WO2017063254A1 - 一种同时具有熔化极与非熔化极的焊接系统及其焊接方法 - Google Patents

一种同时具有熔化极与非熔化极的焊接系统及其焊接方法 Download PDF

Info

Publication number
WO2017063254A1
WO2017063254A1 PCT/CN2015/095873 CN2015095873W WO2017063254A1 WO 2017063254 A1 WO2017063254 A1 WO 2017063254A1 CN 2015095873 W CN2015095873 W CN 2015095873W WO 2017063254 A1 WO2017063254 A1 WO 2017063254A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
module
melting
pole
torch
Prior art date
Application number
PCT/CN2015/095873
Other languages
English (en)
French (fr)
Inventor
刘昇澔
Original Assignee
刘昇澔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘昇澔 filed Critical 刘昇澔
Publication of WO2017063254A1 publication Critical patent/WO2017063254A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting

Definitions

  • the invention relates to the field of welding machines, in particular to a welding system having a molten pole and a non-melting pole at the same time and a welding method thereof.
  • the traditional welding machine is usually divided into a fusion welding machine and a non-melting electrode welding machine.
  • the melting electrode welding machine has the advantages of large penetration depth and fast welding speed, but the heat of the molten welding wire and the molten base metal cannot be controlled during the welding process, and the welding thin plate is not controlled. It is easy to cause deformation and perforation of the workpiece; the non-melting electrode welder has the advantages of high purity of the weld metal, good performance, small deformation of the weldment, good arc stability, etc., but there is a shallow penetration, a small deposition rate, and a relatively low productivity. Low disadvantages.
  • non-melting poles In non-melting pole welders, non-melting poles (usually As one of the electrodes, the contact point of the base metal connected to the base material (ie, the workpiece to be welded) is used as the other electrode; and in the fusion welding machine, the welding wire in the welding torch serves as one of the electrodes and the base material ( That is, the workpiece to be soldered) is connected to the base material contact pole as the other electrode.
  • the traditional welding machine welding mode is relatively simple (such as the traditional fusion welding machine has only a single DC welding mode, DC pulse welding mode), it is difficult According to different welding materials, the corresponding welding mode is selected to achieve better welding effect, and the application range is also narrow.
  • the present invention provides a welding system having a molten pole and a non-melting pole and a welding method thereof, and the welding system and the welding method thereof have various welding states, which can meet various welding process requirements, and have The welding speed is fast, the welding effect is good, and the application is wide.
  • a welding system having both a molten pole and a non-melting pole wherein the welding system comprises an integrated welding torch, a welding power control system module, and a molten pole welding power source and a non-melting pole connected to the welding power control system module.
  • Welding power source, the integrated welding torch includes non-melting
  • the electrode torch module and the melt electrode torch module are connected to the non-melting electrode torch module, and the molten electrode welding power source is connected to the melt electrode torch module.
  • the molten pole welding power source comprises a power input module, a DC constant voltage module, a chopper control module, a constant current feedback module, and an AC/DC conversion control module, which are sequentially connected
  • the fusion electrode welding power source further includes a first a control system module, a current sampling module and a voltage sampling module; the input end of the current sampling module has at least two current input interfaces, wherein one current input interface is connected with the output end of the DC constant voltage module, and the other current input interface and DC conversion
  • the output end of the control module is connected; the input end of the voltage sampling module has at least two voltage input interfaces, wherein one voltage input interface is connected with the output end of the DC constant voltage module, and the other voltage input interface and the output end of the DC conversion control module
  • the output end of the current sampling module and the output end of the voltage sampling module are all connected to the first control system module, and the output end of the DC conversion control module is connected to the molten electrode torch module.
  • the AC/DC conversion control module has an input positive terminal, an input negative terminal, a first output terminal, and a second output terminal
  • the AC/DC conversion control module includes a first switch module, a second switch module, and a third switch. a module and a fourth switch module; the input positive terminal, the input end of the first switch module, the output end of the first switch module, the input end of the second switch module, the output end of the second switch module, and the input negative terminal Connected in sequence, the input positive terminal, the third switch module
  • the input end, the output end of the third switch module, the input end of the fourth switch module, the output end of the fourth switch module, and the input negative end are sequentially connected; the third switch module and the fourth switch module are connected to each other One end of the third switch module and the fourth switch module are connected to each other as the second output end; the second output end and the third switch module and the fourth An LC series circuit is connected in series between the mutually connected ends of the switch modules.
  • the non-melting pole welding power source comprises a surge suppression module, a primary rectification module, a filter module, an inverter module, a transformer, a commutation converter module, which are sequentially connected, and the non-melting pole welding power source further comprises a second control The system module, the current sampling module and the voltage sampling module; the input end of the current sampling module has at least two current input interfaces, wherein one current input interface is connected with the output end of the filtering module, and the other current input interface and the commutating converter module The output terminal is connected, and the input end of the voltage sampling module is connected to the output end of the secondary rectifier module; An output end of the sampling module and an output end of the voltage sampling module are connected to the second control system module; an inverter driving module is connected between the second control system module and the inverter module, and the commutating converter module and the A commutating converter driving module is connected between the two control system modules, and an output end of the commutating converter module is connected to the non
  • first control system module and the second control system module are further connected to the human-machine interaction module.
  • the present invention also provides a welding method applied to the above welding system, wherein the integrated welding torch in the welding system has a base material contact pole for connection with a workpiece, and non-melting disposed in the non-melting electrode torch module a pole, one or more molten poles disposed in the melted torch module, the welding method comprising:
  • the welding system is operated in a corresponding welding state to weld the workpiece.
  • the welding system adjusts the output voltage of the molten pole and the output voltage of the non-melting pole to realize the distribution of arc heat between the workpiece and the welding wire, thereby between the heat of the workpiece and the heat of the welding wire.
  • the heat distribution is matched to the welding process requirements to achieve the desired weld results.
  • the welding system provided by the invention has an integrated welding torch having both a molten pole and a non-melting pole, and the welding system has a plurality of different welding systems by controlling and managing the output voltages of the molten and non-melting poles in the integrated welding torch.
  • the welding state so that when the welding system is used for welding, the welding system can be welded to the workpiece according to the welding material and the welding process requirements, so that the heat between the workpiece heat and the welding wire is distributed and welded. Process
  • the requirements are matched to achieve the best match between the heat of the workpiece and the heat of the wire to achieve the best welding results.
  • the welding system provided by the invention and the welding method thereof are used for welding the workpiece, which can simultaneously have the advantages of the welding manner of the two welders of the non-melting pole welder and the fusion pole welder, and is more than the existing non-melting pole
  • the welding machine and the fusion welding machine are wider in application, the welding speed is faster, and the welding effect is superior.
  • FIG. 1 is a schematic block diagram showing the principle of the welding system in the embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a circuit principle of the molten-pole welding power source according to an embodiment of the present invention
  • FIG. 3 is a schematic block diagram of a circuit principle of the AC/DC conversion control module according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a circuit principle of the AC/DC conversion control module according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a circuit principle of the non-melting pole welding power source according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view showing a potential of a non-melting pole, a potential of a melting electrode, and a potential of a workpiece in the integrated welding torch in the embodiment of the present invention
  • FIG. 7 is another schematic structural view of a potential of a non-melting pole, a potential of a melting pole, and a potential of a workpiece in the integrated welding torch in the embodiment of the present invention
  • FIG. 8 is a schematic structural view of a part of the integrated welding torch when the welding system is welded in a non-melting pole main welding mode according to an embodiment of the present invention
  • Figure 9 is a schematic view showing the structure of a part of the integrated welding torch when the welding system is welded by the molten pole main welding mode in the embodiment of the present invention.
  • Figure 10 is a schematic view showing the structure of a part of the integrated welding torch when the welding system is welded in a cooperative welding mode according to an embodiment of the present invention.
  • the reference numerals in Figures 8-10 are: 1-base material (workpiece), 2-arc, 3-nozzle, 4-non-melting pole (tungsten pole), 5-melt pole (welding wire), 6- Contact tip, 7-wire feed mechanism.
  • a welding system having both a molten pole and a non-melting pole
  • the welding system includes an integrated welding torch, a welding power control system module, and a fusion pole welding power source connected to the welding power control system module.
  • a non-melting pole welding power source the integrated welding torch comprising a non-melting electrode torch module and a melting electrode torch module, the non-melting electrode welding power source being connected to the non-melting electrode torch module, the melting electrode welding power source and the melting The welding torch module is connected.
  • the welding power control system module, the non-melting pole welding power source, and the molten pole welding power source all have synchronous communication interfaces, and the three are connected through a synchronous communication interface.
  • the welding power control system module is used for controlling and adjusting the matching of the voltage, current and phase of the output ends of the welding power source and the non-melting electrode welding power source, so that the welding system achieves the best during welding. Welding effect.
  • the integrated welding torch there is a base material contact pole for connecting with a workpiece, a non-melting pole disposed in the non-melting electrode torch module, and one or more disposed in the melted electrode torch module Melting pole.
  • the non-molten torch module which comprises a non-melting pole (tungsten pole in the embodiment of the invention), a nozzle, etc., the structure of which is the same as or similar to that of the existing non-melting pole welder; likewise, in the fusion torch module It includes a melting pole (welding wire), a contact tip, a wire feeding mechanism, etc., and its structure is the same as or similar to that of the welding torch of the existing fusion welding machine.
  • the molten pole welding power source in the embodiment of the present invention preferably includes a power input module, a DC constant voltage module, a chopper control module, a constant current feedback module, and an AC/DC conversion control module, which are sequentially connected,
  • the molten pole welding power source further includes a first control system module, a current sampling module and a voltage sampling module; the input end of the current sampling module has at least two electricity a current input interface, wherein a current input interface is connected to an output end of the DC constant voltage module, and another current input interface is connected to an output end of the DC conversion control module; the input end of the voltage sampling module has at least two voltage input interfaces, wherein A voltage input interface is connected to the output end of the DC constant voltage module, and another voltage input interface is connected to the output end of the DC conversion control module; the output end of the current sampling module and the output end of the voltage sampling module are both connected to the first control system Module connection, An output end of the DC conversion control module is coupled to the melt torch module.
  • the molten pole welding power source in the embodiment of the invention mainly adds the DC conversion control module to the existing molten metal welding power source.
  • the AC/DC conversion control module is configured to control a potential of a melting pole in the MIG module to control an output voltage of the melting electrode, a change of a positive and a negative polarity of the molten electrode, and a turn-on of the molten electrode as a positive electrode
  • the time ratio of the time to the on-time as the negative electrode so that the heat distribution between the workpiece and the welding wire can be controlled during the welding process; at the same time, the molten-electrode torch module connected to the AC-DC conversion control module is also in the welding process.
  • the AC/DC conversion control module in this embodiment has an input positive terminal, an input negative terminal, a first output terminal, and a second output terminal
  • the AC/DC conversion control module preferably includes a first switch module, a second switch module, a third switch module, and a fourth switch module; the input positive end, the input end of the first switch module, the output end of the first switch module, the input end of the second switch module, and the second switch module
  • the output end and the input negative end are sequentially connected, and the input positive end, the input end of the third switch module, the output end of the third switch module, and the fourth switch module
  • An input end, an output end of the fourth switch module, and the input negative end are sequentially connected; an interconnected end of the third switch module and the fourth switch module is used as the first output end, and the third switch module is An interconnected end of the fourth switch module serves as the second output.
  • An LC series circuit is connected in series between the second output terminal and one end of the third switch module and the fourth switch module.
  • the first switch module, the second switch module, the third switch module and the fourth switch module are the same switch circuit, and the switch circuit comprises a switching power device, a capacitor and a diode, and the capacitors are connected in parallel Connected between the drain and the source of the switching power device, or the capacitor is connected in parallel between the collector and the emitter of the switching power device; the anode of the diode and the drain of the switching power device a pole or a collector connection, a cathode of the diode being connected to a source or an emitter of the switching power device; a drain or a collector of the switching power device as an input terminal of each switching module, the switching power device A source or an emitter is used as an output of each switch module; a gate or a base of the switching power device is connected to a switch signal source for controlling whether the switching power device is turned on or off.
  • the switching power device is preferably a MOS tube or a triode.
  • the switching power device in this embodiment uses a MOS transistor as a specific embodiment.
  • the AC/DC conversion control module includes MOS tubes Q1 and Q2. Q3, Q4, diodes D1, D2, D3, D4, capacitors C1, C2, C3, C4, C5 and inductor L1.
  • the inductor L1 and the capacitor C5 are connected in series to form the LC series circuit.
  • the connection relationship of components such as MOS transistors, diodes, and capacitors is as shown in FIG. 4 and will not be described in detail herein.
  • the gate of each MOS transistor is connected to a switching signal source (not shown in FIG. 4) for controlling the on or off of each MOS transistor.
  • each MOS transistor By controlling the turn-on or turn-off time of each MOS transistor, it is possible to control the output voltage of the molten metal, the conversion of the positive and negative polarities of the molten electrode, and the on-time when the molten electrode is used as the positive electrode and the turn-on time when the molten electrode is used as the negative electrode.
  • the time ratio of time is equal, so that the heat distribution between the workpiece and the welding wire can be controlled during the welding process.
  • the non-melting pole welding power source in the embodiment of the invention can realize the required function by using the existing non-melting pole welding power source with AC/DC welding output.
  • a non-melting pole welding power source as shown in FIG. 5 is preferably used. As shown in FIG.
  • the non-melting pole welding power source includes a surge suppression module, a primary rectification module, a filtering module, and
  • the inverter module, the transformer, the commutation converter module, the non-melting pole welding power source further includes a second control system module, a current sampling module and a voltage sampling module;
  • the input end of the current sampling module has at least two current input interfaces, One of the current input interfaces is connected to the output of the filter module, and the other current The input interface is connected to the output end of the commutating converter module, and the input end of the voltage sampling module is connected to the output end of the secondary rectification module;
  • the output end of the current sampling module and the output end of the voltage sampling module are both second
  • the control system module is connected;
  • the inverter control module is connected between the second control system module and the inverter module, and the connection between the commutation converter module and the second control system module is There is a commutating converter driving module, and an output end of the commut
  • the commutating converter module is configured to control a potential of a non-melting pole in the non-melting electrode torch module to control an output voltage of the non-melting pole, a change of positive and negative polarities of the non-melting pole, and a melting pole as a positive electrode
  • the second control system module in the non-melting pole welding power source also has a synchronous communication interface, and the second control system module is further connected with the man-machine interaction module for the user to perform related welding. Input and setting of parameters, and display of related input and output information.
  • the first control system module and the second control system in the present invention The module may be the same hardware module.
  • the first name and the second number are used for distinguishing, mainly for facilitating the connection relationship between the molten pole welding power source and the functional modules in the non-melting pole welding power source. description of.
  • the integrated welding torch has both a melting pole and a non-melting pole
  • the welding system has various kinds of welding systems by controlling and managing the output voltages of the melting pole and the non-melting pole in the integrated welding torch.
  • Different welding states so that when welding is performed by using the welding system, the welding system can be welded to the workpiece according to the welding material and the welding process requirements, so that the heat between the workpiece and the heat of the welding wire can be distributed. Matching the welding process requirements to achieve the best match between the heat of the workpiece and the heat of the wire to achieve the best welding results.
  • a welding method applied to the above welding system wherein the integrated welding torch in the welding system has a base material contact pole for connection with a workpiece, and a non-melting pole disposed in the non-melting electrode torch module is disposed on One or more melting poles in the fusion torch module, the welding method comprising: controlling a melting pole in the integrated welding torch by controlling a potential of a molten pole and a non-melting pole in the integrated welding torch The output voltage and the output voltage of the non-melting pole are such that the welding system has different welding states during welding; according to the welding process requirements, the welding system is operated in a corresponding welding state to weld the workpiece.
  • the welding system adjusts the output voltage of the molten pole and the output voltage of the non-melting pole to realize the distribution of arc heat between the workpiece and the welding wire, thereby between the heat of the workpiece and the heat of the welding wire.
  • the heat distribution is matched to the welding process requirements to achieve the desired weld results.
  • the welding system provided by the embodiment of the present invention provides a welding system with a plurality of different welding states by simultaneously providing a non-melting pole and a melting pole in the integrated welding torch, so that when the workpiece is welded by the welding system, According to the workpiece material and welding process requirements, the corresponding welding state can be selected for welding to obtain the best welding effect.
  • the potential of the workpiece is Ua
  • the potential of the non-melting pole is Ub
  • the potential of the melting pole is Uc
  • the workpiece potential Ua is the reference potential 0, as shown in FIG.
  • the arc heat Qb of the non-melting pole output and the arc heat Qc of the non-melting pole output have the following relationship:
  • Arc heat Qb of non-melting pole output heat of workpiece Qbg + heat radiation wire heat Qbw;
  • Arc heat output from the melting pole Qc heating workpiece heat Qcg + heat radiation wire heat Qcw + Joule hot wire heat wire heat Qcj .
  • the arc heats Qb and Qc have a positive correlation with the non-melting potential Ub and the melting potential Uc, respectively.
  • the change of the non-melting potential Ub and the melting potential Uc can change the distribution of the arc heat between the workpiece and the wire, that is, by controlling the non-melting potential Ub and the melting potential Uc.
  • the potential is used to achieve the purpose of controlling the heat distribution between the workpiece and the wire during the welding process, so that the workpiece can be welded according to the workpiece material and the welding process requirements to obtain the best welding effect.
  • Welding state 2 Ub>Uc, and Ub, Uc are positive; that is, the non-melting pole potential is higher than the melting pole potential, the two electrodes generate different arc currents are summed to the workpiece, and the heat of the Joule hot wire of the melting wire is 0-Qcj /2;
  • the integrated welding torch has a non-melting pole and a melting pole, it has 12 kinds of welding states, can be welded for different workpieces, and can meet different welding process requirements, and its application is very broad.
  • the user can select the welding state according to the welding process requirements to weld the workpiece, so that the welding effect can meet various welding process requirements, and the best welding effect is achieved.
  • the angles of the non-melting electrode torch module and the molten electrode torch module and the workpiece in the integrated welding torch can be adjusted according to actual needs to obtain a better welding effect.
  • the non-melting pole main welding mode can be divided into Figure 8), the molten pole main welding mode (as shown in Figure 9), the co-welding mode (as shown in Figure 10).
  • the welding method for welding by the welding system provided by the embodiment of the invention has the advantages of the welding manner of the two welding machines of the non-melting pole welding machine and the melting pole welding machine. And its application is wider, the welding speed is faster, and the welding effect is superior.
  • the integrated welding torch may also have a non-melting pole, and a plurality of melting poles, and the example has one non-melting pole and two melting poles in the integrated welding torch.
  • the potential of the workpiece is Ua
  • the potential of the non-melting pole is Ub
  • the potential of the melting pole one is Uc
  • the potential of the melting pole two is Ud
  • the workpiece potential Ua is the reference potential 0.
  • the welding system has the following 30 welding states:

Abstract

一种同时具有熔化极与非熔化极的焊接系统,所述焊接系统包括一体化焊枪,焊接电源控制系统模块,均与焊接电源控制系统模块连接的熔化极焊接电源与非熔化极焊接电源,所述一体化焊枪包括非熔化极焊枪模块以及熔化极焊枪模块,所述非熔化极焊接电源与所述非熔化极焊枪模块连接,所述熔化极焊接电源与所述熔化极焊枪模块连接。本申请还涉及一种应用于上述焊接系统的焊接方法。所述焊接系统具有多种焊接状态,可满足各种焊接工艺需求,且具有焊接速度快,焊接效果好,应用场合广等优点。

Description

一种同时具有熔化极与非熔化极的焊接系统及其焊接方法
技术领域
本发明涉及焊机领域,尤其涉及一种同时具有熔化极与非熔化极的焊接系统及其焊接方法。
背景技术
传统的焊机通常分为熔化极焊机与非熔化极焊机,熔化极焊机具有熔深大、焊接速度快等优点,但焊接过程中熔化焊丝与熔化母材的热量不能控制,焊接薄板时易导致工件变形及穿孔;而非熔化极焊机则具有焊缝金属纯度高、性能好、焊件变形小、电弧稳定性好等优点,但存在着熔深浅、熔敷速度小,生产率较低等缺点。在非熔化极焊机中,非熔化极(通常为 钨极)作为其中一个电极,与母材(即需要焊接的工件)连接的母材接触极作为另一个电极;而在熔化极焊机中,焊枪中的焊丝作为其中一个电极,与母材(即需要焊接的工件)连接的母材接触极作为另一个电极。传统焊机的两电极之间通常只有两种焊接状态,即非熔化极(钨极)或熔化极(焊 丝)与工件之间,只有正电压或者负电压两种焊接状态;因此,传统的焊机焊接模式较为单一(如传统的熔化极焊机只有单一的直流焊接模式、直流脉冲焊接模式),难以根据不同的焊接材料来选择相应的焊接模式来达到较好的焊接效果,且其应用范围也较窄。
发明内容
有鉴于此,本发明提供一种同时具有熔化极与非熔化极的焊接系统及其焊接方法,所述焊接系统及其焊接方法具有多种焊接状态,可满足各种焊接工艺需求,且其具有焊接速度快,焊接效果好,应用场合广等优点。
本发明是通过以下技术方案实现的:
一种同时具有熔化极与非熔化极的焊接系统,其特征在于:所述焊接系统包括一体化焊枪,焊接电源控制系统模块,均与焊接电源控制系统模块连接的熔化极焊接电源与非熔化极焊接电源,所述一体化焊枪包括非熔
化极焊枪模块以及熔化极焊枪模块,所述非熔化极焊接电源与所述非熔化极焊枪模块连接,所述熔化极焊接电源与所述熔化极焊枪模块连接。
优选地,所述熔化极焊接电源包括依次连接的电源输入模块、直流恒压模块、斩波控制模块、恒流反馈模块、以及交直流变换控制模块,所述熔化极焊接电源还包括有第一控制系统模块、电流取样模块以及电压取样模块;所述电流取样模块的输入端至少具有两电流输入接口,其中一电流输入接口与直流恒压模块的输出端连接,另一电流输入接口与直流变换控制模块的输出端连接;所述电压取样模块的输入端至少具有两电压输入接口,其中一电压输入接口与直流恒压模块的输出端连接,另一电压输入接口与直流变换控制模块的输出端连接;所述电流取样模块的输出端、电压取样模块的输出端均与第一控制系统模块连接,所述直流变换控制模块的输出端与所述熔化极焊枪模块连接。
优选地,所述交直流变换控制模块具有输入正端、输入负端、第一输出端以及第二输出端,所述交直流变换控制模块包括第一开关模块、第二开关模块、第三开关模块以及第四开关模块;所述输入正端、第一开关模块的输入端、第一开关模块的输出端、第二开关模块的输入端、第二开关模块的输出端以及所述输入负端依次连接,所述输入正端、第三开关模块 的输入端、第三开关模块的输出端、第四开关模块的输入端、第四开关模块的输出端以及所述输入负端依次连接;所述第三开关模块与第四开关模块的相互连接的一端作为所述第一输出端,所述第三开关模块与第四开关模块的相互连接的一端作为所述第二输出端;所述第二输出端与所述第三开关模块与第四开关模块的相互连接的一端之间串联连接有LC串联电路。
优选地,所述非熔化极焊接电源包括依次连接的浪涌抑制模块、初次整流模块、滤波模块、逆变模块、变压器、换相变流模块,所述非熔化极焊接电源还包括第二控制系统模块,电流取样模块以及电压取样模块;所述电流取样模块的输入端至少具有两电流输入接口,其中一电流输入接口与滤波模块的输出端连接,另一电流输入接口与换相变流模块的输出端连接,所述电压取样模块的输入端与二次整流模块的输出端连接;所述电流 取样模块的输出端、电压取样模块的输出端均与第二控制系统模块连接;所述第二控制系统模块与逆变模块之间连接有逆变驱动模块,所述换相变流模块与第二控制系统模块之间连接有换相变流驱动模块,所述换相变流模块的输出端与所述非熔化极焊枪模块连接。
进一步地,所述第一控制系统模块与第二控制系统模块还连接有人机交互模块。
本发明还提供了一种应用于上述焊接系统的焊接方法,所述焊接系统中的一体化焊枪具有用于与工件连接的母材接触极,设置于所述非熔化极焊枪模块中的非熔化极,设置于所述熔化极焊枪模块中的一个或多个熔化极,所述焊接方法包括:
通过控制所述一体化焊枪中的熔化极与非熔化极的电位,来控制所述一体化焊枪中的熔化极的输出电压与非熔化极的输出电压,以使所述焊接系统在焊接时具有不同的焊接状态;
根据焊接工艺需求,使所述焊接系统工作于相应的焊接状态对工件进行焊接。
其中,在焊接过程中,所述焊接系统通过调整所述熔化极的输出电压与非熔化极的输出电压,来实现电弧热量在工件与焊丝之间的分配,从而使工件热量与焊丝热量之间的热量分配与焊接工艺需求相匹配,以达到所需的焊接效果。
本发明提供的焊接系统,其一体化焊枪同时具有熔化极与非熔化极,通过对一体化焊枪中的熔化极与非熔化极的输出电压进行控制与管理,使得该焊接系统具有多种不同的焊接状态,从而使得在利用该焊接系统在进行焊接时,可以根据焊接材料及焊接工艺需求,使焊接系统工作于相应的焊接状态对工件进行焊接,使工件热量与焊丝热量之间的分配与焊接工艺 需求相匹配,实现工件热量与焊丝热量的最佳匹配,从而获得最佳的焊接效果。利用本发明提供的焊接系统及其焊接方法对工件进行焊接,其可同时具有非熔化极焊机与熔化极焊机的这两种焊机的焊接方式的优点,并且比现有比非熔化极焊机与熔化极焊机的应用场合更宽广,焊接速度更快,焊接效果也更优越。
附图说明
附图1为本发明实施例中所述焊接系统的原理示意框图;
附图2为本发明实施例中所述熔化极焊接电源的电路原理示意框图;
附图3为本发明实施例中所述交直流变换控制模块的电路原理示意框图;
附图4为本发明实施例中所述交直流变换控制模块具体的电路原理示图;
附图5为本发明实施例中所述非熔化极焊接电源的电路原理示意框图;
附图6为本发明实施例中,当焊接时所述一体化焊枪中的非熔化极的电位、熔化极的电位、以及工件的电位的结构示意图;
附图7为本发明实施例中,当焊接时所述一体化焊枪中的非熔化极的电位、熔化极的电位、以及工件的电位的另一结构示意图;
附图8为本发明实施例中,当所述焊接系统的采用非熔化极主焊接模式进行焊接时,所述一体化焊枪的部分零件的结构示意图;
附图9为本发明实施例中,当所述焊接系统的采用熔化极主焊接模式进行焊接时,所述一体化焊枪的部分零件的结构示意图;
附图10为本发明实施例中,当所述焊接系统的采用协同焊接模式进行焊接时,所述一体化焊枪的部分零件的结构示意图。
其中,附图8-10中的附图标号为:1-母材(工件),2-电弧,3-喷嘴,4-非熔化极(钨极),5-熔化极(焊丝),6-导电嘴,7-送丝机构。
具体实施方式
为了便于本领域技术人员的理解,下面结合附图对本发明作进一步的描述。
如附图1所示,一种同时具有熔化极与非熔化极的焊接系统,所述焊接系统包括一体化焊枪,焊接电源控制系统模块,均与焊接电源控制系统模块连接的熔化极焊接电源与非熔化极焊接电源,所述一体化焊枪包括非熔化极焊枪模块以及熔化极焊枪模块,所述非熔化极焊接电源与所述非熔化极焊枪模块连接,所述熔化极焊接电源与所述熔化极焊枪模块连接。
在本发明实施例中,所述焊接电源控制系统模块、非熔化极焊接电源,熔化极焊接电源均具有同步通信接口,三者之间是通过同步通信接口进行连接。其中,所述焊接电源控制系统模块用于控制与调整熔化极焊接电源与非熔化极焊接电源这两个焊接电源输出端的电压、电流、相位的匹配,以使焊接系统在焊接时达到最佳的焊接效果。
在所述一体化焊枪中,其具有用于与工件连接的母材接触极,设置于所述非熔化极焊枪模块中的非熔化极,设置于所述熔化极焊枪模块中的一个或多个熔化极。在非熔化极焊枪模块中,其包括非熔化极(本发明实施例为钨极)、喷嘴等,其结构与现有非熔化极焊机的焊枪相同或类似;同样,在熔化极焊枪模块中,其包括熔化极(焊丝)、导电嘴、送丝机构等,其结构与现有熔化极焊机的焊枪相同或类似。
如附图2所示,本发明实施例中的熔化极焊接电源优选包括依次连接的电源输入模块、直流恒压模块、斩波控制模块、恒流反馈模块、以及交直流变换控制模块,所述熔化极焊接电源还包括有第一控制系统模块、电流取样模块以及电压取样模块;所述电流取样模块的输入端至少具有两电 流输入接口,其中一电流输入接口与直流恒压模块的输出端连接,另一电流输入接口与直流变换控制模块的输出端连接;所述电压取样模块的输入端至少具有两电压输入接口,其中一电压输入接口与直流恒压模块的输出端连接,另一电压输入接口与直流变换控制模块的输出端连接;所述电流取样模块的输出端、电压取样模块的输出端均与第一控制系统模块连接, 所述直流变换控制模块的输出端与所述熔化极焊枪模块连接。另外,所述第一控制系统模块具有同步通信接口,且所述第一控制系统模块还连接有人机交互模块,以供用户进行相关焊接参数的输入与设置,以及相关输入输出信息的显示等。
本发明实施例中的熔化极焊接电源,其主要是在现有熔化极焊接电源的基础上增加了所述直流变换控制模块。所述交直流变换控制模块用于控制所述熔化极焊枪模块中熔化极的电位,以实现控制熔化极的输出电压,熔化极的正负极性的变换,以及熔化极作为正极时的接通时间与作为负极时的接通时间的时间比,从而在焊接过程中可实现控制工件与焊丝之间的热量分配;同时,也使得与交直流变换控制模块连接的熔化极焊枪模块,在焊接过程中既有直流焊接,又有交流焊接。
如附图3所示,本实施例中的交直流变换控制模块具有输入正端、输入负端、第一输出端以及第二输出端,所述交直流变换控制模块优选包括第一开关模块、第二开关模块、第三开关模块以及第四开关模块;所述输入正端、第一开关模块的输入端、第一开关模块的输出端、第二开关模块的输入端、第二开关模块的输出端以及所述输入负端依次连接,所述输入正端、第三开关模块的输入端、第三开关模块的输出端、第四开关模块的 输入端、第四开关模块的输出端以及所述输入负端依次连接;所述第三开关模块与第四开关模块的相互连接的一端作为所述第一输出端,所述第三开关模块与第四开关模块的相互连接的一端作为所述第二输出端。在所述第二输出端与所述第三开关模块与第四开关模块的相互连接的一端之间串联连接有LC串联电路。
优选地,所述第一开关模块、第二开关模块、第三开关模块以及第四开关模块为相同的开关电路,所述开关电路包括一开关功率器件,一电容以及一二极管,所述电容并联连接于所述开关功率器件的漏极与源极之间,或者所述电容并联连接于所述开关功率器件的集电极与发射极之间;所述二极管的正极与所述开关功率器件的漏极或集电极连接,所述二极管的负极与所述开关功率器件的源极或发射极连接;所述开关功率器件的漏极或集电极作为各开关模块的输入端,所述开关功率器件的源极或发射极作为各开关模块的输出端;所述开关功率器件的栅极或基极连接有一用于控制开关功率器件导通或截止的开关信号源。本发明实施例中,所述开关功率器件优选为MOS管或三极管。
附图4为所述交直流变换控制模块具体的电路原理示图,本实施例中的所述的开关功率器件以MOS管为具体实施例。如附图4所示,所述交直流变换控制模块包括MOS管Q1、Q2、 Q3、 Q4,二极管D1、D2、 D3、 D4,电容C1、C2、C3、C4、C5以及电感L1。其中,电感L1与电容C5串联连接组成所述LC串联电路。各MOS管、二极管以及电容等元件的连接关系如附图4所示,这里不再详述。另外,各MOS管的栅极连接一开关信号源(图4中并未画出),用于控制控制各MOS管的导通或截止。通过控制各MOS管的导通或截止的时间,即可实现控制熔化极的输出电压,熔化极的正负极性的变换,以及熔化极作为正极时的接通时间与作为负极时的接通时间的时间比等,从而在焊接过程中可实现控制工件与焊丝之间的热量分配。
本发明实施例中的非熔化极焊接电源,选用现有的具有交直流焊接输出的非熔化极焊接电源即可实现其所需的功能。而发明实施例中优选采用如附图5所示的非熔化极焊接电源,如附图5所示,所述非熔化极焊接电源包括依次连接的浪涌抑制模块、初次整流模块、滤波模块、逆变模块、变压器、换相变流模块,所述非熔化极焊接电源还包括第二控制系统模块,电流取样模块以及电压取样模块;所述电流取样模块的输入端至少具有两电流输入接口,其中一电流输入接口与滤波模块的输出端连接,另一电流 输入接口与换相变流模块的输出端连接,所述电压取样模块的输入端与二次整流模块的输出端连接;所述电流取样模块的输出端、电压取样模块的输出端均与第二控制系统模块连接;所述第二控制系统模块与逆变模块之间连接有逆变驱动模块,所述换相变流模块与第二控制系统模块之间连接 有换相变流驱动模块,所述换相变流模块的输出端与所述非熔化极焊枪模块连接。所述换相变流模块用于控制所述非熔化极焊枪模块中非熔化极的电位,以实现控制非熔化极的输出电压,非熔化极的正负极性的变换,以及熔化极作为正极时的接通时间与作为负极时的接通时间的时间比等,从而在焊接过程中可实现控制工件与焊丝之间的热量分配。
与所述熔化极焊接电源类似,所述非熔化极焊接电源中的第二控制系统模块也具有同步通信接口,且所述第二控制系统模块还连接有人机交互模块,以供用户进行相关焊接参数的输入与设置,以及相关输入输出信息的显示等。需要说明的是,本发明中的第一控制系统模块,第二控制系统 模块,可以为相同的硬件模块,本发明中采用'第一'、'第二'进行区分命名,主要是为了便于所述熔化极焊接电源与所述非熔化极焊接电源中各功能模块连接关系的描述。
本发明实施例提供的焊接系统,其一体化焊枪同时具有熔化极与非熔化极,通过对一体化焊枪中的熔化极与非熔化极的输出电压进行控制与管理,使得该焊接系统具有多种不同的焊接状态,从而使得在利用该焊接系统在进行焊接时,可以根据焊接材料及焊接工艺需求,使焊接系统工作于相应的焊接状态对工件进行焊接,使工件热量与焊丝热量之间的分配与焊接工艺需求相匹配,实现工件热量与焊丝热量的最佳匹配,从而获得最佳的焊接效果。
以下对利用上述实施例中的焊接系统的焊接方法或工作原理(或工作过程)等作详细的说明。
一种应用于上述的焊接系统的焊接方法,所述焊接系统中的一体化焊枪具有用于与工件连接的母材接触极,设置于所述非熔化极焊枪模块中的非熔化极,设置于所述熔化极焊枪模块中的一个或多个熔化极,所述焊接方法包括:通过控制所述一体化焊枪中的熔化极与非熔化极的电位,来控制所述一体化焊枪中的熔化极的输出电压与非熔化极的输出电压,以使所述焊接系统在焊接时具有不同的焊接状态;根据焊接工艺需求,使所述焊接系统工作于相应的焊接状态对工件进行焊接。
其中,在焊接过程中,所述焊接系统通过调整所述熔化极的输出电压与非熔化极的输出电压,来实现电弧热量在工件与焊丝之间的分配,从而使工件热量与焊丝热量之间的热量分配与焊接工艺需求相匹配,以达到所需的焊接效果。
传统焊机(熔化极焊机或非熔化极焊机)的两电极之间通常只有两种焊接状态,即非熔化极(钨极)或熔化极(焊丝)与工件之间,只有正电压或者负电压两种焊接状态,使得其应用的范围较窄,难以满足各种不同的焊接工艺需求。因此,本发明实施例提供的焊接系统,通过在所述一体化焊枪中同时设置有非熔化极与熔化极,使得焊接系统具有多种不同焊接状态,使得利用该焊接系统对工件进行焊接时,可以根据工件材料,焊接工艺需求选择相应的焊接状态来进行焊接,以获得最佳的焊接效果。
下面以所述一体化焊枪具有一个熔化极与一个非熔化极时,对所述焊接系统具有的焊接状态进行详细说明。本发明实施例中,设工件的电位为Ua,非熔化极的电位为Ub,熔化极的电位为Uc,并以工件电位Ua为基准电位0,如附图6所示。
在利用本发明焊接系统对工件进行焊接时,非熔化极输出的电弧热量Qb与非熔化极输出的电弧热量Qc存在着以下关系:
(1)非熔化极输出的电弧热量Qb=加热工件热量Qbg+热辐射焊丝热量Qbw ;
(2)熔化极输出的电弧热量Qc=加热工件热量Qcg +热辐射焊丝热量Qcw +焦耳热丝热量丝热量Qcj 。
同时,电弧热量Qb、Qc分别与非熔化极电位Ub、熔化极电位Uc存在着正相关的关系。
由此可知,非熔化极电位Ub、熔化极电位Uc的变化能起到电弧热量在工件与焊丝两者之间的分配变化,即可以通过控制非熔化极电位Ub、熔化极电位Uc这两极的电位,来达到在焊接过程中实现控制工件与焊丝之间的热量分配的目的,从而可以根据工件材料,焊接工艺需求来选择相应的焊接状态来对工件进行焊接,以获得最佳的焊接效果。
以下对所述焊接系统包括的焊接状态作详细的说明:
焊接状态1,Ub=Uc,且Ub、Uc均为正;即非熔化极与熔化极等电位,两个电极产生相同的电弧电流汇总到工件,熔解焊丝的焦耳热丝热量为Qcj/2;
焊接状态2,Ub>Uc,且Ub、Uc均为正;即非熔化极电位高于熔化极电位,两个电极产生不同的电弧电流汇总到工件,熔解焊丝的焦耳热丝热量为0-Qcj/2;
焊接状态3,Ub<Uc,且Ub、Uc均为正;即非熔化极电位低于熔化极电位,两个电极产生不同的电弧电流汇总到工件,熔解焊丝的焦耳热丝热量
为0-Qcj/2;
焊接状态4,Ub=Uc,且Ub、Uc均为负;即非熔化极与熔化极等电位,两个电极产生相同的电弧电流汇总到工件,熔解焊丝的焦耳热丝热量为Qcj/2;
焊接状态5,Ub>Uc,且Ub、Uc均为负;即非熔化极电位高于熔化极电位,两个电极产生不同的电弧电流汇总到工件,熔解焊丝的焦耳热丝热量为0-Qcj/2;
焊接状态6,Ub<Uc,且Ub、Uc均为负;即非熔化极电位低于熔化极电位,两个电极产生不同的电弧电流汇总到工件,熔解焊丝的焦耳热丝热量为0-Qcj/2;
焊接状态7,Ub为正,Uc为负; 非熔化极电流与工件电流都流向熔化极,此焊接状态下,加热工件热量 Qbg=0 ,焦耳热丝热量为( 1+Ub/Uc ) Qcj ,即加热工 件的热量转移到加热焊丝。此焊接状态针对薄板工件进行焊接时,可以最大限度地降低工件的热输入量,可有效减少工件变形或穿孔的情况出现,有效提高焊接质量;另外,在焊接过程中对工件发射离子,可起到清除工件表面氧化物的效果;
焊接状态8,Ub为正,Uc为0;此焊接状态变成普通非熔化极焊接正极性接法,加普通外部送丝;
焊接状态9,Ub为负,Uc为正;熔化极电流与工件电流都流向非熔化极。加热工件热量Qcg=0,焦耳热丝热量为(1+Ub/Uc)Qcj。即加热工件的热量转移到加热焊丝;此焊接状态下针对薄板工件进行焊接,可最大限度降低热输入量,同时电弧挺度也更好;
焊接状态10,Ub为负,Uc为0;此焊接状态变成普通非熔化极焊接负极性接法,加普通外部送丝;
焊接状态11,Ub为0,Uc为正;此焊接状态变成普通熔化极焊接正极性接法;
焊接状态12,Ub为0,Uc为负,此焊接状态变成普通熔化极焊接负极性接法。
即当所述一体化焊枪中,其具有一个非熔化极与一个熔化极时,其具有12种焊接状态,可针对不同的工件以进行焊接,同时可满足不同的焊接工艺需求,其应用场合十分宽广。在实际焊接过程中,用户可以根据焊接工艺需求,选用与其匹配的焊接状态来对工件进行焊接,使得焊接效果可满足各种焊接工艺需求,达到最佳的焊接效果好。
另外,在利用所述焊接系统对工件进行焊接时,可根据实际需要,调整所述一体化焊枪中非熔化极焊枪模块以及熔化极焊枪模块与工件的角度,以获得更佳的焊接效果。根据所述一体化焊枪中非熔化极焊枪模块中的非熔化极(钨极)与熔化极焊枪模块中的熔化极(焊丝)的使用情况,其可以分为非熔化极主焊接模式(如附图8所示)、熔化极主焊接模式(如附图9所示)、协同焊接模式(如附图10所示)。
与现有的焊机相比,本发明实施例提供的利用所述焊接系统进行焊接的焊接方法,其同时具有非熔化极焊机与熔化极焊机的这两种焊机的焊接方式的优点,并且其应用场合更宽广,焊接速度更快,焊接效果也更优越。
当然,所述一体化焊枪中,其还可以具有一个非熔化极,多个熔化极的情况,以所述一体化焊枪中具有一个非熔化极,两个熔化极为例进行说明。如附图7所示,设工件的电位为Ua,非熔化极的电位为Ub,熔化极一的电位为Uc,,熔化极二的电位为Ud,并以工件电位Ua为基准电位0,此种情况下,焊接系统具有以下30种焊接状态:
(1)当Ub、Uc、Ud均为正时:
焊 接状态1,Ub=Uc=Ud ;
焊 接状态2,Ub>Uc=Ud ;
焊 接状态3,Ub<Uc=Ud ;
焊 接状态4,Ub=Uc>Ud ;
焊 接状态5,Ub=Uc<Ud ;
焊 接状态6,Ub=Uc>Ud ;
焊 接状态7,Ub=Uc<Ud ;
焊 接状态8,Ub>(Uc≠Ud) ;
焊 接状态9,Ub<(Uc≠Ud) ;
(2)当Ub、Uc、Ud均为负时:
焊 接状态10,Ub=Uc=Ud ;
焊 接状态11,Ub>Uc=Ud ;
焊 接状态12,Ub<Uc=Ud ;
焊 接状态13,Ub=Uc>Ud ;
焊 接状态14,Ub=Uc<Ud ;
焊 接状态15,Ub=Uc>Ud ;
焊 接状态16,Ub=Uc<Ud ;
焊 接状态17,Ub>(Uc≠Ud) ;
焊 接状态18,Ub<(Uc≠Ud) ;
(3)当Ub为负,Uc、Ud均为正时:
焊 接状态19,Uc=Ud;
焊 接状态20,Uc>Ud;
焊 接状态21,Uc<Ud;
(4)当Ub为正,Uc、Ud均为负时:
焊 接状态22,Uc=Ud;
焊 接状态23,Uc>Ud;
焊 接状态24,Uc<Ud;
(5)当Ub为0,Uc、Ud均为正时:
焊 接状态25,Uc=Ud;
焊 接状态26,Uc>Ud;
焊 接状态27,Uc<Ud;
(6)当Ub为0,Uc、Ud均为负时:
焊 接状态28,Uc=Ud;
焊 接状态29,Uc>Ud;
焊 接状态30,Uc<Ud。
当Uc、Ud其中一个为0时,即为上面所述一体化焊枪只有一个熔化极的情况,各焊接状态在此不再赘述。当所述一体化焊枪具有更多的熔化极的情况时,其焊接状态可参照上述的说明,进行依次类推,在此不再一一进行说明。
上述实施例中提到的内容为本发明较佳的实施方式,并非是对本发明的限定,在不脱离本发明构思的前提下,任何显而易见的替换均在本发明的保护范围之内。

Claims (10)

  1. 一种同时具有熔化极与非熔化极的焊接系统,其特征在于:所述焊接系统包括一体化焊枪,焊接电源控制系统模块,均与焊接电源控制系统模块连接的熔化极焊接电源与非熔化极焊接电源,所述一体化焊枪包括非熔化极焊枪模块以及熔化极焊枪模块,所述非熔化极焊接电源与所述非熔化极焊枪模块连接,所述熔化极焊接电源与所述熔化极焊枪模块连接。
  2. 根据权利要求1所述的焊接系统,其特征在于:所述熔化极焊接电源包括依次连接的电源输入模块、直流恒压模块、斩波控制模块、恒流反馈模块、以及交直流变换控制模块,所述熔化极焊接电源还包括有第一控制系统模块、电流取样模块以及电压取样模块;所述电流取样模块的输入端至少具有两电流输入接口,其中一电流输入接口与直流恒压模块的输出端连接,另一电流输入接口与直流变换控制模块的输出端连接;所述电压取样模块的输入端至少具有两电压输入接口,其中一电压输入接口与直流恒压模块的输出端连接,另一电压输入接口与直流变换控制模块的输出端连接;所述电流取样模块的输出端、电压取样模块的输出端均与第一控制系统模块连接,所述直流变换控制模块的输出端与所述熔化极焊枪模块连接。
  3. 根据权利要求2所述的焊接系统,其特征在于:所述交直流变换控制模块具有输入正端、输入负端、第一输出端以及第二输出端,所述交直流变换控制模块包括第一开关模块、第二开关模块、第三开关模块以及第四开关模块;所述输入正端、第一开关模块的输入端、第一开关模块的输出端、第二开关模块的输入端、第二开关模块的输出端以及所述输入负端依次连接,所述输入正端、第三开关模块的输入端、第三开关模块的输出端、第四开关模块的输入端、第四开关模块的输出端以及所述输入负端依次连接;所述第三开关模块与第四开关模块的相互连接的一端作为所述第一输出端,所述第三开关模块与第四开关模块的相互连接的一端作为所述第二输出端。
  4. 根据权利要求3所述的焊接系统,其特征在于:所述第二输出端与所述第三开关模块与第四开关模块的相互连接的一端之间串联连接有LC串联电路。
  5. 根据权利要求2~4中任一项所述的焊接系统,其特征在于:所述非熔化极焊接电源包括依次连接的浪涌抑制模块、初次整流模块、滤波模块、逆变模块、变压器、换相变流模块,所述非熔化极焊接电源还包括第二控制系统模块,电流取样模块以及电压取样模块;所述电流取样模块的输入端至少具有两电流输入接口,其中一电流输入接口与滤波模块的输出端连接,另一电流输入接口与换相变流模块的输出端连接,所述电压取样模块的输入端与二次整流模块的输出端连接;所述电流取样模块的输出端、电压取样模块的输出端均与第二控制系统模块连接;所述第二控制系统模块与逆变模块之间连接有逆变驱动模块,所述换相变流模块与第二控制系统模块之间连接有换相变流驱动模块,所述换相变流模块的输出端与所述非熔化极焊枪模块连接。
  6. 根据权利要求5所述的焊接系统,其特征在于:所述第一控制系统模块与第二控制系统模块还连接有人机交互模块。
  7. 一种应用于权利要求1~6中任一项所述的焊接系统的焊接方法,所述焊接系统中的一体化焊枪具有用于与工件连接的母材接触极,设置于所述非熔化极焊枪模块中的非熔化极,设置于所述熔化极焊枪模块中的一个或多个熔化极,其特征在于,所述焊接方法包括:
    通过控制所述一体化焊枪中的熔化极与非熔化极的电位,来控制所述一体化焊枪中的熔化极的输出电压与非熔化极的输出电压,以使所述焊接系统在焊接时具有不同的焊接状态;
    根据焊接工艺需求,使所述焊接系统工作于相应的焊接状态对工件进行焊接。
  8. 根据权利要求7所述的焊接方法,其特征在于:在焊接过程中,所述焊接系统通过调整所述熔化极的输出电压与非熔化极的输出电压,来实现电弧热量在工件与焊丝之间的分配,从而使工件热量与焊丝热量之间的热量分配与焊接工艺需求相匹配,以达到所需的焊接效果。
  9. 根据权利要求7或8所述的焊接方法,其特征在于,当所述一体化焊枪具有一个熔化极与一个非熔化极时,设工件的电位为Ua,非熔化极的电位为Ub,熔化极的电位为Uc,并以工件电位Ua为基准电位0,所述焊接状态包括以下状态中的一种或多种:
    焊接状态1,Ub=Uc,且Ub、Uc均为正;
    焊接状态2,Ub>Uc,且Ub、Uc均为正;
    焊接状态3,Ub<Uc,且Ub、Uc均为正;
    焊接状态4,Ub=Uc,且Ub、Uc均为负;
    焊接状态5,Ub>Uc,且Ub、Uc均为负;
    焊接状态6,Ub<Uc,且Ub、Uc均为负;
    焊接状态7,Ub为正,Uc为负;
    焊接状态8,Ub为正,Uc为0;
    焊接状态9,Ub为负,Uc为正;
    焊接状态10,Ub为负,Uc为0;
    焊接状态11,Ub为0,Uc为正;
    焊接状态12,Ub为0,Uc为负。
  10. 根据权利要求9所述的焊接方法,其特征在于:根所述焊接系统包括熔化极主焊接模式、非熔化极主焊接模式、或协同焊接模式。
PCT/CN2015/095873 2015-10-14 2015-11-28 一种同时具有熔化极与非熔化极的焊接系统及其焊接方法 WO2017063254A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510660094.X 2015-10-14
CN201510660094.XA CN105149751B (zh) 2015-10-14 2015-10-14 一种同时具有熔化极与非熔化极的焊接系统及其焊接方法

Publications (1)

Publication Number Publication Date
WO2017063254A1 true WO2017063254A1 (zh) 2017-04-20

Family

ID=54790950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095873 WO2017063254A1 (zh) 2015-10-14 2015-11-28 一种同时具有熔化极与非熔化极的焊接系统及其焊接方法

Country Status (2)

Country Link
CN (1) CN105149751B (zh)
WO (1) WO2017063254A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149748B (zh) * 2015-10-14 2017-08-25 刘昇澔 一种交直流熔化极焊机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274878A (ja) * 1991-03-04 1992-09-30 Hitachi Ltd ホットワイヤtig・mig溶接方法
US20030183604A1 (en) * 2002-04-01 2003-10-02 Illinois Tool Works Inc. Plasma MIG welding
CN103008835A (zh) * 2012-11-29 2013-04-03 北京工业大学 一种耦合电弧的短路过渡焊接系统及其控制方法
CN103118827A (zh) * 2010-08-05 2013-05-22 大阳日酸株式会社 复合焊接方法及复合焊接用焊接吹管
CN104144762A (zh) * 2012-03-02 2014-11-12 林肯环球股份有限公司 利用tig/等离子体焊接的同步混合气体保护金属极弧焊

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349367A (ja) * 1986-08-13 1988-03-02 Hitachi Ltd 配管用プラズマ自動溶接方法、及びその装置
CN101362255B (zh) * 2008-09-11 2010-06-09 上海交通大学 低合金高强钢激光复合焊缝硬度控制方法
CN101391331B (zh) * 2008-11-06 2010-12-29 哈尔滨工程大学 基于焊丝分流的双面电弧焊装置及焊接方法
CN101559510B (zh) * 2009-05-27 2011-04-27 北京工业大学 双面多电极的穿透电弧焊接方法
CN103203529B (zh) * 2013-03-28 2015-12-09 北京工业大学 非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法
CN103302380B (zh) * 2013-07-02 2016-07-13 北京工业大学 一种无电熔滴过渡的分叉复合电弧焊接装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274878A (ja) * 1991-03-04 1992-09-30 Hitachi Ltd ホットワイヤtig・mig溶接方法
US20030183604A1 (en) * 2002-04-01 2003-10-02 Illinois Tool Works Inc. Plasma MIG welding
CN103118827A (zh) * 2010-08-05 2013-05-22 大阳日酸株式会社 复合焊接方法及复合焊接用焊接吹管
CN104144762A (zh) * 2012-03-02 2014-11-12 林肯环球股份有限公司 利用tig/等离子体焊接的同步混合气体保护金属极弧焊
CN103008835A (zh) * 2012-11-29 2013-04-03 北京工业大学 一种耦合电弧的短路过渡焊接系统及其控制方法

Also Published As

Publication number Publication date
CN105149751A (zh) 2015-12-16
CN105149751B (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
US3832513A (en) Starting and stabilizing apparatus for a gas-tungsten arc welding system
EP0316936B1 (en) Ac tig welding apparatus using hot wire
US8664568B2 (en) Arc welding control method and arc welding apparatus
US20070246448A1 (en) Polarity switching method in consumable electrode AC pulse arc welding
US10562123B2 (en) Welding system with arc control
KR102149744B1 (ko) 복합용접기
WO2017063254A1 (zh) 一种同时具有熔化极与非熔化极的焊接系统及其焊接方法
JP4702375B2 (ja) アーク溶接制御方法およびアーク溶接装置
CN105149732A (zh) 一种熔化极焊机及其焊接方法
JPS603906B2 (ja) フラツシユバツト溶接法及び装置
JP2711965B2 (ja) プラズマアーク溶接機
JP5805952B2 (ja) プラズマミグ溶接のアークスタート制御方法
US3350538A (en) Programmed welding with controlled rectifier welding power source
JP3162137B2 (ja) 消耗電極式ガスシールドアーク溶接方法および装置
JP2013043209A (ja) 溶接電源
JP4316746B2 (ja) 溶極式ガスシールドアーク溶接方法および溶接電源
JP4252636B2 (ja) 消耗電極ガスシールドアーク溶接方法
JP2003010971A (ja) 溶接電源装置の出力電圧制御方法
JPH06226Y2 (ja) 交流プラズマアーク溶接機
JPH10216939A (ja) アーク溶接機用ワイヤー送給装置
JPS5916672A (ja) パルスア−ク溶接機
JP2023108709A (ja) アーク溶接方法
JPH0153155B2 (zh)
JP3038822B2 (ja) 非消耗性電極交流アーク溶接方法
JPH0331552B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT 20.07.18)

122 Ep: pct application non-entry in european phase

Ref document number: 15906136

Country of ref document: EP

Kind code of ref document: A1