WO2017057637A1 - 封止用液状組成物、封止材、及び電子部品装置 - Google Patents

封止用液状組成物、封止材、及び電子部品装置 Download PDF

Info

Publication number
WO2017057637A1
WO2017057637A1 PCT/JP2016/078933 JP2016078933W WO2017057637A1 WO 2017057637 A1 WO2017057637 A1 WO 2017057637A1 JP 2016078933 W JP2016078933 W JP 2016078933W WO 2017057637 A1 WO2017057637 A1 WO 2017057637A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
liquid composition
compound
acid
group
Prior art date
Application number
PCT/JP2016/078933
Other languages
English (en)
French (fr)
Inventor
勇磨 竹内
正彦 小坂
寿登 高橋
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2017057637A1 publication Critical patent/WO2017057637A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present disclosure relates to a liquid composition for sealing, a sealing material, and an electronic component device.
  • a sealing method using a sealing material including a resin is used.
  • a sealing material an epoxy resin composition is widely used. This is because the epoxy resin is balanced in various properties such as workability, moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesion to inserts.
  • an epoxy resin composition that is liquid at room temperature (25 ° C.) is used as a sealing material. Widely used. Also, in an electronic component device (flip chip) in which elements are directly bump-connected on a circuit board made of ceramic, glass / epoxy resin, glass / imide resin, polyimide film, etc., the bump-connected element and circuit board Also, an epoxy resin composition that is liquid at room temperature is used as an underfill material that fills the gap between the resin and the underfill material. The above epoxy resin composition plays an important role in protecting the device from temperature and humidity, mechanical external force and the like.
  • the epoxy resin liquid encapsulant for underfill described in Patent Document 1 can be cured at a low temperature in a short time, but its viscosity tends to increase with time and the storage stability is not sufficient.
  • the present invention has been made in view of such circumstances, a liquid composition for sealing that can be cured at a low temperature in a short time and has excellent storage stability, and a liquid composition for sealing is cured. It is an object of the present invention to provide an encapsulant and an electronic component device having the encapsulant.
  • a liquid composition for sealing containing an epoxy compound having an epoxy group, an oxetane compound having an oxetane ring, a polymerization initiator, and an inorganic filler.
  • the polymerization initiator is hexafluoroantimonic acid, hexafluorophosphoric acid, trifluoromethanesulfonic acid, perfluorobutanesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, p-toluenesulfonic acid, ⁇ 2> or ⁇ 3 including a compound in which an anionic species selected from the group consisting of dodecylbenzenesulfonic acid and tetrakis (pentafluorophenyl) boric acid and a cationic species represented by the following formula (1) are bound >
  • the liquid composition for sealing as described in>.
  • Y 1 , Y 2 , Y 3 , and Y 4 each independently represent a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms, or an aryl group.
  • the alkyl group and aryl group may have a substituent.
  • the content of the polymerization initiator is 0.1 parts by mass to 10 parts by mass with respect to a total of 100 parts by mass of the (A) epoxy compound and the (B) oxetane compound ⁇ 1> to The liquid composition for sealing according to any one of ⁇ 4>.
  • ⁇ 6> The liquid composition for sealing according to any one of ⁇ 1> to ⁇ 5>, wherein the inorganic filler has a maximum particle size of 50 ⁇ m or less.
  • ⁇ 8> The sealing liquid composition according to any one of ⁇ 1> to ⁇ 7>, wherein the content of the inorganic filler is 30% by mass to 70% by mass.
  • ⁇ 11> a substrate having a circuit layer; An element disposed on the substrate and electrically connected to the circuit layer; The sealing material according to ⁇ 10>, which is disposed in a gap between the substrate and the element,
  • An electronic component device comprising:
  • a liquid composition for sealing that can be cured at low temperature in a short time and has excellent storage stability, a sealing material obtained by curing the liquid composition for sealing, and the sealing An electronic component device having a material can be provided.
  • a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of substances present in the composition unless otherwise specified. Means the total amount.
  • the particle diameter of each component in the composition is such that when there are a plurality of particles corresponding to each component in the composition, the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” includes a configuration of a shape formed in part in addition to a configuration of a shape formed on the entire surface when observed as a plan view.
  • room temperature means 25 ° C.
  • liquid means a state showing fluidity at 25 ° C.
  • liquid means a state in which the viscosity measured at 25 ° C. with an E-type viscometer (cone angle 3 °, rotation speed 100 times / min) is 1000 Pa ⁇ s or less.
  • the liquid composition for sealing of this embodiment contains (A) an epoxy compound having an epoxy group, (B) an oxetane compound having an oxetane ring, (C) a polymerization initiator, and (D) an inorganic filler.
  • the liquid composition for sealing may contain other additives as necessary.
  • the liquid composition for sealing can be cured at a low temperature in a short time and has excellent storage stability by adopting the above configuration. The reason is guessed as follows.
  • the liquid composition for sealing according to the present embodiment contains the above (A) epoxy compound and the above (B) oxetane compound, and thus can be cured at a low temperature in a short time.
  • the (B) oxetane compound has high reactivity, and it is difficult to obtain sufficient storage stability in a reaction system using an acid anhydride.
  • the sealing liquid composition of the present embodiment contains the polymerization initiator (C), it is excellent in storage stability.
  • the liquid composition for sealing contains an epoxy compound having an epoxy group.
  • An epoxy compound may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the epoxy compound having an epoxy group is not particularly limited as long as it is a compound having an epoxy group in the molecule.
  • the epoxy compound which has an alicyclic epoxy group or a glycidyl group is mentioned, for example.
  • the epoxy compound having an alicyclic epoxy group is not particularly limited as long as it is a compound having an alicyclic epoxy group in the molecule.
  • an oxygen atom is bonded to two adjacent carbon atoms constituting the cycloaliphatic skeleton, and an oxygen atom is bonded to two non-adjacent carbon atoms. Any of those formed can be used. From the viewpoint of reactivity and storage stability, it is preferable to use an alicyclic epoxy group in which an oxygen atom is bonded to two adjacent carbon atoms.
  • the number of carbon atoms in the cycloaliphatic skeleton is not particularly limited.
  • the cycloaliphatic skeleton is, for example, preferably a 5-membered ring to an 8-membered ring, more preferably a 5-membered ring or a 6-membered ring, and even more preferably a 6-membered ring.
  • 3,4-epoxycyclohexyl groups represented by the following formula (I) are preferable.
  • * indicates a bonding position.
  • the number of alicyclic epoxy groups in the epoxy compound having an alicyclic epoxy group is not particularly limited.
  • the number of alicyclic epoxy groups is preferably 2 to 6 from the viewpoint of heat resistance and flexibility after curing of the encapsulating liquid composition, for example, from the viewpoint of reducing the viscosity of the encapsulating liquid composition Therefore, 2 to 4 is more preferable.
  • the alicyclic epoxy groups may be bonded by a single bond, and bonded through a linking group. It may be.
  • the type of the linking group that bonds the alicyclic epoxy groups is not particularly limited. Examples of the linking group include a divalent hydrocarbon group, a carbonyl group (—CO—), an ether bond (—O—), an ester bond (—COO—), a carbonate bond (—OCOO—), and combinations thereof. Groups.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms (preferably 1 to 6 carbon atoms), and a divalent alicyclic hydrocarbon group (particularly 2 Valent cycloalkylene group).
  • Examples of the linear or branched alkylene group include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1, And divalent cycloalkylene groups (including cycloalkylidene groups) such as 3-cyclohexylene group, 1,4-cyclohexylene group, and cyclohexylidene group.
  • a compound represented by the following formula (I-1) that is, 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate
  • the liquid composition for sealing tends to have a low viscosity and the heat resistance after curing tends to be improved.
  • a commercially available product such as “Celoxide 2021P” (trade name, manufactured by Daicel Corporation) can be used.
  • an epoxy compound which has an alicyclic epoxy group the epoxy compound which has two epoxy groups in a molecule
  • examples of such an epoxy compound include limonene diepoxide (that is, 1-methyl-4- (2-methyloxiranyl) -7-oxabicyclo [4.1.0] heptane).
  • the liquid composition for sealing contains limonene diepoxide, the liquid composition for sealing has a low viscosity, and the heat resistance after curing tends to be improved.
  • the epoxy compound having a glycidyl group is not particularly limited as long as it is a compound having a glycidyl group represented by the following formula (II) in the molecule.
  • formula (II) * indicates a bonding position.
  • the number of glycidyl groups in the epoxy compound having a glycidyl group is not particularly limited.
  • the number of glycidyl groups is preferably 2 to 6 from the viewpoint of heat resistance and flexibility after curing of the sealing liquid composition, and from the viewpoint of reducing the viscosity of the sealing liquid composition, for example, 2 More preferably 4 to 4.
  • an epoxy compound having a glycidyl group for example, naphthalene type epoxy resin; diglycidyl ether type epoxy resin such as bisphenol A, bisphenol F, bisphenol AD, bisphenol S, hydrogenated bisphenol A; orthocresol novolak type epoxy resin And epoxidized novolak resins obtained from phenolic compounds and aldehyde compounds; and glycidyl ester type epoxy resins obtained by the reaction of polybasic acids such as phthalic acid and dimer acid with epichlorohydrin.
  • diglycidyl ether type epoxy resin such as bisphenol A, bisphenol F, bisphenol AD, bisphenol S, hydrogenated bisphenol A
  • orthocresol novolak type epoxy resin And epoxidized novolak resins obtained from phenolic compounds and aldehyde compounds orthocresol novolak type epoxy resin And epoxidized novolak resins obtained from phenolic compounds and aldehyde compounds
  • a compound represented by the following formula (II-1) that is, bis (glycidyloxyphenyl) methane
  • a compound represented by the following formula (II-2) that is, 1 , 6-hexanediol diglycidyl ether.
  • the sealing liquid composition contains a compound represented by the following formula (II-1)
  • the flexibility of the sealing liquid composition after curing tends to be improved.
  • the liquid composition for sealing contains a compound represented by the following formula (II-2)
  • the liquid composition for sealing has a low viscosity, and the filling property into the gap between the substrate and the element is improved. Tend to.
  • the epoxy equivalent of the epoxy compound is not particularly limited.
  • the epoxy equivalent of the epoxy compound is, for example, 50 g / eq. From the viewpoint of lowering the viscosity of the sealing liquid composition and enabling the curing at a low temperature in a short time.
  • To 300 g / eq. And preferably 60 g / eq. ⁇ 190 g / eq. More preferably, it is 70 g / eq. ⁇ 180 g / eq. More preferably.
  • the epoxy compound is preferably liquid at room temperature, but a solid compound at room temperature can be used in combination as long as the effect of the present invention is achieved.
  • the epoxy compound contains a solid compound at room temperature, the content is preferably 20% by mass or less in the total amount of the epoxy compound, for example, from the viewpoint of the fluidity of the sealing liquid composition. % Or less is more preferable.
  • the amount of hydrolyzable chlorine in the epoxy compound is preferably small because it involves corrosion of metal wiring in an element such as an integrated circuit (IC).
  • the amount of hydrolyzable chlorine is preferably 500 ppm or less.
  • the amount of hydrolyzable chlorine was determined by potentiometric titration after dissolving 1 g of the epoxy compound of the sample in 30 mL of dioxane, adding 5 mL of a methanol solution containing 1 mol / L KOH and refluxing for 30 minutes. The value is a measure.
  • the content of the epoxy compound in the sealing liquid composition is not particularly limited. From the viewpoint of reducing the viscosity of the sealing liquid composition and increasing the fluidity, the content of the epoxy compound is 30% by mass to 90% by mass in the total amount of the sealing liquid composition excluding the inorganic filler. It is preferably 35% by mass to 70% by mass, and more preferably 40% by mass to 60% by mass.
  • the liquid composition for sealing contains an oxetane compound having an oxetane ring.
  • One oxetane compound may be used alone, or two or more oxetane compounds may be used in combination.
  • the oxetane compound having an oxetane ring is not particularly limited as long as it is a compound having an oxetane ring in the molecule.
  • the oxetane compound preferably has a 3-oxetanyl group represented by the following formula (III), and may have other functional groups as necessary.
  • formula (III) * indicates a bonding position.
  • oxetane compound examples include 3-ethyl-3-[(2-ethylhexyloxy) methyl] oxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (4-hydroxybutyl) oxymethyloxetane, 3-ethyl-3-hexyloxymethyl oxetane, 3-ethyl-3-allyloxymethyl oxetane, 3-ethyl-3-benzyloxymethyl oxetane, 3-ethyl-3-methacryloxymethyl oxetane, 3-ethyl-3- Monooxetane compounds such as carboxyoxetane and 3-ethyl-3-phenoxymethyloxetane; bis [1-ethyl (3-oxetanyl)] methyl ether, 4,4′-bis [3-ethyl- (3-oxetanyl) methoxymethyl
  • the oxetane compound preferably includes a compound represented by the following formula (III-1) (that is, bis [1-ethyl (3-oxetanyl)] methyl ether).
  • the sealing liquid composition contains a compound represented by the following formula (III-1)
  • the fluidity of the sealing liquid composition and the heat resistance after curing tend to be improved.
  • commercially available products such as “Aron Oxetane (registered trademark) OXT-221” (trade name, manufactured by Toagosei Co., Ltd.) can be used.
  • the molecular weight of the oxetane compound is not particularly limited.
  • the molecular weight of the oxetane compound is preferably 100 to 500, and more preferably 100 to 300, for example, from the viewpoint of reducing the viscosity of the sealing liquid composition.
  • the oxetane compound is preferably liquid at room temperature, but a solid compound at room temperature can be used in combination as long as the effect of the present invention is achieved.
  • the oxetane compound contains a solid compound at room temperature, the content is preferably 20% by mass or less in the total amount of the oxetane compound, for example, from the viewpoint of fluidity of the sealing liquid composition. % Or less is more preferable.
  • the content of the oxetane compound in the sealing liquid composition is not particularly limited.
  • the content of the oxetane compound is, for example, 10% by mass to 95% by mass in the total amount of the sealing liquid composition excluding the inorganic filler from the viewpoint of reducing the viscosity of the sealing liquid composition and increasing the fluidity. It is preferably 15% by mass to 90% by mass, and more preferably 30% by mass to 60% by mass.
  • the total content of the epoxy compound and the oxetane compound in the sealing liquid composition is not particularly limited.
  • the total content of the epoxy compound and the oxetane compound is, for example, 20% by mass to 70% by mass in the total amount of the sealing liquid composition from the viewpoint of reducing the viscosity of the sealing liquid composition and increasing the fluidity. It is preferably 30% by mass to 60% by mass, more preferably 35% by mass to 55% by mass.
  • the content ratio of the epoxy compound and the oxetane compound in the sealing liquid composition is not particularly limited.
  • the mass ratio of the epoxy compound / oxetane compound is preferably 10.0 to 0.2, and preferably 2.0 to 0.6, for example, from the viewpoint of reducing the unreacted content and reducing the viscosity. More preferably, it is 1.5 to 0.8.
  • the liquid composition for sealing contains a polymerization initiator.
  • a polymerization initiator may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the polymerization initiator is not particularly limited.
  • a compound that generates an acid or a base by addition of heat or light can be used.
  • the polymerization initiators compounds that generate an acid catalyst when energy (heat or light above a specific temperature) is given from the outside are preferable.
  • a thermal acid generator (Thermal Acid Generator: thermal polymerization initiator) is preferable from the viewpoint of handleability.
  • thermal polymerization initiator examples include ammonium salts, amine salts, and sulfonium salts, and it is preferable to include at least one compound selected from the group consisting of ammonium salts, amine salts, and sulfonium salts.
  • an ammonium salt is preferably included from the viewpoint of storage stability.
  • the thermal polymerization initiator is hexafluoroantimonic acid, hexafluorophosphoric acid, trifluoromethanesulfonic acid, perfluorobutanesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, p-toluenesulfonic acid.
  • An amine salt or a quaternary ammonium salt of an anionic species (hereinafter referred to as “specific anionic species”) selected from the group consisting of dodecylbenzenesulfonic acid and tetrakis (pentafluorophenyl) boric acid.
  • the thermal polymerization initiator may be a compound in which the specific anion species and a cation species represented by the following formula (1) are bonded.
  • Y 1 , Y 2 , Y 3 , and Y 4 are each independently a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms, or aryl. Indicates a group. It is preferable that at least one of Y 1 , Y 2 , Y 3 and Y 4 is an aryl group.
  • the carbon number of the alkyl group is 1-20, and preferably 1-15.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a cyclohexyl group.
  • a phenyl group is mentioned, for example.
  • the alkyl group or aryl group may have a substituent.
  • substituents that the alkyl group may have include a phenyl group, an alkoxy group having 1 to 15 carbon atoms, and a hydroxy group.
  • the carbon number of the alkyl group does not include the carbon number of the substituent.
  • substituent that the aryl group may have include an alkyl group having 1 to 15 carbon atoms, a hydroxyalkyl group having 1 to 15 carbon atoms, an alkoxy group having 1 to 15 carbon atoms, and a phenylthio group. .
  • the thermal polymerization initiator is represented by the following formula (1-1) or It may be a compound represented by (1-2).
  • Y 5 , Y 6 and Y 7 are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, Or an aryl group is shown.
  • the alkyl group or aryl group may have a substituent. Since an alkyl group, an aryl group, and a substituent are synonymous with the said Formula (1), detailed description is abbreviate
  • the thermal polymerization initiator is a compound in which the specific anion species is combined with a cationic species in which all of Y 1 , Y 2 , Y 3 and Y 4 in the formula (1) are groups other than hydrogen atoms. It is good.
  • Y 1 , Y 2 , Y 3 , and Y 4 in the specific anion species and the formula (1) are groups other than hydrogen atoms. It is preferable to include a compound in which a certain cationic species is bonded, and the specific anionic species and the cationic species in which all of Y 1 , Y 2 , Y 3 and Y 4 in the formula (1) are groups other than hydrogen atoms It is more preferable to include a compound in which and are bound.
  • the thermal polymerization initiator can adjust the strength of the acid generated by the addition of heat depending on the type of anion species contained in the thermal polymerization initiator, thereby adjusting the curing temperature of the sealing liquid composition.
  • the thermal polymerization initiator is an anionic species selected from the group consisting of hexafluoroantimonic acid, hexafluorophosphoric acid, trifluoromethanesulfonic acid, perfluorobutanesulfonic acid, and tetrakis (pentafluorophenyl) boric acid. It may be included.
  • the thermal polymerization initiator can adjust the temperature at which acid starts to be generated, depending on the type of cationic species contained in the thermal polymerization initiator.
  • the thermal polymerization initiator may be a compound that generates an acid by the addition of heat of 150 ° C. or less, or may be a compound that generates an acid by the addition of heat of 140 ° C. or less, or by the addition of heat of 130 ° C. or less.
  • a compound that generates an acid may be used.
  • the thermal polymerization initiator may be a compound that generates an acid by the addition of heat exceeding 100 ° C.
  • thermal stress on the element can be reduced by further lowering the curing start temperature. It is preferable to use a compound that generates an acid upon addition of.
  • the thermal polymerization initiator may be a compound that generates an acid upon application of heat at a temperature equal to or higher than the glass transition temperature (Tg) of the resin contained in the sealing liquid composition.
  • Tg glass transition temperature
  • the thermal polymerization initiator is preferably neutral in a state where it is not subjected to heat addition.
  • the thermal polymerization initiator preferably has a pH of 6.0 to 8.0 (25 ° C.) in a state where no heat is applied.
  • the liquid composition for sealing tends to be less likely to cause deterioration of storage stability or curing inhibition due to excess base. .
  • the adhesiveness and reliability tend to be less likely to decrease.
  • the thermal polymerization initiator may be a compound in which the specific anion species and a cation species represented by the following formula (1-3) are combined. .
  • Y 1 , Y 2 , and Y 3 are each independently a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms, or an aryl group Indicates. At least one of Y 1 , Y 2 and Y 3 is preferably an aryl group.
  • Ar represents an aryl group
  • H represents a hydrogen atom of the aryl group.
  • the alkyl group or aryl group may have a substituent. Since an alkyl group, an aryl group, and a substituent are synonymous with the said Formula (1), detailed description is abbreviate
  • the thermal polymerization initiator is a compound in which the specific anion species and the cation species represented by the formula (1-3) are combined
  • the thermal polymerization initiator is heated by heat as shown by the following formula: A chemical transition occurs within the molecule, generating an acid.
  • a ⁇ represents the specific anion species. Since this thermal polymerization initiator does not dissociate protons before chemical transition is caused by heat, the pH value does not deviate from the neutral range (for example, pH 6.0 to 8.0 (25 ° C.)).
  • the thermal polymerization initiator is bonded to the specific anion species and a cationic species in which three of Y 1 , Y 2 , Y 3 and Y 4 in the formula (1) are groups other than hydrogen atoms.
  • the function as an anion catcher of a cationic species is excellent in a state where it is not subjected to the addition of heat.
  • the storage stability (stability with time) tends to be improved.
  • the thermal polymerization initiator may be a tertiary amine salt of the specific anion species.
  • the thermal polymerization initiator is a tertiary amine salt of the specific anion species, the storage stability of the sealing liquid composition tends to be improved.
  • thermal polymerization initiators examples include TAG-2278, CXC-1612, CXC-1821, CXC-1733, CXC-1738, TAG-2678, CXC-1614, TAG-2690, TAG-2690, CXC- 1742, TAG-2700, CXC-2700, and TAG-2710 (trade names, all manufactured by King Industries).
  • CXC-1821 that is, a quaternary ammonium salt having tetrakis (pentafluorophenyl) boric acid as an anionic species
  • CXC-1821 that is, a quaternary ammonium salt having tetrakis (pentafluorophenyl) boric acid as an anionic species
  • the content of the polymerization initiator in the sealing liquid composition is not particularly limited.
  • the content of the polymerization initiator is preferably 0.1 parts by mass to 10 parts by mass with respect to 100 parts by mass in total of the epoxy compound and the oxetane compound, and 0.1 parts by mass to 5 parts by mass. Mass parts are more preferred, and 0.3 to 3 parts by mass are even more preferred.
  • the liquid composition for sealing contains an inorganic filler.
  • the kind of inorganic filler is not particularly limited, and conventionally known inorganic fillers can be used.
  • Examples of the inorganic filler include fused silica, synthetic silica, crystalline silica, nano silica, and the like, calcium carbonate, clay, alumina, silicon nitride, silicon carbide, boron nitride, calcium silicate, potassium titanate, aluminum nitride, beryllia, Examples thereof include zirconia, zircon, fosterite, steatite, spinel, mullite, titania, powders such as aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, beads formed by spheroidizing them, and glass fibers. These inorganic fillers may be used alone or in combination of two or more.
  • the fused silica is preferable as the inorganic filler, and spherical fused silica is more preferable from the viewpoints of fluidity and permeability into the fine gap of the sealing liquid composition.
  • the fused silica is spherical
  • the phrase “the fused silica is spherical” means that the sphericity satisfies the condition of 0.7 or more.
  • coupling agent for treating the surface of the inorganic filler known coupling agents such as various silane compounds such as epoxy silane, mercapto silane, alkyl silane, vinyl silane, titanium compound, aluminum chelate compound, aluminum zirconium compound, etc. Can be mentioned. Among these, it is preferable to use epoxysilane as a coupling agent.
  • the maximum particle size of the inorganic filler is not particularly limited.
  • the maximum particle size of the inorganic filler is, for example, 50 ⁇ m or less from the viewpoint of increasing the content of the inorganic filler while suppressing an increase in viscosity, and from the viewpoint of fillet moldability when the sealing liquid composition is used as an underfill material.
  • it is 40 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the average particle diameter of the inorganic filler is not particularly limited.
  • the average particle diameter of the inorganic filler is, for example, from the viewpoint of increasing the content of the inorganic filler while suppressing an increase in viscosity, and from the viewpoint of fillet moldability when the sealing liquid composition is used as an underfill material.
  • the thickness is preferably 1 ⁇ m to 4 ⁇ m, more preferably 0.2 ⁇ m to 3 ⁇ m, and still more preferably 0.3 ⁇ m to 2 ⁇ m.
  • the maximum particle size and the average particle size can be confirmed by measuring a weight cumulative particle size distribution using a laser light diffraction method. That is, the maximum particle size in the weight cumulative particle size distribution can be set as the maximum particle size, and the particle size at which the cumulative distribution is 50% can be set as the average particle size.
  • the content of the inorganic filler in the sealing liquid composition is not particularly limited.
  • the content of the inorganic filler is preferably 30% by mass to 70% by mass and more preferably 35% by mass to 65% by mass with respect to the total amount of the sealing liquid composition.
  • the strength of the cured product of the sealing liquid composition is further improved, and reliability such as temperature cycle resistance tends to be further improved.
  • the content of the inorganic filler is 70% by mass or less, the viscosity of the liquid composition for sealing becomes low, the fluidity and permeability of the liquid composition for sealing, and the liquid composition for sealing When used as an underfill material, fillet moldability tends to be further improved.
  • the liquid composition for sealing may contain a coupling agent as necessary.
  • a coupling agent it is possible to further strengthen the interfacial adhesion between the resin and the inorganic filler or the resin and the constituent member of the electronic component device.
  • the coupling agent is not particularly limited and can be appropriately selected from conventionally known ones. Examples of the coupling agent include silane compounds such as epoxy silane, mercapto silane, alkyl silane, and vinyl silane; titanate compounds.
  • the coupling agent examples include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • Silane ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, ⁇ -mercaptopropyltrimethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, ⁇ Silane coupling agents such as chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane, and ⁇ -mercaptopropylmethyldimethoxysilane; isopropyl triisostearoyl chloride Titanate, isopropyltris (dioctylpyrophosphate) titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecylphosphite
  • the liquid composition for sealing includes other additives such as colorants such as dyes and carbon black, diluents, leveling agents, antifoaming agents, surfactants, ion trapping agents, stress relaxation agents, and resin modification agents. You may contain the quality agent as needed.
  • the viscosity of the liquid composition for sealing is not particularly limited.
  • the viscosity of the liquid composition for sealing is preferably 0.05 Pa ⁇ s to 2.0 Pa ⁇ s at 25 ° C., for example, from the viewpoint of fluidity, and is 0.1 Pa ⁇ s to 1.0 Pa ⁇ s. More preferably.
  • the viscosity at 25 ° C. of the sealing liquid composition is measured using an E-type viscometer (cone angle: 3 °, rotation speed: 100 times / min).
  • the liquid composition for sealing at 70 ° C. is preferably 0.2 Pa ⁇ s or less, and more preferably 0.1 Pa ⁇ s or less.
  • the viscosity at 70 ° C. of the liquid composition for sealing is measured using a rheometer (cone diameter 25 mm, frequency 1 Hz). For example, “AR2000” (trade name, manufactured by TA Instruments) is used as the rheometer.
  • the liquid composition for sealing preferably has a throttling index of, for example, 0.5 to 1.5, and more preferably 0.8 to 1.2.
  • the “thickening index” is (viscosity at 20 rotations / minute) / (rotation speed) when the viscosity is measured at 25 ° C. using an E-type viscometer (cone angle 3 °). It means the value of viscosity at 100 times / min.
  • the viscosity of the liquid composition for sealing and the variation index can be set to a desired range by appropriately selecting the composition of the epoxy compound and the oxetane compound, the content of the inorganic filler, and the like.
  • the storage stability calculated by the following formula is, for example, preferably 0% to 50%, more preferably 0% to 30%, and more preferably 0% More preferred is 20%.
  • Storage stability (%) 100 ⁇ ((viscosity after storage ⁇ viscosity before storage) / viscosity after storage)
  • the liquid composition for sealing may be prepared by any method as long as the various components can be dispersed and mixed.
  • a liquid composition for sealing can be obtained by weighing the components, mixing and kneading using a roughing machine, mixing roll, planetary mixer, etc., and defoaming as necessary. .
  • the sealing material of this embodiment is obtained by curing the above-described sealing liquid composition.
  • the sealing material can be obtained, for example, by applying the sealing liquid composition to a desired portion and then heating and curing the sealing liquid composition.
  • the method for applying the sealing liquid composition is not particularly limited.
  • Examples of the application method include a method using a dispenser such as an air dispenser, a jet dispenser, a screw-type dispenser, and an auger-type dispenser, a method using casting, and a method using printing such as screen printing.
  • the heating temperature and heating time of the sealing liquid composition are not particularly limited.
  • the heating temperature is preferably 90 ° C. to 150 ° C., more preferably 95 ° C. to 145 ° C., and still more preferably 100 ° C. to 140 ° C.
  • the heating time is, for example, preferably 5 minutes to 100 minutes, more preferably 7 minutes to 90 minutes, and even more preferably 10 minutes to 70 minutes. Heating may be performed in one stage or in multiple stages. For example, after primary curing at 50 to 100 ° C. for 1 to 60 minutes, secondary curing at 80 to 140 ° C. for 1 to 60 minutes may be performed.
  • the glass transition temperature (Tg) of the sealing material is not particularly limited. From the viewpoint of thermal stress, the glass transition temperature (Tg) of the sealing material is preferably 55 ° C. to 160 ° C., more preferably 70 ° C. to 140 ° C., and still more preferably 85 ° C. to 130 ° C.
  • the glass transition temperature (Tg) of the encapsulant was measured using a test piece ( ⁇ 4 mm ⁇ 20 mm) and a thermomechanical analyzer (trade name “Q400”, manufactured by TA instruments) with a load of 15 g and a measurement temperature of ⁇ 50 ° C. It is measured under the conditions of ⁇ 220 ° C. and a heating rate of 5 ° C./min.
  • the electronic component device includes a substrate having a circuit layer, an element disposed on the substrate and electrically connected to the circuit layer, and the above-described element disposed in a gap between the substrate and the element. And a sealing material.
  • the electronic component device can be obtained, for example, by sealing an element with the above-described sealing material. When the element is sealed with the above-described sealing material, the warp of the electronic component device is reduced, and the temperature cycle resistance tends to be improved.
  • Electronic component devices include lead frames, pre-wired tape carriers, rigid wiring boards, flexible wiring boards, glass, silicon wafers and other supporting members, semiconductor chips, transistors, diodes, thyristors and other active elements, capacitors, resistors
  • the present invention can be preferably applied to rigid and flexible wiring boards, and semiconductor devices in which semiconductor elements are flip-chip bonded to bumps formed on glass.
  • Specific examples include electronic component devices such as flip chip BGA (Ball Grid Array) / LGA (Land Grid Array) and COF (Chip On Film).
  • the above-described liquid composition for sealing is suitable as an underfill material for flip chip having excellent reliability.
  • the bump material connecting the wiring board and the semiconductor element is not a conventional lead-containing solder, but a lead-free solder such as Sn—Ag—Cu type. It is a flip chip semiconductor component that has been used, and good reliability can be maintained even for a flip chip having lead-free solder bump connections that are physically brittle compared to conventional lead solder.
  • a chip scale package such as a wafer level CSP (Chip Scale Package) is mounted on a substrate, the reliability can be improved by applying the above-described liquid composition for sealing.
  • Epoxy compound / epoxy compound 1 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate (trade name “Celoxide 2021P” manufactured by Daicel Corporation)
  • Epoxy compound 2 bis (glycidyloxyphenyl) methane (bisphenol F type epoxy compound, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name “YDF-8170C”)
  • Epoxy compound 3 1,6-hexanediol diglycidyl ether (manufactured by Sakamoto Pharmaceutical Co., Ltd., trade name “SR-16HL”)
  • Inorganic filler / inorganic filler spherical fused silica having an average particle size of 0.6 ⁇ m, a maximum particle size of 25 ⁇ m, and a surface treated with an epoxysilane coupling agent (trade name “SE2200-, manufactured by Admatechs Co., Ltd.”) SEJ ”)
  • Acid anhydride Methylhexahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd., trade name “HN-5500”)
  • Coupling agent ⁇ -glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBM-403”)
  • Colorant Carbon black (Mitsubishi Chemical Corporation, trade name “MA100”)
  • the above ingredients were blended so as to have the composition shown in Table 1, and kneaded and dispersed with a three roll and vacuum separator to obtain the liquid compositions for sealing of Examples 1 to 5 and Comparative Examples 1 to 3. Prepared.
  • the blending unit is parts by mass, and “-” represents “no blending”.
  • the content (mass%) of the inorganic filler in the sealing liquid composition was calculated from the blending amount of each component.
  • Tg and coefficient of thermal expansion The sealing liquid composition was cured by heating at 130 ° C. for 30 minutes to prepare a test piece ( ⁇ 4 mm ⁇ 20 mm). With respect to this test piece, a glass transition temperature (with a load of 15 g, a measurement temperature of ⁇ 50 ° C. to 220 ° C., and a temperature increase rate of 5 ° C./min. Using a thermomechanical analyzer (trade name “Q400” manufactured by TA Instruments). Tg) and coefficient of thermal expansion (CTE) were measured. The thermal expansion coefficient in the temperature range below Tg was CTE1, and the thermal expansion coefficient in the temperature range above Tg was CTE2. Tg and CTE show thermal stability, Tg is preferably around 100 ° C., and CTE1 and CTE2 are preferably as low as possible.
  • the liquid compositions for sealing of Examples 1 to 5 using an epoxy compound and an oxetane compound in combination and using a polymerization initiator are used for sealing of Comparative Examples 1 and 2.
  • the curability at a low temperature in a short time was excellent. That is, the sealing liquid compositions of Examples 1 to 5 have a higher Tg of the cured product than the sealing liquid compositions of Comparative Example 1 and Comparative Example 2 by the heat treatment at 130 ° C. for 30 minutes, The coefficient of thermal expansion was low.
  • the sealing liquid compositions of Examples 1 to 5 were superior in storage stability to the sealing liquid compositions of Comparative Examples 1 and 3.
  • the sealing liquid composition of Comparative Example 1 in which no oxetane compound was used was greatly inferior in storage stability as compared with the sealing liquid compositions of Examples 1 to 5. Further, the sealing liquid composition of Comparative Example 1 was inferior in curability at a low temperature and in a short time as compared with the sealing liquid compositions of Examples 1 to 5. Further, the sealing liquid composition of Comparative Example 2 in which no epoxy compound was used was inferior in curability at a low temperature in a short time as compared with the sealing liquid compositions of Examples 1 to 5. In addition, the sealing liquid composition of Comparative Example 3, which does not use an oxetane compound and uses an acid anhydride instead of the polymerization initiator, is more stable than the sealing liquid compositions of Examples 1-5. The nature was greatly inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wire Bonding (AREA)
  • Sealing Material Composition (AREA)

Abstract

エポキシ基を有するエポキシ化合物、オキセタン環を有するオキセタン化合物、重合開始剤、及び無機充填材を含有する封止用液状組成物を提供する。また、この封止用液状組成物を硬化してなる封止材、及びこの封止材を有する電子部品装置を提供する。

Description

封止用液状組成物、封止材、及び電子部品装置
 本開示は、封止用液状組成物、封止材、及び電子部品装置に関する。
 従来から、電子部品装置においてトランジスタ、集積回路(Integrated Circuit;IC)等の素子を封止する分野では、生産性、コスト等の面から、樹脂を含む封止用材料を用いて封止する手法が主流となっている。封止用材料としては、エポキシ樹脂組成物が広く用いられている。この理由としては、エポキシ樹脂が、作業性、成形性、電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の諸特性にバランスがとれているためである。
 COB(Chip on Board)、COG(Chip on Glass)、TCP(Tape Carrier Package)等のベアチップ実装した電子部品装置においては、封止用材料として、室温(25℃)で液状のエポキシ樹脂組成物が広く使用されている。また、セラミック、ガラス/エポキシ樹脂、ガラス/イミド樹脂、ポリイミドフィルム等を基板とする配線基板上に、素子を直接バンプ接続してなる電子部品装置(フリップチップ)では、バンプ接続した素子と配線基板との間隙(ギャップ)を充填するアンダーフィル材としても、室温で液状のエポキシ樹脂組成物が使用されている。上記のエポキシ樹脂組成物は、素子を温湿度、機械的な外力等から保護するために重要な役割を果たしている。
 アンダーフィル用のエポキシ樹脂組成物の硬化には、通常、高温で長時間の加熱が必要である。しかし、近年では、生産性及び作業性の向上を目的とした低温短時間での硬化が求められている。このような背景から、特定のエポキシ化合物と、特定の酸無水物を含む硬化剤と、特定の配合量の無機充填材とを含有し、低温短時間の加熱処理により硬化するアンダーフィル用エポキシ樹脂液状封止材が提案されている(例えば、特許文献1参照)。
特開2013-28659号公報
 しかし、特許文献1に記載されたアンダーフィル用エポキシ樹脂液状封止材は、低温短時間での硬化が可能である反面、経時により粘度が上昇しやすく、保存安定性が十分ではなかった。
 本発明は、このような事情に鑑みなされたものであり、低温短時間での硬化が可能であり、保存安定性にも優れる封止用液状組成物、この封止用液状組成物を硬化してなる封止材、及びこの封止材を有する電子部品装置を提供することを課題とする。
 上記課題を解決するための具体的な手段は以下の通りである。
<1> エポキシ基を有するエポキシ化合物、オキセタン環を有するオキセタン化合物、重合開始剤、及び無機充填材を含有する封止用液状組成物。
<2> 前記重合開始剤が熱重合開始剤である<1>に記載の封止用液状組成物。
<3> 前記重合開始剤が、アンモニウム塩、アミン塩、及びスルホニウム塩からなる群より選択される少なくとも1種の化合物を含む<2>に記載の封止用液状組成物。
<4> 前記重合開始剤が、六フッ化アンチモン酸、六フッ化リン酸、トリフルオロメタンスルホン酸、パーフルオロブタンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、及びテトラキス(ペンタフルオロフェニル)ホウ酸からなる群より選択されるアニオン種と、下記式(1)で表されるカチオン種と、が結合した化合物を含む<2>又は<3>に記載の封止用液状組成物。
Figure JPOXMLDOC01-appb-C000002

(式中、Y、Y、Y、及びYはそれぞれ独立して、水素原子、直鎖状、分岐鎖状、若しくは環状の炭素数1~20のアルキル基、又はアリール基を示す。前記アルキル基及びアリール基は、置換基を有していてもよい。)
<5> 前記重合開始剤の含有量が、前記(A)エポキシ化合物と前記(B)オキセタン化合物との合計100質量部に対して、0.1質量部~10質量部である<1>~<4>のいずれか1項に記載の封止用液状組成物。
<6> 前記無機充填材の最大粒子径が50μm以下である<1>~<5>のいずれか1項に記載の封止用液状組成物。
<7> 前記無機充填材の平均粒子径が0.1μm~4μmである<1>~<6>のいずれか1項に記載の封止用液状組成物。
<8> 前記無機充填材の含有率が30質量%~70質量%である<1>~<7>のいずれか1項に記載の封止用液状組成物。
<9> 電子部品装置の素子封止に用いられる<1>~<8>のいずれか1項に記載の封止用液状組成物。
<10> <1>~<9>のいずれか1項に記載の封止用液状組成物を硬化してなる封止材。
<11> 回路層を有する基板と、
 前記基板上に配置され、前記回路層と電気的に接続された素子と、
 前記基板と前記素子との間隙に配置された<10>に記載の封止材と、
を備える電子部品装置。
 本発明によれば、低温短時間での硬化が可能であり、保存安定性にも優れる封止用液状組成物、この封止用液状組成物を硬化してなる封止材、及びこの封止材を有する電子部品装置を提供することができる。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合、原理的に明らかに必須であると考えられる場合等を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。また、本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。
 本明細書において「室温」とは、25℃を意味する。また、本明細書において「液状」とは、25℃において流動性を示す状態であることを意味する。具体的に、「液状」とは、25℃においてE型粘度計(コーン角3°、回転数100回/分)で測定される粘度が1000Pa・s以下である状態を意味する。
 以下、本発明を適用した封止用液状組成物、封止材、及び電子部品装置の実施形態の一例について詳細に説明する。
[封止用液状組成物]
 本実施形態の封止用液状組成物は、(A)エポキシ基を有するエポキシ化合物、(B)オキセタン環を有するオキセタン化合物、(C)重合開始剤、及び(D)無機充填材を含有する。封止用液状組成物は、必要に応じて、他の添加剤を含有していてもよい。封止用液状組成物は、上記構成を採ることにより、低温短時間での硬化が可能であり、保存安定性にも優れる。その理由は、以下のように推察される。
 本実施形態の封止用液状組成物は、上記(A)エポキシ化合物と上記(B)オキセタン化合物とを含有するため、低温短時間での硬化が可能である。上記(B)オキセタン化合物は反応性が高く、酸無水物を用いた反応系では十分な保存安定性を得ることが困難である。この点、本実施形態の封止用液状組成物は上記(C)重合開始剤を含有するため、保存安定性にも優れる。
 以下、封止用液状組成物を構成する各成分について説明する。
((A)エポキシ化合物)
 封止用液状組成物は、エポキシ基を有するエポキシ化合物を含有する。エポキシ化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 エポキシ基を有するエポキシ化合物は、分子内にエポキシ基を有する化合物であれば特に限定されない。好ましいエポキシ化合物としては、例えば、脂環式エポキシ基又はグリシジル基を有するエポキシ化合物が挙げられる。
 脂環式エポキシ基を有するエポキシ化合物は、分子内に脂環式エポキシ基を有する化合物であれば特に限定されない。脂環式エポキシ基としては、環状脂肪族骨格を構成する隣接する2つの炭素原子に酸素原子が結合して形成されているもの、及び隣接していない2つの炭素原子に酸素原子が結合して形成されているものをいずれも用いることができる。反応性及び保存安定性の観点から、脂環式エポキシ基としては、隣接する2つの炭素原子に酸素原子が結合して形成されているものを用いることが好ましい。環状脂肪族骨格の炭素数は、特に制限されない。環状脂肪族骨格は、例えば、5員環~8員環であることが好ましく、5員環又は6員環であることがより好ましく、6員環であることが更に好ましい。
 脂環式エポキシ基の中でも、下記式(I)で表される3,4-エポキシシクロヘキシル基が好ましい。式(I)中、*は結合位置を示す。
Figure JPOXMLDOC01-appb-C000003
 脂環式エポキシ基を有するエポキシ化合物における脂環式エポキシ基の数は特に制限されない。脂環式エポキシ基の数は、例えば、封止用液状組成物の硬化後の耐熱性及び可撓性の観点から、2個~6個が好ましく、封止用液状組成物の粘度を低める観点から、2個~4個がより好ましい。
 脂環式エポキシ基を有するエポキシ化合物における脂環式エポキシ基の数が2個以上である場合、脂環式エポキシ基同士は、単結合で結合していてもよく、連結基を介して結合していてもよい。脂環式エポキシ基同士を結合する連結基の種類は特に制限されない。連結基としては、例えば、2価の炭化水素基、カルボニル基(-CO-)、エーテル結合(-O-)、エステル結合(-COO-)、カーボネート結合(-OCOO-)、及びこれらを組み合わせた基が挙げられる。2価の炭化水素基としては、例えば、炭素数1~18(好ましくは炭素数1~6)の直鎖状又は分岐鎖状のアルキレン基、及び2価の脂環式炭化水素基(特に2価のシクロアルキレン基)が挙げられる。直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、及びトリメチレン基が挙げられる。また、2価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、シクロヘキシリデン基等の2価のシクロアルキレン基(シクロアルキリデン基を含む)が挙げられる。
 脂環式エポキシ基を有するエポキシ化合物の中でも、下記式(I-1)で表される化合物(すなわち、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート)が好ましい。封止用液状組成物が下記式(I-1)で表される化合物を含有することにより、封止用液状組成物が低粘度となり、且つ、硬化後の耐熱性が向上する傾向にある。
 下記式(I-1)で表される化合物としては、例えば、「セロキサイド2021P」(商品名、(株)ダイセル製)等の市販品を用いることができる。
Figure JPOXMLDOC01-appb-C000004
 なお、脂環式エポキシ基を有するエポキシ化合物としては、分子内に2つのエポキシ基を有し、2つのエポキシ基の一方のみが脂環式エポキシ基であるエポキシ化合物を用いることもできる。このようなエポキシ化合物としては、例えば、リモネンジエポキシド(すなわち、1-メチル-4-(2-メチルオキシラニル)-7-オキサビシクロ[4.1.0]ヘプタン)が挙げられる。封止用液状組成物がリモネンジエポキシドを含有することにより、封止用液状組成物が低粘度となり、且つ、硬化後の耐熱性が向上する傾向にある。
 グリシジル基を有するエポキシ化合物は、分子内に下記式(II)で表されるグリシジル基を有する化合物であれば特に限定されない。式(II)中、*は結合位置を示す。
Figure JPOXMLDOC01-appb-C000005
 グリシジル基を有するエポキシ化合物におけるグリシジル基の数は特に制限されない。グリシジル基の数は、例えば、封止用液状組成物の硬化後の耐熱性及び可撓性の観点から、2個~6個が好ましく、封止用液状組成物の粘度を低める観点から、2個~4個がより好ましい。
 グリシジル基を有するエポキシ化合物としては、例えば、ナフタレン型エポキシ樹脂;ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、水添ビスフェノールA等のジグリシジルエーテル型エポキシ樹脂;オルソクレゾールノボラック型エポキシ樹脂を代表とする、フェノール化合物とアルデヒド化合物とから得られるノボラック樹脂をエポキシ化したもの;及びフタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンとの反応により得られるグリシジルエステル型エポキシ樹脂が挙げられる。
 グリシジル基を有するエポキシ化合物の中でも、下記式(II-1)で表される化合物(すなわち、ビス(グリシジルオキシフェニル)メタン)、及び下記式(II-2)で表される化合物(すなわち、1,6-ヘキサンジオールジグリシジルエーテル)が好ましい。封止用液状組成物が下記式(II-1)で表される化合物を含有することにより、封止用液状組成物の硬化後の可撓性が向上する傾向にある。また、封止用液状組成物が下記式(II-2)で表される化合物を含有することにより、封止用液状組成物が低粘度となり、基板と素子との間隙への充填性が向上する傾向にある。
 下記式(II-1)で表される化合物としては、「YDF-8170C」(商品名、新日鉄住金化学(株)製)等の市販品を用いることができる。また、下記式(II-2)で表される化合物としては、「SR-16HL」(商品名、阪本薬品工業(株)製)等の市販品を用いることができる。
Figure JPOXMLDOC01-appb-C000006
 エポキシ化合物のエポキシ当量は特に制限されない。エポキシ化合物のエポキシ当量は、例えば、封止用液状組成物の粘度を低め、また、低温短時間で硬化可能とする観点から、50g/eq.~300g/eq.であることが好ましく、60g/eq.~190g/eq.であることがより好ましく、70g/eq.~180g/eq.であることが更に好ましい。
 エポキシ化合物は、室温で液状であることが好ましいが、本発明の効果が達成される範囲内であれば室温で固形状の化合物を併用することもできる。エポキシ化合物が室温で固形状の化合物を含む場合、その含有率は、例えば、封止用液状組成物の流動性の観点から、エポキシ化合物全量中に20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
 エポキシ化合物の加水分解性塩素量は、集積回路(IC)等の素子における金属配線の腐食に係わるため少ない方が好ましい。例えば、耐湿性に優れた封止用液状組成物を得るためには、加水分解性塩素量は、500ppm以下であることが好ましい。ここで、加水分解性塩素量とは、試料のエポキシ化合物1gをジオキサン30mLに溶解し、1mol/LのKOHを含有するメタノール溶液5mLを添加して30分間リフラックスした後、電位差滴定により求めた値を尺度としたものである。 
 封止用液状組成物中のエポキシ化合物の含有率は特に制限されない。封止用液状組成物の粘度を低め、流動性を高める観点から、エポキシ化合物の含有率は、無機充填材を除く封止用液状組成物の全量中に30質量%~90質量%であることが好ましく、35質量%~70質量%であることがより好ましく、40質量%~60質量%であることが更に好ましい。
((B)オキセタン化合物)
 封止用液状組成物は、オキセタン環を有するオキセタン化合物を含有する。オキセタン化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 オキセタン環を有するオキセタン化合物は、分子内にオキセタン環を有する化合物であれば特に限定されない。
 オキセタン化合物は、下記式(III)で表される3-オキセタニル基を有することが好ましく、必要に応じてその他の官能基を有していてもよい。式(III)中、*は結合位置を示す。
Figure JPOXMLDOC01-appb-C000007
 オキセタン化合物としては、例えば、3-エチル-3-[(2-エチルヘキシルオキシ)メチル]オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(4-ヒドロキシブチル)オキシメチルオキセタン、3-エチル-3-ヘキシルオキシメチルオキセタン、3-エチル-3-アリルオキシメチルオキセタン、3-エチル-3-ベンジルオキシメチルオキセタン、3-エチル-3-メタクリルオキシメチルオキセタン、3-エチル-3-カルボキシオキセタン、3-エチル-3-フェノキシメチルオキセタン等のモノオキセタン化合物;ビス[1-エチル(3-オキセタニル)]メチルエーテル、4,4’-ビス[3-エチル-(3-オキセタニル)メトキシメチル]ビフェニル、1,4-ビス(3-エチル-3-オキセタニルメトキシ)メチルベンゼン、キシリレンビスオキセタン、炭酸ビス[(エチル(3-オキセタニル)]メチル、アジピン酸ビス[エチル(3-オキセタニル)]エチル、テレフタル酸ビス[エチル(3-オキセタニル)]メチル、1,4-シクロヘキサンカルボン酸ビス[エチル(3-オキセタニル)]メチル、ビス{4-[エチル(3-オキセタニル)メトキシカルボニルアミノ]フェニル}メタン、α,ω-ビス-{3-[1-エチル(3-オキセタニル)メトキシ]プロピル(ポリジメチルシロキサン)等のジオキセタン化合物;及びオリゴ(グリシジルオキセタン-co-フェニルグリシジルエーテル)等の多オキセタン化合物が挙げられる。
 オキセタン化合物の中でも、粘度が低くて取扱いやすく、且つ、高い反応性を示すことから、ビス[1-エチル(3-オキセタニル)]メチルエーテル、4,4’-ビス[3-エチル-(3-オキセタニル)メトキシメチル]ビフェニル、3-エチル-3-[(2-エチルヘキシルオキシ)メチル]オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(4-ヒドロキシブチル)オキシメチルオキセタン、1,4-ビス(3-エチル-3-オキセタニルメトキシ)メチルベンゼン、及びキシリレンビスオキセタンが好ましく、ビス[1-エチル(3-オキセタニル)]メチルエーテル、4,4’-ビス[3-エチル-(3-オキセタニル)メトキシメチル]ビフェニル、3-エチル-3-[(2-エチルヘキシルオキシ)メチル]オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、及び3-エチル-3-(4-ヒドロキシブチル)オキシメチルオキセタンがより好ましい。
 特に、オキセタン化合物としては、下記式(III-1)で表される化合物(すなわち、ビス[1-エチル(3-オキセタニル)]メチルエーテル)を含むことが好ましい。封止用液状組成物が下記式(III-1)で表される化合物を含有することにより、封止用液状組成物の流動性及び硬化後の耐熱性が向上する傾向にある。
 下記式(III-1)で表される化合物としては、「アロンオキセタン(登録商標)OXT-221」(商品名、東亞合成(株)製)等の市販品を用いることができる。
Figure JPOXMLDOC01-appb-C000008
 オキセタン化合物の分子量は特に制限されない。オキセタン化合物の分子量は、例えば、封止用液状組成物の粘度を低める観点から、100~500であることが好ましく、100~300であることがより好ましい。
 オキセタン化合物は、室温で液状であることが好ましいが、本発明の効果が達成される範囲内であれば室温で固形状の化合物を併用することもできる。オキセタン化合物が室温で固形状の化合物を含む場合、その含有率は、例えば、封止用液状組成物の流動性の観点から、オキセタン化合物全量中に20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
 封止用液状組成物中のオキセタン化合物の含有率は特に制限されない。オキセタン化合物の含有率は、例えば、封止用液状組成物の粘度を低め、流動性を高める観点から、無機充填材を除く封止用液状組成物の全量中に10質量%~95質量%であることが好ましく、15質量%~90質量%であることがより好ましく、30質量%~60質量%であることが更に好ましい。
 封止用液状組成物におけるエポキシ化合物とオキセタン化合物との合計の含有率は特に制限されない。エポキシ化合物とオキセタン化合物との合計の含有率は、例えば、封止用液状組成物の粘度を低め、流動性を高める観点から、封止用液状組成物の全量中に20質量%~70質量%であることが好ましく、30質量%~60質量%であることがより好ましく、35質量%~55質量%であることが更に好ましい。
 封止用液状組成物におけるエポキシ化合物とオキセタン化合物との含有比は特に制限されない。エポキシ化合物/オキセタン化合物の質量比は、例えば、未反応分を少なく抑え、低粘度とする観点から、10.0~0.2であることが好ましく、2.0~0.6であることがより好ましく、1.5~0.8であることが更に好ましい。
((C)重合開始剤)
 封止用液状組成物は、重合開始剤を含有する。重合開始剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 重合開始剤は特に制限されない。重合開始剤としては、熱又は光の付加によって酸又は塩基を発生する化合物を用いることができる。重合開始剤の中でも、外部からエネルギー(特定温度以上の熱又は光)が与えられることによって酸触媒を発生する化合物が好ましい。特に、取り扱い性の観点からは、熱酸発生剤(Thermal Acid Generator:熱重合開始剤)が好ましい。
 熱重合開始剤としては、例えば、アンモニウム塩、アミン塩、及びスルホニウム塩が挙げられ、アンモニウム塩、アミン塩、及びスルホニウム塩からなる群より選択される少なくとも1種の化合物を含むことが好ましい。特に、保存安定性の観点から、アンモニウム塩を含むことが好ましい。
 具体的に、熱重合開始剤は、六フッ化アンチモン酸、六フッ化リン酸、トリフルオロメタンスルホン酸、パーフルオロブタンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、及びテトラキス(ペンタフルオロフェニル)ホウ酸からなる群より選択されるアニオン種(以下、「特定アニオン種」という。)のアミン塩、四級アンモニウム塩等としてもよい。
 また、熱重合開始剤は、上記特定アニオン種と下記式(1)で表されるカチオン種とが結合した化合物としてもよい。
Figure JPOXMLDOC01-appb-C000009
 上記式(1)中、Y、Y、Y、及びYはそれぞれ独立して、水素原子、直鎖状、分岐鎖状、若しくは環状の炭素数1~20のアルキル基、又はアリール基を示す。Y、Y、Y、及びYの少なくとも1つはアリール基であることが好ましい。
 アルキル基の炭素数は1~20であり、1~15であることが好ましい。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、及びシクロヘキシル基が挙げられる。また、アリール基としては、例えば、フェニル基が挙げられる。
 アルキル基又はアリール基は、置換基を有していてもよい。アルキル基が有していてもよい置換基としては、例えば、フェニル基、炭素数1~15のアルコキシ基、及びヒドロキシ基が挙げられる。なお、アルキル基が置換基を有する場合、アルキル基の炭素数には置換基の炭素数が含まれないものとする。アリール基が有していてもよい置換基としては、例えば、炭素数1~15のアルキル基、炭素数1~15のヒドロキシアルキル基、炭素数1~15のアルコキシ基、及びフェニルチオ基が挙げられる。
 Y、Y、Y、及びYのうちの3個が水素原子以外の基であり、残り1個が水素原子である場合、熱重合開始剤は、下記式(1-1)又は(1-2)で表される化合物としてもよい。
Figure JPOXMLDOC01-appb-C000010
 上記式(1-1)及び(1-2)中、Y、Y、及びYはそれぞれ独立して、直鎖状、分岐鎖状、若しくは環状の炭素数1~20のアルキル基、又はアリール基を示す。アルキル基又はアリール基は、置換基を有していてもよい。アルキル基、アリール基、及び置換基は、上記式(1)と同義であるため、詳細な説明を省略する。
 また、熱重合開始剤は、上記特定アニオン種と、上記式(1)中のY、Y、Y、及びYの全てが水素原子以外の基であるカチオン種とが結合した化合物としてもよい。
 これらの中でも、熱重合開始剤としては、上記特定アニオン種と上記式(1)中のY、Y、Y、及びYのうちの3個又は4個が水素原子以外の基であるカチオン種とが結合した化合物を含むことが好ましく、上記特定アニオン種と上記式(1)中のY、Y、Y、及びYの全てが水素原子以外の基であるカチオン種とが結合した化合物を含むことがより好ましい。
 熱重合開始剤は、該熱重合開始剤に含まれるアニオン種の種類によって、熱の付加によって発生する酸の強度を調節することができ、これにより封止用液状組成物の硬化温度を調節することができる。例えば、熱重合開始剤は、六フッ化アンチモン酸、六フッ化リン酸、トリフルオロメタンスルホン酸、パーフルオロブタンスルホン酸、及びテトラキス(ペンタフルオロフェニル)ホウ酸からなる群より選択されるアニオン種を含むこととしてもよい。
 また、熱重合開始剤は、該熱重合開始剤に含まれるカチオン種の種類によって、酸が発生し始める温度を調節することができる。
 例えば、熱重合開始剤は、150℃以下の熱の付加によって酸を発生する化合物としてもよく、140℃以下の熱の付加によって酸を発生する化合物としてもよく、130℃以下の熱の付加によって酸を発生する化合物としてもよい。また、熱重合開始剤は、100℃を超える熱の付加によって酸を発生する化合物としてもよい。
 封止用液状組成物を電子部品装置等に使用する場合には、硬化開始温度をより低下させることで素子への熱的ストレスが低減できるため、熱重合開始剤としては、150℃以下の熱の付加によって酸を発生する化合物を用いることが好ましい。
 また、熱重合開始剤は、封止用液状組成物に含有される樹脂のガラス転移温度(Tg)以上の温度の熱の付加によって酸を発生する化合物としてもよい。封止用液状組成物に含有される樹脂のガラス転移温度(Tg)以上の温度の熱の付加によって酸を発生する熱重合開始剤を用いた場合、発生した酸は、ガラス転移温度(Tg)以上に熱せられた封止用液状組成物の系内において均一存在することとなり、重合によって生じた高分子と無機充填材との複合体内でのカチオン重合を効率よく進行させることができる傾向にある。
 また、熱重合開始剤は、熱の付加を受けない状態において中性であることが好ましい。例えば、熱重合開始剤は、熱の付加を受けない状態においては、pH6.0~8.0(25℃)であることが好ましい。
 このように、熱重合開始剤が熱の付加を受けない状態において中性であることによって、封止用液状組成物は、保存安定性の悪化又は過剰塩基による硬化阻害が生じにくくなる傾向にある。このため、封止用液状組成物を電子部品装置に使用した場合に、接着性及び信頼性の低下が生じにくくなる傾向にある。
 熱の付加を受けない状態において中性であるという点に鑑みると、熱重合開始剤は、上記特定アニオン種と下記式(1-3)で表されるカチオン種とが結合した化合物としてもよい。
Figure JPOXMLDOC01-appb-C000011
 上記式(1-3)中、Y、Y、及びYはそれぞれ独立して、水素原子、直鎖状、分岐鎖状、若しくは環状の炭素数1~20のアルキル基、又はアリール基を示す。Y、Y、及びYの少なくとも1つはアリール基であることが好ましい。上記式(1-3)中、Arはアリール基を示し、Hはアリール基が有する水素原子を示す。アルキル基又はアリール基は、置換基を有していてもよい。アルキル基、アリール基、及び置換基は、上記式(1)と同義であるため、詳細な説明を省略する。
 熱重合開始剤が、上記特定アニオン種と上記式(1-3)で表されるカチオン種とが結合した化合物である場合、熱重合開始剤は、下記式にて示されるように、熱によって分子内で化学転移を起こし、酸を発生させる。下記式中、Aは上記特定アニオン種を示す。この熱重合開始剤は、熱によって化学転移を起こす前はプロトンを解離することがないため、pH値が中性域(例えばpH6.0~8.0(25℃))から外れることがない。
Figure JPOXMLDOC01-appb-C000012
 また、熱重合開始剤が、上記特定アニオン種と上記式(1)中のY、Y、Y、及びYのうちの3個が水素原子以外の基であるカチオン種とが結合した化合物である場合、熱の付加を受けない状態においてカチオン種のアニオンキャッチャーとしての機能が優れるため、脂環式エポキシ基、グリシジル基、及びオキセタニル基に与える影響が少なく、封止用液状組成物の保存安定性(経時安定性)が向上する傾向にある。
 また、熱重合開始剤は、上記特定アニオン種の三級アミン塩としてもよい。熱重合開始剤が上記特定アニオン種の三級アミン塩である場合、封止用液状組成物の保存安定性が向上する傾向にある。
 熱重合開始剤の市販品としては、例えば、TAG-2278、CXC-1612、CXC-1821、CXC-1733、CXC-1738、TAG-2678、CXC-1614、TAG-2681、TAG-2690、CXC-1742、TAG-2700、CXC-2700、及びTAG-2710(商品名、いずれもKing Industries社製)が挙げられる。これらの中でも、低温硬化性及び保存安定性の観点から、CXC-1821(すなわち、アニオン種としてテトラキス(ペンタフルオロフェニル)ホウ酸を有する四級アンモニウム塩)が好ましい。
 封止用液状組成物中の重合開始剤の含有量は特に制限されない。重合開始剤の含有量は、例えば、硬化性の観点から、エポキシ化合物とオキセタン化合物との合計100質量部に対して、0.1質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましく、0.3質量部~3質量部が更に好ましい。
((D)無機充填材)
 封止用液状組成物は、無機充填材を含有する。無機充填材の種類は特に限定されるものではなく、従来から公知の無機充填材を用いることができる。
 無機充填材としては、例えば、溶融シリカ、合成シリカ、結晶シリカ、ナノシリカ等のシリカ、炭酸カルシウム、クレー、アルミナ、窒化珪素、炭化珪素、窒化ホウ素、珪酸カルシウム、チタン酸カリウム、窒化アルミニウム、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等の粉体、又はこれらを球形化したビーズ、及びガラス繊維が挙げられる。 これらの無機充填材は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 中でも、無機充填材は溶融シリカが好ましく、封止用液状組成物の微細間隙への流動性及び浸透性の観点から、球状溶融シリカがより好ましい。また、無機充填材としては、必要に応じて表面をあらかじめカップリング剤等で処理したものを用いてもよい。
 なお、本明細書において溶融シリカが球状であるとは、真球度が0.7以上の条件を満たすことをいう。真球度の測定方法としては、例えば、電子顕微鏡で画像処理を行い、観察される粒子の面積及び周囲長から、(真球度)={4π×(面積)÷(周囲長)}で算出される値とする方法を用いることができる。
 無機充填材の表面を処理するためのカップリング剤としては、エポキシシラン、メルカプトシラン、アルキルシラン、ビニルシラン等の各種シラン化合物、チタン化合物、アルミニウムキレート化合物、アルミニウムジルコニウム化合物などの公知のカップリング剤が挙げられる。これらの中でも、エポキシシランをカップリング剤として用いることが好ましい。
 無機充填材の最大粒子径は特に制限されない。無機充填材の最大粒子径は、例えば、粘度上昇を抑えながら無機充填材の含有率を高める観点、及び封止用液状組成物をアンダーフィル材として用いる場合のフィレット成形性の観点から、50μm以下であることが好ましく、40μm以下であることがより好ましく、30μm以下であることが更に好ましい。
 無機充填材の平均粒子径は特に制限されない。無機充填材の平均粒子径は、例えば、粘度上昇を抑えながら無機充填材の含有率を高める観点、及び封止用液状組成物をアンダーフィル材として用いる場合のフィレット成形性の観点から、0.1μm~4μmであることが好ましく、0.2μm~3μmであることがより好ましく、0.3μm~2μmであることが更に好ましい。
 なお、本明細書において、最大粒子径及び平均粒子径は、レーザー光回折法を用いて重量累積粒度分布を測定することで確認することができる。すなわち、重量累積粒度分布における最大の粒子径を最大粒子径とし、積算分布が50%となる粒子径を平均粒子径とすることができる。
 封止用液状組成物中の無機充填材の含有率は特に制限されない。例えば、無機充填材の含有率は、封止用液状組成物の全量に対して、30質量%~70質量%であることが好ましく、35質量%~65質量%であることがより好ましい。無機充填材の含有率が30質量%以上であると、封止用液状組成物の硬化物の強度がより向上し、耐温度サイクル性等の信頼性がより向上する傾向がある。また、無機充填材の含有率が70質量%以下であると、封止用液状組成物の粘度が低くなり、封止用液状組成物の流動性及び浸透性、並びに封止用液状組成物をアンダーフィル材として用いる場合のフィレット成形性がより向上する傾向がある。
(カップリング剤)
 封止用液状組成物は、必要に応じてカップリング剤を含有してもよい。封止用液状組成物がカップリング剤を含有することで、樹脂と無機充填材又は樹脂と電子部品装置の構成部材との界面接着をより強固にすることができる。
 カップリング剤には特に制限はなく、従来公知のものから適宜選択して用いることができる。カップリング剤としては、例えば、エポキシシラン、メルカプトシラン、アルキルシラン、ビニルシラン等のシラン化合物;チタネート化合物などが挙げられる。
 カップリング剤を具体的に例示すると、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のシランカップリング剤;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネートカップリング剤などが挙げられる。これらのカップリング剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(その他の添加剤)
 封止用液状組成物は、その他の添加剤として、例えば、染料、カーボンブラック等の着色剤、希釈剤、レベリング剤、消泡剤、界面活性剤、イオントラップ剤、応力緩和剤、及び樹脂改質剤を必要に応じて含有していてもよい。
(物性)
 封止用液状組成物の粘度は特に制限されない。封止用液状組成物の粘度は、例えば、流動性の観点から、25℃において0.05Pa・s~2.0Pa・sであることが好ましく、0.1Pa・s~1.0Pa・sであることがより好ましい。なお、封止用液状組成物の25℃における粘度は、E型粘度計(コーン角3°、回転数100回/分)を用いて測定される。
 また、アンダーフィル材等の用途で60℃~110℃の封止用液状組成物を数十μmの狭ギャップ間に充填する際の充填性の観点から、封止用液状組成物の70℃における粘度は、例えば、0.2Pa・s以下であることが好ましく、0.1Pa・s以下であることがより好ましい。なお、封止用液状組成物70℃における粘度は、レオメーター(コーン直径25mm、周波数1Hz)を用いて測定される。レオメーターとしては、例えば、「AR2000」(商品名、TA instruments社製)が用いられる。
 また、封止用液状組成物は、揺変指数が、例えば、0.5~1.5であることが好ましく、0.8~1.2であることがより好ましい。揺変指数が上記範囲であると、封止用液状組成物をアンダーフィル材として用いる場合のフィレット成形性が向上する傾向にある。
 なお、本明細書における「揺変指数」は、E型粘度計(コーン角3°)を用いて25℃で粘度を測定したときの、(回転数20回/分における粘度)/(回転数100回/分における粘度)の値を意味する。
 なお、封止用液状組成物の粘度及び揺変指数は、エポキシ化合物及びオキセタン化合物の組成、無機充填材の含有率等を適宜選択することで所望の範囲とすることができる。
 また、封止用液状組成物を25℃で24時間保存したときに下記式で算出される保存安定性は、例えば、0%~50%が好ましく、0%~30%がより好ましく、0%~20%が更に好ましい。
 保存安定性(%)=100×((保存後の粘度-保存前の粘度)/保存後の粘度)
(封止用液状組成物の調製方法)
 封止用液状組成物は、上記各種成分を分散し混合できるのであれば、いずれの手法で調製してもよい。一般的な手法として、成分を秤量し、らいかい機、ミキシングロール、プラネタリミキサ等を用いて混合及び混練し、必要に応じて脱泡することによって、封止用液状組成物を得ることができる。
[封止材]
 本実施形態の封止材は、前述した封止用液状組成物を硬化してなるものである。
 封止材は、例えば、封止用液状組成物を所望の部分に付与した後、封止用液状組成物を加熱して硬化させることにより得ることができる。
 封止用液状組成物の付与方法は特に制限されない。付与方法としては、例えば、エアーディスペンサー、ジェットディスペンサー、スクリュー型ディスペンサー、オーガータイプディスペンサー等のディスペンサーを用いる方法、注型を用いる方法、及びスクリーン印刷等の印刷を用いる方法が挙げられる。
 封止用液状組成物の加熱温度及び加熱時間も特に制限されない。加熱温度は、例えば、90℃~150℃が好ましく、95℃~145℃がより好ましく、100℃~140℃が更に好ましい。加熱時間は、例えば、5分間~100分間が好ましく、7分間~90分間がより好ましく、10分間~70分間が更に好ましい。
 加熱は1段階で行ってもよく、多段階で行ってもよい。例えば、50℃~100℃で1分間~60分間の1次硬化を行った後、80℃~140℃で1分間~60分間の2次硬化を行ってもよい。
 封止材のガラス転移温度(Tg)は特に制限されない。熱応力の観点から、封止材のガラス転移温度(Tg)は、例えば、55℃~160℃が好ましく、70℃~140℃がより好ましく、85℃~130℃が更に好ましい。
 なお、封止材のガラス転移温度(Tg)は、試験片(φ4mm×20mm)を用い、熱機械分析装置(商品名「Q400」、TA instruments社製)により、荷重15g、測定温度-50℃~220℃、昇温速度5℃/分の条件で測定される。
[電子部品装置]
 本実施形態の電子部品装置は、回路層を有する基板と、上記基板上に配置され、上記回路層と電気的に接続された素子と、上記基板と上記素子との間隙に配置された前述の封止材と、を備える。電子部品装置は、例えば、前述の封止材により素子を封止して得ることができる。素子が前述の封止材によって封止されていることで、電子部品装置の反りが低減され、また、耐温度サイクル性が向上する傾向にある。
 電子部品装置としては、リードフレーム、配線済みのテープキャリア、リジッド配線板、フレキシブル配線板、ガラス、シリコンウエハ等の支持部材に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などを搭載し、必要な部分を前述の封止材で封止して得られる電子部品装置などが挙げられる。電子部品装置の中でも、リジッド及びフレキシブル配線板、並びにガラス上に形成した配線に半導体素子をバンプ接続によるフリップチップボンディングした半導体装置に好ましく適用することができる。具体的な例としては、フリップチップBGA(Ball Grid Array)/LGA(Land Grid Array)、COF(Chip On Film)等の電子部品装置が挙げられる。
 前述の封止用液状組成物は信頼性に優れたフリップチップ用のアンダーフィル材として好適である。封止用液状組成物が特に好適なフリップチップの分野としては、配線基板と半導体素子とを接続するバンプ材質が従来の鉛含有はんだではなく、Sn-Ag-Cu系等の鉛フリーはんだを用いたフリップチップ半導体部品であり、従来の鉛はんだと比較して物性的に脆い鉛フリーはんだバンプ接続をしたフリップチップに対しても良好な信頼性を維持できる。また、ウエハーレベルCSP(Chip Scale Package)等のチップスケールパッケージを基板に実装する際にも、前述の封止用液状組成物を適用することで、信頼性の向上を図ることができる。 
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。
(実施例1~5、比較例1~3)
(A)エポキシ化合物
・エポキシ化合物1:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート((株)ダイセル製、商品名「セロキサイド2021P」)
・エポキシ化合物2:ビス(グリシジルオキシフェニル)メタン(ビスフェノールF型エポキシ化合物、新日鉄住金化学(株)製、商品名「YDF-8170C」)
・エポキシ化合物3:1,6-ヘキサンジオールジグリシジルエーテル(阪本薬品工業(株)製、商品名「SR-16HL」)
(B)オキセタン化合物
・オキセタン化合物:ビス[1-エチル(3-オキセタニル)]メチルエーテル(東亞合成(株)製、商品名「アロンオキセタン(登録商標)OXT-221」)
(C)重合開始剤
・重合開始剤:アニオン種としてテトラキス(ペンタフルオロフェニル)ホウ酸を有する四級アンモニウム塩(King Industries社製、商品名「CXC-1821」)
(D)無機充填材
・無機充填材:平均粒子径0.6μm、最大粒子径25μm、表面がエポキシシランカップリング剤で処理された球状溶融シリカ((株)アドマテックス製、商品名「SE2200-SEJ」)
(その他)
・酸無水物:メチルヘキサヒドロ無水フタル酸(日立化成(株)製、商品名「HN-5500」)
・カップリング剤:γ-グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製、商品名「KBM-403」)
・着色剤:カーボンブラック(三菱化学(株)製、商品名「MA100」)
 上記の成分を表1に示す組成となるように配合し、三本ロール及び真空らいかい機にて混練分散して、実施例1~5及び比較例1~3の封止用液状組成物を調製した。なお、表中の配合単位は質量部であり、「-」は「配合無し」を表す。封止用液状組成物における無機充填材の含有率(質量%)は、各成分の配合量から算出した。
Figure JPOXMLDOC01-appb-T000013
 上記で得られた封止用液状組成物について、以下のようにして諸特性及び各種信頼性の評価を行った。評価結果を表2に示す。
(1)保存安定性
 封止用液状組成物を25℃で24時間保存したときの保存安定性を下記式に従って算出した。粘度の測定にはE型粘度計(コーン角3°、回転数100回/分)を用いた。
 保存安定性(%)=100×((保存後の粘度-保存前の粘度)/保存後の粘度)
(2)Tg及び熱膨張係数(CTE)
 封止用液状組成物を130℃で30分間加熱して硬化させ、試験片(φ4mm×20mm)を作製した。この試験片について、熱機械分析装置(TA instruments社製、商品名「Q400」)を用い、荷重15g、測定温度-50℃~220℃、昇温速度5℃/分の条件でガラス転移温度(Tg)及び熱膨張係数(CTE)を測定した。Tg未満の温度範囲における熱膨張係数をCTE1、Tg以上の温度範囲における熱膨張係数をCTE2とした。Tg及びCTEは熱的安定性を示し、Tgは100℃前後が好ましく、CTE1及びCTE2は低いほど好ましい。
Figure JPOXMLDOC01-appb-T000014
 表2から分かるように、エポキシ化合物とオキセタン化合物とを併用し、且つ、重合開始剤を使用した実施例1~5の封止用液状組成物は、比較例1及び比較例2の封止用液状組成物に比べて低温短時間での硬化性に優れていた。すなわち、実施例1~5の封止用液状組成物は、130℃で30分間の加熱処理により、比較例1及び比較例2の封止用液状組成物よりも硬化物のTgが高くなり、熱膨張係数は低くなった。また、実施例1~5の封止用液状組成物は、比較例1及び比較例3の封止用液状組成物に比べて保存安定性に優れていた。
 これに対して、オキセタン化合物を使用しなかった比較例1の封止用液状組成物は、実施例1~5の封止用液状組成物に比べて保存安定性が大きく劣っていた。また、比較例1の封止用液状組成物は、実施例1~5の封止用液状組成物に比べて低温短時間での硬化性にも劣っていた。
 また、エポキシ化合物を使用しなかった比較例2の封止用液状組成物は、実施例1~5の封止用液状組成物に比べて低温短時間での硬化性に劣っていた。
 また、オキセタン化合物を使用せず、重合開始剤の代わりに酸無水物を使用した比較例3の封止用液状組成物は、実施例1~5の封止用液状組成物に比べて保存安定性が大きく劣っていた。
 2015年9月29日に出願された日本出願2015-191837の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  エポキシ基を有するエポキシ化合物、オキセタン環を有するオキセタン化合物、重合開始剤、及び無機充填材を含有する封止用液状組成物。
  2.  前記重合開始剤が熱重合開始剤である請求項1に記載の封止用液状組成物。
  3.  前記重合開始剤が、アンモニウム塩、アミン塩、及びスルホニウム塩からなる群より選択される少なくとも1種の化合物を含む請求項2に記載の封止用液状組成物。
  4.  前記重合開始剤が、六フッ化アンチモン酸、六フッ化リン酸、トリフルオロメタンスルホン酸、パーフルオロブタンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、及びテトラキス(ペンタフルオロフェニル)ホウ酸からなる群より選択されるアニオン種と、下記式(1)で表されるカチオン種と、が結合した化合物を含む請求項2又は請求項3に記載の封止用液状組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Y、Y、Y、及びYはそれぞれ独立して、水素原子、直鎖状、分岐鎖状、若しくは環状の炭素数1~20のアルキル基、又はアリール基を示す。前記アルキル基及びアリール基は、置換基を有していてもよい。)
  5.  前記重合開始剤の含有量が、前記エポキシ化合物と前記オキセタン化合物との合計100質量部に対して、0.1質量部~10質量部である請求項1~請求項4のいずれか1項に記載の封止用液状組成物。
  6.  前記無機充填材の最大粒子径が50μm以下である請求項1~請求項5のいずれか1項に記載の封止用液状組成物。
  7.  前記無機充填材の平均粒子径が0.1μm~4μmである請求項1~請求項6のいずれか1項に記載の封止用液状組成物。
  8.  前記無機充填材の含有率が30質量%~70質量%である請求項1~請求項7のいずれか1項に記載の封止用液状組成物。
  9.  電子部品装置の素子封止に用いられる請求項1~請求項8のいずれか1項に記載の封止用液状組成物。
  10.  請求項1~請求項9のいずれか1項に記載の封止用液状組成物を硬化してなる封止材。
  11.  回路層を有する基板と、
     前記基板上に配置され、前記回路層と電気的に接続された素子と、
     前記基板と前記素子との間隙に配置された請求項10に記載の封止材と、
    を備える電子部品装置。
PCT/JP2016/078933 2015-09-29 2016-09-29 封止用液状組成物、封止材、及び電子部品装置 WO2017057637A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-191837 2015-09-29
JP2015191837A JP6657716B2 (ja) 2015-09-29 2015-09-29 封止用液状組成物、封止材、及び電子部品装置

Publications (1)

Publication Number Publication Date
WO2017057637A1 true WO2017057637A1 (ja) 2017-04-06

Family

ID=58427530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078933 WO2017057637A1 (ja) 2015-09-29 2016-09-29 封止用液状組成物、封止材、及び電子部品装置

Country Status (3)

Country Link
JP (1) JP6657716B2 (ja)
TW (1) TW201730230A (ja)
WO (1) WO2017057637A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111244A1 (ja) * 2018-11-30 2020-06-04 日立化成株式会社 アンダーフィル材、半導体パッケージ及び半導体パッケージの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6709943B2 (ja) * 2017-12-13 2020-06-17 ナミックス株式会社 導電性ペースト
WO2019240484A1 (ko) * 2018-06-12 2019-12-19 주식회사 엘지화학 밀봉재 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117074A (ja) * 1997-06-26 1999-01-22 Jsr Corp 半導体封止用組成物および半導体装置
JP2000264955A (ja) * 1999-01-12 2000-09-26 Namics Corp カチオン重合性樹脂組成物
JP2009046565A (ja) * 2007-08-18 2009-03-05 Konica Minolta Medical & Graphic Inc 硬化性組成物
WO2014196515A1 (ja) * 2013-06-03 2014-12-11 株式会社ダイセル 硬化性エポキシ樹脂組成物
WO2015068454A1 (ja) * 2013-11-07 2015-05-14 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子用封止剤

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575601B2 (ja) * 2001-01-09 2010-11-04 ナミックス株式会社 中空構造の電子デバイスの製造方法
US20060223978A1 (en) * 2005-04-04 2006-10-05 Shengqian Kong Radiation- or thermally-curable oxetane barrier sealants
KR20110134407A (ko) * 2009-02-20 2011-12-14 세키스이가가쿠 고교가부시키가이샤 색소 증감형 태양 전지용 밀봉제 및 색소 증감형 태양 전지
JP6373828B2 (ja) * 2013-04-18 2018-08-15 三井化学株式会社 組成物、硬化物、表示デバイスおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117074A (ja) * 1997-06-26 1999-01-22 Jsr Corp 半導体封止用組成物および半導体装置
JP2000264955A (ja) * 1999-01-12 2000-09-26 Namics Corp カチオン重合性樹脂組成物
JP2009046565A (ja) * 2007-08-18 2009-03-05 Konica Minolta Medical & Graphic Inc 硬化性組成物
WO2014196515A1 (ja) * 2013-06-03 2014-12-11 株式会社ダイセル 硬化性エポキシ樹脂組成物
WO2015068454A1 (ja) * 2013-11-07 2015-05-14 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子用封止剤

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111244A1 (ja) * 2018-11-30 2020-06-04 日立化成株式会社 アンダーフィル材、半導体パッケージ及び半導体パッケージの製造方法
JPWO2020111244A1 (ja) * 2018-11-30 2021-10-21 昭和電工マテリアルズ株式会社 アンダーフィル材、半導体パッケージ及び半導体パッケージの製造方法
JP7363808B2 (ja) 2018-11-30 2023-10-18 株式会社レゾナック アンダーフィル材、半導体パッケージ及び半導体パッケージの製造方法

Also Published As

Publication number Publication date
JP2017066242A (ja) 2017-04-06
JP6657716B2 (ja) 2020-03-04
TW201730230A (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
JP6331570B2 (ja) アンダーフィル材及び該アンダーフィル材により封止する電子部品とその製造方法
JP7148508B2 (ja) 圧縮成型用液状樹脂組成物及び電子部品装置
TWI786121B (zh) 密封用液狀樹脂組成物及電子零件裝置
CN109071922B (zh) 密封用液状环氧树脂组合物及电子部件装置
JP6032593B2 (ja) 液状エポキシ樹脂組成物と複合部材および電子部品装置
JP6233441B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
WO2017057637A1 (ja) 封止用液状組成物、封止材、及び電子部品装置
JP2015193851A (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP2022133311A (ja) アンダーフィル材、電子部品装置及び電子部品装置の製造方法
JP6540858B2 (ja) アンダーフィル材及び該アンダーフィル材により封止する電子部品とその製造方法
JP2013028659A (ja) アンダーフィル用エポキシ樹脂液状封止材及びこれを用いた電子部品装置
JP7013790B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
KR20090015062A (ko) Cof 실장용 봉지제 및 이것을 사용하여 봉지한 반도체 부품
JPWO2018198992A1 (ja) 液状封止樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP2009057575A (ja) 液状エポキシ樹脂組成物及び電子部品装置
WO2012018684A1 (en) Encapsulating resin composition
JP2015054951A (ja) エポキシ樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP7000698B2 (ja) アンダーフィル用樹脂組成物、半導体装置の製造方法及び半導体装置
JP4696359B2 (ja) 液状封止用エポキシ樹脂組成物及び電子部品装置
JP5708666B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP6961921B2 (ja) アンダーフィル材用樹脂組成物及びこれを用いた電子部品装置とその製造方法
JP2016040393A (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP2015180760A (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP2015110803A (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP5924443B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851808

Country of ref document: EP

Kind code of ref document: A1