WO2017063472A1 - 具有末端自转功能的微创手术器械及其器械末端 - Google Patents

具有末端自转功能的微创手术器械及其器械末端 Download PDF

Info

Publication number
WO2017063472A1
WO2017063472A1 PCT/CN2016/098838 CN2016098838W WO2017063472A1 WO 2017063472 A1 WO2017063472 A1 WO 2017063472A1 CN 2016098838 W CN2016098838 W CN 2016098838W WO 2017063472 A1 WO2017063472 A1 WO 2017063472A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
deflection
closing
wheel
instrument
Prior art date
Application number
PCT/CN2016/098838
Other languages
English (en)
French (fr)
Inventor
王树新
孔康
杨英侃
李建民
李进华
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2017063472A1 publication Critical patent/WO2017063472A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the invention relates to a minimally invasive surgical instrument, in particular to a minimally invasive surgical instrument for a minimally invasive surgical robot and an instrument end thereof.
  • Minimally invasive surgery refers to the operation of doctors using modern medical equipment such as abdominal and thoracoscopic instruments and supporting instruments.
  • the degeneration of minimally invasive surgical techniques has made important contributions to the advancement of human development and civilization, and has become the global surgical field in the 21st century. The main melody.
  • minimally invasive surgery has many advantages such as less trauma, less bleeding, quick recovery, etc., and has been widely used in clinical surgery.
  • the minimally invasive surgery robots used to assist in the implementation of minimally invasive surgery have emerged and developed rapidly. It is the three major systems of image system, control system and mechanism system. System in one modern medical device.
  • minimally invasive robots overcomes many of the shortcomings of traditional minimally invasive techniques, and is safe, reliable, and flexible, and has the potential to implement remote minimally invasive surgery.
  • minimally invasive robots have been promoted and applied in the fields of urology, cardiac surgery, general surgery, obstetrics and gynaecology and pediatrics.
  • the surgical instrument In the robot-assisted minimally invasive surgery, the surgical instrument is the only actuator that directly contacts the patient's diseased tissue, and the other components of the robot are designed to match the movement of the instrument. Therefore, for minimally invasive surgery robots, the operation is reduced.
  • the fundamental way to achieve operational difficulty and improve operational comfort is to develop a practical and practical minimally invasive surgical instrument.
  • the existing robotic surgical instruments have many disadvantages such as complicated structure and low flexibility. Therefore, it provides a flexible and simple and applicable minimally invasive surgical instrument to fill the gap in the field and reduce the labor intensity of minimally invasive doctors. To ensure the quality of minimally invasive surgery has important practical significance.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a minimally invasive surgical instrument with end rotation function and a device end thereof with high flexibility, simple structure and good operability.
  • the present invention provides an instrument tip 1 of a minimally invasive surgical instrument that is coupled to the instrument cartridge 2 of the minimally invasive surgical instrument by a connection shaft 3, wherein the instrument tip 1 includes a distal end for instrumentation Opening and closing assembly 1-1 with opening and closing degrees of freedom, end rotation seat 1-2, deflection base 1-3, deflection wheel 1-5 and end support 1-6, said opening and closing assembly 1-1 including left opening and closing
  • the clamp 101 and the right opening and closing clamp 102, the left opening and closing clamp 101 and the right opening and closing clamp 102 are rotatably mounted on the end rotation seat 1-2 by the support shaft 103, the end rotation seat 1- 2 rotatably mounted on the deflection base 1-3, the end rotation seat 1-2 is rotated relative to the deflection base 1-3 to achieve an end rotation degree of freedom R2 of the instrument tip 1
  • the front end of the end support 1-6 is rotatably coupled to the deflection base 1-3 via a rotating shaft of the deflection wheel 1-5 to achieve a degree of freedom
  • the end rotation seat 1-2 is coaxial with the deflection base 1-3, and the deflection wheel 1-5 is fixed on the deflection base 1-3.
  • An axis of the rotating shaft of the deflection wheel 1-5 is perpendicular to an axis of the deflection base 1-3, and a rotation axis of the support shaft 103 of the opening and closing assembly 1-1 and the end rotation seat 1-2
  • the axes of the rotating shafts of the deflection wheels 1-5 are all perpendicular.
  • the end rotation seat 1-2 is connected to the rotation driving device and is rotated by the rotation driving device, and the end rotation rotation device 2-2 of the instrument box 2 is
  • the rotation driving device is connected to output a rotational driving force to the rotation driving device.
  • the rotation driving device comprises a positive and negative twisted wire rope II 108 and a wire rope III 109 which are respectively fixed at the rear end shaft diameter of the end rotation seat 1-2, and the rotation direction
  • the wire ropes II 108 and the wire ropes III 109 are respectively guided by the guide wheels 1-4 and then wound and tensioned on the wire fixing mechanism, and the wire fixing mechanism is disposed at the end of the rotation.
  • the guide wheels 1-4 are rotatably mounted on the deflection base 1-3 via guide wheels.
  • the rotation driving device includes a bevel gear I 202 installed at a rear end shaft diameter of the end rotation seat 1-2 and a bevel gear II 205 meshing with the bevel gear I 202
  • a transmission wheel 204 is fixed on the bevel gear II 205, and a wire rope VII 203 is fixed on the transmission wheel 204 by a wire knot, and the wire rope VII 203 is wound and tensioned on a wire fixing mechanism, and the wire fixing mechanism Disposed on the end rotation transmission 2-2, the transmission wheel 204 is rotatably mounted on the deflection base 1-3 by a transmission wheel shaft.
  • the rotation driving device comprises a large shaft section and a small shaft section which are disposed at different diameters of the rear end shaft of the end rotation seat 1-2, and two rotation directions.
  • the opposite wire ropes II 108 and the wire ropes III 109 are respectively wound on the large shaft section and the small shaft section in the forward and reverse directions, and are respectively guided by the large guide wheel 207 and the small guide wheel 208, and then wound around the large fixed wire wheel and the small solid wheel.
  • the large guide wheel 207 and the small guide wheel 208 are disposed coaxially and are mounted on the deflection base 1-3 by a guide wheel axle.
  • the large fixed wire wheel and the small fixed wire wheel are disposed together.
  • the ratio of the diameters of the large shaft segments and the small shaft segments of the distal rotation seat 1-2 is equal to the ratio of the diameters of the large guide wheels 207 and the small guide wheels 208 and is equal to the said end rotation transmission device 2-2.
  • the opening and closing assembly 1-1 further includes a stretching base 106, a stretching sliding shaft 104 disposed on the stretching base 106, and a compounding spring 107.
  • One end of the compounding spring 107 is connected to the stretching base 106 and the other end is connected to the end rotating seat 1-2, and the opening and closing assembly 1-1 is connected to the instrument box 3 by the wire rope I 105
  • Opening and closing transmission 2-1 is connected, one end of the wire rope I 105 is fixedly connected to the stretching base 106 and the other end passes through the shaft hole of the connecting long shaft 3 and passes through the guiding assembly 2-6
  • the opening and closing transmission device 2-1 is connected, and the stretching base 106 is slidably coupled to the left opening and closing clamp 101 and the right opening and closing clamp 102 when the wire rope I 105 is in the opening and closing transmission device 2-1.
  • the left opening and closing pliers 101 and the right opening and closing pliers are driven by the stretching base 106 to drive the stretching sliding shaft 104 to slide in the closing direction P1 of the opening and closing assembly 1-1. 102 achieves a closing action; when the wire rope I 105 is loosened in the reverse direction, the tension sliding shaft 104 is at the compounding spring 107 Under the action of sliding in the compounding opening direction P2, the left opening and closing jaw 101 and the right opening and closing jaw 102 are pushed to realize the opening movement.
  • a guide groove 1011 is opened in the direction of the rotation axis on the side wall of the end rotation seat 1-2, and the left opening and closing clamp 101 or the right opening and closing clamp 102 is opened.
  • An inclined groove 1012, one end of the tensile sliding shaft 104 is inserted into the guiding groove 1011 and the oblique groove 1012, and the stretching sliding shaft 104 is capable of the wire rope I 105 and the compound spring 107 And sliding in the guiding groove 1011 and the oblique groove 1012 to drive the left opening and closing clamp 101 and the right opening and closing clamp 102 to open and close.
  • the deflection wheel 1-5 is connected to the deflection transmission device 2-3 of the instrument box 2 by a wire rope IV 111, and both ends of the wire rope IV 111 are long by the connection
  • the shaft 3 is guided and guided by the guide assembly 2-6 to be screwed to the deflection transmission device 2-3, and the wire rope IV 111 is fixed by an intermediate node and wound on the deflection wheel 1-5 when the deflection
  • the wire rope IV 111 pulls the deflection wheel 1-5 to rotate, thereby driving the deflection base 1-3 to realize the yaw motion.
  • the end support 1-6 is fixedly connected to the front end of the connecting long shaft 3, and the rear end of the connecting long shaft 3 and the rotary shaft of the instrument box 2 are 2-5.
  • the rotary shaft 2-5 is connected to the rotary transmission 2-4 of the instrument box 2 by a wire rope V 112 and a wire rope VI 113, one end of which is fixed and forwardly wound in the back In the wire groove of the rotating shaft 2-5, the other end is screwed tightly on the fixing mechanism of the rotary transmission device 2-4; one end of the wire rope VI113 is fixed and reversely wound in the wire groove of the rotary shaft The other end is reversely screwed on the fixing mechanism of the rotary transmission, and the rotary shaft 2-5 is rotated by the rotary transmission 2-4 to realize the degree of freedom of rotation of the end 1 of the instrument.
  • the present invention also provides a minimally invasive surgical instrument having a terminal rotation function, which is provided with the above-described instrument end.
  • the minimally invasive surgical instrument with the end rotation function and the end of the instrument provided by the invention have the following beneficial effects:
  • the minimally invasive surgical instrument with end rotation function of the present invention is oriented to robot minimally invasive surgery Use, can fill the gap in the field of minimally invasive surgery robots.
  • the minimally invasive surgical instrument with end rotation function of the invention adopts a novel four-degree-of-freedom layout form, and in addition to high flexibility, it can effectively reduce the difficulty of surgical operations such as suturing and knotting of the robot.
  • the minimally invasive surgical instrument opening and closing mechanism with the end rotation function of the invention introduces a complex force spring, which reduces the number of nodes of the transmission wire, and is advantageous for simplifying the complexity of the instrument and reducing the structural size.
  • the minimally invasive surgical instrument with the end rotation function of the invention adopts the long-distance closed-loop wire rope transmission form to solve the problem that the instrument is effectively transmitted in a small space.
  • the minimally invasive surgical instrument with end rotation function of the invention faces the minimally invasive surgery in the field of laparoscopic surgery, can meet the requirements of different hospital conditions, and has the potential to expand into other medical fields.
  • FIG. 1 is a schematic view showing the overall structure of a minimally invasive surgical instrument of the present invention
  • FIG. 2 is a schematic view showing the structure of the end of the instrument of the minimally invasive surgical instrument of the present invention
  • 3-1 is a schematic structural view of the opening and closing assembly of the minimally invasive surgical instrument of the present invention
  • 3-2 is a schematic view showing the driving of the opening and closing assembly of the minimally invasive surgical instrument of the present invention
  • 4-1 is a schematic view showing the structure of the distal rotation of the minimally invasive surgical instrument of the present invention
  • 4-2 is a schematic view showing the end rotation driving of the minimally invasive surgical instrument of the present invention.
  • 5-1 is a schematic structural view showing another implementation manner of the distal rotation structure of the minimally invasive surgical instrument of the present invention.
  • 5-2 is a schematic view showing the transmission of another embodiment of the distal rotation structure of the minimally invasive surgical instrument of the present invention.
  • 6-1 is a schematic structural view showing another implementation manner of the distal rotation structure of the minimally invasive surgical instrument of the present invention.
  • 6-2 is a schematic view showing the transmission of other embodiments of the distal rotation structure of the minimally invasive surgical instrument of the present invention.
  • Figure 7 is a schematic view showing the deflection structure of the minimally invasive surgical instrument of the present invention.
  • Figure 8 is a schematic view showing the transmission structure of the instrument case of the minimally invasive surgical instrument of the present invention.
  • Figure 9 is a schematic view showing the principle of the minimally invasive surgical instrument wire drive of the present invention.
  • Figure 10 is a schematic view of the surgical operation of the minimally invasive surgical instrument of the present invention.
  • the minimally invasive surgical instrument with end rotation function of the present invention comprises an instrument end 1 and an instrument box 2, and the instrument end 1 includes an opening and closing assembly 1-1 for realizing the opening and closing degree of freedom K1 of the instrument, and the opening and closing assembly 1-1 includes left and right opening and closing jaws 101, 102, and the left and right opening and closing jaws 101, 102 are rotatably mounted on the end rotation seat 1-2 by the support shaft 103, and the end rotation seat 1-2 is rotatably mounted On the deflection base 1-3, the end rotation seat 1-2 is coaxial with the deflection base 1-3, and the end rotation seat 1-2 is connected to the rotation driving device and rotated by the rotation driving device to realize the instrument.
  • deflection wheel 1-5 is fixed on the deflection base 1-3, the axis of the rotation shaft of the above-mentioned deflection wheel 1-5 is perpendicular to the axis of the deflection base 1-3, and the front end of the end support 1-6 passes through the rotation shaft of the deflection wheel 1-5 Rotatablely coupled to the deflection base 1-3 to achieve a deflection degree of freedom R3 of the instrument, the axis of the rotation shaft being perpendicular to the rotation axis of the end rotation seat 1-2, the support shaft 103 and the rotation axis of the deflection wheel 1-5
  • the axis of rotation and the axis of rotation of the end rotation seat 1-2 are both perpendicular, and the front end of the connection long shaft 3 is fixedly connected to the end support 1-6, and the rear end of the connection long shaft 3 is fixedly connected with the rotary shaft 2-5 of the instrument box 2,
  • the above-mentioned instrument box 2 is provided with an opening and closing transmission
  • one end of the compounding spring 107 is connected with the stretching base 106 and the other end is connected with the end rotation seat 1-2, the end
  • the rotation transmission device 2-2 is connected to the rotation driving device to output a rotational driving force to the rotation driving device, and the wire rope IV111 is fixed by the intermediate node and spirally wound on the deflection wheel 1-5, and both ends thereof are connected to the long axis 3 and passed through the guiding assembly.
  • the above-mentioned rotation driving device comprises a positive and negative twisted wire rope II108 and a wire rope III109 which are respectively fixed at the rear end shaft diameter of the end rotation seat 1-2, and the oppositely wound wire rope II108 and the wire rope III109 pass through the guide wheels 1-4 respectively.
  • the yarn is tensioned on the fixing mechanism, and the fixing mechanism is disposed at the end rotation transmission device 2-2, and the guiding wheel 1-4 is rotated by the guiding wheel shaft.
  • the rotation driving device includes a bevel gear I202 installed at a rear end shaft diameter of the end rotation seat 1-2, the bevel gear I meshes with the bevel gear II205, and the transmission wheel 204 is fixed to the bevel gear II205.
  • a wire rope VII203 is fixed on the transmission wheel 204 by a wire knot.
  • the wire rope VII203 is wound and tensioned on the wire fixing mechanism.
  • the wire fixing mechanism is disposed on the end rotation transmission device 2-2, and the transmission wheel is rotatably mounted on the deflection base through the transmission wheel shaft. Block 1-3.
  • the above-mentioned rotation driving device comprises two parts of large and small shaft segments having different diameters disposed at the rear end shaft diameter of the end rotation seat 1-2, and the two oppositely rotating wire ropes II108 and the wire ropes III109 are respectively rotated in the forward and reverse directions. And on the small shaft segment, and respectively guided by the large guide wheel 207 and the small guide wheel 208, and then screwed on the large and small fixed wire wheels, the large guide wheel and the small guide wheel are disposed coaxially and can be rotated by the guide wheel shaft.
  • the large and small fixed wire wheels are disposed together at the end rotation transmission device 2-2, and the ratio of the diameters of the large and small shaft segments of the end rotation seat 1-2 is equal to the large and small guides.
  • the ratio of the diameter of the wheel is also equal to the ratio of the diameters of the large and small fixed wire wheels.
  • FIG. 1 is a schematic view showing the overall structure of a minimally invasive surgical instrument of the present invention.
  • the device is applied to a minimally invasive surgical robot system, and its structural composition may include an instrument end 1, an instrument box 2, and a long shaft 3.
  • the front end of the connecting long shaft 3 is fixedly connected to the end of the instrument end 1, and the rear end is fixedly coupled to the rotary shaft of the instrument case 2, thereby connecting the instrument end 1 and the instrument case 2 as a unitary structure.
  • the instrument tip 1 described above may include an opening and closing assembly 1-1, an end rotation seat 1-2, a deflection base 1-3, a guide wheel 1-4, a deflection wheel 1-5, and an end support 1-6.
  • the opening and closing assembly 1-1 is configured to realize the opening and closing degree of freedom K1 of the instrument;
  • the end rotation seat 1-2 is rotatably mounted on the deflection base 1-3, and the end rotation degree of rotation R2 of the instrument can be realized;
  • the deflection base 1-3 is rotatably coupled to the end supports 1-6 and can achieve a degree of freedom of deflection R3 of the instrument.
  • the respective transmission wire ropes leading from the end 1 of the above-mentioned instrument are introduced into the instrument case 2 through the above-mentioned connecting long shaft 3 (shaft hole).
  • the opening and closing assembly 1-1 includes a left opening and closing clamp 101 (shown by a broken line), a right opening and closing clamp 102, a support shaft 103, a stretching sliding shaft 104, a stretching base 106, and a compound spring 107.
  • the clamping tongs are mounted on the end rotation seat 1-2 through the support shaft 103.
  • the bottom end of the stretching base 106 is fixedly connected to the wire rope node, and the stretching sliding shaft 104 can be along the side wall of the end rotation seat 1-2.
  • the opened guide groove 1011 (refer to FIG.
  • FIGS. 4-1 and 4-2 are schematic diagrams showing the end rotation structure and transmission of the minimally invasive surgical instrument of the present invention.
  • the above-mentioned end rotation seat 1-2 is rotatably mounted on the deflection base 1-3, the upper half of which is connected to the opening and closing assembly 1-1, the lower half of the shaft diameter is fixed, and the two wire ropes are respectively wound in the forward and reverse directions. II108, III109, the wire rope is guided into the instrument box 2 after being guided by the guide wheels 1-4.
  • the wire rope II108 drives the end rotation seat 1-2 to rotate in the forward direction T1; when the motor is driven in the reverse direction, the wire rope III109 drives the end rotation seat 1-2 to rotate in the reverse direction.
  • the two oppositely rotating wire ropes II108, III109 constitute a closed-loop transmission circuit for the rotation of the end of the instrument.
  • Figures 5-1, 5-2, 6-1, and 6-2 are respectively two other implementations of the distal rotation structure of the minimally invasive surgical instrument of the present invention.
  • Figures 5-1 and 5-2 show the end rotation structure based on the bevel gear transmission.
  • the bevel gear I202 is fixedly mounted on the end rotation seat 1-2 by the square shaft hole, and the wire rope VII203 passes through the wire knot and the transmission wheel 204.
  • the bevel gear II205 is fixedly connected to the transmission wheel 204 by a square shaft hole, and the circular shaft section of the transmission wheel 204 is inserted into the shaft hole of the end support 1-6.
  • FIG. 6-1, 6-2 are based on the differential
  • the end rotation structure of the transmission, the shaft diameter of the end rotation seat 1-2 includes two parts of large and small shaft sections having different diameters, and the steel wire ropes II108 and III109 are respectively wound on the two shaft sections in the forward and reverse directions, respectively, through the large guide wheels 207.
  • the small guide wheel 208 is guided and introduced into the instrument box 2, And finally fixed on the large and small fixed wire wheel of the fixing wire assembly.
  • the ratio of the diameter of the large and small shaft segments of the end rotation seat 1-2 is equal to the ratio of the diameters of the large and small guide wheels, and is also equal to the ratio of the diameters of the large and small fixed wire wheels, so that the two oppositely rotating wire ropes II108, III109
  • the closed-loop differential circuit that constitutes the end rotation movement, when the motor is driven, the end rotation seat 1-2 realizes the R2 movement under the pulling of the two steel ropes.
  • FIG. 7 is a schematic view showing a deflection structure of a minimally invasive surgical instrument having a terminal rotation function according to the present invention.
  • the deflection wheel 1-5 is fixedly connected to the deflection base 1-3 by a curved pin shaft 110, and the pin shaft section of the deflection wheel 1-5 is inserted into the shaft hole of the deflection base 1-3, and the deflection base 1-3 It is rotatably connected to the end supports 1-6.
  • the wire rope IV111 is fixedly wound around the deflection wheel 1-5 through the intermediate node, and both ends thereof are respectively twisted and twisted forward and reversely on the deflection transmission device 2-3 through the connection long shaft 3, thereby forming a closed loop transmission circuit. When the deflection transmission device 2-3 is rotated by the motor, the wire rope IV111 pulls the deflection wheel 1-5 to rotate, and further drives the deflection base 1-3 to realize the yaw motion.
  • FIG. 8 is a schematic view showing the transmission structure of the instrument case of the minimally invasive surgical instrument with the end rotation function of the present invention.
  • the above-mentioned instrument case 2 may include an opening and closing transmission device 2-1, an end rotation transmission device 2-2, a deflection transmission device 2-3, a rotary transmission device 2-4, a rotary shaft 2-5, and a guide assembly 2-6.
  • the three sets of transmission wire ropes which are taken from the end 1 of the instrument to realize opening and closing, end rotation and deflection freedom are guided by the guiding assembly 2-6, respectively, and are respectively wound and tensioned in the opening and closing transmission device 2-1 and the end rotation transmission device 2 - 2.
  • the fixing mechanism of the deflection transmission device 2-3 can be in the form of a fixing mechanism disclosed in the prior art, such as the fixing mechanism disclosed in Chinese Patent No. ZL201110025933.
  • One end of the wire rope V112 is fixed and is spirally wound in the wire groove of the rotary shaft 2-5, and the other end is screwed tightly on the wire fixing mechanism of the rotary transmission device 2-4; one end of the wire rope VI113 is reversely fixed and spiraled back.
  • the other end is reversely screwed on the fixing mechanism of the rotary transmission device 2-4, thereby forming a closed-loop transmission circuit, and realizing the transmission structure of the instrument rotation degree of freedom R4.
  • FIG. 9 is a schematic view showing the principle of a minimally invasive surgical instrument wire drive with a terminal rotation function according to the present invention.
  • the wire transmission structure of the opening and closing degree of freedom K1 is such that the stretching base 106 of the opening and closing assembly 1-1 fixes one end of the wire rope 105, and the wire rope 105 passes through the wire hole of the end rotation seat 1-2 It extends into the instrument case 2 and is guided by the guide assembly 2-6 to be fixed and screwed onto the opening and closing transmission 2-1.
  • the wire transmission structure of the end rotation degree of freedom R2 is: one end of the wire rope II108 is fixed and is spirally wound at the shaft diameter of the above-mentioned end rotation seat 1-2, and the other end thereof is guided by the guide wheel 1-4 and protrudes into the instrument box 2 And guided by the guiding assembly 2-6, fixed and positively screwed on the end rotation transmission device 2-2; similarly, one end of the wire rope III109 is fixed and reversely wound around the shaft diameter of the end rotation seat 1-2, The other end thereof is guided by the guide wheel 1-4 and protrudes into the instrument case 2, and is guided by the guide assembly 2-6 to be fixed and reversely screwed on the end rotation transmission device 2-2.
  • the wire transmission structure of the deflection degree of freedom R3 is such that the wire rope 111 is fixed by the intermediate node and is wound around the deflection wheel 1-5, and both ends of the wire rope 111 are inserted into the instrument box 2, and are guided by the guiding assembly 2-6, respectively.
  • the winding is reversely wound and fixed to the deflection transmission 2-3.
  • Rotary transmission structure of revolution degree of freedom R4 one end of the wire rope V112 is fixed and forwardly wound in the wire groove of the rotary shaft 2-5, and the other end is screwed tightly on the wire fixing mechanism of the rotary transmission device 2-4;
  • One end of the wire rope VI113 is reversely fixed and wound in the wire groove of the rotary shaft 2-5, and the other end is reversely screwed on the wire fixing mechanism of the rotary transmission device 2-4, and the above-mentioned rotary shaft 2-5 is in the rotary transmission device
  • the rotation of the 2-4 is used to achieve the rotational freedom R4 of the instrument.
  • FIG. 10 is a schematic view showing the surgical operation of the minimally invasive surgical instrument having the end rotation function of the present invention.
  • the figure shows the action of the doctor operating the robotic surgical instrument to clamp the suture bender 116 for suturing operation.
  • the end of the instrument 1 passes through the abdominal cavity surface 114 into the abdominal cavity, and the position of the end 1 of the instrument is quickly adjusted to gradually approach the diseased tissue.
  • the posture is adjusted such that the end rotation axis 115 is parallel to the diseased tissue incision 117, and finally the end rotation joint is rotated in the axis rotation direction S, and the looper performs the needle insertion operation in the arc direction.

Abstract

具有末端自转功能的微创手术器械及其器械末端(1),器械末端(1)包括用于实现器械末端(1)的开合自由度的开合组件(1-1)、末端自转座(1-2)、偏转基座(1-3)、偏转轮(1-5)和末端支撑(1-6),末端自转座(1-2)能够旋转地安装在偏转基座(1-3)上,末端自转座(1-2)相对于偏转基座(1-3)进行转动以实现器械末端(1)的末端自转自由度(R2),末端支撑(1-6)的前端通过偏转轮(1-5)的转轴能够转动地连接在偏转基座(1-3)上以实现器械末端(1)的偏转自由度(R3)。

Description

具有末端自转功能的微创手术器械及其器械末端 技术领域
本发明涉及一种微创手术器械,特别涉及一种微创手术机器人用的微创手术器械及其器械末端。
背景技术
微创手术是指医生利用腹、胸腔镜等现代医疗设备以及配套器械进行的手术操作,微创外科技术的衍生对推动人类发展和文明进步做出了重要贡献,已成为21世纪全球外科领域的主旋律。与开口手术相比,微创手术具有创伤小、出血少、恢复快等诸多优点,在临床手术中已得到了越来越广泛的应用。近年来,随着科学技术的发展以及医学需求的提高,用于辅助实现微创手术的微创手术机器人应运而生并得到了迅速发展,它是集图像系统、控制系统、机构系统等三大系统于一体的现代化医疗设备。微创机器人的出现克服了传统微创技术的许多缺点,具有安全可靠、操作灵活等优点,还具有实施远程微创手术的潜力。目前,微创机器人已在泌尿外科、心脏外科、普通外科、妇产科和儿科等领域得到推广应用。
在机器人辅助微创手术过程中,手术器械是唯一直接接触患者病变组织的执行机构,而机器人其它组成部分都是为配合器械运动而设计产生的,因此,对微创手术机器人而言,降低手术执行难度,提高可操作舒适性的根本方法就是开发一套好用实用的微创手术器械。现已问世的机器人手术器械多存在结构复杂、灵活性低等缺点,因此,提供一种灵活性高且简单适用的微创手术器械对于填补该领域的空白,并在降低微创医生的劳动强度,保证微创手术质量方面具有重要的现实意义。
发明内容
本发明的目的在于克服已有技术的不足,提供一种灵活性高、结构简单、可操作性好的具有末端自转功能的微创手术器械及其器械末端。
为了达到上述目的,本发明采用的技术方案是:
本发明提供一种微创手术器械的器械末端1,其与所述微创手术器械的器械盒2之间通过连接长轴3相连接,其中,所述器械末端1包括用于实现器械末端的开合自由度的开合组件1-1、末端自转座1-2、偏转基座1-3、偏转轮1-5和末端支撑1-6,所述开合组件1-1包括左开合钳101和右开合钳102,所述左开合钳101和右开合钳102通过支撑轴103能够开合转动地安装在所述末端自转座1-2上,所述末端自转座1-2能够旋转地安装在所述偏转基座1-3上,所述末端自转座1-2相对于所述偏转基座1-3进行转动以实现器械末端1的末端自转自由度R2,所述末端支撑1-6的前端通过所述偏转轮1-5的转轴能够转动地连接在所述偏转基座1-3上以实现器械末端1的偏转自由度R3,所述末端支撑1-6与所述连接长轴3的前端相连。
在上述器械末端的基础上,优选:所述末端自转座1-2与所述偏转基座1-3共轴线,所述偏转轮1-5固定在所述偏转基座1-3上,所述偏转轮1-5的转轴的轴线与所述偏转基座1-3的轴线垂直设置,所述开合组件1-1的支撑轴103与所述末端自转座1-2的转动轴线以及所述偏转轮1-5的转轴的轴线均垂直。
在上述器械末端的基础上,优选:所述末端自转座1-2与自转驱动装置相连并且在该自转驱动装置的带动下转动,所述器械盒2的末端自转传动装置2-2与所述自转驱动装置相连以向该自转驱动装置输出转动驱动力。
在上述器械末端的基础上,优选:所述自转驱动装置包括分别固定在所述末端自转座1-2的后端轴径处的正、反向旋绕的钢丝绳II 108、钢丝绳III 109,旋向相反的所述钢丝绳II 108、钢丝绳III 109分别经导向轮1-4导向后旋绕张紧在固丝机构上,所述固丝机构设置在所述末端自转传 动装置2-2上,所述导向轮1-4通过导向轮轴能够转动地安装在所述偏转基座1-3上。
在上述器械末端的基础上,优选:所述自转驱动装置包括装在所述末端自转座1-2的后端轴径处的锥齿轮I 202和与该锥齿轮I 202啮合的锥齿轮II 205,在所述锥齿轮II 205上固定有传动轮204,在所述传动轮204上通过丝结固定有钢丝绳VII 203,所述钢丝绳VII 203旋绕张紧在固丝机构上,所述固丝机构设置在所述末端自转传动装置2-2上,所述传动轮204通过传动轮轴转动安装在所述偏转基座1-3上。
在上述器械末端的基础上,优选:所述自转驱动装置包括设置在所述末端自转座1-2的后端轴径处的直径不同的大轴段、小轴段两部分,两根旋向相反的钢丝绳II 108、钢丝绳III 109分别正、反向旋绕在大轴段、小轴段上,并分别经大导向轮207、小导向轮208导向后旋绕张紧在大固丝轮、小固丝轮上,所述大导向轮207和小导向轮208同轴线设置并且通过导向轮轴转动安装在所述偏转基座1-3上,所述大固丝轮、小固丝轮共同设置在所述末端自转传动装置2-2上,所述末端自转座1-2的大轴段、小轴段直径之比等于所述大导向轮207、小导向轮208的直径之比且等于所述大固丝轮、小固丝轮的直径之比。
在上述器械末端的基础上,优选:所述开合组件1-1还包括拉伸基座106、设置在所述拉伸基座106上的拉伸滑动轴104、以及复力弹簧107,所述复力弹簧107的一端与所述拉伸基座106连接并且另一端与所述末端自转座1-2连接,所述开合组件1-1通过钢丝绳I 105而与所述器械盒3的开合传动装置2-1连接,所述钢丝绳I 105一端与所述拉伸基座106固定相连并且另一端穿过所述连接长轴3的轴孔并经导向组件2-6而与所述开合传动装置2-1相连,所述拉伸基座106与所述左开合钳101和右开合钳102滑动连接,当所述钢丝绳I 105在所述开合传动装置2-1的驱动力作用下通过所述拉伸基座106带动所述拉伸滑动轴104沿拉伸所述开合组件1-1的闭合方向P1滑动时,所述左开合钳101和右开合钳102实现闭合动作;当所述钢丝绳I 105反向松动时,所述拉伸滑动轴104在所述复力弹簧107 的作用下沿复力张开方向P2滑动,推动左开合钳101和右开合钳102实现张开动作。
在上述器械末端的基础上,优选:在所述末端自转座1-2的侧壁上沿转动轴线方向开设有导向槽1011,在所述左开合钳101或者右开合钳102上开有斜向槽1012,所述拉伸滑动轴104一端插在所述导向槽1011和所述斜向槽1012内,所述拉伸滑动轴104能够在所述钢丝绳I 105和所述复力弹簧107的作用下在所述导向槽1011和所述斜向槽1012内滑动以带动所述左开合钳101和右开合钳102开合。
在上述器械末端的基础上,优选:所述偏转轮1-5通过钢丝绳IV 111而与所述器械盒2的偏转传动装置2-3连接,所述钢丝绳IV 111的两端通过所述连接长轴3并经导向组件2-6导向后旋绕固定在所述偏转传动装置2-3上,所述钢丝绳IV 111利用中间结点固定并旋绕在所述偏转轮1-5上,当所述偏转传动装置2-3在电机驱动下实现转动时,所述钢丝绳IV 111拉动所述偏转轮1-5转动,进而带动所述偏转基座1-3实现偏转运动。
在上述器械末端的基础上,优选:所述末端支撑1-6与所述连接长轴3的前端固定相连,所述连接长轴3的后端与所述器械盒2的回转轴2-5固定相连,所述回转轴2-5通过钢丝绳V 112和钢丝绳VI 113而与所述器械盒2的回转传动装置2-4连接,所述钢丝绳V 112的一端固定并正向旋绕在所述回转轴2-5的丝槽中,另一端正向旋紧在所述回转传动装置2-4的固丝机构上;所述钢丝绳VI113的一端固定并反向旋绕在所述回转轴的丝槽中,另一端反向旋紧在所述回转传动装置的固丝机构上,所述回转轴2-5在所述回转传动装置2-4的驱动下作回转运动实现器械末端1的回转自由度。
本发明还提供一种具有末端自转功能的微创手术器械,其具备上述的器械末端。
根据上述技术方案,本发明提供的具有末端自转功能的微创手术器械及其器械末端,具有以下有益效果:
1.本发明的具有末端自转功能的微创手术器械面向机器人微创手术 使用,可以填补在微创手术机器人领域无该类产品的空白。
2.本发明的具有末端自转功能的微创手术器械采用新型四自由度布局形式,除具有较高的灵活性外,还可有效降低机器人缝合、打结等手术操作的难度。
3.本发明的具有末端自转功能的微创手术器械开合机构引入复力弹簧,减少了传动丝的节点数量,有利于简化器械复杂程度和减小结构尺寸。
4.本发明的具有末端自转功能的微创手术器械采用远距离闭环钢丝绳传动形式,解决器械在狭小空间中有效传动的问题。
5.本发明的具有末端自转功能的微创手术器械面向腹腔镜领域的微创手术,可满足不同医院条件的要求,具有向其它医疗领域扩展的潜力。
附图说明
图1为本发明微创手术器械的整体结构示意图;
图2为本发明微创手术器械的器械末端结构示意图;
图3-1为本发明微创手术器械的开合组件结构示意图;
图3-2为本发明微创手术器械的开合组件传动示意图;
图4-1为本发明微创手术器械的末端自转结构示意图;
图4-2为本发明微创手术器械的末端自转传动示意图;
图5-1为本发明微创手术器械的末端自转结构另一种实现方式的结构示意图;
图5-2为本发明微创手术器械的末端自转结构另一种实现方式的传动示意图;
图6-1为本发明微创手术器械的末端自转结构其他实现方式的结构示意图;
图6-2为本发明微创手术器械的末端自转结构其他实现方式的传动示意图;
图7为本发明微创手术器械的偏转结构示意图;
图8为本发明微创手术器械的器械盒传动结构示意图;
图9为本发明微创手术器械丝传动原理示意图;
图10为本发明微创手术器械的手术操作示意图。
附图标记说明:
1器械末端,2器械盒,3连接长轴,1-1开合组件,1-2末端自转座,1-3偏转基座,1-4导向轮,1-5偏转轮,1-6末端支撑,101左开合钳,102右开合钳,103支撑轴,104拉伸滑动轴,105钢丝绳I,106拉伸基座,107复力弹簧,108钢丝绳II,109钢丝绳III,110弧形销轴,111钢丝绳IV,112钢丝绳V,113钢丝绳VI,114腹腔体表,115末端自转轴线,116缝合针,117组织切口,202锥齿轮I,203钢丝绳VII,204传动轮,205锥齿轮II,207大导向轮,208小导向轮,2-1开合传动装置,2-2末端自转传动装置,2-3偏转传动装置,2-4回转传动装置,2-5回转轴,2-6导向组件,K1开合自由度,R2末端自转自由度,R3偏转自由度,R4回转自由度,P1拉伸闭合方向,P2复力张开方向,T1正向拉伸方向,T2反向拉伸方向,S沿轴线旋转运动。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明的具有末端自转功能的微创手术器械,它包括器械末端1和器械盒2,上述器械末端1包括用以实现器械的开合自由度K1的开合组件1-1,上述开合组件1-1包括左、右开合钳101、102,上述左、右开合钳101、102通过支撑轴103转动安装在末端自转座1-2上,上述末端自转座1-2能够旋转地安装在偏转基座1-3上,上述末端自转座1-2与偏转基座1-3共轴线,上述末端自转座1-2与自转驱动装置相连并且在自转驱动装置的带动下转动以实现器械的末端自转自由度R2,偏转轮 1-5固定在偏转基座1-3上,上述偏转轮1-5的转轴的轴线与偏转基座1-3的轴线垂直设置,末端支撑1-6的前端通过偏转轮1-5的转轴能够转动地连接在偏转基座1-3上以实现器械的偏转自由度R3,上述转轴的轴线与末端自转座1-2的转动轴线垂直,上述支撑轴103与偏转轮1-5的转轴的轴线以及末端自转座1-2的转动轴线均垂直,连接长轴3的前端与末端支撑1-6固定相连,连接长轴3的后端与器械盒2的回转轴2-5固定相连,在上述器械盒2中设置有开合传动装置2-1、末端自转传动装置2-2、偏转传动装置2-3以及回转传动装置2-4,钢丝绳I105一端与拉伸基座106固定相连并且另一端穿过连接长轴3内的轴孔并经导向组件2-6与开合传动装置2-1相连,拉伸基座106与左、右开合钳滑动连接,上述拉伸基座106与拉伸滑动轴104固定连接,在上述末端自转座1-2的侧壁上沿转动轴线方向开设有导向槽1011,在左开合钳或者右开合钳上开有斜向槽1012,拉伸滑动轴104一端插在导向槽1011和斜向槽1012内,上述拉伸滑动轴104能够在钢丝绳I105的拉动下在导向槽和斜向槽内滑动以带动左、右开合钳101、102开合,复力弹簧107一端与拉伸基座106连接并且另一端与末端自转座1-2连接,上述末端自转传动装置2-2与自转驱动装置相连以向自转驱动装置输出转动驱动力,钢丝绳IV111利用中间结点固定并旋绕在偏转轮1-5上,其两端通过连接长轴3并经导向组件2-6导向后旋绕并固定在偏转传动装置2-3上,钢丝绳V112的一端固定并正向旋绕在回转轴2-5的丝槽中,另一端正向旋紧在回转传动装置2-4的固丝机构上;钢丝绳VI113的一端反向固定并旋绕在回转轴2-5的丝槽中,另一端反向旋紧在回转传动装置2-4的固丝机构上,上述回转轴2-5在回转传动装置2-4的驱动下作回转运动实现器械的回转自由度R4。
上述自转驱动装置包括分别固定在上述末端自转座1-2的后端轴径处的正、反向旋绕的钢丝绳II108、钢丝绳III109,旋向相反的钢丝绳II108、钢丝绳III109分别经导向轮1-4导向后旋绕张紧在固丝机构上,上述固丝机构设在末端自转传动装置2-2,上述导向轮1-4通过导向轮轴转动安 装在偏转基座1-3上。
上述自转驱动装置包括装在上述末端自转座1-2的后端轴径处的锥齿轮I202,上述锥齿轮I与锥齿轮II205啮合配合,在上述锥齿轮II205上固定有传动轮204,在上述传动轮204上通过丝结固定有钢丝绳VII203,上述钢丝绳VII203旋绕张紧在固丝机构上,上述固丝机构设置在末端自转传动装置2-2上,上述传动轮通过传动轮轴转动安装在偏转基座1-3上。
上述自转驱动装置包括设置在末端自转座1-2的后端轴径处的直径不同的大、小轴段两部分,两根旋向相反的钢丝绳II108、钢丝绳III109分别正、反向旋绕在大、小轴段上,并分别经大导向轮207、小导向轮208导向后旋绕张紧在大、小固丝轮上,上述大导向轮和小导向轮同轴线设置并且通过导向轮轴能够转动地安装在偏转基座1-3上,上述大、小固丝轮共同设置在末端自转传动装置2-2,上述末端自转座1-2的大、小轴段直径之比等于大、小导向轮的直径之比,也等于大、小固丝轮的直径之比。
下面再结合每一附图对本发明加以详细说明:
图1为本发明微创手术器械的整体结构示意图。此器械应用于微创手术机器人系统,其结构组成可以包括器械末端1、器械盒2、连接长轴3。上述连接长轴3的前端与器械末端1的末端支撑固定相连,后端与器械盒2的回转轴固定相连,从而将器械末端1与器械盒2连接为一个整体结构。
图2为本发明微创手术器械的器械末端结构示意图。上述器械末端1可以包括开合组件1-1、末端自转座1-2、偏转基座1-3、导向轮1-4、偏转轮1-5、末端支撑1-6。上述开合组件1-1用以实现器械的开合自由度K1;上述末端自转座1-2能够旋转地安装在偏转基座1-3上,并可实现器械的末端自转自由度R2;上述偏转基座1-3与末端支撑1-6能够旋转地相连,并可实现器械的偏转自由度R3。自上述器械末端1引出的各自由度的传动钢丝绳穿过上述连接长轴3(轴孔)后引入到器械盒2中。
图3-1、3-2为本发明微创手术器械的开合组件结构、传动示意图。上述开合组件1-1包括左开合钳101(如虚线所示)、右开合钳102、支撑轴103、拉伸滑动轴104、拉伸基座106以及复力弹簧107,上述两开合钳通过支撑轴103安装在末端自转座1-2上,上述拉伸基座106的底端与钢丝绳结点固定相连,上述拉伸滑动轴104可沿末端自转座1-2侧壁上所开设的导向槽1011(参照图2)滑动,并推动两开合钳实现开合动作。当钢丝绳I105在驱动力作用下通过拉伸基座106带动拉伸滑动轴104沿拉伸闭合方向P1滑动,左、右开合钳101、102实现闭合动作;当钢丝绳I105反向松动,拉伸滑动轴104在复力弹簧107的作用下沿复力张开方向P2滑动,推动左、右开合钳101、102实现张开动作。
图4-1、4-2为本发明微创手术器械的末端自转结构、传动示意图。上述末端自转座1-2能够旋转地安装在偏转基座1-3上,其上半部分与开合组件1-1相连,下半部分轴径处固定并分别正、反向旋绕两股钢丝绳II108、III109,钢丝绳经导向轮1-4导向后引入器械盒2中。电机正向驱动时,钢丝绳II108沿正向拉伸方向T1带动末端自转座1-2正向旋转;电机反向驱动时,钢丝绳III109沿反向拉伸方向带动末端自转座1-2反向旋转,这样,两根旋向相反的钢丝绳II108、III109组成了器械末端自转运动的闭环传动回路。
图5-1、5-2、图6-1、6-2分别为本发明微创手术器械的末端自转结构的另外两种实现方式。其中,图5-1、5-2所示的是基于锥齿轮传动的末端自转结构,锥齿轮I202利用方形轴孔固定安装在末端自转座1-2上,钢丝绳VII203通过丝结与传动轮204固连,锥齿轮II205利用方形轴孔与传动轮204固连,上述传动轮204的圆轴段插入末端支撑1-6的轴孔内。电机驱动时,钢丝绳VII203拉动传动轮204,并依次带动锥齿轮II205、锥齿轮I202、末端自转座1-2旋转,从而实现R2运动;图6-1、6-2所示的是基于差动传动的末端自转结构,末端自转座1-2的轴径处包含直径不同的大、小轴段两部分,钢丝绳II108、III109分别正、反向旋绕在两轴段上,分别经大导向轮207、小导向轮208导向后引入器械盒2中, 并最终固定张紧在固丝轮组件的大、小固丝轮上。末端自转座1-2的大、小轴段直径之比等于大、小导向轮的直径之比,也等于大、小固丝轮的直径之比,使两根旋向相反的钢丝绳II108、III109组成了末端自转运动的闭环差动回路,电机驱动时,末端自转座1-2在两钢丝绳拉动下实现R2运动。
图7为本发明具有末端自转功能的微创手术器械的偏转结构示意图。上述偏转轮1-5通过弧形销轴110与偏转基座1-3固定相连,上述偏转轮1-5的销轴段插入偏转基座1-3的轴孔中,偏转基座1-3与末端支撑1-6能够旋转地相连。钢丝绳IV111通过中间结点固定旋绕在偏转轮1-5上,其两端穿过连接长轴3后分别正、反向旋绕并张紧在偏转传动装置2-3上,从而组成闭环传动回路。当偏转传动装置2-3在电机驱动下实现转动时,钢丝绳IV111拉动偏转轮1-5转动,并进而带动偏转基座1-3实现偏转运动。
图8为本发明具有末端自转功能的微创手术器械的器械盒传动结构示意图。上述器械盒2可以包括开合传动装置2-1、末端自转传动装置2-2、偏转传动装置2-3、回转传动装置2-4、回转轴2-5、导向组件2-6。自器械末端1引出的实现开合、末端自转、偏转自由度的三组传动钢丝绳均经导向组件2-6导向后分别旋绕并张紧在开合传动装置2-1、末端自转传动装置2-2、偏转传动装置2-3的固丝机构上,上述固丝机构可以采用本领域的现有技术手段,例如中国专利ZL201110025933中公开的固丝机构的形式。钢丝绳V112的一端固定并正向旋绕在回转轴2-5的丝槽中,另一端正向旋紧在回转传动装置2-4的固丝机构上;钢丝绳VI113的一端反向固定并旋绕在回转轴2-5的丝槽中,另一端反向旋紧在回转传动装置2-4的固丝机构上,从而组成闭环传动回路,并实现器械回转自由度R4的传动结构。
图9为本发明具有末端自转功能的微创手术器械丝传动原理示意图。开合自由度K1的丝传动结构为:上述开合组件1-1中的拉伸基座106固定钢丝绳105的一端,上述钢丝绳105自末端自转座1-2的丝孔穿出 后伸入器械盒2中,且经导向组件2-6导向后固定并旋紧在开合传动装置2-1上。末端自转自由度R2的丝传动结构为:钢丝绳II108的一端固定并正向旋绕在上述末端自转座1-2的轴径处,其另一端经导向轮1-4导向后伸入器械盒2中,且经导向组件2-6导向后固定并正向旋紧在末端自转传动装置2-2上;同理,钢丝绳III109的一端固定并反向旋绕在末端自转座1-2的轴径处,其另一端经导向轮1-4导向后伸入器械盒2中,且经导向组件2-6导向后固定并反向旋紧在末端自转传动装置2-2上。偏转自由度R3的丝传动结构为:上述钢丝绳111利用中间结点固定并旋绕在偏转轮1-5上,其两端伸入器械盒2中,且经导向组件2-6导向后分别正、反向旋绕并固定在偏转传动装置2-3上。回转自由度R4的回转传动结构:钢丝绳V112的一端固定并正向旋绕在回转轴2-5的丝槽中,另一端正向旋紧在回转传动装置2-4的固丝机构上;同理,钢丝绳VI113的一端反向固定并旋绕在回转轴2-5的丝槽中,另一端反向旋紧在回转传动装置2-4的固丝机构上,上述回转轴2-5在回转传动装置2-4的驱动下作回转运动实现器械的回转自由度R4。
图10为本发明具有末端自转功能的微创手术器械的手术操作示意图。图中所示为医生操控机器人手术器械夹持缝合弯针116进行缝合操作的动作示意,器械末端1穿过腹腔体表114进入腹腔内,先快速调整器械末端1的位置使其逐步靠近病变组织,随后调整姿态使末端自转轴线115与病变组织切口117走向平行,最后沿轴线旋转方向S转动末端自转关节,弯针沿圆弧方向完成穿针操作。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的只是本发明的实施方式之一,实际的结构也并不局限于此。如果本领域的技术人员受其启示,在不脱离本发明创造宗旨的情况下,采用其它形式的传动、驱动装置以及连接方式不经创造性的设计与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (11)

  1. 一种微创手术器械的器械末端(1),其与所述微创手术器械的器械盒(2)之间通过连接长轴(3)相连接,其特征在于:
    所述器械末端(1)包括用于实现器械末端的开合自由度的开合组件(1-1)、末端自转座(1-2)、偏转基座(1-3)、偏转轮(1-5)和末端支撑(1-6),
    所述开合组件(1-1)包括左开合钳(101)和右开合钳(102),所述左开合钳(101)和右开合钳(102)通过支撑轴(103)能够开合转动地安装在所述末端自转座(1-2)上,
    所述末端自转座(1-2)能够旋转地安装在所述偏转基座(1-3)上,所述末端自转座(1-2)相对于所述偏转基座(1-3)进行转动以实现器械末端(1)的末端自转自由度(R2),
    所述末端支撑(1-6)的前端通过所述偏转轮(1-5)的转轴能够转动地连接在所述偏转基座(1-3)上以实现器械末端(1)的偏转自由度(R3),
    所述末端支撑(1-6)与所述连接长轴(3)的前端相连。
  2. 根据权利要求1所述的器械末端,其特征在于:
    所述末端自转座(1-2)与所述偏转基座(1-3)共轴线,
    所述偏转轮(1-5)固定在所述偏转基座(1-3)上,所述偏转轮(1-5)的转轴的轴线与所述偏转基座(1-3)的轴线垂直设置,
    所述开合组件(1-1)的支撑轴(103)与所述末端自转座(1-2)的转动轴线以及所述偏转轮(1-5)的转轴的轴线均垂直。
  3. 根据权利要求1所述的器械末端,其特征在于:
    所述末端自转座(1-2)与自转驱动装置相连并且在该自转驱动装置的带动下转动,所述器械盒(2)的末端自转传动装置(2-2)与所述自转驱动装置相连以向该自转驱动装置输出转动驱动力。
  4. 根据权利要求3所述的器械末端,其特征在于:
    所述自转驱动装置包括分别固定在所述末端自转座(1-2)的后端轴径处的正、反向旋绕的钢丝绳II(108)、钢丝绳III(109),
    旋向相反的所述钢丝绳II(108)、钢丝绳III(109)分别经导向轮(1-4)导向后旋绕张紧在固丝机构上,所述固丝机构设置在所述末端自转传动装置(2-2)上,所述导向轮(1-4)通过导向轮轴能够转动地安装在所述偏转基座(1-3)上。
  5. 根据权利要求3所述的器械末端,其特征在于:
    所述自转驱动装置包括装在所述末端自转座(1-2)的后端轴径处的锥齿轮I(202)和与该锥齿轮I(202)啮合的锥齿轮II(205),在所述锥齿轮II(205)上固定有传动轮(204),在所述传动轮(204)上通过丝结固定有钢丝绳VII(203),所述钢丝绳VII(203)旋绕张紧在固丝机构上,所述固丝机构设置在所述末端自转传动装置(2-2)上,所述传动轮(204)通过传动轮轴转动安装在所述偏转基座(1-3)上。
  6. 根据权利要求3所述的器械末端,其特征在于:
    所述自转驱动装置包括设置在所述末端自转座(1-2)的后端轴径处的直径不同的大轴段、小轴段两部分,两根旋向相反的钢丝绳II(108)、钢丝绳III(109)分别正、反向旋绕在大轴段、小轴段上,并分别经大导向轮(207)、小导向轮(208)导向后旋绕张紧在大固丝轮、小固丝轮上,所述大导向轮(207)和小导向轮(208)同轴线设置并且通过导向轮轴转动安装在所述偏转基座(1-3)上,所述大固丝轮、小固丝轮共同设置在所述末端自转传动装置(2-2)上,所述末端自转座(1-2)的大轴段、小轴段直径之比等于所述大导向轮(207)、小导向轮(208)的直径之比且等于所述大固丝轮、小固丝轮的直径之比。
  7. 根据权利要求1-6中任一项所述的器械末端,其特征在于:
    所述开合组件(1-1)还包括拉伸基座(106)、设置在所述拉伸基座(106)上的拉伸滑动轴(104)、以及复力弹簧(107),所述复力弹簧(107)的一端与所述拉伸基座(106)连接并且另一端与所述末端自转座(1-2)连接,
    所述开合组件(1-1)通过钢丝绳I(105)而与所述器械盒(3)的开合传动装置(2-1)连接,
    所述钢丝绳I(105)一端与所述拉伸基座(106)固定相连并且另一端穿过所述连接长轴3的轴孔并经导向组件(2-6)而与所述开合传动装置(2-1)相连,
    所述拉伸基座(106)与所述左开合钳(101)和右开合钳(102)滑动连接,
    当所述钢丝绳I(105)在所述开合传动装置(2-1)的驱动力作用下通过所述拉伸基座(106)带动所述拉伸滑动轴(104)沿拉伸所述开合组件(1-1)的闭合方向(P1)滑动时,所述左开合钳(101)和右开合钳(102)实现闭合动作;当所述钢丝绳I(105)反向松动时,所述拉伸滑动轴(104)在所述复力弹簧(107)的作用下沿复力张开方向(P2)滑动,推动所述左开合钳(101)和右开合钳(102)实现张开动作。
  8. 根据权利要求7所述的器械末端,其特征在于:
    在所述末端自转座(1-2)的侧壁上沿转动轴线方向开设有导向槽(1011),在所述左开合钳(101)或者右开合钳(102)上开有斜向槽(1012),所述拉伸滑动轴(104)一端插在所述导向槽(1011)和所述斜向槽(1012)内,所述拉伸滑动轴(104)能够在所述钢丝绳I(105)和所述复力弹簧(107)的作用下在所述导向槽(1011)和所述斜向槽(1012)内滑动以带动所述左开合钳(101)和右开合钳(102)开合。
  9. 根据权利要求1-6中任一项所述的器械末端,其特征在于:
    所述偏转轮(1-5)通过钢丝绳IV(111)而与所述器械盒(2)的偏转传动装置(2-3)连接,
    所述钢丝绳IV(111)的两端通过所述连接长轴(3)并经导向组件(2-6)导向后旋绕固定在所述偏转传动装置(2-3)上,所述钢丝绳IV(111)利用中间结点固定并旋绕在所述偏转轮(1-5)上,
    当所述偏转传动装置(2-3)在电机驱动下实现转动时,所述钢丝绳IV(111)拉动所述偏转轮(1-5)转动,进而带动所述偏转基座(1-3) 实现偏转运动。
  10. 根据权利要求1-6中任一项所述的器械末端,其特征在于:
    所述末端支撑(1-6)与所述连接长轴(3)的前端固定相连,所述连接长轴(3)的后端与所述器械盒(2)的回转轴(2-5)固定相连,
    所述回转轴(2-5)通过钢丝绳V(112)和钢丝绳VI(113)而与所述器械盒2的回转传动装置(2-4)连接,
    所述钢丝绳V(112)的一端固定并正向旋绕在所述回转轴(2-5)的丝槽中,另一端正向旋紧在所述回转传动装置(2-4)的固丝机构上;
    所述钢丝绳VI(113)的一端固定并反向旋绕在所述回转轴的丝槽中,另一端反向旋紧在所述回转传动装置的固丝机构上,
    所述回转轴(2-5)在所述回转传动装置2-4的驱动下作回转运动实现器械末端1的回转自由度。
  11. 一种具有末端自转功能的微创手术器械,其具备权利要求1-10中任一项所述的器械末端。
PCT/CN2016/098838 2015-10-15 2016-09-13 具有末端自转功能的微创手术器械及其器械末端 WO2017063472A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510669801.1 2015-10-15
CN201510669801.1A CN105286999B (zh) 2015-10-15 2015-10-15 具有末端自转功能的微创手术器械

Publications (1)

Publication Number Publication Date
WO2017063472A1 true WO2017063472A1 (zh) 2017-04-20

Family

ID=55185312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098838 WO2017063472A1 (zh) 2015-10-15 2016-09-13 具有末端自转功能的微创手术器械及其器械末端

Country Status (2)

Country Link
CN (1) CN105286999B (zh)
WO (1) WO2017063472A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108433811A (zh) * 2018-03-09 2018-08-24 山东大学齐鲁医院 一种具有自转定位关节的单孔手术机器人的整体布局结构
CN112402016A (zh) * 2020-11-19 2021-02-26 锐志微创医疗科技(常州)有限公司 一种手术机器人末端自转装置和手术机器人末端
CN112494143A (zh) * 2020-11-30 2021-03-16 天津大学医疗机器人与智能系统研究院 一种前端执行器及其方法、机械手装置及外科手术器械
CN112914728A (zh) * 2021-03-23 2021-06-08 上海电机学院 一种微创手术机器人用手术器械
CN113425351A (zh) * 2021-06-23 2021-09-24 北京航空航天大学 一种空间六自由度自动创口吻合器
CN113425352A (zh) * 2021-06-23 2021-09-24 北京航空航天大学 一种可远距离调姿的创口吻合器
CN113499142A (zh) * 2021-07-14 2021-10-15 天津大学医疗机器人与智能系统研究院 前端执行装置、手术器械、从手端及微创手术系统
CN114305700A (zh) * 2022-01-04 2022-04-12 常州唯精医疗机器人有限公司 一种开合式手术器械及微创手术机器人
CN114305540A (zh) * 2022-03-08 2022-04-12 极限人工智能有限公司 器械驱动模组、手术动力装置及分体式手术装置
CN115153759A (zh) * 2022-08-09 2022-10-11 哈尔滨工业大学 一种控制微创手术钳夹持、旋转及调节的机构
EP4014917A4 (en) * 2019-08-15 2022-10-12 Shanghai Microport Medbot (Group) Co., Ltd. SURGICAL ROBOT AND SURGICAL INSTRUMENT
CN116077144A (zh) * 2023-04-10 2023-05-09 艺柏湾医疗科技(上海)有限公司 一种传动装置及多自由度手术器械
CN116250895A (zh) * 2023-01-31 2023-06-13 极限人工智能有限公司 一种基于钢丝耦合的多自由度腹腔手术钳及手术机器人

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105286999B (zh) * 2015-10-15 2017-09-29 天津大学 具有末端自转功能的微创手术器械
ITUB20154977A1 (it) 2015-10-16 2017-04-16 Medical Microinstruments S R L Strumento medicale e metodo di fabbricazione di detto strumento medicale
CN106214190A (zh) * 2016-07-12 2016-12-14 天津大学 用于单孔手术器械的刚度可控关节蛇形机构
CN106214258B (zh) * 2016-07-12 2018-06-22 天津大学 一种用于单孔微创机器人的灵巧腕部机构
CN106308933B (zh) * 2016-08-31 2018-10-16 微创(上海)医疗机器人有限公司 传动机构以及手术器械
CN106109019B (zh) * 2016-08-31 2018-11-09 微创(上海)医疗机器人有限公司 器械盒及手术器械
CN106691594B (zh) * 2017-01-04 2023-12-12 山东大学齐鲁医院 一种用于微创外科手术机器人手术器械
CN107260309B (zh) * 2017-07-31 2021-05-07 成都博恩思医学机器人有限公司 手术机器人的手术器械和手术机器人
CN107334530B (zh) * 2017-07-31 2021-04-16 成都博恩思医学机器人有限公司 一种用于微创手术机器人的手术器械及微创手术机器人
CN107334539B (zh) * 2017-07-31 2021-04-13 成都博恩思医学机器人有限公司 手术机器人的手术器械和手术机器人
CN108189000B (zh) * 2017-12-28 2020-05-12 哈尔滨工业大学深圳研究生院 一种绳驱动抓取机器人
CN110236676B (zh) * 2018-03-09 2021-02-02 深圳市精锋医疗科技有限公司 手术机器人
CN108420468A (zh) * 2018-03-09 2018-08-21 深圳市精锋医疗科技有限公司 微创手术机器人
CN108498173A (zh) * 2018-03-09 2018-09-07 深圳市精锋医疗科技有限公司 具有可旋转末端器械的操作臂、从操作设备及手术机器人
CN108784841A (zh) * 2018-03-09 2018-11-13 深圳市精锋医疗科技有限公司 手术机器人
CN108420537A (zh) * 2018-03-09 2018-08-21 深圳市精锋医疗科技有限公司 具有旋转末端的操作臂、从操作设备及手术机器人
CN108685616B (zh) * 2018-03-09 2020-04-14 深圳市精锋医疗科技有限公司 末端可旋转的操作臂、从操作设备及手术机器人
CN110076746A (zh) * 2019-04-17 2019-08-02 上海电机学院 一种空间全角度转向传动关节装置
CN117179909A (zh) * 2020-02-09 2023-12-08 深圳市精锋医疗科技股份有限公司 操作臂以及手术机器人
CN112402017A (zh) * 2020-11-19 2021-02-26 锐志微创医疗科技(常州)有限公司 一种手术机器人末端执行装置和手术机器人末端驱动机构
CN112932616B (zh) * 2021-01-28 2022-03-25 中南大学湘雅医院 一种外科微创手术器械
CN112914683B (zh) * 2021-03-10 2022-09-27 山东威高手术机器人有限公司 钳页独立运动的多自由度手术器械及末端执行器
CN113116529B (zh) * 2021-04-16 2022-08-26 天津大学医疗机器人与智能系统研究院 手术机器人用前端执行装置
CN113100949B (zh) * 2021-04-16 2022-03-29 天津大学医疗机器人与智能系统研究院 手术机器人用前端执行装置
CN113693729B (zh) * 2021-08-04 2022-08-05 常州唯精医疗机器人有限公司 器械驱动盒及微创手术机器人
CN113984383A (zh) * 2021-10-26 2022-01-28 天津大学 手术器械不同运动自由度丝传动结构可靠性测试平台及方法
CN114391959B (zh) * 2022-02-15 2024-01-23 常州唯精医疗机器人有限公司 通用型手术器械盒底板、手术器械及微创手术机器人
CN115227339A (zh) * 2022-07-29 2022-10-25 吉林大学 一种多自由度手控微创手术器械

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197846A (en) * 1989-12-22 1993-03-30 Hitachi, Ltd. Six-degree-of-freedom articulated robot mechanism and assembling and working apparatus using same
CN101889900A (zh) * 2010-07-12 2010-11-24 天津大学 辅助微创外科手术的主从一体式机械臂
CN102488554A (zh) * 2011-11-14 2012-06-13 天津大学 一种基于模块关节的微创外科手术机器人用微器械末端
CN103251458A (zh) * 2013-05-09 2013-08-21 天津工业大学 一种用于微创手术机器人的丝传动四自由度手术器械
US20140121680A1 (en) * 2012-10-26 2014-05-01 Terumo Kabushiki Kaisha Suturing and ligating method
CN104783846A (zh) * 2015-01-22 2015-07-22 天津手智医疗科技有限责任公司 一种采用微创手术智能化器械的手术操作方法
CN104799891A (zh) * 2015-04-08 2015-07-29 天津大学 一种机器人辅助微创外科手术用器械
CN104970840A (zh) * 2015-07-16 2015-10-14 天津工业大学 一种用于微创手术的六自由度丝传动手术器械
CN105286999A (zh) * 2015-10-15 2016-02-03 天津大学 具有末端自转功能的微创手术器械

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030135204A1 (en) * 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
KR101056204B1 (ko) * 2008-06-27 2011-08-11 정창욱 최소 침습 수술 도구
CN101637402B (zh) * 2009-10-23 2011-05-18 天津大学 一种微创外科丝传动、四自由度手术工具
CN101797185B (zh) * 2010-03-11 2011-06-01 上海交通大学 七自由度微创手术机械从手装置
CN102119872B (zh) * 2011-01-10 2012-11-07 天津大学 微创外科手术机器人紧凑型快换机构
CN102028548B (zh) * 2011-01-14 2012-03-07 哈尔滨工业大学 腹腔微创手术机器人用夹钳式手术器械
US9901412B2 (en) * 2011-04-29 2018-02-27 Vanderbilt University Dexterous surgical manipulator and method of use
US9161772B2 (en) * 2011-08-04 2015-10-20 Olympus Corporation Surgical instrument and medical manipulator
CN104116547B (zh) * 2014-07-25 2016-04-06 上海交通大学 用于微创手术机器人的低摩擦小惯量手术器械
CN104434318B (zh) * 2014-12-17 2016-05-25 上海交通大学 一种微创手术机器人的手术器械末端结构
CN104783845B (zh) * 2015-01-22 2017-05-17 天津手智医疗科技有限责任公司 微创手术智能化器械

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197846A (en) * 1989-12-22 1993-03-30 Hitachi, Ltd. Six-degree-of-freedom articulated robot mechanism and assembling and working apparatus using same
CN101889900A (zh) * 2010-07-12 2010-11-24 天津大学 辅助微创外科手术的主从一体式机械臂
CN102488554A (zh) * 2011-11-14 2012-06-13 天津大学 一种基于模块关节的微创外科手术机器人用微器械末端
US20140121680A1 (en) * 2012-10-26 2014-05-01 Terumo Kabushiki Kaisha Suturing and ligating method
CN103251458A (zh) * 2013-05-09 2013-08-21 天津工业大学 一种用于微创手术机器人的丝传动四自由度手术器械
CN104783846A (zh) * 2015-01-22 2015-07-22 天津手智医疗科技有限责任公司 一种采用微创手术智能化器械的手术操作方法
CN104799891A (zh) * 2015-04-08 2015-07-29 天津大学 一种机器人辅助微创外科手术用器械
CN104970840A (zh) * 2015-07-16 2015-10-14 天津工业大学 一种用于微创手术的六自由度丝传动手术器械
CN105286999A (zh) * 2015-10-15 2016-02-03 天津大学 具有末端自转功能的微创手术器械

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108433811A (zh) * 2018-03-09 2018-08-24 山东大学齐鲁医院 一种具有自转定位关节的单孔手术机器人的整体布局结构
EP4014917A4 (en) * 2019-08-15 2022-10-12 Shanghai Microport Medbot (Group) Co., Ltd. SURGICAL ROBOT AND SURGICAL INSTRUMENT
CN112402016A (zh) * 2020-11-19 2021-02-26 锐志微创医疗科技(常州)有限公司 一种手术机器人末端自转装置和手术机器人末端
CN112402016B (zh) * 2020-11-19 2024-04-05 锐志微创医疗科技(常州)有限公司 一种手术机器人末端自转装置和手术机器人末端
CN112494143A (zh) * 2020-11-30 2021-03-16 天津大学医疗机器人与智能系统研究院 一种前端执行器及其方法、机械手装置及外科手术器械
CN112494143B (zh) * 2020-11-30 2022-09-27 天津大学医疗机器人与智能系统研究院 一种前端执行器及其方法、机械手装置及外科手术器械
CN112914728A (zh) * 2021-03-23 2021-06-08 上海电机学院 一种微创手术机器人用手术器械
CN113425352B (zh) * 2021-06-23 2022-06-07 北京航空航天大学 一种可远距离调姿的创口吻合器
CN113425352A (zh) * 2021-06-23 2021-09-24 北京航空航天大学 一种可远距离调姿的创口吻合器
CN113425351B (zh) * 2021-06-23 2022-04-26 北京航空航天大学 一种空间六自由度自动创口吻合器
CN113425351A (zh) * 2021-06-23 2021-09-24 北京航空航天大学 一种空间六自由度自动创口吻合器
CN113499142A (zh) * 2021-07-14 2021-10-15 天津大学医疗机器人与智能系统研究院 前端执行装置、手术器械、从手端及微创手术系统
CN113499142B (zh) * 2021-07-14 2023-09-01 天津大学医疗机器人与智能系统研究院 前端执行装置、手术器械、从手端及微创手术系统
CN114305700B (zh) * 2022-01-04 2023-09-05 常州唯精医疗机器人有限公司 一种开合式手术器械及微创手术机器人
CN114305700A (zh) * 2022-01-04 2022-04-12 常州唯精医疗机器人有限公司 一种开合式手术器械及微创手术机器人
CN114305540A (zh) * 2022-03-08 2022-04-12 极限人工智能有限公司 器械驱动模组、手术动力装置及分体式手术装置
CN115153759A (zh) * 2022-08-09 2022-10-11 哈尔滨工业大学 一种控制微创手术钳夹持、旋转及调节的机构
CN115153759B (zh) * 2022-08-09 2023-11-24 哈尔滨工业大学 一种控制微创手术钳夹持、旋转及调节的机构
CN116250895A (zh) * 2023-01-31 2023-06-13 极限人工智能有限公司 一种基于钢丝耦合的多自由度腹腔手术钳及手术机器人
CN116250895B (zh) * 2023-01-31 2024-04-12 极限人工智能有限公司 一种基于钢丝耦合的多自由度腹腔手术钳及手术机器人
CN116077144A (zh) * 2023-04-10 2023-05-09 艺柏湾医疗科技(上海)有限公司 一种传动装置及多自由度手术器械

Also Published As

Publication number Publication date
CN105286999B (zh) 2017-09-29
CN105286999A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2017063472A1 (zh) 具有末端自转功能的微创手术器械及其器械末端
US20220000510A1 (en) Flexible surgical tool system
US11849936B2 (en) Endoscopic stitching devices
CN104783844B (zh) 一种智能化微创手术器械
JP2020127833A (ja) ロボット外科手術アセンブリ
CN104352264B (zh) 一种多自由度腹腔镜手术器械
US20220071611A1 (en) Double-bending flexible surgical tool system
CN106691594B (zh) 一种用于微创外科手术机器人手术器械
CN108742848A (zh) 一种微创手术机器人装置
CN105796138A (zh) 基于自然腔道的柔性微创手术器械
KR20120003091A (ko) 수술도구 종단부의 롤링 운동이 가능한 최소침습수술용 수술장치
CN110403669A (zh) 一种用于微创腔镜手术的多自由度手术器械
US20200405279A1 (en) Multi-purpose flexible surgical tool system
CN106073833A (zh) 一种微创手术器械用柔性关节驱动装置及其方法
CN110974353B (zh) 一种手持式腹腔手术器械
US11324560B2 (en) Surgical instrument
WO2022227854A1 (zh) 后端传动装置、医疗器械和手术机器人
CN110037772B (zh) 一种腹腔镜手术用抓钳
CN106491184A (zh) 一种手术用双鸭嘴肠钳
US20230225757A1 (en) Continuum instrument and surgical robot
US20160278800A1 (en) Treatment tool for endoscopic surgery
CN114305536B (zh) 一种基于柔性链带的多自由度柔性器械
CN216908114U (zh) 用于微创手术机器人的器械驱动座及手术器械
WO2019117811A1 (en) Suturing end-effector
CN115414125A (zh) 一种万向关节组、万向关节组驱动机构及手术机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16854854

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05.11.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16854854

Country of ref document: EP

Kind code of ref document: A1