WO2017057860A1 - 공기 조화기 및 그 제어방법 - Google Patents

공기 조화기 및 그 제어방법 Download PDF

Info

Publication number
WO2017057860A1
WO2017057860A1 PCT/KR2016/010302 KR2016010302W WO2017057860A1 WO 2017057860 A1 WO2017057860 A1 WO 2017057860A1 KR 2016010302 W KR2016010302 W KR 2016010302W WO 2017057860 A1 WO2017057860 A1 WO 2017057860A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
guide pipe
air conditioner
compressor
Prior art date
Application number
PCT/KR2016/010302
Other languages
English (en)
French (fr)
Inventor
송치우
윤필현
김각중
정재화
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/764,113 priority Critical patent/US10533787B2/en
Publication of WO2017057860A1 publication Critical patent/WO2017057860A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost

Definitions

  • the present invention relates to an air conditioner and a control method thereof.
  • An air conditioner is a device for maintaining air in a predetermined space in a state most suitable for use and purpose.
  • the air conditioner includes a compressor, a condenser, an expansion device, and an evaporator, and a refrigeration cycle for performing the compression, condensation, expansion, and evaporation processes of the refrigerant is driven to cool or heat the predetermined space.
  • the predetermined space may be variously proposed according to the place where the air conditioner is used.
  • the predetermined space when the air conditioner is disposed in a home or an office, the predetermined space may be an indoor space of a house or a building.
  • the predetermined space when the air conditioner is disposed in a car, the predetermined space may be a boarding space in which a person boards.
  • the outdoor heat exchanger provided in the outdoor unit functions as a condenser
  • the indoor heat exchanger provided in the indoor unit performs an evaporator function.
  • the indoor heat exchanger functions as a condenser and the outdoor heat exchanger functions as an evaporator.
  • the air conditioner may be configured to connect one or more indoor units to one outdoor unit.
  • the compressor provided in the outdoor unit has a tendency to increase the capacity.
  • the outdoor temperature in the sub-zero range and the outdoor humidity is high, freezing may occur in the outdoor heat exchanger.
  • the air conditioner may be defrosted. During the defrosting operation, defrost water generated in the outdoor heat exchanger is collected under the outdoor heat exchanger, and the defrost water is frozen again by a low outside temperature.
  • Air conditioner and control method thereof Air conditioner and control method thereof
  • the present invention has been proposed to solve such a problem, and an object of the present invention is to provide an air conditioner and a control method capable of stable operation in consideration of a compressor load and an indoor unit load.
  • an object of the present invention is to provide an air conditioner that can prevent freezing from occurring in the lower part of the outdoor unit during heating operation.
  • An air conditioner includes a compressor for compressing a refrigerant; A flow diverter installed at the outlet side of the compressor; A first guide pipe extending from the flow diverter to an outdoor heat exchanger; A second guide pipe extending from the flow diverting unit to the indoor unit; A third guide pipe extending from the outdoor heat exchanger to the indoor unit; Extends from the second guide pipe to the third guide pipe, bypasses at least some of the refrigerant of the second guide pipe to the third guide pipe, or cools at least a part of the refrigerant of the third guide pipe; Bypass flow path for bypassing the second guide pipe; And a bypass valve installed in the bypass flow path and configured to adjust the amount of refrigerant flowing through the bypass flow path.
  • the compressor load detector for detecting the load of the compressor; And an indoor air load detection unit for detecting a load of the indoor unit.
  • the opening degree of the bypass valve may be adjusted based on the first information recognized by the compressor load detector and the second information recognized by the indoor air load detector.
  • the outdoor heat exchanger may include a first heat exchanger that forms an upper portion of the outdoor heat exchanger and is connected to the first guide pipe; And a second heat exchanger disposed below the first heat exchanger.
  • the outdoor fan is installed above the outdoor heat exchanger, the outdoor heat exchanger for generating a flow of outside air to the outdoor heat exchanger is further included.
  • the second heat exchange part is included in the bypass flow path.
  • bypass temperature sensor is installed in the bypass flow path, for detecting the temperature of the refrigerant passing through the bypass flow path; And a low pressure sensor for detecting a low pressure of the refrigerant sucked into the compressor.
  • the opening degree of the bypass valve may be adjusted based on the degree of superheat detected based on the information detected by the bypass temperature sensor and the low pressure sensor.
  • the main expansion device installed in the third guide pipe; And an indoor expansion device installed inside the indoor unit.
  • the flow switching unit performs a first operation mode
  • the bypass valve is opened to a set opening
  • the flow switching unit performs a second operation mode
  • the bypass valve is opened to a set opening degree
  • the refrigerant of at least a portion of the refrigerant of the second guide pipe to the second It is characterized by guiding the heat exchanger.
  • a control method of an air conditioner includes: driving a compressor to perform a cooling operation or a heating operation; Allowing the refrigerant to flow to the outdoor heat exchanger or the indoor unit according to the operation mode of the flow diverter installed at the outlet side of the compressor; Controlling the opening degree of the bypass valve so that at least some of the refrigerant having passed through the first heat exchange part of the outdoor heat exchanger or the refrigerant to be introduced into the indoor unit flows into the bypass flow path; And adjusting an opening degree of the bypass valve by sensing an operation load of the compressor and an operation load of an indoor unit, wherein the bypass flow passage is provided from a second guide pipe extending from the flow switching unit to the indoor unit. It extends from the outdoor heat exchanger to the third guide pipe extending to the indoor unit.
  • the opening degree of the bypass valve is increased, and if the difference between the operating load of the compressor and the operating load of the indoor unit is less than or equal to the set value, It is characterized by maintaining or decreasing the opening degree of the bypass valve.
  • the method may further include reducing the opening degree of the bypass valve when the degree of superheat is lower than a target degree of superheat, and increasing the degree of opening of the bypass valve when the degree of superheat is higher than the target degree of superheat.
  • the step of adjusting the opening degree of the bypass valve further comprises.
  • the outdoor heat exchanger may further include a second heat exchanger disposed below the first heat exchanger, and the bypass flow path may be connected to the second heat exchanger.
  • the compressor load is relatively larger than the indoor unit load
  • at least some of the refrigerant to be introduced into the indoor unit can be bypassed to the suction side of the compressor, so that the balancing between the compressor load and the indoor unit load This can be achieved, and thus a stable operation of the refrigeration cycle can be achieved.
  • a bypass valve which is adjustable in opening degree is installed in the bypass flow path that guides the flow of the refrigerant to be bypassed, and the opening degree of the bypass valve is adjusted based on the compressor and indoor unit load, thereby effectively reducing the amount of refrigerant being bypassed. It has the advantage of being controllable.
  • bypass flow path is configured to include the heat exchanger of the outdoor heat exchanger, it is not necessary to provide a separate bypass pipe for a long time, thereby increasing the space utilization of the outdoor unit having a limited space.
  • the superheat degree of the bypassed refrigerant may be sensed and the amount of refrigerant bypassed may be adjusted based on the sensed superheat degree. Accumulation and thus a shortage of refrigerant in the system can be prevented.
  • the bypass flow path includes a lower heat exchanger of the outdoor heat exchanger having a relatively smaller heat exchange rate among all the outdoor heat exchangers, even if the refrigerant is bypassed through the lower heat exchanger, the heat exchange capacity of the outdoor heat exchanger is reduced while the outdoor.
  • FIG. 1 is a system diagram showing the configuration of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the configuration of an outdoor unit of an air conditioner according to an embodiment of the present invention.
  • FIG 3 is an exploded perspective view showing the configuration of the outdoor unit of the air conditioner according to the embodiment of the present invention.
  • FIG. 4 is a block diagram showing the configuration of an air conditioner according to an embodiment of the present invention.
  • FIG. 5 is a flow chart showing a control method during the cooling operation of the air conditioner according to an embodiment of the present invention.
  • FIG. 6 is a system diagram showing the flow of the refrigerant during the cooling operation of the air conditioner according to an embodiment of the present invention.
  • FIG. 7 and 8 are flow charts showing a control method for heating operation of the air conditioner according to the embodiment of the present invention.
  • FIG. 9 is a system diagram showing the flow of the refrigerant during the heating operation of the air conditioner according to an embodiment of the present invention.
  • FIG. 1 is a system diagram showing the configuration of an air conditioner according to an embodiment of the present invention
  • Figure 2 is a perspective view showing the configuration of an outdoor unit of the air conditioner according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention The exploded perspective view which shows the structure of the outdoor unit of the air conditioner which concerns on an example.
  • the air conditioner 10 includes an outdoor unit 100 and an indoor unit 200.
  • the indoor unit 200 may include one or more indoor units. Although one indoor unit is illustrated in FIG. 1, a plurality of indoor units may be connected in parallel.
  • the air conditioner 10 is connected to a plurality of components provided in the outdoor unit 100 and a plurality of components constituting the indoor unit 200, and a refrigerant pipe 10a for guiding the flow of the refrigerant is provided. It is included more.
  • the outdoor unit 100 includes a base 106 that forms a lower appearance of the outdoor unit and supports a plurality of components disposed in the outdoor unit, and is installed below the base 106 to provide the outdoor unit 100.
  • Leg) 107 to be supported at the installation site and cabinets 101, 102 and 103 provided on the base 106 are included.
  • the legs 107 may be installed at both lower portions of the base 106 and placed on the installation place, for example, on the ground.
  • the base 106 has a shape of a plate including two long sides and two short sides, and the legs 107 may be installed below two long sides of the base 106.
  • the base 106 may have a rectangular shape.
  • the cabinets 101, 102, 103 include a suction panel 101.
  • the suction panel 101 is provided with a plurality, it is installed along the circumference of the base 106.
  • the plurality of suction panels 101 includes a suction grill 101a for allowing outdoor air to flow into the outdoor unit 10. Outside air may be introduced into the outdoor unit 100 from the front, rear, left, and right sides of the outdoor unit 100 through the plurality of suction panels 101.
  • the cabinets 101, 102, and 103 further include a control panel 103.
  • the control panel 103 may be understood as an openable door to access a control box (not shown) installed inside the outdoor unit 100.
  • the control panel 103 may be provided to be rotatable or slidable.
  • the cabinets 101, 102, and 103 further include a service panel 108 installed below the control panel 103.
  • the service panel 108 may be detachably provided from the outdoor unit 100 for the operation of the service valve assembly, the replacement of the refrigerant pipe, or the welding.
  • control panel 103 and the service panel 108 may be installed on the side of the suction panel 101 provided in front of the outdoor unit 100 among the plurality of suction panels 101.
  • the control panel 103 includes a viewing window 103a through which the display of the control box can be seen and a cover member 104 for selectively opening the viewing window 103a.
  • the cabinets 101, 102, and 103 further include brackets 102 for supporting the plurality of suction panels 101 and the control panel 103.
  • a plurality of brackets 102 may be provided and installed to extend upward from the base 106.
  • one of the brackets 102 may be disposed between one suction panel and another suction panel.
  • the other bracket may be disposed between the suction panel and the control panel 103.
  • the outdoor heat exchanger 150 may be installed in the outdoor unit 100.
  • the outdoor heat exchanger 150 may extend along the inner surfaces of the cabinets 101, 102, and 103 and may be seated on an upper surface of the base 106.
  • the outdoor heat exchanger 160 may be bent a plurality of times and extend along inner surfaces of the plurality of suction panels 102.
  • the outdoor heat exchanger 150 may be seated on an edge portion forming a long side and a edge portion forming a short side of the base 106.
  • the outdoor heat exchanger 150 may be bent and extended three times and have four sides.
  • the four surfaces may be arranged to face the four suction panels.
  • the first heat exchanger 150a and the first heat exchanger 150a which form an upper portion of the outdoor heat exchanger 150 and are connected to the first guide pipe 50 are provided.
  • a second heat exchanger 150b is disposed to form a lower portion of the outdoor heat exchanger 150.
  • the first heat exchange part 150a includes a first heat exchange pipe 151a through which a refrigerant flows and a first fin 151b coupled to the first heat exchange pipe 151a to help heat exchange of the refrigerant.
  • the second heat exchange part 150b includes a second heat exchange pipe 152a through which the refrigerant flows and a second fin 152b coupled to the second heat exchange pipe 152a to help heat exchange of the refrigerant. .
  • the first and second heat exchange pipes 151a and 152a constitute at least a portion of the refrigerant pipe 100 of the air conditioner 10, and the first and second fins 151b and 152b are heat exchange surfaces of the refrigerant and air.
  • Outside air introduced through the suction grills 101a of the plurality of suction panels 101 may be heat-exchanged while passing through the outdoor heat exchanger 150.
  • the heat exchange capacity of the first heat exchange part 150a may be greater than the heat exchange capacity of the second heat exchange part 150b. That is, the length or capacity of the first heat exchange pipe 151a and the first fin 151b may be greater than the length or capacity of the second heat exchange pipe 152a and the second fin 152b.
  • the outdoor unit 100 includes an outdoor fan 158 for introducing outside air and a fan housing 158a disposed to surround the outdoor fan 158 to guide the flow of air.
  • the outdoor unit 100 further includes a discharge panel 105 provided on one side of the outdoor fan 158.
  • the discharge panel 105 includes a discharge grill 105a for allowing air to be discharged to the outside of the outdoor unit 100.
  • the outdoor fan 158 is disposed above the outdoor unit 100 to generate a flow of outside air to the outdoor heat exchanger 150, and the discharge panel 105 may be installed above the outdoor fan 158. Can be.
  • the air passing through the outdoor heat exchanger 160 may flow upward and be discharged to the outside of the outdoor unit 100 through the outdoor fan 140 and the discharge panel 105.
  • outdoor air introduced from the suction grill 101a of the suction panel 101 forming four surfaces passes through the outdoor heat exchanger 150 having four surfaces. 100 may be discharged to the top. Therefore, the heat exchange capacity of the outdoor heat exchanger 150 may be improved.
  • the outdoor unit 100 may be provided with a plurality of components installed above the base 106.
  • the plurality of components include a compressor 110 for compressing a refrigerant.
  • the compressor 110 includes an inverter compressor capable of adjusting the cooling power according to the operation frequency control.
  • the outdoor unit 100 further includes an oil separator 120 installed in the discharge pipe 115 for guiding the refrigerant discharged from the compressor 110 to separate oil contained in the refrigerant.
  • the outdoor unit 100 further includes a gas-liquid separator 128 installed in the suction pipe 112 for guiding the suction of the refrigerant to the compressor 110 and separating the gaseous refrigerant from the refrigerant and supplying the refrigerant to the compressor 110. do.
  • the suction pipe 112, a low pressure sensor 114 for detecting the pressure of the refrigerant sucked into the compressor 110 may be installed.
  • the outdoor unit 100 further includes an oil recovery pipe 122 for recovering the oil separated from the oil separator 120 to the compressor 110.
  • the oil recovery pipe 122 may be connected to one point of the suction pipe 112, that is, the lamination part 125. Therefore, the oil recovered through the oil recovery pipe 122 may be combined with the refrigerant sucked into the compressor 110 through the suction pipe 112 and sucked into the compressor 110.
  • the outdoor unit 100 is provided at the discharge side of the oil separator 120 to supply refrigerant discharged from the compressor 110 or refrigerant passed through the oil separator 120 to the outdoor heat exchanger 150 or the indoor unit.
  • the flow diverter 130 is further controlled to guide to the side (200).
  • the flow diverter 130 may include a four way valve.
  • the air conditioner 10 includes a first guide pipe 50 extending from the flow diverter 130 to the outdoor heat exchanger 150 and the indoor unit 200 or the room from the flow diverter 130.
  • a second guide pipe 60 extending to the heat exchanger 210 is further included.
  • the first guide pipe 50 may be connected to the first heat exchange part 150a of the outdoor heat exchanger 150.
  • the flow switching unit 130 When the air conditioner 10 performs the cooling operation mode, the flow switching unit 130 is controlled to the first operation mode, so that the refrigerant flows through the first guide pipe 50 to the outdoor heat exchanger 150. To guide the flow.
  • the flow switching unit 130 when the air conditioner 10 performs the heating operation mode, the flow switching unit 130 is controlled to the second operation mode, the refrigerant is the indoor unit 200 through the second guide pipe 60 Can be guided to flow.
  • the outdoor heat exchanger 150 includes a first heat exchanger 150a constituting an upper portion of the outdoor heat exchanger 150 and a second heat exchanger 150b constituting a lower portion.
  • the first heat exchange part 150a includes a first heat exchange pipe 151a and a first fin 151b
  • the second heat exchange part 150b includes a second heat exchange pipe 152a and a first heat exchanger.
  • Two pins 152b are included.
  • the first heat exchange pipe 151a and the second heat exchange pipe 152a constitute separate refrigerant paths. That is, the refrigerant of the first heat exchange pipe 151a and the refrigerant of the second heat exchange pipe 152a are not mixed in the outdoor heat exchanger 150.
  • the first fin 151a and the second fin 151b may be integrally formed, and may extend in the vertical direction from the first heat exchanger 150a toward the second heat exchanger 150b.
  • the outdoor fan 158 may be installed above the outdoor heat exchanger 150.
  • the outdoor unit 100 further includes a third guide pipe 70 extending from the outdoor heat exchanger 150 to the indoor unit 200. That is, the guide pipe 70 is understood as a pipe connecting the outdoor heat exchanger 150 and the indoor unit 200.
  • the refrigerant condensed in the outdoor heat exchanger 150 may be introduced into the indoor unit 200 through the third guide pipe 70.
  • the refrigerant condensed in the indoor unit 200 may be introduced into the outdoor heat exchanger 150 through the third guide pipe 70.
  • the outdoor unit 100 further includes a main expansion device 168 installed in the third guide pipe 70 to reduce the refrigerant or control the flow rate of the refrigerant.
  • the main expansion device 168 may include an electronic expansion valve (EEV) capable of adjusting the opening degree.
  • EEV electronic expansion valve
  • the indoor unit 200 includes an indoor expansion device 230 installed in the third guide pipe 70 to reduce the refrigerant or to control the flow rate of the refrigerant.
  • the indoor expansion device 230 may include an electronic expansion valve (EEV) capable of adjusting the opening degree.
  • EEV electronic expansion valve
  • the indoor unit 200 further includes an indoor heat exchanger 210 that performs heat exchange with indoor air.
  • the indoor heat exchanger 210 includes an indoor heat exchange pipe 211 guiding the flow of the refrigerant and an indoor heat exchange fin 213 coupled to the indoor heat exchange pipe 211.
  • the indoor heat exchanger 210 may function as an evaporator when the air conditioner 10 performs the cooling operation mode and may function as a condenser when the air conditioner 10 performs the heating operation mode.
  • the indoor unit 200 further includes an indoor fan 218 installed at one side of the indoor heat exchanger 210 to flow air.
  • the air conditioner 10 further includes a bypass flow path 160 for guiding the bypass of the refrigerant from one of the second and third guide pipes 60 and 60 to the other guide pipe. do.
  • the second guide pipe 60 includes a first branch 60a to which one end of the bypass flow path 160 is connected.
  • the third guide pipe 70 includes a second branch part 70a to which the other end of the bypass flow path 160 is connected.
  • the bypass flow path 160 includes a second heat exchange part 150b of the outdoor heat exchanger 150.
  • the bypass flow path 160 may be connected to the second heat exchange part 150b. Therefore, while the refrigerant flows through the bypass flow path 160, the refrigerant passes through the second heat exchange part 150b of the outdoor heat exchanger 150.
  • the bypass flow path 160 may be provided with a bypass valve 165 for controlling the flow rate of the refrigerant through the bypass flow path 160.
  • the bypass valve 165 may include an electronic expansion valve (EEV) capable of adjusting the opening degree.
  • EEV electronic expansion valve
  • the refrigerant may be expanded in the process of passing through the bypass valve 165.
  • the bypass flow path 160 is provided with a bypass temperature sensor 167 that detects the temperature of the refrigerant passing through the second heat exchange part 150b when the air conditioner 10 performs the cooling operation mode. Can be.
  • the saturation temperature (first temperature value) may be calculated or estimated from the pressure sensed by the low pressure sensor 114.
  • the second temperature value may be detected from the bypass temperature sensor 167.
  • the degree of superheat of the refrigerant flowing through the bypass flow path 160 may be recognized from the difference between the second temperature value and the first temperature value.
  • FIG. 4 is a block diagram showing the configuration of an air conditioner according to an embodiment of the present invention.
  • the air conditioner 10 includes an input unit 11 for inputting a command related to the operation of the air conditioner 10.
  • the input unit 11 may include a driving input unit for inputting a driving command of the air conditioner 10 and a mode input unit for inputting a command regarding a driving mode.
  • the air conditioner 10 further includes sensors 114 and 167 for calculating the supercooling degree of the refrigerant flowing through the bypass flow path 160 during the cooling operation of the air conditioner.
  • the sensors 114 and 167 include a low pressure sensor 114 for detecting a low pressure of the system and a bypass temperature sensor 167 for detecting a refrigerant temperature of the bypass flow path 160.
  • the air conditioner 10 further includes an outside air temperature sensor 13 for detecting outside temperature and an outside air humidity sensor 14 for detecting outside air humidity. Based on the values sensed by the outside air temperature sensor 13 and the outside air humidity sensor 14, an icing prevention mode during the heating operation of the outdoor unit 100 may be performed.
  • the air conditioner 10 further includes a compressor load detection unit 15 for detecting a load of the compressor 110 and an indoor air load detection unit 16 for detecting a load of the indoor unit 200.
  • the compressor load detector 15 may recognize an operating frequency of the compressor 110.
  • the indoor unit load detection unit 16 may recognize the number of indoor units operated among the plurality of indoor units or the heating and cooling load of the indoor unit 200 itself.
  • the heating / cooling load of the indoor unit 200 may be determined based on a value of a set temperature in comparison with the outside air temperature. If the difference between the outside air temperature and the set temperature is large, it may be recognized that the air-conditioning load of the indoor unit 200 is large.
  • the air conditioner 10 includes the input unit 11, the bypass temperature sensor 167, the low pressure sensor 114, the outside air temperature sensor 13, the outside air humidity sensor 14, and the compressor load detecting unit 15.
  • the compressor 110, the flow diverter 130, the main expansion device 168, the indoor expansion device 230, or the bypass valve 165 may be operated based on the signal transmitted from the indoor air load detection unit 16.
  • the control unit 20 for controlling the is further included.
  • FIG 5 is a flow chart showing a control method during the cooling operation of the air conditioner according to an embodiment of the present invention
  • Figure 6 is a system showing the flow of the refrigerant during the cooling operation of the air conditioner according to an embodiment of the present invention Drawing.
  • the air conditioner 10 starts the cooling operation mode (S11).
  • the flow switching unit 130 performs a first operation mode (S12).
  • the refrigerant of the first guide pipe 50 is introduced into the first heat exchange part 150a of the outdoor heat exchanger 150 to exchange heat with the outside air, and the inflow to the second heat exchange part 150b is limited.
  • the refrigerant condensed in the first heat exchange part 150a flows through the third guide pipe 70.
  • the bypass valve 165 is opened (S13). As the bypass valve 165 is opened, at least some of the refrigerant flowing through the third guide pipe 70 flows into the bypass flow path 160 from the second branch part 70a. The remaining refrigerant flows to the indoor unit 200. The refrigerant of the bypass flow path 160 passes through the second heat exchange part 150b of the outdoor heat exchanger 150 and flows to the first branch part 60a of the second guide pipe 60.
  • the compressor load sensing unit 15 senses the first load of the operating load, that is, the operating frequency of the compressor 110. Then, the indoor unit load detection unit 16 detects the second information about the operating load, that is, the cooling load of the indoor unit 200. By this detection, the control unit 20 may recognize the difference between the driving capability of the compressor 110 and the capability required by the indoor unit 200 (S14, S15).
  • third information regarding the superheat degree of the refrigerant passing through the bypass flow path 160 that is, the refrigerant passing through the second heat exchange part 150b of the outdoor heat exchanger 150 may be sensed (S16). .
  • the opening degree of the bypass valve 165 may be adjusted based on the first to third information.
  • the opening degree of the bypass valve 165 may be increased or decreased based on the first and second information.
  • the bypass valve 165 may be The opening degree can be controlled in the direction of increasing.
  • the opening degree of the bypass valve 165 may be controlled in a direction of maintaining or decreasing.
  • the third information may be sensed after adjusting the opening degree of the bypass valve 165 based on the first and second information and a set time has elapsed. If the third information is within the target superheat degree, the opening degree of the bypass valve 165 is not further adjusted.
  • the opening degree of the bypass valve 165 may be adjusted.
  • the opening degree of the bypass valve 165 may be decreased to increase the degree of superheat. If the third information is higher than the target degree of superheat, the opening degree of the bypass valve 165 may be increased to lower the degree of superheat.
  • the liquid refrigerant flows into the gas-liquid separator 128 through the bypass flow path 160. Can be prevented. In addition, since the liquid refrigerant is prevented from being introduced, the liquid refrigerant may be accumulated in the gas-liquid separator 128 to prevent the refrigerant shortage from occurring in the refrigeration cycle.
  • the refrigerant flowing through the third guide pipe 70 flows into the indoor unit 200, expands in the indoor expansion device 230, and evaporates while passing through the indoor heat exchanger 210.
  • the refrigerant evaporated in the indoor unit 200 flows through the second guide pipe 60 and is laminated with the refrigerant flowing through the bypass flow path 160.
  • the laminated refrigerant flows into the flow diverting unit 130 and is introduced into the gas-liquid separator 128 from the flow diverting unit 130.
  • the gaseous refrigerant separated by the gas-liquid separator 128 may be sucked and compressed into the compressor 110 through the suction pipe 112.
  • FIG. 7 and 8 are flow charts showing a control method of the heating operation of the air conditioner according to an embodiment of the present invention
  • Figure 9 is a flow diagram of the refrigerant during the heating operation of the air conditioner according to an embodiment of the present invention Is a system diagram showing.
  • the air conditioner 10 starts the heating operation mode (S21).
  • the flow switching unit 130 performs a second operation mode (S22). In accordance with the execution of the second operation mode of the flow diverter 130, the refrigerant compressed by the compressor 110 and passing through the oil separator 120 is transferred from the flow diverter 130 to the second guide pipe. Flow to (60).
  • the bypass valve 165 is opened (S23). As the bypass valve 165 is opened, at least some of the refrigerant of the second guide pipe 60 flows into the bypass flow path 160 through the first branch part 60a, and the rest of the refrigerant flows through the first branch part 60a. The coolant flows to the indoor unit 200. The refrigerant of the bypass flow path 160 passes through the second heat exchange part 150b of the outdoor heat exchanger 150 and flows to the second branch part 70a of the third guide pipe 70.
  • the compressor load sensing unit 15 senses the first load of the operating load, that is, the operating frequency of the compressor 110. Then, the indoor unit load detection unit 16 detects the second information about the operating load, that is, the cooling load of the indoor unit 200. By this detection, the control unit 20 may recognize a difference between the driving capability of the compressor 110 and the capability required by the indoor unit 200 (S24 and S25).
  • the opening degree of the bypass valve 165 may be controlled to a second setting opening degree.
  • the cooling operation mode when the difference between the first and second information is large, that is, when the operating load of the compressor 110 is greater than the set value than the operating load of the indoor unit 200, the bypass.
  • the opening degree of the valve 165 can be controlled in the direction of increasing.
  • the opening degree of the bypass valve 165 may be controlled in a direction of maintaining or decreasing. For example, when the opening degree of the bypass valve 165 is maintained, the first opening degree and the second opening degree may be the same.
  • the outside air temperature sensor 13 and the outside air humidity sensor 14 detect the temperature and humidity of the outside air.
  • the lower the temperature of the outside air and the higher the humidity of the outside air the higher the possibility of freezing occurring at the bottom of the outdoor unit 100 or the bottom of the outdoor heat exchanger 150. That is, due to the high humidity, the possibility of generating defrost water on the surface of the outdoor heat exchanger 150 increases, and the defrost water may be collected under the outdoor heat exchanger 150.
  • the possibility of freezing (defrosting) of the defrost water is increased due to the low outside air temperature (S27).
  • the third opening degree is understood as an opening degree smaller than the second opening degree.
  • the opening degree of the bypass valve 165 is too large, a problem may occur in that the amount of bypass refrigerant through the bypass flow path 165 increases, thereby reducing the heating capacity of the air conditioner 10. .
  • the opening degree of the bypass valve 165 it is possible to prevent the heating capacity is reduced.
  • the high temperature refrigerant discharged from the compressor 110 may pass through the second heat exchanger 150b of the outdoor heat exchanger 150 through the bypass flow path 160, the outdoor heat exchanger ( It is possible to prevent a phenomenon in which freezing occurs at the lower portion of the 150 or the lower portion of the outdoor unit 100.
  • the outdoor fan 158 is disposed above the outdoor heat exchanger 150. Considering that the heat exchange amount is relatively large at the upper side of the outdoor heat exchanger 150 by the driving of 158, the reduction of the amount of evaporation heat may not be a significant concern.
  • step S26 if the range of the outside air temperature and the humidity outside the humidity in step S28 does not belong to the above range, it is possible to perform the step S26 or less (S29).
  • the refrigerant introduced into the indoor unit 200 through the second guide pipe 60 is condensed while passing through the indoor heat exchanger 210 and flows into the third guide pipe 70.
  • the refrigerant introduced into the third guide pipe 70 may be depressurized by the main expansion device 168.
  • the refrigerant flowing through the bypass flow path 160 may be depressurized while passing through the bypass valve 165 and may be laminated with the refrigerant of the third guide pipe 70 in the second branch part 70a. .
  • the laminated refrigerant flows into the first heat exchange part 150a of the outdoor heat exchanger 150 and evaporates, and flows into the flow switching part 130 via the first guide pipe 50.
  • the refrigerant flows into the gas-liquid separator 128 from the flow switching unit 130, and the gas-phase refrigerant and the liquid refrigerant are separated from the gas-liquid separator 128.
  • the separated gaseous refrigerant may be sucked and compressed into the compressor 110 through the suction pipe 112.
  • a defrosting operation of the outdoor heat exchanger 150 may be performed.
  • the defrosting operation may be performed at a predetermined cycle in the heating operation process. Whether the arrival of the defrosting operation time is recognized (S30).
  • the cooling cycle described in FIG. 6 may be operated. That is, the flow switching unit 130 is performed in the first operation mode, and thus the refrigerant discharged from the compressor 110 is the first heat exchanger of the outdoor heat exchanger 150 from the flow switching unit 130. It may flow into 150a.
  • the indoor fan 218 may be turned off and the heating operation may be stopped (S31 and S32).
  • the opening degree of the bypass valve 165 may be controlled by the fourth set opening degree.
  • the fourth set opening degree is an opening degree larger than the third set opening degree, and may be understood as an opening degree which is equal to or larger than the second set opening degree.
  • the fourth set opening degree may be the maximum opening degree of the bypass valve 165.
  • the bypass valve 165 may be opened to bypass at least some of the refrigerant of the third guide pipe 70 to the bypass flow path 160. It is possible to prevent the accumulation of freezing in the heat exchange unit (150b). On the other hand, if the defrosting operation time has not arrived, step S27 or less may be performed (S33).
  • the air conditioner may be bypassed.
  • discontinuous operation of the air conditioner 10 according to the load difference between the load of the compressor 110 and the indoor unit 200 may be prevented.
  • the refrigerant may be bypassed to the lower portion of the outdoor heat exchanger 150 during the heating operation of the air conditioner 10, cumulative freezing occurs at the lower portion of the outdoor heat exchanger 150 or the lower portion of the outdoor unit 100. The effect can be prevented.
  • the compressor load is relatively larger than the indoor unit load
  • at least some of the refrigerant to be introduced into the indoor unit can be bypassed to the suction side of the compressor, so that balancing between the compressor load and the indoor unit load is achieved. In this way, stable operation of the refrigeration cycle can be achieved. Therefore, industrial applicability is remarkable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명은 공기 조화기 및 그 제어방법에 관한 것이다. 본 발명의 실시예에 따른 공기 조화기에는, 냉매를 압축하는 압축기; 상기 압축기의 출구측에 설치되는 유동전환부; 상기 유동전환부로부터 실외 열교환기로 연장되는 제 1 가이드 배관; 상기 유동전환부로부터 실내기로 연장되는 제 2 가이드 배관; 상기 실외 열교환기로부터 상기 실내기로 연장되는 제 3 가이드 배관; 상기 제 2 가이드 배관으로부터 상기 제 3 가이드 배관으로 연장되어, 상기 제 2 가이드 배관의 냉매 중 적어도 일부의 냉매를 상기 제 3 가이드 배관으로 바이패스 하거나, 상기 제 3 가이드 배관의 냉매 중 적어도 일부의 냉매를 상기 제 2 가이드 배관으로 바이패스 하는 바이패스 유로; 및 상기 바이패스 유로에 설치되며, 상기 바이패스 유로를 유동하는 냉매량을 조절하는 바이패스 밸브가 포함된다.

Description

공기 조화기 및 그 제어방법
본 발명은 공기 조화기 및 그 제어방법에 관한 것이다.
공기 조화기는 소정공간의 공기를 용도, 목적에 따라 가장 적합한 상태로 유지하기 위한 기기이다. 일반적으로, 상기 공기 조화기에는, 압축기, 응축기, 팽창장치 및 증발기가 포함되며, 냉매의 압축, 응축, 팽창 및 증발과정을 수행하는 냉동 사이클이 구동되어, 상기 소정공간을 냉방 또는 난방할 수 있다.
상기 소정공간은 상기 공기 조화기는 사용되는 장소에 따라, 다양하게 제안될 수 있다. 일례로, 상기 공기 조화기가 가정이나 사무실에 배치되는 경우, 상기 소정공간은 집 또는 건물의 실내 공간일 수 있다. 반면에, 상기 공기 조화기가 자동차에 배치되는 경우, 상기 소정 공간은 사람이 탑승하는 탑승 공간일 수 있다.
공기 조화기가 냉방 운전을 수행하는 경우, 실외기에 구비되는 실외 열교환기가 응축기 기능을 하며 실내기에 구비되는 실내 열교환기가 증발기 기능을 수행한다. 반면에, 공기 조화기가 난방 운전을 수행하는 경우, 상기 실내 열교환기가 응축기 기능을 하며 상기 실외 열교환기가 증발기 기능을 수행한다.
한편, 공기 조화기에는, 1대의 실외기에 하나 이상의 실내기가 연결되도록 구성될 수 있다. 상기 하나 이상의 실내기의 부하를 감당하기 위하여, 상기 실외기에 구비되는 압축기는 대용량화 되는 추세에 있다.
다만, 상기 대용량화된 압축기가 구비된 실외기가 구동함에도 불구하고, 상기 실내기의 운전부하가 낮은 경우, 일례로 다수의 실내기 중 일부의 실내기만 구동하는 경우 또는 실내기에서 요구되는 운전능력이 낮은 경우, 상기 압축기의 용량이 상대적으로 과다하게 되어 적절한 범위의 냉동 사이클이 형성되지 않는 문제점이 있다.
상세히, 압축기의 용량이 실내기의 부하보다 크게 되면, 냉동 사이클의 고압이 비정상 영역으로 높아지게 되고 이에 따라 압축기가 오프되는 현상이 빈번하게 나타나게 된다. 결국, 압축기의 온/오프가 반복되어, 공기 조화기의 연속적인 운전이 제한되는 문제점이 있었다.
또한, 실외온도가 영하의 범위에 있고 실외습도가 높은 환경에서, 실외 열교환기에는 결빙이 발생할 수 있다. 이를 제거하기 위하여, 공기 조화기에는 제상운전이 수행될 수 있다. 상기 제상운전이 수행되는 과정에서 상기 실외 열교환기에서 발생되는 제상수가 실외 열교환기의 하부에 모여지게 되고, 상기 제상수는 낮은 외기온도에 의하여 다시 결빙되는 현상이 나타난다.
상기 결빙에 의하여, 상기 실외 열교환기의 열교환 효율이 저하되고 이에 따라 공기 조화기의 운전효율이 저하되는 문제점이 나타난다.
이와 관련한 선행문헌의 정보는 아래와 같다.
[선행문헌]
1. 공개특허 제 10-2014-0094343 (공개일자 : 2014년 7월 30일),
2. 발명의 명칭 : 공기 조화기 및 그 제어방법
본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로서, 압축기 부하 및 실내기 부하를 고려하여 안정적인 운전이 이루어질 수 있는 공기 조화기 및 그 제어방법을 제공하는 것을 목적으로 한다.
또한, 난방운전시 실외기의 하부에 결빙이 발생되는 것을 방지할 수 있는 공기 조화기를 제공하는 것을 목적으로 한다.
본 발명의 실시예에 따른 공기 조화기에는, 냉매를 압축하는 압축기; 상기 압축기의 출구측에 설치되는 유동전환부; 상기 유동전환부로부터 실외 열교환기로 연장되는 제 1 가이드 배관; 상기 유동전환부로부터 실내기로 연장되는 제 2 가이드 배관; 상기 실외 열교환기로부터 상기 실내기로 연장되는 제 3 가이드 배관; 상기 제 2 가이드 배관으로부터 상기 제 3 가이드 배관으로 연장되어, 상기 제 2 가이드 배관의 냉매 중 적어도 일부의 냉매를 상기 제 3 가이드 배관으로 바이패스 하거나, 상기 제 3 가이드 배관의 냉매 중 적어도 일부의 냉매를 상기 제 2 가이드 배관으로 바이패스 하는 바이패스 유로; 및 상기 바이패스 유로에 설치되며, 상기 바이패스 유로를 유동하는 냉매량을 조절하는 바이패스 밸브가 포함된다.
또한, 상기 압축기의 부하를 감지하는 압축기부하 감지부; 및 상기 실내기의 부하를 감지하는 실내기부하 감지부가 더 포함된다.
또한, 상기 상기 바이패스 밸브의 개도는, 상기 압축기부하 감지부에서 인식된 제 1 정보 및 상기 실내기부하 감지부에서 인식된 제 2 정보에 기초하여, 조절되는 것을 특징으로 한다.
또한, 상기 실외 열교환기에는, 상기 실외 열교환기의 상부를 형성하며, 상기 제 1 가이드 배관에 연결되는 제 1 열교환부; 및 상기 제 1 열교환부의 하측에 배치되는 제 2 열교환부가 포함된다.
또한, 상기 실외 열교환기의 상측에 설치되어, 상기 실외 열교환기로 외기의 유동을 발생시키는 실외 팬이 더 포함된다.
또한, 상기 바이패스 유로에는, 상기 제 2 열교환부가 포함된다.
또한, 상기 바이패스 유로에 설치되며, 상기 바이패스 유로를 통과하는 냉매의 온도를 감지하는 바이패스 온도센서; 및 상기 압축기로 흡입되는 냉매의 저압을 감지하는 저압센서가 더 포함된다.
또한, 상기 바이패스 밸브의 개도는, 상기 바이패스 온도센서와 상기 저압센서에서 감지된 정보에 기초하여 인식된 과열도에 기초하여, 조절되는 것을 특징으로 한다.
또한, 상기 제 3 가이드 배관에 설치되는 메인 팽창장치; 및 상기 실내기의 내부에 설치되는 실내 팽창장치가 더 포함된다.
또한, 상기 공기 조화기의 냉방운전서, 상기 유동전환부는 제 1 작동모드를 수행하며, 상기 바이패스 밸브는 설정개도로 개방되어, 상기 실외 열교환기의 제 1 열교환부를 통과한 냉매를 상기 제 2 열교환부로 가이드 하는 것을 특징으로 한다.
또한, 상기 공기 조화기의 난방운전서, 상기 유동전환부는 제 2 작동모드를 수행하며, 상기 바이패스 밸브는 설정개도로 개방되어, 상기 제 2 가이드 배관의 냉매 중 적어도 일부의 냉매를 상기 제 2 열교환부로 가이드 하는 것을 특징으로 한다.
다른 측면에 따른 공기 조화기의 제어방법에는, 압축기가 구동하여, 냉방운전 또는 난방운전이 수행되는 단계; 상기 압축기의 출구측에 설치된 유동전환부의 작동모드에 따라, 냉매가 실외 열교환기 또는 실내기로 유동되도록 하는 단계; 바이패스 밸브의 개도를 제어하여, 상기 실외 열교환기의 제 1 열교환부를 통과한 냉매 또는 상기 실내기로 유입될 냉매 중 적어도 일부의 냉매가 바이패스 유로로 유동되도록 하는 단계; 및 상기 압축기의 운전부하 및 실내기의 운전부하를 감지하여, 상기 바이패스 밸브의 개도를 조절하는 단계가 포함되며, 상기 바이패스 유로는, 상기 유동전환부로부터 상기 실내기로 연장되는 제 2 가이드 배관으로부터 상기 실외 열교환기로부터 상기 실내기로 연장되는 제 3 가이드 배관으로 연장되는 것을 특징으로 한다.
또한, 상기 압축기의 운전부하가 상기 실내기의 운전부하보다 설정값 이상으로 크면, 상기 바이패스 밸브의 개도를 증가시키고, 상기 압축기의 운전부하와 상기 실내기의 운전부하의 차이가 설정값 이하이면, 상기 바이패스 밸브의 개도를 유지 또는 감소하는 것을 특징으로 한다.
또한, 상기 공기 조화기의 냉방운전시, 상기 바이패스 유로를 통과하는 냉매의 온도와, 상기 압축기로 흡입되는 냉매의 저압을 감지하여, 상기 바이패스 유로를 통과하느 냉매의 과열도를 인식하는 단계가 더 포함된다.
또한, 상기 과열도가 목표 과열도보다 낮으면, 상기 바이패스 밸브의 개도를 감소하고, 상기 과열도가 상기 목표 과열도보다 높으면, 상기 바이패스 밸브의 개도를 증대하는 단계가 더 포함된다.
또한, 상기 공기 조화기의 난방운전시, 외기온도와 외기습도를 감지하여, 상기 바이패스 밸브의 개도를 조절하는 단계가 더 포함된다.
또한, 상기 실외 열교환기에는, 상기 제 1 열교환부의 하측에 위치하는 제 2 열교환부가 더 포함되며, 상기 바이패스 유로는 상기 제 2 열교환부에 연결되는 것을 특징으로 한다.
이러한 본 발명의 실시예에 의하면, 압축기 부하가 실내기 부하보다 상대적으로 큰 것으로 인식되면, 실내기로 유입될 냉매 중 적어도 일부의 냉매를 압축기의 흡입측으로 바이패스 할 수 있으므로, 압축기 부하와 실내기 부하간에 밸런싱을 도모할 수 있고, 이에 따라 냉동 사이클의 안정적인 운전이 이루어질 수 있다.
또한, 상기 바이패스 되는 냉매의 유동을 가이드 하는 바이패스 유로에 개도 조절가능한 바이패스 밸브가 설치되고, 압축기 및 실내기 부하에 기초하여 상기 바이패스 밸브의 개도 조절이 이루어지므로, 바이패스 되는 냉매량을 효과적으로 제어할 수 있다는 장점이 있다.
또한, 상기 바이패스 유로에, 실외 열교환기의 열교환부가 포함되도록 구성됨으로써, 별도의 바이패스 배관을 길게 구비할 필요가 없고, 이에 따라 제한된 공간을 가지는 실외기의 공간 활용성이 증대될 수 있다.
또한, 공기 조화기의 냉방운전시, 상기 바이패스 되는 냉매의 과열도를 감지하고, 상기 감지된 과열도에 기초하여 바이패스 되는 냉매량을 조절할 수 있으므로, 과열도 부족에 따라 액냉매가 기액분리기에 쌓이고 이에 따라 시스템의 냉매 부족이 발생되는 현상을 방지할 수 있다.
또한, 공기 조화기의 난방운전시, 압축기에서 토출된 고압냉매를 실외 열교환기의 열교환부로 바이패스 시킴으로써 실외 열교환기의 결빙을 방지할 수 있다.
특히, 상기 바이패스 유로에는, 전체 실외 열교환기 중, 상대적으로 열교환량이 적은 실외 열교환기의 하부 열교환부가 포함되므로, 상기 하부 열교환부를 통하여 냉매를 바이패스 하더라도 실외 열교환기의 열교환 능력 감소는 줄이면서 실외 열교환기의 결빙을 방지하는 데에는 효과적이라는 장점이 있다.
도 1은 본 발명의 실시예에 따른 공기 조화기의 구성을 보여주는 시스템 도면이다.
도 2는 본 발명의 실시예에 따른 공기 조화기의 실외기의 구성을 보여주는 사시도이다.
도 3은 본 발명의 실시예에 따른 공기 조화기의 실외기의 구성을 보여주는 분해 사시도이다.
도 4는 본 발명의 실시예에 따른 공기 조화기의 구성을 보여주는 블럭도이다.
도 5는 본 발명의 실시예에 따른 공기 조화기의 냉방운전시 제어방법을 보여주는 플로우 챠트이다.
도 6은 본 발명의 실시예에 따른 공기 조화기의 냉방운전시, 냉매의 유동모습을 보여주는 시스템 도면이다.
도 7 및 도 8은 본 발명의 실시예에 따른 공기 조화기의 난방운전시 제어방법을 보여주는 플로우 챠트이다.
도 9는 본 발명의 실시예에 따른 공기 조화기의 난방운전시, 냉매의 유동모습을 보여주는 시스템 도면이다.
이하에서는 도면을 참조하여, 본 발명의 구체적인 실시예를 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 실시예를 용이하게 제안할 수 있을 것이다.
도 1은 본 발명의 실시예에 따른 공기 조화기의 구성을 보여주는 시스템 도면이고, 도 2는 본 발명의 실시예에 따른 공기 조화기의 실외기의 구성을 보여주는 사시도이고, 도 3은 본 발명의 실시예에 따른 공기 조화기의 실외기의 구성을 보여주는 분해 사시도이다.
본 발명의 실시예에 따른 공기 조화기(10)에는, 실외기(100)와 실내기(200)가 포함된다. 상기 실내기(200)에는, 하나 이상의 실내기가 포함될 수 있다. 도 1에는 하나의 실내기가 구비되는 것으로 도시되었으나, 이와는 달리 다수의 실내기가 병렬로 연결될 수 있다.
그리고, 상기 공기 조화기(10)에는, 상기 실외기(100)에 구비되는 다수의 부품 및 상기 실내기(200)를 구성하는 다수의 부품을 연결하여, 냉매의 유동을 가이드 하는 냉매관(10a)이 더 포함된다.
도 2를 참조하면, 상기 실외기(100)에는, 실외기의 하부 외관을 형성하고 실외기에 배치되는 다수의 부품을 지지하는 베이스(106)와, 상기 베이스(106)의 하측에 설치되어 상기 실외기(100)가 설치장소에 지지되도록 하는 레그(107) 및 상기 베이스(106)의 상측에 제공되는 캐비닛(101,102,103)이 포함된다.
상기 레그(107)는 상기 베이스(106)의 양측 하부에 설치되어 상기 설치장소, 일례로 지면에 놓여질 수 있다. 상세히, 상기 베이스(106)는 2개의 장변부과 2개의 단변부를 포함하는 플레이트의 형상을 가지며, 상기 레그(107)는 상기 베이스(106)의 2개의 장변부 하측에 설치될 수 있다. 일례로, 상기 베이스(106)는 직사각형의 형상을 가질 수 있다.
상기 캐비닛(101,102,103)에는, 흡입패널(101)이 포함된다. 상기 흡입패널(101)은 다수 개가 제공되어, 상기 베이스(106)의 둘레를 따라 설치된다.
일례로, 상기 다수의 흡입패널(101)은 4개가 구비되어, 상기 베이스(106)의 전후방 및 좌우측방에 설치된다. 상기 다수의 흡입패널(101)에는, 실외 공기가 상기 실외기(10)의 내부로 유입될 수 있도록 하는 흡입 그릴(101a)이 포함된다. 외기는 상기 실외기(100)의 전후방 또는 좌우측방으로부터 상기 다수의 흡입패널(101)을 통하여, 상기 실외기(100)의 내부로 유입될 수 있다.
상기 캐비닛(101,102,103)에는, 컨트롤 패널(103)이 더 포함된다. 상기 컨트롤 패널(103)은 실외기(100)의 내부에 설치되는 컨트롤 박스(미도시)에 접근하기 위하여 개방 가능한 도어로서 이해될 수 있다. 일례로, 상기 컨트롤 패널(103)은 회동 가능하게 또는 슬라이딩 가능하게 제공될 수 있다.
상기 캐비닛(101,102,103)에는, 상기 컨트롤 패널(103)의 하측에 설치되는 서비스 패널(108)이 더 포함된다. 서비스밸브 어셈블리의 조작, 냉매관의 교체 또는 용접등의 작업을 위하여, 상기 서비스 패널(108)은 상기 실외기(100)로부터 분리 가능하게 제공될 수 있다.
상기 컨트롤 패널(103) 및 서비스 패널(108)은 상기 다수의 흡입패널(101) 중 실외기(100)의 전방에 제공되는 흡입패널(101)의 측방에 설치될 수 있다.
상기 컨트롤 패널(103)에는, 상기 컨트롤 박스의 디스플레이가 보여질 수 있는 투시창(103a) 및 상기 투시창(103a)을 선택적으로 개방하기 위한 커버부재(104)가 포함된다.
상기 캐비닛(101,102,103)에는, 상기 다수의 흡입패널(101) 및 컨트롤 패널(103)을 지지하기 위한 브라켓(102)이 더 포함된다. 상기 브라켓(102)은 다수 개가 제공되며, 상기 베이스(106)로부터 상방으로 연장되도록 설치될 수 있다. 그리고, 상기 다수의 브라켓(102) 중 일 브라켓은 일 흡입패널과 타 흡입패널의 사이에 배치될 수 있다. 그리고, 타 브라켓은 일 흡입패널과 상기 컨트롤 패널(103)의 사이에 배치될 수 있다.
상기 실외기(100)의 내부에는, 실외 열교환기(150)가 설치될 수 있다. 상기 실외 열교환기(150)는 상기 캐비닛(101,102,103)의 내측면을 따라 연장되며, 상기 베이스(106)의 상면에 안착될 수 있다.
다시 말하면, 상기 실외 열교환기(160)는 다수 회 절곡되어, 상기 다수의 흡입패널(102)의 내측면을 따라 연장될 수 있다. 그리고, 상기 실외 열교환기(150)는 상기 베이스(106)의 장변을 형성하는 테두리부 및 단변을 형성하는 테두리부에 안착될 수 있다.
일례로, 상기 실외 열교환기(150)는 3회 절곡되어 연장되며, 4개의 면을 가질 수 있다. 상기 4개의 면은 상기 4개의 흡입패널을 바라보도록 배치될 수 있다.
상기 실외 열교환기(150)에는, 상기 실외 열교환기(150)의 상부를 형성하며 제 1 가이드 배관(50)에 연결되는 제 1 열교환부(150a) 및 상기 제 1 열교환부(150a)의 하측에 위치하여 상기 실외 열교환기(150)의 하부를 형성하는 제 2 열교환부(150b)가 포함된다.
상기 제 1 열교환부(150a)에는, 냉매가 유동하는 제 1 열교환 배관(151a) 및 상기 제 1 열교환 배관(151a)에 결합되어 냉매의 열교환을 도와주는 제 1 핀(151b)이 포함된다. 그리고, 상기 제 2 열교환부(150b)에는, 냉매가 유동하는 제 2 열교환 배관(152a) 및 상기 제 2 열교환 배관(152a)에 결합되어 냉매의 열교환을 도와주는 제 2 핀(152b)이 포함된다.
상기 제 1,2 열교환 배관(151a,152a)는 공기 조화기(10)의 냉매관(100)의 적어도 일부분을 구성하며, 상기 제 1,2 핀(151b,152b)은 냉매와 공기의 열교환 면을 제공한다. 상기 다수의 흡입패널(101)의 흡입 그릴(101a)을 통하여 유입된 외기는 상기 실외 열교환기(150)를 통과하면서 열교환 될 수 있다.
상기 제 1 열교환부(150a)의 열교환 능력은 상기 제 2 열교환부(150b)의 열교환 능력보다 크게 형성될 수 있다. 즉, 상기 제 1 열교환 배관(151a) 및 제 1 핀(151b)의 길이 또는 용량은 상기 제 2 열교환 배관(152a) 및 제 2 핀(152b)의 길이 또는 용량보다 크게 형성될 수 있다.
상기 실외기(100)에는, 외기를 유입시키기 위한 실외 팬(158) 및 상기 실외 팬(158)을 둘러싸도록 배치되어 공기의 유동을 가이드 하는 팬 하우징(158a)이 포함된다. 그리고, 상기 실외기(100)에는, 상기 실외 팬(158)의 일측에 제공되는 토출 패널(105)이 더 포함된다. 상기 토출 패널(105)에는, 공기가 실외기(100)의 외부로 배출될 수 있도록 하는 토출 그릴(105a)이 포함된다.
상기 실외 팬(158)은 상기 실외기(100)의 상부에 배치되어 상기 실외 열교환기(150)로 외기의 유동을 발생시키며, 상기 토출 패널(105)은 상기 실외 팬(158)의 상측에 설치될 수 있다. 상기 실외 열교환기(160)를 통과한 공기는 상방으로 유동하여, 상기 실외 팬(140) 및 토출 패널(105)을 거쳐 상기 실외기(100)의 외부로 배출될 수 있다.
이와 같이, 상기 실외 팬(158)의 상부에 위치됨으로써, 4면을 형성하는 흡입 패널(101)의 흡입 그릴(101a)로부터 유입된 외기가 4면을 가지는 실외 열교환기(150)를 거쳐 실외기(100)의 상부로 배출될 수 있다. 따라서, 상기 실외 열교환기(150)의 열교환 능력이 개선될 수 있다.
상기 실외기(100)에는, 상기 베이스(106)의 상측에 설치되는 다수의 부품이 설치될 수 있다. 상세히, 도 1을 참조하면, 상기 다수의 부품에는, 냉매를 압축하는 압축기(110)가 포함된다. 상기 압축기(110)에는, 운전주파수 제어에 따라 냉력을 조절할 수 있는 인버터 압축기가 포함된다.
상기 실외기(100)에는, 상기 압축기(110)에서 토출된 냉매를 가이드 하는 토출배관(115)에 설치되어 냉매 중 포함된 오일이 분리되는 오일 분리기(120)가 더 포함된다.
상기 실외기(100)에는, 상기 압축기(110)로 냉매의 흡입을 가이드 하는 흡입배관(112)에 설치되어 냉매 중 기상 냉매를 분리하여 상기 압축기(110)에 공급하는 기액 분리기(128)가 더 포함된다. 상기 흡입배관(112)에는, 상기 압축기(110)로 흡입되는 냉매의 압력이 감지되는 저압 센서(114)가 설치될 수 있다.
상기 실외기(100)에는, 상기 오일 분리기(120)로부터 분리된 오일을 상기 압축기(110)로 회수하기 위한 오일 회수배관(122)이 더 포함된다. 상기 오일 회수배관(122)은 상기 흡입배관(112)의 일 지점, 즉 합지부(125)에 연결될 수 있다. 따라서, 상기 오일 회수배관(122)을 통하여 회수되는 오일은 상기 흡입배관(112)을 통하여 상기 압축기(110)로 흡입되는 냉매와 합쳐져서 상기 압축기(110)로 흡입될 수 있다.
상기 실외기(100)에는, 상기 오일 분리기(120)의 토출측에 제공되어, 상기 압축기(110)에서 토출된 냉매 또는 상기 오일 분리기(120)를 통과한 냉매를 상기 실외 열교환기(150) 또는 상기 실내기(200)측으로 가이드 하도록 제어되는 유동 전환부(130)가 더 포함된다. 일례로, 상기 유동 전환부(130)에는, 사방밸브(four way valve)가 포함될 수 있다.
상기 공기 조화기(10)에는, 상기 유동 전환부(130)로부터 상기 실외 열교환기(150)로 연장되는 제 1 가이드 배관(50) 및 상기 유동 전환부(130)로부터 상기 실내기(200) 또는 실내 열교환기(210)로 연장되는 제 2 가이드 배관(60)이 더 포함된다.
상기 제 1 가이드 배관(50)은, 상기 실외 열교환기(150)의 제 1 열교환부(150a)에 연결될 수 있다.
공기 조화기(10)가 냉방운전 모드를 수행할 때, 상기 유동 전환부(130)는 제 1 작동모드로 제어되어, 냉매가 상기 제 1 가이드 배관(50)을 통하여 상기 실외 열교환기(150)로 유동하도록 가이드 한다. 반면에, 공기 조화기(10)가 난방운전 모드를 수행할 때, 상기 유동 전환부(130)는 제 2 작동모드로 제어되어, 냉매가 상기 제 2 가이드 배관(60)을 통하여 상기 실내기(200)로 유동하도록 가이드 할 수 있다.
상기 실외 열교환기(150)에는, 실외 열교환기(150)의 상부를 구성하는 제 1 열교환부(150a) 및 하부를 구성하는 제 2 열교환부(150b)가 포함된다. 상기한 바와 같이, 상기 제 1 열교환부(150a)에는 제 1 열교환 배관(151a) 및 제 1 핀(151b)이 포함되고, 상기 제 2 열교환부(150b)에는 제 2 열교환 배관(152a) 및 제 2 핀(152b)이 포함된다.
상기 제 1 열교환 배관(151a)과 제 2 열교환 배관(152a)은 별도의 냉매유로(path)를 구성한다. 즉, 상기 제 1 열교환 배관(151a)의 냉매와, 상기 제 2 열교환 배관(152a)의 냉매는 상기 실외 열교환기(150) 내에서 혼합되지 않는다.
상기 제 1 핀(151a) 및 제 2 핀(151b)은 일체로 구성되며, 상기 제 1 열교환부(150a)로부터 상기 제 2 열교환부(150b)를 향하여 상하 방향으로 연장될 수 있다.
상기 실외 팬(158)은 상기 실외 열교환기(150)의 상측에 설치될 수 있다.
상기 실외기(100)에는, 상기 실외 열교환기(150)로부터 상기 실내기(200)로 연장되는 제 3 가이드 배관(70)이 더 포함된다. 즉, 상기 가이드 배관(70)은 상기 실외 열교환기(150)와 실내기(200)를 연결하는 배관으로서 이해된다.
공기 조화기(10)가 냉방운전 모드를 수행할 때, 상기 실외 열교환기(150)에서 응축된 냉매는 상기 제 3 가이드 배관(70)을 통하여 상기 실내기(200)로 유입될 수 있다. 반면에, 공기 조화기(10)가 난방운전 모드를 수행할 때, 상기 실내기(200)에서 응축된 냉매는 상기 제 3 가이드 배관(70)을 통하여 상기 실외 열교환기(150)로 유입될 수 있다.
상기 실외기(100)에는, 상기 제 3 가이드 배관(70)에 설치되어 냉매를 감압하거나 냉매의 유량을 조절할 수 있는 메인 팽창장치(168)가 더 포함된다. 일례로, 상기 메인 팽창장치(168)에는, 개도 조절이 가능한 전자 팽창장치(Electronic Expansion Valve, EEV)가 포함될 수 있다. 상기 공기 조화기(10)가 난방운전 모드를 수행할 때, 상기 실내기(200)에서 응축된 냉매는 상기 메인 팽창장치(168)에서 감압되어 상기 실외 열교환기(150)로 유입될 수 있다.
상기 실내기(200)에는, 상기 제 3 가이드 배관(70)에 설치되어 냉매를 감압하거나 냉매의 유량을 조절할 수 있는 실내 팽창장치(230)가 포함된다. 일례로, 상기 실내 팽창장치(230)에는, 개도 조절이 가능한 전자 팽창장치(Electronic Expansion Valve, EEV)가 포함될 수 있다. 상기 공기 조화기(10)가 냉방운전 모드를 수행할 때, 상기 실외 열교환기(150)에서 응축된 냉매는 상기 실내 팽창장치(230)에서 감압되어 실내 열교환기(210)로 유입될 수 있다.
상기 실내기(200)에는, 실내 공기와 열교환을 수행하는 실내 열교환기(210)가 더 포함된다. 상기 실내 열교환기(210)에는, 냉매의 유동을 가이드 하는 실내열교환 배관(211) 및 상기 실내열교환 배관(211)에 결합되는 실내열교환 핀(213)이 포함된다. 상기 실내 열교환기(210)는, 공기 조화기(10)의 냉방운전 모드 수행시 증발기로 기능하며, 공기 조화기(10)의 난방운전 모드 수행시 응축기로 기능할 수 있다.
상기 실내기(200)에는, 상기 실내 열교환기(210)의 일측에 설치되어 공기를 유동시키는 실내 팬(218)이 더 포함된다.
상기 공기 조화기(10)에는, 상기 제 2,3 가이드 배관(60,60) 중 어느 하나의 가이드 배관으로부터 다른 하나의 가이드 배관으로 냉매의 바이패스를 가이드 하는 바이패스 유로(160)가 더 포함된다.
상기 제 2 가이드 배관(60)에는, 상기 바이패스 유로(160)의 일측 단부가 연결되는 제 1 분지부(60a)가 포함된다. 그리고, 상기 제 3 가이드 배관(70)에는, 상기 바이패스 유로(160)의 타측 단부가 연결되는 제 2 분지부(70a)가 포함된다.
상기 바이패스 유로(160)에는, 상기 실외 열교환기(150)의 제 2 열교환부(150b)가 포함된다. 다른 관점에서, 상기 바이패스 유로(160)는 상기 제 2 열교환부(150b)가 연결될 수 있다. 따라서, 냉매가 상기 바이패스 유로(160)를 통하여 유동하는 과정에서, 상기 실외 열교환기(150)의 제 2 열교환부(150b)를 통과하게 된다.
상기 바이패스 유로(160)에는, 상기 바이패스 유로(160)를 통한 냉매의 유동량을 제어할 수 있는 바이패스 밸브(165)가 설치될 수 있다. 일례로, 상기 바이패스 밸브(165)에는, 개도 조절이 가능한 전자 팽창밸브(EEV)가 포함될 수 있다. 냉매는 상기 바이패스 밸브(165)를 통과하는 과정에서 팽창될 수 있다.
상기 바이패스 유로(160)에는, 공기 조화기(10)의 냉방운전 모드 수행시, 상기 제 2 열교환부(150b)를 통과한 냉매의 온도를 감지할 수 있는 바이패스 온도센서(167)가 설치될 수 있다.
상기 저압센서(114)에서 감지된 압력으로부터 포화온도(제 1 온도값)를 계산 또는 추정할 수 있다. 그리고, 상기 바이패스 온도센서(167)로부터 제 2 온도값을 감지할 수 있다. 상기 제 2 온도값과 상기 제 1 온도값의 차이로부터 상기 바이패스 유로(160)를 유동하는 냉매의 과열도를 인식할 수 있다.
도 4는 본 발명의 실시예에 따른 공기 조화기의 구성을 보여주는 블럭도이다.
도 4를 참조하면, 본 발명의 실시예에 따른 공기 조화기(10)에는, 공기 조화기(10)의 작동과 관련된 명령을 입력하는 입력부(11)가 포함된다. 상기 입력부(11)에는, 상기 공기 조화기(10)의 구동명령을 입력하는 구동입력부 및 운전모드에 관한 명령을 입력하는 모드입력부가 포함될 수 있다.
상기 공기 조화기(10)에는, 공기 조화기의 냉방운전시 상기 바이패스 유로(160)를 유동하는 냉매의 과냉도를 계산하기 위한 센서(114,167)이 더 포함된다. 상기 센서(114,167)에는, 시스템의 저압을 감지하는 저압센서(114) 및 상기 바이패스 유로(160)의 냉매 온도를 감지하기 위한 바이패스 온도센서(167)가 포함된다.
상기 공기 조화기(10)에는, 외기온도를 감지하는 외기온도 센서(13) 및 외기습도를 감지하는 외기습도 센서(14)가 더 포함된다. 상기 외기온도 센서(13) 및 외기습도 센서(14)에서 감지된 값에 기초하여, 실외기(100)의 난방운전시 결빙방지 모드를 수행할 수 있다.
상기 공기 조화기(10)에는, 압축기(110)의 부하를 감지하는 압축기부하 감지부(15) 및 실내기(200)의 부하를 감지하는 실내기부하 감지부(16)가 더 포함된다. 상기 압축기부하 감지부(15)는 상기 압축기(110)의 운전주파수를 인식할 있다. 그리고, 상기 실내기부하 감지부(16)는, 다수의 실내기 중 운전되는 실내기의 대수 또는 실내기(200) 자체의 냉난방 부하를 인식할 수 있다.
일례로, 상기 실내기(200)의 냉난방 부하는 외기온도에 대비한 설정온도의 값에 기초하여 결정할 수 있다. 만약, 상기 외기온도와 설정온도의 차이가 크면, 상기 실내기(200)의 냉난방 부하가 큰 것으로 인식될 수 있다.
상기 공기 조화기(10)에는, 상기 입력부(11), 바이패스 온도센서(167), 저압센서(114), 외기온도 센서(13), 외기습도 센서(14), 압축기부하 감지부(15) 또는 실내기부하 감지부(16)에서 전달되는 신호에 기초하여, 압축기(110), 유동전환부(130), 메인 팽창장치(168), 실내 팽창장치(230) 또는 바이패스 밸브(165)의 작동을 제어하는 제어부(20)가 더 포함된다.
도 5는 본 발명의 실시예에 따른 공기 조화기의 냉방운전시 제어방법을 보여주는 플로우 챠트이고, 도 6은 본 발명의 실시예에 따른 공기 조화기의 냉방운전시, 냉매의 유동모습을 보여주는 시스템 도면이다.
도 5 및 도 6을 참조하여, 본 발명의 공기 조화기의 냉방운전시 제어방법 및 냉매의 유동에 대하여 설명한다.
입력부(11)를 통하여 공기 조화기(10)의 냉방운전 명령이 입력되면, 상기 공기 조화기(10)는 냉방운전 모드를 시작한다(S11).
상기 유동전환부(130)는 제 1 작동모드를 수행한다(S12). 상기 유동전환부(130)의 제 1 작동모드의 수행에 따라, 상기 압축기(110)에서 압축되어 상기 오일 분리기(120)를 통과한 냉매는 상기 유동전환부(130)에서, 상기 제 1 가이드 배관(50)으로 유동한다.
상기 제 1 가이드 배관(50)의 냉매는 상기 실외 열교환기(150)의 제 1 열교환부(150a)로 유입되어 외기와 열교환 하며, 상기 제 2 열교환부(150b)로의 유입은 제한된다. 그리고, 상기 제 1 열교환부(150a)에서 응축된 냉매는 상기 제 3 가이드 배관(70)을 유동한다.
상기 바이패스 밸브(165)는 설정개도로 개방된다(S13). 상기 바이패스 밸브(165)의 개방에 따라, 상기 제 3 가이드 배관(70)을 유동하는 냉매 중 적어도 일부의 냉매는 상기 제 2 분지부(70a)에서 상기 바이패스 유로(160)로 유입되며, 나머지 냉매는 상기 실내기(200)로 유동한다. 상기 바이패스 유로(160)의 냉매는 상기 실외 열교환기(150)의 제 2 열교환부(150b)를 통과하며, 상기 제 2 가이드 배관(60)의 제 1 분지부(60a)로 유동한다.
이 때, 상기 압축기부하 감지부(15)를 통하여 상기 압축기(110)의 운전부하, 즉 운전주파수에 관한 제 1 정보를 감지한다. 그리고, 상기 실내기부하 감지부(16)를 통하여 상기 실내기(200)의 운전부하, 즉 냉방부하에 관한 제 2 정보를 감지한다. 이러한 감지에 의하여, 상기 제어부(20)는 상기 압축기(110)의 운전능력과, 상기 실내기(200)에서 요구되는 능력의 차이값을 인식할 수 있다(S14,S15).
그리고, 상기 바이패스 유로(160)를 통과하는 냉매, 즉 상기 실외 열교환기(150)의 제 2 열교환부(150b)를 통과한 냉매의 과열도에 관한 제 3 정보를 감지할 수 있다(S16).
상기 제 1 내지 제 3 정보에 기초하여, 상기 바이패스 밸브(165)의 개도를 조절할 수 있다.
상세히, 상기 제 1,2 정보에 기초하여, 상기 바이패스 밸브(165)의 개도를 증가 또는 감소할 수 있다. 일례로, 상기 제 1,2 정보의 차이가 큰 경우, 즉 상기 압축기(110)의 운전부하가 상기 실내기(200)의 운전부하보다 설정값 이상으로 큰 경우에는, 상기 바이패스 밸브(165)의 개도를 증가하는 방향으로 제어할 수 있다. 반면에, 상기 제 1,2 정보의 차이가 상기 설정값 이하인 경우, 상기 바이패스 밸브(165)의 개도를 유지 또는 감소하는 방향으로 제어할 수 있다.
이러한 제어에 의하면, 상기 압축기(110)의 능력과 실내기(200)의 부하간에 균형을 맞추어, 상기 공기 조화기(10)의 연속 냉방운전이 가능하고 잦은 온/오프가 발생하는 것을 방지할 수 있다.
위와 같이, 상기 제 1,2 정보에 기초하여 상기 바이패스 밸브(165)의 개도를 조절하고 설정시간이 경과한 후, 상기 제 3 정보를 감지할 수 있다. 상기 제 3 정보가 목표 과열도의 범위 내에 있으면, 상기 바이패스 밸브(165)의 개도를 추가로 조절하지 않는다.
반면에, 상기 제 3 정보가 목표 과열도의 범위 외에 있으면, 상기 바이패스 밸브(165)의 개도를 조절할 수 있다. 더욱 상세히, 상기 제 3 정보가 상기 목표 과열도보다 낮으면, 과열도를 증가하기 위하여 상기 바이패스 밸브(165)의 개도를 감소할 수 있다. 그리고, 상기 제 3 정보가 상기 목표 과열도보다 높으면, 상기 과열도를 낮추기 위하여 상기 바이패스 밸브(165)의 개도를 증대할 수 있다.
이와 같이, 상기 바이패스 유로(160)를 통과하는 냉매의 과열도가 목표 과열도의 범위내에 있도록 제어함으로써, 상기 바이패스 유로(160)를 통과하여 상기 기액 분리기(128)로 액 냉매가 유입되는 것을 방지할 수 있다. 그리고, 상기 액 냉매가 유입되는 것이 방지됨으로서, 상기 기액 분리기(128) 내에 액 냉매가 쌓여 냉동 사이클에 냉매 부족현상이 발생되는 것을 방지할 수 있다.
위 실시예에서는, 상기 제 1,2 정보에 따른 바이패스 밸브(165)의 개도 조절후, 상기 제 3 정보에 따라 바이패스 밸브(165)의 추가 개도조절 여부를 판단하는 것으로 설명되었다. 그러나, 이와는 달리 상기 제 3 정보에 따라 바이패스 밸브(165)의 개도를 조절한 후 제 1,2 정보에 따라 바이패스 밸브(165)의 추가 개도조절 여부를 판단할 수도 있고, 상기 제 1 내지 제 3 정보를 함께 고려하여, 상기 바이패스 밸브(165)의 개도를 조절하도록 제어될 수도 있을 것이다(S17).
한편, 상기 상기 제 3 가이드 배관(70)을 유동하는 냉매는 상기 실내기(200)로 유입되며, 상기 실내 팽창장치(230)에서 팽창되고 상기 실내 열교환기(210)를 통과하면서 증발된다.
그리고, 상기 실내기(200)에서 증발된 냉매는 상기 제 2 가이드 배관(60)을 유동하며, 상기 바이패스 유로(160)를 유동한 냉매와 합지된다. 상기 합지된 냉매는 상기 유동전환부(130)로 유입되며, 상기 유동전환부(130)로부터 상기 기액 분리기(128)로 유입된다. 상기 기액 분리기(128)에서 분리된 기상 냉매는 상기 흡입배관(112)을 통하여 상기 압축기(110)로 흡입 및 압축될 수 있다.
도 7 및 도 8은 본 발명의 실시예에 따른 공기 조화기의 난방운전시 제어방법을 보여주는 플로우 챠트이고, 도 9는 본 발명의 실시예에 따른 공기 조화기의 난방운전시, 냉매의 유동모습을 보여주는 시스템 도면이다.
도 7 내지 도 9를 참조하여, 본 발명의 공기 조화기의 난방운전시 제어방법 및 냉매의 유동에 대하여 설명한다.
입력부(11)를 통하여 공기 조화기(10)의 난방운전 명령이 입력되면, 상기 공기 조화기(10)는 난방운전 모드를 시작한다(S21).
상기 유동전환부(130)는 제 2 작동모드를 수행한다(S22). 상기 유동전환부(130)의 제 2 작동모드의 수행에 따라, 상기 압축기(110)에서 압축되어 상기 오일 분리기(120)를 통과한 냉매는 상기 유동전환부(130)에서, 상기 제 2 가이드 배관(60)으로 유동한다.
상기 바이패스 밸브(165)는 제 1 설정개도로 개방된다(S23). 상기 바이패스 밸브(165)의 개방에 따라, 상기 제 2 가이드 배관(60)의 냉매 중 적어도 일부의 냉매는 상기 제 1 분지부(60a)를 통하여 상기 바이패스 유로(160)로 유입되며, 나머지 냉매는 상기 실내기(200)로 유동한다. 상기 바이패스 유로(160)의 냉매는 상기 실외 열교환기(150)의 제 2 열교환부(150b)를 통과하며, 상기 제 3 가이드 배관(70)의 제 2 분지부(70a)로 유동한다.
이 때, 상기 압축기부하 감지부(15)를 통하여 상기 압축기(110)의 운전부하, 즉 운전주파수에 관한 제 1 정보를 감지한다. 그리고, 상기 실내기부하 감지부(16)를 통하여 상기 실내기(200)의 운전부하, 즉 냉방부하에 관한 제 2 정보를 감지한다. 이러한 감지에 의하여, 상기 제어부(20)는 상기 압축기(110)의 운전능력과, 상기 실내기(200)에서 요구되는 능력의 차이값을 인식할 수 있다(S24,S25).
상기 제 1,2 정보에 기초하여, 상기 바이패스 밸브(165)의 개도를 제 2 설정개도로 제어할 수 있다. 냉방운전 모드에서 설명한 바와 같이, 상기 제 1,2 정보의 차이가 큰 경우, 즉 상기 압축기(110)의 운전부하가 상기 실내기(200)의 운전부하보다 설정값 이상으로 큰 경우에는, 상기 바이패스 밸브(165)의 개도를 증가하는 방향으로 제어할 수 있다. 반면에, 상기 제 1,2 정보의 차이가 상기 설정값 이하인 경우, 상기 바이패스 밸브(165)의 개도를 유지 또는 감소하는 방향으로 제어할 수 있다. 일례로, 상기 바이패스 밸브(165)의 개도를 유지하는 경우에는, 상기 제 1 설정개도와 상기 제 2 설정개도는 동일할 수 있다.
이러한 제어에 의하면, 상기 압축기(110)의 능력과 실내기(200)의 부하간에 균형을 맞추어, 상기 공기 조화기(10)의 연속 난방운전이 가능하고 잦은 온/오프가 발생하는 것을 방지할 수 있다(S26).
외기온도 센서(13) 및 외기습도 센서(14)를 통하여, 외기의 온도와 습도값을 감지한다. 상기 외기의 온도가 낮을수록, 그리고 외기의 습도가 높을수록 실외기(100)의 하부 또는 실외 열교환기(150)의 하부에서 결빙이 발생될 가능성이 높아진다. 즉, 높은 습도에 의하여, 상기 실외 열교환기(150)의 표면에는 제상수가 발생될 가능성이 높아지고 상기 제상수는 실외 열교환기(150)의 하부로 모여질 수 있다. 그리고, 낮은 외기온도에 의하여 상기 제상수가 결빙(착상)될 가능성이 높아지게 된다(S27).
외기온도가 설정온도 이하이고, 외기습도가 설정습도 이상인지 여부가 인식된다(S28). 상기 외기온도가 설정온도 이하이고 외기습도가 설정습도 이상인 것으로 감지되면, 실외기(100)의 결빙 가능성이 높은 것으로 인식되어 바이패스 밸브(165)의 개도를 제 3 설정개도로 제어할 수 있다.
상기 제 3 설정개도는 상기 제 2 설정개도 보다 작은 개도로서 이해된다. 상세히, 상기 외기온도 및 외기습도가 상기한 범위에 속하는 경우는, 공기 조화기(10)의 난방부하가 큰 것으로 인식될 수 있다. 따라서, 상기 바이패스 밸브(165)의 개도가 너무 큰 경우, 상기 바이패스 유로(165)를 통한 바이패스 냉매량이 많아져서 상기 공기 조화기(10)의 난방능력이 감소되는 문제점이 발생될 수 있다.
따라서, 상기 바이패스 밸브(165)의 개도를 다소 작게 제어하여, 상기 난방능력이 감소되는 방지할 수 있다. 다만, 상기 바이패스 유로(160)를 통하여, 상기 압축기(110)에서 토출된 고온의 냉매가 상기 실외 열교환기(150)의 제 2 열교환부(150b)를 경유할 수 있으므로, 상기 실외 열교환기(150)의 하부 또는 상기 실외기(100)의 하부에서 결빙이 발생되는 현상을 방지할 수 있다.
이 때, 상기 제 2 열교환부(150b)에는 바이패스 냉매량이 유동하므로 증발열량이 감소될 가능성이 있으나, 상기 실외 팬(158)은 상기 실외 열교환기(150)의 상측에 배치되고, 상기 실외 팬(158)의 구동에 의하여 상기 실외 열교환기(150)의 상부측에서 열교환량이 상대적으로 큰 것을 고려할 때, 이러한 증발열량의 감소는 크게 우려할 수준이 아닐 수 있다.
반면에, S28 단계에서 외기온도와 외기습도의 범위가 상기한 범위에 속하지 않으면, S26 이하의 단계를 수행할 수 있다(S29).
한편, 상기 제 2 가이드 배관(60)을 통하여 상기 실내기(200)로 유입된 냉매는 상기 실내 열교환기(210)를 통과하면서 응축되고 상기 제 3 가이드 배관(70)으로 유입된다. 상기 제 3 가이드 배관(70)으로 유입된 냉매는 상기 메인 팽창장치(168)에서 감압될 수 있다.
상기 바이패스 유로(160)를 유동하는 냉매는 상기 바이패스 밸브(165)를 지나면서 감압되며, 상기 제 2 분지부(70a)에서, 상기 제 3 가이드 배관(70)의 냉매와 합지될 수 있다.
상기 합지된 냉매는 상기 실외 열교환기(150)의 제 1 열교환부(150a)로 유입되어 증발하며, 상기 제 1 가이드 배관(50)을 경유하여 상기 유동전환부(130)로 유입된다. 그리고, 냉매는 상기 유동전환부(130)로부터 상기 기액 분리기(128)로 유입되며, 상기 기액 분리기(128)에서 기상냉매와 액상냉매가 분리된다. 상기 분리된 기상냉매는 상기 흡입배관(112)을 통하여 상기 압축기(110)로 흡입 및 압축될 수 있다.
상기 공기 조화기(10)가 난방운전을 수행할 때, 상기 실외 열교환기(150)의 제상운전이 수행될 수 있다. 상기 제상운전은, 상기 난방운전 과정에서 미리 설정된 주기로 수행될 수 있다. 상기 제상운전 시점의 도래여부가 인식된다(S30).
상기 제상운전 시점이 도래하였으면, 도 6에서 설명한 냉방 사이클이 운전될 수 있다. 즉, 상기 유동전환부(130)는 제 1 작동모드로 수행하며, 이에 따라 상기 압축기(110)에서 토출된 냉매는 상기 유동전환부(130)로부터 상기 실외 열교환기(150)의 제 1 열교환부(150a)로 유입될 수 있다. 그리고, 제상운전시 실내공간에 차가운 냉기의 공급을 방지하기 위하여, 상기 실내 팬(218)은 오프되어 난방운전은 정지될 수 있다(S31,S32).
상기 바이패스 밸브(165)의 개도는 제 4 설정개도로 제어될 수 있다. 상기 제 4 설정개도는 상기 제 3 설정개도보다 큰 개도이며, 상기 제 2 설정개도와 같거나 큰 개도로서 이해될 수 있다. 일례로, 상기 제 4 설정개도는, 상기 바이패스 밸브(165)의 최대 개도일 수 있다.
상기 바이패스 밸브(165)의 개도를 상기 제 4 설정개도로 제어하더라도, 난방운전이 정지된 상태이므로, 난방운전의 저하문제를 염려할 필요가 없다.
상기 바이패스 밸브(165)를 개방하여, 상기 제 3 가이드 배관(70)의 냉매 중 적어도 일부의 냉매를 상기 바이패스 유로(160)로 바이패스 할 수 있으므로, 상기 실외 열교환기(150)의 제 2 열교환부(150b)에서 누적 결빙이 발생되는 것을 방지할 수 있다. 한편, 제상운전 시점이 도래하지 않았으면, S27 이하의 단계를 수행할 수 있다(S33).
상기한 바와 같이, 상기 압축기(110)에서 토출된 냉매, 또는 상기 실외 열교환기(150)의 제 1 열교환부(150a)를 통과한 냉매 중 적어도 일부의 냉매를 바이패스 할 수 있으므로, 공기 조화기(10)의 난방 또는 냉방운전시, 압축기(110)의 부하와 실내기(200)의 부하 차이에 따른 공기 조화기(10)의 비연속 운전을 방지할 수 있다.
그리고, 공기 조화기(10)의 난방운전시 실외 열교환기(150)의 하부로 냉매를 바이패스 할 수 있으므로, 실외 열교환기(150)의 하부 또는 실외기(100)의 하부에서 누적 결빙이 발생되는 것을 방지할 수 있다는 효과가 나타난다.
본 발명의 실시예에 의하면, 압축기 부하가 실내기 부하보다 상대적으로 큰 것으로 인식되면, 실내기로 유입될 냉매 중 적어도 일부의 냉매를 압축기의 흡입측으로 바이패스 할 수 있으므로, 압축기 부하와 실내기 부하간에 밸런싱을 도모할 수 있고, 이에 따라 냉동 사이클의 안정적인 운전이 이루어질 수 있다. 따라서, 산업상 이용가능성이 현저하다.

Claims (17)

  1. 냉매를 압축하는 압축기;
    상기 압축기의 출구측에 설치되는 유동전환부;
    상기 유동전환부로부터 실외 열교환기로 연장되는 제 1 가이드 배관;
    상기 유동전환부로부터 실내기로 연장되는 제 2 가이드 배관;
    상기 실외 열교환기로부터 상기 실내기로 연장되는 제 3 가이드 배관;
    상기 제 2 가이드 배관으로부터 상기 제 3 가이드 배관으로 연장되어, 상기 제 2 가이드 배관의 냉매 중 적어도 일부의 냉매를 상기 제 3 가이드 배관으로 바이패스 하거나, 상기 제 3 가이드 배관의 냉매 중 적어도 일부의 냉매를 상기 제 2 가이드 배관으로 바이패스 하는 바이패스 유로; 및
    상기 바이패스 유로에 설치되며, 상기 바이패스 유로를 유동하는 냉매량을 조절하는 바이패스 밸브가 포함되는 공기 조화기.
  2. 제 1 항에 있어서,
    상기 압축기의 부하를 감지하는 압축기부하 감지부; 및
    상기 실내기의 부하를 감지하는 실내기부하 감지부가 더 포함되는 공기 조화기.
  3. 제 2 항에 있어서,
    상기 상기 바이패스 밸브의 개도는,
    상기 압축기부하 감지부에서 인식된 제 1 정보 및 상기 실내기부하 감지부에서 인식된 제 2 정보에 기초하여, 조절되는 것을 특징으로 하는 공기 조화기.
  4. 제 1 항에 있어서,
    상기 실외 열교환기에는,
    상기 실외 열교환기의 상부를 형성하며, 상기 제 1 가이드 배관에 연결되는 제 1 열교환부; 및
    상기 제 1 열교환부의 하측에 배치되는 제 2 열교환부가 포함되는 공기 조화기.
  5. 제 4 항에 있어서,
    상기 실외 열교환기의 상측에 설치되어, 상기 실외 열교환기로 외기의 유동을 발생시키는 실외 팬이 더 포함되는 공기 조화기.
  6. 제 5 항에 있어서,
    상기 바이패스 유로에는, 상기 제 2 열교환부가 포함되는 공기 조화기.
  7. 제 1 항에 있어서,
    상기 바이패스 유로에 설치되며, 상기 바이패스 유로를 통과하는 냉매의 온도를 감지하는 바이패스 온도센서; 및
    상기 압축기로 흡입되는 냉매의 저압을 감지하는 저압센서가 더 포함되는 공기 조화기.
  8. 제 7 항에 있어서,
    상기 바이패스 밸브의 개도는,
    상기 바이패스 온도센서와 상기 저압센서에서 감지된 정보에 기초하여 인식된 과열도에 기초하여, 조절되는 것을 특징으로 하는 공기 조화기.
  9. 제 1 항에 있어서,
    상기 제 3 가이드 배관에 설치되는 메인 팽창장치; 및
    상기 실내기의 내부에 설치되는 실내 팽창장치가 더 포함되는 공기 조화기.
  10. 제 6 항에 있어서,
    상기 공기 조화기의 냉방운전서,
    상기 유동전환부는 제 1 작동모드를 수행하며, 상기 바이패스 밸브는 설정개도로 개방되어,
    상기 실외 열교환기의 제 1 열교환부를 통과한 냉매를 상기 제 2 열교환부로 가이드 하는 것을 특징으로 하는 공기 조화기.
  11. 제 6 항에 있어서,
    상기 공기 조화기의 난방운전서,
    상기 유동전환부는 제 2 작동모드를 수행하며, 상기 바이패스 밸브는 설정개도로 개방되어,
    상기 제 2 가이드 배관의 냉매 중 적어도 일부의 냉매를 상기 제 2 열교환부로 가이드 하는 것을 특징으로 하는 공기 조화기.
  12. 압축기가 구동하여, 냉방운전 또는 난방운전이 수행되는 단계;
    상기 압축기의 출구측에 설치된 유동전환부의 작동모드에 따라, 냉매가 실외 열교환기 또는 실내기로 유동되도록 하는 단계;
    바이패스 밸브의 개도를 제어하여, 상기 실외 열교환기의 제 1 열교환부를 통과한 냉매 또는 상기 실내기로 유입될 냉매 중 적어도 일부의 냉매가 바이패스 유로로 유동되도록 하는 단계; 및
    상기 압축기의 운전부하 및 실내기의 운전부하를 감지하여, 상기 바이패스 밸브의 개도를 조절하는 단계가 포함되며,
    상기 바이패스 유로는,
    상기 유동전환부로부터 상기 실내기로 연장되는 제 2 가이드 배관으로부터 상기 실외 열교환기로부터 상기 실내기로 연장되는 제 3 가이드 배관으로 연장되는 것을 특징으로 하는 공기 조화기의 제어방법.
  13. 제 12 항에 있어서,
    상기 압축기의 운전부하가 상기 실내기의 운전부하보다 설정값 이상으로 크면, 상기 바이패스 밸브의 개도를 증가시키고,
    상기 압축기의 운전부하와 상기 실내기의 운전부하의 차이가 설정값 이하이면, 상기 바이패스 밸브의 개도를 유지 또는 감소하는 것을 특징으로 하는 공기 조화기의 제어방법.
  14. 제 12 항에 있어서,
    상기 공기 조화기의 냉방운전시,
    상기 바이패스 유로를 통과하는 냉매의 온도와, 상기 압축기로 흡입되는 냉매의 저압을 감지하여, 상기 바이패스 유로를 통과하느 냉매의 과열도를 인식하는 단계가 더 포함되는 공기 조화기의 제어방법.
  15. 제 14 항에 있어서,
    상기 과열도가 목표 과열도보다 낮으면, 상기 바이패스 밸브의 개도를 감소하고,
    상기 과열도가 상기 목표 과열도보다 높으면, 상기 바이패스 밸브의 개도를 증대하는 단계가 더 포함되는 공기 조화기의 제어방법.
  16. 제 12 항에 있어서,
    상기 공기 조화기의 난방운전시,
    외기온도와 외기습도를 감지하여, 상기 바이패스 밸브의 개도를 조절하는 단계가 더 포함되는 공기 조화기의 제어방법.
  17. 제 12 항에 있어서,
    상기 실외 열교환기에는, 상기 제 1 열교환부의 하측에 위치하는 제 2 열교환부가 더 포함되며,
    상기 바이패스 유로는 상기 제 2 열교환부에 연결되는 것을 특징으로 하는 공기 조화기의 제어방법.
PCT/KR2016/010302 2015-09-30 2016-09-12 공기 조화기 및 그 제어방법 WO2017057860A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/764,113 US10533787B2 (en) 2015-09-30 2016-09-12 Air conditioner and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0137605 2015-09-30
KR1020150137605A KR101794413B1 (ko) 2015-09-30 2015-09-30 공기 조화기 및 그 제어방법

Publications (1)

Publication Number Publication Date
WO2017057860A1 true WO2017057860A1 (ko) 2017-04-06

Family

ID=58423843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010302 WO2017057860A1 (ko) 2015-09-30 2016-09-12 공기 조화기 및 그 제어방법

Country Status (3)

Country Link
US (1) US10533787B2 (ko)
KR (1) KR101794413B1 (ko)
WO (1) WO2017057860A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560217A (zh) * 2017-09-07 2018-01-09 珠海格力电器股份有限公司 热泵系统及其控制方法
CN111664523A (zh) * 2020-05-08 2020-09-15 海信(山东)空调有限公司 一种喷气增焓系统及控制方法
CN113566314A (zh) * 2021-07-27 2021-10-29 珠海格力电器股份有限公司 空调室外机及空调室外机的控制方法
CN115038916A (zh) * 2020-02-03 2022-09-09 Lg电子株式会社 空调装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935720B2 (ja) * 2017-10-12 2021-09-15 ダイキン工業株式会社 冷凍装置
CN110645745A (zh) * 2019-10-23 2020-01-03 珠海格力电器股份有限公司 可连续制热的空调及其控制方法
CN112963934B (zh) * 2021-03-17 2022-10-04 广东Tcl智能暖通设备有限公司 空调控制方法、装置、空调器及存储介质
KR102687223B1 (ko) * 2021-08-09 2024-07-22 엘지전자 주식회사 공기 조화기 일체형 냉장고 및 그 제어방법
KR102671345B1 (ko) * 2021-08-09 2024-06-03 엘지전자 주식회사 공기 조화기 일체형 냉장고 및 그 제어방법
KR102687224B1 (ko) * 2021-08-09 2024-07-22 엘지전자 주식회사 공기 조화기 일체형 냉장고 및 그 제어방법
CN116878179B (zh) * 2023-09-01 2023-12-05 北京金盛通科技发展有限责任公司 一种风冷机组的高效制冷方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293975A (ja) * 1994-04-20 1995-11-10 Fujitsu General Ltd 空気調和機
JPH09159329A (ja) * 1995-12-12 1997-06-20 Toyotomi Co Ltd ヒートポンプ式空気調和装置
JPH1137571A (ja) * 1997-07-15 1999-02-12 Hitachi Ltd 空気調和機
JP2009174800A (ja) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp 再熱除湿装置および空気調和装置
KR20140093846A (ko) * 2013-01-18 2014-07-29 엘지전자 주식회사 공기 조화기 및 그 제어방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914926A (en) * 1987-07-29 1990-04-10 Charles Gregory Hot gas defrost system for refrigeration systems and apparatus therefor
JP3230845B2 (ja) * 1992-07-10 2001-11-19 東芝キヤリア株式会社 マルチ式空気調和機
JP4755618B2 (ja) * 2007-03-12 2011-08-24 パナソニック株式会社 冷凍サイクル装置
CN102356283B (zh) * 2009-03-19 2014-04-16 大金工业株式会社 空调装置
KR102008710B1 (ko) 2013-01-22 2019-08-09 엘지전자 주식회사 공기 조화기 및 그 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293975A (ja) * 1994-04-20 1995-11-10 Fujitsu General Ltd 空気調和機
JPH09159329A (ja) * 1995-12-12 1997-06-20 Toyotomi Co Ltd ヒートポンプ式空気調和装置
JPH1137571A (ja) * 1997-07-15 1999-02-12 Hitachi Ltd 空気調和機
JP2009174800A (ja) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp 再熱除湿装置および空気調和装置
KR20140093846A (ko) * 2013-01-18 2014-07-29 엘지전자 주식회사 공기 조화기 및 그 제어방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560217A (zh) * 2017-09-07 2018-01-09 珠海格力电器股份有限公司 热泵系统及其控制方法
CN115038916A (zh) * 2020-02-03 2022-09-09 Lg电子株式会社 空调装置
CN115038916B (zh) * 2020-02-03 2023-06-16 Lg电子株式会社 空调装置
CN111664523A (zh) * 2020-05-08 2020-09-15 海信(山东)空调有限公司 一种喷气增焓系统及控制方法
CN111664523B (zh) * 2020-05-08 2021-11-26 海信(山东)空调有限公司 一种喷气增焓系统及控制方法
CN113566314A (zh) * 2021-07-27 2021-10-29 珠海格力电器股份有限公司 空调室外机及空调室外机的控制方法

Also Published As

Publication number Publication date
KR101794413B1 (ko) 2017-11-06
US20180283751A1 (en) 2018-10-04
KR20170038343A (ko) 2017-04-07
US10533787B2 (en) 2020-01-14

Similar Documents

Publication Publication Date Title
WO2017057860A1 (ko) 공기 조화기 및 그 제어방법
WO2018080082A1 (en) Air conditioner
WO2017057861A2 (ko) 공기조화 시스템
WO2019151815A1 (ko) 공기조화기
WO2018074718A1 (ko) 공기조화기
WO2016017939A1 (ko) 차량용 히트 펌프 시스템
WO2010131874A2 (ko) 공기조화기 및 그 운전 방법
WO2011062348A1 (en) Heat pump
WO2017069472A1 (ko) 공기조화기 및 그 제어방법
WO2017023127A1 (ko) 공기조화기의 제어방법
WO2015194891A1 (en) Refrigerator
WO2015119388A1 (en) Heat-pump system
WO2011145780A1 (en) Hot water supply device associated with heat pump
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2018199516A1 (en) Air conditioner
WO2017185733A1 (zh) 空调系统及其阀体控制方法
WO2011062349A1 (ko) 히트 펌프
WO2021157820A1 (en) Air conditioner
WO2018147675A1 (ko) 냉동시스템
WO2020209474A1 (en) Air conditioning apparatus
WO2018199474A1 (ko) 공기 조화 시스템 및 그 제어 방법
WO2013032197A1 (ko) 냉동차량용 냉각장치
WO2018151454A1 (ko) 공기조화기
WO2020045878A1 (ko) 차량용 공조장치
WO2021040427A1 (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16852007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15764113

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16852007

Country of ref document: EP

Kind code of ref document: A1