WO2017057242A1 - Non-volatile semiconductor memory device - Google Patents

Non-volatile semiconductor memory device Download PDF

Info

Publication number
WO2017057242A1
WO2017057242A1 PCT/JP2016/078202 JP2016078202W WO2017057242A1 WO 2017057242 A1 WO2017057242 A1 WO 2017057242A1 JP 2016078202 W JP2016078202 W JP 2016078202W WO 2017057242 A1 WO2017057242 A1 WO 2017057242A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate electrode
memory
memory cell
selection gate
drain
Prior art date
Application number
PCT/JP2016/078202
Other languages
French (fr)
Japanese (ja)
Inventor
福夫 大和田
泰彦 川嶋
信司 吉田
谷口 泰弘
櫻井 良多郎
裕 品川
秀男 葛西
奥山 幸祐
Original Assignee
株式会社フローディア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フローディア filed Critical 株式会社フローディア
Priority to KR1020177037428A priority Critical patent/KR102437353B1/en
Priority to CN201680036107.9A priority patent/CN108076670B/en
Priority to SG11201801237PA priority patent/SG11201801237PA/en
Publication of WO2017057242A1 publication Critical patent/WO2017057242A1/en
Priority to IL257488A priority patent/IL257488B/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Definitions

  • the present invention relates to a nonvolatile semiconductor memory device.
  • Patent Document 1 discloses a memory cell in which a memory gate structure is disposed between two select gate structures (see Patent Document 1 and FIG. 15). .
  • this memory cell includes a drain region to which a bit line is connected and a source region to which a source line is connected, and a selection gate structure, a memory is provided on a well between the drain region and the source region.
  • a gate structure and another selection gate structure are arranged and formed in order.
  • a charge storage layer is provided in the memory gate structure, and data is written by injecting charges into the charge storage layer, or charges in the charge storage layer are extracted. Thus, data can be erased.
  • FIG. 9 is a schematic diagram showing an example of a circuit configuration of a conventional nonvolatile semiconductor memory device 100.
  • the nonvolatile semiconductor memory device 100 includes, for example, a plurality of memory cells 102a, 102b, 102c, 102d, 102e, 102f, 102g, and 102h arranged in a matrix, and memory cells 102a and 102b arranged in the row direction.
  • Memory cell formation portions 101a, 101b, 101c, and 101d are configured for each of 102c, 102d, 102e, 102f, 102g, and 102h.
  • the nonvolatile semiconductor memory device 100 includes memory cells 102a, 102c, 102e, 102g (102b, 102d, 102f, 102h) shares one bit line BL1 (BL2), and a predetermined bit voltage can be applied uniformly to each bit line BL1, BL2. Further, the nonvolatile semiconductor memory device 100 shares, for example, the memory gate lines MGL1, MGL2, MGL3, MGL4 and the drain side select gate lines DGL1, DGL2, DGL3, DGL4 for each of the memory cell forming portions 101a, 101b, 101c, 101d. A predetermined voltage can be applied to each of the memory gate lines MGL1, MGL2, MGL3, MGL4 and each of the drain side select gate lines DGL1, DGL2, DGL3, DGL4.
  • one source-side selection gate line SGL and one source line SL are connected to all the memory cells 102a, 102b, 102c, 102d, 102e, 102f, 102g, and 102h.
  • a predetermined source gate voltage can be applied to the source side selection gate line SGL, and a predetermined source voltage can be applied to the source line SL.
  • Each memory cell 102a, 102b, 102c, 102d, 102e, 102f, 102g, 102h has the same configuration.
  • the memory cell 102a includes a memory gate electrode MG connected to the memory gate line MGL1, and a drain side.
  • each memory cell 102a, 102b, 102c, 102d, 102e, 102f, 102g, 102h can be injected with charge into the charge storage layer EC by the quantum tunnel effect caused by the voltage difference between the memory gate electrode MG and the channel layer.
  • the data can be written.
  • a memory cell for reading data (hereinafter also referred to as a data read cell).
  • a read voltage of 1.5 [V] is applied to the bit line BL1 connected to 102a, and 0 [V] is read to the bit line BL2 to which only the memory cells 102b, 102d, 102f, and 102h that do not read data are connected.
  • a forbidden voltage may be applied.
  • 0 [V] is applied to the memory gate lines MGL1, MGL2, MGL3, and MLG4, 1.5 [V] is applied to the source-side selection gate line SGL, and the source line SL 0 [V] may be applied to Further, at this time, in the nonvolatile semiconductor memory device 100, the read gate voltage of 1.5 [V] is applied to the drain side selection gate line DGL1 connected to the data read cell 102a, and the memory cells 102c, 102d, A read inhibit gate voltage of 0 [V] can be applied to the drain side select gate lines DGL2, DGL3, DGL4 to which only 102e, 102f, 102g, 102h are connected.
  • the well just below the drain side select gate electrode DG connected to the bit line BL1 is in a conductive state, the charge is stored in the charge storage layer EC (data is written). ), The well just below the memory gate electrode MG becomes non-conductive, the electrical connection between the source line SL and the bit line BL1 is cut off, and the read voltage of 1.5 [V] of the bit line BL1 can be maintained as it is.
  • the well just below the memory gate electrode MG becomes conductive, and the data read cell 102a passes through the data read cell 102a.
  • the source line SL of 0 [V] is electrically connected to the bit line BL1 of 1.5 [V], and the 1.5 [V] applied to the bit line BL is read by the source line SL of 0 [V]. The voltage drops.
  • the drain side selection gate is caused by the voltage difference between the drain side selection gate lines DGL2, DGL3, DGL4 and the bit line BL1.
  • the well immediately below the electrode DG becomes non-conductive and does not affect the read voltage of 1.5 [V] of the bit line BL1.
  • the nonvolatile semiconductor memory device 100 can detect whether or not charges are accumulated in the charge accumulation layer EC of the data read cell 102a by detecting whether or not the read voltage of the bit line BL1 has changed.
  • FIG. 10A is a schematic diagram illustrating an example of a planar layout when the memory cell formation portion 101b is viewed from above the semiconductor substrate.
  • a case where three memory cells 102c, 102d, and 102i are provided in the memory cell formation portion 101b will be described.
  • the memory cell forming part 101b has a memory cell region ER3 in which memory cells 102c, 102d, 102i are arranged, and one selection gate contact region ER6 is arranged at one end of the memory cell region ER3, Another select gate contact region ER7 is disposed at the other end of the memory cell region ER3.
  • a selection gate electrode non-formation region ER1 (ER5) is disposed at the end of the selection gate contact region ER6 (ER7).
  • the memory cell formation unit 101b is configured so that the one selection gate electrode non-formation region ER1, the one selection gate contact region ER6, the memory cell region ER3, the other selection gate contact region ER7, and the other selection gate electrode non-formation A band-shaped memory gate electrode MG is extended over the region ER5.
  • the memory gate contact MGC is provided in the memory gate electrode MG of the selection gate electrode non-formation regions ER1 and ER5.
  • a well W having a predetermined shape is formed on the surface of the semiconductor substrate.
  • the memory gate electrode MG intersects the memory placement regions W1, W2, and W3 formed in a strip shape in the well W. Is arranged.
  • the memory arrangement regions W1, W2, and W3 are divided into a source region WS side and a drain region WD side with the memory gate electrode MG as a boundary.
  • the source regions WS of the memory placement regions W1, W2, and W3 are connected to each other, and the source regions WS are connected via the columnar source contacts SC to which the source lines SL (FIG. 9) are connected.
  • a predetermined source voltage can be applied uniformly.
  • the drain regions WD of the memory placement regions W1, W2, W3 are separated from each other, and different bit lines BL1, BL2, different via the bit contacts BC provided for the respective drain regions WD.
  • a predetermined bit voltage can be individually applied to each drain region WD.
  • one side wall 112 of the memory gate electrode MG is disposed on the drain region WD side of the well W, and the drain side selection gate electrode DG is formed along the side wall 112. ing.
  • the other side wall 111 of the memory gate electrode MG is disposed on the source region WS side of the well W, and the source side selection gate electrode SG is formed along the side wall 111.
  • the drain side selection gate electrode DG and the source side selection gate electrode SG are shared by the plurality of memory cells 102c, 102d, 102i arranged in one direction together with the memory gate electrode MG.
  • the drain side selection gate electrode DG and the source side selection gate electrode SG are insulated from the memory gate electrode MG by side wall spacers (not shown) made of an insulating material.
  • a wide selection gate contact forming portion Ca provided with the drain side selection gate contact DGC is formed in one selection gate contact region ER7, and the drain side selection gate line DGL2 (FIG. The predetermined voltage from 9) can be applied via the drain-side selection gate contact DGC and the selection gate contact forming portion Ca.
  • a wide selection gate contact forming portion Cb provided with a source side selection gate contact SGC is formed in the other selection gate contact region ER6 in the source side selection gate electrode SG, and the source side selection gate line SGL A predetermined voltage from (FIG. 9) can be applied via the source side select gate contact SGC and the select gate contact forming portion Cb.
  • the conductive layer made of a semiconductor material or the like is not formed along the side walls 111 and 112 and the end wall 113 of the memory gate electrode MG, and the drain side select gate electrode DG
  • a physical cutting structure in which the source-side selection gate electrode SG is in a non-contact state is formed.
  • the drain-side selection gate electrode DG and the source-side selection gate electrode SG are electrically disconnected due to the physical cutting structure of the selection gate electrode non-formation regions ER1, ER5.
  • a predetermined voltage can be individually applied to the drain side selection gate electrode DG and the source side selection gate electrode SG.
  • the drain side select gate electrode DG and the source side select in the memory cell formation portion 101b that does not read data.
  • the drain side selection gate line DGL2 of 0 [V] and the source side selection gate line of 1.5 [V] in the memory cell formation portion 101b SGL is electrically connected (indicated by wiring L in FIG. 9).
  • the voltage of 0 [V] of the drain side selection gate line DGL2 increases, or the source side selection gate line shared by all the memory cells 102a, 102b,.
  • the voltage of 1.5 [V] of SGL is lowered, and there is a possibility that a read malfunction may occur due to voltage fluctuations of the drain side selection gate line DGL2 and the source side selection gate line SGL.
  • the drain side selection gate electrode DG and the source side selection gate electrode SG are electrically connected in the memory cell formation portion 101b and a short circuit defect occurs, the drain side selection gate line A leakage current is generated between the DGL 2 and the source-side selection gate line SGL, which causes a problem that power consumption during the data read operation increases.
  • the present invention has been made in consideration of the above points. Compared to the conventional case, the present invention can reduce a read malfunction caused by a voltage fluctuation during a data read operation and can further reduce an increase in power consumption due to the voltage fluctuation.
  • An object of the present invention is to propose a volatile semiconductor memory device.
  • a nonvolatile semiconductor memory device of the present invention includes a memory cell forming portion extending in one direction and having a memory gate electrode extending in a longitudinal direction, and extending in one direction. And at least another memory cell forming portion having a memory gate electrode extending along the longitudinal direction, and the one memory cell forming portion and the other memory cell forming portion are arranged in parallel at a predetermined distance.
  • the one memory cell formation portion and the other memory cell formation portion are arranged on the semiconductor substrate so that the first selection gate electrode is disposed on the well of the semiconductor substrate via the first selection gate insulating film.
  • a first selection gate structure having a second selection gate electrode on the well with a second selection gate insulating film interposed therebetween, the first selection gate structure, and the first selection gate structure. 2 Side walls between select gate structures A memory gate structure formed on the well in the order of a lower gate insulating film, a charge storage layer, an upper gate insulating film, and the memory gate electrode.
  • the first selection gate electrode and the second selection gate electrode are not formed between the longitudinal end of the portion and the longitudinal end of the other memory cell formation portion, and the one memory cell formation
  • the memory gate electrode of the formation portion becomes an inner peripheral wall that circulates in a region surrounded by the one memory cell formation portion, the other memory cell formation portion, and the selection gate electrode non-formation region. 1 side wall, wherein the first selection gate electrode is provided.
  • the same type of first selection gate electrodes that are highly likely to be applied with the same voltage during a data read operation can be electrically connected to each other.
  • voltage variations occur in the entire nonvolatile semiconductor memory device by connecting different types of first selection gate electrodes and second selection gate electrodes, which are likely to be applied with different voltage values.
  • FIG. 5 is a schematic diagram showing a planar layout when a short defect occurs in a predetermined memory cell array portion in the nonvolatile semiconductor memory device shown in FIG. 4.
  • FIG. 3 is a schematic diagram showing a circuit configuration of a nonvolatile semiconductor memory device when a short failure occurs in a predetermined memory cell array unit.
  • FIG. 8 is a schematic diagram showing a planar layout when a short defect occurs in a predetermined memory cell array portion in the nonvolatile semiconductor memory device shown in FIG. 7. It is the schematic which shows the circuit structure of the conventional non-volatile semiconductor memory device.
  • FIG. 10A is a schematic diagram showing a planar layout of a conventional memory cell formation portion
  • FIG. 10B is a schematic diagram showing a planar layout when a short circuit defect occurs in the memory cell formation portion shown in FIG. 10A.
  • a memory cell 2a includes a memory gate structure 4a that forms an N-type transistor structure on a well W made of, for example, P-type Si, and an N-type MOS (Metal-Oxide-Semiconductor).
  • a drain side select gate structure 5a that forms a transistor structure and a source side select gate structure 6a that also forms an N-type MOS transistor structure are formed.
  • a drain region WD at one end of the drain side select gate structure 5a and a source region WS at one end of the source side select gate structure 6a are formed with a predetermined distance therebetween.
  • Bit line BL1 is connected to region WD
  • source line SL is connected to source region WS.
  • the low-concentration drain region WDa is formed adjacent to the drain region WD
  • the sidewall SW formed along the side wall of the drain-side selection gate structure 5a includes the low-concentration drain region WDa. Arranged on drain region WDa.
  • the low-concentration source region WSa is formed adjacent to the source region WS on the surface of the well W, and the sidewall SW formed along the side wall of the source-side selection gate structure 6a includes the low-concentration source region WSa. Arranged on the source area WSa.
  • the memory gate structure 4a is formed on the well W between the low-concentration drain region WDa and the low-concentration source region WSa via, for example, silicon nitride (Si 3 N 4) via a lower gate insulating film 24a made of an insulating material such as SiO 2. ), Silicon oxynitride (SiON), alumina (Al 2 O 3 ), hafnia (HfO2), etc., and the charge storage layer EC is also made of an insulating material.
  • a memory gate electrode MG is provided via the upper gate insulating film 24b.
  • the memory gate structure 4a has a configuration in which the charge storage layer EC is insulated from the well W and the memory gate electrode MG by the lower gate insulating film 24a and the upper gate insulating film 24b.
  • the memory gate structure 4a has a cap film CP formed of an insulating material formed on the memory gate electrode MG, and the silicide layer S1 on the upper surface of the drain side selection gate structure 5a.
  • the silicide layer S2 on the upper surface of the source side select gate structure 6a is formed so as to be away from the upper surface of the memory gate electrode MG by the thickness of the cap film CP.
  • the memory gate electrode MG in the region of the memory cell 2a has a structure in which no silicide layer is formed on the upper surface and is covered with the cap film CP.
  • the cap film CP can keep the silicide layer S1 of the drain side select gate structure 5a and the silicide layer S2 of the source side select gate structure 6a away from the memory gate electrode MG by the film thickness.
  • the cap layer CP for example on the lower cap film CPa made of an insulating material such as SiO 2, an upper cap film CPb made of an insulating material such as different SiN that is with the lower cap film CPa is It has a laminated structure.
  • the memory gate electrode MG of the memory gate structure 4a is provided with a wall-shaped first side wall 11 and a wall-shaped second side wall 12 arranged to face the first side wall 11.
  • each side wall of the lower gate insulating film 24a, the charge storage layer EC, the upper gate insulating film 24b, and the cap film CP extends along the first side wall 11 and the second side wall 12 of the memory gate electrode MG.
  • the lower gate insulating film 24a, the charge storage layer EC, the upper gate insulating film 24b, and the cap film CP are formed in a region between the first sidewall 11 and the second sidewall 12 of the memory gate electrode MG.
  • the memory gate structure 4a is made of an insulating material along the second sidewall 12 of the memory gate electrode MG and the sidewalls of the lower gate insulating film 24a, the charge storage layer EC, the upper gate insulating film 24b, and the cap film CP.
  • a side wall spacer 28a is formed, and the drain side select gate structure 5a is adjacent to the side wall spacer 28a.
  • the sidewall spacer 28a formed between the memory gate structure 4a and the drain side selection gate structure 5a is formed with a predetermined film thickness, and the memory gate structure 4a, the drain side selection gate structure 5a, Can be insulated.
  • the film thickness of the side wall spacer 28a between the memory gate structure 4a and the drain side select gate structure 5a depends on the breakdown voltage of the side wall spacer 28a and the reading between the memory gate structure 4a and the drain side select gate structure 5a. In consideration of the current, it is desirable to select a width of 5 [nm] or more and 40 [nm] or less.
  • the drain side select gate structure 5a is formed on the well W between the side wall spacer 28a and the drain region WD with a film thickness of 9 [nm] or less, preferably 3 [nm] or less and made of an insulating material.
  • 30 and the drain side select gate electrode DG1 is formed on the drain side select gate insulating film 30.
  • a silicide layer S1 is formed on the upper surface of the drain side selection gate electrode DG1 as the second selection gate electrode, and the drain side selection gate line DGL1 as the second selection gate line is connected to the silicide layer S1. ing.
  • the memory gate structure 4a is insulated along the first sidewall 11 of the memory gate electrode MG and the sidewalls of the lower gate insulating film 24a, the charge storage layer EC, the upper gate insulating film 24b, and the cap film CP.
  • a side wall spacer 28b made of a material is formed, and the source side select gate structure 6a is adjacent to the side wall spacer 28b.
  • the sidewall spacer 28b formed between the memory gate structure 4a and the source-side selection gate structure 6a also has the same film thickness as 5 nm or more and 40 nm or less as one sidewall spacer 28a.
  • the memory gate structure 4a and the source-side selection gate structure 6a can be insulated from each other.
  • the source side select gate structure 6a has a source side select gate insulating film made of an insulating material with a film thickness of 9 [nm] or less, preferably 3 [nm] or less, on the well W between the sidewall spacer 28b and the source region WS.
  • the source-side selection gate electrode SG1 is formed on the source-side selection gate insulating film 33.
  • the source-side selection gate electrode SG1 as the first selection gate electrode has a silicide layer S2 formed on the top surface, and the source-side selection gate line SGL as the first selection gate line is connected to the silicide layer S2. ing.
  • the source-side selection gate electrode SG1 and the drain-side selection formed along the first side wall 11 and the second side wall 12 of the memory gate electrode MG via the side wall spacers 28a and 28b.
  • Each of the gate electrodes DG1 is formed in a sidewall shape such that the top portion descends toward the well W as the distance from the memory gate electrode MG increases.
  • the source side select gate structure 6a and the drain side select gate structure 5a are formed in a sidewall shape along the side walls (first side wall 11 and second side wall 12) of the memory gate structure 4a, respectively. Even if the source side selection gate structure 6a and the drain side selection gate structure 5a are close to the memory gate structure 4a, the drain side selection gate electrode DG1 is formed by the cap film CP formed on the memory gate electrode MG. Since the silicide layer S1 on the upper side and the silicide layer S2 on the source-side selection gate electrode SG1 are separated from the memory gate electrode MG, the silicide layers S1, S2 and the memory gate electrode MG are short-circuited accordingly. It has been made to be able to prevent.
  • FIG. 2 In the nonvolatile semiconductor memory device 1, for example, a plurality of memory cells 2a, 2b, 2d, 2e, 2g, 2h, 2i, and 2j are arranged in a matrix. Each memory cell 2a, 2b, 2d, 2e, 2g, 2h, 2i, 2j has the same configuration as the memory cell 2a described in FIG. 1, and is a memory gate to which the memory gate line MGL is connected.
  • the drain side selection gate electrode DG1 (DG2,%) Connected to the electrode MG, the drain side selection gate line DGL1 (DGL2, DGL3, DGL4), and the source side selection gate electrode SG1 connected to the source side selection gate line SGL (SG2,%)
  • the nonvolatile semiconductor memory device 1 includes memory cell forming portions 3a, 3b, 3c, and 3d for each of the memory cells 2a, 2b, 2d, 2e, 2g, 2h, 2i, and 2j arranged in the row direction.
  • One memory cell array unit 1a (1c) is formed by pairing two adjacent memory cell forming units 3a, 3b (3c, 3d), and a predetermined substrate voltage is applied to each memory cell array unit 1a, 1c by the substrate voltage line Back. Can be applied.
  • the nonvolatile semiconductor memory device 1 includes memory cells 2a, 2d, 2g, 2i (2b, 2e, 2h, 2h, 2i, 2i) arranged in the column direction among the memory cells 2a, 2b, 2d, 2e, 2g, 2h, 2i, 2j. 2j) share one bit line BL1 (BL2), and each bit line BL1, BL2 provides a predetermined value for each memory cell 2a, 2d, 2g, 2i, 2b, 2e, 2h, 2j in the column direction.
  • a bit voltage can be applied uniformly.
  • the nonvolatile semiconductor memory device 1 shares the drain side select gate lines DGL1, DGL2, DGL3, DGL4 for each of the memory cell forming portions 3a, 3b, 3c, 3d, for example, and each drain side select gate line DGL1 , DGL2, DGL3, and DGL4 can apply a predetermined voltage to each of the memory cell forming portions 3a, 3b, 3c, and 3d.
  • one memory gate line MGL, one source-side selection gate line SGL, and one source line SL are connected to all the memory cells 2a, 2b, 2d, 2e. , 2g, 2h, 2i, 2j, a predetermined memory gate voltage is applied to the memory gate line MGL, a predetermined source gate voltage is applied to the source-side selection gate line SGL, and a predetermined value is applied to the source line SL.
  • a source voltage may be applied.
  • FIG. 3 shows, for example, a data write operation (“Prog”) in which charge is injected into the charge storage layer EC of the memory cell 2a in the nonvolatile semiconductor memory device 1 shown in FIG. 2, and the charge storage layer EC of the memory cell 2a.
  • Read data read operation
  • Erase time of data erase operation
  • the voltage value (“selected column” and “selected row”) when the charge is injected into the charge storage layer EC of the memory cell 2 a and the charge in the charge storage layer EC of the memory cell 2 a Indicates a voltage value ("non-selected column” or "non-selected row”) when no.
  • a 12 [V] charge storage gate is connected from the memory gate line MGL to the memory gate electrode MG.
  • a voltage is applied, and a substrate voltage of 0 [V] can be applied to the well W (denoted as “Back” in FIG. 3).
  • a gate-off voltage of 0 [V] is applied from the source-side selection gate line SGL to the source-side selection gate electrode SG1, and a source-off voltage of 0 [V] from the source line SL is applied to the source region WS. Can be applied.
  • the source-side selection gate structure 6a cuts off the electrical connection between the source region WS and the channel layer formation carrier region of the memory gate structure 4a, and forms the channel layer of the memory gate structure 4a from the source line SL. Application of voltage to the carrier region can be prevented.
  • drain-side selection gate voltage of 1.5 [V] from the drain-side selection gate line DGL1 is applied to the drain-side selection gate electrode DG1, and a charge storage bit of 0 [V] from the bit line BL1 is applied to the drain region WD.
  • a voltage can be applied.
  • the drain side select gate structure 5a can electrically connect the drain region WD and the channel layer forming carrier region of the memory gate structure 4a.
  • the channel layer forming carrier region when the channel layer forming carrier region is electrically connected to the drain region WD, carriers are induced in the channel layer forming carrier region, and the channel layer having the same 0 [V] as the charge storage bit voltage Can be formed on the surface of the well W by the carrier.
  • a large voltage difference (12 [V]) of 12 [V] is generated between the memory gate electrode MG and the channel layer, and the charge is generated in the charge storage layer EC by the quantum tunnel effect generated thereby. It can be injected and data can be written.
  • the memory cell 2a injects charges into the charge storage layer EC.
  • the source-side selection gate structure 6a cuts off the electrical connection between the well W in the region facing the memory gate electrode MG and the source region WS, and the drain-side selection gate structure 5a The electrical connection between the well W in the region facing the memory gate electrode MG and the drain region WD is cut off.
  • the bit line BL1 connected to the memory cell 2a to be read is precharged to 1.5 [V], for example, and the source line SL is set to 0.
  • the potential of the bit line BL1 that changes depending on whether or not a current flows through the memory cell 2a at [V] it can be determined whether or not charges are accumulated in the charge accumulation layer EC of the memory cell 2a. .
  • the data read operation of whether or not charges are accumulated in the charge accumulation layer EC of the memory cell 2a by detecting whether or not the read voltage of the bit line BL1 has changed. Can be executed. Note that a non-read voltage of 0 [V] can be applied to the bit line BL2 to which only the memory cells 2b, 2e, 2h, and 2j from which data is not read are connected.
  • a memory of -12 [V] is transferred from the memory gate line MGL to the memory gate electrode MG.
  • the gate voltage By applying the gate voltage, the charges in the charge storage layer EC are extracted toward the well W of 0 [V], and data can be erased.
  • FIG. 4 is a schematic view showing a planar layout of the nonvolatile semiconductor memory device 1 of the present invention in which a plurality of memory cell array portions 1a, 1b,... Are arranged on a semiconductor substrate as viewed from above the semiconductor substrate.
  • FIG. 4 among these memory cell array portions 1a, 1b,..., A planar layout of one memory cell array portion 1a and a partial plane of another memory cell array portion 1b having the same configuration as the memory cell array portion 1a. Shows the layout. Since the memory cell array portions 1a, 1b,... All have the same configuration, the following description will be focused on one memory cell array portion 1a.
  • FIG. 1 showing a cross-sectional configuration of the memory cell 2a shows a cross-sectional configuration in the AA ′ portion of FIG.
  • FIG. 4 in addition to the side wall spacers 28a and 28b formed on the side wall of the memory gate structure 4a shown in FIG. 1, the drain side selection gate structure 5a and the source side selection gate structure 6a are formed.
  • the side walls SW, silicide layers S1, S2, etc. are also not shown.
  • the memory cell array unit 1a includes one memory cell forming unit 3a and another memory cell forming unit 3b, and ends in the longitudinal direction of the paired memory cell forming units 3a and 3b.
  • the paired memory cell forming portions 3a and 3b have a configuration in which the select gate electrode non-formation regions ER1 and ER5 are connected by the memory gate electrode MG.
  • the memory cell array portion 1a has a predetermined configuration in which one memory cell forming portion 3a extending in one direction (row direction in FIG. 4) and another memory cell forming portion 3b extending in one direction are predetermined. It arrange
  • a memory gate electrode MG is extended along the longitudinal direction in the memory cell formation portions 3a and 3b, and a cap film CP is formed so as to cover the top of each memory gate electrode MG.
  • the memory gate electrode MG Is provided outside in an unexposed state. For this reason, in FIG. 4 showing a planar layout as viewed from above the semiconductor substrate, the memory gate electrode MG does not appear in the memory cell formation portions 3a and 3b, and the cap film CP is shown.
  • the memory gate electrode MG provided in one memory cell formation portion 3a is also extended from the end of the memory cell formation portion 3a to the selection gate electrode non-formation regions ER1 and ER5. It bends in the regions ER1 and ER5 and is connected to the end of the other memory cell forming portion 3b.
  • the memory gate electrodes MG formed in the selection gate electrode non-formation regions ER1 and ER5 are covered with the cap film CP. It is exposed to the outside.
  • the memory gate electrode MG of the memory cell array portion 1a is formed in an endless square ring shape when viewed from above the semiconductor substrate, and the cap film CP is formed in the region of the memory cell formation portions 3a and 3b. Since it is covered, the select gate electrode non-formation regions ER1 and ER5 that are not covered with the cap film CP have a configuration that is exposed to the outside in a U-shape.
  • the memory cell formation portion 3a (3b) has a memory cell region ER3 in which a plurality of memory cells 2a, 2b, 2c (2d, 2e, 2f) are formed along the longitudinal direction. 2 shows only the memory cells 2a and 2b (2d and 2e), the memory cell 2c adjacent to the memory cell 2b (2e) is shown in FIG. (2f) is also illustrated.
  • the memory cell formation portion 3a (3b) includes one select gate contact region ER6 provided at one end of the memory cell region ER3 and the other end of the memory cell region ER3.
  • Other selection gate contact region ER7 provided in one end, one electrical disconnection region ER2 provided at the end of one selection gate contact region ER6, and other selection gate contact region ER7 provided in the other end
  • an electrical cutting region ER4 In this embodiment, the select gate electrode non-formation regions ER1 and ER5 are adjacent to the electrical cutting regions ER2 and ER4 located at the longitudinal ends of the memory cell formation portion 3a (3b). .
  • a well W having a predetermined shape is formed on the surface of the semiconductor substrate.
  • the memory cell forming portion 3a , 3b are arranged to intersect.
  • a memory cell 2a (2b, 2c) having a memory gate structure 4a, a drain side selection gate structure 5a, and a source side selection gate structure 6a Is formed on the memory arrangement area W1 (W2, W3).
  • Memory cells 2d (2e, 2f) having 6b are formed on the memory arrangement region W1 (W2, W3). Since the memory cells 2b, 2c, 2d, 2e, 2f arranged in the memory cell region ER3 have the same configuration as the memory cell 2a described in FIG. 1, the description thereof is omitted here. .
  • the memory arrangement regions W1, W2, and W3 of the well W are divided into a source region WS side and a drain region WD side with the memory gate structure 4a (4b) as a boundary.
  • the source regions WS between the memory cell formation portions 3a and 3b are connected to each other and share a columnar source contact SC provided at a predetermined position.
  • the source contact SC has a configuration in which the source line SL (FIG. 2) is connected, and a predetermined source voltage applied from the source line SL is applied to the source region WS of each memory placement region W1, W2, W3. It can be applied uniformly.
  • the drain regions WD of the memory arrangement regions W1, W2, and W3 are separated from each other, and have a configuration in which columnar bit contacts BC are individually provided.
  • Each bit contact BC is connected to a different bit line BL1, BL2,... (FIG. 2), and a predetermined bit voltage can be individually applied from the corresponding bit line BL1, BL2,.
  • a predetermined bit voltage can be applied to each drain region WD of the memory cell forming portion 3a from the different bit lines BL1, BL2,.
  • the first side wall 11 of the memory gate electrode MG constituting the memory gate structure 4a is arranged in one memory cell forming portion 3a on the source region WS side of the well W, and this memory gate A source side select gate structure 6a is formed along the first side wall 11 of the electrode MG. Further, in this one memory cell forming portion 3a, the second side wall 12 of the memory gate electrode MG constituting the memory gate structure 4a is disposed on the drain region WD side of the well W, and the second side of the memory gate electrode MG is arranged. A drain side select gate structure 5a is formed along the two side walls 12.
  • the memory gate electrode MG in which the source side select gate structure 6a is formed in the one memory cell forming portion 3a is formed in the one memory cell forming portion 3a.
  • the source side select gate structure 6b is formed along the first side wall 11 (inner peripheral wall).
  • the drain side select gate structure 5b is formed.
  • a source side select gate electrode SG1 (SG2) formed in a sidewall shape is formed along the first side wall 11 of the memory gate structure 4a (4b).
  • a wide selection gate contact formation portion Ca formed integrally with the source side selection gate electrode SG1 (SG2) is formed in one selection gate contact region ER6.
  • the selection gate contact forming portion Ca is formed with a planar portion 15a having a flat surface, and a columnar source side selection gate contact to which a source side selection gate line (not shown) is connected.
  • An SGC is provided on the plane portion 15a.
  • drain side select gate structure 5a (5b) has a drain side select gate electrode DG1 (DG2) formed in a side wall shape along the second side wall 12 of the memory gate structure 4a (4b).
  • a wide selection gate contact forming portion Cb formed integrally with the drain side selection gate electrode DG1 (DG2) is formed in another selection gate contact region ER7.
  • a planar portion 15b having a flat surface is formed, and a columnar drain side selection gate contact DGC to which a drain side selection gate line DGL1 (DGL2) is connected, It is provided on the plane portion 15b.
  • DG1 drain side selection gate electrode
  • the selection gate contact formation portions Ca, Cb provided in the selection gate contact regions ER6, ER7 are connected to the source side selection gate electrode SG1 or the drain side selection gate electrode DG1, and the source side selection gate contact SGC or As long as the drain-side selection gate contact DGC can be formed, various other shapes may be used.
  • the electrical disconnect regions ER2, ER4 at the ends of the select gate contact regions ER6, ER7 are extended from the memory cell region ER3 by the memory gate structure 4a (4b).
  • the selection gate electrode cutting part 103 is formed.
  • the selection gate electrode cutting part 103 is composed of an i-type sidewall-like intrinsic semiconductor layer Ia, a sidewall-like inverse conductive semiconductor layer OC, and a sidewall-like intrinsic semiconductor layer Ib.
  • the intrinsic semiconductor layer Ia, the reverse conductivity type semiconductor layer OC, and the intrinsic semiconductor layer Ib are arranged in this order along the first sidewall 11 and the second sidewall 12 of the memory gate electrode MG.
  • the reverse conductivity type semiconductor layer OC is formed of a different conductivity type (in this case, p-type) from the source side select gate electrode SG1 (SG2) and the drain side select gate electrode DG1 (DG2).
  • the first sidewall 11 and the second sidewall 11 of the memory gate electrode MG start from the n-type source side select gate electrode SG1 (SG2) and the drain side select gate electrode DG1 (DG2).
  • SG1 source side select gate electrode
  • DG1 drain side select gate electrode
  • an i-type intrinsic semiconductor layer Ia, a p-type reverse conductivity semiconductor layer OC, and an i-type intrinsic semiconductor layer Ib are arranged in this order.
  • a pin junction is formed along the first sidewall 11 of the memory gate electrode MG, starting from the n-type source-side selection gate electrode SG1 (SG2) of the memory cell formation portion 3a (3b).
  • the source side select gate electrodes SG1, SG2 formed along the same first side wall 11 can be electrically disconnected from each other.
  • a pin junction is formed along the second side wall 12 starting from the n-type drain side select gate electrode DG1 (DG2) of the memory cell formation portion 3a (3b).
  • the drain side select gate electrodes DG1 and DG2 formed along the same second side wall 12 can be electrically disconnected from each other.
  • the cap film CP is formed on the memory gate electrode MG.
  • the cap film CP can prevent the upper surface of the memory gate electrode MG from being salicided.
  • the cap film CP is not formed on the memory gate electrode MG, and the memory gate electrode MG is exposed to the outside.
  • a columnar memory gate contact MGC is provided via a silicide layer (not shown) formed on the memory gate electrode MG.
  • a memory gate line MGL (FIG. 2) is connected to the memory gate contact MGC, and a predetermined voltage can be applied from the memory gate line MGL. Thereby, the voltage of the memory gate line MGL can be applied to the memory gate electrode MG via the memory gate contact MGC.
  • the memory gate electrode MG is covered with the cap film CP in the memory cell region ER3, the selection gate contact regions ER6 and ER7, and the electrical disconnection regions ER2 and ER4, the selection is performed.
  • a predetermined voltage can also be applied to the electrode MG.
  • such a nonvolatile semiconductor memory device 1 includes a film forming process, a resist coating process, an exposure development process, an etching process, an impurity implantation process, a resist stripping process, etc., which are general CMOS (Complementary MOS) manufacturing processes. Therefore, the manufacturing method is omitted here.
  • CMOS Complementary MOS
  • FIG. 5 shows a schematic diagram of a semiconductor memory device 21.
  • the semiconductor material since the semiconductor material also remains in the select gate electrode non-formation regions ER1 and ER5, in the select gate electrode non-formation regions ER1 and ER5, for example, the semiconductor material along the first side wall 11 of the memory gate electrode MG.
  • a side wall-like intrinsic semiconductor layer Id is formed, and a side wall-like intrinsic semiconductor layer Ie made of a semiconductor material is formed along the second side wall 12 of the memory gate electrode MG.
  • the first side wall 11 serving as the inner peripheral wall of the memory gate electrode MG has, for example, the intrinsic semiconductor layer Ia2, the reverse conductivity type semiconductor layer OCb, and the intrinsic semiconductor layer in the electrical cutting region ER2 of the one memory cell formation portion 3a.
  • Id is formed in order, and the intrinsic semiconductor layer Id is formed as it is also on the first side wall 11 of the selection gate electrode non-formation region ER1 (ER5), and the intrinsic semiconductor layer Id is formed in another memory cell formation portion 3b.
  • the opposite conductivity type semiconductor layer OCc To the opposite conductivity type semiconductor layer OCc.
  • the intrinsic semiconductor layer Ia3, the reverse conductivity type semiconductor layer OCc, and the intrinsic semiconductor layer Id are arranged in this order along the first sidewall 11 of the memory gate electrode MG in the electrical cutting region ER2. It is formed.
  • the memory gate Intrinsic semiconductor layers Ia2, Id, Ia3 formed along the first side wall 11 of the electrode MG are electrically connected to each other.
  • the source side selection gate electrode SG1 of one memory cell formation portion 3a and the source side selection gate electrode SG2 of another memory cell formation portion 3b are both memory.
  • the gate electrode MG is formed along the first side wall 11, the intrinsic semiconductor layers Ia2, Id, Ia3 formed along the first side wall 11 of the memory gate electrode MG are electrically connected to each other. Then, the source side select gate electrodes SG1, SG2 are electrically connected.
  • FIG. 6 in which parts corresponding to those in FIG. 2 are assigned the same reference numerals shows a source side selection gate electrode SG1 of one memory cell formation portion 3a and a source side selection gate electrode of another memory cell formation portion 3b.
  • 3 is a schematic diagram showing a circuit configuration of a nonvolatile semiconductor memory device 21 when SG2 is electrically connected.
  • the memory cell forming portions 3a and 3b of the memory cell array portion 1a are configured such that the source side select gate lines SGL shared by the memory cell forming portions 3a and 3b are connected by the wiring La as shown in FIG. Can be considered.
  • the nonvolatile semiconductor memory device 21 uses the memory cell 2a for reading data and other data Since the same source-side selection gate line SGL is shared by the memory cells 2d and the like that do not read the memory cell, the source-side selection gate electrode SG1 of one memory cell formation portion 3a and the source side of another memory cell formation portion 3b Even if the selection gate electrode SG2 is electrically connected, voltage fluctuation does not occur in the 1.5 [V] source side selection gate line SGL, and a conventional read malfunction can be prevented.
  • the semiconductor material remains along the second side wall 12 of the memory gate electrode MG exposed in the selection gate electrode non-formation region ER1
  • the semiconductor material remains in the select gate electrode non-formation regions ER1 and ER5
  • a sidewall-like intrinsic semiconductor layer Ie made of a semiconductor material may be formed along the sidewall 12.
  • the second side wall 12 serving as the outer peripheral wall of the memory gate electrode MG is, for example, the reverse conductivity type semiconductor layer OCa in the electrical cutting region ER2 of one memory cell formation portion 3a and the other memory cell formation portion 3b.
  • the reverse conductivity type semiconductor layer OCd in the electrical cutting region ER2 is connected to the intrinsic semiconductor layer Ie.
  • the memory gate Intrinsic semiconductor layers Ia1, Ie, Ia4 formed along the second side wall 12 of the electrode MG are electrically connected to each other.
  • the drain side selection gate electrode DG1 of one memory cell formation portion 3a and the drain side selection gate electrode DG2 of the other memory cell formation portion 3b are memory gate electrodes.
  • the MG Since the MG is formed along the same second side wall 12, the intrinsic semiconductor layers Ia1, Ie, Ia4 formed along the second side wall 12 of the memory gate electrode MG are electrically connected to each other. Then, the drain side select gate electrodes DG1 and DG2 are electrically connected.
  • one drain-side selection gate line DGL1 connected to the drain-side selection gate electrode DG1 in one memory cell formation portion 3a and another memory In the cell formation portion 3b it can be considered that the other drain side selection gate line DGL2 connected to the drain side selection gate electrode DG2 is connected by the wiring Lb.
  • the nonvolatile semiconductor memory device 21 is connected to the memory cell 2a to which data is read. Since 1.5 [V] is applied to the drain-side selection gate line DGL1, while 0 [V] is applied to the other drain-side selection gate line DGL2 to which the memory cell 2d or the like that does not read data is connected. If the drain side selection gate electrode DG1 of the memory cell formation portion 3a and the drain side selection gate electrode DG2 of the other memory cell formation portion 3b are electrically connected, a voltage is applied to the drain side selection gate lines DGL1 and DGL2. Variations occur, and in this respect, a conventional read malfunction occurs.
  • the drain side select gate lines DGL1, DGL2, DGL3, DGL4 are individually provided in units of the memory cell forming portions 3a, 3b, 3c, 3d, respectively. In this case, only the drain side selection gate line DGL1 of one memory cell formation portion 3a and the drain side selection gate line DGL2 of the other memory cell formation portion 3b are connected by the wiring Lb. Therefore, in the nonvolatile semiconductor memory device 21, the voltage fluctuation occurs only in the drain side selection gate lines DGL1, DGL2 connected to the memory cell formation portions 3a, 3b, and the voltage fluctuation occurs in the other drain side selection gate lines DGL3, DGL4. It can be prevented from occurring.
  • this nonvolatile semiconductor memory device 21 for example, even if the drain side select gate electrodes DG1 and DG2 are connected to each other in the memory cell formation portions 3a and 3b, reading due to voltage fluctuations of the drain side select gate lines DGL1 and DGL2 Since the occurrence of malfunctions can be limited to only the memory cell formation parts 3a and 3b, even if a short circuit failure occurs between these memory cell formation parts 3a and 3b, read errors in other memory cell formation parts 3c and 3d Can be prevented.
  • both of the drain side select gate lines DGL3 and DGL4 are connected. Since 0 [V] is applied, voltage fluctuation does not occur in the drain side select gate lines DGL3 and DGL4, and a conventional read malfunction can be prevented.
  • one memory cell forming unit 3a and another The same type of source-side selection gate electrodes SG1, SG2 to which the same voltage is applied during the data read operation with the memory cell formation portion 3b can be electrically connected to each other, so that the source side due to a short failure during the data read operation Voltage fluctuations at the selection gate electrodes SG1, SG2 and voltage fluctuations at the drain side selection gate electrodes DG1, DG2 can be prevented.
  • nonvolatile semiconductor memory device 1 in the case of a manufacturing defect, different types of drain-side selection gate electrodes and source-side selection gate electrodes, which are likely to be applied with different voltage values, are connected to each other and are nonvolatile. Compared to the case where voltage fluctuation occurs in the entire semiconductor memory device, it is possible to reduce a read malfunction caused by voltage fluctuation during a data read operation, and to reduce an increase in power consumption caused by unintended voltage fluctuation.
  • the drain side selection gate electrode DG1 of one memory cell formation portion 3a and the drain side selection gate electrode DG2 of another memory cell formation portion 3b are connected to the first of the memory gate electrodes MG. 2 Provided along the side wall 12.
  • the nonvolatile semiconductor memory device 1 even when foreign matter, a conductive material, or the like remains along the second side wall 12 of the memory gate electrode MG due to manufacturing defects, one memory cell forming portion 3a and another Since the same type of drain-side selection gate electrodes DG1, DG2, which are highly likely to be applied with the same voltage during the data read operation, can be electrically connected to the memory cell formation portion 3b, the drain during the data read operation The probability of occurrence of voltage fluctuations at the side select gate electrodes DG1 and SG2 can be reduced.
  • this nonvolatile semiconductor memory device even if different voltages are applied to the drain side select gate electrodes DG1, DG2 in which a short circuit defect has occurred, a different drain side is used for each memory cell formation portion 3a, 3b,. Since the selection gate lines DGL1, DGL2,... Are connected, only the drain side selection gate electrode DG1 of one memory cell formation portion 3a and the drain side selection gate electrode DG2 of the other memory cell formation portion 3b are electrically connected. Connected, the voltage fluctuation can be limited to only the memory cell forming portions 3a and 3b, and it is possible to prevent the voltage fluctuation from occurring except for the memory cell forming portions 3a and 3b.
  • nonvolatile semiconductor memory device 1 in the case of a manufacturing defect, different types of drain-side selection gate electrodes and source-side selection gate electrodes, which are likely to be applied with different voltage values, are connected to each other and are nonvolatile. Compared with the case where voltage fluctuation occurs in the entire semiconductor memory device, it is possible to reduce a read malfunction caused by voltage fluctuation during a data read operation, and to reduce an increase in power consumption due to unintended voltage fluctuation.
  • the memory cell array unit 41a has a configuration in which a plurality of memory cell forming units 3b, 3a, 3e,... Are arranged in parallel on a semiconductor substrate at a predetermined distance, and the memory cell forming units 3b, 3b, 3a, 3e,... Share the same memory gate electrode MG1.
  • the memory gate electrode MG1 extends in the direction in which the plurality of memory cell formation portions 3b, 3a, 3e,... Are arranged in the selection gate electrode non-formation regions ER1, ER5, and each memory cell formation It is connected with the terminal of part 3b, 3a, 3e, ....
  • the memory cell forming portion 3a in the second row shown in FIG. 7 includes a memory gate on the source region WS side of the well W between the memory cell forming portion 3b in the third row.
  • a first side wall 11 of the electrode MG1 is disposed, and a source side select gate electrode SG1 is formed along the first side wall 11.
  • the second sidewall 12 of the memory gate electrode MG1 is disposed on the drain region WD side of the well W between the memory cell formation portion 3e in the first row, and this second A drain side select gate electrode DG1 is formed along the side wall 12.
  • the first side wall 11 of the memory gate electrode MG1 formed in the memory cell formation portion 3a in the second row extends to the memory cell formation portion 3b in the third row adjacent to the memory cell formation portion 3a.
  • the first side wall 11 of the memory gate electrode MG1 in the memory cell formation portion 3b in the third row can be used as it is.
  • the first side wall 11 of the memory gate electrode MG1 is formed so as to circulate without a break.
  • the source region WS is formed in the well W on the first side wall 11 side of the memory gate electrode MG1, and the source side selection gate electrode is formed along the first side wall 11. SG2 may be provided.
  • the memory cell forming portion 3b in the third row has the same source side along the first side wall 11 of the memory gate electrode MG1 in which the source side select gate electrode SG1 is formed in the memory cell forming portion 3a in the second row.
  • a select gate electrode SG2 can be formed.
  • the drain region WD is formed in the well W on the second side wall 12 side of the memory gate electrode MG1, and the drain side selection gate electrode DG2 is formed along the second side wall 12 Can be formed.
  • the second side wall 12 of the memory gate electrode MG1 is connected to the memory cell array portion.
  • the second side wall 12 can be extended to the memory cell formation portion (not shown) disposed at the other end of the memory cell array portion 41a through the selection gate electrode non-formation regions ER1 and ER5. .
  • the drain side selection gate electrode along the second side wall 12 of the memory gate electrode MG1 is the same as the memory cell formation portion 3b in the third row. Can be formed.
  • the second sidewall 12 of the memory gate electrode MG1 circulates between the memory cell formation portion 3a in the second row and the memory cell formation portion 3e in the first row adjacent to the memory cell formation portion 3a on the other side.
  • the memory cell forming portions 3a and 3e adjacent to each other share the same second side wall 12 of the memory gate electrode MG1.
  • the drain region WD is formed in the well W on the second side wall 12 side of the memory gate electrode MG1, and the drain side selection gate is formed along the second side wall 12.
  • An electrode DG3 may be provided.
  • the memory cell forming portion 3e in the first row also has the same drain side along the second side wall 12 of the memory gate electrode MG1 in which the drain side select gate electrode DG1 is formed in the memory cell forming portion 3a in the second row.
  • a select gate electrode DG3 can be formed.
  • a source region WS is formed in the well W on the first side wall 11 side of the memory gate electrode MG1, and the source side selection gate electrode is formed along the first side wall 11. SG3 is formed.
  • the voltage values of the respective parts during the data write operation (Prog), the data read operation (Read), and the data erase operation (Erase) are described in “(1 -3) Voltages in Various Operations of Nonvolatile Semiconductor Memory Device ”, the description is omitted here.
  • the select gate electrode non-formation regions ER1 and ER5 are made of the semiconductor material along the first sidewall 11 of the memory gate electrode MG.
  • a sidewall-like intrinsic semiconductor layer Id is formed, and sidewall-like intrinsic semiconductor layers Ie, If made of a semiconductor material are formed along the second sidewall 12 of the memory gate electrode MG.
  • the intrinsic semiconductor layer Ia2, the reverse conductivity type semiconductor layer OCb, and the intrinsic semiconductor layer Id are formed on the first side wall 11 of the memory gate electrode MG in the electrical disconnection region ER2.
  • the intrinsic semiconductor layer Id can also be formed in the select gate electrode non-formation region ER1 (ER5) as it is.
  • the memory cell formation portion 3a is connected in series by the intrinsic semiconductor layer Id and the reverse conductivity type semiconductor layer OCc of the memory cell formation portion 3b in the third row sharing the first side wall 11 of the memory gate electrode MG1. Can be configured.
  • the memory gate Intrinsic semiconductor layers Ia2, Id, Ia3 formed along the first side wall 11 of the electrode MG1 are electrically connected to each other.
  • the source-side selection gate electrode SG1 of the memory cell formation portion 3a in the second row and the source-side selection gate electrode SG2 in the memory cell formation portion 3b of the third row are provided.
  • the memory gate electrode MG1 Since the memory gate electrode MG1 is formed along the same first side wall 11, the intrinsic semiconductor layers Ia2, Id, Ia3 formed along the first side wall 11 of the memory gate electrode MG1 are electrically connected to each other. In this state, the source side select gate electrodes SG1, SG2 are electrically connected.
  • the source-side selection gate line SGL connected to the source-side selection gate electrode SG1 of one memory cell formation portion 3a and other memory cells It can be considered that the source side selection gate line SGL connected to the source side selection gate electrode SG2 of the formation part 3b is connected by the wiring La (FIG. 6).
  • the nonvolatile semiconductor memory device 51 Since the memory cell 2a that reads data and the memory cell 2d that does not read data share the same source side selection gate line SGL, the source side selection gate electrode SG1 of the memory cell formation portion 3a in the second row And even if the source-side selection gate electrode SG2 of the memory cell formation part 3b in the third row is electrically connected, the voltage fluctuation does not occur in the 1.5-V source-side selection gate line SGL, A conventional read malfunction can be prevented.
  • the second sidewall of the memory gate electrode MG1 A case where the semiconductor material remains along the line 12 will be described. As shown in FIG. 8, when the semiconductor material remains in the select gate electrode non-formation regions ER1 and ER5 between the memory cell formation portions 3a and 3e, the semiconductor material along the second side wall 12 of the memory gate electrode MG. A sidewall-like intrinsic semiconductor layer If may be formed.
  • the drain side selection gate electrode DG1 of the memory cell formation portion 3a in the second row and the drain side selection gate electrode DG3 in the memory cell formation portion 3e of the first row are provided. Since the memory gate electrode MG1 is formed along the same second side wall 12, the intrinsic semiconductor layers Ia1, If, Ia4 formed along the second side wall 12 of the memory gate electrode MG1 are electrically connected to each other. In this state, the drain side select gate electrodes DG1 and DG3 are electrically connected to each other.
  • the nonvolatile semiconductor memory device 51 1.5 [V] is applied to the drain-side selection gate electrode DG1 of the memory cell formation portion 3a that reads data, while 0 [V] is applied to the drain-side selection gate electrode DG3 connected to the memory cell formation portion 3e that does not read data. Is applied. Therefore, also in the nonvolatile semiconductor memory device 51, the drain side selection gate electrode DG1 of the memory cell formation unit 3a in the second row and the drain side selection gate electrode DG3 of the memory cell formation unit 3e in the first row are electrically connected. If they are connected, voltage fluctuations occur in the drain side select gate electrodes DG1 and DG3, and in this respect, a conventional read malfunction occurs.
  • the drain-side selection gate electrode lines are individually provided in units of the memory cell formation portions 3b, 3a, 3e,. Only the drain side select gate line connected to the cell forming portion 3a and the drain side select gate line connected to the memory cell forming portion 3e in the first row are connected. Therefore, in the nonvolatile semiconductor memory device 51, as in the above-described embodiment, although voltage fluctuation occurs only in each drain-side selection gate line connected to the memory cell formation units 3a and 3e, other memory cell formation units It is possible to prevent voltage fluctuations from occurring on the drain side select gate line connected to 3b.
  • the present invention is not limited to the present embodiment, and various modifications may be made within the scope of the gist of the present invention.
  • the voltage value may be applied.
  • the case where the source-side selection gate electrodes SG1 and SG2 are used as the first selection gate electrode formed on the first sidewall of the memory gate electrode has been described.
  • the present invention is not limited to this.
  • the drain side select gate electrode may be formed on the first side wall of the memory gate electrode as the first select gate electrode.
  • the second selection gate electrode formed on the second sidewall of the memory gate electrode is a source side selection gate electrode.
  • the present invention is not limited to this, and a selection gate electrode cutting portion that forms a nin junction structure, a pip junction structure, an npn junction structure, or a pnp junction structure starting from the drain side selection gate electrode DG1 and the source side selection gate electrode SG1 is provided. May be.
  • the first selection gate electrode and the second Either a reverse conductivity type semiconductor layer or an intrinsic semiconductor layer having a conductivity type different from that of the selection gate electrode is preferably provided.
  • the electrical cutting region ER2 (ER4) is disposed at the end of the selection gate contact region ER6 (ER7) has been described.
  • the present invention is not limited thereto, and the electrical cutting region is not limited thereto.
  • Only the selection gate electrode non-formation region ER1 (ER5) may be arranged at the end of the selection gate contact region ER6 (ER7) without providing ER2 (ER4).
  • a gate electrode cutting part may be provided. That is, on the side wall of the memory gate electrode in the selection gate electrode non-formation regions ER1, ER5, either a reverse conductivity type semiconductor layer having a conductivity type different from that of the first selection gate electrode and the second selection gate electrode or an intrinsic semiconductor layer It is good to be provided.
  • the present invention is not limited to this, and the first selection gate electrode is provided on the first sidewall side of the memory gate electrode shared by one memory cell forming unit and the other memory cell forming unit. As long as each source-side selection gate electrode (or each drain-side selection gate electrode) can be provided, memory gate electrodes having various shapes may be applied.
  • the P-type well W is used to form a memory gate structure 4a that forms an N-type transistor structure and a drain-side selection gate structure 5a that forms an N-type MOS transistor structure.
  • the source side select gate structure 6a that also forms an N-type MOS transistor structure has been described.
  • the present invention is not limited to this, and an N-type well is used to form a P-type transistor.
  • a memory gate structure that forms the structure, a drain-side selection gate structure that forms the P-type MOS transistor structure, and a source-side selection gate structure that also forms the P-type MOS transistor structure may be provided.
  • cap film formed on the tops of the memory gate electrodes MG, MG1, on the lower cap film CPa an upper part made of an insulating material such as SiN different from the lower cap film CPa.
  • the cap film CP having a laminated structure in which the cap film CPb is laminated has been described, the present invention is not limited to this, and a single layer cap film or a cap film having a laminated structure of three or more layers may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

Provided is a non-volatile semiconductor memory device that, compared to conventional devices, can alleviate read errors which occur due to a voltage fluctuation at the time of a data read operation, and can also reduce an increase in power consumption due to a voltage fluctuation. In a case of a manufacturing defect in which, conventionally, a voltage fluctuation occurs throughout an entire non-volatile semiconductor memory device as a result of a connection of a drain-side selection gate electrode and a source-side selection gate electrode, which are of different types and to which different voltage values are highly likely to be applied; compared to the foregoing, a non-volatile semiconductor memory device (1) can alleviate read errors which occur due to a voltage fluctuation at the time of a data read operation, and can also reduce an increase in power consumption due to an unintended voltage fluctuation.

Description

不揮発性半導体記憶装置Nonvolatile semiconductor memory device
 本発明は不揮発性半導体記憶装置に関する。 The present invention relates to a nonvolatile semiconductor memory device.
 従来、特開2011-129816号公報(特許文献1)には、2つの選択ゲート構造体の間にメモリゲート構造体が配置されたメモリセルが開示されている(特許文献1、図15参照)。実際上、このメモリセルでは、ビット線が接続されたドレイン領域と、ソース線が接続されたソース領域とを備え、これらドレイン領域およびソース領域間のウエル上に、一の選択ゲート構造体、メモリゲート構造体および他の選択ゲート構造体が順に配置形成されている。かかる構成でなるメモリセルには、メモリゲート構造体に電荷蓄積層が設けられており、当該電荷蓄積層に電荷を注入することでデータが書き込まれたり、或いは、電荷蓄積層内の電荷を引き抜くことでデータが消去され得るようになされている。 Conventionally, Japanese Unexamined Patent Application Publication No. 2011-129816 (Patent Document 1) discloses a memory cell in which a memory gate structure is disposed between two select gate structures (see Patent Document 1 and FIG. 15). . In practice, this memory cell includes a drain region to which a bit line is connected and a source region to which a source line is connected, and a selection gate structure, a memory is provided on a well between the drain region and the source region. A gate structure and another selection gate structure are arranged and formed in order. In a memory cell having such a structure, a charge storage layer is provided in the memory gate structure, and data is written by injecting charges into the charge storage layer, or charges in the charge storage layer are extracted. Thus, data can be erased.
 ここで、図9は、従来における不揮発性半導体記憶装置100の回路構成の一例を示す概略図である。この場合、不揮発性半導体記憶装置100は、例えば複数のメモリセル102a,102b,102c,102d,102e,102f,102g,102hが行列状に配置されており、行方向に並ぶメモリセル102a,102b、102c,102d、102e,102f、102g,102h毎にメモリセル形成部101a,101b,101c,101dを構成している。 Here, FIG. 9 is a schematic diagram showing an example of a circuit configuration of a conventional nonvolatile semiconductor memory device 100. FIG. In this case, the nonvolatile semiconductor memory device 100 includes, for example, a plurality of memory cells 102a, 102b, 102c, 102d, 102e, 102f, 102g, and 102h arranged in a matrix, and memory cells 102a and 102b arranged in the row direction. Memory cell formation portions 101a, 101b, 101c, and 101d are configured for each of 102c, 102d, 102e, 102f, 102g, and 102h.
 また、不揮発性半導体記憶装置100は、メモリセル102a,102b,102c,102d,102e,102f,102g,102hのうち、列方向に並ぶメモリセル102a,102c,102e,102g(102b,102d,102f,102h)で1本のビット線BL1(BL2)を共有しており、各ビット線BL1,BL2毎に所定のビット電圧が一律に印加され得る。さらに、この不揮発性半導体記憶装置100は、例えばメモリセル形成部101a,101b,101c,101d毎にメモリゲート線MGL1,MGL2,MGL3,MGL4およびドレイン側選択ゲート線DGL1,DGL2,DGL3,DGL4を共有しており、各メモリゲート線MGL1,MGL2,MGL3,MGL4および各ドレイン側選択ゲート線DGL1,DGL2,DGL3,DGL4毎にそれぞれ所定の電圧が印加され得る。 Also, the nonvolatile semiconductor memory device 100 includes memory cells 102a, 102c, 102e, 102g (102b, 102d, 102f, 102h) shares one bit line BL1 (BL2), and a predetermined bit voltage can be applied uniformly to each bit line BL1, BL2. Further, the nonvolatile semiconductor memory device 100 shares, for example, the memory gate lines MGL1, MGL2, MGL3, MGL4 and the drain side select gate lines DGL1, DGL2, DGL3, DGL4 for each of the memory cell forming portions 101a, 101b, 101c, 101d. A predetermined voltage can be applied to each of the memory gate lines MGL1, MGL2, MGL3, MGL4 and each of the drain side select gate lines DGL1, DGL2, DGL3, DGL4.
 なお、この不揮発性半導体記憶装置100では、1本のソース側選択ゲート線SGLと、1本のソース線SLとを全てのメモリセル102a,102b,102c,102d,102e,102f,102g,102hで共有しており、ソース側選択ゲート線SGLに所定のソースゲート電圧が印加され、ソース線SLに所定のソース電圧が印加され得る。 In this nonvolatile semiconductor memory device 100, one source-side selection gate line SGL and one source line SL are connected to all the memory cells 102a, 102b, 102c, 102d, 102e, 102f, 102g, and 102h. A predetermined source gate voltage can be applied to the source side selection gate line SGL, and a predetermined source voltage can be applied to the source line SL.
 各メモリセル102a,102b,102c,102d,102e,102f,102g,102hは同一構成を有しており、例えばメモリセル102aには、メモリゲート線MGL1が接続されたメモリゲート電極MGと、ドレイン側選択ゲート線DGL1が接続されたドレイン側選択ゲート電極DGと、ソース側選択ゲート線SGLが接続されたソース側選択ゲート電極SGとを有している。そして、各メモリセル102a,102b,102c,102d,102e,102f,102g,102hには、メモリゲート電極MGおよびチャネル層間の電圧差により生じる量子トンネル効果によって電荷蓄積層EC内に電荷を注入し得、データが書き込まれた状態となり得る。 Each memory cell 102a, 102b, 102c, 102d, 102e, 102f, 102g, 102h has the same configuration. For example, the memory cell 102a includes a memory gate electrode MG connected to the memory gate line MGL1, and a drain side. The drain side selection gate electrode DG to which the selection gate line DGL1 is connected, and the source side selection gate electrode SG to which the source side selection gate line SGL is connected. Then, each memory cell 102a, 102b, 102c, 102d, 102e, 102f, 102g, 102h can be injected with charge into the charge storage layer EC by the quantum tunnel effect caused by the voltage difference between the memory gate electrode MG and the channel layer. The data can be written.
 ここで、このような従来の不揮発性半導体記憶装置100では、例えば1行1列目のメモリセル102aに書き込まれたデータを読み出すデータ読み出し動作時、データを読み出すメモリセル(以下、データ読み出しセルとも呼ぶ)102aに接続されたビット線BL1に1.5[V]の読み出し電圧が印加され、データを読み出さないメモリセル102b,102d,102f,102hだけが接続されたビット線BL2に0[V]の読み出し禁止電圧が印加され得る。 Here, in such a conventional nonvolatile semiconductor memory device 100, for example, in a data read operation for reading data written in the memory cell 102a in the first row and the first column, a memory cell for reading data (hereinafter also referred to as a data read cell). A read voltage of 1.5 [V] is applied to the bit line BL1 connected to 102a, and 0 [V] is read to the bit line BL2 to which only the memory cells 102b, 102d, 102f, and 102h that do not read data are connected. A forbidden voltage may be applied.
 また、この際、不揮発性半導体記憶装置100では、メモリゲート線MGL1,MGL2,MGL3,MLG4に0[V]が印加され、ソース側選択ゲート線SGLに1.5[V]が印加され、ソース線SLに0[V]が印加され得る。さらに、この際、不揮発性半導体記憶装置100では、データ読み出しセル102aに接続されたドレイン側選択ゲート線DGL1に1.5[V]の読み出しゲート電圧が印加され、データを読み出さないメモリセル102c,102d,102e,102f,102g,102hだけが接続されたドレイン側選択ゲート線DGL2,DGL3,DGL4に0[V]の読み出し禁止ゲート電圧が印加され得る。 At this time, in the nonvolatile semiconductor memory device 100, 0 [V] is applied to the memory gate lines MGL1, MGL2, MGL3, and MLG4, 1.5 [V] is applied to the source-side selection gate line SGL, and the source line SL 0 [V] may be applied to Further, at this time, in the nonvolatile semiconductor memory device 100, the read gate voltage of 1.5 [V] is applied to the drain side selection gate line DGL1 connected to the data read cell 102a, and the memory cells 102c, 102d, A read inhibit gate voltage of 0 [V] can be applied to the drain side select gate lines DGL2, DGL3, DGL4 to which only 102e, 102f, 102g, 102h are connected.
 これにより、データ読み出しセル102aでは、ビット線BL1と接続したドレイン側選択ゲート電極DG直下のウエルが導通状態になるものの、電荷蓄積層ECに電荷が蓄積されているとき(データが書き込まれているとき)、メモリゲート電極MG直下のウエルが非導通状態となり、ソース線SLとビット線BL1との電気的な接続が遮断され、ビット線BL1の1.5[V]の読み出し電圧がそのまま維持され得る。 As a result, in the data read cell 102a, although the well just below the drain side select gate electrode DG connected to the bit line BL1 is in a conductive state, the charge is stored in the charge storage layer EC (data is written). ), The well just below the memory gate electrode MG becomes non-conductive, the electrical connection between the source line SL and the bit line BL1 is cut off, and the read voltage of 1.5 [V] of the bit line BL1 can be maintained as it is.
 一方、データ読み出しセル102aの電荷蓄積層ECに電荷が蓄積されていない場合(データが書き込まれていない場合)には、メモリゲート電極MG直下のウエルが導通状態となり、データ読み出しセル102aを介して0[V]のソース線SLと、1.5[V]のビット線BL1とが電気的に接続し、0[V]のソース線SLにより、ビット線BLに印加されている1.5[V]の読み出し電圧が低下する。 On the other hand, when no charge is stored in the charge storage layer EC of the data read cell 102a (when data is not written), the well just below the memory gate electrode MG becomes conductive, and the data read cell 102a passes through the data read cell 102a. The source line SL of 0 [V] is electrically connected to the bit line BL1 of 1.5 [V], and the 1.5 [V] applied to the bit line BL is read by the source line SL of 0 [V]. The voltage drops.
 なお、この際、データ読み出しセル102aとビット線BL1を共有する他のメモリセル102c,102e,102gでは、ドレイン側選択ゲート線DGL2,DGL3,DGL4とビット線BL1との電圧差によりドレイン側選択ゲート電極DG直下のウエルが非導通状態となり、ビット線BL1の1.5[V]の読み出し電圧に対して影響を及ぼさない。かくして、不揮発性半導体記憶装置100では、ビット線BL1の読み出し電圧が変化したか否かを検知することにより、データ読み出しセル102aの電荷蓄積層ECに電荷が蓄積されているか否かを検知できる。 At this time, in the other memory cells 102c, 102e, 102g sharing the bit line BL1 with the data read cell 102a, the drain side selection gate is caused by the voltage difference between the drain side selection gate lines DGL2, DGL3, DGL4 and the bit line BL1. The well immediately below the electrode DG becomes non-conductive and does not affect the read voltage of 1.5 [V] of the bit line BL1. Thus, the nonvolatile semiconductor memory device 100 can detect whether or not charges are accumulated in the charge accumulation layer EC of the data read cell 102a by detecting whether or not the read voltage of the bit line BL1 has changed.
 次に、このような不揮発性半導体記憶装置100に設けられたメモリセル形成部101a,101b,101c,101dのうち、例えばメモリセル形成部101bの平面レイアウトについて説明する。図10Aは、メモリセル形成部101bを半導体基板の上方から見たときの平面レイアウトの一例を示す概略図である。なお、ここでは、メモリセル形成部101bに3つのメモリセル102c,102d,102iが設けられた場合について説明する。 Next, of the memory cell formation units 101a, 101b, 101c, and 101d provided in the nonvolatile semiconductor memory device 100, for example, a planar layout of the memory cell formation unit 101b will be described. FIG. 10A is a schematic diagram illustrating an example of a planar layout when the memory cell formation portion 101b is viewed from above the semiconductor substrate. Here, a case where three memory cells 102c, 102d, and 102i are provided in the memory cell formation portion 101b will be described.
 メモリセル形成部101bには、メモリセル102c,102d,102iが配置されたメモリセル領域ER3を有しており、このメモリセル領域ER3の一方の末端に一の選択ゲートコンタクト領域ER6が配置され、当該メモリセル領域ER3の他方の末端に他の選択ゲートコンタクト領域ER7が配置されている。また、選択ゲートコンタクト領域ER6(ER7)の末端には、選択ゲート電極非形成領域ER1(ER5)が配置されている。 The memory cell forming part 101b has a memory cell region ER3 in which memory cells 102c, 102d, 102i are arranged, and one selection gate contact region ER6 is arranged at one end of the memory cell region ER3, Another select gate contact region ER7 is disposed at the other end of the memory cell region ER3. A selection gate electrode non-formation region ER1 (ER5) is disposed at the end of the selection gate contact region ER6 (ER7).
 この場合、メモリセル形成部101bは、一の選択ゲート電極非形成領域ER1から、一の選択ゲートコンタクト領域ER6、メモリセル領域ER3、他の選択ゲートコンタクト領域ER7、および他の選択ゲート電極非形成領域ER5に亘って、帯状のメモリゲート電極MGが延設されており、例えば選択ゲート電極非形成領域ER1,ER5のメモリゲート電極MGにメモリゲートコンタクトMGCが設けられている。 In this case, the memory cell formation unit 101b is configured so that the one selection gate electrode non-formation region ER1, the one selection gate contact region ER6, the memory cell region ER3, the other selection gate contact region ER7, and the other selection gate electrode non-formation A band-shaped memory gate electrode MG is extended over the region ER5. For example, the memory gate contact MGC is provided in the memory gate electrode MG of the selection gate electrode non-formation regions ER1 and ER5.
 メモリセル領域ER3には、所定形状のウエルWが半導体基板表面に形成されており、例えばウエルWのうち帯状に形成されたメモリ配置領域W1,W2,W3に、メモリゲート電極MGが交差するように配置されている。ここで、メモリ配置領域W1,W2,W3は、メモリゲート電極MGを境に、ソース領域WS側とドレイン領域WD側とに区分けされている。メモリセル形成部101bでは、各メモリ配置領域W1,W2,W3のソース領域WSが互いに連接しており、ソース線SL(図9)が接続された柱状のソースコンタクトSCを介して各ソース領域WSに所定のソース電圧が一律に印加され得る。 In the memory cell region ER3, a well W having a predetermined shape is formed on the surface of the semiconductor substrate. For example, the memory gate electrode MG intersects the memory placement regions W1, W2, and W3 formed in a strip shape in the well W. Is arranged. Here, the memory arrangement regions W1, W2, and W3 are divided into a source region WS side and a drain region WD side with the memory gate electrode MG as a boundary. In the memory cell formation portion 101b, the source regions WS of the memory placement regions W1, W2, and W3 are connected to each other, and the source regions WS are connected via the columnar source contacts SC to which the source lines SL (FIG. 9) are connected. A predetermined source voltage can be applied uniformly.
 また、メモリセル形成部101bでは、メモリ配置領域W1,W2,W3の各ドレイン領域WDが互いに分離されており、ドレイン領域WD毎にそれぞれ設けたビットコンタクトBCを介して異なるビット線BL1,BL2,…から各ドレイン領域WDに所定のビット電圧が個別に印加され得る。 Further, in the memory cell formation portion 101b, the drain regions WD of the memory placement regions W1, W2, W3 are separated from each other, and different bit lines BL1, BL2, different via the bit contacts BC provided for the respective drain regions WD. A predetermined bit voltage can be individually applied to each drain region WD.
 メモリセル形成部101bのメモリセル領域ER3には、ウエルWのドレイン領域WD側に、メモリゲート電極MGの一の側壁112が配置され、当該側壁112に沿ってドレイン側選択ゲート電極DGが形成されている。一方、ウエルWのソース領域WS側には、メモリゲート電極MGの他の側壁111が配置されており、当該側壁111に沿ってソース側選択ゲート電極SGが形成されている。この場合、ドレイン側選択ゲート電極DGおよびソース側選択ゲート電極SGは、メモリゲート電極MGとともに、一方向に並ぶ複数のメモリセル102c,102d,102iで共有されている。なお、ドレイン側選択ゲート電極DGおよびソース側選択ゲート電極SGは、絶縁材料でなる側壁スペーサ(図示せず)によりメモリゲート電極MGと絶縁されている。 In the memory cell region ER3 of the memory cell formation portion 101b, one side wall 112 of the memory gate electrode MG is disposed on the drain region WD side of the well W, and the drain side selection gate electrode DG is formed along the side wall 112. ing. On the other hand, the other side wall 111 of the memory gate electrode MG is disposed on the source region WS side of the well W, and the source side selection gate electrode SG is formed along the side wall 111. In this case, the drain side selection gate electrode DG and the source side selection gate electrode SG are shared by the plurality of memory cells 102c, 102d, 102i arranged in one direction together with the memory gate electrode MG. The drain side selection gate electrode DG and the source side selection gate electrode SG are insulated from the memory gate electrode MG by side wall spacers (not shown) made of an insulating material.
 ドレイン側選択ゲート電極DGには、ドレイン側選択ゲートコンタクトDGCが設けられた幅広な選択ゲートコンタクト形成部Caが、一の選択ゲートコンタクト領域ER7に形成されており、ドレイン側選択ゲート線DGL2(図9)からの所定電圧が、ドレイン側選択ゲートコンタクトDGCおよび選択ゲートコンタクト形成部Caを介して印加され得る。 In the drain side selection gate electrode DG, a wide selection gate contact forming portion Ca provided with the drain side selection gate contact DGC is formed in one selection gate contact region ER7, and the drain side selection gate line DGL2 (FIG. The predetermined voltage from 9) can be applied via the drain-side selection gate contact DGC and the selection gate contact forming portion Ca.
 また、ソース側選択ゲート電極SGには、ソース側選択ゲートコンタクトSGCが設けられた幅広な選択ゲートコンタクト形成部Cbが、他の選択ゲートコンタクト領域ER6に形成されており、ソース側選択ゲート線SGL(図9)からの所定電圧が、ソース側選択ゲートコンタクトSGCおよび選択ゲートコンタクト形成部Cbを介して印加され得る。 In addition, a wide selection gate contact forming portion Cb provided with a source side selection gate contact SGC is formed in the other selection gate contact region ER6 in the source side selection gate electrode SG, and the source side selection gate line SGL A predetermined voltage from (FIG. 9) can be applied via the source side select gate contact SGC and the select gate contact forming portion Cb.
 これ加えて、選択ゲート電極非形成領域ER1,ER5には、メモリゲート電極MGの側壁111,112および末端壁113に沿って、半導体材料等による導通層が形成されておらず、ドレイン側選択ゲート電極DGおよびソース側選択ゲート電極SGを非接触状態とした物理的切断構造が形成されている。メモリセル形成部101bでは、選択ゲート電極非形成領域ER1,ER5の物的切断構造によって、ドレイン側選択ゲート電極DGとソース側選択ゲート電極SGとが電気的に非接続状態となっていることから、ドレイン側選択ゲート電極DGとソース側選択ゲート電極SGとにそれぞれ個別に所定の電圧を印加し得る。 In addition, in the select gate electrode non-formation regions ER1 and ER5, the conductive layer made of a semiconductor material or the like is not formed along the side walls 111 and 112 and the end wall 113 of the memory gate electrode MG, and the drain side select gate electrode DG In addition, a physical cutting structure in which the source-side selection gate electrode SG is in a non-contact state is formed. In the memory cell formation portion 101b, the drain-side selection gate electrode DG and the source-side selection gate electrode SG are electrically disconnected due to the physical cutting structure of the selection gate electrode non-formation regions ER1, ER5. A predetermined voltage can be individually applied to the drain side selection gate electrode DG and the source side selection gate electrode SG.
特開2011-129816号公報JP 2011-129816 JP
 ところで、このような従来のメモリセル形成部101bでは、図10Aとの対応部分に同一符号を付して示す図10Bのように、選択ゲート電極非形成領域ER1,ER5に、製造過程で除去されるべきはずの半導体層Iが残存してしまうことも考えられる。この際、メモリセル形成部101bでは、ドレイン側選択ゲート電極DGとソース側選択ゲート電極SGとが、半導体層Iを介して電気的に接続されてしまうという問題が生じる。 By the way, in such a conventional memory cell formation portion 101b, as shown in FIG. 10B in which parts corresponding to those in FIG. 10A are assigned the same reference numerals, they are removed in the selection gate electrode non-formation regions ER1, ER5 in the manufacturing process. It is also conceivable that the semiconductor layer I that should have remained. At this time, in the memory cell formation portion 101b, there arises a problem that the drain side selection gate electrode DG and the source side selection gate electrode SG are electrically connected via the semiconductor layer I.
 ここで、例えば、図9に示すように、1行1列目のメモリセル102aのデータを読み出すデータ読み出し動作時、データを読み出さないメモリセル形成部101bにおいてドレイン側選択ゲート電極DGとソース側選択ゲート電極SGとが電気的に接続してショート不良が生じている場合には、メモリセル形成部101bで0[V]のドレイン側選択ゲート線DGL2と、1.5[V]のソース側選択ゲート線SGLとが電気的に接続されてしまうことになる(図9中、配線Lで示す)。 Here, for example, as shown in FIG. 9, in the data read operation for reading the data in the memory cell 102a in the first row and the first column, the drain side select gate electrode DG and the source side select in the memory cell formation portion 101b that does not read data. In the case where a short circuit failure is caused by electrical connection with the gate electrode SG, the drain side selection gate line DGL2 of 0 [V] and the source side selection gate line of 1.5 [V] in the memory cell formation portion 101b SGL is electrically connected (indicated by wiring L in FIG. 9).
 その結果、不揮発性半導体記憶装置100では、ドレイン側選択ゲート線DGL2の0[V]の電圧が上昇してしまったり、或いは、全モリセル102a,102b,…で共有しているソース側選択ゲート線SGLの1.5[V]の電圧が低下してしまい、ドレイン側選択ゲート線DGL2やソース側選択ゲート線SGLの電圧変動により読み出し誤動作が生じてしまう恐れがある。 As a result, in the nonvolatile semiconductor memory device 100, the voltage of 0 [V] of the drain side selection gate line DGL2 increases, or the source side selection gate line shared by all the memory cells 102a, 102b,. The voltage of 1.5 [V] of SGL is lowered, and there is a possibility that a read malfunction may occur due to voltage fluctuations of the drain side selection gate line DGL2 and the source side selection gate line SGL.
 また、不揮発性半導体記憶装置100では、メモリセル形成部101bにおいてドレイン側選択ゲート電極DGとソース側選択ゲート電極SGとが電気的に接続してショート不良が生じていると、ドレイン側選択ゲート線DGL2と、ソース側選択ゲート線SGLとの間でリーク電流が生じ、データ読み出し動作時の消費電力が増加してしまうという問題も生じる。 Further, in the nonvolatile semiconductor memory device 100, when the drain side selection gate electrode DG and the source side selection gate electrode SG are electrically connected in the memory cell formation portion 101b and a short circuit defect occurs, the drain side selection gate line A leakage current is generated between the DGL 2 and the source-side selection gate line SGL, which causes a problem that power consumption during the data read operation increases.
 そこで、本発明は以上の点を考慮してなされたもので、従来に比べて、データ読み出し動作時に電圧変動により生じる読み出し誤動作を軽減し得、さらに電圧変動による消費電力の増加を低減し得る不揮発性半導体記憶装置を提案することを目的とする。 Therefore, the present invention has been made in consideration of the above points. Compared to the conventional case, the present invention can reduce a read malfunction caused by a voltage fluctuation during a data read operation and can further reduce an increase in power consumption due to the voltage fluctuation. An object of the present invention is to propose a volatile semiconductor memory device.
 かかる課題を解決するため本発明の不揮発性半導体記憶装置は、一方向に延設し、かつ長手方向に沿ってメモリゲート電極が延設した一のメモリセル形成部と、一方向に延設し、かつ長手方向に沿ってメモリゲート電極が延設した他のメモリセル形成部と、を少なくとも備え、前記一のメモリセル形成部と前記他のメモリセル形成部とが所定距離を設けて並走するように半導体基板上に配置されており、前記一のメモリセル形成部および前記他のメモリセル形成部は、前記半導体基板のウエル上に第1選択ゲート絶縁膜を介して第1選択ゲート電極を有した第1選択ゲート構造体と、前記ウエル上に第2選択ゲート絶縁膜を介して第2選択ゲート電極を有した第2選択ゲート構造体と、該第1選択ゲート構造体および該第2選択ゲート構造体間に側壁スペーサを介して設けられ、下部ゲート絶縁膜、電荷蓄積層、上部ゲート絶縁膜、および前記メモリゲート電極の順で前記ウエル上に積層されたメモリゲート構造体とを備え、前記一のメモリセル形成部の長手方向末端と前記他のメモリセル形成部の長手方向末端との間には、前記第1選択ゲート電極および前記第2選択ゲート電極が形成されておらず、かつ前記一のメモリセル形成部の長手方向末端と前記他のメモリセル形成部の長手方向末端とをメモリゲート電極で連結している選択ゲート電極非形成領域を有し、前記一のメモリセル形成部および前記他のメモリセル形成部の前記メモリゲート電極には、前記一のメモリセル形成部と、前記他のメモリセル形成部と、前記選択ゲート電極非形成領域とで囲まれた領域で周回する内周壁となる第1側壁側に、前記第1選択ゲート電極が設けられていることを特徴とする。 In order to solve such a problem, a nonvolatile semiconductor memory device of the present invention includes a memory cell forming portion extending in one direction and having a memory gate electrode extending in a longitudinal direction, and extending in one direction. And at least another memory cell forming portion having a memory gate electrode extending along the longitudinal direction, and the one memory cell forming portion and the other memory cell forming portion are arranged in parallel at a predetermined distance. The one memory cell formation portion and the other memory cell formation portion are arranged on the semiconductor substrate so that the first selection gate electrode is disposed on the well of the semiconductor substrate via the first selection gate insulating film. A first selection gate structure having a second selection gate electrode on the well with a second selection gate insulating film interposed therebetween, the first selection gate structure, and the first selection gate structure. 2 Side walls between select gate structures A memory gate structure formed on the well in the order of a lower gate insulating film, a charge storage layer, an upper gate insulating film, and the memory gate electrode. The first selection gate electrode and the second selection gate electrode are not formed between the longitudinal end of the portion and the longitudinal end of the other memory cell formation portion, and the one memory cell formation A selection gate electrode non-formation region in which a longitudinal end of the first portion and a longitudinal end of the other memory cell formation portion are connected by a memory gate electrode, and the one memory cell formation portion and the other memory cell The memory gate electrode of the formation portion becomes an inner peripheral wall that circulates in a region surrounded by the one memory cell formation portion, the other memory cell formation portion, and the selection gate electrode non-formation region. 1 side wall, wherein the first selection gate electrode is provided.
 本発明の不揮発性半導体記憶装置では、製造不良が生じても、データの読み出し動作時に同じ電圧が印加される可能性が高い同種の第1選択ゲート電極同士を電気的に接続させることができるので、従来のように、異なる電圧値が印加される可能性が高い異種の第1選択ゲート電極および第2選択ゲート電極が接続されて不揮発性半導体記憶装置全体で電圧変動が生じてしまう場合に比べて、データ読み出し動作時に電圧変動により生じる読み出し誤動作を軽減し得、さらに電圧変動による消費電力の増加を低減し得る。 In the nonvolatile semiconductor memory device of the present invention, even if a manufacturing failure occurs, the same type of first selection gate electrodes that are highly likely to be applied with the same voltage during a data read operation can be electrically connected to each other. Compared to the conventional case where voltage variations occur in the entire nonvolatile semiconductor memory device by connecting different types of first selection gate electrodes and second selection gate electrodes, which are likely to be applied with different voltage values. Thus, a read malfunction caused by voltage fluctuation during the data read operation can be reduced, and an increase in power consumption due to voltage fluctuation can be reduced.
本発明の不揮発性半導体記憶装置に設けられるメモリセルの断面構成を示す概略図である。It is the schematic which shows the cross-sectional structure of the memory cell provided in the non-volatile semiconductor memory device of this invention. 本発明による不揮発性半導体記憶装置の回路構成を示す概略図である。It is the schematic which shows the circuit structure of the non-volatile semiconductor memory device by this invention. 不揮発性半導体記憶装置の各種動作時における電圧値をまとめた表である。It is the table | surface which put together the voltage value at the time of various operation | movement of a non-volatile semiconductor memory device. 本発明の不揮発性半導体記憶装置の平面レイアウトを示す概略図である。It is the schematic which shows the planar layout of the non-volatile semiconductor memory device of this invention. 図4に示した不揮発性半導体記憶装置において所定のメモリセルアレイ部でショート不良が発生したときの平面レイアウトを示す概略図である。FIG. 5 is a schematic diagram showing a planar layout when a short defect occurs in a predetermined memory cell array portion in the nonvolatile semiconductor memory device shown in FIG. 4. 所定のメモリセルアレイ部でショート不良が発生したときの不揮発性半導体記憶装置の回路構成を示す概略図である。FIG. 3 is a schematic diagram showing a circuit configuration of a nonvolatile semiconductor memory device when a short failure occurs in a predetermined memory cell array unit. 他の実施の形態による不揮発性半導体記憶装置の平面レイアウトを示す概略図である。It is the schematic which shows the planar layout of the non-volatile semiconductor memory device by other embodiment. 図7に示した不揮発性半導体記憶装置において所定のメモリセルアレイ部でショート不良が発生したときの平面レイアウトを示す概略図である。FIG. 8 is a schematic diagram showing a planar layout when a short defect occurs in a predetermined memory cell array portion in the nonvolatile semiconductor memory device shown in FIG. 7. 従来の不揮発性半導体記憶装置の回路構成を示す概略図である。It is the schematic which shows the circuit structure of the conventional non-volatile semiconductor memory device. 図10Aは、従来のメモリセル形成部の平面レイアウトを示す概略図であり、図10Bは、図10Aに示すメモリセル形成部でショート不良が生じたときの平面レイアウトを示す概略図である。FIG. 10A is a schematic diagram showing a planar layout of a conventional memory cell formation portion, and FIG. 10B is a schematic diagram showing a planar layout when a short circuit defect occurs in the memory cell formation portion shown in FIG. 10A.
 以下、本発明を実施するための形態について説明する。なお、説明は以下に示す順序とする。
<1.第1の実施の形態>
 1-1.メモリセルの構成
 1-2.本発明による不揮発性半導体記憶装置の回路構成
 1-3.不揮発性半導体記憶装置における各種動作時における電圧について
 1-4.不揮発性半導体記憶装置の平面レイアウト
 1-5.ショート不良が発生したときの不揮発性半導体記憶装置
 1-6.作用および効果
<2.他の実施の形態による不揮発性半導体記憶装置>
 2-1.他の実施の形態による不揮発性半導体記憶装置の平面レイアウト
 2-2.ショート不良が発生したときの他の実施の形態による不揮発性半導体記憶装置
<3.その他の実施の形態>
Hereinafter, modes for carrying out the present invention will be described. The description will be in the following order.
<1. First Embodiment>
1-1. Configuration of memory cell 1-2. Circuit configuration of nonvolatile semiconductor memory device according to the present invention 1-3. Voltage during various operations in nonvolatile semiconductor memory device 1-4. Planar layout of nonvolatile semiconductor memory device 1-5. Nonvolatile semiconductor memory device when short circuit failure occurs 1-6. Action and effect <2. Nonvolatile Semiconductor Memory Device According to Other Embodiment>
2-1. Planar layout of nonvolatile semiconductor memory device according to other embodiment 2-2. Nonvolatile semiconductor memory device according to another embodiment when short circuit failure occurs <3. Other Embodiments>
 (1)第1の実施の形態
 (1-1)メモリセルの構成
 先ず始めに、本発明の不揮発性半導体記憶装置に行列状に配置されるメモリセルの構成について以下説明する。図1に示すように、メモリセル2aは、例えばP型Si等でなるウエルW上に、N型のトランジスタ構造を形成するメモリゲート構造体4aと、N型のMOS(Metal-Oxide-Semiconductor)トランジスタ構造を形成するドレイン側選択ゲート構造体5aと、同じくN型のMOSトランジスタ構造を形成するソース側選択ゲート構造体6aとが形成されている。
(1) First Embodiment (1-1) Configuration of Memory Cell First, the configuration of memory cells arranged in a matrix in the nonvolatile semiconductor memory device of the present invention will be described below. As shown in FIG. 1, a memory cell 2a includes a memory gate structure 4a that forms an N-type transistor structure on a well W made of, for example, P-type Si, and an N-type MOS (Metal-Oxide-Semiconductor). A drain side select gate structure 5a that forms a transistor structure and a source side select gate structure 6a that also forms an N-type MOS transistor structure are formed.
 ウエルWの表面には、ドレイン側選択ゲート構造体5aの一端にあるドレイン領域WDと、ソース側選択ゲート構造体6aの一端にあるソース領域WSとが所定距離を空けて形成されており、ドレイン領域WDにビット線BL1が接続され、ソース領域WSにソース線SLが接続されている。なお、ウエルW表面には、低濃度ドレイン領域WDaがドレイン領域WDと隣接するように形成されており、ドレイン側選択ゲート構造体5aの側壁に沿って形成されたサイドウォールSWが、当該低濃度ドレイン領域WDa上に配置されている。また、ウエルW表面には、低濃度ソース領域WSaがソース領域WSと隣接するように形成されており、ソース側選択ゲート構造体6aの側壁に沿って形成されたサイドウォールSWが、当該低濃度ソース領域WSa上に配置されている。 On the surface of the well W, a drain region WD at one end of the drain side select gate structure 5a and a source region WS at one end of the source side select gate structure 6a are formed with a predetermined distance therebetween. Bit line BL1 is connected to region WD, and source line SL is connected to source region WS. Note that, on the surface of the well W, the low-concentration drain region WDa is formed adjacent to the drain region WD, and the sidewall SW formed along the side wall of the drain-side selection gate structure 5a includes the low-concentration drain region WDa. Arranged on drain region WDa. Further, the low-concentration source region WSa is formed adjacent to the source region WS on the surface of the well W, and the sidewall SW formed along the side wall of the source-side selection gate structure 6a includes the low-concentration source region WSa. Arranged on the source area WSa.
 メモリゲート構造体4aは、低濃度ドレイン領域WDaおよび低濃度ソース領域WSa間のウエルW上に、SiO2等の絶縁材料からなる下部ゲート絶縁膜24aを介して、例えば窒化シリコン(Si3N4)や、酸窒化シリコン(SiON)、アルミナ(Al2O3)、ハフニア(HfO2)等でなる電荷蓄積層ECを有しており、さらに、この電荷蓄積層EC上に、同じく絶縁材料でなる上部ゲート絶縁膜24bを介してメモリゲート電極MGを有している。これによりメモリゲート構造体4aは、下部ゲート絶縁膜24aおよび上部ゲート絶縁膜24bによって、電荷蓄積層ECがウエルWおよびメモリゲート電極MGから絶縁された構成を有する。 The memory gate structure 4a is formed on the well W between the low-concentration drain region WDa and the low-concentration source region WSa via, for example, silicon nitride (Si 3 N 4) via a lower gate insulating film 24a made of an insulating material such as SiO 2. ), Silicon oxynitride (SiON), alumina (Al 2 O 3 ), hafnia (HfO2), etc., and the charge storage layer EC is also made of an insulating material. A memory gate electrode MG is provided via the upper gate insulating film 24b. Thus, the memory gate structure 4a has a configuration in which the charge storage layer EC is insulated from the well W and the memory gate electrode MG by the lower gate insulating film 24a and the upper gate insulating film 24b.
 かかる構成に加えて、メモリゲート構造体4aには、絶縁材料により形成されたキャップ膜CPがメモリゲート電極MG上に形成されており、ドレイン側選択ゲート構造体5aの上面にあるシリサイド層S1と、ソース側選択ゲート構造体6aの上面にあるシリサイド層S2とが、当該キャップ膜CPの膜厚分だけメモリゲート電極MGの上面から遠ざかるように形成されている。このようにメモリセル2aの領域にあるメモリゲート電極MGは、上面にシリサイド層が形成されておらず、キャップ膜CPで覆われた構成となっている。 In addition to such a configuration, the memory gate structure 4a has a cap film CP formed of an insulating material formed on the memory gate electrode MG, and the silicide layer S1 on the upper surface of the drain side selection gate structure 5a. The silicide layer S2 on the upper surface of the source side select gate structure 6a is formed so as to be away from the upper surface of the memory gate electrode MG by the thickness of the cap film CP. Thus, the memory gate electrode MG in the region of the memory cell 2a has a structure in which no silicide layer is formed on the upper surface and is covered with the cap film CP.
 この場合、キャップ膜CPは、膜厚分だけ、ドレイン側選択ゲート構造体5aのシリサイド層S1と、ソース側選択ゲート構造体6aのシリサイド層S2とをそれぞれメモリゲート電極MGから遠ざけることができる。また、この実施の形態の場合、キャップ膜CPは、例えばSiO2等の絶縁材料からなる下部キャップ膜CPa上に、当該下部キャップ膜CPaとは異なるSiN等の絶縁材料でなる上部キャップ膜CPbが積層された積層構造を有している。 In this case, the cap film CP can keep the silicide layer S1 of the drain side select gate structure 5a and the silicide layer S2 of the source side select gate structure 6a away from the memory gate electrode MG by the film thickness. Further, in this embodiment, the cap layer CP, for example on the lower cap film CPa made of an insulating material such as SiO 2, an upper cap film CPb made of an insulating material such as different SiN that is with the lower cap film CPa is It has a laminated structure.
 ここで、メモリゲート構造体4aのメモリゲート電極MGには、壁状の第1側壁11と、当該第1側壁11に対向配置された壁状の第2側壁12とが設けられている。メモリゲート構造体4aは、下部ゲート絶縁膜24a、電荷蓄積層EC、上部ゲート絶縁膜24b、およびキャップ膜CPの各側壁が、メモリゲート電極MGの第1側壁11および第2側壁12に沿って形成され、これら下部ゲート絶縁膜24a、電荷蓄積層EC、上部ゲート絶縁膜24b、およびキャップ膜CPがメモリゲート電極MGの第1側壁11および第2側壁12間の領域に形成されている。 Here, the memory gate electrode MG of the memory gate structure 4a is provided with a wall-shaped first side wall 11 and a wall-shaped second side wall 12 arranged to face the first side wall 11. In the memory gate structure 4a, each side wall of the lower gate insulating film 24a, the charge storage layer EC, the upper gate insulating film 24b, and the cap film CP extends along the first side wall 11 and the second side wall 12 of the memory gate electrode MG. The lower gate insulating film 24a, the charge storage layer EC, the upper gate insulating film 24b, and the cap film CP are formed in a region between the first sidewall 11 and the second sidewall 12 of the memory gate electrode MG.
 メモリゲート構造体4aには、メモリゲート電極MGの第2側壁12や、下部ゲート絶縁膜24a、電荷蓄積層EC、上部ゲート絶縁膜24b、およびキャップ膜CPの各側壁に沿って、絶縁材料でなる側壁スペーサ28aが形成されており、当該側壁スペーサ28aを介してドレイン側選択ゲート構造体5aが隣接されている。メモリゲート構造体4aとドレイン側選択ゲート構造体5aとの間に形成された側壁スペーサ28aは、所定の膜厚により形成されており、メモリゲート構造体4aと、ドレイン側選択ゲート構造体5aとを絶縁し得るようになされている。なお、メモリゲート構造体4aおよびドレイン側選択ゲート構造体5a間の側壁スペーサ28aの膜厚は、側壁スペーサ28aの耐圧不良や、メモリゲート構造体4aおよびドレイン側選択ゲート構造体5a間での読み出し電流を考慮して、5[nm]以上40[nm]以下の幅に選定されていることが望ましい。 The memory gate structure 4a is made of an insulating material along the second sidewall 12 of the memory gate electrode MG and the sidewalls of the lower gate insulating film 24a, the charge storage layer EC, the upper gate insulating film 24b, and the cap film CP. A side wall spacer 28a is formed, and the drain side select gate structure 5a is adjacent to the side wall spacer 28a. The sidewall spacer 28a formed between the memory gate structure 4a and the drain side selection gate structure 5a is formed with a predetermined film thickness, and the memory gate structure 4a, the drain side selection gate structure 5a, Can be insulated. Note that the film thickness of the side wall spacer 28a between the memory gate structure 4a and the drain side select gate structure 5a depends on the breakdown voltage of the side wall spacer 28a and the reading between the memory gate structure 4a and the drain side select gate structure 5a. In consideration of the current, it is desirable to select a width of 5 [nm] or more and 40 [nm] or less.
 ドレイン側選択ゲート構造体5aは、側壁スペーサ28aとドレイン領域WD間のウエルW上に、膜厚が9[nm]以下、好ましくは3[nm]以下で絶縁材料でなるドレイン側選択ゲート絶縁膜30を有しており、当該ドレイン側選択ゲート絶縁膜30上にドレイン側選択ゲート電極DG1が形成された構成を有する。また、第2選択ゲート電極としてのドレイン側選択ゲート電極DG1には、上面にシリサイド層S1が形成されており、当該シリサイド層S1に第2選択ゲート線としてのドレイン側選択ゲート線DGL1が接続されている。 The drain side select gate structure 5a is formed on the well W between the side wall spacer 28a and the drain region WD with a film thickness of 9 [nm] or less, preferably 3 [nm] or less and made of an insulating material. 30 and the drain side select gate electrode DG1 is formed on the drain side select gate insulating film 30. Further, a silicide layer S1 is formed on the upper surface of the drain side selection gate electrode DG1 as the second selection gate electrode, and the drain side selection gate line DGL1 as the second selection gate line is connected to the silicide layer S1. ing.
 また、メモリゲート構造体4aには、メモリゲート電極MGの第1側壁11や、下部ゲート絶縁膜24a、電荷蓄積層EC、上部ゲート絶縁膜24b、およびキャップ膜CPの各側壁に沿って、絶縁材料でなる側壁スペーサ28bが形成されており、当該側壁スペーサ28bを介してソース側選択ゲート構造体6aが隣接されている。このようなメモリゲート構造体4aと、ソース側選択ゲート構造体6aとの間に形成された側壁スペーサ28bも、一方の側壁スペーサ28aと同じ5[nm]以上40[nm]以下の膜厚に選定されており、メモリゲート構造体4aと、ソース側選択ゲート構造体6aとを絶縁し得るようになされている。 Further, the memory gate structure 4a is insulated along the first sidewall 11 of the memory gate electrode MG and the sidewalls of the lower gate insulating film 24a, the charge storage layer EC, the upper gate insulating film 24b, and the cap film CP. A side wall spacer 28b made of a material is formed, and the source side select gate structure 6a is adjacent to the side wall spacer 28b. The sidewall spacer 28b formed between the memory gate structure 4a and the source-side selection gate structure 6a also has the same film thickness as 5 nm or more and 40 nm or less as one sidewall spacer 28a. The memory gate structure 4a and the source-side selection gate structure 6a can be insulated from each other.
 ソース側選択ゲート構造体6aは、側壁スペーサ28bとソース領域WS間のウエルW上に、膜厚が9[nm]以下、好ましくは3[nm]以下で絶縁材料でなるソース側選択ゲート絶縁膜33を有しており、当該ソース側選択ゲート絶縁膜33上にソース側選択ゲート電極SG1が形成された構成を有する。また、第1選択ゲート電極としてのソース側選択ゲート電極SG1には、上面にシリサイド層S2が形成されており、当該シリサイド層S2に第1選択ゲート線としてのソース側選択ゲート線SGLが接続されている。 The source side select gate structure 6a has a source side select gate insulating film made of an insulating material with a film thickness of 9 [nm] or less, preferably 3 [nm] or less, on the well W between the sidewall spacer 28b and the source region WS. The source-side selection gate electrode SG1 is formed on the source-side selection gate insulating film 33. The source-side selection gate electrode SG1 as the first selection gate electrode has a silicide layer S2 formed on the top surface, and the source-side selection gate line SGL as the first selection gate line is connected to the silicide layer S2. ing.
 これに加えて、この実施の形態の場合、側壁スペーサ28a,28bを介してメモリゲート電極MGの第1側壁11および第2側壁12に沿って形成されたソース側選択ゲート電極SG1およびドレイン側選択ゲート電極DG1は、それぞれメモリゲート電極MGから離れるに従って頂上部がウエルWに向けて下降してゆくようなサイドウォール状に形成されている。 In addition, in the case of this embodiment, the source-side selection gate electrode SG1 and the drain-side selection formed along the first side wall 11 and the second side wall 12 of the memory gate electrode MG via the side wall spacers 28a and 28b. Each of the gate electrodes DG1 is formed in a sidewall shape such that the top portion descends toward the well W as the distance from the memory gate electrode MG increases.
 メモリセル2aは、ソース側選択ゲート構造体6aおよびドレイン側選択ゲート構造体5aがそれぞれメモリゲート構造体4aの側壁(第1側壁11および第2側壁12)に沿ってサイドウォール状に形成され、これらソース側選択ゲート構造体6aおよびドレイン側選択ゲート構造体5aがそれぞれメモリゲート構造体4aと近接していても、メモリゲート電極MG上に形成されたキャップ膜CPにより、ドレイン側選択ゲート電極DG1上のシリサイド層S1と、ソース側選択ゲート電極SG1上のシリサイド層S2とが、それぞれメモリゲート電極MGから遠ざけられているので、その分、これらシリサイド層S1,S2とメモリゲート電極MGとのショートを防止し得るようになされている。 In the memory cell 2a, the source side select gate structure 6a and the drain side select gate structure 5a are formed in a sidewall shape along the side walls (first side wall 11 and second side wall 12) of the memory gate structure 4a, respectively. Even if the source side selection gate structure 6a and the drain side selection gate structure 5a are close to the memory gate structure 4a, the drain side selection gate electrode DG1 is formed by the cap film CP formed on the memory gate electrode MG. Since the silicide layer S1 on the upper side and the silicide layer S2 on the source-side selection gate electrode SG1 are separated from the memory gate electrode MG, the silicide layers S1, S2 and the memory gate electrode MG are short-circuited accordingly. It has been made to be able to prevent.
 (1-2)本発明による不揮発性半導体記憶装置の回路構成
 次に、本発明による不揮発性半導体記憶装置の回路構成について説明する。図2に示すように、不揮発性半導体記憶装置1は、例えば複数のメモリセル2a,2b,2d,2e,2g,2h,2i,2jが行列状に配置されている。なお、各メモリセル2a,2b,2d,2e,2g,2h,2i,2jは、図1にて説明したメモリセル2aと同一構成を有しており、メモリゲート線MGLが接続されたメモリゲート電極MGと、ドレイン側選択ゲート線DGL1(DGL2,DGL3,DGL4)が接続されたドレイン側選択ゲート電極DG1(DG2,…)と、ソース側選択ゲート線SGLが接続されたソース側選択ゲート電極SG1(SG2,…)とを有している。
(1-2) Circuit Configuration of Nonvolatile Semiconductor Memory Device According to the Present Invention Next, the circuit configuration of the nonvolatile semiconductor memory device according to the present invention will be described. As shown in FIG. 2, in the nonvolatile semiconductor memory device 1, for example, a plurality of memory cells 2a, 2b, 2d, 2e, 2g, 2h, 2i, and 2j are arranged in a matrix. Each memory cell 2a, 2b, 2d, 2e, 2g, 2h, 2i, 2j has the same configuration as the memory cell 2a described in FIG. 1, and is a memory gate to which the memory gate line MGL is connected. The drain side selection gate electrode DG1 (DG2,...) Connected to the electrode MG, the drain side selection gate line DGL1 (DGL2, DGL3, DGL4), and the source side selection gate electrode SG1 connected to the source side selection gate line SGL (SG2,...)
 不揮発性半導体記憶装置1は、行方向に並ぶメモリセル2a,2b、2d,2e、2g,2h、2i,2j毎にメモリセル形成部3a,3b,3c,3dを構成しており、このうち隣接する2つのメモリセル形成部3a,3b(3c,3d)を対として1つのメモリセルアレイ部1a(1c)を形成し、基板電圧線Backによりメモリセルアレイ部1a,1c毎に所定の基板電圧が印加され得る。 The nonvolatile semiconductor memory device 1 includes memory cell forming portions 3a, 3b, 3c, and 3d for each of the memory cells 2a, 2b, 2d, 2e, 2g, 2h, 2i, and 2j arranged in the row direction. One memory cell array unit 1a (1c) is formed by pairing two adjacent memory cell forming units 3a, 3b (3c, 3d), and a predetermined substrate voltage is applied to each memory cell array unit 1a, 1c by the substrate voltage line Back. Can be applied.
 また、不揮発性半導体記憶装置1は、メモリセル2a,2b,2d,2e,2g,2h,2i,2jのうち、列方向に並ぶメモリセル2a,2d,2g,2i(2b,2e,2h,2j)で1本のビット線BL1(BL2)を共有しており、各ビット線BL1,BL2によって、列方向のメモリセル2a,2d,2g,2i、2b,2e,2h,2j毎に所定のビット電圧が一律に印加され得る。さらに、この不揮発性半導体記憶装置1は、例えばメモリセル形成部3a,3b,3c,3d毎にドレイン側選択ゲート線DGL1,DGL2,DGL3,DGL4を共有しており、各ドレイン側選択ゲート線DGL1,DGL2,DGL3,DGL4によってメモリセル形成部3a,3b,3c,3d毎にそれぞれ所定の電圧が印加され得る。 Further, the nonvolatile semiconductor memory device 1 includes memory cells 2a, 2d, 2g, 2i (2b, 2e, 2h, 2h, 2i, 2i) arranged in the column direction among the memory cells 2a, 2b, 2d, 2e, 2g, 2h, 2i, 2j. 2j) share one bit line BL1 (BL2), and each bit line BL1, BL2 provides a predetermined value for each memory cell 2a, 2d, 2g, 2i, 2b, 2e, 2h, 2j in the column direction. A bit voltage can be applied uniformly. Further, the nonvolatile semiconductor memory device 1 shares the drain side select gate lines DGL1, DGL2, DGL3, DGL4 for each of the memory cell forming portions 3a, 3b, 3c, 3d, for example, and each drain side select gate line DGL1 , DGL2, DGL3, and DGL4 can apply a predetermined voltage to each of the memory cell forming portions 3a, 3b, 3c, and 3d.
 なお、この不揮発性半導体記憶装置100では、1本のメモリゲート線MGLと、1本のソース側選択ゲート線SGLと、1本のソース線SLとを全てのメモリセル2a,2b,2d,2e,2g,2h,2i,2jで共有しており、メモリゲート線MGLに所定のメモリゲート電圧が印加され、ソース側選択ゲート線SGLに所定のソースゲート電圧が印加され、ソース線SLに所定のソース電圧が印加され得る。 In this nonvolatile semiconductor memory device 100, one memory gate line MGL, one source-side selection gate line SGL, and one source line SL are connected to all the memory cells 2a, 2b, 2d, 2e. , 2g, 2h, 2i, 2j, a predetermined memory gate voltage is applied to the memory gate line MGL, a predetermined source gate voltage is applied to the source-side selection gate line SGL, and a predetermined value is applied to the source line SL. A source voltage may be applied.
 (1-3)不揮発性半導体記憶装置における各種動作時における電圧について
 次に、このような不揮発性半導体記憶装置1における各種動作について説明する。図3は、図2に示した不揮発性半導体記憶装置1において、例えばメモリセル2aの電荷蓄積層ECに電荷を注入するデータ書き込み動作時(「Prog」)と、メモリセル2aの電荷蓄積層ECに電荷が蓄積されているか否かを検知するデータ読み出し動作時(「Read」)と、メモリセル2a等の電荷蓄積層EC内の電荷を引き抜くデータ消去動作時(「Erase」)とにおける各部位での電圧値の一例を示す表である。
(1-3) Voltage during Various Operations in Nonvolatile Semiconductor Memory Device Next, various operations in such a nonvolatile semiconductor memory device 1 will be described. 3 shows, for example, a data write operation (“Prog”) in which charge is injected into the charge storage layer EC of the memory cell 2a in the nonvolatile semiconductor memory device 1 shown in FIG. 2, and the charge storage layer EC of the memory cell 2a. At the time of data read operation (“Read”) for detecting whether or not charges are accumulated in the memory cell and at the time of data erase operation (“Erase”) for extracting charges in the charge storage layer EC such as the memory cell 2a It is a table | surface which shows an example of the voltage value in.
 図3の「Prog」の欄では、メモリセル2aの電荷蓄積層ECに電荷を注入するときの電圧値(「選択列」および「選択行」)と、メモリセル2aの電荷蓄積層ECに電荷を注入しないときの電圧値(「非選択列」または「非選択行」)とを示す。 In the column of “Prog” in FIG. 3, the voltage value (“selected column” and “selected row”) when the charge is injected into the charge storage layer EC of the memory cell 2 a and the charge in the charge storage layer EC of the memory cell 2 a Indicates a voltage value ("non-selected column" or "non-selected row") when no.
 例えば、メモリセル2aの電荷蓄積層ECに電荷を注入する場合には、図3の「Prog」の欄に示すように、メモリゲート線MGLからメモリゲート電極MGに12[V]の電荷蓄積ゲート電圧が印加され、ウエルW(図3中、「Back」と表記)に0[V]の基板電圧が印加され得る。また、この際、ソース側選択ゲート電極SG1には、ソース側選択ゲート線SGLから0[V]のゲートオフ電圧が印加され、ソース領域WSには、ソース線SLから0[V]のソースオフ電圧が印加され得る。これによりソース側選択ゲート構造体6aは、ソース領域WSと、メモリゲート構造体4aのチャネル層形成キャリア領域との電気的な接続を遮断し、ソース線SLからメモリゲート構造体4aのチャネル層形成キャリア領域への電圧印加を阻止し得る。 For example, when charge is injected into the charge storage layer EC of the memory cell 2a, as shown in the column “Prog” in FIG. 3, a 12 [V] charge storage gate is connected from the memory gate line MGL to the memory gate electrode MG. A voltage is applied, and a substrate voltage of 0 [V] can be applied to the well W (denoted as “Back” in FIG. 3). At this time, a gate-off voltage of 0 [V] is applied from the source-side selection gate line SGL to the source-side selection gate electrode SG1, and a source-off voltage of 0 [V] from the source line SL is applied to the source region WS. Can be applied. Thereby, the source-side selection gate structure 6a cuts off the electrical connection between the source region WS and the channel layer formation carrier region of the memory gate structure 4a, and forms the channel layer of the memory gate structure 4a from the source line SL. Application of voltage to the carrier region can be prevented.
 一方、ドレイン側選択ゲート電極DG1には、ドレイン側選択ゲート線DGL1から1.5[V]のドレイン側選択ゲート電圧が印加され、ドレイン領域WDには、ビット線BL1から0[V]の電荷蓄積ビット電圧が印加され得る。これによりドレイン側選択ゲート構造体5aは、ドレイン領域WDと、メモリゲート構造体4aのチャネル層形成キャリア領域とを電気的に接続させ得る。 On the other hand, a drain-side selection gate voltage of 1.5 [V] from the drain-side selection gate line DGL1 is applied to the drain-side selection gate electrode DG1, and a charge storage bit of 0 [V] from the bit line BL1 is applied to the drain region WD. A voltage can be applied. Thereby, the drain side select gate structure 5a can electrically connect the drain region WD and the channel layer forming carrier region of the memory gate structure 4a.
 メモリゲート構造体4aでは、チャネル層形成キャリア領域がドレイン領域WDと電気的に接続することで、チャネル層形成キャリア領域にキャリアが誘起され、電荷蓄積ビット電圧と同じ0[V]でなるチャネル層がキャリアによってウエルW表面に形成され得る。かくして、メモリゲート構造体4aでは、メモリゲート電極MGおよびチャネル層間に12[V]の大きな電圧差(12[V])が生じ、これにより発生する量子トンネル効果によって電荷蓄積層EC内に電荷を注入し得、データが書き込まれた状態となり得る。 In the memory gate structure 4a, when the channel layer forming carrier region is electrically connected to the drain region WD, carriers are induced in the channel layer forming carrier region, and the channel layer having the same 0 [V] as the charge storage bit voltage Can be formed on the surface of the well W by the carrier. Thus, in the memory gate structure 4a, a large voltage difference (12 [V]) of 12 [V] is generated between the memory gate electrode MG and the channel layer, and the charge is generated in the charge storage layer EC by the quantum tunnel effect generated thereby. It can be injected and data can be written.
 なお、電荷蓄積層ECに電荷を注入するのに必要な電荷蓄積ゲート電圧がメモリセル2aのメモリゲート電極MGに印加された際に、当該メモリセル2aで電荷蓄積層ECへの電荷の注入を阻止するときには、ソース側選択ゲート構造体6aによって、メモリゲート電極MGと対向した領域のウエルWと、ソース領域WSとの電気的な接続を遮断し、かつ、ドレイン側選択ゲート構造体5aによって、メモリゲート電極MGと対向した領域のウエルWと、ドレイン領域WDとの電気的な接続を遮断する。 When a charge storage gate voltage necessary for injecting charges into the charge storage layer EC is applied to the memory gate electrode MG of the memory cell 2a, the memory cell 2a injects charges into the charge storage layer EC. When blocking, the source-side selection gate structure 6a cuts off the electrical connection between the well W in the region facing the memory gate electrode MG and the source region WS, and the drain-side selection gate structure 5a The electrical connection between the well W in the region facing the memory gate electrode MG and the drain region WD is cut off.
 これにより、データを書き込まないメモリセル2aでは、チャネル層形成キャリア領域に空乏層が形成された状態となり、電荷蓄積ゲート電圧に基づきウエルW表面の電位が上昇してゆき、メモリゲート電極MGおよびウエルW表面の電圧差が小さくなるため、電荷蓄積層EC内への電荷注入を阻止できる。 As a result, in the memory cell 2a to which data is not written, a depletion layer is formed in the channel layer forming carrier region, and the potential of the surface of the well W rises based on the charge storage gate voltage, and the memory gate electrode MG and the well Since the voltage difference on the W surface is reduced, charge injection into the charge storage layer EC can be prevented.
 また、図3における「Read」の欄で示すデータの読み出し動作では、例えば読み出しの対象となるメモリセル2aに接続されたビット線BL1を例えば1.5[V]にプリチャージし、ソース線SLを0[V]にしてメモリセル2aに電流が流れるか否かによって変化するビット線BL1の電位を検知することにより、メモリセル2aの電荷蓄積層ECに電荷が蓄積されているか否かを判断し得る。具体的には、メモリセル2aのデータを読み出す際、メモリゲート構造体4aの電荷蓄積層ECに電荷が蓄積されている場合(データが書き込まれている場合)、メモリゲート構造体4a直下のウエルWで非導通状態となり、ドレイン領域WDとソース領域WSとの電気的な接続が遮断され得る。これにより、データを読み出すメモリセル2aでは、ドレイン領域WDに接続されたビット線BL1での1.5[V]の読み出し電圧がそのまま維持され得る。 In the data read operation shown in the column “Read” in FIG. 3, for example, the bit line BL1 connected to the memory cell 2a to be read is precharged to 1.5 [V], for example, and the source line SL is set to 0. By detecting the potential of the bit line BL1 that changes depending on whether or not a current flows through the memory cell 2a at [V], it can be determined whether or not charges are accumulated in the charge accumulation layer EC of the memory cell 2a. . Specifically, when data is read from the memory cell 2a, if charge is accumulated in the charge accumulation layer EC of the memory gate structure 4a (when data is written), the well just below the memory gate structure 4a It becomes a non-conductive state at W, and the electrical connection between the drain region WD and the source region WS can be cut off. Thereby, in the memory cell 2a for reading data, the read voltage of 1.5 [V] on the bit line BL1 connected to the drain region WD can be maintained as it is.
 一方、メモリセル2aのデータを読み出す際、メモリゲート構造体4aの電荷蓄積層ECに電荷が蓄積されていない場合(データが書き込まれていない場合)には、メモリゲート構造体4a直下のウエルWが導通状態となり、ドレイン領域WDとソース領域WSとが電気的に接続され、その結果、メモリセル2aを介して0[V]のソース線SLと、1.5[V]のビット線BL1とが電気的に接続する。これにより、データを読み出すメモリセル2aでは、ビット線BL1の読み出し電圧が、0[V]のソース線SLに印加されることにより、ビット線BL1に印加されている1.5[V]の読み出し電圧が低下する。 On the other hand, when data is read from the memory cell 2a, if no charge is stored in the charge storage layer EC of the memory gate structure 4a (when data is not written), the well W immediately below the memory gate structure 4a is read. Becomes conductive, and the drain region WD and the source region WS are electrically connected. As a result, the 0 [V] source line SL and the 1.5 [V] bit line BL1 are electrically connected via the memory cell 2a. Connect. Thus, in the memory cell 2a that reads data, the read voltage of the bit line BL1 is applied to the source line SL of 0 [V], so that the read voltage of 1.5 [V] applied to the bit line BL1 is increased. descend.
 かくして、不揮発性半導体記憶装置1では、ビット線BL1の読み出し電圧が変化したか否かを検知することにより、メモリセル2aの電荷蓄積層ECに電荷が蓄積されているか否かのデータの読み出し動作を実行できる。なお、データを読み出さないメモリセル2b,2e,2h,2jのみが接続されたビット線BL2には0[V]の非読み出し電圧が印加され得る。 Thus, in the nonvolatile semiconductor memory device 1, the data read operation of whether or not charges are accumulated in the charge accumulation layer EC of the memory cell 2a by detecting whether or not the read voltage of the bit line BL1 has changed. Can be executed. Note that a non-read voltage of 0 [V] can be applied to the bit line BL2 to which only the memory cells 2b, 2e, 2h, and 2j from which data is not read are connected.
 因みに、メモリセル2aの電荷蓄積層EC内の電荷を引き抜くデータの消去動作時(図3中、「Erase」)には、メモリゲート線MGLからメモリゲート電極MGに、-12[V]のメモリゲート電圧が印加されることで、0[V]のウエルWに向けて電荷蓄積層EC内の電荷が引き抜かれてデータが消去され得る。 Incidentally, at the time of data erasing operation ("Erase" in FIG. 3) for extracting charges in the charge storage layer EC of the memory cell 2a, a memory of -12 [V] is transferred from the memory gate line MGL to the memory gate electrode MG. By applying the gate voltage, the charges in the charge storage layer EC are extracted toward the well W of 0 [V], and data can be erased.
 (1-4)不揮発性半導体記憶装置の平面レイアウト
 次に上述した不揮発性半導体記憶装置1の平面レイアウトについて以下説明する。図4は、半導体基板上に複数のメモリセルアレイ部1a,1b,…が配置された本発明の不揮発性半導体記憶装置1を、半導体基板の上方から見た平面レイアウトを示す概略図である。図4では、これら複数のメモリセルアレイ部1a,1b,…のうち、一のメモリセルアレイ部1aの平面レイアウトと、当該メモリセルアレイ部1aと同一構成を有した他のメモリセルアレイ部1bの一部平面レイアウトとを示している。なお、メモリセルアレイ部1a,1b,…は全て同一構成を有しているため、ここでは一のメモリセルアレイ部1aに着目して以下説明する。
(1-4) Planar Layout of Nonvolatile Semiconductor Memory Device Next, the planar layout of the above-described nonvolatile semiconductor memory device 1 will be described below. FIG. 4 is a schematic view showing a planar layout of the nonvolatile semiconductor memory device 1 of the present invention in which a plurality of memory cell array portions 1a, 1b,... Are arranged on a semiconductor substrate as viewed from above the semiconductor substrate. In FIG. 4, among these memory cell array portions 1a, 1b,..., A planar layout of one memory cell array portion 1a and a partial plane of another memory cell array portion 1b having the same configuration as the memory cell array portion 1a. Shows the layout. Since the memory cell array portions 1a, 1b,... All have the same configuration, the following description will be focused on one memory cell array portion 1a.
 因みに、メモリセル2aの断面構成を示した図1は、図4のA-A´部分における断面構成を示すものである。また、図4では、図1に示したメモリゲート構造体4aの側壁に形成されている側壁スペーサ28a,28bの他、ドレイン側選択ゲート構造体5aおよびソース側選択ゲート構造体6aに形成されているサイドウォールSWやシリサイド層S1,S2等についても図示を省略している。 Incidentally, FIG. 1 showing a cross-sectional configuration of the memory cell 2a shows a cross-sectional configuration in the AA ′ portion of FIG. In FIG. 4, in addition to the side wall spacers 28a and 28b formed on the side wall of the memory gate structure 4a shown in FIG. 1, the drain side selection gate structure 5a and the source side selection gate structure 6a are formed. The side walls SW, silicide layers S1, S2, etc. are also not shown.
 この実施の形態の場合、メモリセルアレイ部1aは、一のメモリセル形成部3aと、他のメモリセル形成部3bとを備えており、これら対となるメモリセル形成部3a,3bの長手方向末端に選択ゲート電極非形成領域ER1,ER5を有する。また、これら対となるメモリセル形成部3a,3bは、選択ゲート電極非形成領域ER1,ER5でメモリゲート電極MGにより連結された構成を有する。この場合、メモリセルアレイ部1aは、一方向(図4では行方向)に延設された一のメモリセル形成部3aと、同じく一方向に延設された他のメモリセル形成部3bとが所定距離を設けて並走するように半導体基板上に配置されている。 In the case of this embodiment, the memory cell array unit 1a includes one memory cell forming unit 3a and another memory cell forming unit 3b, and ends in the longitudinal direction of the paired memory cell forming units 3a and 3b. Have select gate electrode non-formation regions ER1, ER5. The paired memory cell forming portions 3a and 3b have a configuration in which the select gate electrode non-formation regions ER1 and ER5 are connected by the memory gate electrode MG. In this case, the memory cell array portion 1a has a predetermined configuration in which one memory cell forming portion 3a extending in one direction (row direction in FIG. 4) and another memory cell forming portion 3b extending in one direction are predetermined. It arrange | positions on a semiconductor substrate so that a distance may be provided and it may run in parallel.
 メモリセル形成部3a,3bには、長手方向に沿ってメモリゲート電極MGが延設されており、各メモリゲート電極MGの頂上部を覆うようにキャップ膜CPが形成され、当該メモリゲート電極MGが外部に非露出状態に設けられている。このため、半導体基板の上方から見た平面レイアウトを示す図4では、メモリセル形成部3a,3bにメモリゲート電極MGが表れておらず、キャップ膜CPが図示されている。 A memory gate electrode MG is extended along the longitudinal direction in the memory cell formation portions 3a and 3b, and a cap film CP is formed so as to cover the top of each memory gate electrode MG. The memory gate electrode MG Is provided outside in an unexposed state. For this reason, in FIG. 4 showing a planar layout as viewed from above the semiconductor substrate, the memory gate electrode MG does not appear in the memory cell formation portions 3a and 3b, and the cap film CP is shown.
 一のメモリセル形成部3a内に設けられたメモリゲート電極MGは、当該メモリセル形成部3aの末端から選択ゲート電極非形成領域ER1,ER5にも延設されており、当該選択ゲート電極非形成領域ER1,ER5で屈曲し、他のメモリセル形成部3bの末端に連設されている。ここで、選択ゲート電極非形成領域ER1,ER5に形成されたメモリゲート電極MGは、メモリセル形成部3a,3bに形成されているメモリゲート電極MGとは異なり、キャップ膜CPで覆われておらず、外部に露出されている。 The memory gate electrode MG provided in one memory cell formation portion 3a is also extended from the end of the memory cell formation portion 3a to the selection gate electrode non-formation regions ER1 and ER5. It bends in the regions ER1 and ER5 and is connected to the end of the other memory cell forming portion 3b. Here, unlike the memory gate electrodes MG formed in the memory cell formation portions 3a and 3b, the memory gate electrodes MG formed in the selection gate electrode non-formation regions ER1 and ER5 are covered with the cap film CP. It is exposed to the outside.
 なお、この実施の形態の場合、メモリセルアレイ部1aのメモリゲート電極MGは、半導体基板の上方から見て無端四角環状に形成されており、メモリセル形成部3a,3bの領域ではキャップ膜CPにより覆われていることから、当該キャップ膜CPに覆われていない選択ゲート電極非形成領域ER1,ER5ではコ字状に外部に露出した構成を有する。 In the case of this embodiment, the memory gate electrode MG of the memory cell array portion 1a is formed in an endless square ring shape when viewed from above the semiconductor substrate, and the cap film CP is formed in the region of the memory cell formation portions 3a and 3b. Since it is covered, the select gate electrode non-formation regions ER1 and ER5 that are not covered with the cap film CP have a configuration that is exposed to the outside in a U-shape.
 ここで、メモリセル形成部3a(3b)は、長手方向に沿って複数のメモリセル2a,2b,2c(2d,2e,2f)が形成されたメモリセル領域ER3を有する。なお、図2に示したメモリセル形成部3a(3b)は、メモリセル2a,2b(2d,2e)だけを図示しているが、図4ではメモリセル2b(2e)に隣接したメモリセル2c(2f)についても図示している。 Here, the memory cell formation portion 3a (3b) has a memory cell region ER3 in which a plurality of memory cells 2a, 2b, 2c (2d, 2e, 2f) are formed along the longitudinal direction. 2 shows only the memory cells 2a and 2b (2d and 2e), the memory cell 2c adjacent to the memory cell 2b (2e) is shown in FIG. (2f) is also illustrated.
 メモリセル形成部3a(3b)は、上述したメモリセル領域ER3の他、当該メモリセル領域ER3の一方の末端に設けられた一の選択ゲートコンタクト領域ER6と、当該メモリセル領域ER3の他方の末端に設けられた他の選択ゲートコンタクト領域ER7と、一の選択ゲートコンタクト領域ER6の末端に設けられた一の電気的切断領域ER2と、他の選択ゲートコンタクト領域ER7の末端に設けられた他の電気的切断領域ER4とを有している。なお、この実施の形態の場合では、メモリセル形成部3a(3b)の長手方向末端に位置する電気的切断領域ER2,ER4に、上述した選択ゲート電極非形成領域ER1,ER5が隣接されている。 In addition to the memory cell region ER3 described above, the memory cell formation portion 3a (3b) includes one select gate contact region ER6 provided at one end of the memory cell region ER3 and the other end of the memory cell region ER3. Other selection gate contact region ER7 provided in one end, one electrical disconnection region ER2 provided at the end of one selection gate contact region ER6, and other selection gate contact region ER7 provided in the other end And an electrical cutting region ER4. In this embodiment, the select gate electrode non-formation regions ER1 and ER5 are adjacent to the electrical cutting regions ER2 and ER4 located at the longitudinal ends of the memory cell formation portion 3a (3b). .
 ここで、メモリセル領域ER3には、半導体基板表面に所定形状のウエルWが形成されており、例えばウエルWのうち帯状に形成されたメモリ配置領域W1,W2,W3に、メモリセル形成部3a,3bが交差するように配置されている。一のメモリセル形成部3aのメモリセル領域ER3には、メモリゲート構造体4aと、ドレイン側選択ゲート構造体5aと、ソース側選択ゲート構造体6aとを有したメモリセル2a(2b,2c)が、メモリ配置領域W1(W2,W3)上に形成されている。また、他のメモリセル形成部3bのメモリセル領域ER3にも、一のメモリセル形成部3aと同様に、メモリゲート構造体4bと、ドレイン側選択ゲート構造体5bと、ソース側選択ゲート構造体6bとを有したメモリセル2d(2e,2f)が、メモリ配置領域W1(W2,W3)上に形成されている。なお、メモリセル領域ER3に配置されたメモリセル2b,2c,2d,2e,2fは、図1にて説明したメモリセル2aと同一構成を有していることから、ここではその説明は省略する。 Here, in the memory cell region ER3, a well W having a predetermined shape is formed on the surface of the semiconductor substrate. For example, in the memory placement regions W1, W2, W3 formed in a strip shape in the well W, the memory cell forming portion 3a , 3b are arranged to intersect. In the memory cell region ER3 of one memory cell formation portion 3a, a memory cell 2a (2b, 2c) having a memory gate structure 4a, a drain side selection gate structure 5a, and a source side selection gate structure 6a Is formed on the memory arrangement area W1 (W2, W3). Further, in the memory cell region ER3 of the other memory cell formation portion 3b, similarly to the one memory cell formation portion 3a, the memory gate structure 4b, the drain side selection gate structure 5b, and the source side selection gate structure Memory cells 2d (2e, 2f) having 6b are formed on the memory arrangement region W1 (W2, W3). Since the memory cells 2b, 2c, 2d, 2e, 2f arranged in the memory cell region ER3 have the same configuration as the memory cell 2a described in FIG. 1, the description thereof is omitted here. .
 ウエルWのメモリ配置領域W1,W2,W3は、メモリゲート構造体4a(4b)を境に、ソース領域WS側とドレイン領域WD側とに区分けされている。各メモリ配置領域W1,W2,W3のうち、メモリセル形成部3a,3b間にあるソース領域WSは、互いに連接しており、所定位置に設けられた柱状のソースコンタクトSCを共有している。ソースコンタクトSCは、ソース線SL(図2)が接続された構成を有し、当該ソース線SLから印加された所定のソース電圧を、各メモリ配置領域W1,W2,W3のソース領域WSに対し一律に印加し得る。 The memory arrangement regions W1, W2, and W3 of the well W are divided into a source region WS side and a drain region WD side with the memory gate structure 4a (4b) as a boundary. Of the memory placement regions W1, W2, and W3, the source regions WS between the memory cell formation portions 3a and 3b are connected to each other and share a columnar source contact SC provided at a predetermined position. The source contact SC has a configuration in which the source line SL (FIG. 2) is connected, and a predetermined source voltage applied from the source line SL is applied to the source region WS of each memory placement region W1, W2, W3. It can be applied uniformly.
 一方、メモリ配置領域W1,W2,W3の各ドレイン領域WDは、互いに分離されており、それぞれ個別に柱状のビットコンタクトBCが設けられた構成を有する。各ビットコンタクトBCには、それぞれ異なるビット線BL1,BL2,…(図2)が接続されており、対応するビット線BL1,BL2,…から所定のビット電圧が個別に印加され得る。これによりメモリセル形成部3aの各ドレイン領域WDには、それぞれ異なるビット線BL1,BL2,…からビットコンタクトBCを介して所定のビット電圧が印加され得る。 On the other hand, the drain regions WD of the memory arrangement regions W1, W2, and W3 are separated from each other, and have a configuration in which columnar bit contacts BC are individually provided. Each bit contact BC is connected to a different bit line BL1, BL2,... (FIG. 2), and a predetermined bit voltage can be individually applied from the corresponding bit line BL1, BL2,. As a result, a predetermined bit voltage can be applied to each drain region WD of the memory cell forming portion 3a from the different bit lines BL1, BL2,.
 この実施の形態の場合、一のメモリセル形成部3aには、ウエルWのソース領域WS側に、メモリゲート構造体4aを構成するメモリゲート電極MGの第1側壁11が配置され、このメモリゲート電極MGの第1側壁11に沿ってソース側選択ゲート構造体6aが形成されている。また、この一のメモリセル形成部3aには、ウエルWのドレイン領域WD側に、メモリゲート構造体4aを構成するメモリゲート電極MGの第2側壁12が配置され、このメモリゲート電極MGの第2側壁12に沿ってドレイン側選択ゲート構造体5aが形成されている。 In the case of this embodiment, the first side wall 11 of the memory gate electrode MG constituting the memory gate structure 4a is arranged in one memory cell forming portion 3a on the source region WS side of the well W, and this memory gate A source side select gate structure 6a is formed along the first side wall 11 of the electrode MG. Further, in this one memory cell forming portion 3a, the second side wall 12 of the memory gate electrode MG constituting the memory gate structure 4a is disposed on the drain region WD side of the well W, and the second side of the memory gate electrode MG is arranged. A drain side select gate structure 5a is formed along the two side walls 12.
 かかる構成に加えて、一のメモリセル形成部3aと対をなす他のメモリセル形成部3bでは、一のメモリセル形成部3aでソース側選択ゲート構造体6aが形成されているメモリゲート電極MGの第1側壁11(内周壁)に沿って、同じくソース側選択ゲート構造体6bが形成されている。これに加えて、他のメモリセル形成部3bでは、一のメモリセル形成部3aでドレイン側選択ゲート構造体5aが形成されているメモリゲート電極MGの第2側壁12(外周壁)に沿って、同じくドレイン側選択ゲート構造体5bが形成されている。 In addition to such a configuration, in the other memory cell forming portion 3b paired with one memory cell forming portion 3a, the memory gate electrode MG in which the source side select gate structure 6a is formed in the one memory cell forming portion 3a. Similarly, the source side select gate structure 6b is formed along the first side wall 11 (inner peripheral wall). In addition to this, in the other memory cell formation portion 3b, along the second side wall 12 (outer peripheral wall) of the memory gate electrode MG in which the drain side selection gate structure 5a is formed in one memory cell formation portion 3a. Similarly, the drain side select gate structure 5b is formed.
 ソース側選択ゲート構造体6a(6b)には、メモリゲート構造体4a(4b)の第1側壁11に沿って、サイドウォール状に形成されたソース側選択ゲート電極SG1(SG2)が形成されているとともに、ソース側選択ゲート電極SG1(SG2)と一体形成された幅広な選択ゲートコンタクト形成部Caが一の選択ゲートコンタクト領域ER6に形成されている。 In the source side select gate structure 6a (6b), a source side select gate electrode SG1 (SG2) formed in a sidewall shape is formed along the first side wall 11 of the memory gate structure 4a (4b). In addition, a wide selection gate contact formation portion Ca formed integrally with the source side selection gate electrode SG1 (SG2) is formed in one selection gate contact region ER6.
 なお、この選択ゲートコンタクト形成部Caには、表面が平面状に形成された平面部15aが形成されており、ソース側選択ゲート線(図示せず)が接続された柱状のソース側選択ゲートコンタクトSGCが、当該平面部15aに設けられている。これにより、幅が狭く傾斜したサイドウォール状のソース側選択ゲート電極SG1(SG2)でも、ソース側選択ゲート線SGLからの所定電圧が、ソース側選択ゲートコンタクトSGCおよび選択ゲートコンタクト形成部Caを介して印加し得る。 The selection gate contact forming portion Ca is formed with a planar portion 15a having a flat surface, and a columnar source side selection gate contact to which a source side selection gate line (not shown) is connected. An SGC is provided on the plane portion 15a. As a result, even in the sidewall-like source-side selection gate electrode SG1 (SG2) having a narrow width, a predetermined voltage from the source-side selection gate line SGL is passed through the source-side selection gate contact SGC and the selection gate contact forming portion Ca. Can be applied.
 また、ドレイン側選択ゲート構造体5a(5b)には、メモリゲート構造体4a(4b)にある第2側壁12に沿って、サイドウォール状に形成されたドレイン側選択ゲート電極DG1(DG2)が形成されているとともに、ドレイン側選択ゲート電極DG1(DG2)と一体形成された幅広な選択ゲートコンタクト形成部Cbが他の選択ゲートコンタクト領域ER7に形成されている。 Further, the drain side select gate structure 5a (5b) has a drain side select gate electrode DG1 (DG2) formed in a side wall shape along the second side wall 12 of the memory gate structure 4a (4b). A wide selection gate contact forming portion Cb formed integrally with the drain side selection gate electrode DG1 (DG2) is formed in another selection gate contact region ER7.
 この選択ゲートコンタクト形成部Cbにも、表面が平面状に形成された平面部15bが形成されており、ドレイン側選択ゲート線DGL1(DGL2)が接続された柱状のドレイン側選択ゲートコンタクトDGCが、当該平面部15bに設けられている。これにより、幅が狭く傾斜したサイドウォール状のドレイン側選択ゲート電極DG1(DG2)でも、ドレイン側選択ゲート線DGL1(DGL2)からの所定電圧が、ドレイン側選択ゲートコンタクトDGCおよび選択ゲートコンタクト形成部Cbを介して印加し得る。 Also in this selection gate contact formation portion Cb, a planar portion 15b having a flat surface is formed, and a columnar drain side selection gate contact DGC to which a drain side selection gate line DGL1 (DGL2) is connected, It is provided on the plane portion 15b. As a result, even in the sidewall-like drain-side selection gate electrode DG1 (DG2) having a narrow width, the predetermined voltage from the drain-side selection gate line DGL1 (DGL2) is applied to the drain-side selection gate contact DGC and the selection gate contact formation portion. It can be applied via Cb.
 因みに、選択ゲートコンタクト領域ER6,ER7に設けられた選択ゲートコンタクト形成部Ca,Cbについては、ソース側選択ゲート電極SG1またはドレイン側選択ゲート電極DG1と連設し、かつソース側選択ゲートコンタクトSGCまたはドレイン側選択ゲートコンタクトDGCが形成できれば、その他種々の形状としてもよい。 Incidentally, the selection gate contact formation portions Ca, Cb provided in the selection gate contact regions ER6, ER7 are connected to the source side selection gate electrode SG1 or the drain side selection gate electrode DG1, and the source side selection gate contact SGC or As long as the drain-side selection gate contact DGC can be formed, various other shapes may be used.
 一方、選択ゲートコンタクト領域ER6,ER7の末端にある電気的切断領域ER2,ER4には、メモリセル領域ER3からメモリゲート構造体4a(4b)が延設されているものの、メモリセル領域ER3とは異なりソース側選択ゲート電極SG1(SG2)およびドレイン側選択ゲート電極DG1(DG2)が延設されておらず、これらソース側選択ゲート電極SG1(SG2)およびドレイン側選択ゲート電極DG1(DG2)に替えて、選択ゲート電極切断部103が形成されている。 On the other hand, the electrical disconnect regions ER2, ER4 at the ends of the select gate contact regions ER6, ER7 are extended from the memory cell region ER3 by the memory gate structure 4a (4b). Unlike the source-side selection gate electrode SG1 (SG2) and the drain-side selection gate electrode DG1 (DG2) are not extended, these source-side selection gate electrode SG1 (SG2) and drain-side selection gate electrode DG1 (DG2) Thus, the selection gate electrode cutting part 103 is formed.
 ここで、選択ゲート電極切断部103は、i型でなるサイドウォール状の真性半導体層Iaと、サイドウォール状の逆導電型半導体層OCと、同じくサイドウォール状の真性半導体層Ibとで構成されており、メモリゲート電極MGの第1側壁11および第2側壁12に沿って、真性半導体層Ia、逆導電型半導体層OCおよび真性半導体層Ibの順に並んで配置された構成を有する。なお、逆導電型半導体層OCは、ソース側選択ゲート電極SG1(SG2)およびドレイン側選択ゲート電極DG1(DG2)とは異なる導電型(この場合、p型)により形成されている。 Here, the selection gate electrode cutting part 103 is composed of an i-type sidewall-like intrinsic semiconductor layer Ia, a sidewall-like inverse conductive semiconductor layer OC, and a sidewall-like intrinsic semiconductor layer Ib. The intrinsic semiconductor layer Ia, the reverse conductivity type semiconductor layer OC, and the intrinsic semiconductor layer Ib are arranged in this order along the first sidewall 11 and the second sidewall 12 of the memory gate electrode MG. Note that the reverse conductivity type semiconductor layer OC is formed of a different conductivity type (in this case, p-type) from the source side select gate electrode SG1 (SG2) and the drain side select gate electrode DG1 (DG2).
 このように電気的切断領域ER2,ER4では、n型のソース側選択ゲート電極SG1(SG2)およびドレイン側選択ゲート電極DG1(DG2)を起点として、メモリゲート電極MGの第1側壁11および第2側壁12に沿って、i型の真性半導体層Ia、p型の逆導電型半導体層OC、およびi型の真性半導体層Ibの順に配置されている。これにより、メモリセルアレイ部1aでは、メモリセル形成部3a(3b)のn型のソース側選択ゲート電極SG1(SG2)を起点にメモリゲート電極MGの第1側壁11に沿ってpin接合を形成し得、同じ第1側壁11に沿って形成されたソース側選択ゲート電極SG1,SG2同士を電気的に切断し得るようになされている。また、同様にメモリゲート電極MGの第2側壁12でも、メモリセル形成部3a(3b)のn型のドレイン側選択ゲート電極DG1(DG2)を起点に当該第2側壁12に沿ってpin接合を形成し得、同じ第2側壁12に沿って形成されたドレイン側選択ゲート電極DG1,DG2同士を電気的に切断し得るようになされている。 As described above, in the electrical disconnect regions ER2 and ER4, the first sidewall 11 and the second sidewall 11 of the memory gate electrode MG start from the n-type source side select gate electrode SG1 (SG2) and the drain side select gate electrode DG1 (DG2). Along the side wall 12, an i-type intrinsic semiconductor layer Ia, a p-type reverse conductivity semiconductor layer OC, and an i-type intrinsic semiconductor layer Ib are arranged in this order. As a result, in the memory cell array portion 1a, a pin junction is formed along the first sidewall 11 of the memory gate electrode MG, starting from the n-type source-side selection gate electrode SG1 (SG2) of the memory cell formation portion 3a (3b). As a result, the source side select gate electrodes SG1, SG2 formed along the same first side wall 11 can be electrically disconnected from each other. Similarly, on the second side wall 12 of the memory gate electrode MG, a pin junction is formed along the second side wall 12 starting from the n-type drain side select gate electrode DG1 (DG2) of the memory cell formation portion 3a (3b). The drain side select gate electrodes DG1 and DG2 formed along the same second side wall 12 can be electrically disconnected from each other.
 ここで、メモリセル領域ER3、電気的切断領域ER2,ER4および選択ゲートコンタクト領域ER6,ER7では、上述したように、メモリゲート電極MG上にキャップ膜CPが形成されていることから、製造過程において、当該キャップ膜CPによりメモリゲート電極MGの上面がサリサイド化されることを防止し得るようになされている。 Here, in the memory cell region ER3, the electrical disconnection regions ER2, ER4, and the selection gate contact regions ER6, ER7, as described above, the cap film CP is formed on the memory gate electrode MG. The cap film CP can prevent the upper surface of the memory gate electrode MG from being salicided.
 一方、選択ゲート電極非形成領域ER1,ER5では、メモリゲート電極MG上にキャップ膜CPが形成されておらず、当該メモリゲート電極MGが外部に露出しているため、上面がサリサイド化され、当該メモリゲート電極MG上に形成されたシリサイド層(図示せず)を介して柱状のメモリゲートコンタクトMGCが設けられている。メモリゲートコンタクトMGCには、メモリゲート線MGL(図2)が接続されており、当該メモリゲート線MGLからの所定電圧が印加され得る。これにより、メモリゲート電極MGには、メモリゲート線MGLの電圧がメモリゲートコンタクトMGCを介して印加され得る。 On the other hand, in the select gate electrode non-formation regions ER1 and ER5, the cap film CP is not formed on the memory gate electrode MG, and the memory gate electrode MG is exposed to the outside. A columnar memory gate contact MGC is provided via a silicide layer (not shown) formed on the memory gate electrode MG. A memory gate line MGL (FIG. 2) is connected to the memory gate contact MGC, and a predetermined voltage can be applied from the memory gate line MGL. Thereby, the voltage of the memory gate line MGL can be applied to the memory gate electrode MG via the memory gate contact MGC.
 このように、不揮発性半導体記憶装置1では、メモリセル領域ER3や、選択ゲートコンタクト領域ER6,ER7、電気的切断領域ER2,ER4においてメモリゲート電極MGがキャップ膜CPで覆われているものの、選択ゲート電極非形成領域ER1,ER5にて露出しているメモリゲート電極MGからメモリゲートコンタクトMGCを介して所定の電圧を印加することで、当該メモリセル領域ER3でキャップ膜CPに覆われたメモリゲート電極MGにも所定の電圧を印加し得る。 As described above, in the nonvolatile semiconductor memory device 1, although the memory gate electrode MG is covered with the cap film CP in the memory cell region ER3, the selection gate contact regions ER6 and ER7, and the electrical disconnection regions ER2 and ER4, the selection is performed. A memory gate covered with the cap film CP in the memory cell region ER3 by applying a predetermined voltage from the memory gate electrode MG exposed in the gate electrode non-formation regions ER1 and ER5 via the memory gate contact MGC A predetermined voltage can also be applied to the electrode MG.
 因みに、このような不揮発性半導体記憶装置1は、一般的なCMOS(Complementary MOS)の製造プロセスである成膜工程や、レジスト塗布工程、露光現像工程、エッチング工程、不純物注入工程、レジスト剥離工程等の各工程を行うことにより作製できるため、ここではその製造方法について省略する。 Incidentally, such a nonvolatile semiconductor memory device 1 includes a film forming process, a resist coating process, an exposure development process, an etching process, an impurity implantation process, a resist stripping process, etc., which are general CMOS (Complementary MOS) manufacturing processes. Therefore, the manufacturing method is omitted here.
 (1-5)ショート不良が発生したときの不揮発性半導体記憶装置
 次に、製造不良等によって、ショート不良が発生したときの不揮発性半導体記憶装置1について説明する。図4との対応部分に同一符号を付して示す図5は、図4に示した不揮発性半導体記憶装置1を製造する際に、例えばエッチング処理により選択ゲート電極切断部103を電気的切断領域ER2,ER4に形成する製造工程で、当該選択ゲート電極切断部103の真性半導体層Ia,Ibとなる半導体材料が、選択ゲート電極非形成領域ER1,ER5にも残存してしまったときの不揮発性半導体記憶装置21の概略図を示す。
(1-5) Nonvolatile Semiconductor Memory Device When Short Circuit Failure Occurs Next, the nonvolatile semiconductor memory device 1 when a short circuit failure occurs due to a manufacturing failure or the like will be described. 5 in which parts corresponding to those in FIG. 4 are denoted by the same reference numerals as those shown in FIG. 4, when the nonvolatile semiconductor memory device 1 shown in FIG. Non-volatility when the semiconductor material that will become the intrinsic semiconductor layers Ia and Ib of the selection gate electrode cutting portion 103 remains in the selection gate electrode non-formation regions ER1 and ER5 in the manufacturing process formed in ER2 and ER4. FIG. 2 shows a schematic diagram of a semiconductor memory device 21. FIG.
 この場合、選択ゲート電極非形成領域ER1,ER5にも半導体材料が残存することで、当該選択ゲート電極非形成領域ER1,ER5には、例えばメモリゲート電極MGの第1側壁11に沿って半導体材料でなるサイドウォール状の真性半導体層Idが形成され、メモリゲート電極MGの第2側壁12に沿って半導体材料でなるサイドウォール状の真性半導体層Ieが形成されている。 In this case, since the semiconductor material also remains in the select gate electrode non-formation regions ER1 and ER5, in the select gate electrode non-formation regions ER1 and ER5, for example, the semiconductor material along the first side wall 11 of the memory gate electrode MG. A side wall-like intrinsic semiconductor layer Id is formed, and a side wall-like intrinsic semiconductor layer Ie made of a semiconductor material is formed along the second side wall 12 of the memory gate electrode MG.
 これにより、メモリゲート電極MGの内周壁となる第1側壁11には、例えば一のメモリセル形成部3aの電気的切断領域ER2に真性半導体層Ia2、逆導電型半導体層OCb、および真性半導体層Idが順に並んで形成されるとともに、当該真性半導体層Idがそのまま選択ゲート電極非形成領域ER1(ER5)の第1側壁11にも形成され、当該真性半導体層Idが他のメモリセル形成部3bの逆導電型半導体層OCcまで延設される。なお、他のメモリセル形成部3bでは、電気的切断領域ER2でメモリゲート電極MGの第1側壁11に沿って真性半導体層Ia3、逆導電型半導体層OCc、および真性半導体層Idが順に並んで形成される。 Thus, the first side wall 11 serving as the inner peripheral wall of the memory gate electrode MG has, for example, the intrinsic semiconductor layer Ia2, the reverse conductivity type semiconductor layer OCb, and the intrinsic semiconductor layer in the electrical cutting region ER2 of the one memory cell formation portion 3a. Id is formed in order, and the intrinsic semiconductor layer Id is formed as it is also on the first side wall 11 of the selection gate electrode non-formation region ER1 (ER5), and the intrinsic semiconductor layer Id is formed in another memory cell formation portion 3b. To the opposite conductivity type semiconductor layer OCc. In the other memory cell formation portion 3b, the intrinsic semiconductor layer Ia3, the reverse conductivity type semiconductor layer OCc, and the intrinsic semiconductor layer Id are arranged in this order along the first sidewall 11 of the memory gate electrode MG in the electrical cutting region ER2. It is formed.
 この際、例えば、製造過程で発生した異物が逆導電型半導体層OCb,OCcに付着してしまったり、或いは、製造時に逆導電型半導体層OCb,OCcの形成不良が生じてしまうと、メモリゲート電極MGの第1側壁11に沿って形成された真性半導体層Ia2,Id,Ia3同士が電気的に接続された状態になってしまう。このとき、本発明の不揮発性半導体記憶装置21では、一のメモリセル形成部3aのソース側選択ゲート電極SG1と、他のメモリセル形成部3bのソース側選択ゲート電極SG2とが、いずれもメモリゲート電極MGの第1側壁11に沿って形成されていることから、メモリゲート電極MGの第1側壁11に沿って形成された真性半導体層Ia2,Id,Ia3同士が電気的に接続された状態になると、ソース側選択ゲート電極SG1,SG2同士が電気的に接続される。 At this time, for example, if foreign matter generated in the manufacturing process adheres to the reverse conductivity type semiconductor layers OCb and OCc, or if the defective formation of the reverse conductivity type semiconductor layers OCb and OCc occurs during manufacturing, the memory gate Intrinsic semiconductor layers Ia2, Id, Ia3 formed along the first side wall 11 of the electrode MG are electrically connected to each other. At this time, in the nonvolatile semiconductor memory device 21 of the present invention, the source side selection gate electrode SG1 of one memory cell formation portion 3a and the source side selection gate electrode SG2 of another memory cell formation portion 3b are both memory. Since the gate electrode MG is formed along the first side wall 11, the intrinsic semiconductor layers Ia2, Id, Ia3 formed along the first side wall 11 of the memory gate electrode MG are electrically connected to each other. Then, the source side select gate electrodes SG1, SG2 are electrically connected.
 ここで、図2との対応部分に同一符号を付して示す図6は、一のメモリセル形成部3aのソース側選択ゲート電極SG1と、他のメモリセル形成部3bのソース側選択ゲート電極SG2とが電気的に接続したときの不揮発性半導体記憶装置21の回路構成を示す概略図である。このとき、メモリセルアレイ部1aのメモリセル形成部3a,3bは、図6に示すように、メモリセル形成部3a,3bで共有しているソース側選択ゲート線SGLが配線Laで接続された構成と見なすことができる。 Here, FIG. 6 in which parts corresponding to those in FIG. 2 are assigned the same reference numerals shows a source side selection gate electrode SG1 of one memory cell formation portion 3a and a source side selection gate electrode of another memory cell formation portion 3b. 3 is a schematic diagram showing a circuit configuration of a nonvolatile semiconductor memory device 21 when SG2 is electrically connected. FIG. At this time, the memory cell forming portions 3a and 3b of the memory cell array portion 1a are configured such that the source side select gate lines SGL shared by the memory cell forming portions 3a and 3b are connected by the wiring La as shown in FIG. Can be considered.
 この場合、例えばメモリセル2aの電荷蓄積層ECに電荷が蓄積されているか否かを検知するデータの読み出し動作時、不揮発性半導体記憶装置21では、データを読み出すメモリセル2aと、それ以外のデータを読み出さないメモリセル2d等とで同じソース側選択ゲート線SGLを共有していることから、一のメモリセル形成部3aのソース側選択ゲート電極SG1と、他のメモリセル形成部3bのソース側選択ゲート電極SG2とが電気的に接続されてしまっても、1.5[V]のソース側選択ゲート線SGLに電圧変動が生じることがなく、従来のような読み出し誤動作を防止できる。 In this case, for example, at the time of data read operation for detecting whether or not electric charge is stored in the charge storage layer EC of the memory cell 2a, the nonvolatile semiconductor memory device 21 uses the memory cell 2a for reading data and other data Since the same source-side selection gate line SGL is shared by the memory cells 2d and the like that do not read the memory cell, the source-side selection gate electrode SG1 of one memory cell formation portion 3a and the source side of another memory cell formation portion 3b Even if the selection gate electrode SG2 is electrically connected, voltage fluctuation does not occur in the 1.5 [V] source side selection gate line SGL, and a conventional read malfunction can be prevented.
 次に、図5に示すように、選択ゲート電極非形成領域ER1に露出したメモリゲート電極MGの第2側壁12に沿って半導体材料が残存してしまったときについても説明する。図5に示すように、メモリセルアレイ部1aでは、選択ゲート電極非形成領域ER1,ER5に半導体材料が残存してしまうと、当該選択ゲート電極非形成領域ER1,ER5においてメモリゲート電極MGの第2側壁12に沿って半導体材料でなるサイドウォール状の真性半導体層Ieが形成されることがある。 Next, as shown in FIG. 5, the case where the semiconductor material remains along the second side wall 12 of the memory gate electrode MG exposed in the selection gate electrode non-formation region ER1 will be described. As shown in FIG. 5, in the memory cell array portion 1a, if the semiconductor material remains in the select gate electrode non-formation regions ER1 and ER5, the second memory gate electrode MG in the select gate electrode non-formation regions ER1 and ER5. A sidewall-like intrinsic semiconductor layer Ie made of a semiconductor material may be formed along the sidewall 12.
 この場合、メモリゲート電極MGの外周壁となる第2側壁12は、例えば一のメモリセル形成部3aの電気的切断領域ER2にある逆導電型半導体層OCaと、他のメモリセル形成部3bの電気的切断領域ER2にある逆導電型半導体層OCdとが真性半導体層Ieによって連設された構成となる。 In this case, the second side wall 12 serving as the outer peripheral wall of the memory gate electrode MG is, for example, the reverse conductivity type semiconductor layer OCa in the electrical cutting region ER2 of one memory cell formation portion 3a and the other memory cell formation portion 3b. The reverse conductivity type semiconductor layer OCd in the electrical cutting region ER2 is connected to the intrinsic semiconductor layer Ie.
 この際、例えば、製造過程で発生した異物が逆導電型半導体層OCa,OCdに付着してしまったり、或いは、製造時に逆導電型半導体層OCa,OCdの形成不良が生じてしまうと、メモリゲート電極MGの第2側壁12に沿って形成された真性半導体層Ia1,Ie,Ia4同士が電気的に接続された状態となってしまう。このとき、本発明の不揮発性半導体記憶装置21では、一のメモリセル形成部3aのドレイン側選択ゲート電極DG1と、他のメモリセル形成部3bのドレイン側選択ゲート電極DG2とが、メモリゲート電極MGの同じ第2側壁12に沿って形成されていることから、メモリゲート電極MGの第2側壁12に沿って形成された真性半導体層Ia1,Ie,Ia4同士が電気的に接続された状態になると、ドレイン側選択ゲート電極DG1,DG2同士が電気的に接続される。 At this time, for example, when foreign matter generated in the manufacturing process adheres to the reverse conductivity type semiconductor layers OCa and OCd, or defective formation of the reverse conductivity type semiconductor layers OCa and OCd occurs at the time of manufacture, the memory gate Intrinsic semiconductor layers Ia1, Ie, Ia4 formed along the second side wall 12 of the electrode MG are electrically connected to each other. At this time, in the nonvolatile semiconductor memory device 21 of the present invention, the drain side selection gate electrode DG1 of one memory cell formation portion 3a and the drain side selection gate electrode DG2 of the other memory cell formation portion 3b are memory gate electrodes. Since the MG is formed along the same second side wall 12, the intrinsic semiconductor layers Ia1, Ie, Ia4 formed along the second side wall 12 of the memory gate electrode MG are electrically connected to each other. Then, the drain side select gate electrodes DG1 and DG2 are electrically connected.
 このとき、図6に示したように、不揮発性半導体記憶装置21では、一のメモリセル形成部3aにおいてドレイン側選択ゲート電極DG1に接続された一のドレイン側選択ゲート線DGL1と、他のメモリセル形成部3bにおいてドレイン側選択ゲート電極DG2に接続された他のドレイン側選択ゲート線DGL2とが配線Lbで接続された構成と見なすことができる。 At this time, as shown in FIG. 6, in the nonvolatile semiconductor memory device 21, one drain-side selection gate line DGL1 connected to the drain-side selection gate electrode DG1 in one memory cell formation portion 3a and another memory In the cell formation portion 3b, it can be considered that the other drain side selection gate line DGL2 connected to the drain side selection gate electrode DG2 is connected by the wiring Lb.
 この場合、例えばメモリセル2aの電荷蓄積層ECに電荷が蓄積されているか否かを検知するデータの読み出し動作時、不揮発性半導体記憶装置21では、データを読み出すメモリセル2aが接続された一のドレイン側選択ゲート線DGL1に1.5[V]が印加され、一方、データを読み出さないメモリセル2d等が接続された他のドレイン側選択ゲート線DGL2に0[V]が印加されることから、一のメモリセル形成部3aのドレイン側選択ゲート電極DG1と、他のメモリセル形成部3bのドレイン側選択ゲート電極DG2とが電気的に接続されてしまうと、ドレイン側選択ゲート線DGL1,DGL2に電圧変動が生じてしまい、この点、従来のような読み出し誤動作が発生してしまう。 In this case, for example, at the time of data read operation for detecting whether or not charge is stored in the charge storage layer EC of the memory cell 2a, the nonvolatile semiconductor memory device 21 is connected to the memory cell 2a to which data is read. Since 1.5 [V] is applied to the drain-side selection gate line DGL1, while 0 [V] is applied to the other drain-side selection gate line DGL2 to which the memory cell 2d or the like that does not read data is connected. If the drain side selection gate electrode DG1 of the memory cell formation portion 3a and the drain side selection gate electrode DG2 of the other memory cell formation portion 3b are electrically connected, a voltage is applied to the drain side selection gate lines DGL1 and DGL2. Variations occur, and in this respect, a conventional read malfunction occurs.
 しかしながら、本発明の不揮発性半導体記憶装置21では、ドレイン側選択ゲート線DGL1,DGL2,DGL3,DGL4がそれぞれメモリセル形成部3a,3b,3c,3d単位で個別に設けられていることから、この際、一のメモリセル形成部3aのドレイン側選択ゲート線DGL1と、他のメモリセル形成部3bのドレイン側選択ゲート線DGL2とだけが、配線Lbによって接続された構成となる。そのため、不揮発性半導体記憶装置21では、メモリセル形成部3a,3bに接続されたドレイン側選択ゲート線DGL1,DGL2にだけ電圧変動が生じ、その他のドレイン側選択ゲート線DGL3,DGL4で電圧変動が生じることを防止できる。 However, in the nonvolatile semiconductor memory device 21 of the present invention, since the drain side select gate lines DGL1, DGL2, DGL3, DGL4 are individually provided in units of the memory cell forming portions 3a, 3b, 3c, 3d, respectively, In this case, only the drain side selection gate line DGL1 of one memory cell formation portion 3a and the drain side selection gate line DGL2 of the other memory cell formation portion 3b are connected by the wiring Lb. Therefore, in the nonvolatile semiconductor memory device 21, the voltage fluctuation occurs only in the drain side selection gate lines DGL1, DGL2 connected to the memory cell formation portions 3a, 3b, and the voltage fluctuation occurs in the other drain side selection gate lines DGL3, DGL4. It can be prevented from occurring.
 かくして、この不揮発性半導体記憶装置21では、例えばメモリセル形成部3a,3bでドレイン側選択ゲート電極DG1,DG2同士が接続されてしまっても、ドレイン側選択ゲート線DGL1,DGL2の電圧変動による読み出し誤動作の発生をメモリセル形成部3a,3bにだけ留めることができるので、これらメモリセル形成部3a,3b間のショート不良が発生しても、その他のメモリセル形成部3c,3dでの読み出し誤動作の発生を防止できる。 Thus, in this nonvolatile semiconductor memory device 21, for example, even if the drain side select gate electrodes DG1 and DG2 are connected to each other in the memory cell formation portions 3a and 3b, reading due to voltage fluctuations of the drain side select gate lines DGL1 and DGL2 Since the occurrence of malfunctions can be limited to only the memory cell formation parts 3a and 3b, even if a short circuit failure occurs between these memory cell formation parts 3a and 3b, read errors in other memory cell formation parts 3c and 3d Can be prevented.
 因みに、データを読み出さないメモリセル形成部3c,3dでショート不良が生じ、ドレイン側選択ゲート線DGL3,DGL4同士が接続されてしまった場合には、ドレイン側選択ゲート線DGL3,DGL4のいずれにも0[V]が印加されていることから、ドレイン側選択ゲート線DGL3,DGL4で電圧変動が生じることがなく、従来のような読み出し誤動作を防止できる。 Incidentally, if a short circuit failure occurs in the memory cell formation portions 3c and 3d that do not read data and the drain side select gate lines DGL3 and DGL4 are connected to each other, both of the drain side select gate lines DGL3 and DGL4 are connected. Since 0 [V] is applied, voltage fluctuation does not occur in the drain side select gate lines DGL3 and DGL4, and a conventional read malfunction can be prevented.
 (1-6)作用および効果
 以上の構成において、不揮発性半導体記憶装置1では、一のメモリセル形成部3aおよび他のメモリセル形成部3bで同じメモリゲート電極MGを共有し、選択ゲート電極非形成領域ER1,ER5で一のメモリセル形成部3aおよび他のメモリセル形成部3bをメモリゲート電極MGで連結するようにした。また、この不揮発性半導体記憶装置1では、一のメモリセル形成部3aのソース側選択ゲート電極SG1と、他のメモリセル形成部3bのソース側選択ゲート電極SG2とを、メモリゲート電極MGの第1側壁11に沿って設けるようにした。
(1-6) Operation and Effect In the above configuration, in the nonvolatile semiconductor memory device 1, the same memory gate electrode MG is shared by one memory cell forming portion 3a and the other memory cell forming portion 3b, and the select gate electrode is not turned on. In the formation regions ER1 and ER5, one memory cell formation portion 3a and another memory cell formation portion 3b are connected by a memory gate electrode MG. Further, in the nonvolatile semiconductor memory device 1, the source side selection gate electrode SG1 of one memory cell formation portion 3a and the source side selection gate electrode SG2 of another memory cell formation portion 3b are connected to the first of the memory gate electrodes MG. 1 Along the side wall 11.
 これにより不揮発性半導体記憶装置1では、製造不良によりメモリゲート電極MGの第1側壁11に沿って、異物や導通材料等が残存してしまった場合でも、一のメモリセル形成部3aと他のメモリセル形成部3bとでデータの読み出し動作時に同じ電圧が印加される同種のソース側選択ゲート電極SG1,SG2同士を電気的に接続させることができるので、データの読み出し動作時にショート不良によるソース側選択ゲート電極SG1,SG2での電圧変動や、ドレイン側選択ゲート電極DG1,DG2での電圧変動を防止できる。 As a result, in the nonvolatile semiconductor memory device 1, even when foreign matter, a conductive material, or the like remains along the first side wall 11 of the memory gate electrode MG due to a manufacturing defect, one memory cell forming unit 3a and another The same type of source-side selection gate electrodes SG1, SG2 to which the same voltage is applied during the data read operation with the memory cell formation portion 3b can be electrically connected to each other, so that the source side due to a short failure during the data read operation Voltage fluctuations at the selection gate electrodes SG1, SG2 and voltage fluctuations at the drain side selection gate electrodes DG1, DG2 can be prevented.
 よって、不揮発性半導体記憶装置1では、製造不良の際、従来のように、異なる電圧値が印加される可能性が高い異種のドレイン側選択ゲート電極およびソース側選択ゲート電極が接続されて不揮発性半導体記憶装置全体で電圧変動が生じてしまう場合に比べて、データ読み出し動作時に電圧変動により生じる読み出し誤動作を軽減し得、さらに意図しない電圧変動によって生じる消費電力の増加を低減し得る。 Therefore, in the nonvolatile semiconductor memory device 1, in the case of a manufacturing defect, different types of drain-side selection gate electrodes and source-side selection gate electrodes, which are likely to be applied with different voltage values, are connected to each other and are nonvolatile. Compared to the case where voltage fluctuation occurs in the entire semiconductor memory device, it is possible to reduce a read malfunction caused by voltage fluctuation during a data read operation, and to reduce an increase in power consumption caused by unintended voltage fluctuation.
 また、この不揮発性半導体記憶装置1では、一のメモリセル形成部3aのドレイン側選択ゲート電極DG1と、他のメモリセル形成部3bのドレイン側選択ゲート電極DG2とを、メモリゲート電極MGの第2側壁12に沿って設けるようにした。 Further, in the nonvolatile semiconductor memory device 1, the drain side selection gate electrode DG1 of one memory cell formation portion 3a and the drain side selection gate electrode DG2 of another memory cell formation portion 3b are connected to the first of the memory gate electrodes MG. 2 Provided along the side wall 12.
 これにより不揮発性半導体記憶装置1では、製造不良によりメモリゲート電極MGの第2側壁12に沿って、異物や導通材料等が残存してしまった場合でも、一のメモリセル形成部3aと他のメモリセル形成部3bとでデータの読み出し動作時に同じ電圧が印加される可能性が高い同種のドレイン側選択ゲート電極DG1,DG2同士を電気的に接続させることができるので、データの読み出し動作時にドレイン側選択ゲート電極DG1,SG2での電圧変動の発生確率を低減できる。 As a result, in the nonvolatile semiconductor memory device 1, even when foreign matter, a conductive material, or the like remains along the second side wall 12 of the memory gate electrode MG due to manufacturing defects, one memory cell forming portion 3a and another Since the same type of drain-side selection gate electrodes DG1, DG2, which are highly likely to be applied with the same voltage during the data read operation, can be electrically connected to the memory cell formation portion 3b, the drain during the data read operation The probability of occurrence of voltage fluctuations at the side select gate electrodes DG1 and SG2 can be reduced.
 また、この不揮発性半導体記憶装置1では、仮にショート不良が生じているドレイン側選択ゲート電極DG1,DG2で異なる電圧が印加されていても、メモリセル形成部3a,3b,…毎に異なるドレイン側選択ゲート線DGL1,DGL2  ,…が接続されていることから、一のメモリセル形成部3aのドレイン側選択ゲート電極DG1と、他のメモリセル形成部3bのドレイン側選択ゲート電極DG2とだけが電気的に接続され、電圧変動をメモリセル形成部3a,3bだけに留めることができ、メモリセル形成部3a,3b以外で電圧変動が生じることを防止できる。 Further, in this nonvolatile semiconductor memory device 1, even if different voltages are applied to the drain side select gate electrodes DG1, DG2 in which a short circuit defect has occurred, a different drain side is used for each memory cell formation portion 3a, 3b,. Since the selection gate lines DGL1, DGL2,... Are connected, only the drain side selection gate electrode DG1 of one memory cell formation portion 3a and the drain side selection gate electrode DG2 of the other memory cell formation portion 3b are electrically connected. Connected, the voltage fluctuation can be limited to only the memory cell forming portions 3a and 3b, and it is possible to prevent the voltage fluctuation from occurring except for the memory cell forming portions 3a and 3b.
 よって、不揮発性半導体記憶装置1では、製造不良の際、従来のように、異なる電圧値が印加される可能性が高い異種のドレイン側選択ゲート電極およびソース側選択ゲート電極が接続されて不揮発性半導体記憶装置全体で電圧変動が生じる場合に比べて、データ読み出し動作時に電圧変動により生じる読み出し誤動作を軽減し得、さらに意図しない電圧変動による消費電力の増加を低減し得る。 Therefore, in the nonvolatile semiconductor memory device 1, in the case of a manufacturing defect, different types of drain-side selection gate electrodes and source-side selection gate electrodes, which are likely to be applied with different voltage values, are connected to each other and are nonvolatile. Compared with the case where voltage fluctuation occurs in the entire semiconductor memory device, it is possible to reduce a read malfunction caused by voltage fluctuation during a data read operation, and to reduce an increase in power consumption due to unintended voltage fluctuation.
 (2)他の実施の形態による不揮発性半導体記憶装置
 (2-1)他の実施の形態による不揮発性半導体記憶装置の平面レイアウト
 上述した実施の形態においては、半導体基板の上方から見て無端四角環状にメモリゲート電極MGを形成し、1つのメモリセルアレイ部1aに2つのメモリセル形成部3a,3bを設けた不揮発性半導体記憶装置1について述べたが、本発明はこれに限らず、図4との対応部分に同一符号を付して示す図7のように、半導体基板の上方から見て無端梯子状にメモリゲート電極MG1を形成し、1つのメモリセルアレイ部41aに3つ以上のメモリセル形成部3b,3a,3e,…を設けた不揮発性半導体記憶装置41を適用してもよい。
(2) Nonvolatile Semiconductor Memory Device According to Other Embodiment (2-1) Planar Layout of Nonvolatile Semiconductor Memory Device According to Other Embodiment In the above-described embodiment, an endless square as viewed from above the semiconductor substrate Although the nonvolatile semiconductor memory device 1 in which the memory gate electrode MG is formed in a ring shape and the two memory cell forming portions 3a and 3b are provided in one memory cell array portion 1a has been described, the present invention is not limited to this, and FIG. 7, the memory gate electrode MG1 is formed in an endless ladder shape when viewed from above the semiconductor substrate, and three or more memory cells are formed in one memory cell array portion 41a. A non-volatile semiconductor memory device 41 provided with the forming portions 3b, 3a, 3e,... May be applied.
 この場合、メモリセルアレイ部41aは、複数のメモリセル形成部3b,3a,3e,…が所定距離を設けて並走して半導体基板上に配置された構成を有し、メモリセル形成部3b,3a,3e,…で同じメモリゲート電極MG1を共有している。実際上、メモリゲート電極MG1は、選択ゲート電極非形成領域ER1,ER5において複数のメモリセル形成部3b,3a,3e,…が並んだ方向に向けて延設されているとともに、各メモリセル形成部3b,3a,3e,…の末端に連設されている。 In this case, the memory cell array unit 41a has a configuration in which a plurality of memory cell forming units 3b, 3a, 3e,... Are arranged in parallel on a semiconductor substrate at a predetermined distance, and the memory cell forming units 3b, 3b, 3a, 3e,... Share the same memory gate electrode MG1. In practice, the memory gate electrode MG1 extends in the direction in which the plurality of memory cell formation portions 3b, 3a, 3e,... Are arranged in the selection gate electrode non-formation regions ER1, ER5, and each memory cell formation It is connected with the terminal of part 3b, 3a, 3e, ....
 この実施の形態の場合、例えば、図7に示す2行目のメモリセル形成部3aには、3行目のメモリセル形成部3bとの間にあるウエルWのソース領域WS側に、メモリゲート電極MG1の第1側壁11が配置され、この第1側壁11に沿ってソース側選択ゲート電極SG1が形成されている。また、このメモリセル形成部3aには、1行目のメモリセル形成部3eとの間にあるウエルWのドレイン領域WD側に、メモリゲート電極MG1の第2側壁12が配置され、この第2側壁12に沿ってドレイン側選択ゲート電極DG1が形成されている。 In the case of this embodiment, for example, the memory cell forming portion 3a in the second row shown in FIG. 7 includes a memory gate on the source region WS side of the well W between the memory cell forming portion 3b in the third row. A first side wall 11 of the electrode MG1 is disposed, and a source side select gate electrode SG1 is formed along the first side wall 11. Further, in this memory cell formation portion 3a, the second sidewall 12 of the memory gate electrode MG1 is disposed on the drain region WD side of the well W between the memory cell formation portion 3e in the first row, and this second A drain side select gate electrode DG1 is formed along the side wall 12.
 ここで、2行目のメモリセル形成部3aに形成されたメモリゲート電極MG1の第1側壁11は、当該メモリセル形成部3aと一方で隣接する3行目のメモリセル形成部3bまで延設されており、そのまま当該3行目のメモリセル形成部3bにおけるメモリゲート電極MG1の第1側壁11となり得る。このように隣接するメモリセル形成部3a,3bには、メモリゲート電極MG1の第1側壁11が、切れ目なく周回するように形成されている。また、3行目のメモリセル形成部3bでは、メモリゲート電極MG1の第1側壁11側にあるウエルWにソース領域WSが形成されており、当該第1側壁11に沿ってソース側選択ゲート電極SG2が設けられ得る。 Here, the first side wall 11 of the memory gate electrode MG1 formed in the memory cell formation portion 3a in the second row extends to the memory cell formation portion 3b in the third row adjacent to the memory cell formation portion 3a. Thus, the first side wall 11 of the memory gate electrode MG1 in the memory cell formation portion 3b in the third row can be used as it is. Thus, in the adjacent memory cell forming portions 3a and 3b, the first side wall 11 of the memory gate electrode MG1 is formed so as to circulate without a break. In the memory cell formation portion 3b in the third row, the source region WS is formed in the well W on the first side wall 11 side of the memory gate electrode MG1, and the source side selection gate electrode is formed along the first side wall 11. SG2 may be provided.
 かくして、3行目のメモリセル形成部3bには、2行目のメモリセル形成部3aでソース側選択ゲート電極SG1が形成されたメモリゲート電極MG1の第1側壁11に沿って、同じくソース側選択ゲート電極SG2が形成され得る。なお、3行目のメモリセル形成部3bでは、メモリゲート電極MG1の第2側壁12側のウエルWにドレイン領域WDが形成されており、当該第2側壁12に沿ってドレイン側選択ゲート電極DG2が形成され得る。 Thus, the memory cell forming portion 3b in the third row has the same source side along the first side wall 11 of the memory gate electrode MG1 in which the source side select gate electrode SG1 is formed in the memory cell forming portion 3a in the second row. A select gate electrode SG2 can be formed. In the memory cell formation portion 3b in the third row, the drain region WD is formed in the well W on the second side wall 12 side of the memory gate electrode MG1, and the drain side selection gate electrode DG2 is formed along the second side wall 12 Can be formed.
 因みに、この3行目のメモリセル形成部3bは、図7に示すように、メモリセルアレイ部41aの一方の末端に形成されていることから、メモリゲート電極MG1の第2側壁12がメモリセルアレイ部41aの外周壁となり、当該第2側壁12が選択ゲート電極非形成領域ER1,ER5を通ってメモリセルアレイ部41aの他方の末端に配置されたメモリセル形成部(図示せず)まで延設され得る。なお、メモリセルアレイ部41aの他方の末端に形成されたメモリセル形成部では、3行目のメモリセル形成部3bと同様に、メモリゲート電極MG1の第2側壁12に沿ってドレイン側選択ゲート電極が形成され得る。 Incidentally, since the memory cell forming portion 3b in the third row is formed at one end of the memory cell array portion 41a as shown in FIG. 7, the second side wall 12 of the memory gate electrode MG1 is connected to the memory cell array portion. The second side wall 12 can be extended to the memory cell formation portion (not shown) disposed at the other end of the memory cell array portion 41a through the selection gate electrode non-formation regions ER1 and ER5. . In the memory cell formation portion formed at the other end of the memory cell array portion 41a, the drain side selection gate electrode along the second side wall 12 of the memory gate electrode MG1 is the same as the memory cell formation portion 3b in the third row. Can be formed.
 一方、2行目のメモリセル形成部3aと、このメモリセル形成部3aと他方で隣接する1行目のメモリセル形成部3eとの間では、メモリゲート電極MG1の第2側壁12が周回するように形成されており、隣接するメモリセル形成部3a,3eでメモリゲート電極MG1の同じ第2側壁12を共有している。この場合、1行目のメモリセル形成部3eでは、メモリゲート電極MG1の第2側壁12側にあるウエルWにドレイン領域WDが形成されており、当該第2側壁12に沿ってドレイン側選択ゲート電極DG3が設けられ得る。 On the other hand, the second sidewall 12 of the memory gate electrode MG1 circulates between the memory cell formation portion 3a in the second row and the memory cell formation portion 3e in the first row adjacent to the memory cell formation portion 3a on the other side. The memory cell forming portions 3a and 3e adjacent to each other share the same second side wall 12 of the memory gate electrode MG1. In this case, in the memory cell formation portion 3e in the first row, the drain region WD is formed in the well W on the second side wall 12 side of the memory gate electrode MG1, and the drain side selection gate is formed along the second side wall 12. An electrode DG3 may be provided.
 かくして、1行目のメモリセル形成部3eには、2行目のメモリセル形成部3aでドレイン側選択ゲート電極DG1が形成されたメモリゲート電極MG1の第2側壁12に沿って、同じくドレイン側選択ゲート電極DG3が形成され得る。また、1行目のメモリセル形成部3eには、メモリゲート電極MG1の第1側壁11側のウエルWにソース領域WSが形成されており、当該第1側壁11に沿ってソース側選択ゲート電極SG3が形成されている。 Thus, the memory cell forming portion 3e in the first row also has the same drain side along the second side wall 12 of the memory gate electrode MG1 in which the drain side select gate electrode DG1 is formed in the memory cell forming portion 3a in the second row. A select gate electrode DG3 can be formed. In the memory cell formation portion 3e in the first row, a source region WS is formed in the well W on the first side wall 11 side of the memory gate electrode MG1, and the source side selection gate electrode is formed along the first side wall 11. SG3 is formed.
 なお、この不揮発性半導体記憶装置41においても、データ書き込み動作時(Prog)や、データ読み出し動作時(Read)、データ消去動作時(Erase)における各部位の電圧値については、上述した「(1-3)不揮発性半導体記憶装置における各種動作時における電圧について」と同じであるため、ここではその説明を省略する。 Also in the nonvolatile semiconductor memory device 41, the voltage values of the respective parts during the data write operation (Prog), the data read operation (Read), and the data erase operation (Erase) are described in “(1 -3) Voltages in Various Operations of Nonvolatile Semiconductor Memory Device ”, the description is omitted here.
 (2-2)ショート不良が発生したときの他の実施の形態による不揮発性半導体記憶装置
 次に、製造不良等によって、ショート不良が発生したときの不揮発性半導体記憶装置41について説明する。ここで、図7との対応部分に同一符号を付して示す図8は、図7に示した不揮発性半導体記憶装置41を製造する際に、例えば、エッチング処理により選択ゲート電極切断部103を電気的切断領域ER2,ER4に形成する製造工程で、当該選択ゲート電極切断部103の半導体材料が、選択ゲート電極非形成領域ER1,ER5にも残存してしまったときの不揮発性半導体記憶装置51の概略図を示す。
(2-2) Nonvolatile Semiconductor Memory Device According to Other Embodiment When Short Circuit Failure Occurs Next, the nonvolatile semiconductor memory device 41 when a short circuit failure occurs due to a manufacturing failure or the like will be described. Here, in FIG. 8 in which the same reference numerals are assigned to the corresponding parts to FIG. 7, when the nonvolatile semiconductor memory device 41 shown in FIG. 7 is manufactured, for example, the selection gate electrode cutting part 103 is formed by etching. Non-volatile semiconductor memory device 51 when the semiconductor material of the selection gate electrode cutting portion 103 remains in the selection gate electrode non-formation regions ER1, ER5 in the manufacturing process formed in the electrical cutting regions ER2, ER4. The schematic of is shown.
 この場合、選択ゲート電極非形成領域ER1,ER5にも半導体材料が残存することで、当該選択ゲート電極非形成領域ER1,ER5には、メモリゲート電極MGの第1側壁11に沿って半導体材料でなるサイドウォール状の真性半導体層Idが形成され、メモリゲート電極MGの第2側壁12に沿って半導体材料でなるサイドウォール状の真性半導体層Ie,Ifが形成される。 In this case, since the semiconductor material also remains in the select gate electrode non-formation regions ER1 and ER5, the select gate electrode non-formation regions ER1 and ER5 are made of the semiconductor material along the first sidewall 11 of the memory gate electrode MG. A sidewall-like intrinsic semiconductor layer Id is formed, and sidewall-like intrinsic semiconductor layers Ie, If made of a semiconductor material are formed along the second sidewall 12 of the memory gate electrode MG.
 ここで、例えば2行目のメモリセル形成部3aでは、電気的切断領域ER2にあるメモリゲート電極MGの第1側壁11に、真性半導体層Ia2、逆導電型半導体層OCb、および真性半導体層Idが順に並んで形成されるとともに、さらに当該真性半導体層Idがそのまま選択ゲート電極非形成領域ER1(ER5)にも形成され得る。これにより、メモリセル形成部3aは、メモリゲート電極MG1の第1側壁11を共有している3行目のメモリセル形成部3bの逆導電型半導体層OCcと、真性半導体層Idによって連設された構成となり得る。 Here, for example, in the memory cell formation part 3a in the second row, the intrinsic semiconductor layer Ia2, the reverse conductivity type semiconductor layer OCb, and the intrinsic semiconductor layer Id are formed on the first side wall 11 of the memory gate electrode MG in the electrical disconnection region ER2. Are formed side by side, and the intrinsic semiconductor layer Id can also be formed in the select gate electrode non-formation region ER1 (ER5) as it is. As a result, the memory cell formation portion 3a is connected in series by the intrinsic semiconductor layer Id and the reverse conductivity type semiconductor layer OCc of the memory cell formation portion 3b in the third row sharing the first side wall 11 of the memory gate electrode MG1. Can be configured.
 この際、例えば、製造過程で発生した異物が逆導電型半導体層OCb,OCcに付着してしまったり、或いは、製造時に逆導電型半導体層OCb,OCcの形成不良が生じてしまうと、メモリゲート電極MG1の第1側壁11に沿って形成された真性半導体層Ia2,Id,Ia3同士が電気的に接続された状態となってしまう。このとき、本発明の不揮発性半導体記憶装置51では、2行目のメモリセル形成部3aのソース側選択ゲート電極SG1と、3行目のメモリセル形成部3bのソース側選択ゲート電極SG2とが、メモリゲート電極MG1の同じ第1側壁11に沿って形成されていることから、メモリゲート電極MG1の第1側壁11に沿って形成された真性半導体層Ia2,Id,Ia3同士が電気的に接続された状態になると、ソース側選択ゲート電極SG1,SG2同士が電気的に接続される。 At this time, for example, if foreign matter generated in the manufacturing process adheres to the reverse conductivity type semiconductor layers OCb and OCc, or if the defective formation of the reverse conductivity type semiconductor layers OCb and OCc occurs during manufacturing, the memory gate Intrinsic semiconductor layers Ia2, Id, Ia3 formed along the first side wall 11 of the electrode MG1 are electrically connected to each other. At this time, in the nonvolatile semiconductor memory device 51 of the present invention, the source-side selection gate electrode SG1 of the memory cell formation portion 3a in the second row and the source-side selection gate electrode SG2 in the memory cell formation portion 3b of the third row are provided. Since the memory gate electrode MG1 is formed along the same first side wall 11, the intrinsic semiconductor layers Ia2, Id, Ia3 formed along the first side wall 11 of the memory gate electrode MG1 are electrically connected to each other. In this state, the source side select gate electrodes SG1, SG2 are electrically connected.
 このとき、不揮発性半導体記憶装置51では、上述した実施の形態と同様に、一のメモリセル形成部3aのソース側選択ゲート電極SG1に接続されたソース側選択ゲート線SGLと、他のメモリセル形成部3bのソース側選択ゲート電極SG2に接続されたソース側選択ゲート線SGLとが配線La(図6)で接続された構成と見なすことができる。 At this time, in the nonvolatile semiconductor memory device 51, similarly to the above-described embodiment, the source-side selection gate line SGL connected to the source-side selection gate electrode SG1 of one memory cell formation portion 3a and other memory cells It can be considered that the source side selection gate line SGL connected to the source side selection gate electrode SG2 of the formation part 3b is connected by the wiring La (FIG. 6).
 この場合、例えば2行目のメモリセル形成部3aに設けられたメモリセル2aの電荷蓄積層ECに電荷が蓄積されているか否かを検知するデータの読み出し動作時、不揮発性半導体記憶装置51では、データを読み出すメモリセル2aと、データを読み出さないメモリセル2d等とで同じソース側選択ゲート線SGLを共有していることから、2行目のメモリセル形成部3aのソース側選択ゲート電極SG1と、3行目のメモリセル形成部3bのソース側選択ゲート電極SG2とが電気的に接続されてしまっても、1.5[V]のソース側選択ゲート線SGLに電圧変動が生じることがなく、従来のような読み出し誤動作を防止できる。 In this case, for example, in the data read operation for detecting whether or not charges are accumulated in the charge accumulation layer EC of the memory cell 2a provided in the memory cell formation unit 3a in the second row, the nonvolatile semiconductor memory device 51 Since the memory cell 2a that reads data and the memory cell 2d that does not read data share the same source side selection gate line SGL, the source side selection gate electrode SG1 of the memory cell formation portion 3a in the second row And even if the source-side selection gate electrode SG2 of the memory cell formation part 3b in the third row is electrically connected, the voltage fluctuation does not occur in the 1.5-V source-side selection gate line SGL, A conventional read malfunction can be prevented.
 次に、図8に示すように、1行目のメモリセル形成部3eおよび2行目のメモリセル形成部3a間の選択ゲート電極非形成領域ER1,ER5において、メモリゲート電極MG1の第2側壁12に沿って半導体材料が残存してしまったときについて説明する。図8に示すように、メモリセル形成部3a,3e間では、選択ゲート電極非形成領域ER1,ER5に半導体材料が残存してしまうと、メモリゲート電極MGの第2側壁12に沿って半導体材料でなるサイドウォール状の真性半導体層Ifが形成されることがある。 Next, as shown in FIG. 8, in the select gate electrode non-formation regions ER1 and ER5 between the memory cell formation portion 3e in the first row and the memory cell formation portion 3a in the second row, the second sidewall of the memory gate electrode MG1 A case where the semiconductor material remains along the line 12 will be described. As shown in FIG. 8, when the semiconductor material remains in the select gate electrode non-formation regions ER1 and ER5 between the memory cell formation portions 3a and 3e, the semiconductor material along the second side wall 12 of the memory gate electrode MG. A sidewall-like intrinsic semiconductor layer If may be formed.
 この場合、メモリセル形成部3a,3e間にあるメモリゲート電極MGの第2側壁12では、例えば2行目のメモリセル形成部3aの電気的切断領域ER2にある逆導電型半導体層OCaと、1行目のメモリセル形成部3eの電気的切断領域ER2にある逆導電型半導体層OCeとが真性半導体層Ifによって連設された構成となる。 In this case, on the second side wall 12 of the memory gate electrode MG between the memory cell formation portions 3a and 3e, for example, the reverse conductivity type semiconductor layer OCa in the electrically disconnected region ER2 of the memory cell formation portion 3a in the second row, This is a structure in which the reverse conductivity type semiconductor layer OCe in the electrically disconnected region ER2 of the memory cell formation portion 3e in the first row is connected by the intrinsic semiconductor layer If.
 この際、例えば、製造過程で発生した異物が逆導電型半導体層OCa,OCeに付着してしまったり、或いは、製造時に逆導電型半導体層OCa,OCeの形成不良が生じてしまうと、メモリゲート電極MGの第2側壁12に沿って形成された真性半導体層Ia1,If,Ia4同士が電気的に接続された状態となってしまう。 At this time, for example, if foreign matter generated in the manufacturing process adheres to the reverse conductivity type semiconductor layers OCa, OCe, or if the reverse conductivity type semiconductor layers OCa, OCe are poorly formed at the time of manufacture, the memory gate Intrinsic semiconductor layers Ia1, If, Ia4 formed along the second side wall 12 of the electrode MG are electrically connected to each other.
 このとき、本発明の不揮発性半導体記憶装置51では、2行目のメモリセル形成部3aのドレイン側選択ゲート電極DG1と、1行目のメモリセル形成部3eのドレイン側選択ゲート電極DG3とが、メモリゲート電極MG1の同じ第2側壁12に沿って形成されていることから、メモリゲート電極MG1の第2側壁12に沿って形成された真性半導体層Ia1,If,Ia4同士が電気的に接続された状態になると、ドレイン側選択ゲート電極DG1,DG3同士が電気的に接続される。 At this time, in the nonvolatile semiconductor memory device 51 of the present invention, the drain side selection gate electrode DG1 of the memory cell formation portion 3a in the second row and the drain side selection gate electrode DG3 in the memory cell formation portion 3e of the first row are provided. Since the memory gate electrode MG1 is formed along the same second side wall 12, the intrinsic semiconductor layers Ia1, If, Ia4 formed along the second side wall 12 of the memory gate electrode MG1 are electrically connected to each other. In this state, the drain side select gate electrodes DG1 and DG3 are electrically connected to each other.
 この場合、例えば2行目のメモリセル形成部3aに配置されたメモリセル2aの電荷蓄積層に電荷が蓄積されているか否かを検知するデータの読み出し動作時、不揮発性半導体記憶装置51では、データを読み出すメモリセル形成部3aのドレイン側選択ゲート電極DG1に1.5[V]が印加され、一方、データを読み出さないメモリセル形成部3eに接続されたドレイン側選択ゲート電極DG3に0[V]が印加される。このため、不揮発性半導体記憶装置51でも、2行目のメモリセル形成部3aのドレイン側選択ゲート電極DG1と、1行目のメモリセル形成部3eのドレイン側選択ゲート電極DG3とが電気的に接続されてしまうと、ドレイン側選択ゲート電極DG1,DG3に電圧変動が生じてしまい、この点、従来のような読み出し誤動作が発生してしまう。 In this case, for example, in the data read operation for detecting whether or not charges are accumulated in the charge accumulation layer of the memory cell 2a arranged in the memory cell formation unit 3a in the second row, the nonvolatile semiconductor memory device 51 1.5 [V] is applied to the drain-side selection gate electrode DG1 of the memory cell formation portion 3a that reads data, while 0 [V] is applied to the drain-side selection gate electrode DG3 connected to the memory cell formation portion 3e that does not read data. Is applied. Therefore, also in the nonvolatile semiconductor memory device 51, the drain side selection gate electrode DG1 of the memory cell formation unit 3a in the second row and the drain side selection gate electrode DG3 of the memory cell formation unit 3e in the first row are electrically connected. If they are connected, voltage fluctuations occur in the drain side select gate electrodes DG1 and DG3, and in this respect, a conventional read malfunction occurs.
 しかしながら、本発明の不揮発性半導体記憶装置51では、ドレイン側選択ゲート電極線がメモリセル形成部3b,3a,3e,…単位で個別に設けられていることから、この際、2行目のメモリセル形成部3aに接続されたドレイン側選択ゲート線と、1行目のメモリセル形成部3eに接続されたドレイン側選択ゲート線とだけが接続された構成となる。そのため、不揮発性半導体記憶装置51では、上述した実施の形態と同様に、メモリセル形成部3a,3eに接続された各ドレイン側選択ゲート線にだけ電圧変動が生じるものの、その他のメモリセル形成部3bに接続されたドレイン側選択ゲート線で電圧変動が生じることを防止できる。 However, in the nonvolatile semiconductor memory device 51 of the present invention, the drain-side selection gate electrode lines are individually provided in units of the memory cell formation portions 3b, 3a, 3e,. Only the drain side select gate line connected to the cell forming portion 3a and the drain side select gate line connected to the memory cell forming portion 3e in the first row are connected. Therefore, in the nonvolatile semiconductor memory device 51, as in the above-described embodiment, although voltage fluctuation occurs only in each drain-side selection gate line connected to the memory cell formation units 3a and 3e, other memory cell formation units It is possible to prevent voltage fluctuations from occurring on the drain side select gate line connected to 3b.
 以上の構成によれば、不揮発性半導体記憶装置41でも、上述した実施の形態と同様に、製造不良の際、従来のように、異なる電圧値が印加される可能性が高い異種のドレイン側選択ゲート電極およびソース側選択ゲート電極が接続されて不揮発性半導体記憶装置全体で電圧変動が生じる場合に比べて、データ読み出し動作時に電圧変動により生じる読み出し誤動作を軽減し得、さらに意図しない電圧変動による消費電力の増加を低減し得る。 According to the above configuration, even in the nonvolatile semiconductor memory device 41, as in the above-described embodiment, different types of drain-side selections that are likely to be applied with different voltage values in the case of a manufacturing failure as in the past. Compared to the case where voltage fluctuation occurs in the entire nonvolatile semiconductor memory device by connecting the gate electrode and the source side selection gate electrode, read malfunction caused by voltage fluctuation during data read operation can be reduced, and consumption due to unintended voltage fluctuation The increase in power can be reduced.
 (3)その他の実施の形態
 なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能であり、例えば各部位の電圧値について種々の電圧値を適用してもよい。また、上述した実施の形態においては、メモリゲート電極の第1側壁に形成される第1選択ゲート電極として、ソース側選択ゲート電極SG1,SG2とした場合について述べたが、本発明はこれに限らず、ドレイン側選択ゲート電極を第1選択ゲート電極としてメモリゲート電極の第1側壁に形成してもよい。なお、この場合、メモリゲート電極の第2側壁に形成される第2選択ゲート電極は、ソース側選択ゲート電極となる。
(3) Other Embodiments The present invention is not limited to the present embodiment, and various modifications may be made within the scope of the gist of the present invention. The voltage value may be applied. In the above-described embodiment, the case where the source-side selection gate electrodes SG1 and SG2 are used as the first selection gate electrode formed on the first sidewall of the memory gate electrode has been described. However, the present invention is not limited to this. Alternatively, the drain side select gate electrode may be formed on the first side wall of the memory gate electrode as the first select gate electrode. In this case, the second selection gate electrode formed on the second sidewall of the memory gate electrode is a source side selection gate electrode.
 また、上述した実施の形態においては、ドレイン側選択ゲート電極DG1およびソース側選択ゲート電極SG1を起点としてpin接合を形成する選択ゲート電極切断部103を設けるようにした場合について述べたが、本発明はこれに限らず、ドレイン側選択ゲート電極DG1およびソース側選択ゲート電極SG1を起点としてnin接合構造、pip接合構造、npn接合構造、またはpnp接合構造を形成する選択ゲート電極切断部を設けるようにしてもよい。すなわち、一のメモリセル形成部の第1選択ゲート電極と、他のメモリセル形成部の第1選択ゲート電極と、の間には、メモリゲート電極の側壁に、第1選択ゲート電極および第2選択ゲート電極とは導電型が異なる逆導電型半導体層、または、真性半導体層のいずれかが設けられていることがよい。 In the above-described embodiment, the description has been given of the case where the selection gate electrode cutting portion 103 that forms the pin junction with the drain side selection gate electrode DG1 and the source side selection gate electrode SG1 as a starting point is provided. However, the present invention is not limited to this, and a selection gate electrode cutting portion that forms a nin junction structure, a pip junction structure, an npn junction structure, or a pnp junction structure starting from the drain side selection gate electrode DG1 and the source side selection gate electrode SG1 is provided. May be. That is, between the first selection gate electrode of one memory cell formation portion and the first selection gate electrode of another memory cell formation portion, the first selection gate electrode and the second Either a reverse conductivity type semiconductor layer or an intrinsic semiconductor layer having a conductivity type different from that of the selection gate electrode is preferably provided.
 さらに、上述した実施の形態においては、選択ゲートコンタクト領域ER6(ER7)の末端に電気的切断領域ER2(ER4)を配置した場合について述べたが、本発明はこれに限らず、電気的切断領域ER2(ER4)を設けずに、選択ゲートコンタクト領域ER6(ER7)の末端に選択ゲート電極非形成領域ER1(ER5)だけを配置するようにしてもよい。 Further, in the above-described embodiment, the case where the electrical cutting region ER2 (ER4) is disposed at the end of the selection gate contact region ER6 (ER7) has been described. However, the present invention is not limited thereto, and the electrical cutting region is not limited thereto. Only the selection gate electrode non-formation region ER1 (ER5) may be arranged at the end of the selection gate contact region ER6 (ER7) without providing ER2 (ER4).
 さらに、電気的切断領域ER2,ER4の有無に係わらず、選択ゲート電極非形成領域ER1,ER5には、pin接合、nin接合構造、pip接合構造、npn接合構造、またはpnp接合構造を形成する選択ゲート電極切断部を設けるようにしてもよい。すなわち、選択ゲート電極非形成領域ER1,ER5におけるメモリゲート電極の側壁には、第1選択ゲート電極および第2選択ゲート電極とは導電型が異なる逆導電型半導体層、または、真性半導体層のいずれかが設けられていることがよい。 Furthermore, regardless of the presence or absence of the electrical cutting regions ER2, ER4, the selection of forming a pin junction, nin junction structure, pip junction structure, npn junction structure, or pnp junction structure in the selection gate electrode non-formation regions ER1, ER5 A gate electrode cutting part may be provided. That is, on the side wall of the memory gate electrode in the selection gate electrode non-formation regions ER1, ER5, either a reverse conductivity type semiconductor layer having a conductivity type different from that of the first selection gate electrode and the second selection gate electrode or an intrinsic semiconductor layer It is good to be provided.
 さらに、上述した実施の形態においては、半導体基板を上方から見て無端四角環状でなるメモリゲート電極MG(図4)や、無端梯子状のメモリゲート電極MG1(図7)を適用した場合について述べたが、本発明はこれに限らず、一のメモリセル形成部および他のメモリセル形成部で共有するメモリゲート電極の第1側壁側に、第1選択ゲート電極として、これらメモリセル形成部の各ソース側選択ゲート電極(または各ドレイン側選択ゲート電極)を設けることができれば種々の形状でなるメモリゲート電極を適用してもよい。 Furthermore, in the above-described embodiment, the case where the memory gate electrode MG (FIG. 4) or the endless ladder-like memory gate electrode MG1 (FIG. 7) in which the semiconductor substrate is viewed from the top when viewed from above is applied is described. However, the present invention is not limited to this, and the first selection gate electrode is provided on the first sidewall side of the memory gate electrode shared by one memory cell forming unit and the other memory cell forming unit. As long as each source-side selection gate electrode (or each drain-side selection gate electrode) can be provided, memory gate electrodes having various shapes may be applied.
 さらに、上述した実施の形態においては、P型のウエルWを用いて、N型のトランジスタ構造を形成するメモリゲート構造体4aと、N型のMOSトランジスタ構造を形成するドレイン側選択ゲート構造体5aと、同じくN型のMOSトランジスタ構造を形成するソース側選択ゲート構造体6aと設けるようにした場合について述べたが、本発明はこれに限らず、N型のウエルを用いて、P型のトランジスタ構造を形成するメモリゲート構造体と、P型のMOSトランジスタ構造を形成するドレイン側選択ゲート構造体と、同じくP型のMOSトランジスタ構造を形成するソース側選択ゲート構造体と設けるようにしてよい。この場合、上述した実施の形態にて説明したメモリセル2aはN型およびP型の極性が逆になることから、メモリゲート構造体や、ドレイン側選択ゲート構造体、ソース側選択ゲート構造体、ビット線、ソース線等に印加する各電圧もそれに応じて変化する。 Furthermore, in the above-described embodiment, the P-type well W is used to form a memory gate structure 4a that forms an N-type transistor structure and a drain-side selection gate structure 5a that forms an N-type MOS transistor structure. The source side select gate structure 6a that also forms an N-type MOS transistor structure has been described. However, the present invention is not limited to this, and an N-type well is used to form a P-type transistor. A memory gate structure that forms the structure, a drain-side selection gate structure that forms the P-type MOS transistor structure, and a source-side selection gate structure that also forms the P-type MOS transistor structure may be provided. In this case, since the N-type and P-type polarities of the memory cell 2a described in the above embodiment are reversed, the memory gate structure, the drain-side selection gate structure, the source-side selection gate structure, Each voltage applied to the bit line, the source line, etc. also changes accordingly.
 さらに、上述した実施の形態においては、例えばメモリセル2aの電荷蓄積層ECに電荷を注入することでデータを書き込み、当該電荷蓄積層ECの電荷を引き抜くことでデータを消去する場合について述べたが、本発明はこれに限らず、これとは逆に、メモリセル2aの電荷蓄積層EC内の電荷を引き抜くことでデータを書き込み、当該電荷蓄積層EC内に電荷を注入することでデータを消去するようにしてもよい。 Furthermore, in the above-described embodiment, for example, the case where data is written by injecting charges into the charge storage layer EC of the memory cell 2a and the data is erased by extracting charges from the charge storage layer EC has been described. However, the present invention is not limited to this, and conversely, data is written by extracting charges in the charge storage layer EC of the memory cell 2a, and data is erased by injecting charges into the charge storage layer EC. You may make it do.
 さらに、上述した実施の形態においては、メモリゲート電極MG,MG1の頂上部に形成されるキャップ膜として、下部キャップ膜CPa上に、当該下部キャップ膜CPaとは異なるSiN等の絶縁材料でなる上部キャップ膜CPbが積層された積層構造でなるキャップ膜CPについて述べたが、本発明はこれに限らず、単層のキャップ膜や、3層以上の積層構造でなるキャップ膜であってもよい。 Furthermore, in the above-described embodiment, as a cap film formed on the tops of the memory gate electrodes MG, MG1, on the lower cap film CPa, an upper part made of an insulating material such as SiN different from the lower cap film CPa. Although the cap film CP having a laminated structure in which the cap film CPb is laminated has been described, the present invention is not limited to this, and a single layer cap film or a cap film having a laminated structure of three or more layers may be used.
 1,21,41,51 不揮発性半導体記憶装置
 2a,2b,2c,2d,2e,2f,2g,2h,2i,2j メモリセル
 3a,3b,3c,3d,3e メモリセル形成部
 4a,4b,4c メモリゲート構造体
 5a,5b,5c ドレイン側選択ゲート構造体(第2選択ゲート構造体)
 6a,6b,6c ソース側選択ゲート構造体(第1選択ゲート構造体)
 11 第1側壁
 12 第2側壁
 CP キャップ膜
 ER1,ER5 選択ゲート電極非形成領域
 MG,MG1 メモリゲート電極
 DG1,DG2,DG3 ドレイン側選択ゲート電極(第2選択ゲート電極)
 SG1,SG2,SG3 ソース側選択ゲート電極(第1選択ゲート電極)
1, 21, 41, 51 Non-volatile semiconductor memory device 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j Memory cell 3a, 3b, 3c, 3d, 3e Memory cell formation part 4a, 4b, 4c Memory gate structure 5a, 5b, 5c Drain side selection gate structure (second selection gate structure)
6a, 6b, 6c Source side select gate structure (first select gate structure)
11 First sidewall 12 Second sidewall CP cap film ER1, ER5 Select gate electrode non-formation region MG, MG1 Memory gate electrode DG1, DG2, DG3 Drain side select gate electrode (second select gate electrode)
SG1, SG2, SG3 Source side select gate electrode (first select gate electrode)

Claims (6)

  1.  一方向に延設し、かつ長手方向に沿ってメモリゲート電極が延設した一のメモリセル形成部と、一方向に延設し、かつ長手方向に沿ってメモリゲート電極が延設した他のメモリセル形成部と、を少なくとも備え、前記一のメモリセル形成部と前記他のメモリセル形成部とが所定距離を設けて並走するように半導体基板上に配置されており、
     前記一のメモリセル形成部および前記他のメモリセル形成部は、
     前記半導体基板のウエル上に第1選択ゲート絶縁膜を介して第1選択ゲート電極を有した第1選択ゲート構造体と、
     前記ウエル上に第2選択ゲート絶縁膜を介して第2選択ゲート電極を有した第2選択ゲート構造体と、
     該第1選択ゲート構造体および該第2選択ゲート構造体間に側壁スペーサを介して設けられ、下部ゲート絶縁膜、電荷蓄積層、上部ゲート絶縁膜、および前記メモリゲート電極の順で前記ウエル上に積層されたメモリゲート構造体とを備え、
     前記一のメモリセル形成部の長手方向末端と前記他のメモリセル形成部の長手方向末端との間には、前記第1選択ゲート電極および前記第2選択ゲート電極が形成されておらず、かつ前記一のメモリセル形成部の長手方向末端と前記他のメモリセル形成部の長手方向末端とをメモリゲート電極で連結している選択ゲート電極非形成領域を有し、
     前記一のメモリセル形成部および前記他のメモリセル形成部の前記メモリゲート電極には、
     前記一のメモリセル形成部と、前記他のメモリセル形成部と、前記選択ゲート電極非形成領域とで囲まれた領域で周回する内周壁となる第1側壁側に、前記第1選択ゲート電極が設けられている
     ことを特徴とする不揮発性半導体記憶装置。
    One memory cell forming portion extending in one direction and having a memory gate electrode extending along the longitudinal direction, and another having a memory gate electrode extending in one direction and extending along the longitudinal direction A memory cell forming portion, and the one memory cell forming portion and the other memory cell forming portion are arranged on the semiconductor substrate so as to run in parallel with a predetermined distance,
    The one memory cell forming portion and the other memory cell forming portion are:
    A first select gate structure having a first select gate electrode on a well of the semiconductor substrate via a first select gate insulating film;
    A second selection gate structure having a second selection gate electrode on the well via a second selection gate insulating film;
    A sidewall spacer is provided between the first selection gate structure and the second selection gate structure, and a lower gate insulating film, a charge storage layer, an upper gate insulating film, and the memory gate electrode are arranged on the well in this order. And a memory gate structure stacked on
    The first selection gate electrode and the second selection gate electrode are not formed between a longitudinal end of the one memory cell formation portion and a longitudinal end of the other memory cell formation portion, and A selection gate electrode non-formation region in which a longitudinal end of the one memory cell formation part and a longitudinal end of the other memory cell formation part are connected by a memory gate electrode;
    In the memory gate electrode of the one memory cell forming portion and the other memory cell forming portion,
    The first select gate electrode is provided on the first side wall side serving as an inner peripheral wall that circulates in a region surrounded by the one memory cell formation portion, the other memory cell formation portion, and the selection gate electrode non-formation region. A non-volatile semiconductor memory device, comprising:
  2.  前記第1選択ゲート構造体は、
     前記メモリゲート構造体と、前記ウエルのソース領域との間の前記ウエル上に配置されたソース側選択ゲート構造体であり、
     前記第2選択ゲート構造体は、
     前記メモリゲート構造体と、前記ウエルのドレイン領域との間の前記ウエル上に配置されたドレイン側選択ゲート構造体であり、
     前記メモリゲート電極には、前記第1側壁に沿ってソース側選択ゲート電極が設けられている
     ことを特徴とする請求項1に記載の不揮発性半導体記憶装置。
    The first selection gate structure is:
    A source side select gate structure disposed on the well between the memory gate structure and a source region of the well;
    The second select gate structure is
    A drain side select gate structure disposed on the well between the memory gate structure and the drain region of the well;
    The nonvolatile semiconductor memory device according to claim 1, wherein a source-side selection gate electrode is provided along the first sidewall on the memory gate electrode.
  3.  前記第1選択ゲート構造体は、
     前記メモリゲート構造体と、前記ウエルのドレイン領域との間の前記ウエル上に配置されたドレイン側選択ゲート構造体であり、
     前記第2選択ゲート構造体は、
     前記メモリゲート構造体と、前記ウエルのソース領域との間の前記ウエル上に配置されたソース側選択ゲート構造体であり、
     前記メモリゲート電極には、前記第1側壁に沿ってドレイン側選択ゲート電極が設けられている
     ことを特徴とする請求項1に記載の不揮発性半導体記憶装置。
    The first selection gate structure is:
    A drain side select gate structure disposed on the well between the memory gate structure and the drain region of the well;
    The second select gate structure is
    A source side select gate structure disposed on the well between the memory gate structure and a source region of the well;
    The nonvolatile semiconductor memory device according to claim 1, wherein the memory gate electrode is provided with a drain-side selection gate electrode along the first side wall.
  4.  前記ドレイン側選択ゲート電極には、ドレイン側選択ゲート線が接続されており、
     前記ドレイン側選択ゲート線は、前記メモリセル形成部毎に設けられている
     ことを特徴とする請求項3に記載の不揮発性半導体記憶装置。
    A drain side selection gate line is connected to the drain side selection gate electrode,
    The nonvolatile semiconductor memory device according to claim 3, wherein the drain-side selection gate line is provided for each memory cell formation unit.
  5.  前記一のメモリセル形成部の第1選択ゲート電極と、前記他のメモリセル形成部の第1選択ゲート電極との間には、pin接合構造、nin接合構造、pip接合構造、npn接合構造、またはpnp接合構造を形成する選択ゲート電極切断部が設けられている
     ことを特徴とする請求項1~4のいずれか1項に記載の不揮発性半導体記憶装置。
    Between the first selection gate electrode of the one memory cell formation portion and the first selection gate electrode of the other memory cell formation portion, a pin junction structure, a nin junction structure, a pip junction structure, an npn junction structure, 5. The nonvolatile semiconductor memory device according to claim 1, further comprising a selection gate electrode cutting portion that forms a pnp junction structure.
  6.  前記一のメモリセル形成部と前記他のメモリセル形成部には、前記メモリゲート電極上にキャップ膜が設けられており、
     前記選択ゲート電極非形成領域では、前記メモリゲート電極上に前記キャップ膜が形成されておらず該メモリゲート電極上にメモリゲートコンタクトが設けられている
     ことを特徴とする請求項1~5のいずれか1項に記載の不揮発性半導体記憶装置。


     
    A cap film is provided on the memory gate electrode in the one memory cell formation portion and the other memory cell formation portion,
    6. The selection gate electrode non-formation region, wherein the cap film is not formed on the memory gate electrode and a memory gate contact is provided on the memory gate electrode. 2. The nonvolatile semiconductor memory device according to item 1.


PCT/JP2016/078202 2015-10-01 2016-09-26 Non-volatile semiconductor memory device WO2017057242A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177037428A KR102437353B1 (en) 2015-10-01 2016-09-26 Nonvolatile semiconductor memory device
CN201680036107.9A CN108076670B (en) 2015-10-01 2016-09-26 Nonvolatile semiconductor memory device
SG11201801237PA SG11201801237PA (en) 2015-10-01 2016-09-26 Non-volatile semiconductor memory device
IL257488A IL257488B (en) 2015-10-01 2018-02-12 Non-volatile semiconductor memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-195638 2015-10-01
JP2015195638A JP5951096B1 (en) 2015-10-01 2015-10-01 Nonvolatile semiconductor memory device

Publications (1)

Publication Number Publication Date
WO2017057242A1 true WO2017057242A1 (en) 2017-04-06

Family

ID=56375206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078202 WO2017057242A1 (en) 2015-10-01 2016-09-26 Non-volatile semiconductor memory device

Country Status (7)

Country Link
JP (1) JP5951096B1 (en)
KR (1) KR102437353B1 (en)
CN (1) CN108076670B (en)
IL (1) IL257488B (en)
SG (1) SG11201801237PA (en)
TW (1) TWI597827B (en)
WO (1) WO2017057242A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160828A (en) * 2018-03-07 2019-09-19 ルネサスエレクトロニクス株式会社 Semiconductor device and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450283B2 (en) * 2022-05-31 2024-03-15 株式会社フローディア Nonvolatile memory cells and nonvolatile semiconductor storage devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164449A (en) * 2000-11-29 2002-06-07 Hitachi Ltd Semiconductor device, ic card and manufacturing method of the semiconductor device
JP2005142354A (en) * 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd Non-volatile semiconductor storage device, its driving method, and manufacturing method
JP2007335763A (en) * 2006-06-16 2007-12-27 Toshiba Corp Semiconductor device and method of manufacturing same
WO2010084534A1 (en) * 2009-01-20 2010-07-29 シャープ株式会社 Thin film diode and method for manufacturing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1291491C (en) * 2002-11-12 2006-12-20 旺宏电子股份有限公司 Polysilicon self-aligning contact plug and polysilicon sharing source electrode wire and method for making the same
JP4794462B2 (en) * 2004-11-30 2011-10-19 スパンション エルエルシー Nonvolatile memory device and manufacturing method thereof
JP4772429B2 (en) * 2005-08-29 2011-09-14 ルネサスエレクトロニクス株式会社 Semiconductor memory device
KR20100080190A (en) * 2008-12-31 2010-07-08 주식회사 동부하이텍 Flash memory device and manufacturing method the same
JP2011129816A (en) * 2009-12-21 2011-06-30 Renesas Electronics Corp Semiconductor device
JP5538024B2 (en) * 2010-03-29 2014-07-02 ルネサスエレクトロニクス株式会社 Nonvolatile semiconductor memory device
KR101979299B1 (en) * 2012-12-26 2019-09-03 에스케이하이닉스 주식회사 Nonvolatile memory device and method of fabricating the same
JP6168792B2 (en) * 2013-02-28 2017-07-26 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164449A (en) * 2000-11-29 2002-06-07 Hitachi Ltd Semiconductor device, ic card and manufacturing method of the semiconductor device
JP2005142354A (en) * 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd Non-volatile semiconductor storage device, its driving method, and manufacturing method
JP2007335763A (en) * 2006-06-16 2007-12-27 Toshiba Corp Semiconductor device and method of manufacturing same
WO2010084534A1 (en) * 2009-01-20 2010-07-29 シャープ株式会社 Thin film diode and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160828A (en) * 2018-03-07 2019-09-19 ルネサスエレクトロニクス株式会社 Semiconductor device and method of manufacturing the same
JP7026537B2 (en) 2018-03-07 2022-02-28 ルネサスエレクトロニクス株式会社 Semiconductor devices and methods for manufacturing semiconductor devices

Also Published As

Publication number Publication date
IL257488A (en) 2018-04-30
TWI597827B (en) 2017-09-01
CN108076670A (en) 2018-05-25
CN108076670B (en) 2021-12-03
IL257488B (en) 2020-01-30
KR102437353B1 (en) 2022-08-30
JP2017069478A (en) 2017-04-06
KR20180064329A (en) 2018-06-14
SG11201801237PA (en) 2018-03-28
TW201717322A (en) 2017-05-16
JP5951096B1 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
US6642569B2 (en) Semiconductor memory with nonvolatile memory cell array and semiconductor device with nonvolatile memory cell array and logic device
US7606073B2 (en) Nonvolatile semiconductor memory with dummy cell which is absence of a source/drain region
WO2016178392A1 (en) Memory cell, semiconductor integrated circuit device, and method for manufacturing semiconductor integrated circuit device
JP2006054292A (en) Semiconductor device and its manufacturing method
US9379128B1 (en) Split gate non-volatile memory device and method for fabricating the same
JP5951096B1 (en) Nonvolatile semiconductor memory device
JP2006344735A (en) Semiconductor device
US9153593B1 (en) Nonvolatile memory device having single-layer gate, method of operating the same, and memory cell array thereof
US10388660B2 (en) Semiconductor device and method for manufacturing the same
JP4758951B2 (en) Semiconductor device
KR102128665B1 (en) Nor flash memory and method of fabricating the same
US8735966B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JP2011171475A (en) Nonvolatile semiconductor memory device
JP2009164349A (en) Nonvolatile semiconductor storage device and method of manufacturing the same
JP5951097B1 (en) Nonvolatile semiconductor memory device
US20240097040A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP6266688B2 (en) Nonvolatile semiconductor memory device
KR19990006967A (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JP2011171755A (en) Semiconductor device
JP2005129596A (en) Nonvolatile semiconductor storage device
US20120299078A1 (en) Semiconductor storage device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177037428

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 257488

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 11201801237P

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851413

Country of ref document: EP

Kind code of ref document: A1