WO2017057207A1 - 組電池 - Google Patents
組電池 Download PDFInfo
- Publication number
- WO2017057207A1 WO2017057207A1 PCT/JP2016/078137 JP2016078137W WO2017057207A1 WO 2017057207 A1 WO2017057207 A1 WO 2017057207A1 JP 2016078137 W JP2016078137 W JP 2016078137W WO 2017057207 A1 WO2017057207 A1 WO 2017057207A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- secondary battery
- spacer member
- assembled
- assembled battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/249—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/242—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/289—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
- H01M50/291—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
- H01M50/466—U-shaped, bag-shaped or folded
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an assembled battery including a plurality of prismatic secondary batteries.
- an assembled battery including a plurality of prismatic secondary batteries is mounted on a vehicle such as an electric car or a hybrid car.
- a battery in which a plurality of rectangular battery cells are stacked in a state where a ventilation gap is provided via a separator is known (see Patent Document 1 below).
- the separator of the assembled battery described in Patent Document 1 is formed by sandwiching an insulating sheet on both sides of this insulating sheet and an insulating sheet disposed between opposing surfaces of adjacent rectangular battery cells. A pair of split separators.
- the divided separator described in Patent Document 1 has a frame portion that extends along the outer periphery of the rectangular battery cell, and opens the inside of the frame portion, and between the both sides of the insulating sheet and the rectangular battery cell in this opening portion.
- a ventilation gap is provided.
- segmentation separator has the ventilation opening which ventilates gas in a ventilation gap in a frame part.
- Patent Document 1 The assembled battery of Patent Document 1 is repeatedly charged and discharged with a large current, so that each rectangular battery cell constituting the assembled battery repeatedly expands and contracts. As a result, stress acts on the horizontal frame and the support rod of the frame portion of the divided separator disposed between the opposing surfaces of the adjacent rectangular battery cells, and fatigue failure and plastic deformation occur in the horizontal frame and the support rod. There is a fear.
- the present invention has been made in view of the above problems, and in an assembled battery including a plurality of flat rectangular secondary batteries, fatigue failure and plastic deformation of a spacer member arranged adjacent to each secondary battery. It aims at suppressing.
- the assembled battery of the present invention is an assembled battery in which flat rectangular secondary batteries are alternately stacked with a spacer member in the thickness direction, and the spacer member has a width of the secondary battery.
- a first part disposed on one side and the other side of the direction and facing a part of a wide side surface of the secondary battery along the width direction, and connected to the first part and along the thickness direction And a second portion facing at least a part of the narrow side surface of the secondary battery.
- each secondary battery even if each secondary battery repeatedly expands and contracts with charge and discharge, it suppresses fatigue failure and plastic deformation of the spacer member arranged adjacent to each secondary battery. can do.
- FIG. 1 is an external perspective view of an assembled battery according to Embodiment 1 of the present invention.
- the exploded perspective view of the assembled battery shown in FIG. FIG. 3 is an external perspective view of the secondary battery shown in FIG. 2.
- the external appearance perspective view of the spacer member shown in FIG. The enlarged plan view of the assembled battery shown in FIG.
- FIG. 11 is an external perspective view of the spacer member shown in FIG. 10.
- FIG. 1 is an external perspective view of an assembled battery 100 according to Embodiment 1 of the present invention.
- FIG. 2 is an exploded perspective view of the battery pack 100 shown in FIG.
- the assembled battery 100 according to the present embodiment is an assembled battery in which flat rectangular secondary batteries 1 are alternately arranged with spacer members 2 in the thickness direction.
- an XYZ orthogonal coordinate system is used in which the thickness direction of the secondary battery 1 is the X-axis direction, the width direction of the secondary battery 1 is the Y-axis direction, and the height direction of the secondary battery 1 is the Z-axis direction.
- the assembled battery 100 of this embodiment includes a plurality of secondary batteries 1, a plurality of spacer members 2, a pair of end spacer members 3, a pair of end plates 4, and a pair of side plates 5. .
- the pair of spacer members 2 are arranged separately on one side and the other side of the width direction (Y-axis direction) of the secondary battery 1, respectively.
- the secondary battery 1 has a substantially rectangular parallelepiped shape with a flat rectangular shape, and has a positive external terminal 11 and a negative external terminal 12 at one end and the other end in the width direction of the upper surface.
- the secondary batteries 1 are alternately arranged with the spacer members 2 in the thickness direction (X-axis direction), and are stacked with the spacer members 2 interposed therebetween.
- the secondary battery 1 includes a positive external terminal 11 of one secondary battery 1 and a negative external terminal 12 of the other secondary battery 1.
- the batteries 1 are alternately inverted by 180 ° so as to be adjacent to each other in the stacking direction (X-axis direction), and are connected in series by a bus bar (not shown).
- FIG. 3 is an external perspective view of the secondary battery 1 shown in FIGS. 1 and 2.
- the secondary battery 1 includes a battery container 10 made of, for example, aluminum or an aluminum alloy, and includes a generally rectangular upper surface 10t and a bottom surface 10b having a long side in the width direction, a wide side surface 10w having a maximum area along the width direction, and a thickness. It has a narrow side surface 10n with a relatively small area along the direction.
- the plurality of secondary batteries 1 are stacked so that the wide side surfaces 10w of the adjacent secondary batteries 1 face each other with the spacer member 2 therebetween.
- the battery container 10 includes a bottomed rectangular tube-shaped battery can 13 and a rectangular flat battery cover 14.
- the battery cover 14 is joined by, for example, laser welding, and the upper opening of the battery can 13 is sealed. .
- illustration is omitted, inside the battery container 10, for example, a wound body obtained by winding a long strip-shaped positive electrode and a negative electrode with a long strip separator interposed therebetween, and each electrode of the wound body And a pair of current collecting plates for connecting the external terminals 11 and 12, an insulating member for fixing the pair of current collecting plates to the battery lid 14, an insulating sheet for covering the wound body, and an electrolytic solution Has been.
- a positive external terminal 11 made of aluminum or aluminum alloy and a negative external terminal made of copper or copper alloy, for example. 12 are provided.
- the positive electrode external terminal 11 and the negative electrode external terminal 12 pass through the battery lid 14 and are connected to the positive electrode current collector plate and the negative electrode current collector plate inside the battery container 10, respectively. And connected to the negative electrode.
- the resin gasket 15 which has insulation is arrange
- the battery lid 14 has a gas discharge valve 16 and a liquid injection hole 17 at an intermediate portion in the longitudinal direction.
- the gas discharge valve 16 is formed, for example, by partially thinning the battery lid 14, and is cleaved to discharge gas when the internal pressure of the battery container 10 rises above a set pressure due to some abnormality, thereby discharging the battery container. The internal pressure of 10 is reduced.
- the liquid injection hole 17 is a through hole formed in the battery lid 14 and is used for injecting the electrolytic solution into the battery container 10. After the injection of the electrolytic solution, the liquid injection plug 18 is formed by laser welding, for example. Joined and sealed.
- the secondary battery 1 stores the power supplied from the outside via the positive electrode external terminal 11 and the negative electrode external terminal 12 in the wound body inside the battery container 10, or the power stored in the wound body Can be supplied to the outside via the positive electrode external terminal 11 and the negative electrode external terminal 12.
- FIG. 4 is an external perspective view showing the spacer member 2 shown in FIG.
- FIG. 5 is an enlarged plan view of the battery pack 100 shown in FIG.
- the spacer member 2 is made of, for example, an insulating resin, and is arranged separately on one side and the other side in the width direction of the secondary battery 1 as described above. Each of the spacer members 2 faces a part of the wide side surface 10 w of the secondary battery 1, and faces at least a part of the narrow side surface 10 n of the secondary battery 1 extending from the first part 21. And a second portion 22 to be
- the first portion 21 of the spacer member 2 extends in the width direction (Y-axis direction) and the height direction (Z-axis direction) of the secondary battery 1 and is adjacent to the two stacking directions (X-axis direction). It is a thin plate-like portion that is disposed between the wide side surfaces 10w of the secondary battery 1 and contacts both the wide side surfaces 10w. For example, the first portion 21 of the spacer member 2 maintains an interval between two secondary batteries 1 adjacent in the stacking direction to ensure insulation.
- the first portion 21 of the spacer member 2 has, for example, a width dimension W1 along the width direction of the secondary battery 1 smaller than a height dimension H1 along the height direction of the secondary battery 1, and the height of the secondary battery 1. It can be formed in an elongated rectangular plate shape whose direction is the longitudinal direction.
- the height dimension H ⁇ b> 1 of the first portion 21 of the spacer member 2 can be substantially equal to the height dimension H of the battery container 10 of the secondary battery 1.
- the thickness dimension T1 of the first portion 21 of the spacer member 2 is preferably 0.1 mm or more and 3.0 mm or less from the viewpoint of ensuring strength and reducing the size of the assembled battery 100.
- the width dimension W1 of the first part 21 of the spacer member 2 is a dimension that allows the first part 21 extending from the second part 22 to be opposed to a part of the wide side surface 10w of the secondary battery 1,
- the width dimension W1 of the first portion 21 extends from the second portion 22.
- the end portion 21a in the width direction of the existing first portion 21 can be set so as to reach the position facing the wide side surface 10w beyond the boundary between the R portion 10r and the wide side surface 10w.
- the width dimension W1 of the first portion 21 only needs to be larger than the wall thickness of the battery can 13. .
- the width dimension W1 of the first portion 21 needs to be set to a dimension that can withstand the compressive force that acts when the assembled battery 100 is assembled or when the secondary battery 1 is charged or discharged.
- the width dimension W1 of the first portion 21 of the spacer member 2 is 10 mm from the viewpoint of compressing the battery container 10 of the secondary battery 1 by the first portion 21 of the spacer member 2 when the assembled battery 100 is assembled and making the dimensions uniform.
- the above is preferable.
- positioned at the width direction one side and the other side of the secondary battery 1 are the same from a viewpoint of hold
- the first portions 21 may be in contact with each other. From the viewpoint of reducing the stress acting on the first portion 21, it is preferable to have an interval between the first portions 21.
- the width dimension W1 of the first portion 21 of the spacer member 2 can be 1 ⁇ 2 or less of the width dimension W of the battery container 10.
- the first portion 21 of the spacer member 2 may have a comb-like configuration in which a plurality of first portions 21 are arranged at a predetermined interval in the height direction of the secondary battery 1.
- one comb-shaped first portion 21 and the other comb-shaped first portion 21 may be alternately arranged in the height direction.
- the width dimension W ⁇ b> 1 of the first portion 21 of the spacer member 2 can be made equal to or less than the width dimension W of the battery container 10.
- the second portion 22 of the spacer member 2 is a thin plate-like portion extending in the thickness direction (X-axis direction) and the height direction (Z-axis direction) of the secondary battery 1, and the battery container 10 and the side plate. 5 and is insulated between them.
- the second portion 22 of the spacer member 2 faces the narrow side surface 10n of the two secondary batteries 1 adjacent to each other in the stacking direction (X-axis direction).
- the second portion 22 of the spacer member 2 includes an area facing the narrow side surface 10n of one secondary battery 1 and the other two of the two secondary batteries 1 adjacent in the stacking direction. The area facing the narrow side surface 10n of the secondary battery 1 is substantially equal.
- the second portion 22 of the spacer member 2 extends from one end in the width direction (Y-axis direction) of the first portion 21 toward both sides in the stacking direction (X-axis direction) of the secondary battery 1 and is stacked in the stacking direction. Is opposed to approximately half of each narrow side surface 10n of the two secondary batteries 1 adjacent to each other. That is, in the spacer member 2, the first portion 21 extends in the width direction of the secondary battery 1 from the center portion of the second portion 22 in the thickness direction of the secondary battery 1.
- the second portion 22 of the spacer member 2 has, for example, a width dimension W2 along the thickness direction of the secondary battery 1 smaller than a height dimension H2 along the height direction of the secondary battery 1, and the height of the secondary battery 1 is increased. It can be formed in the shape of an elongated rectangular plate whose longitudinal direction is the vertical direction.
- the height dimension H ⁇ b> 2 of the second portion 22 of the spacer member 2 can be substantially equal to the height dimension H of the battery container 10 of the secondary battery 1.
- the height dimension H2 of the second portion 22 of the spacer member 2 is larger than the height dimension H of the battery case 10, and a portion facing the bottom surface 10b and the top surface 10t of the battery case 10 is provided.
- the battery container 10 can also be held from above and below by 22.
- the thickness dimension T ⁇ b> 2 of the second portion 22 of the spacer member 2 can be made larger than the thickness dimension T ⁇ b> 1 of the first portion 21.
- the width dimension W2 of the second portion 22 of the spacer member 2 is a dimension that allows the second portion 22 extending from the first portion 21 to face a part of the narrow side surface 10n of the secondary battery 1,
- the width dimension W2 of the second portion 22 extends from the first portion 21.
- the end portion 22a in the width direction of the existing second portion 22 can be set so as to reach the position facing the narrow side surface 10n beyond the boundary between the R portion and the narrow side surface 10n.
- the width dimension W2 of the second portion 22 only needs to be larger than the thickness of the battery can 13. .
- the width dimension W2 of the second portion 22 needs to be set to a dimension that can withstand the stress that acts when the assembled battery 100 is assembled or when the secondary battery 1 is charged and discharged.
- the width dimension W2 of the second portion 22 of the spacer member 2 is determined from the viewpoint of compressing the battery container 10 of the secondary battery 1 by the first portion 21 of the spacer member 2 when the assembled battery 100 is assembled, and making the dimensions uniform. It is preferable to set a dimension having a gap between the second portions 22 of the spacer members 2 adjacent to each other in the stacking direction of the secondary battery 1. Therefore, the width dimension W ⁇ b> 2 of the second portion 22 of the spacer member 2 can be made equal to or less than the thickness dimension T of the battery container 10.
- the width dimension W ⁇ b> 2 of the second portion 22 is larger than the thickness dimension T of the battery container 10. Also in this case, it is preferable to form a gap in the stacking direction of the secondary battery 1 between the second portions 22.
- the pair of end spacer members 3 are disposed at one end and the other end of the plurality of secondary batteries 1 stacked in the thickness direction with the spacer member 2 interposed therebetween.
- the end spacer member 3 is made of an insulating resin, and is disposed between the end plate 4 and the secondary battery 1 to insulate them.
- the end spacer member 3 is separated at one end and the other end in the width direction of the secondary battery 1, like an L-shaped spacer member 2 ⁇ / b> A (see FIG. 6) used in the assembled battery of Embodiment 2 described later.
- the plate-like end spacer member 3 provided integrally from one end to the other end in the width direction of the secondary battery 1 is used.
- the end spacer member 3 extends in the thickness direction of the secondary battery 1 from the first portion 31 facing substantially the whole of the wide side surface 10 w of the secondary battery 1 and both ends in the width direction of the first portion 31. And a pair of second portions 32 that oppose each half of the pair of narrow side surfaces 10n.
- the pair of end plates 4 are rectangular plate-like members made of, for example, a metal material such as stainless steel, and have a planar shape and a planar dimension substantially equal to the wide side surface 10 w of the secondary battery 1.
- the pair of end plates 4 are disposed further outside the pair of end spacer members 3 in the stacking direction of the secondary batteries 1.
- the pair of end plates 4 are stacked with the spacer member 2 interposed therebetween, and sandwich the plurality of secondary batteries 1 in which the pair of end spacer members 3 are disposed on both sides in the stacking direction from both sides in the stacking direction.
- the pair of end plates 4 have a plurality of bolt holes 41 on both sides in the width direction of the secondary battery 1.
- the pair of side plates 5 are manufactured by a metal material such as stainless steel, for example, and are strip-shaped members extending in the stacking direction of the secondary battery 1.
- the battery container of the secondary battery 1 has a short dimension. 10 is substantially equal to the height dimension H.
- the side plate 5 is configured such that the end portion on the battery lid 14 side in the height direction of the secondary battery 1 is bent at a substantially right angle and is engaged with the upper surface 10 t of the battery container 10.
- through holes 51 through which the bolts 6 and 7 are inserted are provided at positions corresponding to the bolt holes 41 of the end plate 4.
- the assembled battery 100 of the present embodiment can be assembled, for example, by the following procedure. First, a pair of first spacer members 2 are arranged on one side and the other side in the width direction of the first secondary battery 1. Then, the first portion 21 of the pair of first spacer members 2 is opposed to one wide side surface 10w of the first secondary battery 1, and the second portion 22 of the first spacer member 2 is One secondary battery 1 is made to face one narrow side surface 10 n, and the other second spacer 22 of the first spacer member 2 is made to face the other narrow side surface 10 n of the first secondary battery 1.
- the one wide side surface 10w of the second secondary battery 1 is opposed to the one wide side surface 10w of the first secondary battery 1 in which the pair of first spacer members 2 are arranged.
- the first portion 21 of the pair of first spacer members 2 is disposed between one wide side surface 10 w of the first secondary battery 1 and one wide side surface 10 w of the second secondary battery 1.
- the second portion 22 of one first spacer member 2 faces one narrow side surface 10n adjacent to the first and second secondary batteries 1, and the second portion of the other first spacer member 2. 22 opposes the other narrow side surface 10n of the first and second secondary batteries 1 adjacent to each other.
- the pair of spacer members 2 is similarly set to 2 for the pair of second spacer members 2, the third secondary battery 1, the pair of third spacer members 2, and the fourth secondary battery 1.
- the secondary battery 1 is stacked in the thickness direction while being interposed between the two secondary batteries 1.
- a pair of edge part spacer member 3 is arrange
- a pair of end plates 4 is disposed on the end plate 4, and a compressive force is applied to the pair of end plates 4 in the stacking direction of the secondary battery 1.
- the battery container 10 of the secondary battery 1 having a large thickness dimension T within the allowable dimensional tolerance range is compressed, and the distance between the pair of end plates 4 is defined as a predetermined distance.
- a pair of side plates 5 are arranged on both sides in the width direction of the plurality of stacked secondary batteries 1, and bolts 6 and 7 are inserted into the through holes 51 of these side plates 5, so that the pair of end plates 4.
- the bolts 6 and 7 are screwed into the bolt holes 41, and the pair of end plates 4 and the pair of side plates 5 are fastened and fixed. Accordingly, the pair of side plates 5 face each other in the width direction of the secondary battery 1, extend in the stacking direction of the secondary batteries 1, and face the second portions 22 of the plurality of spacer members 2, respectively. become.
- the pair of end plates 4 face each other in the stacking direction of the secondary battery 1.
- the plurality of secondary batteries 1 stacked between the pair of end spacer members 3 and alternately arranged with the spacer members 2 and applied with the compressive force by the first portions 21 of the spacer members 2 are paired with the end portions. It is sandwiched and secured by the plate 4.
- the assembled battery 100 shown in FIG. 1 is completed.
- a plurality of secondary batteries 1 are connected in series by a bus bar, a voltage detection board for measuring the voltage of the secondary battery 1 is disposed thereon, and the voltage detection board is further covered with a cover. cover.
- the assembled battery 100 can store the power supplied from the outside in the plurality of secondary batteries 1 or supply the power stored in the plurality of secondary batteries 1 to the outside.
- the assembled battery 100 is mounted on a vehicle such as an electric car or a hybrid car, for example, and the secondary battery 1 is repeatedly expanded and contracted by repeatedly charging and discharging with a large current.
- the battery container 10 of the secondary battery 1 has a substantially rectangular parallelepiped shape in which a flat wound body is accommodated, and expands in the thickness direction when the secondary battery 1 is charged.
- the secondary battery 1 tends to have a relatively large expansion amount in the vicinity of the central portion of the wide side surface 10w of the battery container 10 and a relatively small expansion amount in the vicinity of the corner portion of the wide side surface 10w.
- the height dimension H of the battery container 10 is relatively small at the center in the width direction and relatively large at both ends in the width direction.
- the width dimension W of the battery container 10 is relatively small at the center in the height direction and relatively large at both ends in the height direction. The battery container 10 of the secondary battery 1 contracts from the expanded state during charging to return to the original flat rectangular shape during discharging.
- a split separator disposed between opposing surfaces of adjacent rectangular battery cells has a frame portion extending from one end to the other end in the width direction of the rectangular battery cells. It has a horizontal frame and a support rod.
- the opposing surface of the prismatic battery cell is in contact with the horizontal frame and the support rod, and the opposing surface to the horizontal frame and the support rod.
- a relatively large compressive stress and tensile stress in the direction along the direction act. Therefore, in the conventional assembled battery described in Patent Document 1, there is a risk that fatigue breakage or plastic deformation may occur in the horizontal frame or the support rod of the divided separator.
- the flat rectangular secondary battery 1 is alternately stacked with the spacer member 2 in the thickness direction, and the spacer member 2 has one side in the width direction of the secondary battery 1. Arranged on the other side.
- the spacer member 2 is connected to the first portion 21 facing a part of the wide side surface 10 w along the width direction of the secondary battery 1, and is connected to the first portion 21 along the thickness direction of the secondary battery 1.
- a second portion 22 facing at least a part of the narrow side surface 10n.
- the pair of spacer members 2 are arranged separately on one side and the other side in the width direction of the secondary battery 1, so that the secondary battery 1 expands and the wide side surface 10 w is the first of the spacer member 2. Even in contact with the first portion 21, the compressive stress and tensile stress in the direction along the wide side surface 10w acting on the first portion 21 can be reduced as compared with the conventional case. Therefore, according to the present embodiment, in the assembled battery 100 including the plurality of flat rectangular secondary batteries 1, the fatigue fracture and plastic deformation of the spacer member 2 arranged adjacent to each secondary battery 1 are suppressed. can do.
- the first portion 21 of the spacer member 2 that faces the wide side surface 10w of the battery container 10 starts from the second portion 22 that faces the narrow side surface 10n of the secondary battery 1.
- the secondary battery 1 extends in the width direction.
- the width dimension W ⁇ b> 1 of the first portion 21 in the width direction of the battery container 10 is smaller than the width dimension W of the battery container 10.
- the width dimension W1 of the first portion 21 of the spacer member 2 is smaller than 1 ⁇ 2 of the width dimension W of the battery container 10.
- a gap is formed in the width direction of the battery container 10 between the first portions 21 of the pair of spacer members 2 arranged on one side and the other side of the battery container 10 in the width direction.
- a weld line is easily formed when the spacer member 2 is molded, and the first portion 21 of the spacer member 2 is moved to a position facing the central portion in the width direction of the wide side surface 10w of the battery container 10 that is likely to be relatively brittle. There is no need to extend from the two portions 22. Therefore, the strength of the spacer member 2 can be improved.
- a gap in the width direction is formed between the first portions 21 of the pair of spacer members 2 so as to face the center portion in the width direction of the wide side surface 10w that has a relatively large deformation amount due to the expansion and contraction of the battery case 10. can do.
- the compressive stress and tensile stress which act on the 1st part 21 of the spacer member 2 can be reduced more effectively. Therefore, according to the assembled battery 100 of this embodiment, the fatigue failure and plastic deformation of the spacer member 2 can be more effectively suppressed.
- the width W1 of the first portion 21 of the spacer member 2 is such that the battery container 10 of the secondary battery 1 is compressed by the first portion 21 of the spacer member 2 when the assembled battery 100 is assembled.
- the dimension can be set to the minimum dimension that can be made uniform. More specifically, the width dimension W1 of the first portion 21 of the spacer member 2 is a dimension equivalent to the distance from the narrow side surface 10n of the battery case 10 to the ends of the external terminals 11 and 12 adjacent thereto, more specifically. Can be set to about 10 mm.
- the first portions 21 of the pair of spacer members 2 can be disposed so as to face only both ends in the width direction of the wide side surface 10w where the deformation amount at the time of expansion and contraction of the battery case 10 is relatively small. Therefore, according to the assembled battery 100 of this embodiment, the stress which acts on the 1st part 21 of the spacer member 2 is reduced more effectively, and the fatigue fracture and plastic deformation of the spacer member 2 are suppressed more effectively. Can do.
- the second portion 22 of the spacer member 2 faces the narrow side surface 10n of the two secondary batteries 1 adjacent in the stacking direction. Therefore, when the assembled battery 100 is assembled, the first portion 21 is brought into contact with the wide side surface 10w of the battery case 10 of the secondary battery 1 and the second portion 22 is brought into contact with the narrow side surface 10n of the battery case 10 to form a spacer.
- the member 2 is arranged, and another secondary battery 1 can be stacked via the spacer member 2. Therefore, according to the assembled battery 100 of this embodiment, the assemblability at the time of lamination
- the second portion 22 of the spacer member 2 has an area facing the narrow side surface 10n of one secondary battery 1 out of two secondary batteries 1 adjacent in the stacking direction.
- the area facing the narrow side surface 10n of the other secondary battery 1 is equal. Therefore, the spacer member 2 can be symmetric with respect to the plane orthogonal to the stacking direction of the secondary battery 1, and it is not necessary to be aware of the direction in which the spacer member 2 is arranged when the assembled battery 100 is assembled. Therefore, according to the assembled battery 100 of this embodiment, assemblability can be improved and productivity can be improved.
- the fatigue failure and plastic deformation of the spacer member 2 are more effectively suppressed, and the productivity is increased. Can be improved.
- Embodiment 2 of the assembled battery of the present invention will be described with reference to FIGS. 6 and 7 with reference to FIGS. 6 and 7 are a perspective view of the spacer member 2A of the assembled battery of the second embodiment corresponding to FIGS. 4 and 5 of the assembled battery 100 of the first embodiment, and an enlarged plan view of the assembled battery.
- the assembled battery of this embodiment is the point that the second portion 22 of the spacer member 2A faces only the narrow side surface 10n of one of the two secondary batteries 1 adjacent in the stacking direction. This is different from the assembled battery 100 of the first embodiment. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery 100 of the above-described first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.
- a pair of spacer members 2A are arranged on one side and the other side in the width direction of one secondary battery 1, and the first portion 21 of the spacer member 2A is placed in the battery container 10.
- the second portion 22 of the pair of spacer members 2A is opposed to the pair of battery containers 10 and the narrow side surface 10n.
- a plurality of secondary batteries 1 are stacked via the spacer member 2A by stacking each secondary battery 1 assembled with each pair of spacer members 2A. Can do.
- the spacer member 2A simple by making the spacer member 2A have a simple L-shaped cross section.
- the pair of spacer members 2A arranged on one side and the other side in the width direction of the secondary battery 1 do not necessarily have the same shape and left-right symmetrical arrangement, but have different shapes or left-right asymmetric arrangement. Also good.
- Embodiment 3 of the assembled battery of the present invention will be described with reference to FIGS. 8 and 9 with reference to FIGS. 8 and 9 are a perspective view of the assembled battery 100 of the first embodiment and a perspective view of the spacer member 2B of the assembled battery of the third embodiment corresponding to FIGS. 4 and 5, and an enlarged plan view of the assembled battery.
- the second portion 22 of the spacer member 2B has an area facing the narrow side surface 10n of one of the two secondary batteries 1 adjacent to each other in the stacking direction, and the other part.
- the secondary battery 1 is different from the assembled battery 100 of the first embodiment in that the area facing the narrow side surface 10n of the secondary battery 1 is different. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery 100 of the above-described first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.
- a pair of spacer members 2B are arranged on one side and the other side in the width direction of one secondary battery 1, and the first portion 21 of the pair of spacer members 2B is connected to the battery.
- the large side portion of the second portion 22 of the pair of spacer members 2 ⁇ / b> B is opposed to the pair of narrow side surfaces 10 n of the battery container 10.
- a pair of spacer member 2B can be stably arrange
- the part with a small area of the 2nd part 22 of a pair of spacer member 2B is made to oppose the narrow side surface 10n of the other secondary battery 1, and the 1st part 21 of a pair of spacer member 2B is made into the two secondary batteries 1. Place between.
- the area of the second portion 22 of the spacer member 2B facing the narrow side surface 10n of the other secondary battery 1 stacked on the one secondary battery 1 faces the narrow side surface 10n of the one secondary battery 1. It is smaller than the area of the second portion 22 of the spacer member 2B. Therefore, the other secondary battery 1 can be easily laminated on the one secondary battery 1 via the spacer member 2B. Therefore, according to the assembled battery of this embodiment, assemblability can be improved and productivity can be improved.
- FIG. 10 is an exploded perspective view of the assembled battery 100A of the fourth embodiment corresponding to FIG. 2 of the assembled battery 100 of the first embodiment.
- FIG. 11 is a cross-sectional view of one spacer member 2C shown in FIG.
- FIG. 12 is a perspective view of the pair of spacer members 2C shown in FIG.
- the assembled battery 100A according to the present embodiment mainly includes at least one of the pair of end edges 5a and 5b of the side plate 5 in which the second portion 22 of the spacer member 2C extends in the stacking direction of the secondary battery 1.
- the battery pack is different from the assembled battery 100 described in the first embodiment in that the engaging portions 23 and 24 that engage the end edges are provided. Since the other points of the assembled battery 100A of the present embodiment are the same as those of the assembled battery 100 of the first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.
- the assembled battery 100A of the present embodiment includes the side plate 5 that faces the second portions 22 of the plurality of spacer members 2C.
- the side plate 5 has a pair of end edges 5 a and 5 b extending in the stacking direction of the secondary battery 1.
- the edge 5a on the upper side in the height direction of the secondary battery 1 is bent at an angle of approximately 90 ° toward the width direction of the secondary battery 1, It faces the center side in the width direction of the secondary battery 1.
- the side plate 5 extends downward along the height direction of the secondary battery 1 from the bent portion of the upper edge 5 a facing the inner side in the width direction of the secondary battery 1, and the height direction of the secondary battery 1.
- the edge 5b on the lower side of the straight line faces downward.
- the second portion 22 of the spacer member 2 ⁇ / b> C is a first engagement that engages the upper edge 5 a among the pair of edges 5 a and 5 b of the side plate 5 extending in the stacking direction of the secondary battery 1. It has the part 23 and the 2nd engaging part 24 which engages the edge 5b of the downward side. Note that the second portion 22 of the spacer member 2 ⁇ / b> C only needs to have at least one of the first engaging portion 23 and the second engaging portion 24.
- the first engagement portion 23 is formed in a groove shape having a depth in the width direction of the secondary battery 1
- the second engagement portion 24 is a groove having a depth in the height direction of the secondary battery 1. It is formed in a shape.
- the groove-shaped first engaging portion 23 and the second engaging portion 24 extend in the stacking direction of the secondary battery 1, the stacking direction of the secondary battery 1 is opened, and the side plate 5 is connected to the second plate 1.
- the secondary battery 1 includes wall portions 23a and 24a that are slidably engaged in the stacking direction and restrict the movement of the side plate 5 in the height direction and the width direction of the secondary battery 1.
- the wall portion 23 a of the first engagement portion 23 extends in the stacking direction of the secondary battery 1, and faces the upper surface of the bent portion at the upper end portion of the side plate 5 and the edge 5 a of the side plate 5.
- the wall surface which opposes and the wall surface which opposes the lower surface of the bending part of the upper end part of the side plate 5 are provided.
- the wall portion 24a of the second engaging portion includes a wall surface facing the inner surface of the lower end portion of the side plate 5, a wall surface facing the lower edge 5b of the side plate, and a lower end portion of the side plate 5. And a wall surface facing the outer side surface.
- one end portion of the side plate 5 in the stacking direction of the secondary battery 1 is used. That is, one end portion of the side plate 5 in the longitudinal direction is inserted into the open end portions of the first engaging portion 23 and the second engaging portion 24. Then, the side plate 5 is slid in the longitudinal direction with respect to the first engaging portion 23 and the second engaging portion 24 of the spacer member 2C, so that the side plate 5 is moved to the first engaging portion 23 and the second engaging portion 24C.
- the two engaging portions 24 can be engaged.
- the second portions 22 of the plurality of spacer members 2C can be engaged with the side plate 5, and the first portions 21 of the plurality of spacer members 2C can be arranged in a comb-like shape with respect to the side plate 5.
- the first portions 21 of the plurality of spacer members 2C are collectively disposed between the secondary batteries 1 or engaged with the side plate 5.
- the secondary battery 1 can be disposed between the comb-shaped first portions 21 of the plurality of spacer members 2C.
- the spacer member 2C slides in the stacking direction of the secondary battery 1 with respect to the side plate 5, so that the secondary battery 1 is stacked with respect to the battery container 10 of the secondary battery 1 when the assembled battery 100A is assembled. It is possible to apply a compressive force in the direction.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
複数の二次電池を備えた組電池において、個々の二次電池に隣接して配置されるスペーサ部材の疲労破壊や塑性変形を抑制する。扁平角形の二次電池1が厚さ方向(X軸方向)にスペーサ部材2と交互に積層された組電池100である。スペーサ部材2は、二次電池1の幅方向(Y軸方向)の一側と他側にそれぞれ配置され、幅方向に沿う二次電池1の広側面10wの一部に対向する第1部分21と、該第1部分21に接続されて厚さ方向に沿う二次電池1の狭側面10nの少なくとも一部に対向する第2部分22と、を有する。
Description
本発明は、複数の角形二次電池を備えた組電池に関する。
例えば、電気自動車やハイブリッドカー等の車両には、複数の角形二次電池を備えた組電池が搭載されている。車両用の組電池の一例として、複数の角形電池セルを、セパレータを介して送風隙間を設ける状態で積層したものが知られている(下記特許文献1を参照)。特許文献1に記載された組電池のセパレータは、隣接する角形電池セルの対向面の間に配設してなる絶縁シートと、この絶縁シートの両側にあって、絶縁シートを挟着してなる一対の分割セパレータとを備えている。
特許文献1に記載された分割セパレータは、角形電池セルの外周に沿う枠部を有し、この枠部の内側を開口して、この開口部において、絶縁シートの両面と角形電池セルの間に送風隙間を設けている。さらに、この分割セパレータは、送風隙間に気体を送風する送風開口を枠部に有している。特許文献1に記載された車両用の組電池は、この分割セパレータの送風開口から送風隙間に強制送風して角形電池セルを冷却し、又は加温するようにしている。
前記特許文献1の組電池は、大電流での充放電を繰り返すことで、組電池を構成する個々の角形電池セルが膨張と収縮を繰り返す。これにより、隣接する角形電池セルの対向面の間に配設された分割セパレータの枠部の横枠や支持ロッドに対して応力が作用し、横枠や支持ロッドに疲労破壊や塑性変形が生じる虞がある。
本発明は、前記課題に鑑みてなされたものであり、複数の扁平角形の二次電池を備えた組電池において、個々の二次電池に隣接して配置されるスペーサ部材の疲労破壊や塑性変形を抑制することを目的とする。
前記目的を達成すべく、本発明の組電池は、扁平角形の二次電池が厚さ方向にスペーサ部材と交互に積層された組電池であって、前記スペーサ部材は、前記二次電池の幅方向の一側と他側にそれぞれ配置され、前記幅方向に沿う前記二次電池の広側面の一部に対向する第1部分と、該第1部分に接続されて前記厚さ方向に沿う前記二次電池の狭側面の少なくとも一部に対向する第2部分と、を有することを特徴とする。
本発明の組電池によれば、個々の二次電池が充放電に伴って膨張と収縮を繰り返しても、個々の二次電池に隣接して配置されるスペーサ部材の疲労破壊や塑性変形を抑制することができる。
以下、本発明の組電池の実施形態について、図面を参照して詳細に説明する。
[実施形態1]
図1は、本発明の実施形態1に係る組電池100の外観斜視図である。図2は、図1に示す組電池100の分解斜視図である。本実施形態の組電池100は、扁平角形の二次電池1が厚さ方向にスペーサ部材2と交互に配置された組電池である。以下の説明では、二次電池1の厚さ方向をX軸方向、二次電池1の幅方向をY軸方向、二次電池1の高さ方向をZ軸方向とするXYZ直交座標系を用いる場合がある。
図1は、本発明の実施形態1に係る組電池100の外観斜視図である。図2は、図1に示す組電池100の分解斜視図である。本実施形態の組電池100は、扁平角形の二次電池1が厚さ方向にスペーサ部材2と交互に配置された組電池である。以下の説明では、二次電池1の厚さ方向をX軸方向、二次電池1の幅方向をY軸方向、二次電池1の高さ方向をZ軸方向とするXYZ直交座標系を用いる場合がある。
本実施形態の組電池100は、複数の二次電池1と、複数のスペーサ部材2と、一対の端部スペーサ部材3と、一対のエンドプレート4と、一対のサイドプレート5とを備えている。詳細は後述するが、本実施形態の組電池100は、一対のスペーサ部材2が二次電池1の幅方向(Y軸方向)の一側と他側に分離して配置され、それぞれ、二次電池1の広側面10wの一部に対向する第1部分21と、第1部分21から延出して二次電池1の狭側面10nの少なくとも一部に対向する第2部分22とを有することを特徴としている。
二次電池1は、扁平角形の概ね直方体形状を有し、上面の幅方向の一端と他端に正極外部端子11と負極外部端子12とを有している。二次電池1は、その厚さ方向(X軸方向)にスペーサ部材2と交互に配置され、スペーサ部材2を介在させて積層されている。複数の二次電池1は、隣接する2つの二次電池1,1のうち、一方の二次電池1の正極外部端子11と、他方の二次電池1の負極外部端子12とが、二次電池1の積層方向(X軸方向)に隣り合うように、交互に180°反転させて積層され、図示を省略するバスバーによって直列に接続される。
図3は、図1及び図2に示す二次電池1の外観斜視図である。二次電池1は、例えばアルミニウム又はアルミニウム合金製の電池容器10を備え、幅方向を長辺とする概ね長方形の上面10t及び底面10bと、幅方向に沿う最大面積の広側面10wと、厚さ方向に沿う比較的面積の小さい狭側面10nとを有している。組電池100の組立時に、複数の二次電池1は、隣り合う二次電池1の互いの広側面10w同士がスペーサ部材2を介して対向するように積層して配置される。
電池容器10は、有底角筒状の電池缶13と矩形平板状の電池蓋14とを有し、例えばレーザ溶接によって電池蓋14が接合されて電池缶13の上部開口が封止されている。図示は省略するが、電池容器10の内部には、例えば、長尺帯状の正極電極及び負極電極を長尺帯状のセパレータを介在させて捲回した捲回体と、該捲回体の各電極と各外部端子11,12とを接続する一対の集電板と、一対の集電板を電池蓋14に対して固定する絶縁部材と、捲回体を覆う絶縁シートと、電解液とが収容されている。
電池蓋14の長手方向(Y軸方向)すなわち二次電池1の幅方向の一端と他端には、例えばアルミニウム又はアルミニウム合金製の正極外部端子11と、例えば銅又は銅合金製の負極外部端子12とが設けられている。正極外部端子11と負極外部端子12は、それぞれ電池蓋14を貫通して電池容器10の内部の正極集電板と負極集電板に接続されることで、それぞれ捲回体を構成する正極電極と負極電極に接続されている。各外部端子11,12と電池蓋14との間には、絶縁性を有する樹脂製のガスケット15が配置されている。ガスケット15は、各外部端子11,12と電池蓋14との間を絶縁するとともに、電池蓋14に設けられた貫通孔を封止している。
電池蓋14は、長手方向の中間部にガス排出弁16と注液孔17とを有している。ガス排出弁16は、例えば電池蓋14を部分的に薄肉化することによって形成され、何らかの異常によって電池容器10の内圧が設定圧力を超えて上昇したときに開裂してガスを排出し、電池容器10の内圧を低減させる。注液孔17は、電池蓋14に穿設された貫通孔であり、電池容器10の内部に電解液を注入するのに用いられ、電解液の注入後に、例えばレーザ溶接によって注液栓18が接合されて封止される。
以上の構成により、二次電池1は、外部から正極外部端子11及び負極外部端子12を介して供給された電力を電池容器10内部の捲回体に蓄え、又は、捲回体に蓄えた電力を正極外部端子11及び負極外部端子12を介して外部へ供給することができる。
図4は、図2に示すスペーサ部材2を示す外観斜視図である。図5は、図1に示す組電池100の拡大平面図である。
スペーサ部材2は、例えば絶縁性を有する樹脂によって製作され、前述のように二次電池1の幅方向の一側と他側に分離して配置される。スペーサ部材2は、それぞれ、二次電池1の広側面10wの一部に対向する第1部分21と、該第1部分21から延出して二次電池1の狭側面10nの少なくとも一部に対向する第2部分22とを有している。
スペーサ部材2の第1部分21は、二次電池1の幅方向(Y軸方向)及び高さ方向(Z軸方向)に延在して、積層方向(X軸方向)に隣接する2つの二次電池1の広側面10wの間に配置され、両方の広側面10wに当接する薄い板状の部分である。スペーサ部材2の第1部分21は、例えば、積層方向に隣接する2つの二次電池1の間隔を保持して絶縁性を確保する。
スペーサ部材2の第1部分21は、例えば、二次電池1の幅方向に沿う幅寸法W1が二次電池1の高さ方向に沿う高さ寸法H1よりも小さく、二次電池1の高さ方向を長手方向とする細長い長方形の板状に形成することができる。スペーサ部材2の第1部分21の高さ寸法H1は、二次電池1の電池容器10の高さ寸法Hと概ね等しくすることができる。スペーサ部材2の第1部分21の厚さ寸法T1は、強度確保と組電池100の小型化の観点から、0.1mm以上、3.0mm以下であることが好ましい。
スペーサ部材2の第1部分21の幅寸法W1は、第2部分22から延在する第1部分21を、二次電池1の広側面10wの一部に対向させることができる寸法であれば、特に限定されない。具体的には、二次電池1の広側面10wと狭側面10nとの間の角部に曲面状のR部10rを有する場合、第1部分21の幅寸法W1は、第2部分22から延在する第1部分21の幅方向の端部21aが、R部10rと広側面10wとの間の境界を超えて、広側面10wに対向する位置に達するように設定することができる。また、二次電池1の広側面10wと狭側面10nとの間の角部にR部10rを有しない場合、第1部分21の幅寸法W1は、電池缶13の肉厚よりも大きければよい。なお、第1部分21の幅寸法W1は、組電池100の組立時や二次電池1の充放電時に作用する圧縮力に耐え得る寸法に設定する必要がある。
スペーサ部材2の第1部分21の幅寸法W1は、組電池100の組立時にスペーサ部材2の第1部分21によって二次電池1の電池容器10を圧縮して寸法を均一化する観点から、10mm以上であることが好ましい。また、二次電池1の幅方向の一側と他側に配置された一対のスペーサ部材2の第1部分21の寸法及び形状は、二次電池1を均一に保持する観点から、同一であることが好ましい。また、二次電池1の幅方向の一側と他側に配置された一対のスペーサ部材2は、互いに分離されていれば、第1部分21同士が接していてもよいが、第1部分21に作用する応力を低減する観点から、第1部分21同士の間に間隔を有することが好ましい。
したがって、スペーサ部材2の第1部分21の幅寸法W1は、電池容器10の幅寸法Wの1/2以下にすることができる。なお、スペーサ部材2の第1部分21は、二次電池1の高さ方向に所定の間隔をあけて複数の第1部分21が配置された櫛歯状の構成を有してもよい。この場合、二次電池1の幅方向の一側と他側に配置された一対のスペーサ部材2のうち、一方の櫛歯状の第1部分21と他方の櫛歯状の第1部分21とを噛合させ、互いの第1部分21が高さ方向に交互に配置されるようにしてもよい。この場合、スペーサ部材2の第1部分21の幅寸法W1は、電池容器10の幅寸法W以下にすることができる。
スペーサ部材2の第2部分22は、二次電池1の厚さ方向(X軸方向)及び高さ方向(Z軸方向)に延在する薄い板状の部分であり、電池容器10とサイドプレート5との間に配置され、これらの間を絶縁する。本実施形態において、スペーサ部材2の第2部分22は、積層方向(X軸方向)に隣接する2つの二次電池1の狭側面10nに対向している。また、本実施形態において、スペーサ部材2の第2部分22は、積層方向に隣接する2つの二次電池1のうち、一方の二次電池1の狭側面10nに対向する面積と、他方の二次電池1の狭側面10nに対向する面積とが概ね等しくなっている。
換言すると、スペーサ部材2の第2部分22は、第1部分21の幅方向(Y軸方向)の一端から二次電池1の積層方向(X軸方向)の両側に向けて延出し、積層方向に隣接する2つの二次電池1のそれぞれの狭側面10nの概ね1/2ずつに対向している。すなわち、スペーサ部材2は、二次電池1の厚さ方向における第2部分22の中央部から、二次電池1の幅方向に第1部分21が延出している。
スペーサ部材2の第2部分22は、例えば、二次電池1の厚さ方向に沿う幅寸法W2が二次電池1の高さ方向に沿う高さ寸法H2よりも小さく、二次電池1の高さ方向を長手方向とする細長い長方形の板状に形成することができる。スペーサ部材2の第2部分22の高さ寸法H2は、二次電池1の電池容器10の高さ寸法Hと概ね等しくすることができる。また、スペーサ部材2の第2部分22の高さ寸法H2は、電池容器10の高さ寸法Hよりも大きくして、電池容器10の底面10bと上面10tに対向する部分を設け、第2部分22によって電池容器10を上下から保持することもできる。スペーサ部材2の第2部分22の厚さ寸法T2は、第1部分21の厚さ寸法T1よりも厚くすることができる。
スペーサ部材2の第2部分22の幅寸法W2は、第1部分21から延在する第2部分22を、二次電池1の狭側面10nの一部に対向させることができる寸法であれば、特に限定されない。具体的には、二次電池1の広側面10wと狭側面10nとの間の角部に曲面状のR部10rを有する場合、第2部分22の幅寸法W2は、第1部分21から延在する第2部分22の幅方向の端部22aが、R部と狭側面10nとの間の境界を超えて、狭側面10nに対向する位置に達するように設定することができる。また、二次電池1の広側面10wと狭側面10nとの間の角部にR部10rを有しない場合、第2部分22の幅寸法W2は、電池缶13の肉厚よりも大きければよい。なお、第2部分22の幅寸法W2は、組電池100の組立時や二次電池1の充放電時に作用する応力に耐え得る寸法に設定する必要がある。
スペーサ部材2の第2部分22の幅寸法W2は、組電池100の組立時にスペーサ部材2の第1部分21によって二次電池1の電池容器10を圧縮して寸法を均一化する観点から、二次電池1の積層方向に隣接するスペーサ部材2の第2部分22同士の間に間隙を有する寸法に設定することが好ましい。したがって、スペーサ部材2の第2部分22の幅寸法W2は、電池容器10の厚さ寸法T以下にすることができる。なお、二次電池1の積層方向に隣接するスペーサ部材2の第2部分22の端部22a同士を、二次電池1の幅方向において重ね合せるラビリンス構造を採用する場合には、スペーサ部材2の第2部分22の幅寸法W2は、電池容器10の厚さ寸法Tよりも大きくなる。この場合にも、第2部分22同士の間に二次電池1の積層方向の間隙を形成することが好ましい。
図2に示すように、一対の端部スペーサ部材3は、スペーサ部材2を介在させて厚さ方向に積層された複数の二次電池1の積層方向の一端と他端に配置されている。端部スペーサ部材3は、スペーサ部材2と同様に、絶縁性を有する樹脂によって製作され、エンドプレート4と二次電池1の間に配置され、これらを絶縁している。端部スペーサ部材3は、後述する実施形態2の組電池に用いられるL字形のスペーサ部材2A(図6参照)のように、二次電池1の幅方向の一端と他端で分離されていてもよいが、本実施形態では、二次電池1の幅方向の一端から他端まで一体に設けられた板状の端部スペーサ部材3を用いている。端部スペーサ部材3は、二次電池1の広側面10wの概ね全体に対向する第1部分31と、第1部分31の幅方向の両端部から二次電池1の厚さ方向に延在して一対の狭側面10nの概ね1/2ずつに対向する一対の第2部分32とを有している。
一対のエンドプレート4は、例えばステンレス鋼等の金属材料によって製作された矩形の板状の部材であり、概ね二次電池1の広側面10wと等しい平面形状及び平面寸法を有している。一対のエンドプレート4は、二次電池1の積層方向において、一対の端部スペーサ部材3のさらに外側に配置される。一対のエンドプレート4は、スペーサ部材2を介在させて積層されるとともに積層方向の両側に一対の端部スペーサ部材3が配置された複数の二次電池1を、積層方向の両側から挟持する。一対のエンドプレート4は、二次電池1の幅方向の両側にそれぞれ複数のボルト穴41を有している。
一対のサイドプレート5は、例えばステンレス鋼等の金属材料によって製作され、二次電池1の積層方向に延在する帯板状の部材であり、短手方向の寸法が二次電池1の電池容器10の高さ寸法Hと概ね等しくなっている。本実施形態において、サイドプレート5は、二次電池1の高さ方向における電池蓋14側の端部が概ね直角に曲折され、電池容器10の上面10tに係合するようになっている。サイドプレート5の長手方向の両端部には、エンドプレート4のボルト穴41に対応する位置に、ボルト6,7を挿通させる貫通孔51が設けられている。
本実施形態の組電池100は、例えば、以下の手順によって組み立てることができる。まず、第1の二次電池1の幅方向の一側と他側に一対の第1のスペーサ部材2を配置する。そして、一対の第1のスペーサ部材2の第1部分21を、第1の二次電池1の一方の広側面10wに対向させ、一方の第1のスペーサ部材2の第2部分22を、第1の二次電池1の一方の狭側面10nに対向させ、他方の第1のスペーサ部材2の第2部分22を、第1の二次電池1の他方の狭側面10nに対向させる。
次に、一対の第1のスペーサ部材2を配置した第1の二次電池1の一方の広側面10wに、第2の二次電池1の一方の広側面10wを対向させ、二次電池1の積層方向において第1の二次電池1の正極外部端子11と第2の二次電池1の負極外部端子12とが隣接するように積層して配置する。これにより、一対の第1のスペーサ部材2の第1部分21が第1の二次電池1の一方の広側面10wと第2の二次電池1の一方の広側面10wとの間に配置される。また、一方の第1のスペーサ部材2の第2部分22が第1及び第2の二次電池1の隣接する一方の狭側面10nに対向し、他方の第1のスペーサ部材2の第2部分22が第1及び第2の二次電池1の隣接する他方の狭側面10nに対向する。
次に、一対の第2のスペーサ部材2、第3の二次電池1、一対の第3のスペーサ部材2、及び、第4の二次電池1についても同様に、一対のスペーサ部材2を2つの二次電池1の間に介在させながら、二次電池1を厚さ方向に積層していく。そして、すべての二次電池1を一対のスペーサ部材2を介在させながら積層させた後、二次電池1の積層方向の両側に一対の端部スペーサ部材3を配置し、さらにその積層方向の両側に一対のエンドプレート4を配置し、一対のエンドプレート4に対して二次電池1の積層方向に圧縮力を加える。これにより、許容される寸法公差の範囲で厚さ寸法Tの大きい二次電池1の電池容器10が圧縮され、一対のエンドプレート4の間隔が所定の間隔に規定される。
次に、積層された複数の二次電池1の幅方向の両側に一対のサイドプレート5を配置し、これらのサイドプレート5の貫通孔51にボルト6,7を挿通させ、一対のエンドプレート4のボルト穴41にボルト6,7をねじ込み、一対のエンドプレート4と一対のサイドプレート5とを締結して固定する。これにより、一対のサイドプレート5は、二次電池1の幅方向において互いに対向し、二次電池1の積層方向に延在し、それぞれ、複数のスペーサ部材2の第2部分22に対向した状態になる。
また、一対のエンドプレート4は、二次電池1の積層方向において対向する。そして、一対の端部スペーサ部材3の間に積層されてスペーサ部材2と交互に配置され、スペーサ部材2の第1部分21によって圧縮力が付与された複数の二次電池1が、一対のエンドプレート4によって挟持されて固縛された状態になる。以上により、図1に示す組電池100が完成する。その後、図示は省略するが、バスバーによって複数の二次電池1を直列に接続し、その上に二次電池1の電圧を測定する電圧検出用基板を配置し、さらに電圧検出用基板をカバーで覆う。以上の構成により、組電池100は、外部から供給された電力を複数の二次電池1に蓄え、又は、複数の二次電池1に蓄えられた電力を外部に供給することができる。
以下、本実施形態の組電池100の作用について説明する。
組電池100は、例えば、電気自動車やハイブリッドカー等の車両に搭載され、大電流での充放電を繰り返すことで、個々の二次電池1が膨張と収縮を繰り返す。二次電池1の電池容器10は、内部に扁平な捲回体が収容された扁平角形の概ね直方体形状を有し、二次電池1の充電時に厚さ方向に膨張する。二次電池1は、電池容器10の広側面10wの中央部の近傍における膨張量が相対的に多く、広側面10wの角部の近傍における膨張量が相対的に少ない傾向がある。
そのため、二次電池1は、充電時に電池容器10が膨張することで、電池容器10の高さ寸法Hは、幅方向中央部で相対的に小さく、幅方向両端部で相対的に大きくなる。また、電池容器10の幅寸法Wは、高さ方向中央部で相対的に小さく、高さ方向両端部で相対的に大きくなる。二次電池1の電池容器10は、充電時の膨張した状態から、放電時に元の扁平角形の形状に戻るように収縮する。
前記特許文献1に記載の従来の組電池は、隣接する角形電池セルの対向面の間に配設された分割セパレータが、角形電池セルの幅方向の一端から他端まで延在する枠部の横枠や支持ロッドを有している。この場合、上記のような組電池の充放電時の角形電池セルの膨張と収縮に伴って、角形電池セルの対向面が横枠や支持ロッドに接し、横枠や支持ロッドに対して対向面に沿う方向の比較的大きな圧縮応力や引張応力が作用する。したがって、特許文献1に記載の従来の組電池では、分割セパレータの横枠や支持ロッドに疲労破壊や塑性変形が生じる虞がある。
これに対し、本実施形態の組電池100は、扁平角形の二次電池1が厚さ方向にスペーサ部材2と交互に積層され、スペーサ部材2は、二次電池1の幅方向の一側と他側にそれぞれ配置されている。そして、スペーサ部材2は、二次電池1の幅方向に沿う広側面10wの一部に対向する第1部分21と、該第1部分21に接続されて二次電池1の厚さ方向に沿う狭側面10nの少なくとも一部に対向する第2部分22と、を有している。
このように、一対のスペーサ部材2が二次電池1の幅方向の一側と他側に分離して配置されることで、二次電池1が膨張して広側面10wがスペーサ部材2の第1部分21に接しても、第1部分21に作用する広側面10wに沿う方向の圧縮応力や引張応力を従来よりも低減することができる。したがって、本実施形態によれば、複数の扁平角形の二次電池1を備えた組電池100において、個々の二次電池1に隣接して配置されるスペーサ部材2の疲労破壊や塑性変形を抑制することができる。
より詳細には、本実施形態の組電池100において、電池容器10の広側面10wに対向するスペーサ部材2の第1部分21は、二次電池1の狭側面10nに対向する第2部分22から二次電池1の幅方向に延在している。しかし、電池容器10の幅方向における第1部分21の幅寸法W1は、電池容器10の幅寸法Wよりも小さい。より具体的には、本実施形態の組電池100において、スペーサ部材2の第1部分21の幅寸法W1は、電池容器10の幅寸法Wの1/2よりも小さい。また、電池容器10の幅方向の一側と他側に配置された一対のスペーサ部材2の第1部分21の間には、電池容器10の幅方向に間隙が形成されている。
これにより、スペーサ部材2の成型時にウェルドラインが形成されやすく、比較的脆くなりやすい電池容器10の広側面10wの幅方向の中央部に対向する位置まで、スペーサ部材2の第1部分21を第2部分22から延在させる必要がなくなる。したがって、スペーサ部材2の強度を向上させることができる。また、電池容器10の膨張及び収縮にともなう変形量が比較的大きい広側面10wの幅方向中央部に対向するように、一対のスペーサ部材2の第1部分21の間に幅方向の間隙を形成することができる。これにより、スペーサ部材2の第1部分21に作用する圧縮応力や引張応力をより効果的に低減することができる。したがって、本実施形態の組電池100によれば、スペーサ部材2の疲労破壊や塑性変形をより効果的に抑制することができる。
さらに、本実施形態の組電池100において、スペーサ部材2の第1部分21の幅寸法W1は、組電池100の組立時にスペーサ部材2の第1部分21によって二次電池1の電池容器10を圧縮して寸法を均一化することができる最小限の寸法に設定することができる。より具体的には、スペーサ部材2の第1部分21の幅寸法W1は、電池容器10の狭側面10nと隣接する外部端子11,12の端部までの距離と同等程度の寸法、より具体的には、10mm程度に設定することができる。
これにより、電池容器10の膨張、収縮時の変形量が比較的小さい広側面10wの幅方向両端部のみに対向するように、一対のスペーサ部材2の第1部分21を配置することができる。したがって、本実施形態の組電池100によれば、スペーサ部材2の第1部分21に作用する応力をより効果的に低減し、スペーサ部材2の疲労破壊や塑性変形をより効果的に抑制することができる。
また、本実施形態の組電池100において、スペーサ部材2の第2部分22は、積層方向に隣接する2つの二次電池1の狭側面10nに対向している。そのため、組電池100の組立ての際に、二次電池1の電池容器10の広側面10wに第1部分21を当接させ、電池容器10の狭側面10nに第2部分22当接させてスペーサ部材2を配置し、そのスペーサ部材2を介して別の二次電池1を積層することができる。したがって、本実施形態の組電池100によれば、二次電池1の積層時の組立性を向上させ、生産性を向上させることができる。
また、本実施形態の組電池100において、スペーサ部材2の第2部分22は、積層方向に隣接する2つの二次電池1のうち、一方の二次電池1の狭側面10nに対向する面積と、他方の二次電池1の狭側面10nに対向する面積とが等しい。そのため、スペーサ部材2を、二次電池1の積層方向に直交する面に対して対称な形状にすることができ、組電池100の組立時にスペーサ部材2を配置する方向を意識する必要がなくなる。したがって、本実施形態の組電池100によれば、組立性を向上させ、生産性を向上させることができる。
以上説明したように、本実施形態によれば、複数の扁平角形の二次電池1を備えた組電池100において、スペーサ部材2の疲労破壊や塑性変形をより効果的に抑制するとともに、生産性を向上させることができる。
[実施形態2]
以下、本発明の組電池の実施形態2について、図1から図3を援用し、図6及び図7を用いて説明する。図6及び図7は、実施形態1の組電池100の図4及び図5に相当する実施形態2の組電池のスペーサ部材2Aの斜視図及びその組電池の拡大平面図である。
以下、本発明の組電池の実施形態2について、図1から図3を援用し、図6及び図7を用いて説明する。図6及び図7は、実施形態1の組電池100の図4及び図5に相当する実施形態2の組電池のスペーサ部材2Aの斜視図及びその組電池の拡大平面図である。
本実施形態の組電池は、スペーサ部材2Aの第2部分22が、積層方向に隣接する2つの二次電池1のうち、一方の二次電池1の狭側面10nのみに対向する点で、前述の実施形態1の組電池100と異なっている。本実施形態の組電池のその他の点は、前述の実施形態1の組電池100と同一であるので、同一の部分には同一の符号を付して説明を省略する。
本実施形態の組電池は、組立時に、例えば、一の二次電池1の幅方向の一側と他側に一対のスペーサ部材2Aを配置し、スペーサ部材2Aの第1部分21を電池容器10の一方の広側面10wに対向させ、一対のスペーサ部材2Aの第2部分22を電池容器10の一対に狭側面10nに対向させる。これを各二次電池1に対して行った後、各一対のスペーサ部材2Aを組み付けた各二次電池1を積層させることで、スペーサ部材2Aを介して複数の二次電池1を積層させることができる。
したがって、本実施形態の組電池によれば、組立性を向上させ、生産性を向上させることができる。さらに、スペーサ部材2Aを断面形状がL字形の単純な形状にして、スペーサ部材2Aの製作を容易にすることができる。なお、二次電池1の幅方向の一側と他側に配置された一対のスペーサ部材2Aは、必ずしも同一の形状及び左右対称の配置にする必要はなく、異なる形状又は左右非対称の配置にしてもよい。
[実施形態3]
以下、本発明の組電池の実施形態3について、図1から図3を援用し、図8及び図9を用いて説明する。図8及び図9は、実施形態1の組電池100の図4及び図5に相当する実施形態3の組電池のスペーサ部材2Bの斜視図及びその組電池の拡大平面図である。
以下、本発明の組電池の実施形態3について、図1から図3を援用し、図8及び図9を用いて説明する。図8及び図9は、実施形態1の組電池100の図4及び図5に相当する実施形態3の組電池のスペーサ部材2Bの斜視図及びその組電池の拡大平面図である。
本実施形態の組電池は、スペーサ部材2Bの第2部分22が、積層方向に隣接する2つの二次電池1のうち、一方の二次電池1の狭側面10nに対向する面積と、他方の二次電池1の狭側面10nに対向する面積とが異なる点で、前述の実施形態1の組電池100と異なっている。本実施形態の組電池のその他の点は、前述の実施形態1の組電池100と同一であるので、同一の部分には同一の符号を付して説明を省略する。
本実施形態の組電池は、組立時に、例えば、一の二次電池1の幅方向の一側と他側に一対のスペーサ部材2Bを配置し、一対のスペーサ部材2Bの第1部分21を電池容器10の一方の広側面10wに対向させ、一対のスペーサ部材2Bの第2部分22の面積の大きい部分を電池容器10の一対の狭側面10nに対向させる。これにより、一の二次電池1に対して一対のスペーサ部材2Bを安定して配置することができる。そして、一対のスペーサ部材2Bの第2部分22の面積の小さい部分を、他の二次電池1の狭側面10nに対向させ、一対のスペーサ部材2Bの第1部分21を2つの二次電池1の間に配置する。
このとき、一の二次電池1に積層させる他の二次電池1の狭側面10nに対向するスペーサ部材2Bの第2部分22の面積が、一の二次電池1の狭側面10nに対向するスペーサ部材2Bの第2部分22の面積よりも小さい。これにより、スペーサ部材2Bを介して一の二次電池1に他の二次電池1を容易に積層させることができる。したがって、本実施形態の組電池によれば、組立性を向上させ、生産性を向上させることができる。
[実施形態4]
以下、本発明の組電池の実施形態4について、図1を援用し、図10から図12を用いて説明する。図10は、実施形態1の組電池100の図2に相当する実施形態4の組電池100Aの分解斜視図である。図11は、図10に示す一つのスペーサ部材2Cの断面図である。図12は、図10に示す一対のスペーサ部材2Cの斜視図である。
以下、本発明の組電池の実施形態4について、図1を援用し、図10から図12を用いて説明する。図10は、実施形態1の組電池100の図2に相当する実施形態4の組電池100Aの分解斜視図である。図11は、図10に示す一つのスペーサ部材2Cの断面図である。図12は、図10に示す一対のスペーサ部材2Cの斜視図である。
本実施形態の組電池100Aは、主に、スペーサ部材2Cの第2部分22が、二次電池1の積層方向に延在するサイドプレート5の一対の端縁5a,5bのうち、少なくとも一方の端縁を係合させる係合部23,24を有している点で、前述の実施形態1で説明した組電池100と異なっている。本実施形態の組電池100Aのその他の点は、前述の実施形態1の組電池100と同様であるため、同一の部分には同一の符号を付して説明を省略する。
本実施形態の組電池100Aは、実施形態1の組電池100と同様に、複数のスペーサ部材2Cの第2部分22に対向するサイドプレート5を備えている。サイドプレート5は
、二次電池1の積層方向に延在する一対の端縁5a,5bを有している。サイドプレート5の一対の端縁5a,5bのうち、二次電池1の高さ方向の上方側の端縁5aは、二次電池1の幅方向に向けて概ね90°の角度で折り曲げられ、二次電池1の幅方向の中央側を向いている。サイドプレート5は、二次電池1の幅方向内側を向く上方側の端縁5aの曲折部から二次電池1の高さ方向に沿って下方に延在し、二次電池1の高さ方向の下方側の端縁5bは、まっすぐに下方を向いている。
、二次電池1の積層方向に延在する一対の端縁5a,5bを有している。サイドプレート5の一対の端縁5a,5bのうち、二次電池1の高さ方向の上方側の端縁5aは、二次電池1の幅方向に向けて概ね90°の角度で折り曲げられ、二次電池1の幅方向の中央側を向いている。サイドプレート5は、二次電池1の幅方向内側を向く上方側の端縁5aの曲折部から二次電池1の高さ方向に沿って下方に延在し、二次電池1の高さ方向の下方側の端縁5bは、まっすぐに下方を向いている。
スペーサ部材2Cの第2部分22は、二次電池1の積層方向に延在するサイドプレート5の一対の端縁5a,5bのうち、上方側の端縁5aを係合させる第1の係合部23と、下方側の端縁5bを係合させる第2の係合部24とを有している。なお、スペーサ部材2Cの第2部分22は、第1の係合部23と第2の係合部24のうち、少なくとも一方を有していればよい。
第1の係合部23は、二次電池1の幅方向に深さを有する溝状に形成され、第2の係合部24は、二次電池1の高さ方向に深さを有する溝状に形成されている。また、溝状の第1の係合部23及び第2の係合部24は、二次電池1の積層方向に延在し、二次電池1の積層方向が開放され、サイドプレート5を二次電池1の積層方向に摺動可能に係合させるとともに、二次電池1の高さ方向及び幅方向におけるサイドプレート5の移動を規制する壁部23a,24aを有する。
第1の係合部23の壁部23aは、二次電池1の積層方向に延在し、サイドプレート5の上端部の曲折部の上面に対向する壁面と、サイドプレート5の端縁5aに対向する壁面と、サイドプレート5の上端部の曲折部の下面に対向する壁面とを有している。また、第2の係合部の壁部24aは、サイドプレート5の下端部の内側面に対向する壁面と、サイドプレートの下方側の端縁5bに対向する壁面と、サイドプレート5の下端部の外側面に対向する壁面とを有している。
サイドプレート5をスペーサ部材2Cの第1の係合部23及び第2の係合部24に対して係合させるには、まず、二次電池1の積層方向におけるサイドプレート5の一方の端部
、すなわち、サイドプレート5の長手方向の一方の端部を、第1の係合部23及び第2の係合部24の開放された端部に差し込む。そして、サイドプレート5をスペーサ部材2Cの第1の係合部23及び第2の係合部24に対して長手方向に摺動させることで、サイドプレート5を第1の係合部23及び第2の係合部24に係合させることができる。
、すなわち、サイドプレート5の長手方向の一方の端部を、第1の係合部23及び第2の係合部24の開放された端部に差し込む。そして、サイドプレート5をスペーサ部材2Cの第1の係合部23及び第2の係合部24に対して長手方向に摺動させることで、サイドプレート5を第1の係合部23及び第2の係合部24に係合させることができる。
このように、サイドプレート5に複数のスペーサ部材2Cの第2部分22を係合させ、複数のスペーサ部材2Cの第1部分21をサイドプレート5に対して櫛歯状に配置することができる。これにより、複数の二次電池1を厚さ方向に配列した状態で、複数のスペーサ部材2Cの第1部分21を一括して二次電池1の間に配置したり、サイドプレート5に係合した複数のスペーサ部材2Cの櫛歯状の第1部分21の間に二次電池1を配置したりすることができる。
したがって、本実施形態の組電池100Aによれば、組立性を向上させ、生産性を向上させることができる。また、スペーサ部材2Cがサイドプレート5に対して二次電池1の積層方向に摺動することで、組電池100Aの組立時に、二次電池1の電池容器10に対して二次電池1の積層方向に圧縮力を付与することが可能になる。
以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。
1 二次電池
2 スペーサ部材
5 サイドプレート
5a 端縁
5b 端縁
10w 広側面
10n 狭側面
21 第1部分
22 第2部分
23 係合部
23a 壁部
24 係合部
24a 壁部
100 組電池
100A 組電池
2 スペーサ部材
5 サイドプレート
5a 端縁
5b 端縁
10w 広側面
10n 狭側面
21 第1部分
22 第2部分
23 係合部
23a 壁部
24 係合部
24a 壁部
100 組電池
100A 組電池
Claims (6)
- 扁平角形の二次電池が厚さ方向にスペーサ部材と交互に積層された組電池であって、
前記スペーサ部材は、前記二次電池の幅方向の一側と他側にそれぞれ配置され、前記幅方向に沿う前記二次電池の広側面の一部に対向する第1部分と、該第1部分に接続されて前記厚さ方向に沿う前記二次電池の狭側面の少なくとも一部に対向する第2部分と、を有することを特徴とする組電池。 - 前記第2部分は、積層方向に隣接する2つの前記二次電池の前記狭側面に対向することを特徴とする請求項1に記載の組電池。
- 前記第2部分は、前記積層方向に隣接する2つの前記二次電池のうち、一方の前記二次電池の前記狭側面に対向する面積と、他方の前記二次電池の前記狭側面に対向する面積とが等しいことを特徴とする請求項2に記載の組電池。
- 前記第2部分は、前記積層方向に隣接する2つの前記二次電池のうち、一方の前記二次電池の前記狭側面に対向する面積と、他方の前記二次電池の前記狭側面に対向する面積とが異なることを特徴とする請求項2に記載の組電池。
- 前記第2部分は、積層方向に隣接する2つの前記二次電池のうち、一方の前記二次電池の前記狭側面のみに対向することを特徴とする請求項1に記載の組電池。
- 複数の前記スペーサ部材の前記第2部分に対向するサイドプレートをさらに備え、
前記第2部分は、前記二次電池の積層方向に延在する前記サイドプレートの一対の端縁のうち、少なくとも一方の端縁を係合させる係合部を有し、
前記係合部は、前記積層方向が開放されて前記サイドプレートを前記積層方向に摺動可能に係合させるとともに、前記二次電池の高さ方向及び前記幅方向における前記サイドプレートの移動を規制する壁部を有することを特徴とする請求項1から請求項5のいずれか一項に記載の組電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017543219A JP6585726B2 (ja) | 2015-10-02 | 2016-09-26 | 組電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015196374 | 2015-10-02 | ||
JP2015-196374 | 2015-10-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017057207A1 true WO2017057207A1 (ja) | 2017-04-06 |
Family
ID=58427388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/078137 WO2017057207A1 (ja) | 2015-10-02 | 2016-09-26 | 組電池 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6585726B2 (ja) |
WO (1) | WO2017057207A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018098095A (ja) * | 2016-12-15 | 2018-06-21 | トヨタ自動車株式会社 | 二次電池スタックの製造方法 |
JP2019016503A (ja) * | 2017-07-06 | 2019-01-31 | 本田技研工業株式会社 | バッテリモジュール |
WO2020110449A1 (ja) | 2018-11-28 | 2020-06-04 | 三洋電機株式会社 | 電池モジュール |
US20210218082A1 (en) * | 2018-09-26 | 2021-07-15 | Vehicle Energy Japan Inc. | Battery pack |
CN113228390A (zh) * | 2018-12-25 | 2021-08-06 | 株式会社丰田自动织机 | 蓄电装置 |
EP3951818A4 (en) * | 2019-03-28 | 2022-06-01 | GS Yuasa International Ltd. | POWER STORAGE DEVICE |
JP2023075547A (ja) * | 2021-11-19 | 2023-05-31 | プライムプラネットエナジー&ソリューションズ株式会社 | 電池モジュール |
WO2023171117A1 (ja) * | 2022-03-11 | 2023-09-14 | 株式会社Gsユアサ | 蓄電装置 |
JP7569798B2 (ja) | 2019-04-26 | 2024-10-18 | コンテンポラリー アンペレックス テクノロジー(ホンコン)リミテッド | 電池モジュール及び電池パック |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11162422A (ja) * | 1997-11-28 | 1999-06-18 | Matsushita Electric Ind Co Ltd | 集合電池 |
JP2008124033A (ja) * | 2006-03-28 | 2008-05-29 | Takehiro:Kk | 電池モジュール |
JP2010003691A (ja) * | 2008-06-20 | 2010-01-07 | Samsung Sdi Co Ltd | バッテリパックおよびその製造方法 |
JP2011151013A (ja) * | 2009-12-25 | 2011-08-04 | Gs Yuasa Corp | 単電池およびこの単電池を用いた組電池 |
JP2012009310A (ja) * | 2010-06-25 | 2012-01-12 | Sanyo Electric Co Ltd | 蓄電システム |
WO2012147331A1 (ja) * | 2011-04-28 | 2012-11-01 | 三洋電機株式会社 | バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置 |
JP2013178894A (ja) * | 2012-02-28 | 2013-09-09 | Sanyo Electric Co Ltd | 電源装置 |
JP2013191397A (ja) * | 2012-03-14 | 2013-09-26 | Hitachi Ltd | 電池モジュール |
JP2013225377A (ja) * | 2012-04-19 | 2013-10-31 | Toyota Motor Corp | 充放電装置 |
JP2014112546A (ja) * | 2014-01-10 | 2014-06-19 | Gs Yuasa Corp | 組電池、単電池、及びキャップ |
WO2014203694A1 (ja) * | 2013-06-19 | 2014-12-24 | 日立オートモティブシステムズ株式会社 | 電池モジュール |
JP2015149281A (ja) * | 2014-02-04 | 2015-08-20 | 三星エスディアイ株式会社Samsung SDI Co.,Ltd. | バスバーモジュール |
US20150287968A1 (en) * | 2014-04-04 | 2015-10-08 | Ford Global Technologies, Llc | Battery pack array separator |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008007767A1 (en) * | 2006-07-13 | 2008-01-17 | Gs Yuasa Corporation | Assembled battery formed by stacking a plurality of flat cells |
JP5773412B2 (ja) * | 2011-03-31 | 2015-09-02 | Necエナジーデバイス株式会社 | 電池パックおよび電動自転車 |
-
2016
- 2016-09-26 JP JP2017543219A patent/JP6585726B2/ja active Active
- 2016-09-26 WO PCT/JP2016/078137 patent/WO2017057207A1/ja active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11162422A (ja) * | 1997-11-28 | 1999-06-18 | Matsushita Electric Ind Co Ltd | 集合電池 |
JP2008124033A (ja) * | 2006-03-28 | 2008-05-29 | Takehiro:Kk | 電池モジュール |
JP2010003691A (ja) * | 2008-06-20 | 2010-01-07 | Samsung Sdi Co Ltd | バッテリパックおよびその製造方法 |
JP2011151013A (ja) * | 2009-12-25 | 2011-08-04 | Gs Yuasa Corp | 単電池およびこの単電池を用いた組電池 |
JP2012009310A (ja) * | 2010-06-25 | 2012-01-12 | Sanyo Electric Co Ltd | 蓄電システム |
WO2012147331A1 (ja) * | 2011-04-28 | 2012-11-01 | 三洋電機株式会社 | バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置 |
JP2013178894A (ja) * | 2012-02-28 | 2013-09-09 | Sanyo Electric Co Ltd | 電源装置 |
JP2013191397A (ja) * | 2012-03-14 | 2013-09-26 | Hitachi Ltd | 電池モジュール |
JP2013225377A (ja) * | 2012-04-19 | 2013-10-31 | Toyota Motor Corp | 充放電装置 |
WO2014203694A1 (ja) * | 2013-06-19 | 2014-12-24 | 日立オートモティブシステムズ株式会社 | 電池モジュール |
JP2014112546A (ja) * | 2014-01-10 | 2014-06-19 | Gs Yuasa Corp | 組電池、単電池、及びキャップ |
JP2015149281A (ja) * | 2014-02-04 | 2015-08-20 | 三星エスディアイ株式会社Samsung SDI Co.,Ltd. | バスバーモジュール |
US20150287968A1 (en) * | 2014-04-04 | 2015-10-08 | Ford Global Technologies, Llc | Battery pack array separator |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018098095A (ja) * | 2016-12-15 | 2018-06-21 | トヨタ自動車株式会社 | 二次電池スタックの製造方法 |
JP2019016503A (ja) * | 2017-07-06 | 2019-01-31 | 本田技研工業株式会社 | バッテリモジュール |
US10930906B2 (en) | 2017-07-06 | 2021-02-23 | Honda Motor Co., Ltd. | Battery module |
US20210218082A1 (en) * | 2018-09-26 | 2021-07-15 | Vehicle Energy Japan Inc. | Battery pack |
WO2020110449A1 (ja) | 2018-11-28 | 2020-06-04 | 三洋電機株式会社 | 電池モジュール |
CN113228390A (zh) * | 2018-12-25 | 2021-08-06 | 株式会社丰田自动织机 | 蓄电装置 |
EP3951818A4 (en) * | 2019-03-28 | 2022-06-01 | GS Yuasa International Ltd. | POWER STORAGE DEVICE |
JP7569798B2 (ja) | 2019-04-26 | 2024-10-18 | コンテンポラリー アンペレックス テクノロジー(ホンコン)リミテッド | 電池モジュール及び電池パック |
JP2023075547A (ja) * | 2021-11-19 | 2023-05-31 | プライムプラネットエナジー&ソリューションズ株式会社 | 電池モジュール |
JP7488244B2 (ja) | 2021-11-19 | 2024-05-21 | プライムプラネットエナジー&ソリューションズ株式会社 | 電池モジュール |
WO2023171117A1 (ja) * | 2022-03-11 | 2023-09-14 | 株式会社Gsユアサ | 蓄電装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017057207A1 (ja) | 2018-06-07 |
JP6585726B2 (ja) | 2019-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6585726B2 (ja) | 組電池 | |
US11462790B2 (en) | Power supply device | |
US9947958B2 (en) | Power source module | |
JP6621481B2 (ja) | 組電池 | |
JP7476792B2 (ja) | 蓄電装置 | |
JP7024735B2 (ja) | 蓄電装置 | |
US20180151862A1 (en) | Power supply device and bus bar for battery cell | |
US9590264B2 (en) | Electric storage device | |
US10763483B2 (en) | Battery pack | |
CN113169390A (zh) | 蓄电模块 | |
KR101135498B1 (ko) | 이차 전지 및 그 캔 | |
JP7235040B2 (ja) | 蓄電装置 | |
US9755219B2 (en) | Electrical storage apparatus | |
JP7368933B2 (ja) | 蓄電装置 | |
WO2019182139A1 (ja) | 蓄電装置 | |
JP6247486B2 (ja) | 組電池 | |
US8524384B2 (en) | Rechargeable battery | |
JP7207398B2 (ja) | 蓄電装置 | |
JP6428077B2 (ja) | 蓄電装置 | |
JP7366523B2 (ja) | 蓄電装置 | |
JP2019061893A (ja) | 蓄電素子 | |
WO2020136946A1 (ja) | 蓄電装置 | |
KR101549171B1 (ko) | 전극 접속구조가 개선된 이차전지 어셈블리 및 이를 위한 이차전지와 그 제조방법 | |
JP2021057135A (ja) | 蓄電素子 | |
JP2014160615A (ja) | 蓄電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851378 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017543219 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16851378 Country of ref document: EP Kind code of ref document: A1 |