge branch oil passage 219. The discharge side of the charge introduction oil passage 218 is connected.
  • Bypass oil passages 213 and 214 extending in parallel with the charge branch oil passage 219 are formed on the lower side in the oil passage block 401 so as to correspond to the closed oil passages 201 and 202.
  • the straight traveling first oil passage 201a and the straight traveling second oil passage 201b are also communicated with each other by a straight traveling bypass oil passage 213.
  • the turning first oil passage 202a and the turning second oil passage 202b are also communicated with each other by a turning bypass oil passage 214.
  • Bidirectional relief valves 215 and 216 are arranged at positions orthogonal to the respective closed oil passages 201 and 202 and the corresponding bypass oil passages 213 and 214.
  • the rectilinear-side bidirectional relief valve 215 is positioned at an orthogonal position between the rectilinear first oil passage 201a and the rectilinear bypass oil passage 213 in the rectilinear closed oil passage 201.
  • the rectilinear bypass oil passage 213 is opened on the front end face side of the oil passage block 401, and the rectilinear bi-directional relief valve 215 is inserted rearward from the opening and attached.
  • the turning-side bidirectional relief valve 216 is positioned at a position orthogonal to the turning first oil passage 202 a and the turning bypass oil passage 214 in the turning closed oil passage 202.
  • each of the closed oil passages 201 and 202 includes one bidirectional relief valve 215 and 216, respectively.
  • two-way relief valve 215,216 will be separately arrange
  • Such an expensive check relief valve need not be used, and this point also contributes to a reduction in cost of the hydraulic transmission including the continuously variable transmission case and the oil passage block.
  • a surplus relief valve 220 that discharges surplus hydraulic fluid in the charge branch oil passage 219 is connected to one end side of the charge branch oil passage 219.
  • the surplus relief valve 220 of the embodiment is connected between the check valve 212 for the turning second oil passage 202b in the charge branching oil passage 219 and the inlet portion of the turning servo oil passage 403, and inside the continuously variable transmission case 323. It is located. Accordingly, the excess hydraulic oil from the transmission charge pump 151 spills into the continuously variable transmission case 323 via the excess relief valve 220. Thereafter, it is returned to the mission case 63.
  • the front and rear end portions of the charge branch oil passage 219 are positioned below the charge branch oil passage 219 and extend in a direction perpendicular to the charge branch oil passage 219. It connects with each of the paths 402 and 403.
  • the servo oil passages 402 and 403 are provided in the oil passage block 401 and the continuously variable transmission case 323, and the linear valve 203 and the swing valve in the hydraulic servo mechanisms 205 and 208 provided on the front and rear end surfaces of the continuously variable transmission case 323. It communicates with 206 ports.
  • the hydraulic oil supplied from the charge introduction oil passage 218 to the oil passage block 401 is supplied to the straight valve 203 and the straight cylinder 204 through the charge branch oil passage 219 and the servo oil passage 402. .
  • hydraulic oil supplied from the charge introduction oil passage 218 to the oil passage block 401 is supplied to the swing valve 206 and the swing cylinder 207 through the charge branch oil passage 219 and the servo oil passage 403. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Harvester Elements (AREA)
  • Motor Power Transmission Devices (AREA)

Abstract

Hydraulic servo mechanisms 205, 208 for actuating hydraulic continuously variable transmissions 64, 70 are arranged within a continuously variable transmission case 323 so as to be separated to either side of the hydraulic continuously variable transmissions 64, 70. In an oil path block 401 are formed closed-loop oil paths 201, 202 for the hydraulic continuously variable transmissions 64, 70, and a charge oil path 219 connecting the closed-loop oil paths 201, 202. Servo oil paths 402, 403 connecting the charge oil path 219 and the hydraulic servo mechanisms 205, 208 are formed from the oil path block 401 toward the continuously variable transmission case 323 so as to cross the charge oil path 219 at a right angle and extend parallel to each other.

Description

油圧式変速装置Hydraulic transmission
 本願発明は、油圧式変速装置に関するものである。 The present invention relates to a hydraulic transmission.
 従来、コンバイン等の作業車両において、油圧ポンプ及び油圧モータを組み合わせてなる油圧無段変速機の対を内蔵した無段変速ケースと、無段変速ケースの一側面に取り付けた油路ブロックとを備えた油圧式変速装置を搭載することはよく行われている。そして、この種の油圧式変速装置において、各油圧無段変速機を作動させる油圧サーボ機構を無段変速ケースに内蔵する技術も既に知られている(例えば特許文献1等参照)。 2. Description of the Related Art Conventionally, a work vehicle such as a combiner includes a continuously variable transmission case incorporating a pair of hydraulic continuously variable transmissions that are a combination of a hydraulic pump and a hydraulic motor, and an oil passage block attached to one side of the continuously variable transmission case It is common practice to install a hydraulic transmission. In this type of hydraulic transmission, a technique in which a hydraulic servo mechanism for operating each hydraulic continuously variable transmission is built in a continuously variable transmission case is already known (see, for example, Patent Document 1).
特開2004-68974号公報JP 2004-68974 A
 しかし、前記従来技術では、無段変速ケース内にある各油圧サーボ機構への油路構造が、例えば油路ブロックの板厚方向に対して斜めに延びるといったように、複雑且つ長いものになっていたため、無段変速ケースに対する油路形成が難しく、製造コストが嵩むという問題があった。 However, in the prior art, the oil passage structure to each hydraulic servo mechanism in the continuously variable transmission case is complicated and long, for example, extending obliquely with respect to the plate thickness direction of the oil passage block. Therefore, there is a problem that it is difficult to form an oil passage for the continuously variable transmission case and the manufacturing cost increases.
 本願発明は、上記のような現状を検討して改善を施した油圧式変速装置を提供することを技術的課題としている。 The present invention has a technical problem of providing a hydraulic transmission that has been improved by examining the current situation as described above.
 本願発明の第1局面は、油圧ポンプ及び油圧モータを組み合わせてなる油圧無段変速機の対を内蔵した無段変速ケースと、前記無段変速ケースの一側面に取り付けた油路ブロックとを備えた油圧式変速装置において、前記各油圧無段変速機を作動させる油圧サーボ機構を、前記無段変速ケース内において前記両油圧無段変速機を挟んで両端側に振り分けて配置し、前記油路ブロックには、前記各油圧無段変速機に対する閉ループ油路と、前記両方の閉ループ油路をつなぐチャージ油路とを形成し、前記チャージ油路と前記各油圧サーボ機構とをつなぐサーボ油路を、前記チャージ油路に直交し且つ互いに平行状に延びるように、前記油路ブロックから前記無段変速ケースに向けて形成しているというものである。 1st aspect of this invention is equipped with the continuously variable transmission case which incorporated the pair of the hydraulic continuously variable transmission which combined a hydraulic pump and a hydraulic motor, and the oil path block attached to one side of the said continuously variable transmission case. In the hydraulic transmission apparatus, the hydraulic servo mechanism for operating each of the hydraulic continuously variable transmissions is distributed and arranged on both sides of the both hydraulic continuously variable transmissions in the continuously variable transmission case. In the block, a closed loop oil passage for each of the hydraulic continuously variable transmissions and a charge oil passage connecting both the closed loop oil passages are formed, and a servo oil passage connecting the charge oil passage and each of the hydraulic servo mechanisms is formed. The oil passage block is formed toward the continuously variable transmission case so as to extend perpendicular to the charge oil passage and in parallel with each other.
 本願発明の第2局面は、第1局面の油圧式変速装置において、前記各閉ループ油路には、前記チャージ油路と平行状に延びるバイパス油路を直交させ、前記各閉ループ油路と前記チャージ油路との直交箇所にチェック弁を配置し、前記各閉ループ油路と前記バイパス油路との直交箇所にリリーフ弁を配置しているというものである。 According to a second aspect of the present invention, in the hydraulic transmission according to the first aspect, each closed loop oil passage is orthogonal to a bypass oil passage extending in parallel with the charge oil passage, and the closed loop oil passage and the charge A check valve is disposed at a position orthogonal to the oil passage, and a relief valve is disposed at a position orthogonal to each of the closed loop oil passage and the bypass oil passage.
 本願発明の第3局面は、第1又は第2局面の油圧式変速装置において、前記チャージ油路の一端側に、前記チャージ油路中の作動油の余剰分を排出する余剰リリーフ弁を接続しているというものである。 According to a third aspect of the present invention, in the hydraulic transmission of the first or second aspect, a surplus relief valve that discharges surplus hydraulic oil in the charge oil passage is connected to one end side of the charge oil passage. It is that.
 本願発明によると、油圧ポンプ及び油圧モータを組み合わせてなる油圧無段変速機の対を内蔵した無段変速ケースと、前記無段変速ケースの一側面に取り付けた油路ブロックとを備えた油圧式変速装置において、前記各油圧無段変速機を作動させる油圧サーボ機構を、前記無段変速ケース内において前記両油圧無段変速機を挟んで両端側に振り分けて配置し、前記油路ブロックには、前記各油圧無段変速機に対する閉ループ油路と、前記両方の閉ループ油路をつなぐチャージ油路とを形成し、前記チャージ油路と前記各油圧サーボ機構とをつなぐサーボ油路を、前記チャージ油路に直交し且つ互いに平行状に延びるように、前記油路ブロックから前記無段変速ケースに向けて形成しているから、前記各油圧サーボ機構に対するサーボ油路を、前記無段変速ケースにおける前記各油圧サーボ機構寄りの側面に沿わせて直線状に且つ極力短縮化して形成できる。従って、前記無段変速ケースや前記油路ブロックに前記各サーボ油路を形成し易くて加工性がよく、低コストに製造できる。 According to the present invention, a hydraulic type comprising a continuously variable transmission case incorporating a pair of hydraulic continuously variable transmissions that are a combination of a hydraulic pump and a hydraulic motor, and an oil passage block attached to one side of the continuously variable transmission case. In the transmission, a hydraulic servomechanism for operating each of the hydraulic continuously variable transmissions is arranged in the continuously variable transmission case so as to be distributed to both ends across the both hydraulic continuously variable transmissions. Forming a closed loop oil passage for each of the hydraulic continuously variable transmissions and a charge oil passage connecting both the closed loop oil passages, and connecting the charge oil passage and each of the hydraulic servo mechanisms with the charge oil passage. Since the oil passage block is formed from the oil passage block toward the continuously variable transmission case so as to be orthogonal to the oil passage and parallel to each other, servo oil passages for the respective hydraulic servo mechanisms are provided. Wherein the continuously variable transmission case along a side of each hydraulic servo mechanism closer can be formed by and reduced as much as possible into linearly. Therefore, the servo oil passages can be easily formed in the continuously variable transmission case or the oil passage block, the workability is good, and the manufacturing can be performed at low cost.
 特に、本願発明の第2局面によると、前記各閉ループ油路に対して前記チェック弁と前記リリーフ弁とを別々に分けて配置するから、高価なチェックリリーフ弁(チェック機能とリリーフ機能とを兼ね備えた弁、前記特許文献1等参照)を用いなくて済み、この点でも油圧式変速装置の低コスト化に貢献する。 In particular, according to the second aspect of the present invention, since the check valve and the relief valve are separately arranged for each closed loop oil passage, an expensive check relief valve (having both a check function and a relief function) is provided. This also contributes to the cost reduction of the hydraulic transmission.
本願発明の車両用駆動装置を搭載したコンバインの左側面図である。It is a left view of the combine which mounts the vehicle drive device of this invention. コンバインの右側面図である。It is a right view of a combine. コンバインの平面図である。It is a top view of a combine. 走行機体前部を左斜め前方から見た斜視図である。It is the perspective view which looked at the traveling machine body front part from the diagonally left front. コンバインの駆動系統図である。It is a drive system diagram of a combine. 車両用駆動装置の駆動系統図である。It is a drive system figure of the drive device for vehicles. 油圧無段変速機の油圧回路図である。It is a hydraulic circuit diagram of a hydraulic continuously variable transmission. 運転台及び車両用駆動装置を左斜め前方から見た斜視図である。It is the perspective view which looked at the cab and the vehicle drive device from diagonally left front. 車両用駆動装置の右側面図である。It is a right view of the drive device for vehicles. 車両用駆動装置の左側面図である。It is a left view of the vehicle drive device. ギヤ配列関係を示すミッションケースの左側面断面図である。It is a left side sectional view of a mission case showing a gear arrangement relation. ミッションケースにおける直進出力の展開断面図である。It is an expanded sectional view of the straight output in a mission case. ミッションケースにおける旋回出力の展開断面図である。It is an expanded sectional view of turning output in a mission case. 副変速ギヤ機構の背面断面図である。It is a back sectional view of an auxiliary transmission gear mechanism. PTOボス部の背面断面図である。It is a back sectional view of a PTO boss part. PTOボス部にPTO軸を装着した別例の背面断面図である。It is a rear surface sectional view of another example in which a PTO shaft is attached to a PTO boss part. 旋回ブレーキの背面断面図である。It is a back sectional view of a turning brake. 潤滑構造の別例を示す車両用駆動装置の左側面図である。It is a left view of the vehicle drive device which shows another example of a lubrication structure. 車軸先端側の断面図である。It is sectional drawing of the axle front end side. 油路ブロックの断面図である。It is sectional drawing of an oil path block. 油圧式変速装置(無段変速ケース及び油路ブロック)の断面図である。It is sectional drawing of a hydraulic transmission (a continuously variable transmission case and an oil path block). 油圧式変速装置(無段変速ケース及び油路ブロック)の一部断面図であって、(a)が側面の部分断面図であり、(b)が平面断面との組み合わせ断面図である。FIG. 2 is a partial cross-sectional view of a hydraulic transmission (a continuously variable transmission case and an oil passage block), in which (a) is a partial cross-sectional view of a side surface, and (b) is a combined cross-sectional view with a plane cross-section.
 以下に、本願発明を具体化した実施形態を、普通型コンバインに搭載した車両用駆動装置の図面に基づいて説明する。まず、図1~図3を参照しながら、コンバインの概略構造について説明する。なお、以下の説明では、走行機体1の前進方向に向かって左側を単に左側と称し、同じく前進方向に向かって右側を単に右側と称する。 Hereinafter, an embodiment embodying the present invention will be described based on a drawing of a vehicle drive device mounted on a normal combine. First, the schematic structure of the combine will be described with reference to FIGS. In the following description, the left side in the forward direction of the traveling machine body 1 is simply referred to as the left side, and the right side in the forward direction is also simply referred to as the right side.
 図1~図3に示す如く、作業車両としての普通型コンバインは、走行部としてのゴムクローラ製の左右一対の履帯2にて支持された走行機体1を備える。走行機体1の前部には、稲、麦、大豆又はトウモロコシ等の未刈り穀稈を刈取りながら取込む刈取部3が単動式の昇降用油圧シリンダ4にて昇降調節可能に装着されている。 As shown in FIGS. 1 to 3, a normal combine as a work vehicle includes a traveling machine body 1 supported by a pair of left and right crawler belts 2 made of rubber crawlers as a traveling portion. At the front part of the traveling machine body 1, a harvesting unit 3 for harvesting uncut rice grains such as rice, wheat, soybeans or corn while being harvested is mounted by a single-acting lifting hydraulic cylinder 4 so as to be adjustable up and down. .
 走行機体1の左側には、刈取部3から供給された刈取穀稈を脱穀処理するための脱穀部9を搭載する。脱穀部9の下部には、揺動選別及び風選別を行うための穀粒選別機構10を配置する。走行機体1の前部右側には、オペレータが搭乗する運転台5を搭載する。動力源としてのエンジン7を、運転台5(運転座席42の下方)に配置する。運転台5の後方(走行機体1の右側)には、脱穀部9から穀粒を取出すグレンタンク6と、トラック荷台(またはコンテナなど)に向けてグレンタンク6内の穀粒を排出する穀粒排出コンベヤ8を配置する。穀粒排出コンベヤ8を機外側方に傾倒させて、グレンタンク6内の穀粒を穀粒排出コンベヤ8にて搬出するように構成している。 On the left side of the traveling machine 1, a threshing unit 9 for threshing the harvested cereal meal supplied from the harvesting unit 3 is mounted. In the lower part of the threshing unit 9, a grain sorting mechanism 10 for performing swing sorting and wind sorting is arranged. A driver's cab 5 on which an operator is boarded is mounted on the front right side of the traveling machine body 1. An engine 7 as a power source is disposed on the cab 5 (below the driver seat 42). Behind the cab 5 (on the right side of the traveling machine body 1), a grain tank 6 for taking the grain from the threshing unit 9 and a grain for discharging the grain in the grain tank 6 toward the truck bed (or container, etc.) A discharge conveyor 8 is arranged. The grain discharge conveyor 8 is tilted toward the outside of the machine so that the grains in the grain tank 6 are carried out by the grain discharge conveyor 8.
 刈取部3は、脱穀部9前部の扱口9aに連通したフィーダハウス11と、フィーダハウス11の前端に連設された横長バケット状の穀物ヘッダー12とを備える。穀物ヘッダー12内に掻込みオーガ13(プラットホームオーガ)を回転可能に軸支する。掻込みオーガ13の前部上方にタインバー付き掻込みリール14を配置する。穀物ヘッダー12の前部にバリカン状の第1刈刃15を配置する。穀物ヘッダー12前部の左右両側に左右の分草体16を突設する。また、フィーダハウス11に供給コンベヤ17を内設する。供給コンベヤ17の送り終端側に位置する扱口9aに刈取り穀稈投入用ビータ18(フロントロータ)を設ける。フィーダハウス11の下面部と走行機体1の前端部とは昇降用油圧シリンダ4を介して連結され、後述する刈取入力軸89(フィーダハウスコンベヤ軸)を昇降支点として、刈取部3が昇降用油圧シリンダ4にて昇降動する。 The mowing unit 3 includes a feeder house 11 that communicates with the handling port 9a of the front part of the threshing unit 9 and a horizontally long bucket-shaped grain header 12 that is provided continuously at the front end of the feeder house 11. A scraping auger 13 (platform auger) is rotatably supported in the grain header 12. A take-up reel 14 with a tine bar is disposed above the front portion of the take-up auger 13. A clipper-shaped first cutting blade 15 is disposed in front of the grain header 12. Left and right weed bodies 16 are provided to project from the left and right sides of the front part of the grain header 12. In addition, a supply conveyor 17 is installed in the feeder house 11. A cutting port 9a positioned at the feed end side of the supply conveyor 17 is provided with a cutting grain input beater 18 (front rotor). The lower surface portion of the feeder house 11 and the front end portion of the traveling machine body 1 are connected via an elevating hydraulic cylinder 4, and the mowing unit 3 uses an elevating fulcrum as a mowing input shaft 89 (feeder house conveyor shaft) described later. The cylinder 4 moves up and down.
 上記の構成により、左右の分草体16間の未刈り穀稈の穂先側が掻込みリール14にて掻込まれ、未刈り穀稈の稈元側が第1刈刃15にて刈取られ、掻込みオーガ13の回転駆動によって、穀物ヘッダー12の左右幅の中央部寄りのフィーダハウス11入口付近に刈取穀稈が集められる。穀物ヘッダー12の刈取穀稈の全量は、供給コンベヤ17によって搬送され、ビータ18によって脱穀部9の扱口9aに投入されるように構成している。なお、穀物ヘッダー12を水平制御支点軸回りに回動させる水平制御用油圧シリンダ(図示省略)を備え、穀物ヘッダー12の左右方向の傾斜を前記水平制御用油圧シリンダにて調節して、穀物ヘッダー12、及び第1刈刃15、及び掻込みリール14を圃場面に対して水平に支持することも可能である。 With the above configuration, the tip side of the uncut grain culm between the left and right weed bodies 16 is scraped by the scraping reel 14, and the base side of the uncut grain culm is cut by the first cutting blade 15. By the rotational drive of 13, the harvested cereal grains are collected near the entrance of the feeder house 11 near the center of the grain header 12 in the lateral width. The whole amount of the harvested cereal meal of the grain header 12 is conveyed by the supply conveyor 17 and is configured to be input to the handling port 9 a of the threshing unit 9 by the beater 18. The grain header 12 is provided with a horizontal control hydraulic cylinder (not shown) that rotates about the horizontal control fulcrum shaft, and the grain header 12 is adjusted by the horizontal control hydraulic cylinder to adjust the horizontal inclination of the grain header 12. 12 and the first cutting blade 15 and the take-up reel 14 can be supported horizontally with respect to the field scene.
 図1及び図3に示す如く、脱穀部9の扱室内に扱胴21を回転可能に設ける。走行機体1の前後方向に延長させた扱胴軸20に扱胴21を軸支する。扱胴21の下方側には、穀粒を漏下させる受網24を張設する。なお、扱胴21前部の外周面には、螺旋状のスクリュー羽根状の取込み羽根25が半径方向外向きに突設されている。 As shown in FIGS. 1 and 3, a handling cylinder 21 is rotatably provided in a handling chamber of the threshing unit 9. A handling cylinder 21 is pivotally supported on a handling cylinder shaft 20 extended in the front-rear direction of the traveling machine body 1. On the lower side of the handling cylinder 21, a receiving net 24 for allowing the grains to leak is stretched. In addition, a spiral screw blade-shaped intake blade 25 projects outward in the radial direction on the outer peripheral surface of the front portion of the handling cylinder 21.
 上記の構成により、ビータ18によって扱口9aから投入された刈取穀稈は、扱胴21の回転によって走行機体1の後方に向けて搬送されながら、扱胴21と受網24との間等にて混練されて脱穀される。受網24の網目よりも小さい穀粒等の脱穀物は受網24から漏下する。受網24から漏下しない藁屑等は、扱胴21の搬送作用によって、脱穀部9後部の排塵口23から圃場に排出される。なお、扱胴21の上方側には、扱室内の脱穀物の搬送速度を調節する複数の送塵弁(図示省略)を回動可能に枢着する。前記送塵弁の角度調整によって、扱室内にある脱穀物の搬送速度(滞留時間)を、刈取穀稈の品種や性状に応じて調節できる。 With the above-described configuration, the harvested cereal straw introduced from the handling port 9 a by the beater 18 is conveyed toward the rear of the traveling machine body 1 by the rotation of the handling cylinder 21, and between the handling cylinder 21 and the receiving net 24. Kneaded and threshed. The threshing of grains or the like smaller than the mesh of the receiving net 24 leaks from the receiving net 24. The sawdust and the like that do not leak from the receiving net 24 are discharged from the dust outlet 23 at the rear of the threshing portion 9 to the field by the conveying action of the handling cylinder 21. A plurality of dust feed valves (not shown) for adjusting the conveying speed of shed grains in the handling chamber are pivotally mounted on the upper side of the handling cylinder 21 so as to be rotatable. By adjusting the angle of the dust feed valve, the conveying speed (residence time) of threshing in the handling chamber can be adjusted according to the variety and properties of the harvested cereal.
 一方、脱穀部9の下方に配置された穀粒選別機構10として、グレンパン及びチャフシーブ及びグレンシーブ及びストローラック等を有する比重選別用の揺動選別盤26を備える。また、穀粒選別機構10として、揺動選別盤26に選別風を供給する送風ファン状の唐箕29等を備える。扱胴21にて脱穀されて受網24から漏下した脱穀物は、揺動選別盤26の比重選別作用と送風ファン状の唐箕29の風選別作用とにより、穀粒(精粒等の一番物)、穀粒と藁の混合物(枝梗付き穀粒等の二番物)、及び藁屑等に選別されて取出される。 On the other hand, the grain sorting mechanism 10 disposed below the threshing unit 9 includes a rocking sorter 26 for specific gravity sorting having Glen bread, chaff sheave, Glen sheave, Strollac, and the like. Further, as the grain sorting mechanism 10, a blower fan-shaped tongue 29 for supplying sorting wind to the swing sorting board 26 is provided. The threshing that has been threshed by the handling cylinder 21 and leaked from the receiving net 24 is caused by the specific gravity sorting action of the swing sorter 26 and the wind sorting action of the blower fan-shaped tang 29, so And the like), the mixture of grain and straw (second thing such as grain with branches), and sawdust and the like.
 揺動選別盤26の下側方には、穀粒選別機構10として、一番コンベヤ機構30及び二番コンベヤ機構31を備える。揺動選別盤26及び送風ファン状の唐箕29の選別によって揺動選別盤26から落下した穀粒(一番物)は、一番コンベヤ機構30及び揚穀コンベヤ32によってグレンタンク6に収集される。穀粒と藁の混合物(二番物)は、二番コンベヤ機構31及び二番還元コンベヤ33等を介して揺動選別盤26の選別始端側に戻され、揺動選別盤26によって再選別される。藁屑等は、走行機体1後部の排塵口23から圃場に排出されるように構成する。 The first conveyor mechanism 30 and the second conveyor mechanism 31 are provided on the lower side of the swing sorter 26 as the grain sorting mechanism 10. The grain (first thing) dropped from the swing sorter 26 by sorting the swing sorter 26 and the blower fan-shaped tongue 29 is collected in the glen tank 6 by the first conveyor mechanism 30 and the cereal conveyor 32. . The mixture of grains and straw (second product) is returned to the sorting start end side of the swing sorting plate 26 through the second conveyor mechanism 31 and the second reduction conveyor 33 and is re-sorted by the swing sorting plate 26. The The sawdust and the like are configured to be discharged from the dust outlet 23 at the rear of the traveling machine body 1 to the field.
 更に、図1~図4に示す如く、運転台5には、操縦コラム41と、オペレータが座乗する運転座席42とを配置している。操縦コラム41には、エンジン5の回転数を調節するアクセルレバー40と、オペレータの回転操作にて走行機体1の進路を変更する丸形状の操縦ハンドル43と、走行機体1の移動速度を切換える主変速レバー44及び副変速レバー45と、刈取部3を駆動または停止操作する刈取クラッチレバー46と、脱穀部9を駆動または停止操作する脱穀クラッチレバー47が配置されている。また、グレンタンク6の前部上面側にサンバイザー支柱48を介して日除け用の屋根体49を取付け、日除け用の屋根体49にて運転台5の上方側を覆っている。 Further, as shown in FIGS. 1 to 4, the cab 5 is provided with a control column 41 and a driver seat 42 on which an operator sits. The steering column 41 includes an accelerator lever 40 that adjusts the rotational speed of the engine 5, a round steering handle 43 that changes the course of the traveling machine body 1 by a rotation operation by an operator, and a main body that switches the moving speed of the traveling machine body 1. A shift lever 44 and a sub-shift lever 45, a cutting clutch lever 46 for driving or stopping the cutting unit 3, and a threshing clutch lever 47 for driving or stopping the threshing unit 9 are arranged. A sunshade roof body 49 is attached to the front upper surface side of the Glen tank 6 via a sun visor support 48, and the sunshade roof body 49 covers the upper side of the cab 5.
 図1及び図2に示す如く、走行機体1の下面側に左右のトラックフレーム50を配置している。トラックフレーム50には、履帯2にエンジン7の動力を伝える駆動スプロケット51と、履帯2のテンションを維持するテンションローラ52と、履帯2の接地側を接地状態に保持する複数のトラックローラ53と、履帯2の非接地側を保持する中間ローラ54とを設けている。駆動スプロケット51によって履帯2の前側を支持させ、テンションローラ52によって履帯2の後側を支持させ、トラックローラ53によって履帯2の接地側を支持させ、中間ローラ54によって履帯2の非接地側を支持させている。 1 and 2, left and right track frames 50 are arranged on the lower surface side of the traveling machine body 1. The track frame 50 includes a drive sprocket 51 that transmits the power of the engine 7 to the crawler belt 2, a tension roller 52 that maintains the tension of the crawler belt 2, a plurality of track rollers 53 that hold the ground side of the crawler belt 2 in a grounded state, An intermediate roller 54 that holds the non-grounding side of the crawler belt 2 is provided. The front side of the crawler belt 2 is supported by the drive sprocket 51, the rear side of the crawler belt 2 is supported by the tension roller 52, the ground side of the crawler belt 2 is supported by the track roller 53, and the non-ground side of the crawler belt 2 is supported by the intermediate roller 54 I am letting.
 次に、図4~図6を参照してコンバインの駆動構造を説明する。図4~図6に示す如く、直進ポンプ64a及び直進モータ64bを有する走行変速用の直進油圧無段変速機64をミッションケース63に設ける。走行機体1前部の右側上面にエンジン7を搭載し、走行機体1前部で且つエンジン7の左側にミッションケース63を配置している。エンジン7から左側方に突出させた出力軸65と、ミッションケース63から左側方に突出させたミッション入力軸66を、エンジン出力ベルト67で動力伝達可能に連結している。加えて、昇降用油圧シリンダ4等を駆動する作業部チャージポンプ68及び冷却ファン69をエンジン7に配置し、作業部チャージポンプ68及び冷却ファン69をエンジン7にて駆動する。 Next, the drive structure of the combine will be described with reference to FIGS. As shown in FIGS. 4 to 6, the transmission case 63 is provided with a linear hydraulic continuously variable transmission 64 for traveling speed change having a linear pump 64a and a linear motor 64b. The engine 7 is mounted on the upper right side of the front part of the traveling machine body 1, and a mission case 63 is disposed on the front part of the traveling machine body 1 and on the left side of the engine 7. An output shaft 65 protruding leftward from the engine 7 and a mission input shaft 66 protruding leftward from the mission case 63 are connected by an engine output belt 67 so that power can be transmitted. In addition, the working unit charge pump 68 and the cooling fan 69 that drive the lifting hydraulic cylinder 4 and the like are arranged in the engine 7, and the working unit charge pump 68 and the cooling fan 69 are driven by the engine 7.
 また、旋回ポンプ70a及び旋回モータ70bを有する操舵用の旋回油圧無段変速機70をミッションケース63に設け、ミッション入力軸66を介して直進油圧無段変速機64及び旋回油圧無段変速機70にエンジン7出力を伝達させる一方、操縦ハンドル43と主及び副変速レバー44,45とで、直進油圧無段変速機64と旋回油圧無段変速機70とを出力制御し、直進油圧無段変速機64及び旋回油圧無段変速機70を介して左右の履帯2を駆動し、圃場内等を走行移動するように構成している。実施形態では、ミッションケース63の右側面上部に直進及び旋回油圧無段変速機64,70を配置している。直進及び旋回油圧無段変速機64,70とミッションケース63とによって、本願発明の車両用駆動装置を構成している。 Further, a turning hydraulic continuously variable transmission 70 for steering having a turning pump 70 a and a turning motor 70 b is provided in the mission case 63, and a straight hydraulic continuously variable transmission 64 and a turning hydraulic continuously variable transmission 70 are connected via a mission input shaft 66. While the output of the engine 7 is transmitted to the vehicle, the steering handle 43 and the main and auxiliary transmission levers 44 and 45 control the output of the straight hydraulic continuously variable transmission 64 and the swing hydraulic continuously variable transmission 70, so that the straight hydraulic continuously variable transmission is achieved. The left and right crawler belts 2 are driven through the machine 64 and the turning hydraulic continuously variable transmission 70 to travel and move in the field. In the embodiment, straight and turning hydraulic continuously variable transmissions 64 and 70 are arranged on the upper right side of the mission case 63. The straight and turning hydraulic continuously variable transmissions 64 and 70 and the transmission case 63 constitute the vehicle drive device of the present invention.
 図4及び図5に示す如く、脱穀部9の前面側には、扱胴軸20の前端側を軸支する扱胴駆動ケース71を配置している。そして、扱胴21を駆動させる左右横長の扱胴入力軸72を扱胴駆動ケース71に軸支する。また、脱穀部9の左右に貫通させるカウンタ軸73を備える。脱穀部9の左右一側から左右他側に亘るカウンタ軸73を、扱胴21の下方を通って脱穀部9を左右方向に貫通するように設けている。カウンタ軸73の右側端部に作業部入力プーリ83を設けている。エンジン7の出力軸65に、テンションプーリ形の脱穀クラッチ84と作業部駆動ベルト85とを介して、カウンタ軸73の右側端部を動力伝達可能に連結している。 As shown in FIGS. 4 and 5, on the front side of the threshing portion 9, a handling cylinder drive case 71 that pivotally supports the front end side of the handling cylinder shaft 20 is disposed. Then, a horizontally long handling cylinder input shaft 72 for driving the handling cylinder 21 is pivotally supported on the handling cylinder drive case 71. Moreover, the counter shaft 73 penetrated in the right and left of the threshing part 9 is provided. A counter shaft 73 extending from the left and right sides of the threshing portion 9 to the left and right sides is provided so as to penetrate the threshing portion 9 in the left-right direction through the lower side of the handling cylinder 21. A working unit input pulley 83 is provided at the right end of the counter shaft 73. The right end portion of the counter shaft 73 is connected to the output shaft 65 of the engine 7 through a tension pulley type threshing clutch 84 and a working unit drive belt 85 so as to be able to transmit power.
 カウンタ軸73よりも上方且つ扱胴21の前方に、走行機体1左右向きに延設された扱胴入力軸72と、走行機体1左右向きに配置されたビータ18と、走行機体1左右向きに延設された刈取入力軸89を設けている。加えて、カウンタ軸73の駆動力を扱胴入力軸72に伝達する扱胴入力機構90として、扱胴駆動プーリ86,87と扱胴駆動ベルト88とを備え、エンジン7からの駆動力が伝達されるカウンタ軸73のエンジン7側一端部に扱胴入力機構90(扱胴駆動プーリ86,87と扱胴駆動ベルト88)を配置する。また、カウンタ軸73の駆動力を刈取入力軸89に伝達する刈取入力機構100として、刈取り駆動プーリ106,107と刈取り駆動ベルト114を備え、扱胴入力機構90が配置されたエンジン7側一端部とは反対側となるカウンタ軸73の他端部に刈取入力機構100(刈取り駆動プーリ106,107と刈取り駆動ベルト114)を配置する。 Above the counter shaft 73 and in front of the handling cylinder 21, a handling cylinder input shaft 72 extending in the lateral direction of the traveling machine body 1, a beater 18 arranged in the lateral direction of the traveling machine body 1, and a lateral direction of the traveling machine body 1 An extended cutting input shaft 89 is provided. In addition, the cylinder input mechanism 90 that transmits the driving force of the counter shaft 73 to the cylinder input shaft 72 includes cylinder driving pulleys 86 and 87 and a cylinder driving belt 88, and the driving force from the engine 7 is transmitted. A cylinder input mechanism 90 ( cylinder driving pulleys 86 and 87 and a cylinder driving belt 88) is disposed at one end of the counter shaft 73 on the engine 7 side. Further, the cutting input mechanism 100 that transmits the driving force of the counter shaft 73 to the cutting input shaft 89 includes cutting drive pulleys 106 and 107 and a cutting drive belt 114, and one end portion on the engine 7 side where the barrel input mechanism 90 is disposed. The mowing input mechanism 100 (the mowing driving pulleys 106 and 107 and the mowing driving belt 114) is disposed at the other end of the counter shaft 73 on the opposite side.
 更に、図4に示す如く、走行機体1上面側のうち脱穀部9前方に、刈取り支持枠体36を設置している。刈取り支持枠体36の前面側に刈取り軸受体を介して走行機体1左右向きに刈取入力軸89を回動可能に軸支すると共に、刈取り支持枠体36の内部にビータ軸82を介してビータ18を回動可能に軸支する。また、刈取り支持枠体36の左側外面に正逆転切換ケース121を取付けると共に、刈取り支持枠体36の上面側に扱胴駆動ケース71を取付けている。 Further, as shown in FIG. 4, a cutting support frame 36 is installed in front of the threshing portion 9 on the upper surface side of the traveling machine body 1. A cutting input shaft 89 is pivotally supported on the front side of the cutting support frame body 36 via a cutting bearing body in the left-right direction, and the beater shaft 82 is connected to the beater shaft 82 via a beater shaft 82. 18 is pivotally supported. Further, the forward / reverse switching case 121 is attached to the left outer surface of the cutting support frame 36, and the barrel driving case 71 is attached to the upper surface side of the cutting support frame 36.
 一方、フィーダハウス11内の供給コンベヤ17を駆動する左右向きの刈取入力軸89を備える。エンジン7からカウンタ軸73のエンジン7側一端部に伝達された刈取駆動力を、エンジン7とは反対側となるカウンタ軸73の他端部から、刈取正逆転切換ケース121の正逆転伝達軸122に伝達させる。刈取正逆転切換ケース121の正転用ベベルギヤ124又は逆転用ベベルギヤ125を介してビータ軸82を駆動する。また、ビータ18が軸支されたビータ軸82から、刈取入力軸89に前記刈取駆動力を伝達させるよう構成している。 On the other hand, a left-right cutting input shaft 89 for driving the supply conveyor 17 in the feeder house 11 is provided. The cutting drive force transmitted from the engine 7 to one end of the counter shaft 73 on the engine 7 side is transferred from the other end of the counter shaft 73 opposite to the engine 7 to the forward / reverse transmission shaft 122 of the cutting forward / reverse switching case 121. To communicate. The beater shaft 82 is driven via the forward bevel gear 124 or the reverse bevel gear 125 of the cutting forward / reverse switching case 121. Further, the cutting drive force is transmitted to the cutting input shaft 89 from the beater shaft 82 on which the beater 18 is pivotally supported.
 すなわち、図5に示す如く、左右向きのビータ軸82にビータ18を軸支し、ビータ軸82のエンジン7側一端部から刈取部3にエンジン7の駆動力を伝達するものであり、ビータ軸82におけるエンジン7とは反対側となる左右他端部に刈取正逆転切換ケース121を配置し、エンジン7とは反対側となるカウンタ軸73の他端部から、刈取正逆転切換ケース121にエンジン7の駆動力を伝達するように構成している。 That is, as shown in FIG. 5, the beater 18 is pivotally supported on the beater shaft 82 facing left and right, and the driving force of the engine 7 is transmitted from the one end portion of the beater shaft 82 to the cutting unit 3. The cutting forward / reverse rotation switching case 121 is disposed at the other left and right ends opposite to the engine 7 in 82, and the cutting forward / reverse rotation switching case 121 is connected to the cutting forward / reverse rotation switching case 121 from the other end of the counter shaft 73 opposite to the engine 7. 7 driving force is transmitted.
 また、図5に示す如く、脱穀部9前側に左右向きの扱胴入力軸72を備え、エンジン7からカウンタ軸73におけるエンジン7側一端部に伝達された駆動力を、扱胴入力軸72におけるエンジン7側一端部に伝達するものであり、脱穀部9前側に扱胴入力軸72を設け、走行機体1左右向きに扱胴入力軸72を配置し、走行機体1前後向きに配置する扱胴軸20に扱胴21を軸支し、扱胴入力軸72におけるエンジン7とは反対側となる左右他端部にベベルギヤ機構75を介して扱胴軸20前端側を連結すると共に、カウンタ軸73におけるエンジン7とは反対側となる左右他端部から、脱穀後の穀粒を選別する穀粒選別機構10と刈取部3とにエンジン7の駆動力を伝達させるよう構成している。 Further, as shown in FIG. 5, a handling cylinder input shaft 72 facing left and right is provided on the front side of the threshing section 9, and the driving force transmitted from the engine 7 to one end of the counter shaft 73 on the engine 7 side is transmitted to the handling cylinder input shaft 72. A handling cylinder that is transmitted to one end of the engine 7 side, is provided with a handling cylinder input shaft 72 on the front side of the threshing part 9, the handling cylinder input shaft 72 is arranged in the lateral direction of the traveling machine body 1, and is arranged in the longitudinal direction of the traveling machine body 1 The handle cylinder 21 is pivotally supported on the shaft 20, and the front end side of the handle cylinder shaft 20 is connected to the left and right other end portions of the handle cylinder input shaft 72 opposite to the engine 7 via the bevel gear mechanism 75, and the counter shaft 73. The driving force of the engine 7 is transmitted from the left and right other ends opposite to the engine 7 to the grain sorting mechanism 10 that sorts the grain after threshing and the cutting part 3.
 エンジン7に近い側のカウンタ軸73の右側端部に、扱胴駆動プーリ86,87と扱胴駆動ベルト88とを介して、扱胴入力軸72の右側端部を連結する。左右方向に延設した扱胴入力軸72の左側端部に、ベベルギヤ機構75を介して扱胴軸20の前端側を連結する。カウンタ軸73の右側端部から扱胴入力軸72を介して扱胴軸20の前端側にエンジン7の動力を伝達させ、扱胴21を一方向に回転駆動させるように構成している。一方、送風ファン状の唐箕29を軸支した唐箕軸76の左側端部に、唐箕駆動プーリ101,102と唐箕駆動ベルト103とを介して、エンジン7から離れた側のカウンタ軸73の左側端部を連結している。カウンタ軸73の左側端部から唐箕軸76の左側端部にエンジン7の動力を伝達させ、唐箕29を一方向に回転駆動させるように構成している。 The right end of the cylinder input shaft 72 is connected to the right end of the counter shaft 73 on the side close to the engine 7 via the cylinder driving pulleys 86 and 87 and the cylinder driving belt 88. A front end side of the handling cylinder shaft 20 is connected to a left end portion of the handling cylinder input shaft 72 extending in the left-right direction via a bevel gear mechanism 75. The power of the engine 7 is transmitted from the right end portion of the counter shaft 73 to the front end side of the barrel shaft 20 via the barrel input shaft 72, and the barrel 21 is rotationally driven in one direction. On the other hand, the left end of the counter shaft 73 on the side away from the engine 7 is connected to the left end of the hot shaft 76 on which the blower fan-shaped hot spring 29 is supported via the hot drive pulleys 101 and 102 and the hot drive belt 103. The parts are connected. The power of the engine 7 is transmitted from the left end portion of the counter shaft 73 to the left end portion of the tang shaft 76, and the tang 29 is rotated in one direction.
 更に、一番コンベヤ機構30の一番コンベヤ軸77の左側端部と、二番コンベヤ機構31の二番コンベヤ軸78の左側端部とに、コンベヤ駆動ベルト111を介して唐箕軸76の左側端部を連結している。揺動選別盤26後部を軸支したクランク状の揺動駆動軸79の左側端部に揺動選別ベルト112を介して二番コンベヤ軸78の左側端部を連結している。従って、オペレータの脱穀クラッチレバー47操作によって脱穀クラッチ84が入り切り制御され、脱穀クラッチ84の入り操作によって穀粒選別機構10の各部と扱胴21が駆動されるように構成している。 Furthermore, the left end of the Karatsu shaft 76 is connected to the left end of the first conveyor shaft 77 of the first conveyor mechanism 30 and the left end of the second conveyor shaft 78 of the second conveyor mechanism 31 via the conveyor drive belt 111. The parts are connected. The left end portion of the second conveyor shaft 78 is connected to the left end portion of the crank-shaped swing drive shaft 79 pivotally supported by the rear portion of the swing sorting plate 26 via the swing sorting belt 112. Accordingly, the threshing clutch 84 is controlled to be turned on and off by the operation of the threshing clutch lever 47 by the operator, and each part of the grain sorting mechanism 10 and the handling cylinder 21 are driven by the turning on operation of the threshing clutch 84.
 なお、一番コンベヤ軸77を介して揚穀コンベヤ32が駆動されて、一番コンベヤ機構30の一番選別穀粒がグレンタンク6に収集される。また、二番コンベヤ軸78を介して二番還元コンベヤ33が駆動されて、二番コンベヤ機構31の藁屑が混在した二番選別穀粒(二番物)が揺動選別盤26の上面側に戻される。また、排塵口23に藁屑飛散用のスプレッダ(図示省略)を設ける構造では、スプレッダ駆動プーリ104とスプレッダ駆動ベルト105を介して、前記スプレッダに唐箕軸76の左側端部を連結する。 Note that the cereal conveyor 32 is driven via the first conveyor shaft 77, and the first selected grain of the first conveyor mechanism 30 is collected in the Glen tank 6. The second reduction conveyor 33 is driven via the second conveyor shaft 78, and the second selected grain (second product) mixed with the sawdust from the second conveyor mechanism 31 is moved to the upper side of the swing sorter 26. Returned to Further, in a structure in which a dust spreader spreader (not shown) is provided in the dust outlet 23, the left end portion of the Karatsu shaft 76 is connected to the spreader via the spreader drive pulley 104 and the spreader drive belt 105.
 一方、ビータ18を軸支するビータ軸82を備える。エンジン7から離れた側のビータ軸82の左側端部に正逆転切換ケース121を配置する。正逆転切換ケース121内にビータ軸82の左側端部を挿入すると共に、正逆転伝達軸122と正逆転切換軸123を正逆転切換ケース121に設ける。ビータ軸82と正逆転伝達軸122とを略同一軸心線上に配置する。刈取り駆動プーリ106,107、刈取り駆動ベルト114及び刈取クラッチ115(テンションプーリ)を介して、カウンタ軸73の左側端部に正逆転伝達軸122の左側端部を連結する。 On the other hand, a beater shaft 82 that pivotally supports the beater 18 is provided. A forward / reverse switching case 121 is arranged at the left end of the beater shaft 82 on the side away from the engine 7. A forward / reverse transmission shaft 122 and a forward / reverse switching shaft 123 are provided in the forward / reverse switching case 121 while the left end of the beater shaft 82 is inserted into the forward / reverse switching case 121. The beater shaft 82 and the forward / reverse transmission shaft 122 are arranged on substantially the same axis. The left end portion of the forward / reverse transmission shaft 122 is connected to the left end portion of the counter shaft 73 via the mowing drive pulleys 106 and 107, the mowing drive belt 114, and the mowing clutch 115 (tension pulley).
 図5に示す如く、供給コンベヤ17の送り終端側を軸支するコンベヤ入力軸としての刈取入力軸89を備える。穀物ヘッダー12の右側部背面側にヘッダー駆動軸91を回転自在に軸支する。刈取駆動チェン116及びスプロケット117~119を介して、左右方向に延設したヘッダー駆動軸91の左側端部に、ビータ軸82の右側端部と刈取入力軸89の右側端部とを動力伝達可能に連結する。掻込みオーガ13を軸支する掻込み軸93を備える。掻込み軸93の右側端部に、掻込み駆動チェン92を介してヘッダー駆動軸91の中間部を連結している。 As shown in FIG. 5, a cutting input shaft 89 is provided as a conveyor input shaft that pivotally supports the feed end side of the supply conveyor 17. A header drive shaft 91 is rotatably supported on the right side rear side of the grain header 12. Via the cutting drive chain 116 and the sprockets 117 to 119, the right end of the beater shaft 82 and the right end of the cutting input shaft 89 can be transmitted to the left end of the header drive shaft 91 extending in the left-right direction. Connect to A scraping shaft 93 that pivotally supports the scraping auger 13 is provided. An intermediate portion of the header drive shaft 91 is connected to the right end portion of the drive shaft 93 via a drive drive chain 92.
 また、掻込みリール14を軸支するリール軸94を備える。リール軸94の右側端部に、中間軸95及びリール駆動チェン96,97を介してヘッダー駆動軸91の中間部を連結している。ヘッダー駆動軸91の右側端部には、第1刈刃駆動クランク機構98を介して第1刈刃15が連結されている。刈取クラッチ115の入り切り操作によって、供給コンベヤ17、掻込みオーガ13、掻込みリール14及び第1刈刃15が駆動制御されて、圃場の未刈り穀稈の穂先側を連続的に刈取るように構成している。 Also provided is a reel shaft 94 that pivotally supports the take-up reel 14. The intermediate portion of the header drive shaft 91 is connected to the right end portion of the reel shaft 94 via an intermediate shaft 95 and reel drive chains 96 and 97. The first cutting blade 15 is connected to the right end portion of the header drive shaft 91 via a first cutting blade drive crank mechanism 98. The feed conveyor 17, the auger 13, the take-up reel 14 and the first cutting blade 15 are driven and controlled by the turning-on / off operation of the cutting clutch 115 so that the tip side of the uncut grain culm in the field is continuously cut. It is composed.
 図5に示す如く、正逆転伝達軸122に一体形成する正転用ベベルギヤ124と、刈取入力軸89に回転自在に軸支する逆転用ベベルギヤ125と、正転用ベベルギヤ124に逆転用ベベルギヤ125を連結させる中間ベベルギヤ126を、正逆転切換ケース121に内設する。正転用ベベルギヤ124と逆転用ベベルギヤ125に中間ベベルギヤ126を常に歯合させる。一方、ビータ軸82にスライダ127をスライド自在にスプライン係合軸支する。爪クラッチ形状の正転クラッチ128を介して正転用ベベルギヤ124にスライダ127を係脱可能に係合可能に構成すると共に、爪クラッチ形状の逆転クラッチ129を介して逆転用ベベルギヤ125にスライダ127を係脱可能に係合可能に構成している。 As shown in FIG. 5, the forward rotation bevel gear 124 integrally formed with the forward / reverse transmission shaft 122, the reverse rotation bevel gear 125 rotatably supported on the cutting input shaft 89, and the reverse rotation bevel gear 125 are connected to the forward rotation bevel gear 124. An intermediate bevel gear 126 is installed in the forward / reverse switching case 121. The intermediate bevel gear 126 is always meshed with the forward bevel gear 124 and the reverse bevel gear 125. On the other hand, a slider 127 is slidably supported on the beater shaft 82 by a spline engagement shaft. The slider 127 is configured to be detachably engageable with the forward rotation bevel gear 124 via the claw clutch-shaped forward rotation clutch 128, and the slider 127 is engaged with the reverse rotation bevel gear 125 via the claw clutch-shaped reverse rotation clutch 129. It is configured to be detachably engageable.
 また、スライダ127を摺動操作する正逆転切換軸123を備え、正逆転切換軸123に正逆転切換アーム130を設け、正逆転切換レバー(正逆転操作具)操作にて正逆転切換アーム130を揺動させて正逆転切換軸123を回動し、正転用ベベルギヤ124又は逆転用ベベルギヤ125にスライダ127を接離させ、正転クラッチ128若しくは逆転クラッチ129を介して、正転用ベベルギヤ124又は逆転用ベベルギヤ125にスライダ127を択一的に係止し、正逆転伝達軸122に刈取入力軸89を正転連結させたり逆転連結させたりするように構成している。 In addition, a forward / reverse switching shaft 123 for sliding the slider 127 is provided, and a forward / reverse switching arm 130 is provided on the forward / reverse switching shaft 123, and the forward / reverse switching arm 130 is operated by operating a forward / reverse switching lever (forward / reverse operation tool). The forward / reverse switching shaft 123 is swung to rotate, the slider 127 is brought into and out of contact with the forward rotation bevel gear 124 or the reverse rotation bevel gear 125, and the forward rotation bevel gear 124 or reverse rotation via the forward rotation clutch 128 or the reverse rotation clutch 129. The slider 127 is selectively locked to the bevel gear 125, and the cutting input shaft 89 is connected to the forward / reverse transmission shaft 122 in the forward or reverse direction.
 図5に示す如く、テンションプーリ形のオーガクラッチ56及びオーガ駆動ベルト57を介して、エンジン7の出力軸65にオーガ駆動軸58の右側端部を連結する。オーガ駆動軸58の左側端部にベベルギヤ機構59を介してグレンタンク6底部の横送りオーガ60前端側を連結する。横送りオーガ60の後端側にベベルギヤ機構61を介して穀粒排出コンベヤ8の縦送りオーガ62を連結している。また、オーガクラッチ56を入り切り操作する穀粒排出レバー55を備える。グレンタンク6前面のうち運転座席42後方の前面に穀粒排出レバー55を取付け、運転座席42側からオペレータが穀粒排出レバー55を操作可能に構成している。 As shown in FIG. 5, the right end of the auger drive shaft 58 is connected to the output shaft 65 of the engine 7 via a tension pulley type auger clutch 56 and an auger drive belt 57. The front end side of the lateral feed auger 60 at the bottom of the Glen tank 6 is connected to the left end portion of the auger drive shaft 58 via a bevel gear mechanism 59. A vertical feed auger 62 of the grain discharge conveyor 8 is connected to the rear end side of the horizontal feed auger 60 via a bevel gear mechanism 61. Moreover, the grain discharge lever 55 which turns on and off the auger clutch 56 is provided. A grain discharge lever 55 is attached to the front surface of the Glen tank 6 behind the driver seat 42 so that the operator can operate the grain discharge lever 55 from the driver seat 42 side.
 図1、図2及び図4に示す如く、バリカン状の第1刈刃15と略同一長さ形状のバリカン状の第2刈刃133を備える。走行機体1に第2刈刃133を装着する第2刈刃フレームとして、左側フレーム134、右側フレーム135及び中央フレーム136を備える。左側フレーム134、右側フレーム135及び中央フレーム136の先端側に、第2刈刃台137を固着し、第2刈刃機構132を構成している。 1, 2, and 4, a clipper-shaped second cutting blade 133 having substantially the same length as the first clipper-shaped cutting blade 15 is provided. As a second cutting blade frame for mounting the second cutting blade 133 on the traveling machine body 1, a left frame 134, a right frame 135, and a central frame 136 are provided. A second cutting blade base 137 is fixed to the leading end side of the left frame 134, the right frame 135, and the center frame 136, thereby constituting a second cutting blade mechanism 132.
 第2刈刃台137の両端部に左右の接地橇体138を設ける。第2刈刃台137のうち左右の接地橇体138の間に第2刈刃133を往復動可能に取付ける。一方、走行機体1の運転台フレームに右側フレーム135の基端側を回動可能に支持している。また、走行機体1の前側フレームに中央フレーム136の基端側を回動可能に支持している。 Left and right grounding housings 138 are provided at both ends of the second cutting blade base 137. The 2nd cutting blade 133 is attached between the left and right grounding housings 138 of the 2nd cutting blade base 137 so that reciprocation is possible. On the other hand, the base end side of the right frame 135 is rotatably supported on the cab frame of the traveling machine body 1. Further, the base end side of the central frame 136 is rotatably supported on the front frame of the traveling machine body 1.
 図5に示す如く、正逆転切換ケース121から第2刈刃133に駆動力を伝達する第2刈刃駆動機構171を備える。第2刈刃駆動機構171は、第2刈刃133に駆動力を伝達する第2刈刃駆動軸172と、ベベルギヤ機構173を介して第2刈刃駆動軸172に連結する偏心回転軸174と、偏心回転軸174に連結する第2刈刃駆動クランク機構175を有する。正逆転切換ケース121内に第2刈刃駆動軸172の一端側を突入させて、第2刈刃駆動軸172に前記中間ベベルギヤ126を係合軸支し、中間ベベルギヤ126を介して正逆転伝達軸122に第2刈刃駆動軸172を連結している。 As shown in FIG. 5, a second cutting blade drive mechanism 171 that transmits a driving force from the forward / reverse switching case 121 to the second cutting blade 133 is provided. The second cutting blade drive mechanism 171 includes a second cutting blade drive shaft 172 that transmits a driving force to the second cutting blade 133, and an eccentric rotation shaft 174 that is connected to the second cutting blade drive shaft 172 via the bevel gear mechanism 173. The second cutting blade drive crank mechanism 175 is connected to the eccentric rotation shaft 174. One end side of the second cutting blade drive shaft 172 is inserted into the forward / reverse switching case 121, the intermediate bevel gear 126 is engaged with the second cutting blade drive shaft 172, and forward / reverse transmission is transmitted via the intermediate bevel gear 126. A second cutting blade drive shaft 172 is connected to the shaft 122.
 第2刈刃駆動クランク機構175は、偏心回転軸174に設ける偏心回転体177と、偏心回転体177に連結する揺動回転軸178と、揺動回転軸178に連結する揺動駆動アーム179と、揺動駆動アーム179に第2刈刃133を連結する押し引きロッド180とを備える。なお、第2刈刃駆動軸172とベベルギヤ機構173に代えて、正逆転伝達軸122に偏心回転軸174を連結させる一組のスプロケットと伝動チェンを設け、前記スプロケットと伝動チェンを介して正逆転伝達軸122から第2刈刃駆動クランク機構175に第2刈刃133駆動力を伝達するようにしてもよい。 The second blade driving crank mechanism 175 includes an eccentric rotating body 177 provided on the eccentric rotating shaft 174, a swing rotating shaft 178 connected to the eccentric rotating body 177, and a swing driving arm 179 connected to the swing rotating shaft 178. The push-pull rod 180 that connects the second cutting blade 133 to the swing drive arm 179 is provided. Instead of the second cutting blade drive shaft 172 and the bevel gear mechanism 173, a pair of sprockets and a transmission chain for connecting the eccentric rotation shaft 174 to the forward / reverse transmission shaft 122 are provided, and forward / reverse rotation is performed via the sprocket and the transmission chain. The second cutting blade 133 driving force may be transmitted from the transmission shaft 122 to the second cutting blade driving crank mechanism 175.
 上記の構成により、偏心回転軸174の一方向回転を、揺動回転軸178の揺動回転(一定範囲内で正逆転させる往復回転)に変換して、揺動駆動アーム179を揺動させ、押し引きロッド180を介して第2刈刃133を往復摺動させ、第1刈刃15にて刈取られた直後の圃場の残稈(穀稈の株元側)を第2刈刃133にて切断し、圃場に残る株元の高さを低くするように構成している。 With the above configuration, the one-way rotation of the eccentric rotation shaft 174 is converted into the swing rotation of the swing rotation shaft 178 (reciprocating rotation that rotates forward and backward within a certain range), and the swing drive arm 179 is swung. The second cutting blade 133 is slid back and forth through the push-pull rod 180, and the residue (the side of the culm stock) immediately after being cut by the first cutting blade 15 is removed by the second cutting blade 133. It is configured to cut and reduce the height of the stock that remains in the field.
 また、図4に示すように、第2刈刃駆動軸172を内設する円筒状の伝動フレーム181と、ベベルギヤ機構173を内設する四角箱状のベベルギヤケース182を備える。正逆転切換ケース121に伝動フレーム181の一端側を着脱可能に締結し、伝動フレーム181の他端側にベベルギヤケース182を着脱可能に締結している。即ち、偏心回転軸174、ベベルギヤケース182、伝動フレーム181を介して、正逆転切換ケース121に左側フレーム134を支持している。なお、第2刈刃駆動クランク機構175は、左側フレーム134に着脱可能に支持した第2刈刃駆動カバー185内に配置している(図1及び図3参照)。 Also, as shown in FIG. 4, a cylindrical transmission frame 181 having a second cutting blade drive shaft 172 and a square box-shaped bevel gear case 182 having a bevel gear mechanism 173 are provided. One end side of the transmission frame 181 is detachably fastened to the forward / reverse switching case 121, and a bevel gear case 182 is detachably fastened to the other end side of the transmission frame 181. That is, the left frame 134 is supported on the forward / reverse switching case 121 via the eccentric rotating shaft 174, the bevel gear case 182, and the transmission frame 181. The second blade driving crank mechanism 175 is disposed in a second blade driving cover 185 that is detachably supported by the left frame 134 (see FIGS. 1 and 3).
 上記の構成により、刈取クラッチ115の入り操作によって刈取部3を駆動することにより、第1刈刃15と共に第2刈刃133が作動し、第1刈刃15によって圃場の未刈り穀稈の穂先側を刈取り、その穀稈の穂先側をフィーダハウス11から脱穀部9に搬入し、穀粒選別機構10からグレンタンク6に穀粒を取出す。一方、第1刈刃15によって圃場の穀稈が刈取られた跡に残る切株(残稈)は、第2刈刃133にて適宜高さに切断され、収穫作業後に圃場に残る切株(株元)の高さが略一定高さに低く揃えられる。収穫作業後の圃場に残る切株の高さを低くすることにより、圃場の後処理作業性(耕耘作業性等)を向上できる。 With the above configuration, the cutting unit 3 is driven by the operation of engaging the cutting clutch 115, whereby the second cutting blade 133 is operated together with the first cutting blade 15, and the tip of the uncut grain culm in the field by the first cutting blade 15. The side is cut off, the tip side of the grain pod is brought into the threshing unit 9 from the feeder house 11, and the grain is taken out from the grain sorting mechanism 10 to the grain tank 6. On the other hand, the stumps (residues) remaining on the traces of the cereal crops harvested by the first cutting blade 15 are appropriately cut at the height by the second cutting blades 133, and the stumps remaining on the field after the harvesting work (stock sources) ) Are aligned to a substantially constant height. By reducing the height of the stump remaining in the field after the harvesting work, the post-treatment workability (cultivation workability, etc.) of the field can be improved.
 次に、図5及び図6を参照しながら、ミッションケース63等の動力伝達構造について説明する。図6に示す如く、ミッションケース63に、直進ポンプ64a及び直進モータ64bを有する走行変速用の直進油圧無段変速機64と、旋回ポンプ70a及び旋回モータ70bを有する操舵用の旋回油圧無段変速機70とを設ける。直進ポンプ64aのポンプ軸258及び旋回ポンプ70aのポンプ軸259に、ミッションケース63のミッション入力軸66をそれぞれギヤ連結させて駆動するように構成している。ミッション入力軸66のうちミッションケース63外の突出端側に設けたミッション入力プーリ169にエンジン出力ベルト67を掛け回している。ミッション入力プーリ169にエンジン出力ベルト67を介してエンジン7の出力を伝達し、直進ポンプ64a及び旋回ポンプ70aを駆動させる。 Next, a power transmission structure such as the mission case 63 will be described with reference to FIGS. As shown in FIG. 6, a transmission hydraulic continuously variable transmission 64 having a linear pump 64a and a linear motor 64b and a steering hydraulic hydraulic continuously variable transmission for steering having a rotational pump 70a and a rotational motor 70b in a transmission case 63. A machine 70 is provided. The transmission input shaft 66 of the transmission case 63 is connected to the pump shaft 258 of the rectilinear pump 64a and the pump shaft 259 of the swing pump 70a, respectively, and is driven by gear connection. An engine output belt 67 is wound around a mission input pulley 169 provided on the projecting end side of the mission input shaft 66 outside the mission case 63. The output of the engine 7 is transmitted to the mission input pulley 169 via the engine output belt 67, and the linear pump 64a and the swing pump 70a are driven.
 図6に示す如く、エンジン7の出力軸65から出力される駆動力は、エンジン出力ベルト67及びミッション入力軸66を介して、直進ポンプ64aのポンプ軸258及び旋回ポンプ70aのポンプ軸259にそれぞれ伝達される。直進油圧無段変速機64では、ポンプ軸258に伝達された動力にて、直進ポンプ64aから直進モータ64bに向けて作動油が適宜送り込まれる。同様にして、旋回油圧無段変速機70では、ポンプ軸259に伝達された動力にて、旋回ポンプ70aから旋回モータ70bに向けて作動油が適宜送り込まれる。なお、旋回ポンプ70aのポンプ軸259には、直進ポンプ64a、直進モータ64b、旋回ポンプ70a及び旋回モータ70bに作動油を供給する変速機チャージポンプ151を取り付けている。 As shown in FIG. 6, the driving force output from the output shaft 65 of the engine 7 is applied to the pump shaft 258 of the linear pump 64a and the pump shaft 259 of the swing pump 70a via the engine output belt 67 and the mission input shaft 66, respectively. Communicated. In the rectilinear hydraulic continuously variable transmission 64, hydraulic oil is appropriately sent from the rectilinear pump 64a to the rectilinear motor 64b by the power transmitted to the pump shaft 258. Similarly, in the swing hydraulic continuously variable transmission 70, hydraulic oil is appropriately sent from the swing pump 70a to the swing motor 70b by the power transmitted to the pump shaft 259. Note that a transmission charge pump 151 that supplies hydraulic oil to the linear pump 64a, the linear motor 64b, the rotary pump 70a, and the rotary motor 70b is attached to the pump shaft 259 of the rotary pump 70a.
 直進油圧無段変速機64は、操縦コラム41に配置した主変速レバー44や操縦ハンドル43の回動操作量に応じて、直進ポンプ64aにおける回転斜板の傾斜角度を変更調節することによって、直進モータ64bへの作動油の吐出方向及び吐出量を変更する。その結果、直進モータ64bから突出した直進モータ軸260の回転方向及び回転数が任意に調節される。 The rectilinear hydraulic continuously variable transmission 64 moves straight by changing and adjusting the tilt angle of the rotary swash plate in the rectilinear pump 64a in accordance with the amount of rotation of the main transmission lever 44 and the steering handle 43 disposed in the steering column 41. The discharge direction and discharge amount of the hydraulic oil to the motor 64b are changed. As a result, the rotation direction and the number of rotations of the rectilinear motor shaft 260 protruding from the rectilinear motor 64b are arbitrarily adjusted.
 図6に示す如く、直進モータ軸260の回転動力は、直進伝達ギヤ機構250から副変速ギヤ機構251に伝達される。副変速ギヤ機構251は、互いに連動する副変速シフタ252,253によって切換える副変速低速ギヤ254、副変速中速ギヤ255及び副変速高速ギヤ256を備えている。低速用副変速シフタ252は、副変速ギヤ機構251の出力側に位置する駐車ブレーキ軸265(副変速出力軸)に軸支している。高速用副変速シフタ253は、直進伝達ギヤ機構250を構成する副変速カウンタ軸270に軸支している。操縦コラム41に配置した副変速レバー45の操作にて、直進モータ軸260の出力回転数は、低速、中速又は高速という三段階の変速段に択一的に切り換えられる。実施形態では、副変速の低速と中速との間に、中立位置(副変速の出力が零になる位置)を設けている。 As shown in FIG. 6, the rotational power of the linear motor shaft 260 is transmitted from the linear transmission gear mechanism 250 to the auxiliary transmission gear mechanism 251. The auxiliary transmission gear mechanism 251 includes an auxiliary transmission low speed gear 254, an auxiliary transmission intermediate speed gear 255, and an auxiliary transmission high speed gear 256 that are switched by auxiliary transmission shifters 252 and 253 that are linked to each other. The low speed sub-shift shifter 252 is pivotally supported on a parking brake shaft 265 (sub-transmission output shaft) located on the output side of the sub transmission gear mechanism 251. The high-speed auxiliary transmission shifter 253 is pivotally supported on an auxiliary transmission countershaft 270 that constitutes the linear transmission gear mechanism 250. By operating the sub-shift lever 45 disposed in the control column 41, the output rotational speed of the linear motor shaft 260 is selectively switched to three speed stages, low speed, medium speed, and high speed. In the embodiment, a neutral position (a position at which the output of the sub shift becomes zero) is provided between the low speed and the medium speed of the sub shift.
 図6に示す如く、駐車ブレーキ軸265(副変速出力軸)には、ドラム式の駐車ブレーキ266を設けている。副変速ギヤ機構251からの回転動力は、駐車ブレーキ軸265に固着した副変速出力ギヤ267から左右の差動機構257に伝達される。左右の差動機構257はそれぞれ遊星ギヤ機構268を備えている。駐車ブレーキ軸265上には直進用パルサ292を設けている。直進用パルサ292の外周側には直進車速センサ293(図9参照)を対向配置している。直進車速センサ293によって、直進出力の回転数(直進車速、副変速出力ギヤ267の変速出力とも言える)が検出される。 As shown in FIG. 6, the parking brake shaft 265 (sub-transmission output shaft) is provided with a drum-type parking brake 266. The rotational power from the auxiliary transmission gear mechanism 251 is transmitted from the auxiliary transmission output gear 267 fixed to the parking brake shaft 265 to the left and right differential mechanisms 257. Each of the left and right differential mechanisms 257 includes a planetary gear mechanism 268. A straight traveling pulsar 292 is provided on the parking brake shaft 265. A rectilinear vehicle speed sensor 293 (see FIG. 9) is disposed opposite to the outer peripheral side of the rectilinear pulser 292. The rectilinear vehicle speed sensor 293 detects the rotational speed of the rectilinear output (also referred to as the rectilinear vehicle speed and the shift output of the auxiliary transmission output gear 267).
 図6に示す如く、左右各遊星ギヤ機構268は、副変速出力ギヤ267に噛み合う一つのサンギヤ271と、サンギヤ271に噛み合う複数の遊星ギヤ272と、遊星ギヤ272に噛み合うリングギヤ273と、複数の遊星ギヤ272を同一円周上に回転可能に配置したキャリア274とをそれぞれ備えている。左右のキャリア274は、同一軸線上(後述するサンギヤ軸275及び左右の強制デフ出力軸277の軸線上)において適宜間隔を空けた状態で相対向して位置している。左右のサンギヤ271はサンギヤ軸275の軸方向両端側に固着している。サンギヤ軸275の軸方向中途部にはセンタギヤ276を固着している。 As shown in FIG. 6, each of the left and right planetary gear mechanisms 268 includes one sun gear 271 that meshes with the auxiliary transmission output gear 267, a plurality of planet gears 272 that mesh with the sun gear 271, a ring gear 273 that meshes with the planet gear 272, and a plurality of planets. And a carrier 274 in which a gear 272 is rotatably arranged on the same circumference. The left and right carriers 274 are located opposite to each other with an appropriate space on the same axis (on the sun gear shaft 275 and the left and right forced differential output shafts 277 described later). The left and right sun gears 271 are fixed to both ends of the sun gear shaft 275 in the axial direction. A center gear 276 is fixed to an intermediate portion in the axial direction of the sun gear shaft 275.
 左右各リングギヤ273は、内周面の内歯を複数の遊星ギヤ272に噛み合わせた状態で、サンギヤ軸275と同心状に配置している。各リングギヤ273外周面の外歯は、後述する左右旋回出力用の中間ギヤ287,288を介して操向出力軸285に連結している。各リングギヤ273は、キャリア274の外側面から左右外向きに突出した左右の強制デフ出力軸277に回転可能に被嵌している。左右の強制デフ出力軸277に、ファイナルギヤ278a,278bを介して左右の車軸278が連結されている。左右の車軸278には駆動スプロケット51を取り付けている。従って、副変速ギヤ機構251から左右の遊星ギヤ機構268に伝わった回転動力は、左右の車軸278から各駆動スプロケット51に同方向の同一回転数にて伝達され、左右の履帯2を同方向の同一回転数にて駆動させ、走行機体1を直進(前進、後退)移動させる。 The left and right ring gears 273 are arranged concentrically with the sun gear shaft 275 in a state where the inner teeth of the inner peripheral surface mesh with the plurality of planetary gears 272. The external teeth on the outer peripheral surface of each ring gear 273 are connected to the steering output shaft 285 via intermediate gears 287 and 288 for left and right turning output described later. Each ring gear 273 is rotatably fitted to the left and right forced differential output shafts 277 projecting left and right outward from the outer surface of the carrier 274. The left and right axles 278 are connected to the left and right forced differential output shafts 277 via final gears 278a and 278b. Drive sprockets 51 are attached to the left and right axles 278. Accordingly, the rotational power transmitted from the auxiliary transmission gear mechanism 251 to the left and right planetary gear mechanisms 268 is transmitted from the left and right axles 278 to the drive sprockets 51 at the same rotational speed in the same direction, and the left and right crawler belts 2 are transmitted in the same direction. Driven at the same number of revolutions, the traveling machine body 1 moves straight (forward, backward).
 旋回油圧無段変速機70は、操縦コラム41に配置した主変速レバー44や操縦ハンドル43の回動操作量に応じて、旋回ポンプ70aにおける回転斜板の傾斜角度を変更調節することによって、旋回モータ70bへの作動油の吐出方向及び吐出量を変更する。その結果、旋回モータ70bから突出した旋回モータ軸261の回転方向及び回転数が任意に調節される。操向カウンタ軸280(詳細は後述する)上には旋回用パルサ294を設けている。旋回用パルサ294の外周側には旋回車速センサ295(図9参照)を対向配置している。旋回車速センサ295によって、旋回出力の回転数(旋回車速とも言える)が検出される。 The swing hydraulic continuously variable transmission 70 changes the tilt angle of the rotary swash plate in the swing pump 70a in accordance with the amount of rotation of the main transmission lever 44 and the steering handle 43 disposed in the control column 41, thereby turning. The discharge direction and discharge amount of the hydraulic oil to the motor 70b are changed. As a result, the rotation direction and the number of rotations of the swing motor shaft 261 protruding from the swing motor 70b are arbitrarily adjusted. A turning pulser 294 is provided on the steering counter shaft 280 (details will be described later). A turning vehicle speed sensor 295 (see FIG. 9) is disposed opposite to the outer peripheral side of the turning pulser 294. The turning vehicle speed sensor 295 detects the rotation speed of the turning output (also referred to as turning vehicle speed).
 図6に示す如く、ミッションケース63内には、旋回モータ軸261(操向入力軸)上に設けた湿式多板形の旋回ブレーキ279(操向ブレーキ)と、旋回モータ軸261に上流減速ギヤ281を介して連結した操向カウンタ軸280と、操向カウンタ軸280に下流減速ギヤ286を介して連結した操向出力軸285と、左リングギヤ273に逆転ギヤ284を介して操向出力軸285を連結させた左入力ギヤ機構282と、右リングギヤ273に操向出力軸285を連結させた右入力ギヤ機構283とを設けている。 As shown in FIG. 6, in the transmission case 63, a wet multi-plate slewing brake 279 (steering brake) provided on the slewing motor shaft 261 (steering input shaft), and an upstream reduction gear on the slewing motor shaft 261. Steering counter shaft 280 connected through 281, steering output shaft 285 connected to steering counter shaft 280 through downstream reduction gear 286, and steering output shaft 285 through reverse gear 284 to left ring gear 273. And a right input gear mechanism 283 in which a steering output shaft 285 is connected to the right ring gear 273.
 旋回モータ軸261の回転動力は、上流減速ギヤ281経由で操向カウンタ軸280に伝達される。操向カウンタ軸280に伝わった回転動力は、左入力ギヤ機構282の左中間ギヤ287と逆転ギヤ284とを経由した逆転回転動力として、左リングギヤ273に伝達される一方、右入力ギヤ機構283の右中間ギヤ288を経由した正転回転動力として、右リングギヤ273に伝達される。 Rotational power of the turning motor shaft 261 is transmitted to the steering counter shaft 280 via the upstream reduction gear 281. The rotational power transmitted to the steering counter shaft 280 is transmitted to the left ring gear 273 as reverse rotational power via the left intermediate gear 287 and the reverse gear 284 of the left input gear mechanism 282, while the right input gear mechanism 283 It is transmitted to the right ring gear 273 as forward rotation power via the right intermediate gear 288.
 副変速ギヤ機構251を中立にした場合は、直進モータ64bから左右の遊星ギヤ機構268への動力伝達が阻止される。副変速ギヤ機構251を中立以外の変速段に設定した場合は、副変速低速ギヤ254、副変速中速ギヤ255又は副変速高速ギヤ256を介して直進モータ64bから左右の遊星ギヤ機構268へ動力伝達される。 When the auxiliary transmission gear mechanism 251 is neutral, power transmission from the straight-ahead motor 64b to the left and right planetary gear mechanisms 268 is blocked. When the sub-transmission gear mechanism 251 is set to a gear position other than neutral, power is transmitted from the linear motor 64b to the left and right planetary gear mechanisms 268 via the sub-transmission low-speed gear 254, the sub-transmission medium speed gear 255, or the sub-transmission high speed gear 256. Communicated.
 一方、旋回ポンプ70aの出力を中立(ニュートラル)状態とし、且つ旋回ブレーキ279を入り状態とした場合は、旋回モータ70bから左右の遊星ギヤ機構268への動力伝達が阻止される。旋回ポンプ70aの出力を中立以外の状態とし、且つ旋回ブレーキ279を切り状態とした場合は、旋回モータ70bの回転動力が、左入力ギヤ機構282及び逆転ギヤ284を介して左リングギヤ273に伝達される一方、右入力ギヤ機構283を介して右リングギヤ273に伝達される。 On the other hand, when the output of the swing pump 70a is set to the neutral state and the swing brake 279 is turned on, power transmission from the swing motor 70b to the left and right planetary gear mechanisms 268 is blocked. When the output of the swing pump 70a is set to a state other than neutral and the swing brake 279 is turned off, the rotational power of the swing motor 70b is transmitted to the left ring gear 273 via the left input gear mechanism 282 and the reverse gear 284. On the other hand, it is transmitted to the right ring gear 273 via the right input gear mechanism 283.
 旋回モータ70bの正回転(逆回転)時は、互いに逆方向の同一回転数で左リングギヤ273が逆転(正転)し右リングギヤ273が正転(逆転)する。つまり、各モータ軸260,261の変速出力は、副変速ギヤ機構251若しくは左右の差動機構257をそれぞれ経由して左右の履帯2の駆動スプロケット51にそれぞれ伝達され、走行機体1の車速(走行速度)及び進行方向が決定される。 During forward rotation (reverse rotation) of the turning motor 70b, the left ring gear 273 rotates in the reverse direction (forward rotation) and the right ring gear 273 rotates in the forward direction (reverse rotation) at the same rotation speed in the opposite directions. In other words, the shift output of each motor shaft 260, 261 is transmitted to the drive sprocket 51 of the left and right crawler belts 2 via the auxiliary transmission gear mechanism 251 or the left and right differential mechanisms 257, respectively, and the vehicle speed (travel Speed) and direction of travel are determined.
 すなわち、旋回モータ70bを停止させて左右リングギヤ273を静止固定させた状態で直進モータ64bを駆動させると、直進モータ軸260の回転出力は左右サンギヤ271に左右同一回転数で伝達され、遊星ギヤ272及びキャリア274を介して左右の履帯2が同方向の同一回転数にて駆動され、走行機体1が直進走行する。 That is, when the rectilinear motor 64b is driven with the turning motor 70b stopped and the left and right ring gears 273 stationary, the rotational output of the rectilinear motor shaft 260 is transmitted to the left and right sun gears 271 at the same left and right rotational speed, and the planetary gear 272 is driven. The left and right crawler belts 2 are driven at the same rotational speed in the same direction via the carrier 274, and the traveling machine body 1 travels straight.
 逆に、直進モータ64bを停止させて左右サンギヤ271を静止固定させた状態で旋回モータ70bを駆動させると、旋回モータ軸261の回転動力によって、左リングギヤ273が正回転(逆回転)し右リングギヤ273は逆回転(正回転)する。その結果、左右の履帯2の駆動スプロケット51の一方が前進回転して他方が後退回転し、走行機体1はその場で方向転換(信地旋回、スピンターンとも言う)される。 Conversely, when the turning motor 70b is driven with the linear motor 64b stopped and the left and right sun gears 271 stationary, the left ring gear 273 is rotated forward (reversely) by the rotational power of the turning motor shaft 261 and the right ring gear. 273 reversely rotates (forward rotation). As a result, one of the drive sprockets 51 of the left and right crawler belts 2 rotates forward and the other rotates backward, and the traveling machine body 1 changes its direction on the spot (also referred to as a pivot or spin turn).
 また、直進モータ64bで左右サンギヤ271を駆動させながら旋回モータ70bで左右リングギヤ273を駆動させると、左右の履帯2の速度に差が生じ、走行機体1は、前進若しくは後退しながら、信地旋回半径より大きい旋回半径で左又は右に旋回(Uターン)する。このときの旋回半径は左右の履帯2の速度差に応じて決まる。エンジン7の走行駆動力が左右の履帯2に常に伝達された状態で左又は右に旋回移動する。 Further, when the left and right ring gears 273 are driven by the turning motor 70b while the left and right sun gears 271 are driven by the straight motor 64b, a difference occurs in the speeds of the left and right crawler belts 2, and the traveling machine body 1 turns forward while moving forward or backward. Turn left or right (U-turn) with a turning radius greater than the radius. The turning radius at this time is determined according to the speed difference between the left and right crawler belts 2. The engine 7 turns left or right while the driving force of the engine 7 is always transmitted to the left and right crawler belts 2.
 次に、図7を参照しながら、車両用駆動装置の油圧回路構造について説明する。車両用駆動装置の油圧回路200には、直進ポンプ64a、直進モータ64b、旋回ポンプ70a、旋回モータ70b及び変速機チャージポンプ151を備えている。直進ポンプ64aと直進モータ64bとは、直進第一油路201a及び直進第二油路201bによって閉ループ状に接続している。直進第一油路201a及び直進第二油路201bが直進閉油路201を構成している。旋回ポンプ70aと旋回モータ70bとは、旋回第一油路202a及び旋回第二油路202bによって閉ループ状に接続している。旋回第一油路202a及び旋回第二油路202bが旋回閉油路202を構成している。エンジン7の回転動力で直進ポンプ64a及び旋回ポンプ70aを駆動させ、直進ポンプ64aや旋回ポンプ70aの斜板角を制御することによって、直進モータ64bや旋回モータ70bへの作動油の吐出方向及び吐出量が変更され、直進モータ64bや旋回モータ70bが正逆転作動する。 Next, the hydraulic circuit structure of the vehicle drive device will be described with reference to FIG. The hydraulic circuit 200 of the vehicle drive device includes a rectilinear pump 64a, a rectilinear motor 64b, a swing pump 70a, a swing motor 70b, and a transmission charge pump 151. The rectilinear pump 64a and the rectilinear motor 64b are connected in a closed loop by a rectilinear first oil passage 201a and a rectilinear second oil passage 201b. A straight traveling first oil passage 201 a and a straight traveling second oil passage 201 b constitute a straight traveling oil passage 201. The turning pump 70a and the turning motor 70b are connected in a closed loop by a turning first oil passage 202a and a turning second oil passage 202b. The turning first oil passage 202 a and the turning second oil passage 202 b constitute the turning closed oil passage 202. By driving the rectilinear pump 64a and the swing pump 70a with the rotational power of the engine 7 and controlling the swash plate angle of the rectilinear pump 64a and the swing pump 70a, the discharge direction and discharge of hydraulic oil to the rectilinear motor 64b and the swing motor 70b The amount is changed, and the rectilinear motor 64b and the turning motor 70b operate forward and backward.
 図7に示すように、車両用駆動装置の油圧回路200は、主変速レバー44の手動操作に対応して切り換え作動する直進バルブ203と、直進バルブ203を介して変速機チャージポンプ151に接続した直進シリンダ204とを備えている。直進バルブ203を切り換え作動させると、直進シリンダ204が作動して直進ポンプ64aの斜板角を変更させ、直進モータ64bの直進モータ軸260回転数を無段階に変化させたり逆転させたりする直進変速動作が実行される。また、車両用駆動装置の油圧回路200は、直進変速用の油圧サーボ機構205をも備えている。直進ポンプ64aの斜板角制御によって直進バルブ203が中立復帰するフィードバック動作を油圧サーボ機構205で実行させ、主変速レバー44の手動操作量に比例して直進ポンプ64aの斜板角を変化させ、直進モータ60bの直進モータ軸260回転数を変更させる。 As shown in FIG. 7, the hydraulic circuit 200 of the vehicle drive device is connected to the transmission charge pump 151 via the rectilinear valve 203 that switches in response to manual operation of the main transmission lever 44 and the rectilinear valve 203. And a rectilinear cylinder 204. When the rectilinear valve 203 is switched and operated, the rectilinear cylinder 204 is actuated to change the swash plate angle of the rectilinear pump 64a, and the rectilinear motor shaft 260 of the rectilinear motor 64b changes the rotational speed of the rectilinear motor shaft steplessly or reversely. The action is executed. Further, the hydraulic circuit 200 of the vehicle drive device also includes a hydraulic servo mechanism 205 for linear shift. The hydraulic servo mechanism 205 executes a feedback operation in which the rectilinear valve 203 returns to neutral by controlling the swash plate angle of the rectilinear pump 64a, and changes the swash plate angle of the rectilinear pump 64a in proportion to the manual operation amount of the main transmission lever 44, The rotational speed of the linear motor shaft 260 of the linear motor 60b is changed.
 一方、車両用駆動装置の油圧回路200は、操縦ハンドル43の手動操作に対応して切り換え作動する旋回バルブ206と、旋回バルブ206を介して変速機チャージポンプ151に接続した旋回シリンダ207とを備えている。旋回バルブ206を切り換え作動させると、旋回シリンダ207が作動して旋回ポンプ70aの斜板角を変更させ、旋回モータ70bの旋回モータ軸261回転数を無段階に変化させたり逆転させたりする左右旋回動作が実行され、走行機体1が走行方向を左右に変更して圃場枕地で方向転換したり進路を修正したりする。また、車両用駆動装置の油圧回路200は旋回変速用の油圧サーボ機構208をも備えている。旋回ポンプ70aの斜板角制御によって旋回バルブ206が中立復帰するフィードバック動作を油圧サーボ機構208にて行わせ、操縦ハンドル43の手動操作量に比例して旋回ポンプ70aの斜板角を変化させ、旋回モータ70bの旋回モータ軸261回転数を変更させる。 On the other hand, the hydraulic circuit 200 of the vehicle drive device includes a swing valve 206 that switches in response to manual operation of the steering handle 43 and a swing cylinder 207 that is connected to the transmission charge pump 151 via the swing valve 206. ing. When the swing valve 206 is switched, the swing cylinder 207 is operated to change the swash plate angle of the swing pump 70a, and the left / right swing that continuously changes or reverses the rotation speed of the swing motor shaft 261 of the swing motor 70b. The operation is executed, and the traveling machine body 1 changes the traveling direction to the left and right to change the direction at the field headland and to correct the course. The hydraulic circuit 200 of the vehicle drive device also includes a hydraulic servo mechanism 208 for turning and shifting. The hydraulic servo mechanism 208 performs a feedback operation in which the swing valve 206 returns to neutral by controlling the swash plate angle of the swing pump 70a, and changes the swash plate angle of the swing pump 70a in proportion to the amount of manual operation of the steering handle 43. The rotation speed of the swing motor shaft 261 of the swing motor 70b is changed.
 図7に示すように、両閉油路201,202の全ての油路201a,201b,202a,202bには、チャージ分岐油路219(詳細は後述する)を接続している。チャージ分岐油路219と直進第一油路201aとの間に、直進第一油路201aに対するチェック弁211を設けている。チャージ分岐油路219と直進第二油路201bとの間には、直進第二油路201bに対するチェック弁211を設けている。従って、直進閉油路201は二つのチェック弁211を備えている。また、チャージ分岐油路219と旋回第一油路202aとの間に、旋回第一油路202aに対するチェック弁212を設けている。チャージ分岐油路219と旋回第二油路202bとの間には、旋回第二油路202bに対するチェック弁212を設けている。従って、旋回閉油路202も二つのチェック弁212を備えている。 As shown in FIG. 7, a charge branching oil passage 219 (details will be described later) is connected to all the oil passages 201a, 201b, 202a, 202b of both the closed oil passages 201, 202. A check valve 211 for the straight traveling first oil passage 201a is provided between the charge branching oil passage 219 and the straight traveling first oil passage 201a. A check valve 211 for the straight second oil passage 201b is provided between the charge branch oil passage 219 and the straight second oil passage 201b. Accordingly, the straight oil closing path 201 includes two check valves 211. Further, a check valve 212 for the turning first oil passage 202a is provided between the charge branch oil passage 219 and the turning first oil passage 202a. A check valve 212 for the turning second oil passage 202b is provided between the charge branch oil passage 219 and the turning second oil passage 202b. Therefore, the turning oil closing path 202 also includes two check valves 212.
 直進第一油路201aと直進第二油路201bとには直進バイパス油路213を接続している。直進バイパス油路213には直進側双方向リリーフ弁215を設けている。旋回第一油路202aと旋回第二油路202bとには旋回バイパス油路214を接続している。旋回バイパス油路214には旋回側双方向リリーフ弁216を設けている。従って、各閉油路201,202は一つの双方向リリーフ弁215,216を備えている。 A straight bypass oil passage 213 is connected to the straight advance first oil passage 201a and the straight advance second oil passage 201b. A rectilinear side bidirectional relief valve 215 is provided in the rectilinear bypass oil passage 213. A turning bypass oil passage 214 is connected to the turning first oil passage 202a and the turning second oil passage 202b. A turning-side bidirectional relief valve 216 is provided in the turning bypass oil passage 214. Accordingly, each of the closed oil passages 201 and 202 includes one bidirectional relief valve 215 and 216.
 さて、変速機チャージポンプ151の吸入側は、ミッションケース63内にあるストレーナ217に接続している。変速機チャージポンプ151の吐出側にはチャージ導入油路218を接続している。チャージ導入油路218の下流側にチャージ分岐油路219を接続している。前述の通り、チャージ分岐油路219は、両閉油路201,202の全ての油路201a,201b,202a,202bに接続している。従って、エンジン7駆動中は、変速機チャージポンプ151からの作動油が両方の閉油路201,202に常時補充される。チャージ分岐油路219は、直進バルブ203を介して直進シリンダ204に接続していると共に、旋回バルブ206を介して旋回シリンダ207に接続している。チャージ分岐油路219は、余剰リリーフ弁220を介して、後述する無段変速ケース323ひいてはミッションケース63に接続している。従って、変速機チャージポンプ151からの作動油の余剰分は、余剰リリーフ弁220を介して、無段変速ケース323経由でミッションケース63内に戻される。 Now, the suction side of the transmission charge pump 151 is connected to a strainer 217 in the mission case 63. A charge introduction oil passage 218 is connected to the discharge side of the transmission charge pump 151. A charge branch oil passage 219 is connected to the downstream side of the charge introduction oil passage 218. As described above, the charge branch oil passage 219 is connected to all the oil passages 201a, 201b, 202a, 202b of the both closed oil passages 201,202. Therefore, while the engine 7 is being driven, the hydraulic oil from the transmission charge pump 151 is always replenished to both the closed oil passages 201 and 202. The charge branch oil passage 219 is connected to the rectilinear cylinder 204 via the rectilinear valve 203 and is also connected to the pivot cylinder 207 via the pivot valve 206. The charge branch oil passage 219 is connected to a continuously variable transmission case 323 and a transmission case 63 to be described later via a surplus relief valve 220. Therefore, the excess hydraulic oil from the transmission charge pump 151 is returned to the transmission case 63 via the excessive relief valve 220 via the continuously variable transmission case 323.
 次に、図1~図3及び図8を参照して、操縦ハンドル43などの運転操作構造を説明する。図8に示す如く、運転台5におけるオペレータ搭乗用の足載せ平坦部を構成するステップフレーム311を備える。走行機体1の上面側に複数の支脚フレーム312を立設させ、支脚フレーム312上端側にステップフレーム311を架設する。ステップフレーム311の右側機外側部の支脚フレーム312の側面に乗降用ステップ(図示省略)を固着し、乗降用ステップ(図示省略)の機内側部に作動油タンク315を配置すると共に、走行機体1上面のうちステップフレーム311前端部下方に、油圧バルブユニット体314を取付けている。 Next, a driving operation structure such as the steering handle 43 will be described with reference to FIGS. As shown in FIG. 8, a step frame 311 constituting a footrest flat portion for boarding an operator in the cab 5 is provided. A plurality of support leg frames 312 are erected on the upper surface side of the traveling machine body 1, and a step frame 311 is installed on the upper end side of the support leg frame 312. A step for getting on and off (not shown) is fixed to the side surface of the support frame 312 on the outer side of the right side of the step frame 311, and a hydraulic oil tank 315 is disposed on the inner side of the step for getting on and off (not shown). A hydraulic valve unit body 314 is attached below the front end of the step frame 311 on the upper surface.
 また、操向操作軸316と無段変速操作軸317を有するステアリングケース318を備える。ステップフレーム311前部下面側の左右の支脚フレーム312間にケース支持横フレーム319の両端を連結し、略水平なケース支持横フレーム319にステアリングケース318を着脱可能に締結固定する。油圧バルブユニット体314の直上にケース支持横フレーム319を介してステアリングケース318が多段状に支持される。ステアリングケース318の上面から上方に向けて操向操作軸316を突設させ、操縦ハンドル43にステアリング軸321を介して操向操作軸316を連結させると共に、ステアリングケース318の左側面から左側方に向けて無段変速操作軸317を突設させ、主変速レバー44に無段変速操作ロッド322を介して無段変速操作軸317を連結させる。 Further, a steering case 318 having a steering operation shaft 316 and a continuously variable transmission operation shaft 317 is provided. Both ends of the case support horizontal frame 319 are connected between the left and right support frame 312 on the front lower surface side of the step frame 311, and the steering case 318 is detachably fastened to the substantially horizontal case support horizontal frame 319. A steering case 318 is supported in a multistage manner via a case support lateral frame 319 immediately above the hydraulic valve unit body 314. A steering operation shaft 316 protrudes upward from the upper surface of the steering case 318, and the steering operation shaft 316 is connected to the steering handle 43 via the steering shaft 321, and from the left side surface of the steering case 318 to the left side. A continuously variable transmission operation shaft 317 is protruded toward the main transmission lever 44, and the continuously variable transmission operation shaft 317 is connected to the main transmission lever 44 via a continuously variable transmission operation rod 322.
 加えて、直進油圧無段変速機64と旋回油圧無段変速機70とを組付けた無段変速ケース323を備える。ミッションケース63の上部右側に無段変速ケース323を固着し、無段変速ケース323の前後面に、直進用及び旋回用の各無段変速操作アーム体324を配置させている。ステアリングケース318の背面側に設ける直進制御リンク345と旋回制御リンク346に、直進用及び旋回用の各無段変速操作アーム体324をそれぞれ連結させ、操縦ハンドル43の操向操作と主変速レバー44の変速操作にて、直進油圧無段変速機64と旋回油圧無段変速機70とを作動制御し、左右履帯2の進路と移動速度を変更可能に構成している。 In addition, a continuously variable transmission case 323 in which a straight hydraulic continuously variable transmission 64 and a swing hydraulic continuously variable transmission 70 are assembled is provided. A continuously variable transmission case 323 is fixed to the upper right side of the transmission case 63, and the continuously variable transmission operation arm bodies 324 for straight travel and turning are arranged on the front and rear surfaces of the continuously variable transmission case 323. Each of the continuously-advancing and turning continuously variable speed operation arm bodies 324 is connected to a straight-ahead control link 345 and a turning control link 346 provided on the rear side of the steering case 318, respectively, and the steering operation of the steering handle 43 and the main transmission lever 44 are connected. In this speed change operation, the linear hydraulic continuously variable transmission 64 and the turning hydraulic continuously variable transmission 70 are controlled to change the course and the moving speed of the left and right crawler belts 2.
 なお、平面視で四角形のステップフレーム311の右側下方に作動油タンク315を配置し、ステップフレーム311の左側下方に無段変速ケース323を配置すると共に、ステップフレーム311の前部下方に油圧バルブユニット体314とステアリングケース318とを上下多段状に配置したから、作動油タンク315と無段変速ケース323の間に形成されるスペースを介して、ステアリングケース318後部のエンジン7(作動油ポンプ)と前方の油圧バルブユニット体314と作動油タンク315と各部の油圧アクチュエータ(昇降用油圧シリンダ4)との間に油圧配管を容易に延設できると共に、油圧機器のメンテナンス作業性などを向上できる。 The hydraulic oil tank 315 is disposed below the right side of the rectangular step frame 311 in plan view, the continuously variable transmission case 323 is disposed below the left side of the step frame 311, and the hydraulic valve unit is disposed below the front portion of the step frame 311. Since the body 314 and the steering case 318 are arranged in the upper and lower multi-stage shape, the engine 7 (hydraulic oil pump) at the rear of the steering case 318 is interposed through a space formed between the hydraulic oil tank 315 and the continuously variable transmission case 323. It is possible to easily extend the hydraulic piping between the front hydraulic valve unit body 314, the hydraulic oil tank 315, and the hydraulic actuators (lifting hydraulic cylinder 4) of each part, and it is possible to improve the maintenance workability of the hydraulic equipment.
 次に、図8~図10を参照しながら、ミッションケース63の概略構造について説明する。図8に示すように、走行機体1の上面右側にエンジン7を搭載し、走行機体1の左右幅中央の前方にミッションケース63を配置している。エンジン7の出力軸65の左側端部にエンジン出力プーリ168を軸支し、ミッションケース63の上部左側にあるミッション入力プーリ169とエンジン出力プーリ168とに、エンジン出力ベルト67を掛け回している。エンジン出力ベルト67を介して、エンジン7の出力がミッションケース63の各油圧無段変速機64,70にそれぞれ伝達される。 Next, the schematic structure of the mission case 63 will be described with reference to FIGS. As shown in FIG. 8, the engine 7 is mounted on the right side of the upper surface of the traveling machine body 1, and a mission case 63 is disposed in front of the center of the lateral width of the traveling machine body 1. An engine output pulley 168 is pivotally supported on the left end portion of the output shaft 65 of the engine 7, and the engine output belt 67 is wound around the mission input pulley 169 and the engine output pulley 168 on the upper left side of the mission case 63. The output of the engine 7 is transmitted to the hydraulic continuously variable transmissions 64 and 70 of the transmission case 63 via the engine output belt 67.
 ミッションケース63は、上下に長く左右に分割可能な二つ割り構造であり、複数ボルトでの締結によって中空略箱形の形態になっている。ミッションケース63下部は、左右外向きに張り出した二股状で且つ下向き突出していて、大まかにいって正面視略門形状になっている。ミッションケース63の左右両側面下部から下向き突出したギヤケース部335には、左右外向きに突出する車軸ケース336をそれぞれボルト締結している。左右の車軸ケース336内にそれぞれ車軸278を回転可能に軸支している。左右の車軸278の突出端部に駆動スプロケット51(図1、図2及び図6参照)を取り付けている。図8に示すように、左右のギヤケース部335の底部はミッションケース63の底部よりも下方に位置していて、左右の車軸ケース336よりもミッションケース63の底部の方が高くなっている。 The mission case 63 has a bifurcated structure that is vertically long and can be divided into left and right, and has a substantially hollow box shape by fastening with a plurality of bolts. The lower part of the mission case 63 has a bifurcated shape projecting outward in the left and right directions and projects downward, and is roughly a gate shape when viewed from the front. Axle case 336 that protrudes left and right outwards is bolted to gear case portion 335 that protrudes downward from the lower left and right side surfaces of transmission case 63. The axles 278 are rotatably supported in the left and right axle cases 336, respectively. A drive sprocket 51 (see FIGS. 1, 2 and 6) is attached to the projecting ends of the left and right axles 278. As shown in FIG. 8, the bottom portions of the left and right gear case portions 335 are located below the bottom portion of the transmission case 63, and the bottom portions of the transmission case 63 are higher than the left and right axle cases 336.
 ミッションケース63の上部右側には、直進及び旋回油圧無段変速機64,70を組み付けた無段変速ケース323を取り付けている。この場合、無段変速ケース323内の前部側に直進油圧無段変速機64(直進ポンプ64a及び直進モータ64b)が位置し、後部側に旋回油圧無段変速機70(旋回ポンプ70a及び旋回モータ70b)が位置している。ミッションケース63内には、図6を用いて説明した副変速ギヤ機構251や差動機構257等のギヤトレインを収容している。 On the upper right side of the mission case 63, a continuously variable transmission case 323 assembled with straight and turning hydraulic continuously variable transmissions 64 and 70 is attached. In this case, the rectilinear hydraulic continuously variable transmission 64 (the rectilinear pump 64a and the rectilinear motor 64b) is positioned on the front side in the continuously variable transmission case 323, and the swing hydraulic continuously variable transmission 70 (the swing pump 70a and the swivel) on the rear side. The motor 70b) is located. In the transmission case 63, gear trains such as the auxiliary transmission gear mechanism 251 and the differential mechanism 257 described with reference to FIG. 6 are accommodated.
 無段変速ケース323の前面側には、直進ポンプ64aの斜板を操作して直進モータ64bへの作動油の吐出方向及び吐出量を変更する直進操作軸325を前向きに突出させている。直進操作軸325を軸心回りに回動操作すれば、直進ポンプ64aの斜板角が変更され、直進モータ64bへの作動油の吐出方向及び吐出量が変更される。無段変速ケース323の後面側には、旋回ポンプ70aの斜板を操作して旋回モータ70bへの作動油の吐出方向及び吐出量を変更する旋回操作軸326を後向きに突出させている。旋回操作軸326を軸心回りに回動操作すれば、旋回ポンプ70aの斜板角が変更され、旋回モータ70bへの作動油の吐出方向及び吐出量が変更される。 A linear operation shaft 325 for operating the swash plate of the linear pump 64a to change the discharge direction and discharge amount of the hydraulic oil to the linear motor 64b is projected forward on the front side of the continuously variable transmission case 323. When the rectilinear operation shaft 325 is rotated around the axis, the swash plate angle of the rectilinear pump 64a is changed, and the discharge direction and discharge amount of the hydraulic oil to the rectilinear motor 64b are changed. On the rear surface side of the continuously variable transmission case 323, a turning operation shaft 326 for operating the swash plate of the turning pump 70a to change the discharge direction and the discharge amount of hydraulic oil to the turning motor 70b is protruded rearward. If the turning operation shaft 326 is turned around the axis, the swash plate angle of the turning pump 70a is changed, and the discharge direction and the discharge amount of hydraulic oil to the turning motor 70b are changed.
 図9に示すように、無段変速ケース323右外側面のうち旋回ポンプ70aとの対応箇所に、変速機チャージポンプ151を取り付けている。変速機チャージポンプ151は、上下に延びる吸引ホース337を介して、ミッションケース63内底側にあるストレーナ221(図7参照)に接続している。前述した通り、変速機チャージポンプ151は、旋回ポンプ70aのポンプ軸259で回転駆動する。ミッションケース63内底側の作動油は、変速機チャージポンプ151の駆動によって、ストレーナ221及び吸引ホース337を変速機介してチャージポンプ151に吸い込まれ、油圧回路200の各油路201,202,211,212,217~210,222~224等に供給される。 As shown in FIG. 9, a transmission charge pump 151 is attached to a portion corresponding to the turning pump 70a on the right outer surface of the continuously variable transmission case 323. The transmission charge pump 151 is connected to a strainer 221 (see FIG. 7) on the inner bottom side of the transmission case 63 via a suction hose 337 extending vertically. As described above, the transmission charge pump 151 is rotationally driven by the pump shaft 259 of the swing pump 70a. The hydraulic oil on the inner bottom side of the transmission case 63 is sucked into the charge pump 151 via the strainer 221 and the suction hose 337 by the drive of the transmission charge pump 151, and the oil passages 201, 202, 211 of the hydraulic circuit 200 are sucked. , 212, 217 to 210, 222 to 224, etc.
 図9に示すように、ミッションケース63右側面のうち旋回モータ70bの下方に、駐車ブレーキ266を制動操作する駐車ブレーキアーム338を設けている。駐車ブレーキアーム338の制動操作によって駐車ブレーキ266を制動作動させると、駐車ブレーキ軸265及び副変速出力ギヤ267が回転不能にロックされ、左右の駆動スプロケット51に向かう直進出力が停止する。なお、操縦ハンドル43及び副変速ギヤ機構251が中立である場合は、旋回ブレーキ279が旋回モータ軸261を停止(回転不能)状態に維持する。その結果、旋回モータ70bの出力、すなわち、左右の駆動スプロケット51に向かう旋回出力が停止する。 As shown in FIG. 9, a parking brake arm 338 for braking the parking brake 266 is provided on the right side surface of the mission case 63 below the turning motor 70b. When the parking brake 266 is braked by the braking operation of the parking brake arm 338, the parking brake shaft 265 and the auxiliary transmission output gear 267 are locked so as not to rotate, and the straight output toward the left and right drive sprockets 51 is stopped. When the steering handle 43 and the auxiliary transmission gear mechanism 251 are neutral, the turning brake 279 maintains the turning motor shaft 261 in a stopped (unrotatable) state. As a result, the output of the turning motor 70b, that is, the turning output toward the left and right drive sprockets 51 is stopped.
 図8~図10に示すように、ミッションケース63前面側には、副変速ギヤ機構251の副変速シフタ252,253を操作する副変速アーム339を設けている。副変速アーム339は、操縦コラム41上の副変速レバー45に連動連結している。副変速レバー45を介しての副変速アーム339の操作によって、副変速シフタ252,253が互いに連動して切換操作され、直進モータ軸260の出力回転数が低速、中速又は高速という三段階の変速段に択一的に切り換えられる。 As shown in FIG. 8 to FIG. 10, an auxiliary transmission arm 339 for operating the auxiliary transmission shifters 252 and 253 of the auxiliary transmission gear mechanism 251 is provided on the front side of the transmission case 63. The auxiliary transmission arm 339 is interlocked with the auxiliary transmission lever 45 on the steering column 41. By operating the sub-transmission arm 339 via the sub-transmission lever 45, the sub-transmission shifters 252 and 253 are switched in conjunction with each other, and the output rotational speed of the linear motor shaft 260 is in three stages: low speed, medium speed or high speed. It is alternatively switched to the gear stage.
 図8及び図10に示すように、ミッションケース63の上部左側には、直進ポンプ64a及び旋回ポンプ70aに動力伝達可能に連結したミッション入力軸66を外向きに突設している。ミッション入力軸66の突出端側にミッション入力プーリ169を固着し、ミッション入力プーリ169にエンジン出力ベルト67を巻き掛けている。ミッションケース63内の上部前側には油溜り340(図11参照)を形成している。詳細な図示は省略するが、ミッションケース63のうち油溜り340の上面側に上外部配管の一端側を接続し、上外部配管の他端側を無段変速ケース323の上面側に接続している。ミッションケース63内底側から変速機チャージポンプ151で吸い上げられた作動油は、無段変速ケース323内の油圧無段変速機64,70で使用され、無段変速ケース323から上外部配管を介して油溜り340に流れ込んで貯留される。 As shown in FIGS. 8 and 10, a mission input shaft 66, which is connected to the straight pump 64a and the swing pump 70a so as to be able to transmit power, projects outwardly on the upper left side of the mission case 63. A mission input pulley 169 is fixed to the projecting end side of the mission input shaft 66, and an engine output belt 67 is wound around the mission input pulley 169. An oil sump 340 (see FIG. 11) is formed on the upper front side in the mission case 63. Although detailed illustration is omitted, one end side of the upper external pipe is connected to the upper surface side of the oil sump 340 in the transmission case 63, and the other end side of the upper external pipe is connected to the upper surface side of the continuously variable transmission case 323. Yes. The hydraulic fluid sucked up by the transmission charge pump 151 from the inner bottom side of the transmission case 63 is used by the hydraulic continuously variable transmissions 64 and 70 in the continuously variable transmission case 323 and from the continuously variable transmission case 323 via the upper external pipe. Then, it flows into the oil sump 340 and is stored.
 ミッションケース63左側面のうちミッション入力プーリ169の下方には横外部配管341を配置している。横外部配管341はミッションケース63に対して外付けしている。横外部配管341の一端側は、ミッションケース63左側面の油溜り340の箇所に接続している。横外部配管341の他端側は、ミッションケース63左側面の旋回モータ軸261(旋回ブレーキ279)の箇所に接続している。油溜り340内の作動油は、旋回モータ軸261の旋回ブレーキ279に直接送られる。油溜り340からの作動油によって旋回ブレーキ279が潤滑される。 A lateral external pipe 341 is disposed below the mission input pulley 169 on the left side surface of the mission case 63. The lateral external pipe 341 is externally attached to the mission case 63. One end of the lateral external pipe 341 is connected to the oil sump 340 on the left side of the mission case 63. The other end of the lateral external pipe 341 is connected to the turning motor shaft 261 (the turning brake 279) on the left side of the mission case 63. The hydraulic oil in the oil sump 340 is sent directly to the turning brake 279 of the turning motor shaft 261. The turning brake 279 is lubricated by the hydraulic oil from the oil sump 340.
 ミッションケース63左側面のうち横外部配管341の下方には、駐車ブレーキ軸265上の直進用パルサ292に対する直進車速センサ293と、操向カウンタ軸280の旋回用パルサ294に対する旋回車速センサ295とを設けている。両車速センサ293,295は、ミッションケース63左側面において前後に並んでいて、直進車速センサ293が前側に、旋回車速センサ295が後側に位置している。実施形態では、フェイルセーフの観点から、いずれの車速センサ293,295も対応するパルサ292,294に対して二個ずつある。 Below the lateral external pipe 341 on the left side surface of the transmission case 63, a straight vehicle speed sensor 293 for the straight pulse 292 on the parking brake shaft 265 and a turning vehicle speed sensor 295 for the turning pulser 294 of the steering counter shaft 280 are provided. Provided. Both vehicle speed sensors 293 and 295 are arranged in the front-rear direction on the left side surface of the mission case 63, and the straight vehicle speed sensor 293 is located on the front side and the turning vehicle speed sensor 295 is located on the rear side. In the embodiment, two vehicle speed sensors 293 and 295 are provided for each of the corresponding pulsers 292 and 294 from the viewpoint of fail-safe.
 なお、直進用パルサ292は、従来構造(例えば特開2012-82918号公報等参照)よりも大径化し、所定幅の厚みを設けている(図12及び図14参照)。そして、直進用パルサ292の厚みのある外周側を直進車速センサ293で検出するように構成している。これらは、直進用パルサ292及び直進車速センサ293がミッションケース63の左外側に大きく張り出さないようにして、刈取部3等との干渉を回避する目的で成されているものである。 The straight-running pulser 292 has a diameter larger than that of a conventional structure (see, for example, Japanese Patent Application Laid-Open No. 2012-82918) and has a predetermined width (see FIGS. 12 and 14). Then, the straight outer pulsar 292 is configured to detect the thick outer peripheral side by the straight vehicle speed sensor 293. These are made for the purpose of avoiding the interference with the cutting portion 3 and the like so that the straight-running pulser 292 and the straight-traveling vehicle speed sensor 293 do not protrude greatly to the left outer side of the mission case 63.
 ところで、図19には、車軸ケース336に対する車軸278及び駆動スプロケット51の取り付け構造を示している。図19に示すように、車軸ケース336内には、両シールド形軸受388を介して車軸278を回転可能に軸支している。車軸278の先端側は車軸ケース336から左右外向きに突出させている。車軸278の先端側には、駆動スプロケット51のボス部51aが嵌まるスプライン部278cと、座金389を介してナット390がねじ込まれるネジ部278dとを形成している。車軸278のスプライン部278cに駆動スプロケット51のボス部51aをスプライン嵌合させ、車軸278のネジ部278dに座金389を介してナット390をねじ込むことによって、車軸278の先端側に駆動スプロケット51を一体回転するように装着している。 Incidentally, FIG. 19 shows a mounting structure of the axle 278 and the drive sprocket 51 with respect to the axle case 336. As shown in FIG. 19, an axle 278 is rotatably supported in the axle case 336 via both shield type bearings 388. The front end side of the axle shaft 278 protrudes outward from the axle case 336. A spline portion 278c into which the boss portion 51a of the drive sprocket 51 is fitted and a screw portion 278d into which the nut 390 is screwed through a washer 389 are formed on the front end side of the axle shaft 278. The boss 51a of the drive sprocket 51 is spline-fitted to the spline 278c of the axle 278, and the nut 390 is screwed into the screw 278d of the axle 278 via the washer 389, whereby the drive sprocket 51 is integrated with the front end of the axle 278. It is mounted to rotate.
 車軸ケース336の開口側には、両シールド形軸受388の左右外側をシールする軸受オイルシール391を嵌め込んでいる。駆動スプロケット51のボス部51aから左右内向きに延出させた軸受シールカラー51bの外周側に軸受オイルシール391を被嵌している。軸受オイルシール391によって車軸ケース336の開口側を閉塞している。駆動スプロケット51の左右内側の側面には、環状の巻き付き防止輪体392を軸受シールカラー51bと同心状に位置するように、左右内向きに突出形成している。車軸278の先端側に駆動スプロケット51を装着した状態では、車軸ケース336の開口外周側の段部336aに巻き付き防止輪体392が被嵌される。車軸ケース336の段部336aと巻き付き防止輪体392との嵌り合いによって、車軸ケース336と駆動スプロケット51との間に圃場の藁草や泥土等が入り込むのを防止している。 A bearing oil seal 391 that seals the left and right outer sides of both shield type bearings 388 is fitted into the opening side of the axle case 336. A bearing oil seal 391 is fitted on the outer peripheral side of a bearing seal collar 51 b that extends inward from the boss 51 a of the drive sprocket 51 in the left and right directions. A bearing oil seal 391 closes the opening side of the axle case 336. On the left and right inner side surfaces of the drive sprocket 51, an annular anti-roll wheel 392 is formed so as to protrude inward in the left and right direction so as to be positioned concentrically with the bearing seal collar 51b. In a state where the drive sprocket 51 is mounted on the tip end side of the axle shaft 278, the wrapping prevention ring body 392 is fitted on the stepped portion 336a on the outer peripheral side of the opening of the axle case 336. By fitting the stepped portion 336a of the axle case 336 and the anti-roll wheel 392, it is possible to prevent field grass and mud from entering between the axle case 336 and the drive sprocket 51.
 車軸ケース336の内周側には、両シールド形軸受388の左右外側への位置ずれを規制する止めリング393を着脱可能に装着している。車軸278のうち両シールド形軸受388よりも左右内側の部位には、両シールド形軸受388の左右内側への位置ずれを規制する位置決めカラー394を被嵌している。車軸278の先端側に駆動スプロケット51を装着した状態では、止めリング393と位置決めカラー394とによって両シールド形軸受388を位置ずれ不能に挟持している。駆動スプロケット51の軸受シールカラー51bが止めリング393に当接している。 A stop ring 393 for restricting the displacement of the two shield type bearings 388 to the left and right outer sides is detachably mounted on the inner peripheral side of the axle case 336. A positioning collar 394 that restricts the displacement of the two shielded bearings 388 toward the left and right inner sides is fitted to the left and right inner parts of the axle shaft 278 relative to the two shielded bearings 388. In a state where the drive sprocket 51 is mounted on the front end side of the axle shaft 278, both shielded bearings 388 are clamped by the retaining ring 393 and the positioning collar 394 so that they cannot be displaced. The bearing seal collar 51 b of the drive sprocket 51 is in contact with the stop ring 393.
 車軸278のスプライン部278cの先端側と座金389との間には、ゴム製で環状のパッキン体395を配置している。パッキン体395は、スプライン部278cの先端側と座金389とに密接している。実施形態では、駆動スプロケット51のボス部51aと車軸278のスプライン部278cとの間に、潤滑油(グリース又はギヤオイル)を封入している。パッキン体395の密接構造によって、ボス部51aとスプライン部278cとの間からの潤滑油漏れを抑制すると共に、ボス部51aとスプライン部278cとの間、ひいては車軸ケース336内への泥水等の侵入を抑制している。パッキン体395を用いることによって、ボス部51aとスプライン部278cとの間のシール性を、従来構造(例えば特開2012-231707号公報等参照)よりも向上させている。 Between the front end side of the spline part 278c of the axle shaft 278 and the washer 389, an annular packing body 395 made of rubber is disposed. The packing body 395 is in close contact with the tip end side of the spline portion 278c and the washer 389. In the embodiment, lubricating oil (grease or gear oil) is sealed between the boss portion 51a of the drive sprocket 51 and the spline portion 278c of the axle shaft 278. The close contact structure of the packing body 395 suppresses leakage of lubricating oil from between the boss portion 51a and the spline portion 278c, and intrusion of muddy water or the like between the boss portion 51a and the spline portion 278c and eventually into the axle case 336. Is suppressed. By using the packing body 395, the sealing performance between the boss portion 51a and the spline portion 278c is improved as compared with the conventional structure (for example, see Japanese Patent Application Laid-Open No. 2012-231707).
 次に、主として図11~図13を参照しながら、ミッションケース63の内部構造について説明する。図11~図13に示すように、ミッションケース63内底側には、左右一対の差動機構257(遊星ギヤ機構268)を配置している。各遊星ギヤ機構268は、左右に延びるサンギヤ軸275に固着したセンタギヤ276を挟んで左右に振り分けて置かれている。遊星ギヤ機構268の上方側には、副変速ギヤ機構251の出力側に位置する駐車ブレーキ軸265と操向出力軸285と逆転ギヤ284の回転軸とを前後に並べて配置している。なお、操向出力軸285の中途部(左中間ギヤ287と右中間ギヤ288との間)に、下流減速ギヤ286と常時噛み合う中央中間ギヤ289を固着している。実施形態において、センタギヤ276と中央中間ギヤ289とは、センタギヤ276を通常の平歯車形状にすると中央中間ギヤ289に干渉するような位置関係にある。このため、実施形態のセンタギヤ276は、外周部を左側に湾曲させた略椀形状になっていて(外周部を回転中心から左側にオフセットさせていて)、操向出力軸285上の中央中間ギヤ289との干渉を回避している。 Next, the internal structure of the mission case 63 will be described with reference mainly to FIGS. As shown in FIGS. 11 to 13, a pair of left and right differential mechanisms 257 (planetary gear mechanisms 268) are arranged on the inner bottom side of the mission case 63. Each planetary gear mechanism 268 is placed on the left and right with a center gear 276 fixed to the sun gear shaft 275 extending in the left and right direction. Above the planetary gear mechanism 268, a parking brake shaft 265, a steering output shaft 285, and a rotating shaft of the reverse gear 284, which are positioned on the output side of the auxiliary transmission gear mechanism 251, are arranged side by side. A central intermediate gear 289 that always meshes with the downstream reduction gear 286 is fixed to the middle part of the steering output shaft 285 (between the left intermediate gear 287 and the right intermediate gear 288). In the embodiment, the center gear 276 and the center intermediate gear 289 are in a positional relationship such that the center gear 276 interferes with the center intermediate gear 289 when the center gear 276 has a normal spur gear shape. For this reason, the center gear 276 of the embodiment has a substantially saddle shape with the outer peripheral portion curved to the left (the outer peripheral portion is offset from the rotation center to the left), and the center intermediate gear on the steering output shaft 285. Interference with 289 is avoided.
 遊星ギヤ機構268と操向出力軸285との前後方向の間で且つ上方側に、副変速カウンタ軸270を配置している。副変速カウンタ軸270の後方側には操向カウンタ軸280を配置している。副変速カウンタ軸270の上方側には直進モータ軸260を配置している。操向カウンタ軸280の上方側には旋回モータ軸261を配置している。旋回モータ軸261上には旋回ブレーキ279を設けている。直進モータ軸260の上方側には直進ポンプ64aのポンプ軸258を配置している。旋回モータ軸261の上方側には旋回ポンプ70aのポンプ軸259を配置している。両ポンプ軸258,259の前後方向の間で且つ上方側には、ミッション入力軸66を配置している。 An auxiliary transmission countershaft 270 is disposed between the planetary gear mechanism 268 and the steering output shaft 285 in the front-rear direction and on the upper side. A steering counter shaft 280 is disposed behind the auxiliary transmission counter shaft 270. A rectilinear motor shaft 260 is disposed above the auxiliary transmission counter shaft 270. A turning motor shaft 261 is disposed above the steering counter shaft 280. A turning brake 279 is provided on the turning motor shaft 261. A pump shaft 258 of the rectilinear pump 64a is disposed above the rectilinear motor shaft 260. A pump shaft 259 of the swing pump 70a is disposed above the swing motor shaft 261. A mission input shaft 66 is disposed between the front and rear directions of both pump shafts 258 and 259 and on the upper side.
 図11に示すように、ミッションケース63内において、エンジン7駆動中の作動油面の高さ位置は、駐車ブレーキ軸265及び操向出力軸285が作動油に浸漬する程度に設定している。このため、ミッションケース63内では、副変速カウンタ軸270及び操向カウンタ軸280、並びにこれらより上方にある軸66,258~261が作動油面より上方に位置している。これら七本の軸66、258~261,270,280は作動油に浸った状態で回転することがなく、撹拌抵抗が増大(動力損失が増大)するのを抑制している。 As shown in FIG. 11, in the mission case 63, the height position of the hydraulic oil surface during driving of the engine 7 is set such that the parking brake shaft 265 and the steering output shaft 285 are immersed in the hydraulic oil. Therefore, in the transmission case 63, the auxiliary transmission countershaft 270, the steering countershaft 280, and the shafts 66, 258 to 261 located above them are positioned above the hydraulic oil surface. These seven shafts 66, 258 to 261, 270, and 280 do not rotate while immersed in the hydraulic oil, and suppress an increase in stirring resistance (an increase in power loss).
 図11、図12及び図14に示すように、変速ギヤ機構の一例である副変速ギヤ機構251は、入力側ギヤ部351と出力側ギヤ部352とに分かれている。実施形態では、入力側ギヤ部351として、入力側変速軸である副変速カウンタ軸270に、低速中継ギヤ354と中速中継ギヤ355と高速中継ギヤ356とを軸支している。低速中継ギヤ354と中速中継ギヤ355とは副変速カウンタ軸270に固着している。高速中継ギヤ356は副変速カウンタ軸270に回転可能に遊嵌している。また、出力側ギヤ部352として、出力側変速軸である駐車ブレーキ軸265に、副変速低速ギヤ254と副変速中速ギヤ255と副変速高速ギヤ256とを軸支している。副変速低速ギヤ254と副変速中速ギヤ255とは駐車ブレーキ軸265に回転可能に遊嵌している。副変速高速ギヤ256は駐車ブレーキ軸265に固着している。低速用副変速シフタ252のスライド移動によって、副変速低速ギヤ254と副変速中速ギヤ255とが駐車ブレーキ軸265に択一的に連結される。高速用副変速シフタ253のスライド移動によって、副変速高速ギヤ256が副変速カウンタ軸270に連結される。 11, 12, and 14, the auxiliary transmission gear mechanism 251, which is an example of the transmission gear mechanism, is divided into an input side gear portion 351 and an output side gear portion 352. In the embodiment, a low-speed relay gear 354, a medium-speed relay gear 355, and a high-speed relay gear 356 are pivotally supported on an auxiliary transmission countershaft 270 that is an input-side transmission shaft as the input-side gear portion 351. The low speed relay gear 354 and the medium speed relay gear 355 are fixed to the auxiliary transmission counter shaft 270. The high-speed relay gear 356 is loosely fitted to the auxiliary transmission countershaft 270 so as to be rotatable. Further, as the output side gear portion 352, the auxiliary transmission low speed gear 254, the auxiliary transmission medium speed gear 255, and the auxiliary transmission high speed gear 256 are pivotally supported on the parking brake shaft 265 that is the output side transmission shaft. The auxiliary transmission low speed gear 254 and the auxiliary transmission intermediate speed gear 255 are loosely fitted to the parking brake shaft 265 so as to be rotatable. The auxiliary transmission high speed gear 256 is fixed to the parking brake shaft 265. By the sliding movement of the low speed auxiliary transmission shifter 252, the auxiliary transmission low speed gear 254 and the auxiliary transmission intermediate speed gear 255 are selectively connected to the parking brake shaft 265. The auxiliary transmission high speed gear 256 is connected to the auxiliary transmission counter shaft 270 by the sliding movement of the high speed auxiliary transmission shifter 253.
 図11から分かるように、ミッションケース63内において、副変速の入力側である副変速カウンタ軸270は、副変速の出力側である駐車ブレーキ軸265より上方に位置している。従って、ミッションケース63内では、副変速カウンタ軸270に取り付けた入力側ギヤ部351(354~356)と、駐車ブレーキ軸265に取り付けた出力側ギヤ部352(254~256)とを上下に振り分けて近接配置している。また、前述の通り、ミッションケース63内において、エンジン7駆動中の作動油面の高さ位置は、駐車ブレーキ軸265が作動油に浸漬する程度に設定している。従って、出力側ギヤ部352の一部は、ミッションケース63内の作動油に浸漬している。入力側ギヤ部351は、ミッションケース63内の作動油面より上方に位置していて、作動油に浸った状態で回転することがない。 As can be seen from FIG. 11, in the transmission case 63, the auxiliary transmission countershaft 270 that is the input side of the auxiliary transmission is positioned above the parking brake shaft 265 that is the output side of the auxiliary transmission. Therefore, in the transmission case 63, the input side gear portion 351 (354 to 356) attached to the auxiliary transmission countershaft 270 and the output side gear portion 352 (254 to 256) attached to the parking brake shaft 265 are divided up and down. Are placed close together. Further, as described above, in the mission case 63, the height position of the hydraulic oil surface during driving of the engine 7 is set to such an extent that the parking brake shaft 265 is immersed in the hydraulic oil. Accordingly, a part of the output side gear portion 352 is immersed in the hydraulic oil in the mission case 63. The input side gear portion 351 is located above the hydraulic oil surface in the mission case 63 and does not rotate in a state where it is immersed in the hydraulic oil.
 図14に示すように、副変速の入力側である副変速カウンタ軸270には、出力側ギヤ部352(254~256)ではね上げた作動油を入力側ギヤ部351(354~356)に導くT字状の潤滑通路357を形成している。実施形態では、ミッションケース63の左右両内壁に嵌合凹所358,359を形成している。右嵌合凹所358には、開放形軸受360を介して副変速カウンタ軸270の一端側を回転可能に嵌め込んでいる。左嵌合凹所359には、開放形軸受361を介して副変速カウンタ軸270の他端側を回転可能に嵌め込んでいる。副変速カウンタ軸270の一端面には、潤滑通路357の流入口357aを開口させている。潤滑通路357の流入口357aは右嵌合凹所358に臨ませている。副変速カウンタ軸270の外周面には、潤滑通路357の二箇所の流出口357bを開口させている。潤滑通路357の各流出口357bは、高速用副変速シフタ253に近接した高速中継ギヤ356の内周側に臨ませている。 As shown in FIG. 14, the hydraulic oil splashed by the output side gear portion 352 (254 to 256) is guided to the input side gear portion 351 (354 to 356) to the auxiliary transmission countershaft 270 which is the input side of the subshift. A T-shaped lubrication passage 357 is formed. In the embodiment, the fitting recesses 358 and 359 are formed in the left and right inner walls of the mission case 63. One end of the auxiliary transmission countershaft 270 is rotatably fitted in the right fitting recess 358 via an open type bearing 360. The other end side of the auxiliary transmission countershaft 270 is rotatably fitted in the left fitting recess 359 via an open type bearing 361. An inlet 357 a of the lubrication passage 357 is opened at one end surface of the auxiliary transmission counter shaft 270. The inflow port 357 a of the lubrication passage 357 faces the right fitting recess 358. Two outlets 357 b of the lubricating passage 357 are opened on the outer peripheral surface of the auxiliary transmission counter shaft 270. Each outlet 357 b of the lubrication passage 357 faces the inner peripheral side of the high-speed relay gear 356 close to the high-speed auxiliary transmission shifter 253.
 この場合、出力側ギヤ部352(254~256)ではね上げた作動油は、高速用副変速シフタ253を含む入力側ギヤ部351(354~356)に外周側からはねかかる。また、はね上げられた作動油の一部は、右側の開放形軸受360を介して右嵌合凹所358内に入り込み、右嵌合凹所358に連通した潤滑通路357を介して高速中継ギヤ356やその周辺にある高速用副変速シフタ253に供給される。その結果、高速中継ギヤ356や高速用副変速シフタ253が潤滑される。 In this case, the hydraulic fluid splashed by the output side gear portion 352 (254 to 256) splashes from the outer peripheral side to the input side gear portion 351 (354 to 356) including the high-speed auxiliary transmission shifter 253. A part of the splashed hydraulic oil enters the right fitting recess 358 via the right open bearing 360, and the high speed relay gear 356 via the lubrication passage 357 communicating with the right fitting recess 358. And the high-speed auxiliary transmission shifter 253 in the vicinity thereof. As a result, the high-speed relay gear 356 and the high-speed auxiliary transmission shifter 253 are lubricated.
 上記の記載並びに図11、図12及び図14から明らかなように、エンジン7の動力を無段階に変速する無段変速機64,70と、前記無段変速機64,70の変速出力を複数段階に切り換える変速ギヤ機構251を内蔵したミッションケース63とを備える車両用駆動装置において、前記変速ギヤ機構251は入力側ギヤ部351と出力側ギヤ部352とに分かれており、前記出力側ギヤ部352の一部は前記ミッションケース63内の作動油に浸漬し且つ前記入力側ギヤ部351は前記ミッションケース63内の作動油面より上方に位置するように、前記ミッションケース63内に前記入力側ギヤ部351と前記出力側ギヤ部352とを上下に振り分けて近接配置しているから、前記出力側ギヤ部352の回転によって、前記作動油面より高位置にある前記入力側ギヤ部351に作動油をはねかけでき、従って、前記ミッションケース63内の作動油面を高く設定して作動油使用量を増大させなくても、前記入力側ギヤ部351を確実に潤滑できる。前記入力側ギヤ部351を作動油に浸漬させないから、動力損失の増大や作動油温度の著しい上昇といった問題を抑制できる。 As is apparent from the above description and FIGS. 11, 12, and 14, the continuously variable transmissions 64, 70 that continuously change the power of the engine 7 and a plurality of shift outputs of the continuously variable transmissions 64, 70 are provided. In the vehicle drive device including a transmission case 63 incorporating a transmission gear mechanism 251 that switches between stages, the transmission gear mechanism 251 is divided into an input side gear portion 351 and an output side gear portion 352, and the output side gear portion. A part of 352 is immersed in the hydraulic oil in the mission case 63 and the input side gear portion 351 is positioned above the hydraulic oil surface in the mission case 63 in the mission case 63 so that the input side Since the gear portion 351 and the output side gear portion 352 are arranged close to each other in the vertical direction, the hydraulic oil surface is rotated by the rotation of the output side gear portion 352. Hydraulic oil can be splashed onto the input side gear portion 351 at a higher position, and therefore the input side can be operated without increasing the amount of hydraulic oil used by setting the hydraulic oil level in the transmission case 63 high. The gear portion 351 can be reliably lubricated. Since the input side gear portion 351 is not immersed in the hydraulic oil, problems such as an increase in power loss and a significant increase in the hydraulic oil temperature can be suppressed.
 特に、実施形態によると、前記出力側ギヤ部352ではね上げた作動油を前記入力側変速軸270の前記潤滑通路357経由で前記入力側ギヤ部351の内周側に供給できるから、前記入力側ギヤ部351の潤滑性(具体的には高速用副変速シフタ253や高速中継ギヤ356)をより一層向上できる。 In particular, according to the embodiment, hydraulic oil splashed by the output side gear portion 352 can be supplied to the inner peripheral side of the input side gear portion 351 via the lubrication passage 357 of the input side transmission shaft 270. The lubricity of the gear portion 351 (specifically, the high-speed auxiliary transmission shifter 253 and the high-speed relay gear 356) can be further improved.
 図10、図12及び図15に示すように、ミッションケース63左側面のうち横外部配管341の下方には、筒状部としてのPTOボス部365を一体形成している。PTOボス部365には、刈取部3や脱穀部9等に動力伝達する軸部材としてのPTO軸366(図16参照)を装着可能になっている。実施形態の普通型コンバインでは、エンジン7の駆動力を直接、刈取部3や脱穀部9等に伝達する構成を採用しているため、PTO軸366が不要である。このため、PTOボス部365には、PTO軸366を装着せずに、PTOボス部365の開口を封止蓋364で閉塞している(図12及び図15参照)。 As shown in FIGS. 10, 12, and 15, a PTO boss portion 365 as a cylindrical portion is integrally formed below the lateral external pipe 341 on the left side surface of the mission case 63. A PTO shaft 366 (see FIG. 16) as a shaft member that transmits power to the reaping portion 3, the threshing portion 9, or the like can be attached to the PTO boss portion 365. The ordinary combine according to the embodiment employs a configuration in which the driving force of the engine 7 is directly transmitted to the cutting unit 3, the threshing unit 9, and the like, so that the PTO shaft 366 is unnecessary. Therefore, the PTO boss portion 365 is not fitted with the PTO shaft 366, and the opening of the PTO boss portion 365 is closed with the sealing lid 364 (see FIGS. 12 and 15).
 図16には、本願の車両用駆動装置を自脱型コンバインに適用し、PTOボス部365にPTO軸366を装着した例を示している。図16の例では、PTOボス部365に軸受体367,368を介してPTO軸366を回転可能に軸支している。軸受体367,368はPTO軸366の軸方向に並んで一対ある。PTO軸の外端側(ミッションケース63外の端部)には、PTOプーリ369を装着している。PTO軸366の内端側(ミッションケース63内の端部)には、副変速カウンタ軸270から動力伝達される回転部材としてのPTO出力ギヤ370を装着している。この場合、副変速カウンタ軸270のうち低速中継ギヤ354と中速中継ギヤ355との間に、PTO入力ギヤ371を装着している。PTO入力ギヤ371はPTO出力ギヤ370と常時噛み合っている。従って、直進モータ軸260及び副変速カウンタ軸270を経由した駆動力(直進モータ64bの駆動力)によって、PTO軸366はエンジン7駆動中に常時回転駆動する。 FIG. 16 shows an example in which the vehicle drive device of the present application is applied to a self-removable combine and a PTO shaft 366 is mounted on the PTO boss portion 365. In the example of FIG. 16, a PTO shaft 366 is rotatably supported on the PTO boss portion 365 via bearing bodies 367 and 368. The bearing bodies 367 and 368 are paired in the axial direction of the PTO shaft 366. A PTO pulley 369 is mounted on the outer end side of the PTO shaft (end portion outside the transmission case 63). A PTO output gear 370 as a rotating member that transmits power from the auxiliary transmission countershaft 270 is mounted on the inner end side of the PTO shaft 366 (end portion in the transmission case 63). In this case, a PTO input gear 371 is mounted between the low speed relay gear 354 and the medium speed relay gear 355 in the auxiliary transmission countershaft 270. The PTO input gear 371 is always meshed with the PTO output gear 370. Therefore, the PTO shaft 366 is always driven to rotate while the engine 7 is driven by the driving force (the driving force of the linear motor 64b) via the linear motor shaft 260 and the auxiliary transmission counter shaft 270.
 PTOボス部365の内周側には、半径外向きに突出した段差部373,374を形成している。PTOボス部365内周側のうちミッションケース63外寄りの箇所に、第一軸受体367に対応した第一段差部373を形成している。PTOボス部365内周側のうちミッションケース63内寄りの箇所に、第二軸受体368に対応した第二段差部374を形成している。PTO軸366の端部には、軸受体367,368の内径よりも大径の大径部375を形成するか又は軸受体367,368の内径よりも大径のPTO出力ギヤ370を着脱可能に装着している。図16の例では、PTO軸366の外端側に、第一軸受体367の内径よりも大径の大径部375を形成している。PTO軸366の内端側には、第二軸受体368よりも大径のPTO出力ギヤ370を軸方向にスライド可能で且つ相対回転不能に連結している(スプライン嵌合させている)。 Step portions 373 and 374 projecting radially outward are formed on the inner peripheral side of the PTO boss portion 365. A first step portion 373 corresponding to the first bearing body 367 is formed at a location outside the transmission case 63 on the inner peripheral side of the PTO boss portion 365. A second stepped portion 374 corresponding to the second bearing body 368 is formed at a position closer to the inside of the mission case 63 on the inner peripheral side of the PTO boss portion 365. A large-diameter portion 375 having a larger diameter than the inner diameter of the bearing bodies 367 and 368 is formed at the end of the PTO shaft 366, or a PTO output gear 370 having a larger diameter than the inner diameter of the bearing bodies 367 and 368 can be attached and detached. Wearing. In the example of FIG. 16, a large diameter portion 375 having a larger diameter than the inner diameter of the first bearing body 367 is formed on the outer end side of the PTO shaft 366. A PTO output gear 370 having a diameter larger than that of the second bearing body 368 is coupled to the inner end side of the PTO shaft 366 so as to be slidable in the axial direction and not relatively rotatable (spline fitting).
 大径部375と第一段差部373とによって第一軸受体367を軸方向両側から挟持している。また、PTO出力ギヤ370と第二段差部374とによって第二軸受体368を軸方向両側から挟持している。すなわち、大径部375又はPTO出力ギヤ370とPTOボス部365内の段差部373,374とによって、軸受体367,368を挟持しているのである。そして、PTO軸366のうちPTO出力ギヤ370よりも更にミッションケース63内寄りの部位に止め輪376を着脱可能に取り付けている。 The first bearing body 367 is sandwiched from both sides in the axial direction by the large diameter portion 375 and the first step portion 373. Further, the second bearing body 368 is clamped from both sides in the axial direction by the PTO output gear 370 and the second stepped portion 374. That is, the bearing bodies 367 and 368 are sandwiched between the large diameter portion 375 or the PTO output gear 370 and the step portions 373 and 374 in the PTO boss portion 365. A retaining ring 376 is detachably attached to a portion of the PTO shaft 366 closer to the inside of the transmission case 63 than the PTO output gear 370.
 上記のように構成すると、ミッションケース63を左右に分離した状態で止め輪376を外せば、PTO軸366をPTOボス部365から簡単に引き抜きできる。逆に、PTOボス部365にPTO軸366を装着する際は、ミッションケース63を左右に分離した状態でPTOボス部365に一対の軸受体367,368を装着した後、ミッションケース63外側から両軸受体367,368の内周側にPTO軸366を差し込み、PTO軸366の内端側にPTO出力ギヤ370をスプライン嵌合させて止め輪376を装着すればよい。両段差部373,374の存在によって、PTO軸366及びPTO出力ギヤ370の装着だけで両軸受体367,368を位置規制できる。 When configured as described above, the PTO shaft 366 can be easily pulled out from the PTO boss portion 365 by removing the retaining ring 376 with the mission case 63 separated into the left and right. Conversely, when mounting the PTO shaft 366 to the PTO boss portion 365, after mounting the pair of bearing bodies 367 and 368 on the PTO boss portion 365 with the transmission case 63 separated into the left and right sides, The retaining ring 376 may be mounted by inserting the PTO shaft 366 into the inner peripheral side of the bearing bodies 367 and 368 and spline-fitting the PTO output gear 370 to the inner end side of the PTO shaft 366. The presence of both stepped portions 373 and 374 makes it possible to restrict the positions of both bearing bodies 367 and 368 only by mounting the PTO shaft 366 and the PTO output gear 370.
 従って、PTO軸366やPTO出力ギヤ370等の着脱及び封止蓋364の脱着によって、PTO軸366ありの仕様やPTO軸366なしの仕様に、車両用駆動装置(ミッションケース63)の構成を簡単に変更できる。一種類の車両用駆動装置(ミッションケース63)を自脱型コンバイン用と普通型コンバイン用との二仕様で共用でき、製作コストの抑制を図れる。なお、図16の例では、PTO軸366において大径部375を挟んだ両側の軸径を同一径に設定している。 Therefore, the configuration of the vehicle drive device (mission case 63) can be simplified to the specifications with the PTO shaft 366 and the specifications without the PTO shaft 366 by attaching / detaching the PTO shaft 366, the PTO output gear 370, and the like and detaching the sealing lid 364. Can be changed. One type of vehicle drive device (mission case 63) can be shared by two specifications for the self-removal combiner and the ordinary combiner, and the manufacturing cost can be reduced. In the example of FIG. 16, the shaft diameters on both sides of the large diameter portion 375 in the PTO shaft 366 are set to the same diameter.
 上記の記載並びに図12,図15及び図16から明らかなように、エンジン7の動力を変速するミッションケース63を備える車両用駆動装置において、前記ミッションケース63に形成した筒状部365に、軸受体367,368を介して軸部材366を回転可能に軸支しており、前記筒状部365の内周側には、半径内向きに突出した段差部373,374を形成しており、前記軸部材366の端部には、前記軸受体367,368の内径よりも大径の大径部375を形成するか又は前記軸受体367,368の内径よりも大径の回転部材370を着脱可能に装着しており、前記大径部375又は前記回転部材370と前記筒状部365内の段差部373,374とによって前記軸受体367,368を挟持しているから、前記軸受体367,368の位置規制のために止め輪等の専用部品を用いる必要がない。従って、部品点数を抑制して前記軸部材366の軸支構造を簡素化でき、組み付け作業を合理化して製造コストを抑制できる。 As is apparent from the above description and FIGS. 12, 15, and 16, in the vehicle drive device including the transmission case 63 for shifting the power of the engine 7, a bearing is provided in the cylindrical portion 365 formed in the transmission case 63. The shaft member 366 is rotatably supported via the bodies 367 and 368, and step portions 373 and 374 projecting radially inward are formed on the inner peripheral side of the cylindrical portion 365. A large-diameter portion 375 having a larger diameter than the inner diameter of the bearing bodies 367 and 368 is formed at the end of the shaft member 366, or a rotating member 370 having a larger diameter than the inner diameter of the bearing bodies 367 and 368 can be attached and detached. The bearing bodies 367 and 368 are sandwiched between the large-diameter portion 375 or the rotating member 370 and the step portions 373 and 374 in the cylindrical portion 365, so that the bearing body There is no need to use a dedicated parts of the snap ring or the like for the position regulation of 67,368. Therefore, the number of parts can be reduced, the shaft support structure of the shaft member 366 can be simplified, the assembly work can be rationalized, and the manufacturing cost can be reduced.
 特に、図16の例によると、前記軸受体367,368は、前記軸部材366の軸方向に並んで一対あり、前記段差部373,374は、前記一対の軸受体367,368のうち前記ミッションケース63外寄りにある第一軸受体367に対応した第一段差部373と、前記一対の軸受体367,368のうち前記ミッションケース63内寄りにある第二軸受体368に対応した第二段差部374とに分かれており、前記軸部材366のうち前記ミッションケース63外寄りの端部に前記大径部375を形成しており、前記軸部材366のうち前記ミッションケース63内寄りの端部に前記回転部材370を着脱可能に装着しており、前記大径部375と前記第一段差部373とによって前記第一軸受体367を挟持すると共に、前記回転部材370と前記第二段差部374とによって前記第二軸受体368を挟持し、前記軸部材366のうち前記回転部材370よりも更に前記ミッションケース63内寄りの部位に止め輪376を取り付けているから、一つの前記止め輪376だけで、前記軸部材366、前記一対の軸受体367,368及び前記回転部材370を前記ミッションケース63の筒状部365に適式に取り付けでき、極めて簡便に前記軸部材366の組み付けを行える。前記軸部材366の軸支構造に関してメンテナンス性の向上を図れる。 In particular, according to the example of FIG. 16, the bearing bodies 367 and 368 are paired in the axial direction of the shaft member 366, and the stepped portions 373 and 374 are the missions of the pair of bearing bodies 367 and 368. A first step 373 corresponding to the first bearing body 367 on the outer side of the case 63 and a second step corresponding to the second bearing body 368 on the inner side of the transmission case 63 of the pair of bearing bodies 367 and 368. The large-diameter portion 375 is formed at the end portion of the shaft member 366 on the outer side of the transmission case 63, and the end portion of the shaft member 366 on the inner side of the mission case 63 is formed. The rotating member 370 is detachably attached to the first bearing body 367 by the large diameter portion 375 and the first step portion 373, and the rotation The second bearing body 368 is sandwiched between the material 370 and the second stepped portion 374, and a retaining ring 376 is attached to a portion of the shaft member 366 that is further inside the transmission case 63 than the rotating member 370. Thus, the shaft member 366, the pair of bearing bodies 367, 368, and the rotating member 370 can be appropriately attached to the cylindrical portion 365 of the transmission case 63 with only one retaining ring 376, and the The shaft member 366 can be assembled. The maintainability of the shaft support structure of the shaft member 366 can be improved.
 また、前記軸部材366において前記大径部375を挟んだ両側の軸径を同一径に設定しているから、前記軸部材366の加工コストを低減でき、ひいては部品コスト低減に寄与するのである。 In addition, since the shaft diameters on both sides of the large diameter portion 375 are set to the same diameter in the shaft member 366, the processing cost of the shaft member 366 can be reduced, which in turn contributes to the cost reduction of parts.
 さて、既述ではあるが、実施形態の車両用駆動装置において、旋回モータ軸261上には湿式多板形の旋回ブレーキ279を設けている(図13及び図17参照)。実施形態では、ミッションケース63左側面の上下中途部に装着穴379を開口させている。筒状のブレーキハウジング380を装着穴379に嵌め込んだ状態でボルト締結している。旋回モータ軸261は円筒状のブレーキ筒軸部381を備えている。無段変速ケース323から突出した旋回モータ軸261の突端部にブレーキ筒軸部381をスプライン嵌合させることによって、ブレーキ筒軸部381を含む旋回モータ軸261をミッションケース63内に延長させている。 As described above, in the vehicle drive device of the embodiment, a wet multi-plate swing brake 279 is provided on the swing motor shaft 261 (see FIGS. 13 and 17). In the embodiment, the mounting hole 379 is opened in the upper and lower middle part of the left side surface of the mission case 63. Bolts are fastened in a state in which a cylindrical brake housing 380 is fitted in the mounting hole 379. The swing motor shaft 261 includes a cylindrical brake cylinder shaft portion 381. The swing cylinder shaft 381 including the brake cylinder shaft 381 is extended into the transmission case 63 by spline fitting the brake cylinder shaft 381 to the protruding end of the swing motor shaft 261 protruding from the continuously variable transmission case 323. .
 ミッションケース63右内壁に、開放形軸受382を介してブレーキ筒軸部381の右端側を回転可能に軸支している。ブレーキ筒軸部381はブレーキハウジング380の内部側に入り込んでいる。ブレーキハウジング380の左底部に取り付け凹所383を形成している。ブレーキハウジング380の取り付け凹所383に、開放形軸受384を介してブレーキ筒軸部381の左端側を回転可能に嵌め込んでいる。つまり、ミッションケース63内には、一対の開放形軸受382,384を介してブレーキ筒軸部381を含む旋回モータ軸261を回転可能に軸支している。ブレーキハウジング380の左底部に横外部配管341の他端側を外側から接続することによって、横外部配管341の他端側とブレーキ筒軸部381とを連通させている。 The right end side of the brake cylinder shaft portion 381 is rotatably supported on the right inner wall of the transmission case 63 via an open type bearing 382. The brake cylinder shaft 381 enters the inside of the brake housing 380. A mounting recess 383 is formed in the left bottom portion of the brake housing 380. The left end side of the brake cylinder shaft portion 381 is rotatably fitted in the mounting recess 383 of the brake housing 380 via an open bearing 384. That is, in the mission case 63, the swing motor shaft 261 including the brake cylinder shaft portion 381 is rotatably supported via a pair of open bearings 382 and 384. By connecting the other end side of the lateral external pipe 341 from the outside to the left bottom of the brake housing 380, the other end side of the lateral external pipe 341 and the brake cylinder shaft portion 381 are connected.
 ブレーキ筒軸部381の右端側には、操向カウンタ軸280上の上流減速ギヤ281と常時噛み合う旋回入力ギヤ385を取り付けている。ブレーキ筒軸部381の左右中途部にはインナーハブ386をスプライン嵌合させている。ブレーキハウジング380内周面とインナーハブ386外周面とに摩擦板380a,386aを交互に設けている。ブレーキ筒軸部381のうち左側の開放形軸受384とインナーハブ386との間には圧縮バネ399を被嵌している。旋回モータ70b出力が所定トルク以下の場合、圧縮バネ399の弾性復原力によって摩擦板380a,386a同士が圧接し合ってブレーキ筒軸部381を制動させ、旋回モータ軸261を停止(回転不能)状態に維持する。 A turning input gear 385 that always meshes with the upstream reduction gear 281 on the steering counter shaft 280 is attached to the right end side of the brake cylinder shaft portion 381. An inner hub 386 is spline-fitted to the middle part of the left and right sides of the brake cylinder shaft 381. Friction plates 380a and 386a are alternately provided on the inner peripheral surface of the brake housing 380 and the outer peripheral surface of the inner hub 386. A compression spring 399 is fitted between the left open bearing 384 and the inner hub 386 in the brake cylinder shaft 381. When the output of the swing motor 70b is equal to or less than the predetermined torque, the friction plates 380a and 386a are pressed against each other by the elastic restoring force of the compression spring 399 to brake the brake cylinder shaft portion 381, and the swing motor shaft 261 is stopped (unrotatable) To maintain.
 ブレーキ筒軸部381の側周部分には、ブレーキ筒軸部381内外を連通させる複数の潤滑穴387を形成している。実施形態では、インナーハブ386の内周側(スプライン部)と旋回入力ギヤ385の内周側とに向けて、潤滑穴387群を開口させている。油溜り340内の作動油は、横外部配管341から取り付け凹所383、ブレーキ筒軸部381内周側及び各潤滑穴387を経由して、摩擦板380a,386a群に集中的に供給される。つまり、油溜り340からの作動油によって旋回ブレーキ279が潤滑される。 A plurality of lubrication holes 387 for communicating the inside and outside of the brake cylinder shaft portion 381 are formed in the side peripheral portion of the brake cylinder shaft portion 381. In the embodiment, a group of lubrication holes 387 are opened toward the inner peripheral side (spline portion) of the inner hub 386 and the inner peripheral side of the turning input gear 385. The hydraulic oil in the oil sump 340 is concentratedly supplied from the lateral external pipe 341 to the friction plates 380a and 386a through the mounting recess 383, the inner peripheral side of the brake cylinder shaft 381, and the lubricating holes 387. . That is, the turning brake 279 is lubricated by the hydraulic oil from the oil reservoir 340.
 ブレーキハウジング380が筒状であるため、摩擦板380a,386a群に集中的に供給された作動油はブレーキハウジング380内部側にも溜まり易くなっている。ここで、ブレーキ筒軸部381を軸支する左側の軸受384は開放形のものであるが、当該左側の開放形軸受384に対する取り付け凹所383のぬすみを小さくすることによって、左側の開放形軸受384からブレーキ筒軸部381外への作動油の漏れ出しを抑制している。 Since the brake housing 380 has a cylindrical shape, the hydraulic oil intensively supplied to the friction plates 380a and 386a easily collects inside the brake housing 380. Here, the left-side bearing 384 that supports the brake cylinder shaft 381 is an open type, but the left-side open type bearing 384 is reduced by reducing the slack of the mounting recess 383 with respect to the left-side open type bearing 384. The leakage of the hydraulic oil from 384 to the outside of the brake cylinder shaft portion 381 is suppressed.
 前述の通り、実施形態において、副変速カウンタ軸270及び操向カウンタ軸280や、これらより上方の軸66,258~261は、作動油に浸った状態では回転しない。このため、動力損失の低減には寄与するものの、摩耗や寿命低下等が懸念される。そこで、図18に示す構造を採用してもよい。すなわち、ミッションケース63左側面の油溜り340の箇所に、横外部配管341とは別に、第二横外部配管396の一端側を接続し、第二横外部配管396の他端側をミッションケース63左側面の副変速カウンタ軸270の箇所に接続する。また、ミッションケース63には、油溜り340の箇所と直進モータ軸260の箇所とをつなぐ第一内部油路397を形成すると共に、横外部配管341の他端側又は旋回モータ軸261(旋回ブレーキ279)の箇所と、操向カウンタ軸280の箇所とをつなぐ第二内部油路398を形成するのである。このように構成すると、直進モータ軸260、副変速カウンタ軸270及び操向カウンタ軸280も、油溜り340からの作動油によって潤滑できることになる。 As described above, in the embodiment, the auxiliary transmission countershaft 270, the steering countershaft 280, and the shafts 66 and 258 to 261 above them do not rotate when immersed in hydraulic oil. For this reason, although it contributes to the reduction of power loss, there is a concern about wear, a decrease in life, and the like. Therefore, the structure shown in FIG. 18 may be adopted. That is, one end side of the second horizontal external pipe 396 is connected to the oil reservoir 340 on the left side of the mission case 63 separately from the horizontal external pipe 341, and the other end side of the second horizontal external pipe 396 is connected to the mission case 63. The auxiliary transmission countershaft 270 is connected to the left side. The transmission case 63 is formed with a first internal oil passage 397 that connects the oil reservoir 340 and the linear motor shaft 260 and the other end of the lateral external pipe 341 or the turning motor shaft 261 (the turning brake). 279) and the steering countershaft 280 are connected to form a second internal oil passage 398. With this configuration, the linear motor shaft 260, the auxiliary transmission counter shaft 270, and the steering counter shaft 280 can also be lubricated by the hydraulic oil from the oil sump 340.
 次に、図20~図22を参照しながら、無段変速ケース323等からなる油圧式変速装置の油路構造について説明する。実施形態の油圧式変速装置は、油圧ポンプ64a,70a及び油圧モータ64b,70bを組み合わせてなる油圧無段変速機64,70の対を内蔵した無段変速ケース323と、無段変速ケース323の一側面に取り付けた油路ブロック401とを備えている。この場合、ミッションケース63の上部右側に、油路ブロック401を介して無段変速ケース323を取り付けている。ミッションケース63と無段変速ケース323とによって油路ブロック401を挟持している。 Next, the oil passage structure of the hydraulic transmission including the continuously variable transmission case 323 will be described with reference to FIGS. The hydraulic transmission according to the embodiment includes a continuously variable transmission case 323 including a pair of hydraulic continuously variable transmissions 64 and 70 formed by combining hydraulic pumps 64 a and 70 a and hydraulic motors 64 b and 70 b, and a continuously variable transmission case 323. And an oil passage block 401 attached to one side surface. In this case, a continuously variable transmission case 323 is attached to the upper right side of the mission case 63 via an oil passage block 401. The oil passage block 401 is held between the transmission case 63 and the continuously variable transmission case 323.
 無段変速ケース323の前後中途部の前寄りに、直進ポンプ64a及び直進モータ64bからなる直進油圧無段変速機64を内蔵している。実施形態では、無段変速ケース323内の上側に直進ポンプ64aを、下側に直進モータ64bを位置させている。無段変速ケース323の前後中途部の後寄りに、旋回ポンプ70a及び旋回モータ70bからなる旋回油圧無段変速機70を内蔵している。実施形態では、無段変速ケース323内の上側に旋回ポンプ70aを、下側に旋回モータ70bを位置させている。従って、無段変速ケース323内において、油圧ポンプ64a,70a同士が前後に並ぶと共に、油圧モータ64b,70b同士も前後に並んでいる。なお、変速機チャージポンプ151は、無段変速ケース323右外側面のうち旋回ポンプ70aとの対応箇所に位置している。 A linear hydraulic continuously variable transmission 64 including a linear pump 64a and a linear motor 64b is built in front of the midway part of the continuously variable transmission case 323. In the embodiment, the rectilinear pump 64a is positioned on the upper side in the continuously variable transmission case 323, and the rectilinear motor 64b is positioned on the lower side. A swing hydraulic continuously variable transmission 70 including a swing pump 70a and a swing motor 70b is built in the rear of the continuously variable middle case 323 in the middle of the front and rear. In the embodiment, the swing pump 70a is positioned on the upper side in the continuously variable transmission case 323, and the swing motor 70b is positioned on the lower side. Accordingly, in the continuously variable transmission case 323, the hydraulic pumps 64a and 70a are arranged in the front-rear direction, and the hydraulic motors 64b and 70b are also arranged in the front-rear direction. The transmission charge pump 151 is located at a position corresponding to the turning pump 70a on the right outer surface of the continuously variable transmission case 323.
 無段変速ケース323内部のうち直進油圧無段変速機64よりも前側に、直進変速用の油圧サーボ機構205を配置している。無段変速ケース323内部のうち旋回油圧無段変速機70よりも後側に、旋回変速用の油圧サーボ機構208を配置している。すなわち、無段変速ケース323内において両油圧無段変速機64,70を挟んで両端側に、各油圧無段変速機64,70を作動させる油圧サーボ機構205,208を振り分けて配置している。なお、無段変速ケース323の前外側面に直進操作軸325を前向きに突出させ、無段変速ケース323の後外側面に直進操作軸325を後向きに突出させている。詳細な図示は省略するが、直進操作軸325に直進用の無段変速操作アーム体324(図8参照)を連結し、旋回操作軸326に旋回用の無段変速操作アーム体324を連結している。 A hydraulic servo mechanism 205 for linear shift is disposed in front of the linear hydraulic continuously variable transmission 64 in the continuously variable transmission case 323. In the continuously variable transmission case 323, a hydraulic servo mechanism 208 for turning and shifting is arranged behind the turning hydraulic continuously variable transmission 70. That is, in the continuously variable transmission case 323, hydraulic servo mechanisms 205 and 208 for operating the hydraulic continuously variable transmissions 64 and 70 are distributed and arranged on both ends of the both hydraulic continuously variable transmissions 64 and 70, respectively. . The straight operation shaft 325 protrudes forward on the front outer surface of the continuously variable transmission case 323, and the straight operation shaft 325 protrudes rearward on the rear outer surface of the continuously variable transmission case 323. Although not shown in detail, a linearly variable continuously variable operating arm 324 (see FIG. 8) is connected to the linearly operating shaft 325, and a rotationally variable continuously variable operating arm 324 is connected to the swing operating shaft 326. ing.
 油路ブロック401には、各油圧無段変速機64,70に対する閉ループ油路201,202と、両方の閉ループ油路201,202をつなぐチャージ分岐油路219とを形成している。実施形態では、直進ポンプ64a及び直進モータ64bを挟んで前側に縦長の直進第一油路201aを形成し、後側に縦長の直進第二油路201bを形成している。直進第一油路201a及び直進第二油路201bが直進ポンプ64a並びに直進モータ64bを閉ループ状に接続している。直進第一油路201a及び直進第二油路201bが直進用の閉ループ油路に相当する直進閉油路201を構成している。また、旋回ポンプ70a及び旋回モータ70bを挟んで前側に縦長の旋回第一油路202aを形成し、後側に縦長の旋回第二油路202bを形成している。旋回第一油路202a及び旋回第二油路202bが旋回ポンプ70a並びに旋回モータ70bを閉ループ状に接続している。旋回第一油路202a及び旋回第二油路202bが旋回用の閉ループ油路に相当する旋回閉油路202を構成している。従って、油路ブロック401内では、前から直進第一油路201a、直進第二油路201b、旋回第一油路202a、旋回第二油路202bの順に並んでいる。 The oil passage block 401 is formed with closed loop oil passages 201 and 202 for the hydraulic continuously variable transmissions 64 and 70 and a charge branch oil passage 219 connecting both the closed loop oil passages 201 and 202. In the embodiment, a vertically long straight oil passage 201a is formed on the front side across the straight pump 64a and the straight motor 64b, and a vertically long straight oil passage 201b is formed on the rear side. The straight traveling first oil passage 201a and the straight traveling second oil passage 201b connect the straight traveling pump 64a and the straight traveling motor 64b in a closed loop shape. The rectilinear first oil passage 201a and the rectilinear second oil passage 201b constitute a rectilinear closed oil passage 201 corresponding to a straight loop closed oil passage. Further, a vertically long swirl first oil passage 202a is formed on the front side with the swivel pump 70a and the swivel motor 70b interposed therebetween, and a vertically long swirl second oil passage 202b is formed on the rear side. The turning first oil passage 202a and the turning second oil passage 202b connect the turning pump 70a and the turning motor 70b in a closed loop shape. The turning first oil passage 202a and the turning second oil passage 202b constitute a turning closed oil passage 202 corresponding to a turning closed-loop oil passage. Accordingly, in the oil passage block 401, the first straight oil passage 201a, the second straight oil passage 201b, the turning first oil passage 202a, and the turning second oil passage 202b are arranged in this order from the front.
 油路ブロック401内の上部側には、チャージ油路としてのチャージ分岐油路219を前後に延びるように形成している。チャージ分岐油路219は、両閉油路201,202の全ての油路201a,201b,202a,202b、すなわち直進第一油路201a、直進第二油路201b、旋回第一油路202a及び旋回第二油路202bの上部側を前後に貫いている。図20から分かるように、チャージ分岐油路219と、チャージ分岐油路219は、両閉油路201,202の全ての油路201a,201b,202a,202bとは、互いに直交する関係にある。 On the upper side in the oil passage block 401, a charge branch oil passage 219 as a charge oil passage is formed to extend in the front-rear direction. The charge branch oil passage 219 includes all the oil passages 201a, 201b, 202a, 202b of the both closed oil passages 201, 202, that is, the straight first oil passage 201a, the straight second oil passage 201b, the turning first oil passage 202a and the turning. It penetrates the upper side of the second oil passage 202b back and forth. As can be seen from FIG. 20, the charge branch oil passage 219 and the charge branch oil passage 219 are orthogonal to each other of all the oil passages 201a, 201b, 202a, 202b of the both closed oil passages 201,202.
 また、チャージ分岐油路219の前後中央部にチャージ導入油路218の吐出側を連通させている。すなわち、油路ブロック401は、チャージ分岐油路219の前後中央部の上方となる上面部分に、チャージ導入油路218の吐出側と連結される連通口218aを開口させて設けており、当該連通口218aを下方向に穿設してチャージ分岐油路219と連通させている。これにより、油路ブロック401外部で変速機チャージポンプ151の吐出側と連通したチャージ導入油路218が、連通口218aを介して、油路ブロック401内のチャージ分岐油路219と連通する。 Also, the discharge side of the charge introduction oil passage 218 is communicated with the front and rear central portions of the charge branch oil passage 219. That is, the oil passage block 401 is provided with a communication port 218a that is connected to the discharge side of the charge introduction oil passage 218 in the upper surface portion above the front and rear central portions of the charge branch oil passage 219. A port 218a is drilled downward to communicate with the charge branch oil passage 219. Thereby, the charge introduction oil passage 218 communicated with the discharge side of the transmission charge pump 151 outside the oil passage block 401 communicates with the charge branch oil passage 219 in the oil passage block 401 via the communication port 218a.
 図20~図22に示すように、チャージ分岐油路219の前後各端部は、サーボ油路402,403を介して、対応する油圧サーボ機構205,208に連通している。チャージ分岐油路219と各油圧サーボ機構205,208とをつなぐサーボ油路402,403は、チャージ分岐油路219に直交し且つ互いに平行状に延びるように、油路ブロック401から無段変速ケース323に向けて形成している。実施形態では、無段変速ケース323内の前端内側に、直進変速用の油圧サーボ機構205に対する直進サーボ油路402を、無段変速ケース323の前側面(直進変速用の油圧サーボ機構205寄りの側面)に沿わせて左右横向きに延びる直線状に形成している。無段変速ケース323内の後端内側に、旋回変速用の油圧サーボ機構208に対する旋回サーボ油路403を、無段変速ケース323の後側面(旋回変速用の油圧サーボ機構208寄りの側面)に沿わせて左右横向きに延びる直線状に形成している。従って、両サーボ油路402,403は、図21の平面視で左右横向きの直線状に延び且つ互いに平行状に並んでいる。両サーボ油路402,403の間に、両油圧無段変速機64,70が位置している。 As shown in FIGS. 20 to 22, the front and rear end portions of the charge branch oil passage 219 communicate with the corresponding hydraulic servo mechanisms 205 and 208 via the servo oil passages 402 and 403, respectively. Servo oil passages 402 and 403 connecting the charge branch oil passage 219 and the respective hydraulic servo mechanisms 205 and 208 are continuously variable from the oil passage block 401 so as to extend perpendicular to the charge branch oil passage 219 and in parallel with each other. It is formed toward 323. In the embodiment, the linear servo oil passage 402 for the linear shift hydraulic servomechanism 205 is provided on the inner side of the front end of the continuously variable transmission case 323, and the front side surface of the continuously variable transmission case 323 (near the hydraulic servo mechanism 205 for linear shift). It is formed in a straight line extending in the horizontal direction along the side surface. A turning servo oil passage 403 for the turning-speed hydraulic servomechanism 208 is provided inside the rear end of the infinitely-variable shifting case 323 on the rear side surface (side surface near the turning-speed changing hydraulic servo mechanism 208). It is formed in a straight line extending sideways along the side. Therefore, the servo oil passages 402 and 403 extend in a straight line in the horizontal direction in the plan view of FIG. 21 and are arranged in parallel to each other. Both hydraulic continuously variable transmissions 64 and 70 are located between both servo oil passages 402 and 403.
 このように構成すると、各油圧サーボ機構205,208に対するサーボ油路402,403を、無段変速ケース323における各油圧サーボ機構205,208寄りの側面(前側面や後側面)に沿わせて直線状に且つ極力短縮化して形成できる。従って、無段変速ケース323や油路ブロック401に各サーボ油路402,403を形成し易くて加工性がよく、低コストに製造できる。 With this configuration, the servo oil passages 402 and 403 for the respective hydraulic servo mechanisms 205 and 208 are straight along the side surfaces (the front side surface and the rear side surface) near the respective hydraulic servo mechanisms 205 and 208 in the continuously variable transmission case 323. And can be formed as short as possible. Accordingly, the servo oil passages 402 and 403 can be easily formed in the continuously variable transmission case 323 and the oil passage block 401, the workability is good, and the manufacturing can be performed at low cost.
 図20に示すように、両閉油路201,202の全ての油路201a,201b,202a,202bと、チャージ分岐油路219との直交箇所には、チェック弁211,212を配置している。実施形態では、両閉油路201,202の全ての油路201a,201b,202a,202bを、油路ブロック401の上端面側で開口させ、当該開口部からチェック弁211,212を下向きに挿入して装着している。チャージ分岐油路219と直進第一油路201aとの直交箇所に、直進第一油路201aに対するチェック弁211を装着し、チャージ分岐油路219と直進第二油路201bとの直交箇所に、直進第二油路201bに対するチェック弁211を装着している。そして、チャージ分岐油路219と旋回第一油路202aとの直交箇所に、旋回第一油路202aに対するチェック弁212を装着し、チャージ分岐油路219と旋回第二油路202bとの直交箇所に、旋回第二油路202bに対するチェック弁212を装着している。従って、前述の通り、各閉油路201,202にチェック弁211,212を二つずつ備えている。油路ブロック401の上端面には、四つのチェック弁211,212の頭部が前後に並んでいる。また、油路ブロック401の上端面には、前から二番目のチェック弁211と前から三番目のチェック弁212との間に、連通口218aが設けられており、チャージ分岐油路219につながるチャージ導入油路218の吐出側が連結されている。 As shown in FIG. 20, check valves 211, 212 are arranged at orthogonal positions between all the oil passages 201 a, 201 b, 202 a, 202 b of the both closed oil passages 201, 202 and the charge branch oil passage 219. . In the embodiment, all the oil passages 201a, 201b, 202a, 202b of both the closed oil passages 201, 202 are opened at the upper end surface side of the oil passage block 401, and the check valves 211, 212 are inserted downward from the opening. And wearing. A check valve 211 for the straight traveling first oil passage 201a is mounted at an orthogonal position between the charge branch oil passage 219 and the straight traveling first oil passage 201a, and at a perpendicular position between the charge branch oil passage 219 and the straight traveling second oil passage 201b, A check valve 211 for the straight second oil passage 201b is mounted. And the check valve 212 with respect to the turning 1st oil path 202a is mounted in the orthogonal location of the charge branch oil path 219 and the turning 1st oil path 202a, and the orthogonal location of the charge branch oil path 219 and the turning 2nd oil path 202b In addition, a check valve 212 for the turning second oil passage 202b is mounted. Therefore, as described above, each of the oil closed passages 201 and 202 includes two check valves 211 and 212. On the upper end surface of the oil passage block 401, the heads of the four check valves 211 and 212 are arranged in the front-rear direction. In addition, a communication port 218 a is provided on the upper end surface of the oil passage block 401 between the second check valve 211 from the front and the third check valve 212 from the front, and is connected to the charge branch oil passage 219. The discharge side of the charge introduction oil passage 218 is connected.
 油路ブロック401内の下部側には、チャージ分岐油路219と平行状に延びるバイパス油路213,214を、各閉油路201,202に対応させて形成している。直進第一油路201aと直進第二油路201bとは直進バイパス油路213でも連通している。また、旋回第一油路202aと旋回第二油路202bとは旋回バイパス油路214でも連通している。各閉油路201,202とこれに対応するバイパス油路213,214との直交箇所には、双方向リリーフ弁215,216を配置している。実施形態では、直進閉油路201のうち直進第一油路201aと直進バイパス油路213との直交箇所に、直進側双方向リリーフ弁215を位置させている。直進バイパス油路213は油路ブロック401の前端面側で開口していて、当該開口部から直進側双方向リリーフ弁215を後向きに挿入して装着している。また、旋回閉油路202のうち旋回第一油路202aと旋回バイパス油路214との直交箇所に、旋回側双方向リリーフ弁216を位置させている。旋回バイパス油路214は油路ブロック401の後端面側で開口していて、当該開口部から旋回側双方向リリーフ弁216を前向きに挿入して装着している。従って、前述の通り、各閉油路201,202は双方向リリーフ弁215,216を一つずつ備えている。 Bypass oil passages 213 and 214 extending in parallel with the charge branch oil passage 219 are formed on the lower side in the oil passage block 401 so as to correspond to the closed oil passages 201 and 202. The straight traveling first oil passage 201a and the straight traveling second oil passage 201b are also communicated with each other by a straight traveling bypass oil passage 213. Further, the turning first oil passage 202a and the turning second oil passage 202b are also communicated with each other by a turning bypass oil passage 214. Bidirectional relief valves 215 and 216 are arranged at positions orthogonal to the respective closed oil passages 201 and 202 and the corresponding bypass oil passages 213 and 214. In the embodiment, the rectilinear-side bidirectional relief valve 215 is positioned at an orthogonal position between the rectilinear first oil passage 201a and the rectilinear bypass oil passage 213 in the rectilinear closed oil passage 201. The rectilinear bypass oil passage 213 is opened on the front end face side of the oil passage block 401, and the rectilinear bi-directional relief valve 215 is inserted rearward from the opening and attached. In addition, the turning-side bidirectional relief valve 216 is positioned at a position orthogonal to the turning first oil passage 202 a and the turning bypass oil passage 214 in the turning closed oil passage 202. The turning bypass oil passage 214 is opened on the rear end face side of the oil passage block 401, and the turning-side bidirectional relief valve 216 is inserted and attached through the opening. Therefore, as described above, each of the closed oil passages 201 and 202 includes one bidirectional relief valve 215 and 216, respectively.
 このように構成すると、各閉油路201,202に対してチェック弁211,212と双方向リリーフ弁215,216とを別々に分けて配置することになるから、例えば特許文献1に記載されるような高価なチェックリリーフ弁を用いなくて済み、この点でも、無段変速ケース及び油路ブロックからなる油圧式変速装置の低コスト化に貢献するのである。 If comprised in this way, since check valve 211,212 and bidirectional | two-way relief valve 215,216 will be separately arrange | positioned with respect to each oil-closing path 201,202, for example, it describes in patent document 1 Such an expensive check relief valve need not be used, and this point also contributes to a reduction in cost of the hydraulic transmission including the continuously variable transmission case and the oil passage block.
 図21及び図22に示すように、チャージ分岐油路219の一端側に、チャージ分岐油路219中の作動油の余剰分を排出する余剰リリーフ弁220を接続している。実施形態の余剰リリーフ弁220は、チャージ分岐油路219のうち旋回第二油路202bに対するチェック弁212と旋回サーボ油路403の入口部との間につながっていて、無段変速ケース323内部に位置させている。従って、変速機チャージポンプ151からの作動油の余剰分は、余剰リリーフ弁220経由で無段変速ケース323内部にこぼれ落ちることになる。その後、ミッションケース63内に戻される。 As shown in FIGS. 21 and 22, a surplus relief valve 220 that discharges surplus hydraulic fluid in the charge branch oil passage 219 is connected to one end side of the charge branch oil passage 219. The surplus relief valve 220 of the embodiment is connected between the check valve 212 for the turning second oil passage 202b in the charge branching oil passage 219 and the inlet portion of the turning servo oil passage 403, and inside the continuously variable transmission case 323. It is located. Accordingly, the excess hydraulic oil from the transmission charge pump 151 spills into the continuously variable transmission case 323 via the excess relief valve 220. Thereafter, it is returned to the mission case 63.
 図20~図22に示すように、チャージ分岐油路219の前後各端部は、チャージ分岐油路219よりも下側に位置するとともにチャージ分岐油路219に対して直交する方向に伸びるサーボ油路402,403それぞれと連結している。サーボ油路402,403は、油路ブロック401及び無段変速ケース323に設けられており、無段変速ケース323の前後端面に設けられた油圧サーボ機構205,208内の直進バルブ203及び旋回バルブ206のポートに連通している。これにより、油圧サーボ機構205では、チャージ導入油路218から油路ブロック401に供給される作動油が、チャージ分岐油路219及びサーボ油路402を通じて、直進バルブ203及び直進シリンダ204に供給される。同様に、油圧サーボ機構208では、チャージ導入油路218から油路ブロック401に供給される作動油が、チャージ分岐油路219及びサーボ油路403を通じて、旋回バルブ206及び旋回シリンダ207に供給される。 As shown in FIGS. 20 to 22, the front and rear end portions of the charge branch oil passage 219 are positioned below the charge branch oil passage 219 and extend in a direction perpendicular to the charge branch oil passage 219. It connects with each of the paths 402 and 403. The servo oil passages 402 and 403 are provided in the oil passage block 401 and the continuously variable transmission case 323, and the linear valve 203 and the swing valve in the hydraulic servo mechanisms 205 and 208 provided on the front and rear end surfaces of the continuously variable transmission case 323. It communicates with 206 ports. As a result, in the hydraulic servo mechanism 205, the hydraulic oil supplied from the charge introduction oil passage 218 to the oil passage block 401 is supplied to the straight valve 203 and the straight cylinder 204 through the charge branch oil passage 219 and the servo oil passage 402. . Similarly, in the hydraulic servo mechanism 208, hydraulic oil supplied from the charge introduction oil passage 218 to the oil passage block 401 is supplied to the swing valve 206 and the swing cylinder 207 through the charge branch oil passage 219 and the servo oil passage 403. .
1 走行機体
7 エンジン
63 ミッションケース
64 直進油圧無段変速機
70 旋回油圧無段変速機
200 油圧回路
201 直進閉油路
201a 直進第一油路
201b 直進第二油路
202 旋回閉油路
202a 旋回第一油路
202b 旋回第二油路
205 直進変速用の油圧サーボ機構
208 旋回変速用の油圧サーボ機構(旋回)
211,212 チェック弁
213,214 バイパス油路
215,216 双方向リリーフ弁
218 チャージ導入油路
219 チャージ分岐油路
220 余剰リリーフ弁
323 無段変速ケース
1 traveling machine body 7 engine 63 mission case 64 straight hydraulic continuously variable transmission 70 swing hydraulic continuously variable transmission 200 hydraulic circuit 201 straight forward closed oil path 201a straight forward first oil path 201b straight forward second oil path 202 swivel closed oil path 202a One oil passage 202b, turning second oil passage 205, hydraulic servomechanism 208 for rectilinear speed change, hydraulic servomechanism for turning speed change (turning)
211, 212 Check valve 213, 214 Bypass oil passage 215, 216 Bidirectional relief valve 218 Charge introduction oil passage 219 Charge branch oil passage 220 Surplus relief valve 323 Stepless transmission case

Claims (3)

  1.  油圧ポンプ及び油圧モータを組み合わせてなる油圧無段変速機の対を内蔵した無段変速ケースと、前記無段変速ケースの一側面に取り付けた油路ブロックとを備えた油圧式変速装置において、
     前記各油圧無段変速機を作動させる油圧サーボ機構を、前記無段変速ケース内において前記両油圧無段変速機を挟んで両端側に振り分けて配置し、
     前記油路ブロックには、前記各油圧無段変速機に対する閉ループ油路と、前記両方の閉ループ油路をつなぐチャージ油路とを形成し、
     前記チャージ油路と前記各油圧サーボ機構とをつなぐサーボ油路を、前記チャージ油路に直交し且つ互いに平行状に延びるように、前記油路ブロックから前記無段変速ケースに向けて形成している、
    油圧式変速装置。
    In a hydraulic transmission including a continuously variable transmission case incorporating a pair of hydraulic continuously variable transmissions formed by combining a hydraulic pump and a hydraulic motor, and an oil passage block attached to one side of the continuously variable transmission case,
    A hydraulic servo mechanism for operating each of the hydraulic continuously variable transmissions is arranged in the continuously variable transmission case so as to be distributed to both ends across the both hydraulic continuously variable transmissions,
    In the oil passage block, a closed loop oil passage for each of the hydraulic continuously variable transmissions and a charge oil passage connecting both the closed loop oil passages are formed,
    Servo oil passages connecting the charge oil passages and the respective hydraulic servo mechanisms are formed from the oil passage block toward the continuously variable transmission case so as to extend perpendicular to the charge oil passages and in parallel with each other. Yes,
    Hydraulic transmission.
  2.  前記各閉ループ油路には、前記チャージ油路と平行状に延びるバイパス油路を直交させ、前記各閉ループ油路と前記チャージ油路との直交箇所にチェック弁を配置し、前記各閉ループ油路と前記バイパス油路との直交箇所にリリーフ弁を配置している、
    請求項1に記載の油圧式変速装置。
    In each of the closed loop oil passages, a bypass oil passage extending in parallel with the charge oil passage is orthogonal, a check valve is disposed at an orthogonal position between each of the closed loop oil passage and the charge oil passage, and each of the closed loop oil passages And a relief valve is arranged at a position orthogonal to the bypass oil passage,
    The hydraulic transmission according to claim 1.
  3.  前記チャージ油路の一端側に、前記チャージ油路中の作動油の余剰分を排出する余剰リリーフ弁を接続している、
    請求項1又は2に記載の油圧式変速装置。
    A surplus relief valve that discharges surplus hydraulic fluid in the charge oil passage is connected to one end side of the charge oil passage.
    The hydraulic transmission according to claim 1 or 2.
PCT/JP2016/080030 2015-10-13 2016-10-07 Hydraulic transmission device WO2017065118A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017545188A JP6934813B2 (en) 2015-10-13 2016-10-07 Hydraulic transmission
CN201680059099.XA CN108138928B (en) 2015-10-13 2016-10-07 Hydraulic speed variator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015201989 2015-10-13
JP2015-201989 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017065118A1 true WO2017065118A1 (en) 2017-04-20

Family

ID=58518141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080030 WO2017065118A1 (en) 2015-10-13 2016-10-07 Hydraulic transmission device

Country Status (3)

Country Link
JP (1) JP6934813B2 (en)
CN (1) CN108138928B (en)
WO (1) WO2017065118A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630646B (en) * 2018-11-20 2021-02-23 重庆交通大学 Stepless hydraulic speed variator
CN113915309B (en) * 2021-12-15 2022-04-12 易如(山东)智能科技有限公司 Mechanical automatic stepless gearbox capable of realizing left-right forward and reverse rotation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645777Y2 (en) * 1974-12-09 1981-10-26
JP2003156121A (en) * 2001-11-19 2003-05-30 Seirei Ind Co Ltd Transmission for traveling vehicle
JP2004100897A (en) * 2002-09-12 2004-04-02 Yanmar Co Ltd Swash plate angle operating lever for hydraulic infinite variable speed transmission
JP2007092808A (en) * 2005-09-27 2007-04-12 Yanmar Co Ltd Hydrostatic continuously variable transmission
JP2007198419A (en) * 2006-01-24 2007-08-09 Kanzaki Kokyukoki Mfg Co Ltd Hst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2840671B2 (en) * 1987-02-28 1998-12-24 株式会社島津製作所 Hydraulic transmission for traveling vehicles
EP0893296B1 (en) * 1997-07-22 2007-01-10 Kanzaki Kokyukoki Mfg. Co., Ltd. Driving system for a working vehicle
JP4492989B2 (en) * 2000-09-18 2010-06-30 株式会社 神崎高級工機製作所 Shifting operation mechanism
JP2006153033A (en) * 2004-11-25 2006-06-15 Kanzaki Kokyukoki Mfg Co Ltd Pumping device and hydraulic continuously variable transmission
CN100491772C (en) * 2006-07-21 2009-05-27 贵州力源液压股份有限公司 Double variable hydraulic driving device for hand servo control
CN101504072A (en) * 2009-02-26 2009-08-12 南京工业职业技术学院 Hydraulic stepless automatic speed transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645777Y2 (en) * 1974-12-09 1981-10-26
JP2003156121A (en) * 2001-11-19 2003-05-30 Seirei Ind Co Ltd Transmission for traveling vehicle
JP2004100897A (en) * 2002-09-12 2004-04-02 Yanmar Co Ltd Swash plate angle operating lever for hydraulic infinite variable speed transmission
JP2007092808A (en) * 2005-09-27 2007-04-12 Yanmar Co Ltd Hydrostatic continuously variable transmission
JP2007198419A (en) * 2006-01-24 2007-08-09 Kanzaki Kokyukoki Mfg Co Ltd Hst

Also Published As

Publication number Publication date
CN108138928B (en) 2021-06-25
CN108138928A (en) 2018-06-08
JPWO2017065118A1 (en) 2018-08-09
JP6934813B2 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
WO2015045437A1 (en) Combine harvester
JP6801997B2 (en) combine
KR101701945B1 (en) Working vehicle and combine as the example
JP2017023044A (en) combine
WO2018003558A1 (en) Combine
WO2017065118A1 (en) Hydraulic transmission device
JP6979450B2 (en) combine
JP6635969B2 (en) Combine
JP2017075624A (en) Vehicular drive apparatus and combine harvester
WO2017065119A1 (en) Vehicular drive device and combine
JP2011179642A (en) Working vehicle
JP6794298B2 (en) combine
JP6226673B2 (en) Combine
JP6902124B2 (en) combine
WO2018159088A1 (en) Combine harvester
JP7078695B2 (en) combine
JP6650902B2 (en) Combine
WO2017065116A1 (en) Combine harvester
JP6794299B2 (en) combine
WO2017065115A1 (en) Combine harvester
JP6919006B2 (en) combine
JP5437866B2 (en) Work vehicle
JP2021180689A (en) Combine-harvester
JP2017073986A (en) combine
JP2018143132A (en) Combine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545188

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855372

Country of ref document: EP

Kind code of ref document: A1