WO2017059826A1 - 第三听觉脑波学习器 - Google Patents

第三听觉脑波学习器 Download PDF

Info

Publication number
WO2017059826A1
WO2017059826A1 PCT/CN2016/101694 CN2016101694W WO2017059826A1 WO 2017059826 A1 WO2017059826 A1 WO 2017059826A1 CN 2016101694 W CN2016101694 W CN 2016101694W WO 2017059826 A1 WO2017059826 A1 WO 2017059826A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
brain wave
user
brainwave
bone conduction
Prior art date
Application number
PCT/CN2016/101694
Other languages
English (en)
French (fr)
Inventor
周凤玲
Original Assignee
周凤玲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周凤玲 filed Critical 周凤玲
Publication of WO2017059826A1 publication Critical patent/WO2017059826A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances

Definitions

  • the present disclosure relates to a brain training device, and more particularly to a third auditory brainwave learner.
  • brain activity refers to the operation of the brain in the daily life of the whole body and the activity, thinking and memory of the nerve tissue inside the brain.
  • brain activity may slow down, not only cause serious damage, but also cause irreversible physical damage, such as memory problems or brain microvascular rupture.
  • human learning basically follows the following rules: In the initial learning phase, when a user accepts a certain knowledge or skill, it needs to use sensory systems such as hearing, vision, feeling, and memory, so that the brain can receive external information and store it. .
  • the above senses may be referred to as the main valve for the brain to receive external information, and the brain has an auditory area, a visual area, a sensory area, a memory area, and the like corresponding to the sensory system.
  • Embodiments of the present disclosure propose a third auditory brainwave learner that can train basic brain activities, adjust brain state, enhance brain activity, and improve memory. In addition, you can reshape the brain's new thinking loop network and The brain controls the limbs (corresponding to the application of limb control loop training for stroke patients).
  • an embodiment of the present disclosure provides a third auditory brainwave learner, comprising a plurality of sets of excitation components, each set of excitation components including a bone conduction device and a vibration motor;
  • the bone conduction device includes a bone conduction terminal and brain wave detection An electrode
  • the electroencephalogram detecting electrode is combined with the bone conduction terminal to be used in a unit, and the bone conduction terminal and the electroencephalogram detecting electrode can be attached to one of positions of a user's head, the bone conduction terminal Generating a shock in response to a first signal, and generating a shock in response to a second signal, the brain wave detecting electrode detecting and acquiring a brain wave change of the user caused by a vibration of the bone conduction terminal;
  • the vibration motor can be attached Attached to the user's limb and signally coupled to the bone conduction device, the vibration motor is capable of generating a shock in response to the first signal, and generating a shock in response to a second signal; the user responding to
  • the third auditory brainwave learner further includes a first processor, a second processor, a first communication module, and a second communication module, the first communication module and the second communication module Connected to each other by a wireless signal, the first processor signal is coupled to the vibration motor and the first communication module, and the second processor signal is coupled to the bone conduction device and the second communication module
  • the first processor and the second processor respectively generate a shock by driving the vibration motor and the bone conduction terminal with a wheel selector switch.
  • the first signal is a first sound signal
  • the third auditory brain wave learner further includes a first sound source for generating the first sound signal, when the first sound is made
  • the brain wave of the user is changed to generate a changed brain wave, and the changed brain wave is triggered by the brain wave detecting electrode to trigger the second signal, and the second signal is inserted into the brain wave
  • the brain wave of the user is changed twice, and a brain wave after the second change is generated for confirmation by the user.
  • the second signal is a second sound signal
  • the third auditory brainwave learner further includes a second sound source for generating the second sound signal, when the changed brain wave After being detected by the brain wave detecting electrode, the second sound source is turned on, and the second sound signal is mixed with the first sound signal and output, driving the other set of the bone in the excitation component
  • the guiding device and the vibration motor generate vibration.
  • the third auditory brainwave learner further includes a switch, the user turning off the switch to confirm the brain wave after the second change.
  • the switch is one or more, when one of the set of the excitation components is turned on, The switch is capable of generating a signal to conduct the vibration motor and the bone conduction terminal of another set of the excitation components.
  • the switch includes a first contact and a second contact respectively disposed at a fingertip of the user, and when the first contact and the second contact are in contact, the switch is guided A current signal is generated.
  • the switch includes a multiplexer for use as a wheel.
  • the excitation components are seven sets, and the seven bone guides are respectively attached to different positions of the head, and the seven vibration motors are respectively attached to different positions of the limb.
  • the third auditory brainwave learner further includes a helmet and a brain wave frequency output device, wherein the bone guide device of each set of the excitation components is disposed in the helmet, the brain wave frequency An output device is coupled to the electroencephalogram detecting electrode for displaying a brain wave detected by each of the electroencephalogram detecting electrodes.
  • the first signal is a first sound signal
  • the third auditory brain wave learner further includes a first sound source for generating the first sound signal, when the first sound is made
  • the brain wave of the user is changed to generate a changed brain wave
  • the changed brain wave is triggered by the brain wave detecting electrode to trigger the second signal
  • the changed brain wave generates electrons a pulse signal
  • the second signal and the electronic pulse signal are inserted into the first signal, causing a secondary change of the brain wave of the user to generate a brain wave after the second change for the use Confirmed.
  • the detected electronic pulse signal generated by the changed brain wave is regarded as secondary audio noise generation, and the electronic pulse signal is returned in parallel through the trigger switch of the bypass.
  • a sound signal circuit for providing a shock output provides the user with another audible confirmation; the signal is coupled in parallel with or in lieu of the second signal.
  • the present disclosure has at least the following advantages:
  • the present disclosure has a significant effect on memory loss, can delay the emergence of patients with brain degeneration, and can also improve the chance of recovery for stroke patients, and the necessary conditions for reshaping the manipulation circuit of the brain limbs.
  • the present disclosure can regulate the running state of the brain, and the user can learn and remember the state of the brain adapted to learning, improve memory, overcome the fear of the user, and improve the enthusiasm of the user, and is suitable for schools and educational institutions. It can play a great supporting role in the way and operation of today's education system.
  • the present disclosure is not affected by the environment, is easy to use, and is performed in a non-invasive manner, and does not cause damage to the brain.
  • FIG. 1 is a schematic diagram showing the circuit connection of a third auditory brainwave learner according to an embodiment of the present disclosure.
  • FIGS. 2A and 2B are side and plan views of a bone conduction device according to an embodiment of the present disclosure.
  • Figure 3 shows a schematic diagram of the communication module, processor, vibration motor, switch, microprocessor and associated connection lines.
  • 4A and 4B are circuit diagrams of the vibration motor and the switch, respectively.
  • Figure 5 shows the circuit diagram of Bluetooth wireless remote limb vibration.
  • FIG. 6 is a schematic diagram showing a training flow of a third auditory brainwave learner using an embodiment of the present disclosure.
  • the figure is marked as follows: 11, the first sound source; 12, the second sound source; 31-37, the bone conduction device; 51-57, the vibration motor; 61-67, the switch; 71, the first processor; 72, the first Communication module; 73, second processor; 74, second communication module; 311, bone conduction terminal; 312, brain wave detection electrode; 313, connector; 312, brain wave detection electrode; 103, mixer; Sound amplifier; 109, first stage amplifier; 112, second stage amplifier; 113, low pass filter; 114, brain wave frequency output device; 115a, filter; 115, optical isolation device; 101, signal amplifier.
  • the purpose of the present disclosure is to propose a third auditory brainwave learner that induces the brain to retrieve old information and complete the activity function of the brain memory through the combination of auditory and biosensory responses (also known as third auditory).
  • Information prompts are used for reviewing and other processes to promote the brain's association between sensory systems and sensory areas in a short period of time, reduce the number of repeated learning, improve memory, enhance brain-related activities, and easily grasp the associations in the sensory regions of the brain. ability.
  • the third auditory brainwave learner includes: a helmet or a headgear (not shown), a first sound source 11, a second sound source 12, a plurality of bone conduction devices 31-37, a plurality of vibration motors 51-57, one or more switches 61-67, a first processor 71, a first communication module 72 (see Fig. 3), The second processor 73 and the second communication module 74 (see Fig. 5). As shown in FIGS.
  • each of the bone conduction devices 31 includes a bone conduction terminal 311, an electroencephalogram detecting electrode 312, and a connecting member 313, and the connecting member 313 is preferably a bracket.
  • the electroencephalogram detecting electrode 312 is two in the present embodiment, but is not particularly limited in other embodiments.
  • one bone guiding device and one vibration motor constitute an excitation component.
  • seven sets of excitation components are taken as an example for description.
  • a helmet or a headgear, a plurality of bone guiding devices 31-37 are disposed on the user's head, and the first sound source 11, the second sound source 12, the second processor 73, and the second communication module 74 can be integrated into the helmet or the head cover. It can also be set separately.
  • the plurality of vibration motors 51-57, the one or more switches 61-67, the first processor 71, and the first communication module 72 are attached to the limb of the user.
  • the signal can be transmitted between the first communication module 72 and the second communication module 74 by wire or wirelessly.
  • the first communication module 72 and the second communication module 74 may be wireless modules such as Bluetooth or infrared.
  • FIGS. 2A and 2B A schematic diagram of one of the bone conduction devices 31 is shown in FIGS. 2A and 2B, and an illustration of the first processor 71, the first communication module 72, the three vibration motors 51-53, one of the switches 61, and the associated circuit is shown in FIG.
  • two brain wave detecting electrodes 312 are respectively disposed at both ends of the bone conduction terminal 311 through the connecting member 313.
  • the three vibration motors 51-53 shown in FIG. 3 are attached to the limb of the user, and the two contacts of the switch 61 are respectively connected to the thumb and the index finger of the user, and the user can make the switch 61 by the hand movement. The two contacts are closed and the switch 61 is turned on.
  • FIG. 4A and 4B are circuit diagrams of one of the vibration motor 51 and the switch 61, respectively.
  • the output of the first processor 71 can output a signal to turn on the circuit of the vibration motor 51, thereby causing the vibration motor 51 to vibrate.
  • the user can operate the switch 61 to be turned on or off.
  • the circuit can send a signal to the input terminal of the processor 71.
  • the circuit diagrams of the first processor 71, the first communication module 72, the second processor 73, and the second communication module 72 are shown in FIG.
  • the first processor 71 is used to control the vibration of the vibration motors 51-57. 5 and FIG. 3, when the first sound source 11 is turned on, the first signal can be transmitted to the first processor 71, and the first processor 71 sends a signal to the vibration motor 51-57 to cause the vibration motor 51-57 to vibrate.
  • the first processor 71 and the second processor 73 may be a microprocessor, and the vibration motors 51-57 are preferably micro-vibration motors.
  • the "miniature" herein does not particularly limit the size of the motor and provides the magnitude of the vibration. Instead, it provides vibration that the human body can perceive.
  • the number of the bone conduction device, the vibration motor, and the switch may be the same or different. In the present embodiment, seven are respectively described as an example. Each bone guiding device and a vibration motor constitute a set of excitation components, that is, there are seven sets of excitation components in the present embodiment. However, in other embodiments, the number of the above components is not particularly limited, and is not limited to the number.
  • the switch may be not seven groups, and the switch may include a multiplexer, and one of the signal outputs is selected according to the user's needs to select a vibration motor and a bone conduction device that opens another set of excitation components, or by combining The way to control each group of excitation components can be achieved separately.
  • the circuit of the third auditory brain wave learner further includes a mixer 103 and a sound amplifier. 104.
  • the first sound source 11 is connected to the upstream of the mixer 103.
  • the first sound source may be a first preset sound source, and the generated first sound signal may be input into the mixer 103, and the sound amplifier 104 is connected to the sound mixer. Downstream 103, the sound output by the mixer 103 can be amplified.
  • the bone conduction terminal 311 is connected downstream of the sound amplifier 104 for converting the sound signal generated by the sound amplifier 104 into a vibration and transmitting it to various positions on the skull.
  • the brain wave detecting electrode 312 detects the brain wave of the user and transmits it to the downstream first-stage amplifier 109 and the second-stage amplifier 112, and passes through the low-pass filter 113 having a cutoff frequency of, for example, 33.9 Hz, through the brain wave frequency output device. 114 output.
  • a bypass feedback circuit is further connected between the low pass filter 113 and the brain wave frequency output device 114, and includes a filter 115a, an optical isolation device 115, a signal amplifier 101, and a control switch S.
  • the control switch S can be selectively connected to the bypass feedback circuit or to the second sound source 12.
  • the filter 115a receives the signal from the low pass filter 113 and generates an electronic pulse through the optical isolation device 115. After passing through the signal amplifier 101, the output can be output to the hybrid through the control switch S. Sounder 103.
  • the signal generated by the electronic pulse through the signal amplifier may be the second signal.
  • the control switch S when the control switch S is switched to the mode in which the second sound source 12 is turned on, the connection of the second sound source 12 and the mixer 103 is turned on, so that the second sound source 12 can input the second sound signal.
  • the second sound source 12 can be a second preset sound source. After the user receives the changed brain wave from the first sound signal, the changed brain wave is detected to trigger the second sound source to be turned on.
  • the switches 61-67 can be attached to the tip of the user's finger for activating another set of excitation components. In other embodiments, however, the switches 61-67 can be placed at other locations.
  • the vibration motors 51-57 can also be disposed on the palms, arms, legs, and the like of the user.
  • an inductor 110 is further disposed between the brain wave detecting electrodes 312, and a filter capacitor 111 is further disposed between the first stage and the second stage amplifier 112, which will not be described in detail.
  • the third auditory brainwave learner is dominated by a repetitive practice mode, mainly applied in personal care and learning, as described below.
  • the vibration motor 51-57 can first be fixed to the user's body part by means of a fixing device such as a tape or a Velcro, such as a palm, an arm, a leg, etc., and one or more of the switches 61-67 are identical.
  • the method is fixed at the user's fingertip for switch control.
  • the bone guiding devices 31-37 are attached to different positions of the user's head by means of a helmet, a head cover, etc., so that vibration can be transmitted to the skull, and one or more corresponding detecting electrodes 312 are disposed in the vicinity of each of the bone guiding terminals 311.
  • a first sound signal is first generated by the first sound source 11, the first sound signal simultaneously generates a drive signal, the drive signal is received by the second processor 73, and the second processor 73 controls one of the bone conduction devices 31-37 to generate
  • the vibration is transmitted to the user's skull, or in this step the first sound is transmitted directly to the user's skull through one of the bone conduction devices 31-37.
  • the first communication module 72 and the second communication module 74 are signally connected, the driving signal is also received by the first processor 71, and the first processor 71 controls one of the vibration motors 51-57 fixed to the body part of the user.
  • a shock is generated that is transmitted to the user's limb. In this way, the user can feel three kinds of feelings at the same time: hearing, head vibration and limb vibration.
  • the vibration transmitted to the bone conduction terminal 311 causes the user's brain wave to change, and the changed brain wave is generated, and the changed brain wave is the bone.
  • the brain wave detecting electrode 312 next to the lead terminal 311 detects and reads and converts it into an electrical signal, and after passing through the amplifier and the filter, outputs the brain ⁇ wave to the brain wave frequency output device 114 (for example, an indicator light or a computer). As a display.
  • the brain alpha wave after the change is amplified flows into a bypass feedback circuit, passes through the filter 115a of the bypass feedback circuit, the optical isolation device 115, and the signal amplifier 101, and drives the control switch S to be turned on in the form of an electronic pulse.
  • the control switch S has two modes, as shown in FIG. 1, one downstream of the signal amplifier 101 connected to the bypass feedback circuit, and the other connected to the second sound source 12.
  • the electrical connection between the second sound source 12 and the mixer 103 is triggered to be turned on, so that the second sound source 12 triggers the second preset sound that is turned on.
  • the signal is added to the first sound signal by mixing, and the user's brain wave changes again, and the brain wave after the second change is generated.
  • the control switch S when the control switch S is connected downstream of the signal amplifier 101 of the bypass feedback circuit, the signal generated by the changed brain wave and the second sound after the changed brain wave is detected The signal is back-transferred into the first sound signal in parallel by the bypass feedback circuit, replacing the second sound source 12 in parallel or in place, without affecting the limb vibration motor.
  • the user can operate one of the switches (taking the switch 61 as an example) to close and output a signal to the other set of bone conduction devices 32 of the user, so that the user can recognize the change of the auditory sound (ie, the secondary brain alpha wave). It is confirmed that, in conjunction with the user's perceived sound, the change in vibration is resolved at the position of the skull.
  • each of the bone conduction devices 31-37 Since the first communication module 72 and the second communication module 74 are connected to each other, each of the bone conduction devices 31-37 generates vibration, and the corresponding vibration motors 51-57 of the same set of excitation components also generate synchronous vibration.
  • the vibration of the bone conduction device excites the active changes of the brain nerve tissue, changes the frequency of the brain wave, confirms that the brain tissue of the current part is activated, and synchronously drives the vibration of the vibration motor, so that the user receives the active limb as a receiving body.
  • the brain nerve tissue and limbs After repeated training, the brain nerve tissue and limbs are driven to combine the feelings of the two, and a new brain nerve tissue is constructed to control the limb circuit, which is regarded as a manual method to reshape the brain circuit or the limb manipulation circuit.
  • the third auditory brain wave learner of the present disclosure can combine the elements of the third auditory and brain waves into a unique external and internal driving method for driving brain function, and the brain tissue in the action area of the bone conduction device generates stimulation and induces The state of brain alpha wave, secondary brain alpha wave confirmation, and the reaction of the micro-vibration motor and limb activity on the limb enable the user to practice the limb and respond to the vibration motor, thereby preventing memory loss, delaying brain degeneration and improving stroke patients. The opportunity to recover.
  • users can use universal data as a learning tool, such as black and white text, color patterns, active movies, and language sounds as auxiliary tools for external information on the brain, after the user wears a helmet or hood.
  • a learning tool such as black and white text, color patterns, active movies, and language sounds as auxiliary tools for external information on the brain, after the user wears a helmet or hood.
  • the training is divided into the following four processes.
  • the first process is visual stimulation: using visual flash to see the text, the brain will retain the image memory in 1/24 second time, and the third auditory technique will prompt the text sound, that is, the text sound through the auditory, skull vibration and limbs.
  • the vibration prompts the user to induce the brain to reproduce the image inside the brain again.
  • the memory has been successful.
  • the same content as the auditory can be played/displayed through tools such as a display and a card, so that the user can receive information through various channels.
  • the second process is to use the third audible language stimuli as an input, execute the first process, and prompt the voice of the visual/language characters to perform a connection operation inside the brain. That is, the sound is transmitted to the user through the hearing, the skull vibration, and the limb vibration, and the connection operation inside the brain is performed.
  • a plurality of stimulation signals are simultaneously generated using the third auditory brainwave learner disclosed in the above various embodiments.
  • the third process is to re-use the cue sound of the third auditory technical language and to imitate the sound of the spoken text received by the auditory.
  • the fourth process is to repeat the first process, and the third process that is spoken in the spoken language hears the sound of the spoken language.
  • the connection between different regions inside the brain can be enhanced, and the state of the brain can be improved.
  • the present disclosure has a significant effect on memory loss, can delay the appearance of brain degeneration, and has a stroke Patients can also increase their chances of recovery.
  • brain wave changes are detected and confirmed, depending on the user's strong control of the limb control muscles. Due to the failure of the user's brain tissue information transmission loop, the third auditory brain wave technique training method is used to restore the user's brain tissue partial damage function or bypass the brain tissue part of the damaged transmission limb control muscle information function loop.
  • the present disclosure can regulate the running state of the brain, and the user can learn and remember the state of the brain adapted to learning, improve memory, overcome the fear of the user, and improve the enthusiasm of the user, and is suitable for schools and educational institutions. It can play a great supporting role in the way and operation of today's education system.
  • the present disclosure is not affected by the environment, is easy to use, and is performed in a non-invasive manner, and does not cause damage to the brain.
  • the bone conduction combined with the brain wave electrode is used, and after the brain wave change is detected, the brain wave information is detected at the current position of the user for the front-to-back amplitude comparison.
  • Information acquisition is considered as the basis for operational technical analysis and consideration of changing operational strategies.
  • the present invention can also pre-detect a brain wave, record the brain wave of the brain state before the bone conduction operation, and record the computer for each electrode about three seconds. Since the user is not a professional, the bone conduction device can distribute the left and right brains on average.
  • the present disclosure has a significant effect on memory loss, can delay the emergence of patients with brain degeneration, can also improve the chance of recovery for stroke patients, and the necessary conditions for reshaping the manipulation of the brain limbs;
  • the present disclosure can adjust the running state of the brain, and the user can learn and memorize in a state of learning to adapt to the state of the brain, improve memory, overcome the fear of the user, and improve the enthusiasm of the user, and is applicable to schools and educational institutions. Cooperating with the way and operation of today's education system can greatly assist.
  • the present disclosure is not affected by the environment, is easy to use, and is performed in a non-invasive manner, and does not cause damage to the brain.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Psychology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Psychiatry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种第三听觉脑波学习器,包括多套激发组件,每一套激发组件包括骨导装置(31-37)和震动马达(51-57);骨导装置(31-37)包括骨导端子(311)和脑波检测电极(312),所述脑波检测电极(312)与所述骨导端子(311)结合成单元使用,所述骨导端子(311)和所述脑波检测电极(312)能够贴附在使用者的头部的其中一个位置,所述骨导端子(311)响应一第一信号而产生震动,以及响应一第二信号而产生震动,所述脑波检测电极(312)检测并获取所述骨导端子(311)的震动引发的所述使用者的脑波改变;震动马达(51-57)能够贴附在所述使用者的肢体上,并信号连接于所述骨导装置(31-37),所述震动马达(51-57)响应所述第一信号而产生震动,以及响应一第二信号而产生震动。

Description

第三听觉脑波学习器 技术领域
本公开涉及一种大脑训练装置,尤其涉及一种第三听觉脑波学习器。
背景技术
在康复护理和个人健康护理方面,大脑活动是指日常生活中脑部掌管全身体器官的运作和脑内部神经组织的活动、思考和记忆。对于特定人群体,例如出于伤病等原因,大脑的活动可能减缓,不仅会引起严重的损伤,而且会造成不可逆转的肉体损伤,例如记忆力出现问题或者脑补微血管破裂等。
在教育方面,人类的学习本是大脑自然活动和脑基本活动的小部分,接受新知识或者技能学习的过程中,使用者容易产生乏力和挫败感,更甚者会有讨厌学习和抗拒进一步学习的心理产生。这种现象在每个人身上几乎都会出现,可能会导致学习新知识失败、学习周期长。
具体来说,人类的学习基本遵循以下规律:初次学习阶段,当使用者接受某一知识或者技能,需要使用到听觉、视觉、感觉和记忆等感官系统,使得大脑能接收外来的信息并进行存储。上述感官可以称为大脑接收外界信息的主要阀门,大脑中具有对应于感官系统的听觉区域、视觉区域、感觉区域、记忆区域等。
但是在初始学习阶段,使用者并不能快速地建立上述官能感觉与外界信息的联接。其中一部分原因在于:大脑初次摄取信息时,各感官系统及大脑中的各感官区域是分别独立运作,彼此之间未建立关联性回路网络。因此,使用者需要花费时间进行多次的重复学习,为建立关联性回路要付出必要性努力,提升脑力的强度。
有鉴于此,需要提出一种能够增强大脑运作的装置,以调整大脑状态、增强大脑关联活动的能力、提高记忆力。
在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开实施方式提出一种第三听觉脑波学习器,可以对大脑的基本活动进行训练,调整大脑状态、增强大脑活动能力、提高记忆力。另外,还可以重塑大脑新思维回路网络和 大脑对肢体控制回路(对应中风患者肢体控制回路训练应用)等。
本公开的额外方面和优点将部分地在下面的描述中阐述,并且部分地将从描述中变得显然,或者可以通过本公开的实践而习得。
为实现上述目的,本公开实施方式提出一种第三听觉脑波学习器,包括多套激发组件,每一套激发组件包括骨导装置和震动马达;骨导装置包括骨导端子和脑波检测电极,所述脑波检测电极与所述骨导端子结合成单元使用,所述骨导端子和所述脑波检测电极能够贴附在使用者的头部的其中一个位置,所述骨导端子响应一第一信号而产生震动,以及响应一第二信号而产生震动,所述脑波检测电极检测并获取所述骨导端子的震动引发的所述使用者的脑波改变;震动马达能够贴附在所述使用者的肢体上,并信号连接于所述骨导装置,所述震动马达能够响应所述第一信号而产生震动,以及响应一第二信号而产生震动;使用者响应所述第一信号产生的震动产生变化后的脑波,所述变化后的脑波被所述脑波检测电极检测到之后触发第二信号,所述骨导端子和所述震动马达响应第二信号而产生第二震动,所述使用者根据所述第二信号产生的第二震动闭合所述开关器。
在一实施方式中,所述第三听觉脑波学习器还包括第一处理器、第二处理器、第一通信模块和第二通信模块,所述第一通信模块与所述第二通信模块相互通过无线信号连接,所述第一处理器信号连接于所述震动马达和所述第一通信模块,所述第二处理器信号连接于所述骨导装置和所述第二通信模块,所述第一处理器和所述第二处理器分别和轮选开关驱动所述震动马达和所述骨导端子产生震动。
在一实施方式中,所述第一信号为第一声音信号,所述第三听觉脑波学习器还包括用于产生所述第一声音信号的第一音源,当所述第一声音使所述使用者的脑波发生变化而产生变化后的脑波,所述变化后的脑波被所述脑波检测电极检测到之后触发所述第二信号,所述第二信号加插到所述第一信号中,使所述使用者的脑波发生二次变化,产生二次变化后的脑波,供所述使用者确认。
在一实施方式中,所述第二信号为第二声音信号,所述第三听觉脑波学习器还包括用于产生所述第二声音信号的第二音源,当所述变化后的脑波被所述脑波检测电极检测到之后,所述第二音源被开启,所述第二声音信号与所述第一声音信号混音后输出,驱动另一套所述激发组件中的所述骨导装置和所述震动马达产生震动。
在一实施方式中,所述第三听觉脑波学习器还包括开关器,所述使用者关闭所述开关器以确认所述二次变化后的脑波。
在一实施方式中,所述开关器为一个或多个,当其中一组所述激发组件开启时,所述 开关器能够产生信号以导通另外一组所述激发组件的所述震动马达和所述骨导端子。
在一实施方式中,所述开关器包括第一接点和第二接点,分别设置于所述使用者的指尖,当所述第一接点和所述第二接点接触使所述开关器被导通而产生电流信号。
在一实施方式中,所述开关器包括多任务器,作为轮选之用。
在一实施方式中,所述激发组件为七套,所述七个骨导装置分别贴合在头部的不同的位置,所述七个震动马达分别贴附在肢体的不同的位置。
在一实施方式中,所述第三听觉脑波学习器还包括头盔和脑波频率输出装置,每一套所述激发组件的所述骨导装置设置在所述头盔中,所述脑波频率输出装置连接于所述脑波检测电极,用于显示每一个所述脑波检测电极检测的脑波。
在一实施方式中,所述第一信号为第一声音信号,所述第三听觉脑波学习器还包括用于产生所述第一声音信号的第一音源,当所述第一声音使所述使用者的脑波发生变化而产生变化后的脑波,所述变化后的脑波被所述脑波检测电极检测到之后触发所述第二信号,同时所述变化后的脑波产生电子脉冲信号,所述第二信号和所述电子脉冲信号加插到所述第一信号中,使所述使用者的脑波发生二次变化,产生二次变化后的脑波,供所述使用者确认。
更进一步地,所述的被检测出的变化后的脑波产生的电子脉冲信号视为二次音频噪音产生,该电子脉冲信号通过旁路的触发开关,以并联方式被回输加插于第一声音信号电路作震动输出提供所述使用者另一听觉确认;该信号并联于所述第二信号或替代所述第二信号。
由上述技术方案可知,本公开至少具有如下优点:
在康复护理方面,本公开对记忆减退有显着的功效,能够延缓脑退化患者的出现,对中风患者也可以提高复原的机会,为重塑大脑肢体操纵回路的手段进行等必要条件。
在教育方面,本公开能够调节大脑的运行状态,使用者能够以适应学习的大脑状态去学习和记忆,改善记忆,克服使用者的畏难情绪,提高使用者学习的积极性,适用于学校和教育机构,能够配合现今的教育系统的方式和运作起到很大的辅助作用。
另外,本公开不受环境影响,容易使用,以非入侵方式进行,对脑部不会造成损伤。
本公开中通过以下参照附图对优选实施方式的说明,本公开的上述以及其它目的、特征和优点将更加明显。
附图说明
图1所示为本公开一实施方式的第三听觉脑波学习器的电路连接示意图。
图2A和图2B所示为本公开实施方式的骨导装置的侧视图和俯视图。
图3所示为通信模块、处理器、震动马达、开关器、微处理器和相关连接线路的示意图。
图4A和图4B所示分别为震动马达和开关器的电路图。
图5所示为蓝牙无线遥控肢体震动的电路图。
图6所示为利用本公开实施方式的第三听觉脑波学习器的训练流程示意图。
图中标记如下:11、第一音源;12、第二音源;31-37、骨导装置;51-57、震动马达;61-67、开关器;71、第一处理器;72、第一通信模块;73、第二处理器;74、第二通信模块;311、骨导端子;312、脑波检测电极;313、连接件;312、脑波检测电极;103、混音器;104、声音放大器;109、第一级放大器;112、第二级放大器;113、低通滤波器;114、脑波频率输出装置;115a、滤波器;115、光隔离器件;101、信号放大器。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
以下结合具体实施方式,就本公开的第三听觉脑波学习器进行说明。值得注意的是,以下所述仅为举例,而非限制本公开的范围。
本公开的目的是提出一种第三听觉脑波学习器,通过听觉、生物感觉反应(又称为第三听觉)的结合,诱发大脑将旧的信息寻回,完成大脑记忆的活动功能,制造信息提示用于复习等过程,促进大脑在短时间内建立各感官系统和各感官区域的关联,减少重复学习的次数,提高记忆力、增强大脑关联活动的能力,轻松掌握大脑中感官区域中关联的能力。
为实现上述目的,本公开实施方式提出一种第三听觉脑波学习器,如图1所示,该第三听觉脑波学习器包括:头盔或头套(图未示)、第一音源11、第二音源12、多个骨导装置31-37、多个震动马达51-57、一个或多个开关器61-67、第一处理器71、第一通信模块72(见图3)、第二处理器73和第二通信模块74(见图5)。如图2A和图2B所示,每一个骨导装置31包括骨导端子311、脑波检测电极312和连接件313,连接件313优选为支架。脑波检测电极312在本实施方式中为两个,然而在其他实施方式中并不特别限制。
本实施方式中,一个骨导装置和一个震动马达组成激发组件,本实施方式中以七套激发组件为例说明。头盔或头套、多个骨导装置31-37贴合设置在使用者的头部,第一音源11、第二音源12、第二处理器73和第二通信模块74既可以集成在头盔或头套上,也可以单独设置。多个震动马达51-57、一个或多个开关器61-67、第一处理器71、第一通信模块72贴合设置于使用者的肢体。第一通信模块72和第二通信模块74之间可以通过有线或无线的方式传递信号。当为无线连接时,第一通信模块72和第二通信模块74可以为蓝牙、红外等无线模块。
其中一个骨导装置31的示意图见图2A和图2B,第一处理器71、第一通信模块72、三个震动马达51-53、其中一个开关器61以及相关线路的图示见图3。结合图1至图3所示,在本实施方式中两个脑波检测电极312通过连接件313分别设置在骨导端子311的两端。如图3所示的三个震动马达51-53贴附于使用者的肢体,开关器61的两个接点分别连接于使用者的拇指和食指,使用者可以通过手部动作使开关器61的两个接点闭合,导通开关器61。
图4A和图4B所示分别为其中一个震动马达51和开关器61的电路图。如图4A所示,第一处理器71的输出端可以输出信号使震动马达51的电路导通,从而使震动马达51产生震动。同时,如图4B所示,使用者可以操作开关器61导通或断开,当开关器61导通,该电路可以发出信号给处理器71的输入端。
第一处理器71、第一通信模块72、第二处理器73和第二通信模块72的电路图见图5。如图5所示,第一处理器71用于控制震动马达51-57的震动。结合图5和图3,当第一音源11开启时,可以向第一处理器71传递第一信号,由第一处理器71向震动马达51-57发出信号,使震动马达51-57产生震动。第一处理器71和第二处理器73可以为微处理器(Microprocessor),震动马达51-57优选为微型震动马达,此处的“微型”并不特别限定马达的大小、提供震动的大小,而是以提供人体能够感知的震动即可。
骨导装置、震动马达、开关器的数目可以相同也可以不同,本实施方式中以分别为七个为例进行说明。每一个骨导装置、一个震动马达构成一套激发组件,即本实施方式共有七套激发组件。然而在其他实施方式中,上述组件的数目并不特别限定,也不限定是否数目相等。例如,开关器可以为不为七组,开关器可以包括多任务器,根据使用者的需求选择其中一个信号输出,以选择开启另一组激发组件的震动马达和骨导装置,或是通过组合的方式能够分别实现控制开启每一组激发组件即可。
另外,如图1所示,该第三听觉脑波学习器的电路中还包括混音器103、声音放大器 104、第一级放大器109、第二级放大器112、低通滤波器113、脑波频率输出装置114、滤波器115a、光隔离器件115、信号放大器101、控制开关S。
其中,第一音源11连接于混音器103的上游,第一音源可以为第一预设音源,其产生的第一声音信号可以输入到混音器103中,声音放大器104连接于混音器103的下游,可将混音器103输出的声音放大。骨导端子311连接于声音放大器104的下游,用于将声音放大器104产生的声音信号转变为震动,传递到头骨上的各位置。脑波检测电极312检测使用者的脑波,并传输至下游的第一级放大器109和第二级放大器112,再通过截止频率例如为33.9Hz的低通滤波器113,通过脑波频率输出装置114输出。
在低通滤波器113和脑波频率输出装置114之间还连接有旁路回馈电路,包括滤波器115a、光隔离器件115、信号放大器101、控制开关S。控制开关S可以选择地与旁路回馈电路连接或与第二音源12连接。当连接至旁路回馈电路时,滤波器115a接收从低通滤波器113发出的信号,并经过光隔离器件115产生电子脉冲,该电子脉冲经过信号放大器101之后,可以通过控制开关S输出至混音器103。该电子脉冲经过信号放大器产生的信号可以为第二信号。
在另一种情形下,当控制开关S切换至与第二音源12导通的模式时,第二音源12与混音器103的连接被导通,使得第二音源12能够输入第二声音信号至混音器103。该第二音源12可以为第二预设音源,在使用者接收到第一声音信号产生变化后的脑波之后,该变化后的脑波被检测到而触发第二音源开启。
在本实施方式中,开关器61-67可以贴附固定于使用者的手指尖,用于启动另一套激发组件。然而在其他实施方式中,开关器61-67可以设置在其他位置。同样地,震动马达51-57也可以设置在使用者的手掌、手臂、腿部等。
如图1所示,在脑波检测电极312之间还设置有电感110,在第一级和第二级放大器112之间还设有滤波电容111,在此不详细说明。
该第三听觉脑波学习器以重复操作练习方式为主导,主要在个人护理方面和学习方面应用,具体说明如下。
在个人护理方面,首先可以将振动马达51-57利用胶布、魔术贴等固定装置固定在使用者的身体部位,例如手掌、手臂、腿部等,一个或多个开关器61-67以同样的方式固定在使用者的手指尖以便开关控制。骨导装置31-37通过头盔、头套等方式贴合于使用者的头部的不同位置,使震动能够传递至头骨,每一个骨导端子311的附近设置一个或多个对应的检测电极312。
以下举例说明操作的过程。
操作中,首先由第一音源11产生第一声音信号,第一声音信号同时产生驱动信号,驱动信号被第二处理器73接收,第二处理器73控制骨导装置31-37其中一者产生震动,该震动传导至使用者的头骨,或者在此步骤中第一声音直接通过骨导装置31-37其中一者传递至使用者的头骨。同时,由于第一通信模块72和第二通信模块74信号连接,驱动信号同样被第一处理器71接收,第一处理器71控制固定在使用者身体部位的震动马达51-57其中一者也产生震动,该震动传导至使用者的肢体。如此一来,使用者可以同时感觉到三种感受:听觉、头部震动和肢体震动。
以第一音源11产生的第一声音信号传导至骨导装置31为例,传导至骨导端子311的震动导致使用者脑波改变,产生变化后的脑波,变化后的脑波被该骨导端子311旁边的脑波检测电极312检测并读取,并转换为电信号,通过放大器、滤波器后,将该脑α波输出至脑波频率输出装置114(例如指示灯或电脑)中,作为显示。同时,这一变化后的脑α波被放大后,流入一旁路回馈电路,经过旁路回馈电路的滤波器115a、光隔离器件115、信号放大器101,以电子脉冲形式驱动控制开关S开启。
控制开关S有两种模式,如图1所示,一种为连接至上述旁路回馈电路的信号放大器101的下游,另一种为连接至第二音源12。当连接至第二音源12时在变化后的脑波被检测到之后即触发导通第二音源12和混音器103之间的电连接,使第二音源12触发开启的第二预设声音信号以混音方式加入第一声音信号,此时使用者的脑波再次发生变化,产生二次变化后的脑波。
在另一实施方式中,当控制开关S连接至旁路回馈电路的信号放大器101的下游时,在变化后的脑波被检测到之后,该变化后的脑波产生的信号以及该第二声音信号通过旁路回馈电路以并联的方式被回输加插至第一声音信号,以并联或替代的方式取代第二音源12,同时不影响肢体震动马达。使用者可以操作其中一个开关器(以开关器61为例)闭合,输出信号至使用者的另一组骨导装置32,让使用者能以听觉认知声音的改变(即二次脑α波被确认),结合使用者感觉声音的发生,于头骨位置上分辨震动的改变。由于第一通信模块72和第二通信模块74互相连接,每一个骨导装置31-37产生震动的同时,同一套激发组件中相应的震动马达51-57也产生同步震动。由此可见,本公开中,骨导装置震动激励脑神经组织活跃变化,使脑波频率发生变化,确认当前部位脑神经组织被激活,同时同步驱动震动马达震动,令使用者以活动肢体作为接收到震动的回应以及按动对应的开关器作出反应,启动另一组骨导装置、震动马达和开关器,对肢体其他部分再做训练, 经过重复训练,驱动脑神经组织和肢体,使二者的感觉结合,构建成新的脑神经组织控制肢体回路,视作人工法重塑大脑回路或肢体操纵回路手段。
本公开的第三听觉脑波学习器能够以第三听觉及脑波等元素,结合成独特的以外、内为主导的驱动脑功能的方法,骨导装置作用区的脑组织产生刺激,同时诱发脑α波、二次脑α波确认等状态,再配合肢体上微振动马达和肢体活动的反应,使得使用者可以练习操作肢体,回应震动马达,便能够防止记忆减退,延缓脑退化提高中风患者复原的机会。
由于同一次训练中可以有不同的骨导装置震动,使得使用者需要根据自身感觉在头骨上寻找不同的震动位置,进行追踪和注意力重新建立等脑活动,从而提高了大脑的运动,借助脑部活跃直接通过使用者健康脑组织的活动带动受损的脑组织更新细胞加速新陈代谢作用,借助补充营养,有利于受损组织获得养分修复恢复健康。
在学习方面,结合图6可见,使用者可以使用普遍性资料作为学习工具,例如黑白底文字、颜色图案、活动影片和语言声音作为辅助工具为大脑上外界信息资料,使用者佩戴头盔或者头套后,激励大脑诱发状态的改变以进行大脑学习和大脑摄取资料的操练,训练具体分为以下四个过程。
第一过程为视觉刺激:利用视觉闪看文字,大脑会以1/24秒的时间残留影像记忆,另以第三听觉技术将文字声音进行提示,即,将文字声音通过听觉、头骨震动和肢体震动提示给使用者,诱发大脑再次将影像重现于脑内部,当影像能够在大脑内再现,说明记忆已取得成功。在这一过程中,可以通过显示器、卡片等工具,播放/显示与听觉相同的内容,以利于使用者通过多种途径接收信息。
第二过程为利用第三听觉的语言刺激作为输入,执行第一过程,将视觉/语言文字的声音提示,进行脑内部的连接动作。即,将声音通过听觉、头骨震动和肢体震动传递至使用者,进行脑内部的连接动作。利用上述多个实施方式公开的第三听觉脑波学习器,同时产生多种刺激信号。
第三过程为再利用第三听觉技术语言文字的提示声音,以口语模仿发出听觉接收的语言文字的的声音。
第四过程为重复第一过程,以口语发出的第三过程听觉接收过的语言文字的声音。
使用本公开实施方式的第三听觉脑波学习器,通过上述过程,可以加强大脑内部不同区域的连接,改进大脑的状态。
本公开至少具有如下优点:
在康复护理方面,本公开对记忆减退有显着的功效,能够延缓脑退化的出现,对中风 患者也可以提高复原的机会。对中风患者,脑波变化被检测后确认,视使用者对肢体控制肌肉发出强烈操控信息。由于使用者脑部部分组织信息传递回路失效,通过第三听觉脑波技术训练法锻炼,恢复使用者脑组织部分受损功能或旁路脑组织部分受损传递肢体控制肌肉信息功能回路。
在教育方面,本公开能够调节大脑的运行状态,使用者能够以适应学习的大脑状态去学习和记忆,改善记忆,克服使用者的畏难情绪,提高使用者学习的积极性,适用于学校和教育机构,能够配合现今的教育系统的方式和运作起到很大的辅助作用。
另外,本公开不受环境影响,容易使用,以非入侵方式进行,对脑部不会造成损伤。
再者,所述骨导组合脑波电极使用,所述脑波变化被检测后,在所述使用者当前位置上检测脑波信息,作前后波幅比对。信息获取视为操作技术分析基础依据和改变操作策略的考虑。
另外,本发明还可以预检测一次脑波,在骨导操作前对大脑状态的脑波作记录,约三秒钟每电极次的电脑作记录。鉴于使用者不是专业人士,骨导装置平均分布左右脑即可。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。
工业实用性
在康复护理方面,本公开对记忆减退有显着的功效,能够延缓脑退化患者的出现,对中风患者也可以提高复原的机会,为重塑大脑肢体操纵回路的手段进行等必要条件;在教育方面,本公开能够调节大脑的运行状态,使用者能够以适应学习的大脑状态去学习和记忆,改善记忆,克服使用者的畏难情绪,提高使用者学习的积极性,适用于学校和教育机构,能够配合现今的教育系统的方式和运作起到很大的辅助作用。另外,本公开不受环境影响,容易使用,以非入侵方式进行,对脑部不会造成损伤。
虽然已参照几个典型实施方式描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (12)

  1. 一种第三听觉脑波学习器,其特征在于,包括多套激发组件,每一套激发组件包括:
    骨导装置,其包括骨导端子和脑波检测电极,所述脑波检测电极与所述骨导端子结合成单元使用,所述骨导端子和所述脑波检测电极能够贴附在使用者的头部的其中一个位置,所述骨导端子响应一第一信号而产生震动,以及响应一第二信号而产生震动,所述脑波检测电极检测并获取所述骨导端子的震动引发的所述使用者的脑波改变;以及
    震动马达,其能够贴附在所述使用者的肢体上,并信号连接于所述骨导装置,所述震动马达能够响应所述第一信号而产生震动,以及响应一第二信号而产生震动。
  2. 如权利要求1所述的第三听觉脑波学习器,其特征在于,所述第三听觉脑波学习器还包括第一处理器、第二处理器、第一通信模块和第二通信模块,所述第一通信模块与所述第二通信模块相互通过无线信号连接,所述第一处理器信号连接于所述震动马达和所述第一通信模块,所述第二处理器信号连接于所述骨导装置和所述第二通信模块,所述第一处理器和所述第二处理器分别驱动所述震动马达和所述骨导端子产生震动。
  3. 如权利要求1所述的第三听觉脑波学习器,其特征在于,所述第一信号为第一声音信号,所述第三听觉脑波学习器还包括用于产生所述第一声音信号的第一音源,当所述第一声音使所述使用者的脑波发生变化而产生变化后的脑波,所述变化后的脑波被所述脑波检测电极检测到之后触发所述第二信号,所述第二信号加插到所述第一信号中,使所述使用者的脑波发生二次变化,产生二次变化后的脑波,供所述使用者确认。
  4. 如权利要求3所述的第三听觉脑波学习器,其特征在于,所述第二信号为第二声音信号,所述第三听觉脑波学习器还包括用于产生所述第二声音信号的第二音源,当所述变化后的脑波被所述脑波检测电极检测到之后,所述第二音源被开启,所述第二声音信号与所述第一声音信号混音后输出,驱动另一套所述激发组件中的所述骨导装置和所述震动马达产生震动。
  5. 如权利要求4所述的第三听觉脑波学习器,其特征在于,所述第三听觉脑波学习器还包括开关器,所述使用者关闭所述开关器以确认所述二次变化后的脑波。
  6. 如权利要求5所述的第三听觉脑波学习器,其特征在于,所述开关器为一个或多个,当其中一组所述激发组件开启时,所述开关器能够产生信号以导通另外一组所述激发组件的所述震动马达和所述骨导端子。
  7. 如权利要求5所述的第三听觉脑波学习器,其特征在于,所述开关器包括第一接点 和第二接点,分别设置于所述使用者的指尖,当所述第一接点和所述第二接点接触使所述开关器被导通而产生电流信号。
  8. 如权利要求5所述的第三听觉脑波学习器,其特征在于,所述开关器包括多任务器,作为轮选之用。
  9. 如权利要求1所述的第三听觉脑波学习器,其特征在于,所述激发组件为七套,七个骨导装置分别贴合在头部的不同的位置,所述七个震动马达分别贴附在肢体的不同的位置。
  10. 如权利要求1所述的第三听觉脑波学习器,其特征在于,所述第三听觉脑波学习器还包括头盔和脑波频率输出装置,每一套所述激发组件的所述骨导装置设置在所述头盔中,所述脑波频率输出装置连接于所述脑波检测电极,用于显示每一个所述脑波检测电极检测的脑波。
  11. 如权利要求1所述的第三听觉脑波学习器,其特征在于,所述第一信号为第一声音信号,所述第三听觉脑波学习器还包括用于产生所述第一声音信号的第一音源,当所述第一声音使所述使用者的脑波发生变化而产生变化后的脑波,所述变化后的脑波被所述脑波检测电极检测到之后触发所述第二信号,同时所述变化后的脑波产生电子脉冲信号,所述第二信号和所述电子脉冲信号加插到所述第一信号中,使所述使用者的脑波发生二次变化,产生二次变化后的脑波,供所述使用者确认。
  12. 如权利要求11所述的第三听觉脑波学习器,其特征在于,被检测出的变化后的脑波产生的电子脉冲信号视为二次音频噪音产生,该电子脉冲信号通过旁路的触发开关,以并联方式被回输加插于第一声音信号电路作震动输出提供所述使用者另一听觉确认;该信号并联于所述第二信号或替代所述第二信号。
PCT/CN2016/101694 2015-10-10 2016-10-10 第三听觉脑波学习器 WO2017059826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520781529.1U CN205234493U (zh) 2015-10-10 2015-10-10 第三听觉脑波学习器
CN201520781529.1 2015-10-10

Publications (1)

Publication Number Publication Date
WO2017059826A1 true WO2017059826A1 (zh) 2017-04-13

Family

ID=55933584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101694 WO2017059826A1 (zh) 2015-10-10 2016-10-10 第三听觉脑波学习器

Country Status (4)

Country Link
CN (1) CN205234493U (zh)
AU (1) AU2016101476A4 (zh)
TW (1) TWM532632U (zh)
WO (1) WO2017059826A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205234493U (zh) * 2015-10-10 2016-05-18 周凤玲 第三听觉脑波学习器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150092972A1 (en) * 2013-10-02 2015-04-02 Acousticsheep Llc Functional headwear
CN104507523A (zh) * 2012-04-06 2015-04-08 纽波特大脑研究实验室公司 频率特定的感官刺激
CN104706423A (zh) * 2013-12-12 2015-06-17 奥迪康有限公司 用于记忆力增强的声音刺激器
CN104841056A (zh) * 2014-02-14 2015-08-19 周家祥 头部骨传导装置以及方法
CN205234493U (zh) * 2015-10-10 2016-05-18 周凤玲 第三听觉脑波学习器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104507523A (zh) * 2012-04-06 2015-04-08 纽波特大脑研究实验室公司 频率特定的感官刺激
US20150092972A1 (en) * 2013-10-02 2015-04-02 Acousticsheep Llc Functional headwear
CN104706423A (zh) * 2013-12-12 2015-06-17 奥迪康有限公司 用于记忆力增强的声音刺激器
CN104841056A (zh) * 2014-02-14 2015-08-19 周家祥 头部骨传导装置以及方法
CN205234493U (zh) * 2015-10-10 2016-05-18 周凤玲 第三听觉脑波学习器

Also Published As

Publication number Publication date
AU2016101476A4 (en) 2016-09-15
CN205234493U (zh) 2016-05-18
TWM532632U (zh) 2016-11-21

Similar Documents

Publication Publication Date Title
CA2547445C (en) Systems and methods for altering vestibular biology
KR20120011016A (ko) 코 기류 장치 콘트롤러
JP2020507796A (ja) 神経系変調を用いた学習を強化するためのシステムおよび方法
CN103268392A (zh) 一种情景互动的认知功能训练系统及其使用方法
Miri et al. PIV: Placement, pattern, and personalization of an inconspicuous vibrotactile breathing pacer
CN101301507A (zh) 可用于全脑开发的大脑潜能激活系统及其使用方法
CN111443799A (zh) 基于脑机接口的辅助学习方法、终端及计算机存储介质
US11660038B2 (en) System based on multi-sensory learning and EEG biofeedback for improving reading ability
WO2017059826A1 (zh) 第三听觉脑波学习器
Velázquez et al. Vibrating insoles for tactile communication with the feet
Scherer et al. Game-based BCI training: Interactive design for individuals with cerebral palsy
Hamada et al. Physical activity rehabilitation trials with humanoid robot
US20170110019A1 (en) Apparatus and Method for Brain Training
US9368047B2 (en) Simulation add-on device to allow anterior-posterior and/or anterior-lateral defibrillation
JP2018029728A (ja) リハビリテーション装置及びリハビリテーション方法
Manresa-Yee et al. First insights with a vibrotactile interface for children with multiple disabilities
US20200333884A1 (en) Motion feedback device
Thompson et al. The emerging field of sound training
Parsnejad Enabling Real-Time Communication for Human Augmentation Systems via Unobtrusive High Bandwidth Machine to Human Electrotactile Peripheral Nerve Stimulation
Shapiro Suggestions for Teaching the Application of eye movements in EMDR
Vargas et al. Audio aided electro-tactile perception training for finger posture biofeedback
Zhang Improving mediated touch interaction with multimodality
Banerji et al. A unified, neuro-physio platform to facilitate collaborative play in children with learning disabilities
Monn et al. Pain Management Resource Guide for Caregivers of Children with Phantom Limb Pain
Schmalfuß Steer by ear: clinical and neurophysiological evaluation of a novel human-machine interface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853129

Country of ref document: EP

Kind code of ref document: A1