WO2017061542A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2017061542A1
WO2017061542A1 PCT/JP2016/079785 JP2016079785W WO2017061542A1 WO 2017061542 A1 WO2017061542 A1 WO 2017061542A1 JP 2016079785 W JP2016079785 W JP 2016079785W WO 2017061542 A1 WO2017061542 A1 WO 2017061542A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
ring
side chain
Prior art date
Application number
PCT/JP2016/079785
Other languages
English (en)
French (fr)
Inventor
隆之 根木
佳和 原田
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201680071491.6A priority Critical patent/CN108292065B/zh
Priority to JP2017544220A priority patent/JP6753410B2/ja
Priority to KR1020187012776A priority patent/KR20180063268A/ko
Publication of WO2017061542A1 publication Critical patent/WO2017061542A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent, and more particularly to a liquid crystal aligning agent for a lateral electric field drive type liquid crystal display element.
  • the present invention also relates to a liquid crystal alignment film manufactured using the liquid crystal alignment agent, in particular, a liquid crystal alignment film for a lateral electric field driving type liquid crystal display element, a substrate having the film, and a method for manufacturing the same.
  • this invention relates to the liquid crystal display element which has this liquid crystal aligning film or board
  • the present invention relates to a liquid crystal aligning agent, particularly for a lateral electric field drive type liquid crystal display element, in which the light irradiation amount range is expanded and the production efficiency of the liquid crystal alignment film is increased in the photo-alignment method used for the alignment treatment of the liquid crystal alignment film.
  • the liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years.
  • the liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
  • the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
  • the liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate.
  • alignment control ability is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
  • a photo-alignment method is known as an alignment treatment method for a liquid crystal alignment film for imparting alignment control ability.
  • the photo-alignment method eliminates the need for rubbing, does not cause the generation of dust and static electricity, and can perform the alignment treatment even on the substrate of the liquid crystal display element having the uneven surface. There is an advantage that you can.
  • the photo-alignment method a decomposition-type photo-alignment method, a photo-crosslinking type or a photo-isomerization type photo-alignment method, and the like are known.
  • the decomposition type photo-alignment method is, for example, that a polyimide film is irradiated with polarized ultraviolet rays, and an anisotropic decomposition is generated by utilizing the polarization direction dependency of ultraviolet absorption of the molecular structure. This is a method of aligning the liquid crystal by the method (for example, see Patent Document 1).
  • the photo-crosslinking type or photoisomerization type photo-alignment method uses, for example, polyvinyl cinnamate, irradiates polarized ultraviolet rays, and performs a dimerization reaction (cross-linking reaction) at the double bond portion of two side chains parallel to the polarized light. This is a method of generating and aligning the liquid crystal in a direction orthogonal to the polarization direction (see, for example, Non-Patent Document 1).
  • Patent Document 3 discloses a liquid crystal alignment film obtained by using a photo-alignment method by photocrosslinking, photoisomerization or photo-fleece rearrangement.
  • the photo-alignment method has a great advantage because it eliminates the rubbing process itself as compared with the rubbing method conventionally used industrially as an alignment treatment method for liquid crystal display elements. And compared with the rubbing method in which the alignment control ability becomes almost constant by rubbing, the photo alignment method can control the alignment control ability by changing the irradiation amount of polarized light.
  • the alignment controllability of the main component used in the photo-alignment method is too sensitive to the amount of polarized light, the alignment may be incomplete in part or all of the liquid crystal alignment film, and stable liquid crystal alignment cannot be realized. Occurs.
  • an object of the present invention is to expand the range of the light irradiation amount in which the alignment control ability is stably generated, and to efficiently obtain a liquid crystal alignment film having a good quality, particularly for a horizontal electric field drive type liquid crystal display element.
  • the object is to provide a liquid crystal aligning agent.
  • the object of the present invention is to provide a liquid crystal alignment film or a substrate having a liquid crystal alignment film produced using the composition, a liquid crystal display device having them, particularly a lateral electric field.
  • An object of the present invention is to provide a drive type liquid crystal display element.
  • the objective of this invention provides the manufacturing method of a liquid crystal aligning film, the board
  • a side chain polymer having a side chain that exhibits liquid crystallinity in a predetermined temperature range and has a photoreactive group that causes photocrosslinking, photoisomerization, or photofleece rearrangement (B) An organic solvent, and (C) a liquid crystal aligning agent containing an additive represented by the following formula (C), particularly a liquid crystal aligning agent for a lateral electric field drive type liquid crystal display element.
  • Rc 1 and Rc 2 are substituents on the benzene ring, and each independently represents a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • Group, a fluoroalkyl group having 1 to 10 carbon atoms, a fluoroalkenyl group having 2 to 10 carbon atoms, a fluoroalkoxy group having 1 to 10 carbon atoms, a carboxyl group, a hydroxy group, (alkyl having 1 to 10 carbon atoms) oxycarbonyl Represents a group, a cyano group or a nitro group.
  • v and w represent the number of substituents on the benzene ring, and each independently represents an integer of 0 to 5. When there is no substituent, it represents a hydrogen atom.
  • a liquid crystal aligning agent particularly a liquid crystal aligning agent for a lateral electric field driving type liquid crystal display element, which can efficiently obtain a liquid crystal alignment film having a good quality by expanding the range of light irradiation amount in which the alignment control ability is stably generated.
  • a liquid crystal alignment film manufactured using the liquid crystal aligning agent or a substrate having a liquid crystal alignment film, a liquid crystal display device having them, particularly a lateral electric field drive Type liquid crystal display elements can be provided.
  • a method for producing a liquid crystal alignment film, a substrate having a liquid crystal alignment film, or a liquid crystal display element, particularly a lateral electric field drive type liquid crystal display element is provided. it can.
  • the present application relates to a liquid crystal aligning agent, in particular, a liquid crystal aligning agent for a lateral electric field driving type liquid crystal display element, more particularly a photo-alignment method used for aligning a liquid crystal aligning film, and expanding the light irradiation range, thereby producing a liquid crystal aligning film manufacturing efficiency.
  • a composition having an increased provides the liquid crystal aligning film manufactured using this liquid crystal aligning agent, especially the liquid crystal aligning film for horizontal electric field drive-type liquid crystal display elements, the board
  • the liquid crystal aligning agent of this application especially the liquid crystal aligning agent for lateral electric field drive type liquid crystal display elements, (A) a side chain polymer having a side chain that exhibits liquid crystallinity in a predetermined temperature range and has a photoreactive group that causes photocrosslinking, photoisomerization, or photofleece rearrangement, (B) an organic solvent, and (C) an additive represented by the following formula (C).
  • Rc 1 and Rc 2 are substituents on the benzene ring, and each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 1 to 10 carbon atoms.
  • Alkoxy group having 1 to 10 carbon atoms, fluoroalkenyl group having 2 to 10 carbon atoms, fluoroalkoxy group having 1 to 10 carbon atoms, carboxyl group, hydroxy group, (alkyl having 1 to 10 carbon atoms) Represents an oxycarbonyl group, a cyano group or a nitro group.
  • v and w represent the number of substituents on the benzene ring, and each independently represents an integer of 0 to 5. When there is no substituent, it represents a hydrogen atom.
  • the side chain polymer is a side chain polymer having a side chain that exhibits liquid crystallinity in a predetermined temperature range.
  • the side chain has a photoreactive group that causes photocrosslinking, photoisomerization, or photofleece rearrangement.
  • the (A) side chain polymer preferably reacts with light in the wavelength range of 250 nm to 400 nm and exhibits liquid crystallinity in the temperature range of 100 ° C. to 300 ° C.
  • the side chain polymer preferably reacts with light in the wavelength range of 250 nm to 400 nm.
  • the (A) side chain polymer preferably has a mesogenic group in order to exhibit liquid crystallinity in the temperature range of 100 ° C to 300 ° C.
  • a side chain having a photoreactive group is bonded to the main chain, and can react with light to cause a crosslinking reaction, an isomerization reaction, or a light fleece rearrangement.
  • the structure of the side chain having a photoreactive group is not particularly limited, but a structure that undergoes a crosslinking reaction or photofleece rearrangement in response to light is desirable, and a structure that causes a crosslinking reaction is more desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time.
  • the structure of the side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable to have a rigid mesogenic component in the side chain structure. In this case, stable liquid crystal alignment can be obtained when the side chain polymer is used as a liquid crystal alignment film.
  • the polymer structure has, for example, a main chain and a side chain bonded to the main chain, and the side chain includes a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip.
  • a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip.
  • a side chain polymer having a photoreactive group that can exhibit liquid crystallinity examples include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone
  • a structure having a chain is preferred.
  • A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—.
  • S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
  • Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents.
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof
  • the hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a
  • R May be substituted with an alkyloxy group of R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
  • X is a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CH—CO—O—, or —O—CO—CH ⁇ .
  • X may be the same or different;
  • Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms; one of q1 and q2 is 1 and the other is 0; q3 is 0 or 1; P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • P or Q on the side to which —CH ⁇ CH— is bonded is an aromatic ring;
  • the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
  • l1 is 0 or 1;
  • l2 is an integer from 0 to 2; when l1 and l2 are both 0,
  • A represents a single bond when T is a single bond; when l1 is 1, B represents a single bond when T is a single bond;
  • H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
  • the side chain may be any one selected from the group consisting of the following formulas (7) to (10).
  • the side chain may be any one selected from the group consisting of the following formulas (11) to (13).
  • A, X, l, m, m2 and R have the same definition as above.
  • the side chain may be a side chain represented by the following formula (14) or (15).
  • A, Y 1 , X, 1, m1, and m2 have the same definition as above.
  • the side chain may be a side chain represented by the following formula (16) or (17).
  • A, X, l and m have the same definition as above.
  • the side chain type polymer may have a side chain other than the side chain having a photoreactive group.
  • the (A) side chain polymer may have any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31).
  • A, B, q1 and q2 have the same definition as above;
  • Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
  • R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in the formulas (25) to (26), the sum of all m is 2 or more, and the formulas (27) to (28 ), The sum of all m
  • the above side chain type polymer is obtained by polymerizing a photoreactive side chain monomer having a side chain having the above photoreactive group, or the photoreactive side chain monomer and other monomers such as a liquid crystalline side. It can be obtained by polymerizing with a chain monomer.
  • the photoreactive side chain monomer is a monomer capable of forming a polymer having a side chain having a photoreactive group at the side chain site of the polymer when the polymer is formed.
  • the photoreactive group possessed by the side chain the following structures and derivatives thereof are preferred.
  • photoreactive side chain monomer examples include radical polymerizable groups such as hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene, etc.
  • the liquid crystalline side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogenic group at a side chain site. Even if the side chain has a mesogenic group such as biphenyl or phenylbenzoate alone, or a group that forms a mesogen structure by hydrogen bonding between side chains such as benzoic acid. Good.
  • the mesogenic group having a side chain the following structure is preferable.
  • liquid crystalline side chain monomers include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene and other radical polymerizable groups
  • a structure having a polymerizable group composed of at least one selected from the group consisting of siloxanes and a side chain composed of at least one of the above formulas (21) to (31) is preferable.
  • the photoreactive and / or liquid crystalline side chain monomers may include, but are not limited to, compounds represented by the following formulas (A01) to (A20).
  • R represents a hydrogen atom or a methyl group
  • S represents an alkylene group having 2 to 10 carbon atoms
  • R 10 represents Br or CN
  • S represents an alkylene group having 2 to 10 carbon atoms
  • u represents Represents 0 or 1
  • Py represents a 2-pyridyl group, a 3-pyridyl group or a 4-pyridyl group.
  • V represents 1 or 2.
  • the side chain type polymer can be obtained by a polymerization reaction of the above-described photoreactive side chain monomer having a side chain having a photoreactive group. Further, it can be obtained by copolymerization of a photoreactive side chain monomer that does not exhibit liquid crystallinity and a liquid crystalline side chain monomer, or by copolymerization of a photoreactive side chain monomer that exhibits liquid crystallinity and a liquid crystalline side chain monomer. it can.
  • a monomer having a crosslinkable group or a monomer having a group selected from a nitrogen-containing aromatic heterocyclic group, an amide group and a urethane group is used. It may be polymerized. Examples of such a monomer having a crosslinkable group include monomers described as [Monomer having a side chain represented by Formula (0)] in International Patent Application Publication No. WO2015 / 199052 pamphlet. In addition, as a monomer having a group selected from a nitrogen-containing aromatic heterocyclic group, an amide group and a urethane group, it was described as [monomer having a side chain (a)] described in International Patent Application Publication No. WO2015 / 199052 pamphlet. Monomer. It can also be copolymerized with other monomers as long as the liquid crystallinity is not impaired.
  • Examples of other monomers include industrially available monomers capable of radical polymerization reaction. Specific examples of the other monomer include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound and vinyl compound.
  • unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
  • acrylate compound examples include those described in [0152] of WO2014 / 054785.
  • methacrylic acid ester compound examples include those described in [0153] of WO2014 / 054785.
  • Examples of the vinyl compound, styrene compound, and maleimide compound include those described in [0154] of WO2014 / 054785.
  • the production method of the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystalline side chain monomer or photoreactive side chain monomer. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
  • RAFT reversible addition-cleavage chain transfer
  • a radical thermal polymerization initiator is a compound that generates radicals when heated to a decomposition temperature or higher.
  • examples of such radical thermal polymerization initiators include those described in [0157] of WO2014 / 054785. Such radical thermal polymerization initiators can be used singly or in combination of two or more.
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • examples of such radical photopolymerization initiators include those described in [0158] of WO2014 / 054785. These compounds may be used alone or in combination of two or more.
  • the radical polymerization method is not particularly limited, and an emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method and the like can be used.
  • the organic solvent used in the polymerization reaction for obtaining the side chain polymer is not particularly limited as long as the produced polymer can be dissolved. Specific examples thereof include those described in [0161] of WO2014 / 054785.
  • organic solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve the polymer
  • the polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 ° C. to 150 ° C., but is preferably in the range of 50 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the monomer concentration is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the molecular weight of the obtained polymer is decreased when the ratio of the radical polymerization initiator is large relative to the monomer, and the molecular weight of the obtained polymer is increased when the ratio is small, the ratio of the radical initiator is
  • the content is preferably 0.1 mol% to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added during the polymerization.
  • the polymer may be precipitated by introducing the reaction solution into a poor solvent.
  • the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water.
  • the polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the (A) side chain polymer of the present invention is measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability at the time of forming the coating film, and uniformity of the coating film.
  • the weight average molecular weight is preferably 2,000 to 1,000,000, more preferably 5,000 to 200,000.
  • the liquid crystal aligning agent used for this invention is prepared as a coating liquid so that it may become suitable for formation of a liquid crystal aligning film. That is, the composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
  • the resin component is a resin component containing the side chain polymer already described.
  • the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
  • all of the above-described resin components may be the above-described side chain polymers, but other polymers other than those may be used as long as the liquid crystal expression ability and the photosensitive performance are not impaired. It may be mixed. In that case, the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
  • Such other polymers include, for example, poly (meth) acrylate, polyamic acid, polyimide, polyamic acid ester, polyurea, diisocyanate compound and tetracarboxylic acid derivative, polyamic acid-polyurea obtained by polymerizing diamine compound. Further, a polymer that is made of polyimide-polyurea or the like obtained by further imidization and is not the above-described side chain type polymer can be mentioned.
  • Organic solvent used for the liquid crystal aligning agent of this invention will not be specifically limited if it is an organic solvent in which a resin component is dissolved. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl
  • the liquid crystal aligning agent of this application contains the additive represented by a following formula (C) as (C) component.
  • Rc 1 and Rc 2 are substituents on the benzene ring, and each independently represents a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • a fluoroalkyl group having 1 to 10 carbon atoms, a fluoroalkenyl group having 2 to 10 carbon atoms, a fluoroalkoxy group having 1 to 10 carbon atoms, a carboxyl group, a hydroxy group, an (alkyl having 1 to 10 carbon atoms) oxycarbonyl group Represents a cyano group or a nitro group.
  • v and w represent the number of substituents on the benzene ring, and each independently represents an integer of 0 to 5. When there is no substituent, it represents a hydrogen atom.
  • the additive represented by the above formula (C) has the following formula (C) -1 (wherein Rc 1 , Rc 2 , v and w have the same definitions as above, provided that v and w are (Except when both are zero) and (C) -2.
  • the Rc 1 and Rc 2 when the benzene ring is substituted a halogen atom, an alkyl group, a carboxyl group or a hydroxy group.
  • v and w are preferably 0 to 4 in total, more preferably v is 0 to 2 and w is 0, and both v and w are 0 (ie, represented by (C) -2).
  • the additive is particularly preferable from the viewpoint of the availability and the effect of the compound.
  • Preferred examples of the component (C) include the following C1 to C3.
  • the content of the component (C) in the liquid crystal aligning agent of the present invention is preferably 1 part by weight to 40 parts by weight, more preferably 2 parts by weight with respect to 100 parts by weight of the polymer as the component (A). Part to 35 parts by weight, more preferably 3 parts to 15 parts by weight.
  • the liquid crystal aligning agent used for this invention is a polymer manufactured using the at least 1 type chosen from a diisocyanate component and a tetracarboxylic acid derivative, and 2 or more types of a diamine compound as (D) component as needed.
  • the polymer of component (D) includes polyurea produced using a diisocyanate component and a diamine component, a polyimide precursor produced using a diisocyanate component and a tetracarboxylic acid derivative, and a diisocyanate component and a tetracarboxylic acid derivative.
  • a polyurea polyimide precursor produced using a diamine component that is, a copolymer of polyurea and a polyimide precursor.
  • component (D) examples include polymers described as component (B) in International Application Publication No. WO2016 / 076348 pamphlet.
  • the blending ratio (mass basis) of the component (A) and the component (D) described above is the whole (( When the sum of the component (A) and the component (D) is 1, the component (A) is 0.01 to 0.99, more preferably 0.1 to 0.9, and still more preferably 0.00. 2 to 0.5.
  • the composition used in the present invention comprises (A) a side chain polymer, (B) an organic solvent, (C) an additive, and, if necessary, other components in addition to the component (D). You may contain. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when the composition is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate. It is not limited to.
  • solvents as described above it is preferably 5% by mass to 80% by mass, more preferably 20% by mass, so that the solubility of the entire solvent contained in the composition is not significantly reduced. % By mass to 60% by mass.
  • Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (Manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 (manufactured by Asahi Glass), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical) It is done.
  • the use ratio of these surfactants is preferably 0.01 parts by weight to 2 parts by weight, more preferably 0.01 parts by weight to 1 part by weight with respect to 100 parts by weight of the resin component contained in the composition.
  • Specific examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds described in [0174] of WO2014 / 054785.
  • phenoplasts and epoxy group-containing compounds for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed
  • An agent may be contained in the composition. Specific phenoplast additives are shown below, but are not limited to this structure.
  • epoxy group-containing compound examples include those described in [0177] of WO2014 / 054785.
  • the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the composition.
  • the amount is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • composition of the present application in addition to the above-described ones, in the range where the effects of the present invention are not impaired, for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, Furthermore, a crosslinkable compound may be added for the purpose of increasing the hardness and density of the liquid crystal alignment film.
  • liquid crystal alignment film using the above composition is subjected to a photo-alignment method by irradiation of polarized light on a coating film obtained using the composition in the same manner as in WO2014 / 054785 (the contents of which are incorporated herein in its entirety by reference). It can be obtained by using.
  • a liquid crystal display element particularly a lateral electric field drive type liquid crystal display element
  • the second substrate uses a conductive film, particularly a substrate having a conductive film for driving a lateral electric field, and has the above-mentioned steps [I] to [III], so that the orientation control ability can be improved.
  • a second substrate having the applied liquid crystal alignment film can be obtained.
  • the second substrate is replaced with a conductive film, particularly a substrate having a lateral electric field driving conductive film, instead of using a substrate that does not have the conductive film.
  • a coating film is formed by applying the above-described composition onto a substrate having a conductive film, particularly a conductive film for driving a lateral electric field.
  • ⁇ Board> Although it does not specifically limit about a board
  • the substrate has a conductive film, particularly a conductive film for driving a lateral electric field.
  • the conductive film include, but are not limited to, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) when the liquid crystal display element is a transmission type.
  • examples of the conductive film include a material that reflects light such as aluminum, but are not limited thereto.
  • a method for forming a conductive film on a substrate a conventionally known method can be used.
  • the method for applying the above-described composition onto a substrate having a conductive film is not particularly limited.
  • the application method is generally performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.
  • the solvent is evaporated at 50 to 200 ° C., preferably 50 to 150 ° C., by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • the drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer. If the thickness of the coating film is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. It is.
  • step [II] the coating film obtained in step [I] is irradiated with polarized ultraviolet rays.
  • the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
  • the ultraviolet rays to be used ultraviolet rays having a wavelength of 100 nm to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of coating film used.
  • ultraviolet light having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the irradiation amount of polarized ultraviolet rays depends on the coating film used.
  • the amount of irradiation is polarized ultraviolet light that realizes the maximum value of ⁇ A (hereinafter also referred to as ⁇ Amax), which is the difference between the ultraviolet light absorbance in a direction parallel to the polarization direction of polarized ultraviolet light and the ultraviolet light absorbance in a direction perpendicular to the polarization direction of the polarized ultraviolet light.
  • the amount is preferably in the range of 1% to 70%, more preferably in the range of 1% to 50%.
  • step [III] the ultraviolet-irradiated coating film polarized in step [II] is heated.
  • An orientation control ability can be imparted to the coating film by heating.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used.
  • the heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the coating film used is developed.
  • the heating temperature is preferably within the temperature range of the temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature).
  • the liquid crystal expression temperature on the coating film surface is expected to be lower than the liquid crystal expression temperature when a photosensitive side chain polymer that can exhibit liquid crystallinity is observed in bulk.
  • the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the coating film surface. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the temperature range of the liquid crystal expression temperature of the side chain polymer used, and 10 ° C.
  • the liquid crystal expression temperature is not less than the glass transition temperature (Tg) at which the side chain polymer or coating film surface undergoes a phase transition from the solid phase to the liquid crystal phase, and from the liquid crystal phase to the isotropic phase (isotropic phase). It means a temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.
  • the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. And a board
  • the step [IV] is performed by using the substrate (first substrate) obtained in [III] and having a liquid crystal alignment film on the conductive film, and the conductive materials obtained in the above [I ′] to [III ′].
  • a liquid crystal cell is produced by a known method by arranging a liquid crystal alignment film-provided substrate (second substrate) having no film so that both liquid crystal alignment films face each other through liquid crystal, and a transverse electric field is produced. This is a step of manufacturing a drive type liquid crystal display element.
  • the steps [I ′] to [III ′] are the same as the steps [I] to [III] except that, in the step [I], a substrate not having the conductive film is used instead of the substrate having the conductive film.
  • the first and second substrates described above are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside.
  • the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
  • Etc. can be illustrated.
  • the diameter of the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
  • substrate with a coating film of this invention irradiates the polarized ultraviolet-ray, after apply
  • high-efficiency anisotropy is introduced into the side chain polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal alignment control ability is manufactured.
  • the coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the side chain photoreaction and liquid crystallinity. .
  • a substrate for a liquid crystal display element produced by the composition of the present invention or the method of the present invention particularly a substrate for a lateral electric field drive type liquid crystal display element or a liquid crystal display element having the substrate, particularly a lateral electric field drive type.
  • the liquid crystal display element has excellent reliability.
  • the composition of the present invention or the method of the present invention can expand the range of light irradiation amount (so-called “irradiation amount margin”) in which the alignment control ability of the liquid crystal alignment film is stably generated, the liquid crystal alignment film In this manufacturing process, even when the polarized light irradiation time slightly deviates from the control value, a liquid crystal alignment film having the same quality can be obtained, and the manufacturing efficiency of the liquid crystal alignment film can be increased.
  • a substrate for a liquid crystal display element manufactured by the composition of the present invention or the method of the present invention particularly a substrate for a horizontal electric field drive type liquid crystal display element or a liquid crystal display element having the substrate, particularly a horizontal electric field drive type liquid crystal display element, It can be suitably used for a large-screen and high-definition liquid crystal television.
  • M1 as a monomer having a photoreactive group used in the examples M2 as a monomer having a liquid crystal group, HBAGE as a monomer having a crosslinking group, and A1 as a monomer having a nitrogen-containing aromatic heterocyclic group are shown below.
  • M1 and M2 were synthesized as follows. That is, M1 was synthesized by the synthesis method described in the patent document (WO2011-084546). M2 was synthesized by the synthesis method described in the patent document (Japanese Patent Laid-Open No. 9-118717). A polymer formed using M1 as a monomer has photoreactivity and liquid crystallinity, and a polymer formed using M2 as a monomer has only liquid crystallinity.
  • the monomer A1 to be copolymerized was synthesized by the synthesis method described in International Patent Application Publication No. WO2015 / 199052 pamphlet.
  • HBAGE hydroxybutyl acrylate glycidyl ether
  • a commercially available product was used.
  • TDA 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride
  • ISPDA Isophorone diisocyanate ⁇ diamine>
  • DDM 4,4′-diaminodiphenylmethane
  • Me-DADPA 4,4′-diaminodiphenyl (N-methyl) amine
  • DA-2MG 1,2-bis (4-aminophenoxy) ethane
  • Me-4APhA N-2- (4-Aminophenyl) ethyl-N-methylamine
  • C1 Additive represented by the following formula C1.
  • C2 An additive represented by the following formula C2.
  • C3 an additive represented by the following formula C3.
  • ⁇ Base polymer preparation B1> The methacrylate polymer powder P1 (1.2 g) obtained in the photoalignment polymer synthesis example P1 was added to NMP (12.8 g), and the mixture was dissolved by stirring at room temperature for 1 hour. To this solution, BCS (6.0 g) was added and stirred to obtain a polymer solution B1.
  • ⁇ Base polymer preparation B2> The methacrylate polymer powder P1 (0.36 g) obtained in the photoalignment polymer synthesis example P1 was added to NMP (8.04 g), and stirred at room temperature for 1 hour to dissolve. To this solution, the polymer solution B2 was obtained by adding and stirring the polyamic acid solution L1 (5.6 g) obtained in Polymer Synthesis Example L1 and BCS (6.0 g).
  • Example 1> C1 (0.06 g: 5 phr) was added to the polymer solution B1 (20.0 g) obtained in the base polymer preparation B1, and the mixture was stirred at room temperature for 1 hour to obtain a polymer solution T1.
  • This polymer solution T1 was used as a liquid crystal aligning agent for forming a liquid crystal alignment film as it was.
  • Table 1 shows the liquid crystal aligning agents T2 to T7 prepared using the same method as in Example T1.
  • the liquid crystal aligning agent (T1) obtained in Example 1 was filtered through a 0.45 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 70 ° C. for 90 seconds, and a film thickness of 100 nm. A liquid crystal alignment film was formed. Next, the coating film surface was irradiated with 5 to 50 mJ / cm 2 of 313 nm ultraviolet rays via a polarizing plate and then heated on a hot plate at 150 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film.
  • liquid crystal alignment film Two substrates with such a liquid crystal alignment film are prepared, a 6 ⁇ m spacer is set on the liquid crystal alignment film surface of one substrate, and the two substrates are combined so that the rubbing directions are parallel to each other.
  • the periphery was sealed, and an empty cell with a cell gap of 4 ⁇ m was produced.
  • Liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • Liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • liquid crystal cells were prepared using the liquid crystal aligning agents T2 to T7 obtained in Examples 2 to 7 and the base polymers B1 and B2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、配向制御能が安定して生じる光照射量の範囲を拡大させて、品質のよい液晶配向膜を効率よく得られる、液晶配向膜製造用組成物を提供する。 本発明は、 (A)所定の温度範囲で液晶性を発現する側鎖であって光架橋、光異性化、または光フリース転位を起こす光反応性基を有する側鎖を備えた側鎖型高分子、 (B)有機溶媒、及び (C)下記式(C)(式中、RcとRcは、ベンゼン環の置換基であり、それぞれ独立にハロゲン原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のフルオロアルキル基、炭素数2~10のフルオロアルケニル基、は炭素数1~10のフルオロアルコキシ基、カルボキシル基、ヒドロキシ基、(炭素数1~10のアルキル)オキシカルボニル基、シアノ基またはニトロ基を表す。 v及びwは、ベンゼン環上の置換基の数を表し、それぞれ独立に0~5の整数を表す。)で表される添加剤 を含有する液晶配向剤を提供する。

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、液晶配向剤、特に横電界駆動型液晶表示素子用液晶配向剤に関する。
 また、本発明は、該液晶配向剤を用いて製造される液晶配向膜、特に横電界駆動型液晶表示素子用液晶配向膜及び該膜を有する基板、並びにその製造方法に関する。
 さらに、本発明は、該液晶配向膜又は基板を有する液晶表示素子及びその製造方法に関する。
 特に、本発明は、液晶配向膜の配向処理に用いる光配向法において、光照射量範囲を拡大させて、液晶配向膜の製造効率を高めた液晶配向剤、特に横電界駆動型液晶表示素子用液晶配向剤、該液晶配向剤を用いて製造される液晶配向膜又は液晶配向膜を有する基板、それらを有する液晶表示素子、並びに液晶配向膜、液晶配向膜を有する基板又は液晶表示素子の製造方法に関する。
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられるなど、目覚ましい発展を遂げている。液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。
 すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。そして、液晶配向膜には、液晶を、例えば、基板に対して平行な方向など、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割を求められることがある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。
 配向制御能を付与するための液晶配向膜の配向処理方法として、従来からのラビング法の他に、光配向法が知られている。光配向法は、従来のラビング法と比較して、ラビングを不要とし、発塵や静電気の発生の懸念が無く、表面に凹凸のある液晶表示素子の基板に対しても配向処理を施すことができる、という利点がある。
 光配向法には様々な方法があるが、直線偏光またはコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。
 光配向法として、分解型の光配向法、光架橋型や光異性化型の光配向法などが知られている。
 分解型の光配向法は、例えば、ポリイミド膜に偏光紫外線を照射し、分子構造の紫外線吸収の偏光方向依存性を利用して異方的な分解を生じさせ、分解せずに残されたポリイミドにより液晶を配向させる手法である(例えば、特許文献1を参照)。
 光架橋型や光異性化型の光配向法は、例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせ、偏光方向と直交した方向に液晶を配向させる手法である(例えば、非特許文献1を参照)。また、アゾベンゼンを側鎖に有する側鎖型高分子を用いた場合、偏光紫外線を照射し、偏光と平行な側鎖のアゾベンゼン部で異性化反応を生じさせ、偏光方向と直交した方向に液晶を配向させる(例えば、非特許文献2を参照)。さらに、特許文献3は、光架橋、光異性化又は光フリース転位による光配向法を用いて得られる液晶配向膜を開示する。
特許第3893659号公報 特開平2-37324号公報 WO2014/054785
M. Shadt et al., Jpn. J. Appl. Phys. 31, 2155 (1992). K. Ichimura et al., Chem. Rev. 100, 1847 (2000).
 以上のように、光配向法は、液晶表示素子の配向処理方法として従来から工業的に利用されてきたラビング法と比べてラビング工程そのものを不要とするため、大きな利点を備える。そして、ラビングによって配向制御能がほぼ一定となるラビング法に比べ、光配向法では、偏光した光の照射量を変化させて配向制御能を制御することができる。
 しかしながら、光配向法において用いる主成分の配向制御能が偏光した光の照射量に敏感すぎると、液晶配向膜の一部又は全体において配向が不完全になり、安定な液晶の配向が実現できない場合が生じる。
 そこで、本発明の目的は、配向制御能が安定して生じる光照射量の範囲を拡大させて、品質のよい液晶配向膜を効率よく得られる液晶配向剤、特に横電界駆動型液晶表示素子用液晶配向剤を提供することにある。
 また、本発明の目的は、上記目的以外に、又は上記目的に加えて、該組成物を用いて製造される液晶配向膜又は液晶配向膜を有する基板、それらを有する液晶表示素子、特に横電界駆動型液晶表示素子を提供することにある。
 さらに、本発明の目的は、上記目的以外に、又は上記目的に加えて、液晶配向膜、液晶配向膜を有する基板、又は液晶表示素子、特に横電界駆動型液晶表示素子の製造方法を提供することにある。
 本発明者は、以下の発明を見出した。
 <1> (A)所定の温度範囲で液晶性を発現する側鎖であって光架橋、光異性化、または光フリース転位を起こす光反応性基を有する側鎖を備えた側鎖型高分子、
 (B)有機溶媒、及び
 (C)下記式(C)で表される添加剤
を含有する液晶配向剤、特に横電界駆動型液晶表示素子用の液晶配向剤である。
Figure JPOXMLDOC01-appb-C000005
 式中、RcとRcは、ベンゼン環の置換基であり、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のフルオロアルキル基、炭素数2~10のフルオロアルケニル基、は炭素数1~10のフルオロアルコキシ基、カルボキシル基、ヒドロキシ基、(炭素数1~10のアルキル)オキシカルボニル基、シアノ基またはニトロ基を表す。
 v及びwは、ベンゼン環上の置換基の数を表し、それぞれ独立に0~5の整数を表す。なお、置換基がないときは、水素原子を表す。
 本発明により、配向制御能が安定して生じる光照射量の範囲を拡大させて、品質のよい液晶配向膜を効率よく得られる液晶配向剤、特に横電界駆動型液晶表示素子用液晶配向剤を提供することができる。
 また、本発明により、上記効果以外に、又は上記効果に加えて、該液晶配向剤を用いて製造される液晶配向膜又は液晶配向膜を有する基板、それらを有する液晶表示素子、特に横電界駆動型液晶表示素子を提供することができる。
 さらに、本発明により、上記効果以外に、又は上記効果に加えて、液晶配向膜、液晶配向膜を有する基板、又は液晶表示素子、特に横電界駆動型液晶表示素子の製造方法を提供することができる。
 本願は、液晶配向剤、特に横電界駆動型液晶表示素子用液晶配向剤、より特に液晶配向膜の配向処理に用いる光配向法において、光照射量範囲を拡大させて、液晶配向膜の製造効率を高めた組成物を提供する。
 また、本願は、該液晶配向剤を用いて製造される液晶配向膜、特に横電界駆動型液晶表示素子用液晶配向膜及び該膜を有する基板、並びにその製造方法を提供する。
 さらに、本願は、該液晶配向膜又は基板を有する液晶表示素子及びその製造方法を提供する。
<液晶配向膜製造用組成物>
 本願の液晶配向剤、特に横電界駆動型液晶表示素子用液晶配向剤は、
 (A)所定の温度範囲で液晶性を発現する側鎖であって光架橋、光異性化、または光フリース転位を起こす光反応性基を有する側鎖を備えた側鎖型高分子、
 (B)有機溶媒、及び
 (C)下記式(C)で表される添加剤
を含有する。
Figure JPOXMLDOC01-appb-C000006
 式中、RcとRcは、ベンゼン環の置換基であり、それぞれ独立に水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のフルオロアルキル基、炭素数2~10のフルオロアルケニル基、は炭素数1~10のフルオロアルコキシ基、カルボキシル基、ヒドロキシ基、(炭素数1~10のアルキル)オキシカルボニル基、シアノ基またはニトロ基を表す。
 v及びwは、ベンゼン環上の置換基の数を表し、それぞれ独立に0~5の整数を表す。なお、置換基がないときは、水素原子を表す。
 本願の液晶配向剤を用いることにより、該組成物から得られる液晶配向膜の配向処理に用いる光配向法において、光照射量範囲を拡大させて、液晶配向膜の製造効率を高めることができる。
<<(A)側鎖型高分子>>
 (A)側鎖型高分子は、所定の温度範囲で液晶性を発現する側鎖を備えた側鎖型高分子である。また、該側鎖は、光架橋、光異性化、または光フリース転位を起こす光反応性基を有する。
 (A)側鎖型高分子は、250nm~400nmの波長範囲の光で反応し、かつ100℃~300℃の温度範囲で液晶性を示すのがよい。
 (A)側鎖型高分子は、250nm~400nmの波長範囲の光に反応するのが好ましい。
 (A)側鎖型高分子は、100℃~300℃の温度範囲で液晶性を示すためにメソゲン基を有することが好ましい。
 (A)側鎖型高分子は、主鎖に光反応性基を有する側鎖が結合しており、光に感応して架橋反応、異性化反応、または光フリース転位を起こすことができる。光反応性基を有する側鎖の構造は特に限定されないが、光に感応して架橋反応、または光フリース転位を起こす構造が望ましく、架橋反応を起こすものがより望ましい。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。液晶性を発現し得る側鎖型高分子の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。この場合、該側鎖型高分子を液晶配向膜とした際に、安定な液晶配向を得ることができる。
 該高分子の構造は、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などのメソゲン成分と、先端部に結合された、光に感応して架橋反応や異性化反応をする光反応性基とを有する構造や、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する構造とすることができる。
 液晶性を発現し得る、光反応性基を有する側鎖型高分子の構造のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)から(6)の少なくとも1種からなる側鎖を有する構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
 Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 q1とq2は、一方が1で他方が0である;
 q3は0または1である;
 P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
 l1は0または1である;
 l2は0~2の整数である;
 l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
 l1が1であるときは、Tが単結合であるときはBも単結合を表す;
 H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。
 側鎖は、下記式(7)~(10)からなる群から選ばれるいずれか1種であるのがよい。
 式中、A、B、D、Y、X、Y、及びRは、上記と同じ定義を有する;
 lは1~12の整数を表す;
 mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
 nは0~12の整数(ただしn=0のときBは単結合である)を表す。
Figure JPOXMLDOC01-appb-C000008
 側鎖は、下記式(11)~(13)からなる群から選ばれるいずれか1種であるのがよい。
 式中、A、X、l、m、m2及びRは、上記と同じ定義を有する。
Figure JPOXMLDOC01-appb-C000009
 側鎖は、下記式(14)又は(15)で表される側鎖であるのがよい。
 式中、A、Y、X、l、m1及びm2は上記と同じ定義を有する。
Figure JPOXMLDOC01-appb-C000010
 側鎖は、下記式(16)又は(17)で表される側鎖であるのがよい。
 式中、A、X、l及びmは、上記と同じ定義を有する。
Figure JPOXMLDOC01-appb-C000011
<<液晶性側鎖を有する側鎖型高分子>>
 (A)側鎖型高分子は、光反応性基を有する側鎖以外の側鎖を有してもよい。例えば、(A)側鎖型高分子は、下記式(21)~(31)からなる群から選ばれるいずれか1種の液晶性側鎖を有してもよい。
 式中、A、B、q1及びq2は上記と同じ定義を有する;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
 lは1~12の整数を表し、mは0から2の整数を表し、但し、式(25)~(26)において、全てのmの合計は2以上であり、式(27)~(28)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
 Rは、水素原子、-NO、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
 Z、Zは単結合、-CO-、-CHO-、-CH=N-、-CF-を表す。
Figure JPOXMLDOC01-appb-C000012
<<側鎖型高分子の製法>>
 上記の側鎖型高分子は、上記の光反応性基を有する側鎖を有する光反応性側鎖モノマーを重合することによって、又は該光反応性側鎖モノマーとその他のモノマー、例えば液晶性側鎖モノマーとを重合することによって得ることができる。
[光反応性側鎖モノマー] 
 光反応性側鎖モノマーとは、高分子を形成した場合に、高分子の側鎖部位に光反応性基を有する側鎖を有する高分子を形成することができるモノマーのことである。
 側鎖が有する光反応性基としては下記の構造およびその誘導体が好ましい。
Figure JPOXMLDOC01-appb-C000013
 光反応性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、上記式(1)~(6)の少なくとも1種からなる側鎖、好ましくは、例えば、上記式(7)~(10)の少なくとも1種からなる側鎖、上記式(11)~(13)の少なくとも1種からなる側鎖、上記式(14)又は(15)で表される側鎖、上記式(16)又は(17)で表される側鎖、を有する構造であることが好ましい。
[液晶性側鎖モノマー]
 液晶性側鎖モノマーとは、該モノマー由来の高分子が液晶性を発現し、該高分子が側鎖部位にメソゲン基を形成することができるモノマーのことである。
 側鎖が有するメソゲン基として、ビフェニルやフェニルベンゾエートなどの単独でメソゲン構造となる基であっても、安息香酸などのように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖を有するメソゲン基としては下記の構造が好ましい。
Figure JPOXMLDOC01-appb-C000014
 液晶性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、上記式(21)~(31)の少なくとも1種からなる側鎖を有する構造であることが好ましい。
 本願は、光反応性及び/又は液晶性側鎖モノマーとして、以下の式(A01)~(A20)で表される化合物を挙げることができるが、これらに限定されない。
 式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;R10はBrまたはCNを示す;Sは炭素数2~10のアルキレン基を表す;uは0または1を表す;及びPyは2-ピリジル基、3-ピリジル基または4-ピリジル基を表す。また、vは1または2を表す。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 (A)側鎖型高分子は、上述した光反応性基を有する側鎖を有する光反応性側鎖モノマーの重合反応により得ることができる。また、液晶性を発現しない光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合や、液晶性を発現する光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合によって得ることができる。
 また、(A)側鎖型高分子に、機能性の付与を目的として、架橋性基を有するモノマーや、含窒素芳香族複素環基、アミド基及びウレタン基から選ばれる基を有するモノマーを共重合させてもよい。そのような架橋性基を有するモノマーとしては、国際特許出願公開WO2015/199052号パンフレットに[式(0)で表される側鎖を有するモノマー]として記載したモノマーが挙げられる。また、含窒素芳香族複素環基、アミド基及びウレタン基から選ばれる基を有するモノマーとしては、国際特許出願公開WO2015/199052号パンフレットに記載の[側鎖(a)を有するモノマー]として記載したモノマーが挙げられる。
 液晶性の発現能を損なわない範囲でその他のモノマーと共重合することもできる。
 その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。
 その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。
 アクリル酸エステル化合物としては、例えば、WO2014/054785号公報の[0152]に記載されるものを挙げることができる。
 メタクリル酸エステル化合物としては、例えば、WO2014/054785号公報の[0153]に記載されるものを挙げることができる。
 ビニル化合物、スチレン化合物又はマレイミド化合物としては、例えば、WO2014/054785号公報の[0154]に記載されるものを挙げることができる。
 本実施の形態の側鎖型高分子の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、液晶性側鎖モノマーや光反応性側鎖モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、WO2014/054785号公報の[0157]に記載されるものを挙げることができる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、WO2014/054785号公報の[0158]に記載されるものを挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。
 ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。
 側鎖型高分子を得るための重合反応に用いる有機溶媒としては、生成した高分子が溶解するものであれば特に限定されない。その具体例としてWO2014/054785号公報の[0161]に記載されるものを挙げることができる。
 これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
 また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
 ラジカル重合の際の重合温度は30℃~150℃の任意の温度を選択することができるが、好ましくは50℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、モノマー濃度が、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1モル%~10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。
[重合体の回収]
 上述の反応により得られた、側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 本発明の(A)側鎖型高分子の分子量は、得られる塗膜の強度、塗膜形成時の作業性、および塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000~1000000が好ましく、より好ましくは、5000~200000である。
[液晶配向剤の調製]
 本発明に用いられる液晶配向剤は、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる組成物は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、その樹脂成分とは、既に説明した側鎖型高分子を含む樹脂成分である。その際、樹脂成分の含有量は、1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、特に好ましくは3質量%~10質量%である。
 本実施形態の液晶配向剤において、前述の樹脂成分は、全てが上述した側鎖型高分子であってもよいが、液晶発現能および感光性能を損なわない範囲でそれら以外の他の重合体が混合されていてもよい。その際、樹脂成分中における他の重合体の含有量は、0.5質量%~80質量%、好ましくは1質量%~50質量%である。
 そのような他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド、ポリアミック酸エステル、ポリウレア、ジイソシアネート化合物とテトラカルボン酸誘導体、ジアミン化合物とを重合することにより得られるポリアミック酸-ポリウレア、さらにイミド化することにより得られるポリイミド-ポリウレア等からなり、上述した側鎖型高分子ではない重合体等が挙げられる。
<<(B)有機溶媒>>
 本発明の液晶配向剤に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは単独で使用しても、混合して使用してもよい。
<<(C)添加剤>>
 本願の液晶配向剤は(C)成分として、下記式(C)で表される添加剤を含有する。
Figure JPOXMLDOC01-appb-C000018
 式中、RcとRcは、ベンゼン環の置換基であり、それぞれ独立にハロゲン原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のフルオロアルキル基、炭素数2~10のフルオロアルケニル基、は炭素数1~10のフルオロアルコキシ基、カルボキシル基、ヒドロキシ基、(炭素数1~10のアルキル)オキシカルボニル基、シアノ基またはニトロ基を表す。
 v及びwは、ベンゼン環上の置換基の数を表し、それぞれ独立に0~5の整数を表す。なお、置換基がないときは、水素原子を表す。
 また、上記式(C)で表される添加剤は、下記式(C)-1(式中、Rc、Rc、v及びwは、上記と同じ定義を有する。ただし、v及びwが共にゼロの場合を除く)及び(C)-2で表される添加剤として表すことができる。
Figure JPOXMLDOC01-appb-C000019
 このうち、ベンゼン環が置換されている場合のRcとRcとしては、ハロゲン原子、アルキル基、カルボキシル基またはヒドロキシ基が好ましい。
 vとwは合計で0~4であるのが好ましく、vが0~2でwが0であるのがさらに好ましく、vもwも0である(すなわち、(C)-2で表される添加剤である)のが、化合物の入手性や、効果等の点から特に好ましい。
 好ましい(C)成分としては、下記のC1~C3が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 本発明の液晶配向剤における(C)成分の好ましい含有量は、(A)成分である重合体の100質量部に対して、好ましくは1質量部~40質量部であり、より好ましくは2質量部~35質量部であり、さらに好ましくは3質量部~15質量部である。
 (C)成分の添加量を上記範囲とすることにより、得られる液晶配向膜の配向性を良好なものとすることができる。
<<(D)成分>>
 本発明に用いられる液晶配向剤は、必要に応じて、(D)成分として、ジイソシアネート成分及びテトラカルボン酸誘導体から選ばれる少なくとも一種と、ジアミン化合物の2種以上とを用いて製造された重合体を有する。かかる(D)成分の重合体は、ジイソシアネート成分及びジアミン成分とを用いて製造されたポリウレア、ジイソシアネート成分及びテトラカルボン酸誘導体を用いて製造されたポリイミド前駆体、および、ジイソシアネート成分、テトラカルボン酸誘導体及びジアミン成分を用いて製造されたポリウレアポリイミド前駆体、すなわち、ポリウレアとポリイミド前駆体との共重合体が挙げられる。
 このような(D)成分としては、国際出願公開WO2016/076348号パンフレットに(B)成分として記載された重合体が挙げられる。
 本発明の好ましい態様によれば、本発明による重合組成物において、(D)成分を含有させる場合の、前記した(A)成分と(D)成分の配合比(質量基準)は、全体((A)成分と(D)成分の合計)を1にした場合、(A)成分が0.01~0.99であり、より好ましくは0.1~0.9であり、さらに好ましくは0.2~0.5である。
 本発明に用いられる組成物は、上記(A)側鎖型高分子、(B)有機溶媒、及び(C)添加剤、ならびに、必要に応じて(D)成分の他に、その他の成分を含有してもよい。その例としては、組成物を塗布した際の、膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等を挙げることができるが、これに限定されない。
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、WO2014/054785号公報の[0171]に記載されるものを挙げることができる。
 これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。上述のような溶媒を用いる場合は、組成物に含まれる溶媒全体の溶解性を著しく低下させることが無いように、溶媒全体の5質量%~80質量%であることが好ましく、より好ましくは20質量%~60質量%である。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤およびノ二オン系界面活性剤等が挙げられる。
 より具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、R-30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710(旭硝子社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、組成物に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部~2質量部、より好ましくは0.01質量部~1質量部である。
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、WO2014/054785号公報の[0174]に記載される官能性シラン含有化合物などが挙げられる。
 さらに、基板と液晶配向膜の密着性の向上に加え、液晶表示素子を構成した時のバックライトによる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系やエポキシ基含有化合物の添加剤を、組成物中に含有させても良い。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。
Figure JPOXMLDOC01-appb-C000021
 具体的なエポキシ基含有化合物としては、WO2014/054785号公報の[0177]に記載されるものを挙げることができる。
 基板との密着性を向上させる化合物を使用する場合、その使用量は、組成物に含有される樹脂成分の100質量部に対して0.1質量部~30質量部であることが好ましく、より好ましくは1質量部~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本願の組成物には、上述したものの他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。
<上記組成物を用いた液晶配向膜及びその製造方法>、<液晶配向膜を有する基板の製造方法>及び<液晶表示素子の製造方法>
 上記組成物を用いた液晶配向膜は、WO2014/054785(この内容は本願に参照としてその全体が含まれる)と同様に、該組成物を用いて得られる塗膜に偏光照射による光配向法を用いることにより、得ることができる。
 具体的には、
 [I] 上述の組成物を、導電膜、特に横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
 [II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
 [III] [II]で得られた塗膜を加熱する工程;
を有することによって、配向制御能が付与された液晶配向膜、特に特に横電界駆動型液晶表示素子用液晶配向膜を得ることができ、該液晶配向膜を有する基板を得ることができる。
 また、上記で得られた基板(第1の基板)の他に、第2の基板を準備することにより、液晶表示素子、特に横電界駆動型液晶表示素子を得ることができる。
 第2の基板は、第1の基板と同様に、導電膜、特に横電界駆動用の導電膜を有する基板を用いて、上記工程[I]~[III]を用いることにより、配向制御能が付与された液晶配向膜を有する第2の基板を得ることができる。
 また、第2の基板は、導電膜、特に横電界駆動用の導電膜を有する基板に代えて、該導電膜を有しない基板を用いる以外、上記工程[I]~[III](導電膜を有しない基板を用いるため、便宜上、本願において、工程[I’]~[III’]と略記する場合がある)を用いることにより、配向制御能が付与された液晶配向膜を有する第2の基板を得ることができる。
 液晶表示素子、特に横電界駆動型液晶表示素子の製造方法は、
 [IV] 上記で得られた第1及び第2の基板を、液晶を介して第1及び第2の基板の液晶配向膜が相対するように、対向配置して液晶表示素子を得る工程;
を有する。これにより、液晶表示素子、特に横電界駆動型液晶表示素子を得ることができる。
 以下、本発明の製造方法の有する[I]~[III]、および[IV]の各工程について説明する。
<工程[I]>
 工程[I]では、導電膜、特に横電界駆動用の導電膜を有する基板上に、上述の組成物を塗布して塗膜を形成する。
<基板>
 基板については、特に限定はされないが、製造される液晶表示素子が透過型である場合、透明性の高い基板が用いられることが好ましい。その場合、特に限定はされず、ガラス基板、またはアクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。
 また、反射型の液晶表示素子への適用を考慮し、シリコンウェハなどの不透明な基板も使用できる。
<導電膜>
 基板は、導電膜、特に横電界駆動用の導電膜を有する。
 該導電膜として、液晶表示素子が透過型である場合、ITO(Indium Tin Oxide:酸化インジウムスズ)、IZO(Indium Zinc Oxide:酸化インジウム亜鉛)などを挙げることができるが、これらに限定されない。
 また、反射型の液晶表示素子の場合、導電膜として、アルミなどの光を反射する材料などを挙げることができるがこれらに限定されない。
 基板に導電膜を形成する方法は、従来公知の手法を用いることができる。
 上述した組成物を導電膜を有する基板上に塗布する方法は特に限定されない。
 塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)またはスプレー法などがあり、目的に応じてこれらを用いてもよい。
 導電膜を有する基板上に組成物を塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50~200℃、好ましくは50~150℃で溶媒を蒸発させて塗膜を得ることができる。このときの乾燥温度は、側鎖型高分子の液晶相発現温度よりも低いことが好ましい。
 塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm~300nm、より好ましくは10nm~150nmである。
 尚、[I]工程の後、続く[II]工程の前に塗膜の形成された基板を室温にまで冷却する工程を設けることも可能である。
<工程[II]>
 工程[II]では、工程[I]で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100nm~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290nm~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
 偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値(以下、ΔAmaxとも称する)を実現する偏光紫外線の量の1%~70%の範囲内とすることが好ましく、1%~50%の範囲内とすることがより好ましい。
<工程[III]>
 工程[III]では、工程[II]で偏光した紫外線の照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
 加熱は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。
 加熱温度は、側鎖型高分子が液晶性を発現する温度(以下、液晶発現温度という)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、液晶性を発現し得る感光性の側鎖型高分子をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、使用する側鎖型高分子の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。
 なお、液晶発現温度は、側鎖型高分子または塗膜表面が固体相から液晶相に相転移がおきるガラス転移温度(Tg)以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。
 以上の工程を有することにより、本発明の製造方法では、高効率な、塗膜への異方性の導入を実現することができる。そして、高効率に液晶配向膜付基板を製造することができる。
<工程[IV]>
 [IV]工程は、[III]で得られた、導電膜上に液晶配向膜を有する基板(第1の基板)と、同様に上記[I’]~[III’]で得られた、導電膜を有しない液晶配向膜付基板(第2の基板)とを、液晶を介して、双方の液晶配向膜が相対するように対向配置して、公知の方法で液晶セルを作製し、横電界駆動型液晶表示素子を作製する工程である。なお、工程[I’]~[III’]は、工程[I]において、導電膜を有する基板の代わりに、該導電膜を有しない基板を用いた以外、工程[I]~[III]と同様に行うことができる。工程[I]~[III]と工程[I’]~[III’]との相違点は、上述した導電膜の有無だけであるため、工程[I’]~[III’]の説明を省略する。
 液晶セル又は液晶表示素子の作製の一例を挙げるならば、上述の第1及び第2の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このとき、片側の基板には横電界駆動用の櫛歯のような構造の電極を有する基板を用いることが好ましい。このときのスペーサの径は、好ましくは1μm~30μm、より好ましくは2μm~10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。
 本発明の塗膜付基板の製造方法は、組成物を基板上に塗布し塗膜を形成した後、偏光した紫外線を照射する。次いで、加熱を行うことにより側鎖型高分子膜への高効率な異方性の導入を実現し、液晶の配向制御能を備えた液晶配向膜付基板を製造する。
 本発明に用いる塗膜では、側鎖の光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、塗膜への高効率な異方性の導入を実現する。本発明の製造方法では、側鎖型高分子に光反応性基として光架橋性基を有する構造の場合、側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、液晶表示素子を作成する。
 なお、光反応性基として光架橋性基、光フリース転位基又は異性化を起こす基を有する構造の側鎖型高分子を用いる光配向法については、WO2014/054785(この文献の内容はその全体を参照として本願に含まれる)に詳述されており、本願でも同様である。
 以上のようにして、本発明の組成物又は本発明の方法によって製造された液晶表示素子用基板、特に横電界駆動型液晶表示素子用基板又は該基板を有する液晶表示素子、特に横電界駆動型液晶表示素子は、信頼性に優れたものとなる。
 また、本発明の組成物又は本発明の方法により、液晶配向膜の配向制御能が安定して生じる光照射量の範囲(いわゆる「照射量マージン」)を拡大させることができるため、液晶配向膜の製造工程において、偏光光照射の時間などが、制御値から多少ぶれたとしても、品質が変わらない液晶配向膜を得ることができ、液晶配向膜の製造効率を上げることができる。よって、本発明の組成物又は本発明の方法によって製造された液晶表示素子用基板、特に横電界駆動型液晶表示素子用基板又は該基板を有する液晶表示素子、特に横電界駆動型液晶表示素子は、大画面で高精細の液晶テレビなどに好適に利用できる。
 以下、実施例を用いて本発明を説明するが、本発明は、該実施例に限定されるものではない。
 実施例で使用する光反応性基を有するモノマーとしてM1、液晶性基を有するモノマーとしてM2、架橋基を有するモノマーとしてHBAGE、並びに含窒素芳香族複素環基を有するモノマーとしてA1を以下に示す。
 M1、M2は、それぞれ、次のようにして合成した。即ち、M1は特許文献(WO2011-084546)に記載の合成法にて合成した。M2は特許文献(特開平9-118717)に記載の合成法にて合成した。なお、M1をモノマーとして形成されるポリマーは光反応性及び液晶性を有し、M2をモノマーとして形成されるポリマーは液晶性のみを有する。
 共重合するモノマーA1は国際特許出願公開WO2015/199052号パンフレットに記載の合成法にて合成した。
 HBAGE(ヒドロキシブチルアクリレートグリシジルエーテル)は、市販購入可能であるものを用いた。
Figure JPOXMLDOC01-appb-C000022
<テトラカルボン酸二無水物>
 TDA:3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物
<ジイソシアネート>
 ISPDA:イソホロンジイソシアネート
<ジアミン>
 DDM:4,4’-ジアミノジフェニルメタン
 Me-DADPA:4,4’-ジアミノジフェニル(N-メチル)アミン
 DA-2MG:1,2-ビス(4-アミノフェノキシ)エタン
 Me-4APhA:N-2-(4-アミノフェニル)エチル-N-メチルアミン
<添加剤>
 C1:下記式C1で表される添加剤。
 C2:下記式C2で表される添加剤。
 C3:下記式C3で表される添加剤。
Figure JPOXMLDOC01-appb-C000023
 その他、本実施例で用いる試薬の略号を以下に示す。
(有機溶媒)
THF:テトラヒドロフラン
NMP:N-エチル-2-ピロリドン
BCS:ブチルセロソロブ
(重合開始剤)
AIBN:2,2’-アゾビスイソブチロニトリル
<光配向ポリマー合成例P1>
 M1(3.32g:0.2mol%)、M2(12.25g:0.8mol%)、HBAGE(0.32g:0.03mol%)、A1(0.11g:0.01mol%)をTHF(65.05g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.25g)を加え再び脱気を行った。この後、60℃で8時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(300ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P1を得た。
<ポリマー合成例合L1>
 テトラカルボン酸二無水物成分として、TDAを4.47g、ジイソシアネート成分として、ISPDAを3.45g、ジアミン成分として、DA-2MGを6.01g、Me-DADPAを1.32g用い、NMP86.67g中、室温で18時間反応させポリウレアポリアミック酸(L1)の濃度15wt%の溶液を得た。
<ベースポリマー調製B1>
 NMP(12.8g)に光配向ポリマー合成例P1にて得られたメタクリレートポリマー粉末P1(1.2g)を加え、室温で1時間攪拌して溶解させた。この溶液に、BCS(6.0g)を加え攪拌することにより、ポリマー溶液B1を得た。
<ベースポリマー調製B2>
 NMP(8.04g)に光配向ポリマー合成例P1にて得られたメタクリレートポリマー粉末P1(0.36g)を加え、室温で1時間攪拌して溶解させた。この溶液に、ポリマー合成例L1にて得られたポリアミック酸溶液L1(5.6g)と、BCS(6.0g)を加え攪拌することにより、ポリマー溶液B2を得た。
<実施例1>
 ベースポリマー調製B1にて得られたポリマー溶液B1(20.0g)に、C1(0.06g:5phr)を加え室温で1時間攪拌し、ポリマー溶液T1を得た。このポリマー溶液T1は、そのまま液晶配向膜を形成するための液晶配向剤とした。
<実施例2~7>
 実施例T1と同様の方法を用いて調製した液晶配向剤T2~7を表1に示す。
Figure JPOXMLDOC01-appb-T000024
 <液晶セルの作製>
 実施例1で得られた液晶配向剤(T1)を0.45μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で90秒間乾燥後、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して313nmの紫外線を5~50mJ/cm照射した後に150℃のホットプレートで10分間加熱し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサを設置した後、2枚の基板のラビング方向が平行になるようにして組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク株式会社製)を注入し、注入口を封止して、液晶が平行配向した液晶セルを得た。
 同様に実施例2~7で得られた液晶配向剤T2~7及び、ベースポリマーB1, B2を用いて、液晶セルを作成した。
<配向性評価>
 実施例1~7、ベースポリマー1,2を用いて作製した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。その液晶セルを目視にて確認。この液晶セルが良好に配向し、流動配向が確認されなければ「○」、配向したものの流動配向が確認されれば「△」、無配向であれば「×」とした。
Figure JPOXMLDOC01-appb-T000025
 表2から、実施例1~7において、添加剤の導入により、広範囲のUV照射量において良好な配向性を示すことがわかる。

Claims (9)

  1.  (A)所定の温度範囲で液晶性を発現する側鎖であって光架橋、光異性化、または光フリース転位を起こす光反応性基を有する側鎖を備えた側鎖型高分子、
     (B)有機溶媒、及び
     (C)下記式(C)で表される添加剤
    を含有する液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     式中、RcとRcは、ベンゼン環の置換基であり、それぞれ独立にハロゲン原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のフルオロアルキル基、炭素数2~10のフルオロアルケニル基、は炭素数1~10のフルオロアルコキシ基、カルボキシル基、ヒドロキシ基、(炭素数1~10のアルキル)オキシカルボニル基、シアノ基またはニトロ基を表す。
     v及びwは、ベンゼン環上の置換基の数を表し、それぞれ独立に0~5の整数を表す。
  2.  前記(A)側鎖型高分子が、下記式(1)~(6)
    (式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
     Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     q1とq2は、一方が1で他方が0である;
     q3は0または1である;
     P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
     l1は0または1である;
     l2は0~2の整数である;
     l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
     l1が1であるときは、Tが単結合であるときはBも単結合を表す;
     H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。)
    からなる群から選ばれる、光反応性基を有する側鎖を少なくとも1種有する請求項1記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
  3.  前記(C)添加剤が、下記式C1~C3で表される化合物からなる群から選ばれる少なくとも1種である請求項1または2記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
  4.  前記(A)側鎖型高分子が、下記式(21)~(31)
    (式中、A及びBは上記と同じ定義を有する;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
     q1とq2は、一方が1で他方が0である;
     lは1~12の整数を表し、mは0から2の整数を表し、但し、式(25)~(26)において、全てのmの合計は2以上であり、式(27)~(28)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
     Rは、水素原子、-NO、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
     Z、Zは単結合、-CO-、-CHO-、-CH=N-、-CF-を表す)からなる群から選ばれるいずれか1種の液晶性側鎖を有する請求項1~3のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
  5.  [I] 請求項1~4のいずれか1項に記載の液晶配向剤を、導電膜を有する基板上に塗布して塗膜を形成する工程;
     [II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
     [III] [II]で得られた塗膜を加熱する工程;
    を有することによって配向制御能が付与された液晶配向膜を得る、前記液晶配向膜を有する基板の製造方法。
  6.  請求項5記載の方法により製造された液晶配向膜を有する基板。
  7.  請求項6記載の基板を有する液晶表示素子。
  8.  請求項6記載の基板(第1の基板)を準備する工程;
     [I’] 第2の基板上に 請求項1~4のいずれか1項に記載の液晶配向剤を、塗布して塗膜を形成する工程;
     [II’] [I’]で得られた塗膜に偏光した紫外線を照射する工程;及び
     [III’] [II’]で得られた塗膜を加熱する工程;
    を有することによって配向制御能が付与された液晶配向膜を得る、前記液晶配向膜を有する第2の基板を得る工程;及び
     [IV] 液晶を介して前記第1及び第2の基板の液晶配向膜が相対するように、前記第1及び第2の基板を対向配置して液晶表示素子を得る工程;
    を有することにより、液晶表示素子を得る、該液晶表示素子の製造方法。
  9.  請求項8記載の方法により製造された液晶表示素子。
PCT/JP2016/079785 2015-10-07 2016-10-06 液晶配向剤、液晶配向膜及び液晶表示素子 WO2017061542A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680071491.6A CN108292065B (zh) 2015-10-07 2016-10-06 液晶取向剂、液晶取向膜和液晶表示元件
JP2017544220A JP6753410B2 (ja) 2015-10-07 2016-10-06 液晶配向剤、液晶配向膜及び液晶表示素子
KR1020187012776A KR20180063268A (ko) 2015-10-07 2016-10-06 액정 배향제, 액정 배향막 및 액정 표시 소자

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015199617 2015-10-07
JP2015-199617 2015-10-07
JP2016-195598 2016-10-03
JP2016195598 2016-10-03

Publications (1)

Publication Number Publication Date
WO2017061542A1 true WO2017061542A1 (ja) 2017-04-13

Family

ID=58487835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079785 WO2017061542A1 (ja) 2015-10-07 2016-10-06 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP6753410B2 (ja)
KR (1) KR20180063268A (ja)
CN (1) CN108292065B (ja)
TW (1) TWI715644B (ja)
WO (1) WO2017061542A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095925A1 (ja) * 2021-11-29 2023-06-01 日産化学株式会社 重合体組成物及び単層位相差材

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237324A (ja) * 1988-07-27 1990-02-07 Sanyo Electric Co Ltd ポリイミド配向膜の製造方法
WO2014054785A2 (ja) * 2012-10-05 2014-04-10 日産化学工業株式会社 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法
JP2007192850A (ja) * 2006-01-17 2007-08-02 Jsr Corp 液晶配向剤、液晶配向膜および液晶表示素子
JP5884258B2 (ja) * 2009-09-18 2016-03-15 Jnc株式会社 液晶配向剤、液晶配向膜、液晶配向膜の製造方法および液晶表示素子
TWI545104B (zh) * 2011-12-22 2016-08-11 Diphenylamine-based compound, a polyamic acid composition, a polyimide composition and a liquid crystal aligning agent
KR102119632B1 (ko) * 2012-07-12 2020-06-05 닛산 가가쿠 가부시키가이샤 경화막 형성 조성물, 배향재 및 위상차재

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237324A (ja) * 1988-07-27 1990-02-07 Sanyo Electric Co Ltd ポリイミド配向膜の製造方法
WO2014054785A2 (ja) * 2012-10-05 2014-04-10 日産化学工業株式会社 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095925A1 (ja) * 2021-11-29 2023-06-01 日産化学株式会社 重合体組成物及び単層位相差材

Also Published As

Publication number Publication date
JP6753410B2 (ja) 2020-09-09
CN108292065A (zh) 2018-07-17
TW201728654A (zh) 2017-08-16
JPWO2017061542A1 (ja) 2018-08-02
KR20180063268A (ko) 2018-06-11
CN108292065B (zh) 2021-02-12
TWI715644B (zh) 2021-01-11

Similar Documents

Publication Publication Date Title
JP6784593B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2014148569A1 (ja) 横電界駆動型液晶表示素子の製造方法
CN109312166B (zh) 液晶取向剂、液晶取向膜及液晶表示元件
WO2017199986A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2015156314A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2015012341A1 (ja) 重合体、重合体組成物および横電界駆動型液晶表示素子用液晶配向膜
WO2014196590A1 (ja) 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
WO2016056584A1 (ja) 横電界駆動型液晶表示素子用液晶配向膜製造用組成物、該組成物を用いた液晶配向膜及びその製造方法、並びに液晶配向膜を有する液晶表示素子及びその製造方法
WO2014185411A1 (ja) 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
TWI689543B (zh) 使用光反應性的氫鍵結性高分子液晶之液晶配向劑及液晶配向膜
JP6872315B2 (ja) 重合体組成物および横電界駆動型液晶表示素子用液晶配向膜
WO2015025937A1 (ja) 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
WO2014196589A1 (ja) 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
JP6794257B2 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
JP6753410B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6601605B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2014185413A1 (ja) 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
CN107924092B (zh) 液晶取向膜制造用组合物、使用该组合物的液晶取向膜及其制造方法、以及具有液晶取向膜的液晶表示元件及其制造方法
TW201510611A (zh) 具有橫向電場驅動型液晶顯示元件用液晶配向膜之基板之製造方法
CN108369358B (zh) 液晶取向膜制造用组合物、使用该组合物的液晶取向膜和其制造方法、以及具有液晶取向膜的液晶表示元件和其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544220

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187012776

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16853694

Country of ref document: EP

Kind code of ref document: A1