WO2017056689A1 - Non-reversible circuit element, front end circuit and communication device - Google Patents

Non-reversible circuit element, front end circuit and communication device Download PDF

Info

Publication number
WO2017056689A1
WO2017056689A1 PCT/JP2016/072603 JP2016072603W WO2017056689A1 WO 2017056689 A1 WO2017056689 A1 WO 2017056689A1 JP 2016072603 W JP2016072603 W JP 2016072603W WO 2017056689 A1 WO2017056689 A1 WO 2017056689A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
permanent magnet
magnetic rotor
circuit element
slit
Prior art date
Application number
PCT/JP2016/072603
Other languages
French (fr)
Japanese (ja)
Inventor
聖吾 日野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017056689A1 publication Critical patent/WO2017056689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators

Definitions

  • the present invention relates to a nonreciprocal circuit element, in particular, a nonreciprocal circuit element such as a circulator or an isolator used in a microwave band, a front end circuit including the nonreciprocal circuit element, and a communication device including the front end circuit.
  • a nonreciprocal circuit element such as a circulator or an isolator used in a microwave band
  • a front end circuit including the nonreciprocal circuit element
  • a communication device including the front end circuit.
  • Non-reciprocal circuit elements such as circulators and isolators have a characteristic of transmitting a signal only in a predetermined specific direction and not transmitting in a reverse direction. Using this characteristic, for example, a circulator is used in a front-end circuit of a mobile communication device such as a mobile phone.
  • Patent Document 1 includes a magnetic rotor made of ferrite in which a central conductor is arranged, a permanent magnet surrounding a side surface portion of the magnetic rotor, and yokes arranged on the mounting surface side and the top surface side of the magnetic rotor.
  • a non-reciprocal circuit device is described.
  • the non-reciprocal circuit element of the above-mentioned prior art when the molten resin material is injected around the magnetic rotor, there is no gap through which air escapes at the injection destination, and voids are generated, and the filling rate of the resin material may deteriorate. There is sex. When the filling rate is deteriorated, there is a problem that when the stress is applied to the nonreciprocal circuit element, the nonreciprocal circuit element is easily deformed, and the characteristics and the like are deteriorated.
  • an object of the present invention is to improve the filling rate of the resin material around the magnetic rotor and to prevent deformation due to stress, and a front end circuit including the nonreciprocal circuit element And providing a communication device.
  • the nonreciprocal circuit device is A plurality of central conductors are arranged in the ferrite, a magnetic rotor having a mounting surface, a top surface, and side surfaces A permanent magnet surrounding the side of the magnetic rotor; Yokes respectively disposed on the mounting surface side and the top surface side of the magnetic rotor; A resin material filled in a space formed by the magnetic rotor, the permanent magnet and the yoke;
  • a non-reciprocal circuit device comprising: At least one slit is provided in the permanent magnet; It is characterized by.
  • a front end circuit according to a second embodiment of the present invention includes the nonreciprocal circuit element. Furthermore, a communication device according to a third aspect of the present invention includes the front end circuit.
  • the non-reciprocal circuit element since at least one slit is provided in the permanent magnet surrounding the side surface of the magnetic rotor, when filling the molten resin material around the magnetic rotor, air is passed through the slit. Escaping, the generation of voids is suppressed, and a decrease in the filling rate of the resin material is prevented. Since the filling rate of the resin material does not decrease, the nonreciprocal circuit element is hardly deformed even when stress is applied to the nonreciprocal circuit element.
  • the nonreciprocal circuit element by increasing the filling rate of the resin material around the magnetic rotor, the nonreciprocal circuit element is hardly deformed even when stress is applied to the nonreciprocal circuit element. .
  • FIG. 3 is an exploded perspective view of the magnetic rotor shown in FIG. 2.
  • a part of manufacturing process of the circulator shown in FIG. 1 is shown, (A) is a plan view of the parent substrate viewed from the mounting surface side, and (B) is a side view thereof.
  • a part of manufacturing structure of the nonreciprocal circuit device (3 port type circulator) which is 2nd Example is shown, (A) is the top view which looked at the main board
  • positioning of the slit provided in the permanent magnet is shown, (A) is 1st Example, (B) is 2nd Example. It is a block diagram which shows a front end circuit and a communication apparatus (mobile phone).
  • the nonreciprocal circuit device 1 is a lumped constant type three-port circulator having the equivalent circuit shown in FIG. That is, the first central conductor 21 (L1), the second central conductor 22 (L2) and the third central conductor 21 are applied to the rectangular microwave ferrite 20 to which the DC magnetic field A is applied by the permanent magnet 25 (see FIGS. 2 and 4).
  • the center conductors 23 (L3) are arranged in an insulated state so as to intersect with each other at a predetermined angle, one end of the first center conductor 21 is the first port P1, the one end of the second center conductor 22 is the second port P2, and the third center.
  • One end of the conductor 23 is a third port P3.
  • each of the center conductors 21, 22, and 23 is connected to GND (ground).
  • Capacitance elements C1, C2, and C3 are connected in parallel to the central conductors 21, 22, and 23, respectively.
  • a capacitive element Cs1 is connected between the first port P1 and the transmission terminal TX
  • a capacitive element Cs2 is connected between the second port P2 and the reception terminal RX
  • a capacitive element Cs3 is connected between the two.
  • the capacitive elements C1, C2, and C3 are for adjusting the resonance frequency
  • the capacitive elements Cs1, Cs2, and Cs3 are for matching impedance.
  • the nonreciprocal circuit element (3-port circulator) 1 composed of the above-described equivalent circuit includes a center conductor forming portion 24 (portions where the center conductors 21, 22, and 23 are disposed) as shown in FIG.
  • the magnetic rotor 10 including the ferrite 20 having a magnetic field, the substantially frame-shaped permanent magnet 25 surrounding the side surface of the magnetic rotor 10, the yoke 51 disposed on the mounting surface side of the magnetic rotor 10, and the top surface side.
  • the yoke 52 and the resin material 60 are used.
  • the resin material 60 is filled in a space formed by the magnetic rotor 10, the permanent magnet 25, and the yokes 51 and 52. The details of the resin material 60 will be described later.
  • one end (port P1) of the first center conductor 21 is an external connection electrode 41
  • the other end is an external connection electrode 42
  • one end (port P2) of the second center conductor 22 is The external connection electrode 43
  • the other end is an external connection electrode 44
  • one end (port P3) of the third central conductor 23 is an external connection electrode 45
  • the other end is an external connection electrode 46.
  • the nonreciprocal circuit device 1 When the nonreciprocal circuit device 1 is incorporated in a transmission / reception circuit unit (front end circuit) such as a mobile phone, the first port P1 (electrode 41) is connected to the transmission side (TX) and the second port P2 (electrode) 43) is connected to the receiving side (RX), and the third port P3 (electrode 45) is connected to the antenna side (ANT).
  • TX transmission side
  • RX receiving side
  • the third port P3 (electrode 45) is connected to the antenna side (ANT).
  • the operation of the nonreciprocal circuit element 1 (3-port circulator) in the front-end circuit is as follows. That is, the high frequency signal input from the first port P1 (transmission circuit) is output from the third port P3 (ANT), and the high frequency signal input from the third port P3 (ANT) is the second port P2 (reception circuit). ). The high frequency signal of the second port P2 is not attenuated by the front end circuit and transmitted to the first port P1.
  • the magnetic rotor 10 includes insulator layers 11, 12, 13, and 14 having glass as a main component on the top surface side and the mounting surface side of the rectangular microwave ferrite 20.
  • a plurality of through-hole conductors and a plurality of electrodes for connecting various conductors provided on the top surface side and the mounting surface side in a coil shape are also formed on the ferrite 20. .
  • the conductors 21a, 21b, and 21c forming the first central conductor 21 (L1) are formed on the insulator layer 12, and the conductors 21d and 21e are formed between the insulator layer 13 and the ferrite 20.
  • An end portion of the conductor 21a is an external lead portion 41a
  • an end portion of the conductor 21c is an external lead portion 42a.
  • the other end of the conductor 21a is connected to one end of the conductor 21d via the conductor 21f
  • the other end of the conductor 21d is connected to one end of the conductor 21b via the conductor 21g.
  • the other end of the conductor 21b is connected to one end of a conductor 21e via a conductor 21h
  • the other end of the conductor 21e is connected to one end of a conductor 21c via a conductor 21i.
  • the conductors 22a, 22b, and 22c forming the second central conductor 22 (L2) are formed between the insulator layer 11 and the ferrite 20, and the conductors 22d and 22e are formed on the lower surface of the insulator layer 14.
  • An end portion of the conductor 22a is an external lead portion 43a
  • an end portion of the conductor 22c is an external lead portion 44a.
  • the other end of the conductor 22a is connected to one end of the conductor 22d via the conductor 22f, and the other end of the conductor 22d is connected to one end of the conductor 22b via the conductor 22g.
  • the other end of the conductor 22b is connected to one end of a conductor 22e via a conductor 22h, and the other end of the conductor 22e is connected to one end of a conductor 22c via a conductor 22i.
  • the conductors 23a, 23b and 23c forming the third central conductor 23 (L3) are formed between the insulator layers 11 and 12, and the conductors 23d and 23e are formed between the insulator layers 13 and 14.
  • An end portion of the conductor 23a is an external lead portion 46a
  • an end portion of the conductor 23c is an external lead portion 45a.
  • the other end of the conductor 23a is connected to one end of the conductor 23d through the conductor 23f, and the other end of the conductor 23d is connected to one end of the conductor 23b through the conductor 23g.
  • the other end of the conductor 23b is connected to one end of a conductor 23e through a conductor 23h, and the other end of the conductor 23e is connected to one end of a conductor 23c through a conductor 23i.
  • the external connection electrode 41 is formed by an external lead portion 41a which is an end portion of the conductor 21a and an electrode connected thereto.
  • the external connection electrode 42 is formed by an external lead portion 42a, which is an end portion of the conductor 21c, and an electrode connected thereto.
  • the external connection electrode 43 is formed by an external lead portion 43a which is an end portion of the conductor 22a and an electrode connected thereto.
  • the external connection electrode 44 is formed by an external lead portion 44a, which is an end portion of the conductor 22c, and an electrode connected thereto.
  • the external connection electrode 45 is formed by an external lead portion 45a, which is an end portion of the conductor 23c, and an electrode connected thereto.
  • the external connection electrode 46 is formed by an external lead portion 46a which is an end portion of the conductor 23a and an electrode connected thereto.
  • the central conductors 21, 22, and 23 can be formed as a thin film conductor such as Ag or Cu, a thick film conductor, or a conductor foil, and it is preferable to use a photosensitive metal paste.
  • the insulator layers 11 to 14 are preferably made of a material having high insulation resistance such as photosensitive glass or polyimide.
  • the conductor layer and the insulating layer can be formed by photolithography, etching, printing, or the like.
  • the external connection electrodes 41 to 46 and the through-hole conductors are preferably formed by applying and baking a conductive electrode material (paste) mainly composed of Ag and Cu, and forming a Ni plating layer on the surface thereof. Further, a plating layer of Au, Sn, Ag, Cu or the like is formed. It is not limited to plating, but may be a sputtering process or the like.
  • the capacitive elements C1, C2, C3, etc. use chip parts.
  • the magnetic rotor 10 having the above configuration is disposed in a substantially frame-shaped permanent magnet 25, a yoke 51 is disposed on the mounting surface side, a yoke 52 is disposed on the top surface side, and sealed with a resin material 60. By being stopped, the nonreciprocal circuit element 1 is obtained.
  • the yokes 51 and 52 are preferably made of a magnetic material such as a cold-rolled steel plate, and may be a single metal of Fe, Ni, Co or an alloy containing these as a main component.
  • An Ag or Au plating layer may be formed on the surfaces of the yokes 51 and 52 in order to reduce high frequency loss.
  • a structure in which the side surface of the magnetic rotor 10 is surrounded by the permanent magnet 25 and the upper and lower surfaces are sandwiched between the yokes 51 and 52 is referred to as a ferrite-magnet assembly in this specification.
  • a plurality of hatched electrodes 51a, 51b, 51c, 51d are formed on the mounting surface side yoke 51 in an insulated state, and the electrode 41 (first port P1). Is connected to the electrode 51a, the electrode 43 (second port P2) is connected to the electrode 51b, and the electrode 45 (third port P3) is connected to the electrode 51c.
  • the electrodes 42, 44, 46 (GND) are connected to the electrode 51d. That is, the electrodes 41 to 46 of the magnetic rotor 10 are connected to a transmission circuit, a reception circuit, and an antenna via electrodes 51a, 51b, 51c, and 51d that are divided in an electrically insulated state.
  • the nonreciprocal circuit element (circulator) 1 has one magnetic rotor 10 disposed in each section of a parent substrate 25 ⁇ / b> A serving as a permanent magnet 25 on a parent substrate 52 ⁇ / b> A serving as a yoke 52. Then, after sealing with the resin material 60, it is manufactured by covering with a parent substrate 51A to be the yoke 51 and cutting along the alternate long and short dash lines X and Y. Through holes 26 are formed in a matrix on the parent substrate 25A, and slits 27 are formed on each of a plurality of sides (four sides in this embodiment) in plan view. The slit 27 may be formed on at least one of the four sides.
  • the electrodes 41 to 46 are fixed to the electrodes 51 a to 51 d of the yoke 51 with solder inside the through hole 26.
  • the resin material 60 is filled into the through hole 26 and also into the slit 27. That is, the resin material 60 is filled in the space surrounded by the magnetic rotor 10, the permanent magnet 25, and the yoke 51, and further filled in the slit 27 (see FIG. 5A). Since air escapes through the slits 27 at the time of filling, the molten resin material 60 is almost completely filled into the space.
  • a parent substrate 52 ⁇ / b> A serving as a top surface side yoke 52 is attached to the upper surfaces of the resin material 60 and the permanent magnet 25 via an adhesive 29. Then, the cutting by the alternate long and short dash lines X and Y is performed by integrating the permanent magnet 25 and the yokes 51 and 52 together.
  • the slit 27 when the slit 27 is not formed in the permanent magnet 25, when the resin material 60 is filled, there is no air escape, so as shown in FIG. Voids 28 are generated, and the resin filling rate decreases.
  • the slit 27 may be formed in at least one of the sides constituting the through hole 26. However, as shown in FIG. 5B, a void 28 is formed on the side where the slit 27 is not formed. There is a risk of formation. Although what is shown in FIG. 5 (B) is not necessarily the best, the reduction of the filling rate is prevented compared with the comparative example of FIG. 5 (C).
  • the non-reciprocal circuit element When the filling rate of the resin material 60 is reduced, the non-reciprocal circuit element is likely to be deformed when stress is applied to the non-reciprocal circuit element, which may deteriorate the characteristics. However, in the nonreciprocal circuit element 1 according to the first embodiment, since the filling rate of the resin material 60 is prevented, the nonreciprocal circuit element 1 is deformed even when stress is applied to the nonreciprocal circuit element 1. It becomes difficult.
  • the nonreciprocal circuit device according to the second embodiment has the same basic configuration and manufacturing method as the first embodiment. The difference is that, as shown in FIG. 6, in the parent substrate 25 ⁇ / b> A of the permanent magnet 25, slits 27 are formed in X shapes at the corners of a plurality of sides (specifically, four sides). Also in the second embodiment, since the air escapes through the slits 27 when the resin material 60 is filled, the generation of voids 28 is prevented and the filling rate of the resin material 60 is prevented from being lowered. In addition, the slit 27 should just be provided in the at least 1 corner.
  • the magnetic flux density of the DC magnetic field A applied from the permanent magnet 25 to the central conductors 21, 22, 23 is 1100 gauss in the first embodiment, and in the second embodiment. 1140 Gauss.
  • a ferrite 20 having a regular square shape with a side dimension a of 1 mm is used, and the permanent magnet 25 is an inner shape b of 1.2 mm, an outer shape c of 2 mm, A slit having a height d of 0.4 mm, a slit 27 having a height e of 0.2 mm, and a width f of 0.1 mm was used.
  • the height e and the width f of the slit 27 are preferably 50 ⁇ m or more.
  • the resin material 60 an epoxy resin, a silicon resin, or the like can be suitably used.
  • the magnetic flux density of the second embodiment shown in FIG. 7B is higher than that of the first embodiment shown in FIG. 7A because the distance g between the central conductor forming portion 24 and the slit 27 is the first embodiment. This is because the second embodiment is larger than the example.
  • FIG. 8 shows a front end circuit 70 including the nonreciprocal circuit device 1 and a communication device (mobile phone) 80 including the front end circuit 70.
  • the front end circuit 70 is obtained by inserting the nonreciprocal circuit element 1 between a tuner 71 of an antenna ANT, a TX filter circuit 72, and an RX filter circuit 73.
  • the filter circuits 72 and 73 are a power amplifier 74 and a low noise amplifier 75, respectively. It is connected to the RFIC 81 via
  • the front end circuit may include an antenna ANT and a tuner 71.
  • the communication device 80 includes an RFIC 81 and a BBIC 82 with respect to the front end circuit 70, a memory 83, an I / O 84, and a CPU 85 are connected to the BBIC 82, and a display 86 and the like are connected to the I / O 84.
  • the nonreciprocal circuit element, the front end circuit, and the communication device according to the present invention are not limited to the above-described embodiments, and can be variously modified within the scope of the gist.
  • the configuration, shape, number, etc. of the central conductor in the magnetic rotor are arbitrary.
  • the magnetic rotor has a quadrangular shape in plan view, but may be a polygonal shape or a circular shape.
  • the capacitive element may be composed of a conductor built in the circuit board, in addition to being mounted on the circuit board as a chip type. Further, when the application direction of the magnetic field to the ferrite 20 is reversed, the transmission path of the high frequency signal is switched.
  • the present invention is useful for non-reciprocal circuit elements, front-end circuits, and communication devices, and is particularly excellent in that the magnetic flux density applied to the magnetic rotor can be increased.
  • Non-reciprocal circuit element (circulator) DESCRIPTION OF SYMBOLS 10 ... Magnetic rotor 20 ... Ferrite 21, 22, 23 ... Center conductor 25 ... Permanent magnet 27 ... Slit 51, 52 ... Yoke 60 ... Resin material 70 ... Front end circuit 80 ... Communication apparatus

Abstract

The objective of the present invention is to improve the filling ratio of a resin material around a magnetic rotor in order to reduce the likelihood of a non-reversible circuit element becoming deformed even if the non-reversible circuit element is subjected to stress. This non-reversible circuit element is provided with: a magnetic rotor (10) in which a plurality of central conductors are disposed in ferrite (20), and which has a mounting surface, a top surface and side surfaces; a permanent magnet (25) which surrounds the side surfaces of the magnetic rotor (10); yokes (51) and (52) disposed respectively on the mounting surface side and the top surface side of the magnetic rotor (10); and a resin material (60) which fills a space formed by the magnetic rotor (10), the permanent magnet (25) and the yokes (51) and (52). At least one slit (27) is provided in the permanent magnet (25).

Description

非可逆回路素子、フロントエンド回路及び通信装置Non-reciprocal circuit element, front-end circuit and communication device
 本発明は、非可逆回路素子、特に、マイクロ波帯で使用されるサーキュレータやアイソレータなどの非可逆回路素子、該非可逆回路素子を含むフロントエンド回路、及び、該フロントエンド回路を含む通信装置に関する。 The present invention relates to a nonreciprocal circuit element, in particular, a nonreciprocal circuit element such as a circulator or an isolator used in a microwave band, a front end circuit including the nonreciprocal circuit element, and a communication device including the front end circuit.
 サーキュレータやアイソレータなどの非可逆回路素子は、予め定められた特定方向にのみ信号を伝送し、逆方向には伝送しない特性を有している。この特性を利用して、例えば、サーキュレータは、携帯電話などの移動体通信装置のフロントエンド回路に使用されている。 Non-reciprocal circuit elements such as circulators and isolators have a characteristic of transmitting a signal only in a predetermined specific direction and not transmitting in a reverse direction. Using this characteristic, for example, a circulator is used in a front-end circuit of a mobile communication device such as a mobile phone.
 特許文献1には、中心導体を配置したフェライトからなる磁気回転子と、磁気回転子の側面部を囲う永久磁石と、磁気回転子の実装面側と天面側とに配置されたヨークとからなる非可逆回路素子が記載されている。 Patent Document 1 includes a magnetic rotor made of ferrite in which a central conductor is arranged, a permanent magnet surrounding a side surface portion of the magnetic rotor, and yokes arranged on the mounting surface side and the top surface side of the magnetic rotor. A non-reciprocal circuit device is described.
特開平8-51306号公報JP-A-8-51306
 上記従来技術の非可逆回路素子では、溶融した樹脂材を磁気回転子の周囲に注入する際に、注入先に空気が逃げる隙間がなくてボイドが発生し、樹脂材の充填率が悪くなる可能性がある。充填率が悪くなると、非可逆回路素子に応力が加わったときに非可逆回路素子が変形しやすくなり、特性などが悪化してしまう、という課題がある。 In the non-reciprocal circuit element of the above-mentioned prior art, when the molten resin material is injected around the magnetic rotor, there is no gap through which air escapes at the injection destination, and voids are generated, and the filling rate of the resin material may deteriorate. There is sex. When the filling rate is deteriorated, there is a problem that when the stress is applied to the nonreciprocal circuit element, the nonreciprocal circuit element is easily deformed, and the characteristics and the like are deteriorated.
 したがって、本発明の目的は、磁気回転子の周囲での樹脂材の充填率を向上させて、応力が加わっても変形しにくい非可逆回路素子、及び、該非可逆回路素子を備えたフロントエンド回路や通信装置を提供することにある。 Accordingly, an object of the present invention is to improve the filling rate of the resin material around the magnetic rotor and to prevent deformation due to stress, and a front end circuit including the nonreciprocal circuit element And providing a communication device.
 本発明の第1の形態である非可逆回路素子は、
 フェライトに複数の中心導体が配置されており、実装面、天面及び側面を有する磁気回転子と、
 前記磁気回転子の側面を囲う永久磁石と、
 前記磁気回転子の実装面側及び天面側にそれぞれ配置されたヨークと、
 前記磁気回転子、前記永久磁石及び前記ヨークによって形成される空間部に充填された樹脂材と、
 を備えた非可逆回路素子において、
 前記永久磁石に少なくとも一つのスリットが設けられていること、
 を特徴とする。
The nonreciprocal circuit device according to the first aspect of the present invention is
A plurality of central conductors are arranged in the ferrite, a magnetic rotor having a mounting surface, a top surface, and side surfaces
A permanent magnet surrounding the side of the magnetic rotor;
Yokes respectively disposed on the mounting surface side and the top surface side of the magnetic rotor;
A resin material filled in a space formed by the magnetic rotor, the permanent magnet and the yoke;
In a non-reciprocal circuit device comprising:
At least one slit is provided in the permanent magnet;
It is characterized by.
 本発明の第2の形態であるフロントエンド回路は前記非可逆回路素子を含むことを特徴とする。さらに、本発明の第3の形態である通信装置は前記フロントエンド回路を含むことを特徴とする。 A front end circuit according to a second embodiment of the present invention includes the nonreciprocal circuit element. Furthermore, a communication device according to a third aspect of the present invention includes the front end circuit.
 前記非可逆回路素子にあっては、磁気回転子の側面を囲う永久磁石に少なくとも一つのスリットが設けられているため、溶融した樹脂材を磁気回転子の周囲に充填する際に、スリットを通じて空気が逃げていくのでボイドの発生が抑制され、樹脂材の充填率の低下が防止される。樹脂材の充填率が低下しないため、非可逆回路素子に応力が加わっても非可逆回路素子が変形しにくくなる。 In the non-reciprocal circuit element, since at least one slit is provided in the permanent magnet surrounding the side surface of the magnetic rotor, when filling the molten resin material around the magnetic rotor, air is passed through the slit. Escaping, the generation of voids is suppressed, and a decrease in the filling rate of the resin material is prevented. Since the filling rate of the resin material does not decrease, the nonreciprocal circuit element is hardly deformed even when stress is applied to the nonreciprocal circuit element.
 本発明において、永久磁石が磁気回転子の側面を「囲う」とは、必ずしも完全に囲うことは必要ではなく、以下に示す実施例のごとく一部がスリットによって開放されていてもよい。 In the present invention, it is not always necessary to completely surround the side surface of the magnetic rotor with the permanent magnet, and a part thereof may be opened by a slit as in the following embodiments.
 本発明によれば、非可逆回路素子において、磁気回転子の周囲での樹脂材の充填率を向上させることで、非可逆回路素子に応力が加わっても、非可逆回路素子が変形しにくくなる。 According to the present invention, in the nonreciprocal circuit element, by increasing the filling rate of the resin material around the magnetic rotor, the nonreciprocal circuit element is hardly deformed even when stress is applied to the nonreciprocal circuit element. .
第1実施例である非可逆回路素子(3ポート型サーキュレータ)を示す等価回路図である。It is an equivalent circuit diagram which shows the nonreciprocal circuit element (3 port type circulator) which is 1st Example. 図1に示したサーキュレータの分解斜視図である。It is a disassembled perspective view of the circulator shown in FIG. 図2に示した磁気回転子の分解斜視図である。FIG. 3 is an exploded perspective view of the magnetic rotor shown in FIG. 2. 図1に示したサーキュレータの製造工程の一部を示し、(A)は親基板を実装面側から見た平面図、(B)はその側面図である。A part of manufacturing process of the circulator shown in FIG. 1 is shown, (A) is a plan view of the parent substrate viewed from the mounting surface side, and (B) is a side view thereof. 磁気回転子の断面図であり、(A),(B)は本発明例を示し、(C)は従来例を示す。It is sectional drawing of a magnetic rotor, (A), (B) shows the example of this invention, (C) shows a prior art example. 第2実施例である非可逆回路素子(3ポート型サーキュレータ)の製造構成の一部を示し、(A)は親基板を実装面側から見た平面図、(B)はその側面図である。A part of manufacturing structure of the nonreciprocal circuit device (3 port type circulator) which is 2nd Example is shown, (A) is the top view which looked at the main board | substrate from the mounting surface side, (B) is the side view. . 永久磁石に設けたスリットの配置を示し、(A)は第1実施例であり、(B)は第2実施例である。The arrangement | positioning of the slit provided in the permanent magnet is shown, (A) is 1st Example, (B) is 2nd Example. フロントエンド回路及び通信装置(携帯電話)を示すブロック図である。It is a block diagram which shows a front end circuit and a communication apparatus (mobile phone).
 以下に、非可逆回路素子、フロントエンド回路及び通信装置の実施例について添付図面を参照して説明する。なお、各図において同じ部材には共通する符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the non-reciprocal circuit device, the front-end circuit, and the communication device will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same member and the overlapping description is abbreviate | omitted.
 (非可逆回路素子の第1実施例、図1~図5参照)
 第1実施例である非可逆回路素子1は、図1に示す等価回路を有する集中定数型の3ポート型サーキュレータである。即ち、永久磁石25(図2、図4参照)により直流磁界Aが印加される、矩形状のマイクロ波フェライト20に第1中心導体21(L1)、第2中心導体22(L2)及び第3中心導体23(L3)をそれぞれ絶縁状態で所定の角度で交差させて配置し、第1中心導体21の一端を第1ポートP1、第2中心導体22の一端を第2ポートP2、第3中心導体23の一端を第3ポートP3としている。
(Refer to the first embodiment of the non-reciprocal circuit device, FIG.
The nonreciprocal circuit device 1 according to the first embodiment is a lumped constant type three-port circulator having the equivalent circuit shown in FIG. That is, the first central conductor 21 (L1), the second central conductor 22 (L2) and the third central conductor 21 are applied to the rectangular microwave ferrite 20 to which the DC magnetic field A is applied by the permanent magnet 25 (see FIGS. 2 and 4). The center conductors 23 (L3) are arranged in an insulated state so as to intersect with each other at a predetermined angle, one end of the first center conductor 21 is the first port P1, the one end of the second center conductor 22 is the second port P2, and the third center. One end of the conductor 23 is a third port P3.
 さらに、各中心導体21,22,23のそれぞれの他端はGND(グランド)に接続されている。各中心導体21,22,23に対して並列に容量素子C1,C2,C3がそれぞれ接続されている。第1ポートP1と送信用端子TXとの間には容量素子Cs1が接続され、第2ポートP2と受信用端子RXとの間には容量素子Cs2が接続され、第3ポートP3とアンテナANTとの間には容量素子Cs3が接続されている。容量素子C1,C2,C3は共振周波数を調整するためのものであり、容量素子Cs1,Cs2,Cs3はインピーダンスを整合させるためのものである。 Furthermore, the other end of each of the center conductors 21, 22, and 23 is connected to GND (ground). Capacitance elements C1, C2, and C3 are connected in parallel to the central conductors 21, 22, and 23, respectively. A capacitive element Cs1 is connected between the first port P1 and the transmission terminal TX, a capacitive element Cs2 is connected between the second port P2 and the reception terminal RX, and the third port P3 and the antenna ANT A capacitive element Cs3 is connected between the two. The capacitive elements C1, C2, and C3 are for adjusting the resonance frequency, and the capacitive elements Cs1, Cs2, and Cs3 are for matching impedance.
 以上の等価回路からなる非可逆回路素子(3ポート型サーキュレータ)1は、具体的には、図2に示すように、中心導体形成部24(中心導体21,22,23が配置された部分)を有するフェライト20を含む磁気回転子10と、磁気回転子10の側面を囲う略枠形状の永久磁石25と、磁気回転子10の実装面側に配置されたヨーク51と、天面側に配置されたヨーク52と、樹脂材60とで構成されている。樹脂材60は、磁気回転子10、永久磁石25及びヨーク51,52によって形成される空間部に充填されている。なお、樹脂材60の詳細については後述する。 Specifically, the nonreciprocal circuit element (3-port circulator) 1 composed of the above-described equivalent circuit includes a center conductor forming portion 24 (portions where the center conductors 21, 22, and 23 are disposed) as shown in FIG. The magnetic rotor 10 including the ferrite 20 having a magnetic field, the substantially frame-shaped permanent magnet 25 surrounding the side surface of the magnetic rotor 10, the yoke 51 disposed on the mounting surface side of the magnetic rotor 10, and the top surface side. The yoke 52 and the resin material 60 are used. The resin material 60 is filled in a space formed by the magnetic rotor 10, the permanent magnet 25, and the yokes 51 and 52. The details of the resin material 60 will be described later.
 ここで、図1に示すように、第1中心導体21の一端(ポートP1)を外部接続用電極41、他端を外部接続用電極42とし、第2中心導体22の一端(ポートP2)を外部接続用電極43、他端を外部接続用電極44とし、第3中心導体23の一端(ポートP3)を外部接続用電極45、他端を外部接続用電極46とする。また、この非可逆回路素子1が携帯電話などの送受信回路部(フロントエンド回路)に組み込まれる場合、第1ポートP1(電極41)は送信側(TX)に接続され、第2ポートP2(電極43)は受信側(RX)に接続され、第3ポートP3(電極45)はアンテナ側(ANT)に接続される。 Here, as shown in FIG. 1, one end (port P1) of the first center conductor 21 is an external connection electrode 41, the other end is an external connection electrode 42, and one end (port P2) of the second center conductor 22 is The external connection electrode 43, the other end is an external connection electrode 44, one end (port P3) of the third central conductor 23 is an external connection electrode 45, and the other end is an external connection electrode 46. When the nonreciprocal circuit device 1 is incorporated in a transmission / reception circuit unit (front end circuit) such as a mobile phone, the first port P1 (electrode 41) is connected to the transmission side (TX) and the second port P2 (electrode) 43) is connected to the receiving side (RX), and the third port P3 (electrode 45) is connected to the antenna side (ANT).
 フロントエンド回路における非可逆回路素子1(3ポート型サーキュレータ)の動作は以下のとおりである。即ち、第1ポートP1(送信回路)から入力された高周波信号は、第3ポートP3(ANT)から出力され、第3ポートP3(ANT)から入力された高周波信号は第2ポートP2(受信回路)に入力される。第2ポートP2の高周波信号はフロントエンド回路で減衰されて第1ポートP1に伝達されることはない。 The operation of the nonreciprocal circuit element 1 (3-port circulator) in the front-end circuit is as follows. That is, the high frequency signal input from the first port P1 (transmission circuit) is output from the third port P3 (ANT), and the high frequency signal input from the third port P3 (ANT) is the second port P2 (reception circuit). ). The high frequency signal of the second port P2 is not attenuated by the front end circuit and transmitted to the first port P1.
 磁気回転子10は、具体的には、図3に示すように、矩形状のマイクロ波フェライト20の天面側及び実装面側にガラスを主成分とする絶縁体層11,12,13,14や各種導体、各種電極を積層したもので、フェライト20にも天面側及び実装面側に設けた各種導体をコイル状に接続するための複数のスルーホール導体や複数の電極が形成されている。 Specifically, as shown in FIG. 3, the magnetic rotor 10 includes insulator layers 11, 12, 13, and 14 having glass as a main component on the top surface side and the mounting surface side of the rectangular microwave ferrite 20. In addition, a plurality of through-hole conductors and a plurality of electrodes for connecting various conductors provided on the top surface side and the mounting surface side in a coil shape are also formed on the ferrite 20. .
 詳しくは、第1中心導体21(L1)を形成する導体21a,21b,21cは絶縁体層12上に形成され、導体21d,21eは絶縁体層13とフェライト20の間に形成されている。導体21aの端部は外部引出し部41aとされ、導体21cの端部は外部引出し部42aとされている。導体21aの他端は導体21fを介して導体21dの一端に接続され、該導体21dの他端は導体21gを介して導体21bの一端に接続されている。該導体21bの他端は導体21hを介して導体21eの一端に接続され、該導体21eの他端は導体21iを介して導体21cの一端に接続されている。 Specifically, the conductors 21a, 21b, and 21c forming the first central conductor 21 (L1) are formed on the insulator layer 12, and the conductors 21d and 21e are formed between the insulator layer 13 and the ferrite 20. An end portion of the conductor 21a is an external lead portion 41a, and an end portion of the conductor 21c is an external lead portion 42a. The other end of the conductor 21a is connected to one end of the conductor 21d via the conductor 21f, and the other end of the conductor 21d is connected to one end of the conductor 21b via the conductor 21g. The other end of the conductor 21b is connected to one end of a conductor 21e via a conductor 21h, and the other end of the conductor 21e is connected to one end of a conductor 21c via a conductor 21i.
 第2中心導体22(L2)を形成する導体22a,22b,22cは絶縁体層11とフェライト20の間に形成され、導体22d,22eは絶縁体層14の下面に形成されている。導体22aの端部は外部引出し部43aとされ、導体22cの端部は外部引出し部44aとされている。導体22aの他端は導体22fを介して導体22dの一端に接続され、該導体22dの他端は導体22gを介して導体22bの一端に接続されている。該導体22bの他端は導体22hを介して導体22eの一端に接続され、該導体22eの他端は導体22iを介して導体22cの一端に接続されている。 The conductors 22a, 22b, and 22c forming the second central conductor 22 (L2) are formed between the insulator layer 11 and the ferrite 20, and the conductors 22d and 22e are formed on the lower surface of the insulator layer 14. An end portion of the conductor 22a is an external lead portion 43a, and an end portion of the conductor 22c is an external lead portion 44a. The other end of the conductor 22a is connected to one end of the conductor 22d via the conductor 22f, and the other end of the conductor 22d is connected to one end of the conductor 22b via the conductor 22g. The other end of the conductor 22b is connected to one end of a conductor 22e via a conductor 22h, and the other end of the conductor 22e is connected to one end of a conductor 22c via a conductor 22i.
 第3中心導体23(L3)を形成する導体23a,23b,23cは絶縁体層11,12の間に形成され、導体23d,23eは絶縁体層13,14の間に形成されている。導体23aの端部は外部引出し部46aとされ、導体23cの端部は外部引出し部45aとされている。導体23aの他端は導体23fを介して導体23dの一端に接続され、該導体23dの他端は導体23gを介して導体23bの一端に接続されている。該導体23bの他端は導体23hを介して導体23eの一端に接続され、該導体23eの他端は導体23iを介して導体23cの一端に接続されている。 The conductors 23a, 23b and 23c forming the third central conductor 23 (L3) are formed between the insulator layers 11 and 12, and the conductors 23d and 23e are formed between the insulator layers 13 and 14. An end portion of the conductor 23a is an external lead portion 46a, and an end portion of the conductor 23c is an external lead portion 45a. The other end of the conductor 23a is connected to one end of the conductor 23d through the conductor 23f, and the other end of the conductor 23d is connected to one end of the conductor 23b through the conductor 23g. The other end of the conductor 23b is connected to one end of a conductor 23e through a conductor 23h, and the other end of the conductor 23e is connected to one end of a conductor 23c through a conductor 23i.
 外部接続用電極41は、導体21aの端部である外部引出し部41aと、それに接続されている電極によって形成されている。外部接続用電極42は、導体21cの端部である外部引出し部42aと、それに接続されている電極によって形成されている。外部接続用電極43は、導体22aの端部である外部引出し部43aと、それに接続されている電極によって形成されている。外部接続用電極44は、導体22cの端部である外部引出し部44aと、それに接続されている電極によって形成されている。外部接続用電極45は、導体23cの端部である外部引出し部45aと、それに接続されている電極によって形成されている。外部接続用電極46は、導体23aの端部である外部引出し部46aと、それに接続されている電極によって形成されている。 The external connection electrode 41 is formed by an external lead portion 41a which is an end portion of the conductor 21a and an electrode connected thereto. The external connection electrode 42 is formed by an external lead portion 42a, which is an end portion of the conductor 21c, and an electrode connected thereto. The external connection electrode 43 is formed by an external lead portion 43a which is an end portion of the conductor 22a and an electrode connected thereto. The external connection electrode 44 is formed by an external lead portion 44a, which is an end portion of the conductor 22c, and an electrode connected thereto. The external connection electrode 45 is formed by an external lead portion 45a, which is an end portion of the conductor 23c, and an electrode connected thereto. The external connection electrode 46 is formed by an external lead portion 46a which is an end portion of the conductor 23a and an electrode connected thereto.
 中心導体21,22,23は、Ag、Cuなどの薄膜導体、厚膜導体又は導体箔として形成することができ、感光性の金属ペーストを使用することが好ましい。絶縁体層11~14は、感光性ガラス、ポリイミドなど絶縁抵抗の高い材料を使用することが好ましい。導体層や絶縁層は、フォトリソグラフィやエッチング、印刷などで形成できる。外部接続用電極41~46やスルーホール用導体は、好ましくは、Ag,Cuを主成分とする導電性の電極材料(ペースト)を塗布して焼き付け、その表面にNiのめっき層を形成し、さらに、Au,Sn,Ag,Cuなどのめっき層を形成する。めっきに限定するものではなく、スパッタ処理などであってもよい。一方、容量素子C1,C2,C3などはチップ部品を使用する。 The central conductors 21, 22, and 23 can be formed as a thin film conductor such as Ag or Cu, a thick film conductor, or a conductor foil, and it is preferable to use a photosensitive metal paste. The insulator layers 11 to 14 are preferably made of a material having high insulation resistance such as photosensitive glass or polyimide. The conductor layer and the insulating layer can be formed by photolithography, etching, printing, or the like. The external connection electrodes 41 to 46 and the through-hole conductors are preferably formed by applying and baking a conductive electrode material (paste) mainly composed of Ag and Cu, and forming a Ni plating layer on the surface thereof. Further, a plating layer of Au, Sn, Ag, Cu or the like is formed. It is not limited to plating, but may be a sputtering process or the like. On the other hand, the capacitive elements C1, C2, C3, etc. use chip parts.
 以上の構成からなる磁気回転子10は、略枠形状の永久磁石25内に配置され、実装面側にヨーク51が配置されるとともに天面側にヨーク52が配置され、さらに樹脂材60で封止されることで非可逆回路素子1とされる。ヨーク51,52は、冷間圧延鋼板などの磁性体を素材とすることが望ましく、Fe、Ni、Coの単体金属あるいはこれらを主成分とする合金であってもよい。ヨーク51,52の表面には高周波損失を低減するためにAgやAuのめっき層を形成してもよい。磁気回転子10の側面が永久磁石25で囲われ、上下面をヨーク51,52で挟み込んだ構造体を、本明細書においてはフェライト・磁石組立体と称する。 The magnetic rotor 10 having the above configuration is disposed in a substantially frame-shaped permanent magnet 25, a yoke 51 is disposed on the mounting surface side, a yoke 52 is disposed on the top surface side, and sealed with a resin material 60. By being stopped, the nonreciprocal circuit element 1 is obtained. The yokes 51 and 52 are preferably made of a magnetic material such as a cold-rolled steel plate, and may be a single metal of Fe, Ni, Co or an alloy containing these as a main component. An Ag or Au plating layer may be formed on the surfaces of the yokes 51 and 52 in order to reduce high frequency loss. A structure in which the side surface of the magnetic rotor 10 is surrounded by the permanent magnet 25 and the upper and lower surfaces are sandwiched between the yokes 51 and 52 is referred to as a ferrite-magnet assembly in this specification.
 ところで、実装面側のヨーク51には、図2に示すように、斜線を付した複数の電極51a,51b,51c,51dが互いに絶縁状態で形成されており、電極41(第1ポートP1)は電極51aに接続され、電極43(第2ポートP2)は電極51bに接続され、電極45(第3ポートP3)は電極51cに接続される。また、電極42,44,46(GND)は電極51dに接続される。即ち、磁気回転子10の電極41~46は、それぞれ電気的に絶縁状態で分割された電極51a,51b,51c,51dを介して送信回路、受信回路、アンテナに接続される。 Incidentally, as shown in FIG. 2, a plurality of hatched electrodes 51a, 51b, 51c, 51d are formed on the mounting surface side yoke 51 in an insulated state, and the electrode 41 (first port P1). Is connected to the electrode 51a, the electrode 43 (second port P2) is connected to the electrode 51b, and the electrode 45 (third port P3) is connected to the electrode 51c. The electrodes 42, 44, 46 (GND) are connected to the electrode 51d. That is, the electrodes 41 to 46 of the magnetic rotor 10 are connected to a transmission circuit, a reception circuit, and an antenna via electrodes 51a, 51b, 51c, and 51d that are divided in an electrically insulated state.
 前記非可逆回路素子(サーキュレータ)1は、図4に示すように、ヨーク52となる親基板52A上の永久磁石25となる親基板25Aの1区画ずつに磁気回転子10を一つずつ配置し、樹脂材60で封止した後に、ヨーク51となる親基板51Aを被せ、一点鎖線X,Yでカットすることにより製造される。親基板25Aにはマトリックス状に貫通穴26が形成され、平面視で複数の辺(本実施例では、四つの辺)のそれぞれにスリット27が形成されている。なお、スリット27は四つの辺のうち少なくとも一つに辺に形成されていればよい。 As shown in FIG. 4, the nonreciprocal circuit element (circulator) 1 has one magnetic rotor 10 disposed in each section of a parent substrate 25 </ b> A serving as a permanent magnet 25 on a parent substrate 52 </ b> A serving as a yoke 52. Then, after sealing with the resin material 60, it is manufactured by covering with a parent substrate 51A to be the yoke 51 and cutting along the alternate long and short dash lines X and Y. Through holes 26 are formed in a matrix on the parent substrate 25A, and slits 27 are formed on each of a plurality of sides (four sides in this embodiment) in plan view. The slit 27 may be formed on at least one of the four sides.
 磁気回転子10は、貫通穴26の内部においてそれぞれの電極41~46がヨーク51の電極51a~51dにはんだにて固定される。この状態で上方(天面側)から溶融状態の樹脂材60が充填されると、樹脂材60は貫通穴26内に充填され、かつ、スリット27にも充填される。つまり、樹脂材60は、磁気回転子10、永久磁石25及びヨーク51で囲まれた空間部に充填され、さらにスリット27にも充填される(図5(A)参照)。この充填時にスリット27を通じて空気が逃げていくので、溶融した樹脂材60は前記空間部にほぼ完全に充填される。樹脂材60と永久磁石25の上面には天面側のヨーク52となる親基板52Aが接着剤29を介して貼着される。そして、一点鎖線X,Yによるカットは、永久磁石25とヨーク51,52とを一体として行われる。 In the magnetic rotor 10, the electrodes 41 to 46 are fixed to the electrodes 51 a to 51 d of the yoke 51 with solder inside the through hole 26. In this state, when the molten resin material 60 is filled from above (the top surface side), the resin material 60 is filled into the through hole 26 and also into the slit 27. That is, the resin material 60 is filled in the space surrounded by the magnetic rotor 10, the permanent magnet 25, and the yoke 51, and further filled in the slit 27 (see FIG. 5A). Since air escapes through the slits 27 at the time of filling, the molten resin material 60 is almost completely filled into the space. A parent substrate 52 </ b> A serving as a top surface side yoke 52 is attached to the upper surfaces of the resin material 60 and the permanent magnet 25 via an adhesive 29. Then, the cutting by the alternate long and short dash lines X and Y is performed by integrating the permanent magnet 25 and the yokes 51 and 52 together.
 ちなみに、永久磁石25に前記スリット27が形成されていない場合、樹脂材60が充填された際には、空気の逃げ場がないので、図5(C)に示すように、充填先の奥部にボイド28が発生し、樹脂充填率が低下する。なお、スリット27は貫通穴26を構成する各辺の少なくとも一つに形成されていればよいが、スリット27が形成されていない辺には、図5(B)に示すように、ボイド28が形成されるおそれがある。図5(B)に示すものは、必ずしも最良ではないが、図5(C)の比較例に比べて充填率の低下は防止されている。 Incidentally, when the slit 27 is not formed in the permanent magnet 25, when the resin material 60 is filled, there is no air escape, so as shown in FIG. Voids 28 are generated, and the resin filling rate decreases. The slit 27 may be formed in at least one of the sides constituting the through hole 26. However, as shown in FIG. 5B, a void 28 is formed on the side where the slit 27 is not formed. There is a risk of formation. Although what is shown in FIG. 5 (B) is not necessarily the best, the reduction of the filling rate is prevented compared with the comparative example of FIG. 5 (C).
 樹脂材60の充填率が低下すると、非可逆回路素子に応力が加わったときに非可逆回路素子が変形しやすくなり、特性などが悪化する可能性がある。しかし、前記第1実施例である非可逆回路素子1では樹脂材60の充填率の低下が防止されることにより、非可逆回路素子1に応力が加わったときでも非可逆回路素子1が変形しにくくなる。 When the filling rate of the resin material 60 is reduced, the non-reciprocal circuit element is likely to be deformed when stress is applied to the non-reciprocal circuit element, which may deteriorate the characteristics. However, in the nonreciprocal circuit element 1 according to the first embodiment, since the filling rate of the resin material 60 is prevented, the nonreciprocal circuit element 1 is deformed even when stress is applied to the nonreciprocal circuit element 1. It becomes difficult.
 (非可逆回路素子の第2実施例、図6参照)
 第2実施例である非可逆回路素子は、基本的な構成及び製造方法が前記第1実施例と同様である。異なるのは、図6に示すように、永久磁石25の親基板25Aにおいて、複数の辺(具体的には四つの辺)の隅部にそれぞれスリット27をX形状に形成した点である。この第2実施例においても、樹脂材60の充填時に空気がスリット27を通じて逃げていくのでボイド28の発生が防止され、樹脂材60の充填率の低下が防止される。なお、スリット27は少なくとも一つの隅部に設けられていればよい。
(Refer to the second embodiment of the non-reciprocal circuit device, FIG. 6)
The nonreciprocal circuit device according to the second embodiment has the same basic configuration and manufacturing method as the first embodiment. The difference is that, as shown in FIG. 6, in the parent substrate 25 </ b> A of the permanent magnet 25, slits 27 are formed in X shapes at the corners of a plurality of sides (specifically, four sides). Also in the second embodiment, since the air escapes through the slits 27 when the resin material 60 is filled, the generation of voids 28 is prevented and the filling rate of the resin material 60 is prevented from being lowered. In addition, the slit 27 should just be provided in the at least 1 corner.
 (磁束密度、図7参照)
 ところで、永久磁石25から中心導体21,22,23に印加される直流磁界Aの磁束密度は、本発明者のシミュレーションによると、前記第1実施例においては1100ガウス、前記第2実施例においては1140ガウスである。このシミュレーションは、図2に示すように、フェライト20として、1辺の寸法aが1mmの正四角形状のものを使用し、永久磁石25として、内形bが1.2mm、外形cが2mm、高さdが0.4mm、スリット27は高さeが0.2mm、幅fが0.1mmのものを使用した。スリット27の内部で樹脂材60を流動させるために、スリット27の高さeや幅fは50μm以上の寸法であることが好ましい。ちなみに、樹脂材60としては、エポキシ系樹脂、シリコン系樹脂などを好適に用いることができる。
(Magnetic flux density, see Fig. 7)
By the way, according to the inventor's simulation, the magnetic flux density of the DC magnetic field A applied from the permanent magnet 25 to the central conductors 21, 22, 23 is 1100 gauss in the first embodiment, and in the second embodiment. 1140 Gauss. In this simulation, as shown in FIG. 2, a ferrite 20 having a regular square shape with a side dimension a of 1 mm is used, and the permanent magnet 25 is an inner shape b of 1.2 mm, an outer shape c of 2 mm, A slit having a height d of 0.4 mm, a slit 27 having a height e of 0.2 mm, and a width f of 0.1 mm was used. In order to cause the resin material 60 to flow inside the slit 27, the height e and the width f of the slit 27 are preferably 50 μm or more. Incidentally, as the resin material 60, an epoxy resin, a silicon resin, or the like can be suitably used.
 図7(B)に示す第2実施例のほうが図7(A)に示す第1実施例よりも磁束密度が高いのは、中心導体形成部24とスリット27までの距離gが、第1実施例よりも第2実施例のほうが大きいことに起因する。 The magnetic flux density of the second embodiment shown in FIG. 7B is higher than that of the first embodiment shown in FIG. 7A because the distance g between the central conductor forming portion 24 and the slit 27 is the first embodiment. This is because the second embodiment is larger than the example.
 (フロントエンド回路及び通信装置、図8参照)
 図8に前記非可逆回路素子1を含むフロントエンド回路70及び該フロントエンド回路70を含む通信装置(携帯電話)80を示す。フロントエンド回路70はアンテナANTのチューナ71とTXフィルタ回路72とRXフィルタ回路73との間に前記非可逆回路素子1を挿入したもので、フィルタ回路72,73はそれぞれパワーアンプ74、ローノイズアンプ75を介してRFIC81に接続されている。なお、フロントエンド回路としてはアンテナANT及びチューナ71を含む場合もあり得る。
(Front end circuit and communication device, see FIG. 8)
FIG. 8 shows a front end circuit 70 including the nonreciprocal circuit device 1 and a communication device (mobile phone) 80 including the front end circuit 70. The front end circuit 70 is obtained by inserting the nonreciprocal circuit element 1 between a tuner 71 of an antenna ANT, a TX filter circuit 72, and an RX filter circuit 73. The filter circuits 72 and 73 are a power amplifier 74 and a low noise amplifier 75, respectively. It is connected to the RFIC 81 via The front end circuit may include an antenna ANT and a tuner 71.
 通信装置80は前記フロントエンド回路70に対して、RFIC81、BBIC82を備え、BBIC82にはメモリ83、I/O84、CPU85が接続され、I/O84にはディスプレイ86などが接続されている。 The communication device 80 includes an RFIC 81 and a BBIC 82 with respect to the front end circuit 70, a memory 83, an I / O 84, and a CPU 85 are connected to the BBIC 82, and a display 86 and the like are connected to the I / O 84.
 (他の実施例)
 なお、本発明に係る非可逆回路素子、フロントエンド回路及び通信装置は、前記実施例に限定されるものではなく、その要旨の範囲内で種々に変更することができる。
(Other examples)
The nonreciprocal circuit element, the front end circuit, and the communication device according to the present invention are not limited to the above-described embodiments, and can be variously modified within the scope of the gist.
 例えば、磁気回転子における中心導体の構成や形状、本数などは任意である。特に、前記実施例において、磁気回転子は平面視で四角形状のものを示したが、多角形状や円形状などであってもよい。容量素子は、チップタイプとして回路基板上に実装する以外に、回路基板に内蔵した導体で構成してもよい。また、フェライト20への磁界の印加方向を逆にすると、高周波信号の伝達経路が入れ替わる。 For example, the configuration, shape, number, etc. of the central conductor in the magnetic rotor are arbitrary. In particular, in the above-described embodiment, the magnetic rotor has a quadrangular shape in plan view, but may be a polygonal shape or a circular shape. The capacitive element may be composed of a conductor built in the circuit board, in addition to being mounted on the circuit board as a chip type. Further, when the application direction of the magnetic field to the ferrite 20 is reversed, the transmission path of the high frequency signal is switched.
 以上のように、本発明は、非可逆回路素子、フロントエンド回路及び通信装置に有用であり、特に、磁気回転子に印加される磁束密度を高めることができる点で優れている。 As described above, the present invention is useful for non-reciprocal circuit elements, front-end circuits, and communication devices, and is particularly excellent in that the magnetic flux density applied to the magnetic rotor can be increased.
  1…非可逆回路素子(サーキュレータ)
  10…磁気回転子
  20…フェライト
  21,22,23…中心導体
  25…永久磁石
  27…スリット
  51,52…ヨーク
  60…樹脂材
  70…フロントエンド回路
  80…通信装置
1 ... Non-reciprocal circuit element (circulator)
DESCRIPTION OF SYMBOLS 10 ... Magnetic rotor 20 ... Ferrite 21, 22, 23 ... Center conductor 25 ... Permanent magnet 27 ... Slit 51, 52 ... Yoke 60 ... Resin material 70 ... Front end circuit 80 ... Communication apparatus

Claims (6)

  1.  フェライトに複数の中心導体が配置されており、実装面、天面及び側面を有する磁気回転子と、
     前記磁気回転子の側面を囲う永久磁石と、
     前記磁気回転子の実装面側及び天面側にそれぞれ配置されたヨークと、
     前記磁気回転子、前記永久磁石及び前記ヨークによって形成される空間部に充填された樹脂材と、
     を備えた非可逆回路素子において、
     前記永久磁石に少なくとも一つのスリットが設けられていること、
     を特徴とする非可逆回路素子。
    A plurality of central conductors are arranged in the ferrite, a magnetic rotor having a mounting surface, a top surface, and side surfaces
    A permanent magnet surrounding the side of the magnetic rotor;
    Yokes respectively disposed on the mounting surface side and the top surface side of the magnetic rotor;
    A resin material filled in a space formed by the magnetic rotor, the permanent magnet and the yoke;
    In a non-reciprocal circuit device comprising:
    At least one slit is provided in the permanent magnet;
    A nonreciprocal circuit device characterized by the above.
  2.  前記スリットは実装面側に設けられていること、を特徴とする請求項1に記載の非可逆回路素子。 The nonreciprocal circuit device according to claim 1, wherein the slit is provided on a mounting surface side.
  3.  前記永久磁石は平面視で複数の辺を有する枠形状をなし、前記スリットは該永久磁石の少なくとも一つの辺に設けられていること、を特徴とする請求項1又は請求項2に記載の非可逆回路素子。 3. The non-magnetic side according to claim 1, wherein the permanent magnet has a frame shape having a plurality of sides in a plan view, and the slit is provided on at least one side of the permanent magnet. 4. Reversible circuit element.
  4.  前記永久磁石は平面視で複数の辺と該辺で形成される隅部とを有する枠形状をなし、前記スリットは該永久磁石の少なくとも一つの隅部に設けられていること、を特徴とする請求項1又は請求項2に記載の非可逆回路素子。 The permanent magnet has a frame shape having a plurality of sides and a corner formed by the sides in a plan view, and the slit is provided in at least one corner of the permanent magnet. The nonreciprocal circuit device according to claim 1 or 2.
  5.  請求項1ないし請求項4のいずれかに記載の非可逆回路素子を含むこと、を特徴とするフロントエンド回路。 A front end circuit comprising the nonreciprocal circuit device according to any one of claims 1 to 4.
  6.  請求項5に記載のフロントエンド回路を含むこと、を特徴とする通信装置。 A communication device comprising the front-end circuit according to claim 5.
PCT/JP2016/072603 2015-09-29 2016-08-02 Non-reversible circuit element, front end circuit and communication device WO2017056689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015190646 2015-09-29
JP2015-190646 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017056689A1 true WO2017056689A1 (en) 2017-04-06

Family

ID=58424118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072603 WO2017056689A1 (en) 2015-09-29 2016-08-02 Non-reversible circuit element, front end circuit and communication device

Country Status (1)

Country Link
WO (1) WO2017056689A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069360A1 (en) * 2007-11-29 2009-06-04 Murata Manufacturing Co., Ltd. Irreversible circuit element
JP2012175202A (en) * 2011-02-18 2012-09-10 Murata Mfg Co Ltd Ferrite magnet element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069360A1 (en) * 2007-11-29 2009-06-04 Murata Manufacturing Co., Ltd. Irreversible circuit element
JP2012175202A (en) * 2011-02-18 2012-09-10 Murata Mfg Co Ltd Ferrite magnet element

Similar Documents

Publication Publication Date Title
JP4858543B2 (en) Non-reciprocal circuit device and manufacturing method thereof
JP5018790B2 (en) Non-reciprocal circuit element
JP4858542B2 (en) Non-reciprocal circuit element
WO2017056689A1 (en) Non-reversible circuit element, front end circuit and communication device
US8472201B2 (en) Circuit module
WO2017090304A1 (en) Non-reversible circuit element, front end circuit and communication device
JP4760981B2 (en) Non-reciprocal circuit element
WO2017094407A1 (en) Non-reciprocal circuit element, module circuit, and communication apparatus
WO2015072252A1 (en) Non-reciprocal circuit element
US20180115038A1 (en) Non-reciprocal circuit element, high-frequency circuit and communication device
JP3939622B2 (en) Non-reciprocal circuit element, isolator, and non-reciprocal circuit element manufacturing method
JP4182926B2 (en) Non-reciprocal circuit device and communication device
JP4915366B2 (en) Non-reciprocal circuit element
JP5083113B2 (en) Non-reciprocal circuit element
JP5233664B2 (en) Non-reciprocal circuit element components
WO2014196324A1 (en) Non-reciprocal circuit element
US7859358B2 (en) Non-reciprocal circuit device
JP4082620B2 (en) Non-reciprocal circuit and non-reciprocal circuit element
JP2011147011A (en) Circuit module
JP5799830B2 (en) Non-reciprocal circuit element
JP5136322B2 (en) Non-reciprocal circuit element
JP4807457B2 (en) Non-reciprocal circuit element
JP5652116B2 (en) Non-reciprocal circuit element
WO2020208780A1 (en) Non-reciprocal circuit
JP4563980B2 (en) Surface mount type package and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP