WO2017063836A1 - Capteur d'imagerie pour un dispositif de manipulation d'élément - Google Patents

Capteur d'imagerie pour un dispositif de manipulation d'élément Download PDF

Info

Publication number
WO2017063836A1
WO2017063836A1 PCT/EP2016/072480 EP2016072480W WO2017063836A1 WO 2017063836 A1 WO2017063836 A1 WO 2017063836A1 EP 2016072480 W EP2016072480 W EP 2016072480W WO 2017063836 A1 WO2017063836 A1 WO 2017063836A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
imaging sensor
receiving
receiving device
turning
Prior art date
Application number
PCT/EP2016/072480
Other languages
German (de)
English (en)
Inventor
Uladimir Prakapenka
Siarhei LAKHADANOU
Stephan SPICHTINGER
Rainer Miehlich
Original Assignee
Muehlbauer GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muehlbauer GmbH & Co. KG filed Critical Muehlbauer GmbH & Co. KG
Publication of WO2017063836A1 publication Critical patent/WO2017063836A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8822Dark field detection
    • G01N2021/8825Separate detection of dark field and bright field

Definitions

  • a component is here, for example, an (electronic) semiconductor device, also referred to as "chip” or “the”.
  • Such a component usually has a prismatic shape, a substantially polygonal, for example, quadrangular (rectangular or square) cross-section with a plurality of lateral surfaces and an end face and a top surface.
  • the lateral surfaces and the two (lower and upper) top surfaces of the component are hereinafter referred to generally as side surfaces.
  • the component can also have one of four different number of lateral surfaces.
  • a component may also be an optical component (prism, mirror, lens, etc.). Overall, a component can have any geometric shape.
  • picking and depositing devices are known in which components are picked up by means of a nipple or retainer from a component table and then stored on a support or in a transport container or the like. Before the component is deposited, usually an inspection of the component takes place. For this purpose, images of one or more side surfaces of the component are recorded with one or more cameras and evaluated by means of automated image processing.
  • DE 10 2008 018 586 A1 shows an optical detection device for the detection of a surface of a component that is transported from a first to a second workstation, a directed to at least a first surface of the component camera, a light source, the short-wave light beams for first surface sends.
  • a second light source transmits long-wavelength light rays to at least a second surface of the component.
  • the camera receives the first and second light rays reflected on the surfaces.
  • the second surface (s) are oriented differently from the first surface (s) as in For example, cuboid components with a bottom and a total of four lateral surfaces is the case.
  • EP 0 906 011 A2 relates to a device for removing and equipping electrical components on a substrate.
  • the device comprises a rotatable transfer device, which removes the electrical components from a supply module at a receiving position and transfers them to a first transfer position to a suction belt for further processing.
  • a rotatable mounting head By means of a rotatable mounting head, the components are absorbed by the suction belt and transported to a second transfer position.
  • WO 02/054480 A1 relates to a device for optically inspecting various surfaces of a chip to be mounted.
  • the device comprises a first, upper transport disc, which is adapted to remove the chips from a feed unit and to transport to a first transfer position.
  • the chips are held in suction openings which are formed on the lateral surface of the upper transport drum, and moved by rotating the upper transport disc.
  • the device furthermore has a second, lower transport disk, designed in accordance with the upper transport disk, which receives the removed chips at the first transfer position and transports them to a second transfer position.
  • the device allows for an inspection of the chips by cameras are arranged laterally next to the transport discs, which inspect the chips on the top and bottom.
  • US 4,619,043 discloses an apparatus and method for removing and mounting electronic components, in particular chips, on a printed circuit board.
  • the apparatus comprises a conveying means for receiving the chips in receiving units and for transporting the picked-up chips to a first transfer position.
  • the conveyor has a conveyor chain and a rotatable sprocket, which are engaged together.
  • the apparatus further comprises a rotatable attachment tool having placement heads for receiving the chips at the first transfer position.
  • the fastening tool is further adapted to convey by means of a rotary movement, the recorded chips to a second transfer position, wherein they are turned.
  • JP 2-193813 relates to a device for picking up and turning over electronic components which are inspected by testers.
  • the device comprises a supply unit from which chip-type electronic components are removed by a first rotating body and arranged on the circumference thereof. By a rotational movement of the rotating body, the electronic components are transported to a first transfer position, whereby they are turned about their longitudinal or transverse axis.
  • the device further comprises a second rotating body, which receives the removed electronic components at the first transfer position and transports them to a second transfer position. In this case, there is a further turning of the electronic components about their longitudinal or transverse axis.
  • the device thus allows different sides of the components to be inspected.
  • US 6,079,284 relates to a device for extensive visual inspection of tablets.
  • the device comprises a first inspection drum, which removes the tablets from a supply device by means of suction holes formed on their lateral surface and transports them by rotation to a second inspection drum.
  • the second drum is formed according to the first drum with Sauglochbohritch which receive the tablets at the transfer position.
  • the device further comprises inspection units which allow comprehensive inspection of the tablets.
  • An imaging sensor for a component handling device is intended to accurately handle components and inspect them at high throughput
  • an imaging sensor which is suitable and intended for detecting the position and / or properties of a component, in particular in a component handling device.
  • This imaging sensor is equipped with at least two different detection spectra. It is particularly suitable and intended for detecting feature errors and / or positional errors of a component located in the receiving point of a receiving device.
  • This imaging sensor is suitable and intended to cooperate with radiation sources that are tuned to it with regard to radiation spectrum and radiation angle of incidence and / or radiation reflection angle relative to the imaging sensor.
  • the imaging sensor is suitable and configured to provide a separate slide feeder for each of its acquisition spectra for a downstream image evaluation.
  • this imaging sensor is associated with a component handling device for removing components from a structured component supply and for depositing the removed components at a receiving device.
  • a first turning device with a plurality of receivers is configured to receive a component from the structured component supply at a dispensing point, to turn the received component around a first predetermined angle about its longitudinal or transverse axis and to convey it to a transfer point.
  • a second turning device with a plurality of receivers is adapted to receive the component at the transfer point of a pickup of the first turning device, to turn the received component by a second predetermined angle about its longitudinal or transverse axis and to promote to a storage location.
  • the position and property sensors associated with the first and second inverters are configured to detect position data of the first and second inverters, position data of components located on the pickups, and / or properties of components located on the pickups, and to provide them for control ,
  • the controller is adapted to rotate by means of a first rotary drive, the first turning device controlled about a first axis, by means of a first linear drive, the first turning device along the first axis to control controlled by means of a second rotary drive, the second turning means to a non-collinear second axis to the first axis controlled to rotate, and controlled by means of a second linear drive, the second turning device along the second axis controlled.
  • the arrangement presented here forms an integrated handling / inspection device.
  • the imaging sensors inspect all or almost all of the cover and / or side surface (s) of a component, thereby also providing relevant data for positioning the manipulators (transducers) and the receiving points.
  • This device thus forms a core of a closed machine system with the necessary process engineering periphery, for example, to provide the components (for example, wafer table) and component storage (for example, pocket or carrier tape).
  • the component handling device presented here takes over components from a component supply (wafer wafer), for example arranged horizontally in the upper region of the component handling device, with a stationary ejection unit. Relative to this stationary ejection unit, the component supply moves in the plane.
  • the ejection unit causes by a needle or non-contact (eg by a laser beam) that the components are released individually from the component supply and absorbed by a pickup.
  • the ejected components are supplied in total up to six or more inspection processes and finally promoted to receiving points (pockets) of the bag or carrier tape.
  • the terms receiving station and (filing) bag are used here synonymous. Bad parts can be removed.
  • the optical examination of the component integrated in the transfer process is subdivided into several examination procedures. It uses one or more imaging sensors for optically detecting the cover and / or lateral surface (s) of a component as well as the positions of the transducers at the transfer / receiving points.
  • imaging sensors are set up to capture at least one image of one of the cover and / or lateral surfaces of a component in several examination processes.
  • the promotion / transport of the components happens while keepers of turning devices each hold a component. A held component passes during the transport individual investigation operations.
  • the captured (image) data of the imaging sensors also serve to coordinate the position control of the manipulators (transducers) and the receiving stations.
  • the component conveyor is adapted to convey a component substantially continuously or clocked along its path.
  • the complete assembly presented here combines two functional aspects: handling and inspection. These two functions are interwoven for quick and precise qualitative assessment of multiple (up to six or more) sides of the components as they are quickly removed from the component supply and classified by the inspection as good parts precisely placed at the receiving point (s).
  • the component handling device has two preferably controlled operated, preferably substantially orthogonal (90 ° plus minus up to 15 °) to each other arranged, approximately star or wheel-shaped turning devices.
  • the turning devices could also have a rectangular shape.
  • Each of these turning devices carries a plurality of radially movable to its axis of rotation transducers to each of the components on a transducer fixed within a pivot angle between component transfer and transfer of one or more process stations for inspection, Schlechteteilausschleusung and possibly other stations supply.
  • the star-shaped or wheel-shaped turning devices carry the components on radially outwardly pointing transducers which are arranged on the (imaginary) circumference of the two turning devices. This is to be seen in contrast to such component handling devices, in which the sensors of one or both turning devices are oriented parallel to their axis of rotation.
  • the (upper) / lower (cover) and / or (lateral) lateral surface (s) of a component which are detected by the imaging sensors during the individual examination procedures may be different cover and / or lateral surfaces of the component.
  • One aspect of the optical examination envisages that the component feed with a component essentially shuts off the component path without or with almost no standstill. solviert.
  • one or more cover and / or lateral surfaces of a component with the imaging sensors are detected during the movement or during the minimum downtime. These images are then evaluated using image processing methods.
  • a variant of this optical detection / examination provides that one or more color cameras or black-and-white cameras are provided as imaging sensors.
  • the imaging sensors may have one or more mirrors, optical prisms, lenses or the like.
  • the imaging sensors can be assigned radiation or light sources.
  • each source can be set up to emit light / radiation having a different spectral or wavelength range for illuminating at least a portion of the component.
  • the wavelength ranges may be at least partially different, overlapping, or coincident.
  • the light of the first light source may be red
  • the light of the second light source may be blue. But it can also be the reverse assignment or another wavelength pairing (for example, infrared and visible light) can be selected.
  • the light sources can be switched on by a control arrangement at the moment in each case briefly when the transducer is located with the component in the respective detection area, so that the cover and / or lateral surfaces of the component are exposed with a short flash of light for detection by the respective imaging sensor can.
  • a permanent lighting can be used.
  • the component handling device is assigned a dispensing device which is set up to deliver a component from the structured component stock to a receptacle of the first reversing device that is correspondingly positioned by the controller.
  • This can be a component ejector (the ejector) which pushes the component through the wafer carrier film by means of a needle or a laser pulse generator which purposefully melts the adhesive of the component on the carrier film.
  • the output device is associated with a position and / or characteristic sensor, which is adapted to detect the position of the dispensing device relative to the component to be dispensed and / or position data of the component to be dispensed, and / or properties of the component to be dispensed and for the controller for operating the To make dispensing device available.
  • the component handling device is equipped in a variant with a receiving device associated with the receiving device for a component conveyed there. In this case, the receiving device is assigned position and / or characteristic sensors which are set up to detect position data of the component conveyed to the deposit location, position data and / or properties of receiving points in the receiving device and / or component therein and are available for a controller put.
  • the controller is adapted to rotate by means of a third rotary drive, the receiving device at least partially controlled by a third axis containing the deposit, and / or controlled by at least a third linear drive, the receiving device at least partially along one of the first, second and / or third axes method, and / or by means of a fourth and / or fifth linear drive to run a guided by the receiving means carrier along one of the first and / or second axes controlled.
  • This carrier serves to accommodate the components in isolated form.
  • the transducers of the first and / or the second turning device are adapted to be radially extended and retracted radially to the rotational axis or the center of rotation of the respective turning device, and / or controlled to receive and deliver a component to be conveyed with Under pressure and / or pressure to be applied, and / or to be immovable to their respective radial axis of motion, or to be controlled to rotate their respective radial axis of movement by a rotation angle.
  • the transducers of the first and / or the second turning device for radially extending / retracting the dispensing point, the transfer point between the first and second turning devices associated with this linear actuators are provided in a variant.
  • These linear actuators engage in the correspondingly positioned transducers in each case from outside the respective turning devices and drive the respective transducers radially out and in.
  • these linear drives only drive the respective pick-up, while a return spring retracts the respective pick-up.
  • each of the transducers is assigned a bidirectional or unidirectional radial drive.
  • valves for each of the individual transducers provide individually and in a positionally correct manner a supply of negative pressure and overpressure in order to freely or position-controlled the functions: (i) suction (ii) holding the component, (iii) depositing the component with or without a controlled blow-off pulse, and / or to realize free blowing off of the component.
  • At least some of the position and characteristic sensors are set up to inspect at least one cover surface and / or one or more lateral surfaces of the conveyed component in order to record its position data and / or properties and make it available for the control.
  • an imaging property and / or position sensor for determining properties and / or the position of a component to be received or for determining the location of receiving points provided in the receiving device and / or component therein. Based on the property data and / or the position data of the sensor / these sensors can then be corrected by the controller for property errors and / or position errors of the component to be received or the receiving point.
  • the image-forming position sensor (s) is / are configured to execute an image intake in each case during the turning movement of the first or second turning device between adjacent pick-ups and for the control to cause corresponding correction movements of the ejection unit, the component supply or wafer, the turning devices and / or the receiving device to provide.
  • the ejection unit is stationary.
  • imaging property and / or position sensors can be provided relative to the first and second turning devices for determining properties and / or the position of a component to be received or determining the position of receiving locations in the receiving device and / or component therein be provided. Based on the property data and / or the position data of this sensor / these sensors can then be corrected by the controller in case of property errors and / or position errors of the component to be received or the receiving point.
  • an upwardly directed component supply camera (with 90 ° mirror system and lighting) or a preferred but not necessarily identical downward Assembly be arranged as a storage camera. They serve to detect the position of the components or the receiving points with the aim of correcting the position in case of positional errors of the components or the receiving points.
  • the image is drawn in each case during the pivoting movement of the two turning devices through a window area between the pickups with subsequent wafer or receiver correction movement.
  • Alternatives with externally stored wafer or deposition cameras are also possible here.
  • the transfer point and / or the deposit location is upstream or downstream of a discharge point which is set up, controlled by the controller, to discharge a component recognized by the controller by means of at least one of the position and property sensors as a bad part, and it not store as a good part in the receiving device.
  • the first and / or the second turning device are each assigned an integer number of n pickups.
  • n> 2.
  • the number of transducers of the first turning device and the number of transducers of the second turning device can be the same or different.
  • the first, second and / or third axes in each case enclose an angle of 90 ° plus / minus a maximum of 10 ° or 15 °.
  • the position / property sensors are imaging sensors with matching or divergent detection spectra, or contact-type or contact-free, distance-measuring position sensors, or contact sensors or contactless sensing sensors.
  • the attitude and property sensors may be imaging sensors with rectilinear or kinked optical axes.
  • the camera systems of the position and property sensors including their mirror and lighting units can be combined by their spatial arrangement such that the component inspection of the respective facing component surface and two of its lateral surfaces parallelized at a single process position can be realized.
  • two process positions are sufficient for the complete inspection of all six side surfaces of a cuboid component, for example.
  • the component detects three of the six side surfaces at each of the two process positions.
  • the respective third process position can be determined approximately horizontally at the level of the rotation or pivot axis.
  • Additional position measuring tasks can be assigned to two further camera systems (front / rear camera).
  • the first and / or second turning devices are configured at least approximately star or wheel-shaped.
  • the turning devices can be precision-mounted and their positioning along the respective axes or about the respective axes can take place by means of axially arranged linear or rotary acting drive, paired with a high-resolution (for example rotary or linear) encoder.
  • the respective transducers can be arranged distributed on the outer circumference and have radially outwardly facing Saug chunkstellen for the components to be delivered.
  • An advantage of the axially offset by about 90 ° arrangement of the turning devices to each other is that the components in their position during the conveying process in transfer from one turning device to the next a 90 ° rotation about the pickup axis, relative to the respective movement plane of the transducer ( or turning device axis) run, without that the transducer itself must be stored rotatably movable.
  • a by one, the component-sectional area facing, orthogonal to the transducer-movement plane (ie in the axial direction of the turning device) arranged camera system with preferably very small distance from the component-sectional surfaces ( lateral surfaces of the component) itself.
  • the detection of the incorrect positioning of transducer and component to each other or to the transfer and inspection positions is carried out using the camera systems as a transducer or component position-sensing measuring system.
  • the camera systems as a transducer or component position-sensing measuring system.
  • three distance-measuring sensors for the bonding tool position detection per turning device can additionally be provided.
  • the reference measurements for the transducer position during the running process or even during cyclically repeating reference movements can be realized.
  • cyclic reference runs for contact sensors with short-term process interruption
  • the cycle intervals may well be relatively long due to the relatively slow thermal behavior.
  • a rotational correction movement of the rotor drive and orthogonal a linear correction movement in the axial direction is carried out to compensate for position errors of the turning devices of the transducers, especially in the component transfer positions and the components fixed thereon (in transfer and inspection positions).
  • the rotor drive assembly may be arranged on a carriage and be moved by means of a position-controlled drive, for example an eccentric drive to limited path segments.
  • the rigid coupling of a plurality of transducers to a turning device requires transmission of the correction values from a component handover position to the next positions in the sequence. These corrections can begin at a fixed transfer position and end at the last component transfer to the receiving point. there the total position errors along the up to three axes and the distortion around the up to three axes are compensated by the receiving device.
  • the transducers are not rotatably mounted on their respective turning device.
  • an orientation error compensation of components during the delivery itself can not be done. Therefore, in a variant in the downstream peripheral region, in particular in the receiving device in addition to the axis position correction and a rotational correction possibility provided.
  • the rotational correction takes place with rotatably mounted transducers.
  • it can also be provided to support the transducers rotatably on their respective turning device. This can be done to compensate for orientation errors of components during conveyance itself.
  • the orientation error is then corrected by the rotatably mounted pick-up of the upper and / or lower turning device, preferably by the pick-up of the lower turning device.
  • the variants presented here are more cost-effective compared to the prior art and offer a higher component throughput, more time for inspections and have less moving masses.
  • a solution is presented for a receiving device, in particular for a component handling device of the type presented above, which is adapted to rotate relative to the deposition site by means of a rotary drive at least partially controlled by a third axis containing the storage location, and / or by means of at least one linear drive Controlled to move at least partially along one of the first, second and / or third axes, and / or by means of a rotary drive to control a guided by the receiving means carrier along one of the first and / or second axes controlled.
  • the solution presented here allows the position and position of the turning devices to be compensated simultaneously by the position and / or rotation of the receiving device. Therefore, the component throughput of the engine can be increased over the prior art.
  • the drives In order to avoid play in the tape drive of the storage tape, the drives must be adjusted relative to each other in the prior art. The solution presented here avoids this because the transport always takes place in one direction only. The game in the drive can be neglected. In another variant can also be transported in the opposite direction. This is particularly useful in applications where the pockets of the carrier tape are gradually closed with an adhesive masking tape. If one were to transport the carrier tape back again, this would possibly result in problems if the masking tape had to be removed again.
  • the correction of the position of the component takes place at the receiving device. So there is more time available. A return transport of the tape in which the components are stored, is no longer necessary. Thus, the receiving device can be constructed simpler. A second drive wheel for the return transport of the tape as in the prior art is no longer necessary. Rather, in the required situations, the entire receiving device is moved counter to the transport direction of the storage belt.
  • the advantage is that a higher positioning accuracy of the tape over prior art variants is achieved, in which the positioning is accomplished exclusively on the transport of the conveyor belt.
  • the subsequent attachment of a (self-adhesive) masking tape (cover tape) on the conveyor belt can be made easier.
  • the receiving device is arranged above a stationary base plate, the motors of the three drives are arranged below the base plate.
  • the position of the receiving device can be adjusted in rotation in X, Y and around the Z-axis. Each direction of movement of the receiving device has its own drive. The position of the individual drives is not specified.
  • the rotation axis for the Z-correction is close to the component storage position or falls in the center.
  • this is equipped with two receiving points, which are aligned at least approximately in alignment with the storage location by controlled actuation of the rotary drive of the / linear drives.
  • the two receiving points are to be positioned according to a grid spacing of adjacent component recordings of the carrier corresponding to one another.
  • two further imaging property and / or position sensors are provided at the receiving device.
  • the one sensor is directed from the top of the second window to investigate quality defects.
  • the other sensor is arranged laterally at the first window in order to be able to better detect a tilting of the component with respect to the sensor explained above.
  • the fifth rotary drive is set up, controlled by control signals from the control, controlled by means of a mechanical traction guided by the receiving carrier carrier along one of the first and / or second axes controlled by about 80 - 120%, preferably about 100% plus minus a maximum of 3%, of the grid dimension of adjacent component images of the carrier.
  • the rotary drive can be set up to be controlled by control signals from the controller, depending on signals from the imaging property and / or position sensor controls at least one of the receiving points with the component receiving the carrier located there around the third third axis containing the deposit to rotate up to plus minus 6 °, preferably up to plus minus 3 °.
  • the at least one linear drive can be set up, controlled by control signals from the control, the receiving device controlled by approximately plus or minus 20%, preferably by up to plus minus 3% of the pitch of adjacent component recordings of the carrier along a the first, second and / or third axes controlled to proceed.
  • the fifth rotary drive is set up to convey the carrier guided by the receiving device forward along one of the first and / or second axes in accordance with a grid spacing of adjacent component receivers of the carrier.
  • a suction and / or Ausbiaseinrich- device is provided to remove from at least one of the receiving points in the receiving device and / or guided in the receiving device a detected as defective and / or incorrectly recognized component.
  • a suction and / or Ausbiaseinrich- device engages a driven by the fifth rotary drive pinwheel in transport holes of the storage belt for its transport in the conveying direction.
  • the spiked wheel preferably rotates only in a forward direction.
  • the storage belt has storage pockets for the components at regular intervals. For each storage bag, the spiked wheel turns by a fixed angle (eg 30 °, 60 °, 90 °, 180 ° 360 °).
  • the position of the storage bag is known, in which the component has been stored.
  • the camera on the outer circumference of the second turning device is also known whether the next component to be deposited is kept rotated on the transducer. From this position information is calculated in the controller by which distance and / or angle amounts the receiving device must be repositioned.
  • the positioning of the receiving device is also taken into account that the turning device will move in the x and y directions accordingly to correctly take over the component at the transfer position from the upper to the lower turning device.
  • the receiving device is then, if necessary, moved linearly along the (X, Y) axes and possibly rotated to ensure the fine adjustment of the storage of the component.
  • the camera has also detected in the center of the second turning device arranged above, whether the component is faulty, i. whether it was damaged by the dropping or already had a defect before. If a component was previously detected as defective, it will not be saved.
  • the storage position in the receiving device can also be a first suction position at the same time.
  • an aspirator with negative pressure at the storage position is arranged at the receiving device.
  • In the conveying direction of the carrier tape there is a second alternative suction position. That is, at the receiving device, two windows are provided: a first window with a storage position and a second window with a suction position. The distance between the two windows corresponds to the pitch of the carrier tape and is adjustable to the pitch. If the component has not been deposited correctly so that it lies obliquely therein, or still protrudes partially, this is detected by a camera in the center of the second turning device. The carrier tape can not be transported because of the incorrectly placed component.
  • the component is sucked off at the storage position and replaced by the next component to be deposited. If the component is damaged, it can also be removed at this position and replaced with the next component to be deposited.
  • the receiving device is moved back in total and sucked to the recognized as defective component at the storage position.
  • the receiving device moves in three directions: in the X and Y directions, and around its (Z) vertical axis in / near the center of the storage position. This can also be seen in contrast to conventional arrangements in which the carrier tape is conveyed in the transport direction and the receiving device perpendicular to
  • the receiving device may also be in the form of a tray (a tray, e.g., a Jedec tray), or an antenna track.
  • the receiving device is associated with a suction and / or blow-out device in order to remove from at least one of the receiving points in the receiving device and / or the carrier guided in the receiving device a component recognized as defective and / or incorrectly placed.
  • the receiving device can receive components from a turning device whose rotation axis is oriented substantially parallel to the conveying direction of the receiving device, or the receiving device can receive components from a turning device whose rotation axis is oriented substantially transversely to the conveying direction of the receiving device in a further variant.
  • an imaging property and / or position sensor for determining properties and / or the position of a component to be received or for determining the position of receiving locations in the receiving device and / or component therein is provided in the center of the turning device.
  • This imaging property and / or position sensor is configured to pass between adjacent receivers located on the circumference of the turning device Image input at least one of the receiving stations in the receiving device to perform.
  • a deflection mirror or prism is arranged in the center of the turning device, which is assigned to the arranged outside the turning device imaging property and / or position sensor for determining properties and / or the position of a component to be received or to determine the position from receiving stations in the receiving device and / or component therein.
  • the deflecting mirror or the prism together with the imaging property and / or position sensor arranged outside the turning device are set up to execute image feeds of at least one of the receiving points in the receiving device between adjacent receivers located on the circumference of the turning device.
  • the receiving device is to be moved relative to a storage location by means of a linear drive at least partially controlled along a first axis in both directions.
  • a rotary drive By means of a rotary drive, a carrier guided by the receiving device is moved along one of the first and / or second axes in a conveying direction of the carrier.
  • the guided by the receiving device carrier is equipped with two receiving points, which are to be aligned at least approximately aligned to a storage location for components by controlled actuation of the drives.
  • An imaging property and / or position sensor provides properties and / or position of a component to be examined with respect to its properties and / or its position in at least one of the receiving locations in the receiving device.
  • correction instructions for property and / or positional errors of the component are carried out by a controller for initiating corresponding correction movements of the receiving device and / or of the carrier guided in it.
  • the receiving device is associated with a suction and / or blow-out device in order to remove from at least one of the receiving points in the receiving device and / or the carrier guided in the receiving device a component recognized as defective and / or incorrectly placed.
  • a method for removing defective components from a receiving device has the following steps:
  • an imaging sensor is proposed, which is suitable and intended for detecting the positional properties of a component, in particular in a component handling device of the type disclosed above.
  • This imaging sensor is equipped with at least two different detection spectra. It is particularly suitable and intended for detecting feature errors and / or positional errors of a component located in the receiving point of a receiving device.
  • This imaging sensor is suitable and intended to cooperate with radiation sources which are matched to the same with regard to the radiation spectrum and the radiation angle of incidence and / or the radiation reflection angle relative to the imaging sensor.
  • the imaging sensor is suitable and adapted to provide a separate image input for each of its acquisition spectra of a subordinate image evaluation.
  • the at least two mutually differing detection spectra are configured in the visible and invisible regions. They may also be configured as a red color range - 630nm plus minus 30nm - and / or green color range - 530nm plus minus 60nm - and / or blue color range - 460nm plus minus 50nm - of a color sensor.
  • optically active elements are provided, which are adapted to the sensor with a component in at least one of To couple receiving stations in the receiving device and / or guided in the receiving device carrier optically.
  • the optically active elements comprise deflection mirrors, prisms, color filters and / or lenses.
  • optically active elements and / or the radiation sources may be arranged to be activated, aligned and / or adjusted / focused independently of others.
  • the integrated handling / inspection device disclosed here employs imaging sensors which on the one hand inspect all or almost all cover and / or side surface (s) of a component and on the other hand also relevant data for positioning the manipulators (transducers) on the first and / or the second turning device and the receiving stations.
  • the imaging sensor of the first (upper) turning device is a color camera in the center of the turning device.
  • the camera can also be a black-and-white camera, which interacts in a further variant laterally and with a 45 ° deflection mirror in the center of the turning device. This camera detects during the rotation of the upper turning device through the gap between two pickups the isolated in the next step of the component ejector from the component supply component. From the obtained image collection both an inspection of the component and its exact position determination in the component stock is possible. The image intake takes place during the rotation of the upper turning device, in the period referred to as Magnoliapper.
  • the integrated handling / inspection device disclosed herein also employs imaging sensors in the form of side cameras on the upper turning device. These are arranged approximately at 90 ° radially outside the upper turning device such that the component on its flight circle from a central camera is detected frontally and are detected by the on both sides of the central camera each opposing lateral surface. These cameras are not necessarily color cameras. Several image feeds can be made because the upper turning device stands still for a short time (10 ms to 60 ms, for example 40 ms) because of the subsequent component in the 180 ° position. This short downtime is sufficient for the inspection. For this purpose, black and white cameras can be used. With the side inspection by the two lateral cameras, the front sides of the component are examined for damage.
  • the back of the component is examined for damage.
  • several image injections can be made to highlight different defects.
  • the cameras used here can also be color cameras. However, this is not absolutely necessary since, as already mentioned above, sufficient time is available due to the stoppage period.
  • the integrated handling / inspection device disclosed herein also employs imaging sensors in the form of side cameras on the lower turning device. These are arranged approximately at 90 ° radially outside the lower turning device in such a way that the component is detected frontally on its circle by a central camera and the cameras located on both sides of the central camera each detect overlapping lateral surfaces. These cameras are not necessarily color cameras. Rather, you can too
  • Black and white cameras are used. At this position, the component is examined for errors as well as the image data are evaluated for position data. With the side inspection by the two lateral cameras, the component is examined for damage on its cut surfaces. With the rear side inspection through the middle camera, the back of the component is examined for damage. For the backside inspection several image injections can be made to highlight different defects. For the subsequent storage of the component in the receiving device, the position data (x, y, rotation) of the component can be determined with the side inspection. In another variant, the rear side inspection is used for this purpose. This information is used by the controller to make any corrections.
  • the cameras used here can also be color cameras. However, this is not absolutely necessary as there is sufficient time available during the downtime period.
  • the integrated handling / inspection device disclosed herein further employs imaging sensors in the form of a camera in the center of the lower turning device.
  • This camera can be a color camera with three individual channels R, G, B. It is irrelevant whether a 3-chip color camera or a 1-chip color camera is used. 3-chip cameras have a separate image sensor for each color R, G, B, a 1-chip camera uses alternating activated filters in front of the image sensor.
  • a black and white camera that can be used here has a channel with, for example, 255 gray levels; for a color camera, each of the three channels has 255, for example Intensity levels of a color.
  • the three color channels of the camera are addressed / read separately from each other, or at least a splitting of the three color channels in the controller can be done.
  • Different exposure times are possible for each channel. For example, the following exposure times can be used here: 5 ms (green), 12 ms (red), 15 ms (blue).
  • different illumination colors are also used in the integrated handling / inspection device disclosed here. White light is indeed a mixture of all colors, so that with this illumination color all channels could be addressed simultaneously. However, this definitely does not take place if the achievable image quality does not meet the requirements.
  • the imaging sensor is assigned a semitransparent mirror, which is arranged at an angle of approximately 45 ° to the optical axis of the camera chip and serves to optically couple colored light of two, several or any number of different acquisition spectra from corresponding light sources and to an inspection area. This directed to the inspection area, so the component top surface or side surface and possibly their environment in the bag, light is reflected there and is detected by at least one camera chip of the imaging sensor.
  • the imaging sensor is assigned a light source as a ring straightening source around the inspection point.
  • This refractive index source provides stray light at an angle of about 5 ° - 45 ° in a third color range. This directed to the inspection area light is reflected there and is detected by at least one camera chip of the imaging sensor.
  • the light or the differently colored light sources can be arranged as desired or also have the same radiation angle.
  • the integrated handling / inspection device disclosed here uses in the center of the lower turning device a deflection mirror for coupling coaxial illumination of the receiving device. More specifically, the guided by the receiving device carrier is detected in the form of a storage belt with storage pockets for the components with the camera. A single image pickup inspects for defects, such as tilting the component so that it is not properly positioned in its storage bag, or for quality defects. In addition, the position data of the storage bag of the storage belt for storing the next component are detected by this single image acquisition. Those from the individual NEN color channels to be extracted information can be divided according to the tasks to be examined arbitrarily, for example, as follows: Image channel 1 with lighting type 1: position of the storage pocket of the storage tape for positioning of the next component. Image channel 2 with lighting type 2: quality inspection of the component (cracks, laser marks, eruptions, ). Image channel 3 with lighting type 3: additional inspections for special components or customer-specific faults.
  • the component is filed "blind.” This means that the actual depositing process is based on information or position data obtained before the depositing process from the image recording associated with the previous component Moment of the depositing process, the camera does not see the deposit point in the center of the second turning device, since the currently depositing sensor obstructs the view.
  • Information or position data as to whether a component is twisted provides a camera on the outer circumference of the lower turning device.
  • the information or position data is passed to the controller of the receiving device.
  • the position of the receiving device is known from the image recording of the previously deposited in the storage pocket of the storage tape component. The distance between the two pockets is also known. From this it can be calculated for the next component to be deposited, by which angle and x and y amount the receiving device must be moved.
  • the imaginary sensor array presented here is able to manage with fewer image feeds than conventional sensor arrangements.
  • the acquired image data can be evaluated both for Schleuseteilausschleusung as well as for positioning of the actuators of the handling / inspection device.
  • This integrated architecture and enabling approach reduces process time and provides increased inspection quality with increased throughput.
  • FIG. 1 shows schematically a component handling device for removing prismatic or cylindrical components from a structured component supply and for depositing on a receiving device in a side view.
  • Fig. 2 shows schematically the orientation of the various attitude and property sensors of the component handling apparatus of Fig. 1 with respect to the side surfaces of a component.
  • FIG. 3 schematically shows one of the position and property sensors arranged on the circumference of one or both turning devices of the component handling device in a plan view.
  • FIG. 4 schematically shows a receiving device for use with the component handling device in a perspective view.
  • Fig. 5 shows schematically one of the attitude and property sensors with associated illumination arrangement for use with the component handling device.
  • FIG. 1 shows a component handling device 100 for removing prismatic components B in the form of electronic semiconductor chips from a structured component and illustrating them for depositing on a receiving device 200.
  • the component handling device 100 presented here takes over the components B from a component supply arranged horizontally in the upper region of the component handling device, in this case a wafer wafer, with a stationary ejection unit 110.
  • the ejection unit 110 operates in the variant shown with a controlled by a controller ECU needle or, for example, operates without contact with a laser beam to release the components individually from the component stock so that they are fed to a first inverter 130.
  • This first turning device 130 is in the form of a star or wheel and has a plurality (in the example shown eight) of the individual components B at its circumference.
  • Each of the pickups 132 is arranged to be in the 0 ° position of the first Turn- device 130 of the ejection unit 110 is closest to receiving a component from the structured component supply at a dispensing point SPS.
  • the transducers 132 are arranged pointing radially outward on the (imaginary) circumference of the star-shaped or wheel-shaped first turning device 130 and carry the components B.
  • the transducers 132 of the first turning device 130 are radially movable relative to the axis of rotation (here the X axis).
  • the second inverter 150 turns the received component B, controlled by the controller ECU, about a second axis, here the Y-axis, about a second predetermined angle, here about 180 °, about its longitudinal or transverse axis and conveys it to one Filing ABS.
  • the first, second and / or third axes each enclose an angle of 90 ° plus / minus a maximum of 10 ° or 15 ° and are based on a three-dimensional orthogonal coordinate system.
  • the two star or wheel-shaped turning devices 130, 150 are arranged orthogonal to each other and otherwise agree in their construction. Notwithstanding the representation in FIG. 1, the arrangement of the two turning devices 130, 150 relative to the conveying direction of the receiving device 200 can also be rotated by 90 ° about the Z axis. In this case, the lower turning device 150 is oriented at least approximately transversely to the conveying direction of the receiving device 200.
  • the first and second turning devices 130, 150 are associated with position and property sensors Kl ... K4. As shown in Fig. 1, these sensors are located at several locations throughout the assembly. They are set up to detect position data of the first and second turning devices 130, 150, position data of components B located on the pickups 132, 152 and properties of components B located on the pickups 132, 152.
  • a first camera arrangement K1 in the center of the first turning device 130 is directed vertically upwards onto the component supply.
  • a second camera arrangement K2 with three cameras - not visible in FIG. 1 - is directed at the periphery of the first turning device 130 at 90 ° onto the component B guided past it. Details of this second camera arrangement K2 will be explained in connection with FIG.
  • a third camera arrangement K3 with three cameras corresponding to the second camera arrangement K2 is directed at the periphery of the second turning device 150 at 90 ° onto the component B guided past it.
  • a fourth camera arrangement K4 is directed in the center of the second turning device 150 to the depositing point ABS or the first receiving point ESI in the receiving device 200.
  • the control unit ECU is set up to rotate the first turning device 130 about a first axis (in this case the X axis) by means of a first rotary drive DA1 and to move the first turning device 130 along the first axis by means of a first linear drive LA1.
  • the control unit ECU is furthermore set up to rotate the second turning device 150 by means of a second rotary drive DA2 in a controlled manner over a second axis (here the Y axis) which is not linearly linear with the first axis (here the X axis), and by means of a second one Linear drive LA2 to control the second turning device 150 along the second axis controlled.
  • a second rotary drive DA2 in a controlled manner over a second axis (here the Y axis) which is not linearly linear with the first axis (here the X axis)
  • a second one Linear drive LA2 to control the second turning device 150 along the second axis controlled.
  • the imaging sensors inspect the top and / or side surface (s) of the component B, thereby also providing relevant data for positioning the first and second inverters 130, 150 along and about their axes, and the transducers 132, 152 and those located thereon Components B and the receiving stations.
  • the component handling device 100 is equipped with a receiving device 200 assigned to the storage location ABS for a component B conveyed there.
  • the receiving device 200 are position and property sensors K4, K5 assigned, which are adapted to position data of the subsidized to the storage area ABS component B, location data and properties of receiving stations ESI, ES2 in the receiving device 200 and the components B located therein and to provide ECU for a control available.
  • the position and property sensor K5 is a fifth camera arrangement, which is directed to a second window at the second receiving point ES2.
  • the controller ECU is adapted to, by means of a third rotary drive DA3, the receiving device 200 to a the
  • a fourth rotary drive DA4 the controller ECU moves one through the
  • Receiving device 200 guided carrier 320 along the first axis (here the X axis) controls.
  • This carrier 320 serves to receive the components B in a separate form from the second turning device 150.
  • the turning devices 130, 150 and the rotary drives DA1, DA2, ... each have a connected to the controller ECU, not shown high-resolution rotary angle encoder for determining their respective rotational position.
  • the third linear drive LA3 is actuated by control signals from the control ECU, the carrier 320 guided by the receiving device 200 along the first axis (here the X axis) controlled by about 100% plus minus 3% maximum of the grid adjacent component receptacles (pockets) of the carrier 320 to proceed.
  • the pitch results from the center distance of two consecutive pockets.
  • the third rotary drive DA3 is set up, controlled by control signals from the ECU control, in response to signals from the imaging property and position sensor in the center of the second turning device 150 one of the receiving points El with there located component recording of the carrier 320 to the Control Z-axis containing the control point controlled by up to plus minus 6 ° to turn.
  • the fourth rotary drive DA4 of the receiving device 200 has a spiked wheel which engages in transport holes 325 of the carrier 320 (storage belt) in order to transport it in the conveying direction.
  • the sprocket rotates preferably only in a forward direction.
  • a suction and / or blower 340 is provided downstream of the receiving point ESI. With this, through nale driven from the control ECU, as defective or incorrectly placed detected components removed from their pocket.
  • the pneumatic unit acts, controlled by the controller ECU, the individual transducers 132, 152 valve-controlled to record individually at the respective time or period with positive or negative pressure to the components individually to hold and deliver again.
  • the respective component B is deposited in the receiving point ESI currently located at the depositing point ABS, that is to say the pocket of the carrier 320. If the obtained inspection results are negative, the component B is further rotated by a further position to a first extractor 330, where it is sucked off its receiver 152 at the second turning device 150. Insofar as a position and property sensor monitoring this reception point ESI (see also FIG. 5) shows that the deposited component B has a positional or characteristic error after deposition, it is separated from the second suction device 340 located downstream of the reception point ESI Carrier 320 pocket sucked out.
  • the entire receiving device 200 is reset together with the carrier 320 by the center distance of two pockets of the carrier 320 with the third linear drive unit LA3 against the conveying direction of the carrier 320. Then, the next component B is inserted at the second turning device 150 in the released pocket of the carrier 320.
  • the first receiving point ESI is assigned an additional, not further illustrated, suction device in order to suck off an inclined component at the receiving point ESI.
  • the position and property sensor K4 or by the position and property sensor K5 on the second window any quality errors can be detected. If the position and property sensor K5 detects a quality error, the receiving device 200 is transported back together with the carrier 320, at the storage location then the component B is sucked out of the pocket of the carrier 320.
  • the camera arrangement K1 is directed as a position and property sensor in the center of the first turning device 130 onto the component supply. Thus, the top surface D2 of the component B is inspected for position and error.
  • the camera arrangement K1 is set up to carry out a picture feed in each case during the turning movement of the first turning device 130 between two adjacent pickups 132.
  • the controller generates from these image data corresponding correction movements of the ejection unit, the component supply or the wafer and the first turning device 130.
  • the second camera arrangement K2 is directed as a position and property sensor with its three cameras on the periphery of the first turning device 130 at about 90 ° to the three sides S2, S4 and Dl of the component B.
  • a top view of the camera arrangement K2 with its three cameras K2-1, K2-2 and K2-3 is shown in FIG. 3
  • the middle camera K2-2 inspects the cover surface D1 of the component B and the two outer camera K2-1 and K2-3 via respective mirrors SP1 and SP2 the side surfaces S2 and S4 of the component B. From the image impressions recorded in this case, it is possible to Defects of the component B on these surfaces also determine the exact position and rotation of the component B at its transducer 132. This information is used in the controller ECU to change the orientation of the first turning device 130 and the second turning device 150 along their axes and rotational orientation when the inspected component B is transferred from the first turning device 130 to the second turning device 150 at the transfer point ÜS ,
  • the third camera arrangement K3 is directed as a position and property sensor with its three cameras externally at the periphery of the second turning device 150 at about 90 ° to the three sides Sl, S3 and D2 of the component B.
  • This camera arrangement K3 corresponds in its construction and its arrangement to the camera arrangement K2 with its three cameras and two mirrors in FIG. 3.
  • the exact location and rotation of the component B can be determined from the image acquisitions recorded here at its receiver 152 of the second turning device 150 determine.
  • This information is used in the controller ECU to change the orientation of the second turning device 150 and the receiving device 200 along their axes and rotational orientations, when the inspected component B at the transfer point ÜS of the second turning point direction 150 located in the depositing point ABS located receiving point ESI, so the bag of the carrier 320 is stored.
  • the fourth camera arrangement K4 is directed as a position and property sensor in the center of the second turning device 150 to the receiving point El in the receiving device 200.
  • This camera arrangement K4 is also set up to carry out an image intake in each case during the turning movement of the second turning device 150 between two adjacent receivers.
  • the controller ECU then causes corresponding correction movements of the second inverter 150 and the receiver 200.
  • the position and property sensor 400 illustrated in FIG. 5 is a variant of the camera arrangements K1-K5 as an imaging sensor.
  • This sensor 400 has a visible light spectrum capturing camera chip 410.
  • the three distinct detection spectra are red color range - 630nm plus minus 30nm - green color range - 530nm plus minus 60nm - and blue color range - 460nm plus minus 50nm - a color sensor designed.
  • the imaging sensor 400 is associated with a semitransparent mirror 420, which is arranged at an angle of approximately 45 ° to the optical axis of the camera chip 410.
  • the semitransparent mirror 420 serves to optically couple colored light of two detection spectra, in this case the green color range and the blue color range, from corresponding light sources 440 and to direct them to a cover surface of the component B. This directed to the component B light in the green and blue color range detects the camera chip 410.
  • other deflection mirrors, prisms, color filters or lenses may be provided.
  • a further light source 450 is arranged around the receiving point ESI located at the depositing point ABS and supplies scattered light at an angle of approximately 5 ° -45 ° in the red color region to the cover surface of the component B. This also points to the component B Light in the red color range is detected by the camera chip 410.
  • the camera chip 410 in the present variant is a color camera with three individual channels R, G, B. However, it can also be a camera with multiple channels. The three color channels of the camera can be addressed / read out separately.
  • the component B is inspected for defects, for example the oblique placement of the component B, so that it is not correctly positioned in the intended pocket of the carrier 320, or on quality defects.
  • the exact position data of the pocket of the carrier 320 for depositing the next component B are detected by this single image recording.
  • the information to be obtained from the individual color channels is divided as follows: Image channel 1 with illumination type 1: position of the deposition pocket of the deposition tape for positioning the next component. Picture channel 2 with lighting type 2: quality inspection of the
  • Image channel 3 with lighting type 3 additional inspections for special components or customer-specific faults.
  • the imaging sensor technology presented here requires fewer image feeds than conventional sensor arrangements in order to realize poor part ejection and positioning of the actuators.
  • first rotary drive DA1 for rotating the first turning device about the first axis (X-axis)
  • fourth rotary drive DA4 of the receiving device transports the carrier in
  • first linear drive LA1 for moving the first turning device along the first axis (X-axis)
  • second camera arrangement K2 with three cameras is directed at the periphery of the first turning device at 90 ° to the component guided past it
  • third camera arrangement K3 with three cameras is directed at the periphery of the second turning device at 90 ° to the component passed thereto
  • fourth camera arrangement K4 is directed in the center of the second turning device to the storage location or the first receiving point in the receiving device fifth camera assembly K5 is directed to the second window at the second receiving point

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un capteur d'imagerie approprié pour et destiné à la détection de la position et/ou de propriétés d'un élément, en particulier dans un dispositif de manipulation d'élément. Ce capteur d'imagerie est doté d'au moins deux spectres de détection différents les uns des autres. Il est particulièrement approprié pour et destiné à la détection de défauts de qualité et/ou de défauts de position d'un élément se trouvant dans l'emplacement de réception d'un dispositif de réception. Ce capteur d'imagerie est approprié pour et destiné à coopérer avec des sources de rayonnement qui sont adaptées au capteur d'imagerie en termes de spectre de rayonnement et d'angle d'incidence de rayonnement et/ou d'angle de réflexion de rayonnement par rapport au capteur d'imagerie. Le capteur d'imagerie est approprié et conçu pour fournir à un dispositif d'analyse d'image placé en aval de celui-ci une acquisition d'image séparée pour chacun de ses spectres de détection.
PCT/EP2016/072480 2015-10-16 2016-09-22 Capteur d'imagerie pour un dispositif de manipulation d'élément WO2017063836A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015013500.7A DE102015013500A1 (de) 2015-10-16 2015-10-16 Bildgebender Sensor für eine Bauteilhandhabungsvorrichtung
DE102015013500.7 2015-10-16

Publications (1)

Publication Number Publication Date
WO2017063836A1 true WO2017063836A1 (fr) 2017-04-20

Family

ID=57136819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/072480 WO2017063836A1 (fr) 2015-10-16 2016-09-22 Capteur d'imagerie pour un dispositif de manipulation d'élément

Country Status (3)

Country Link
DE (1) DE102015013500A1 (fr)
TW (1) TW201715197A (fr)
WO (1) WO2017063836A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017008869B3 (de) * 2017-09-21 2018-10-25 Mühlbauer Gmbh & Co. Kg Bauteilzentrierung
DE102019125127A1 (de) * 2019-09-18 2021-03-18 Mühlbauer Gmbh & Co. Kg Bauteilhandhabung, Bauteilinspektion
DE102020127580A1 (de) * 2020-10-20 2022-04-21 Integrated Dynamics Engineering Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Abbilden eines Objektes in zumindest zwei Ansichten
CN113118032A (zh) * 2021-04-12 2021-07-16 万安裕维电子有限公司 一种pcb板自动定位控制系统及定位方法
DE102021111953A1 (de) 2021-05-07 2022-11-10 Mühlbauer Gmbh & Co. Kg Optische Bauteilinspektion
CN114384096B (zh) * 2021-12-30 2024-03-29 北京无线电计量测试研究所 用于表贴晶体元器件的x射线照相治具及设备

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004385A1 (fr) 1984-03-22 1985-10-10 Mostek Corporation Manipulation de des de circuits integres
US4619043A (en) 1983-05-02 1986-10-28 Tdk Corporation Apparatus and method for mounting chip type electronic parts
JPH01193630A (ja) 1988-01-28 1989-08-03 Nikka Densoku Kk 粒状物搬送および検査装置
JPH02193813A (ja) 1989-01-20 1990-07-31 Murata Mfg Co Ltd 電子部品の整列・反転方法
JPH08227904A (ja) 1995-10-30 1996-09-03 Rohm Co Ltd チップボンディング装置
US5750979A (en) 1994-11-29 1998-05-12 Japan Elanco Company Limited Side face examination apparatus for pressed articles, conveyor for pressed articles and external appearance examination apparatus for pressed articles
EP0906011A2 (fr) 1997-09-24 1999-03-31 Siemens Aktiengesellschaft Dispositif pour le montage de composants électriques sur des supports plats de composants
DE19913134A1 (de) 1998-03-23 1999-10-21 Murata Manufacturing Co Übertragungsvorrichtung für Chipkomponenten
US6079284A (en) 1997-08-06 2000-06-27 Shinogi Qualicaps Co., Ltd. Visual inspection apparatus for tablets
JP2001074664A (ja) 1999-09-01 2001-03-23 Shionogi Qualicaps Kk 錠剤の側面検査装置及び該側面検査装置を用いた錠剤の外観検査装置
US6236747B1 (en) * 1997-02-26 2001-05-22 Acuity Imaging, Llc System and method for image subtraction for ball and bumped grid array inspection
WO2002054480A1 (fr) 2000-12-29 2002-07-11 Yeint Co., Ltd Systeme d'eclairage pour dispositif d'inspection de microcircuits montes en applique
JP2003124700A (ja) * 2001-10-15 2003-04-25 Nidec Copal Corp 撮像装置
US20040213450A1 (en) * 2003-01-09 2004-10-28 Matsushita Electric Industrial Co., Ltd. Image recognition apparatus and image recognition method
DE202007012346U1 (de) * 2007-09-04 2007-12-20 Goldlücke, Jürgen Vorrichtung zur optischen Analyse der Struktur einer Probe eines porigen Werkstoffes
US20080225283A1 (en) * 2007-03-16 2008-09-18 Industrial Technology Research Institute Imaging system with high-spectrum resolution and imaging method for the same
DE102008018586A1 (de) 2008-04-12 2009-11-05 Mühlbauer Ag Optische Erfassungsvorrichtung und Verfahren für die Erfassung von Oberflächen von Bauteilen
DE102011104225A1 (de) * 2011-06-15 2012-12-20 Mühlbauer Ag Vorrichtung und Verfahren zum Positionieren eines elektronischen Bauteils und / oder eines Trägers relativ zu einer Ausstoßeinrichtung
EP1470747B1 (fr) 2002-01-30 2014-05-14 ASM Assembly Systems GmbH & Co. KG Dispositif de prélèvement de puce, système d'équipement et procédé pour prélever des puces d'une plaquette

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064291A (en) * 1990-04-03 1991-11-12 Hughes Aircraft Company Method and apparatus for inspection of solder joints utilizing shape determination from shading
DE4321613A1 (de) * 1993-06-25 1995-01-05 Siemens Ag Verfahren zur berührungslosen Lötstellenprüfung
JP2001255281A (ja) * 2000-01-17 2001-09-21 Agilent Technol Inc 検査装置
DE10128476C2 (de) * 2001-06-12 2003-06-12 Siemens Dematic Ag Optische Sensorvorrichtung zur visuellen Erfassung von Substraten
DE102010053912B4 (de) * 2010-12-09 2013-01-31 Mühlbauer Ag Optische Untersuchungseinrichtung und optisches Untersuchungsverfahren

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619043A (en) 1983-05-02 1986-10-28 Tdk Corporation Apparatus and method for mounting chip type electronic parts
WO1985004385A1 (fr) 1984-03-22 1985-10-10 Mostek Corporation Manipulation de des de circuits integres
JPH01193630A (ja) 1988-01-28 1989-08-03 Nikka Densoku Kk 粒状物搬送および検査装置
JPH02193813A (ja) 1989-01-20 1990-07-31 Murata Mfg Co Ltd 電子部品の整列・反転方法
US5750979A (en) 1994-11-29 1998-05-12 Japan Elanco Company Limited Side face examination apparatus for pressed articles, conveyor for pressed articles and external appearance examination apparatus for pressed articles
JPH08227904A (ja) 1995-10-30 1996-09-03 Rohm Co Ltd チップボンディング装置
US6236747B1 (en) * 1997-02-26 2001-05-22 Acuity Imaging, Llc System and method for image subtraction for ball and bumped grid array inspection
US6079284A (en) 1997-08-06 2000-06-27 Shinogi Qualicaps Co., Ltd. Visual inspection apparatus for tablets
EP0906011A2 (fr) 1997-09-24 1999-03-31 Siemens Aktiengesellschaft Dispositif pour le montage de composants électriques sur des supports plats de composants
DE19913134A1 (de) 1998-03-23 1999-10-21 Murata Manufacturing Co Übertragungsvorrichtung für Chipkomponenten
JP2001074664A (ja) 1999-09-01 2001-03-23 Shionogi Qualicaps Kk 錠剤の側面検査装置及び該側面検査装置を用いた錠剤の外観検査装置
WO2002054480A1 (fr) 2000-12-29 2002-07-11 Yeint Co., Ltd Systeme d'eclairage pour dispositif d'inspection de microcircuits montes en applique
JP2003124700A (ja) * 2001-10-15 2003-04-25 Nidec Copal Corp 撮像装置
EP1470747B1 (fr) 2002-01-30 2014-05-14 ASM Assembly Systems GmbH & Co. KG Dispositif de prélèvement de puce, système d'équipement et procédé pour prélever des puces d'une plaquette
US20040213450A1 (en) * 2003-01-09 2004-10-28 Matsushita Electric Industrial Co., Ltd. Image recognition apparatus and image recognition method
US20080225283A1 (en) * 2007-03-16 2008-09-18 Industrial Technology Research Institute Imaging system with high-spectrum resolution and imaging method for the same
DE202007012346U1 (de) * 2007-09-04 2007-12-20 Goldlücke, Jürgen Vorrichtung zur optischen Analyse der Struktur einer Probe eines porigen Werkstoffes
DE102008018586A1 (de) 2008-04-12 2009-11-05 Mühlbauer Ag Optische Erfassungsvorrichtung und Verfahren für die Erfassung von Oberflächen von Bauteilen
DE102011104225A1 (de) * 2011-06-15 2012-12-20 Mühlbauer Ag Vorrichtung und Verfahren zum Positionieren eines elektronischen Bauteils und / oder eines Trägers relativ zu einer Ausstoßeinrichtung

Also Published As

Publication number Publication date
DE102015013500A1 (de) 2017-04-20
TW201715197A (zh) 2017-05-01

Similar Documents

Publication Publication Date Title
EP3363042B1 (fr) Dispositif de réception pour composants
EP3363043B1 (fr) Dispositif de manipulation de composants
EP3610500B1 (fr) Appareil de réception de composant avec capteur optique
EP3685429B1 (fr) Dispositif pour l'alignement et l'inspection optique d'un composant semiconducteur
WO2017063836A1 (fr) Capteur d'imagerie pour un dispositif de manipulation d'élément
WO2018054895A1 (fr) Dispositif d'analyse optique et procédé d'analyse optique par rayons visibles et infrarouges pour composants semi-conducteurs
WO2021052745A1 (fr) Dispositif de manipulation de pièces et dispositif d'inspection de pièces
WO2021052756A1 (fr) Manipulation de pièce comportant une inspection de pièce
DE102016125709A1 (de) Vorrichtung zum Inspizieren von mit Etiketten ausgestatteten Behältnissen
EP1941536B1 (fr) Procédé et dispositif pour la pose d' éléments électroniques, en particulier des puces semi-conductrices, sur un substrat
WO2022233521A1 (fr) Inspection optique d'un composant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16781682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16781682

Country of ref document: EP

Kind code of ref document: A1