WO2014196324A1 - Non-reciprocal circuit element - Google Patents

Non-reciprocal circuit element Download PDF

Info

Publication number
WO2014196324A1
WO2014196324A1 PCT/JP2014/062801 JP2014062801W WO2014196324A1 WO 2014196324 A1 WO2014196324 A1 WO 2014196324A1 JP 2014062801 W JP2014062801 W JP 2014062801W WO 2014196324 A1 WO2014196324 A1 WO 2014196324A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
permanent magnet
conductor
external connection
magnetic field
Prior art date
Application number
PCT/JP2014/062801
Other languages
French (fr)
Japanese (ja)
Inventor
勇樹 中池
礼滋 中嶋
敏弘 牧野
大輔 大久保
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014196324A1 publication Critical patent/WO2014196324A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/387Strip line circulators

Definitions

  • the present invention relates to non-reciprocal circuit elements, and more particularly to non-reciprocal circuit elements such as isolators and circulators used in the microwave band.
  • nonreciprocal circuit elements such as isolators and circulators have a characteristic of transmitting a signal only in a predetermined specific direction and not transmitting in a reverse direction. Utilizing this characteristic, for example, an isolator is used in a transmission circuit unit of a mobile communication device such as a mobile phone.
  • Patent Document 1 describes a structure in which a ferrite provided with a central conductor and a permanent magnet are arranged in the thickness direction and these are built in a metal case.
  • the ferrite is sandwiched between a pair of permanent magnets to make the magnetic field distribution of the DC magnetic field uniform.
  • the metal case serves to improve the magnetic field distribution and to provide a shielding action that reduces the magnetic influence on the peripheral elements.
  • it is necessary to provide an external connection electrode for mounting on a substrate outside the metal case because the metal case is provided with a high profile (thickness increases). There is a problem that the cost increases.
  • An object of the present invention is to provide a non-reciprocal circuit device that can achieve a reduction in height and cost, and can improve connection reliability to a circuit board.
  • the non-reciprocal circuit device is in a non-reciprocal circuit device including a ferrite-magnet assembly in which a first central conductor, a second central conductor, and a third central conductor are arranged to intersect with each other in an insulated state to a ferrite to which a DC magnetic field is applied by a permanent magnet,
  • the ferrite has a top surface and a bottom surface facing each other, and a side surface orthogonal to the top surface and the bottom surface,
  • a DC magnetic field is applied to the first center conductor, the second center conductor, and the third center conductor by the first permanent magnet disposed on the top surface side of the ferrite and the second permanent magnet disposed on the bottom surface side
  • a plurality of external connection electrodes are continuously formed from the side surface of the ferrite to the side surface of the second permanent magnet, and are divided in the horizontal direction. The respective ends of the first center conductor, the second center conductor and the third center conductor are connected to the plurality of external connection electrodes;
  • the nonreciprocal circuit device since the ferrite having the central conductor disposed between the first and second permanent magnets, the magnetic field distribution of the DC magnetic field is made uniform, and a plurality of external connection electrodes are provided. Is formed continuously from the side surface of the ferrite to the side surface of the second permanent magnet, so that the plurality of external connection electrodes have the same action as the metal case (that is, improvement of magnetic field distribution and shielding action). Thus, since the metal case is not required, the nonreciprocal circuit element can be reduced in height and can be manufactured at low cost. In addition, since the external connection electrode is formed on the side surface of the ferrite, the connection reliability when the nonreciprocal circuit element is mounted on the circuit board using the external connection electrode is improved, and the low profile is impaired. There is no.
  • the nonreciprocal circuit element can be reduced in height and cost, and the connection reliability to the circuit board is improved.
  • the nonreciprocal circuit device 1A is a lumped constant type three-port circulator having the equivalent circuit shown in FIG. That is, the first central conductor 21 (L1), the second central conductor 22 (L2), and the third central conductor 23 (L3) are respectively insulated in the ferrite 20 to which a DC magnetic field is applied in the direction of arrow A by a permanent magnet. It is arranged to intersect at an angle of.
  • One end of the first center conductor 21 is a first port P1
  • one end of the second center conductor 22 is a second port P2
  • one end of the third center conductor 23 is a third port P3.
  • the other ends of the center conductors 21, 22, and 23 are connected to the ground.
  • capacitive elements C1, C2, and C3 are connected in parallel to the central conductors 21, 22, and 23, respectively.
  • one end of the first center conductor 21 is an external connection electrode 41, the other end is an external connection electrode 44, one end of the second center conductor 22 is an external connection electrode 43, and the other end is an external connection electrode 46.
  • the third center electrode 23 has one end as an external connection electrode 45 and the other end as an external connection electrode 42.
  • the 3-port circulator composed of the above-described equivalent circuit is configured by a ferrite / magnet assembly 10 shown in FIG.
  • This ferrite-magnet assembly 10 is a laminate of insulating layers 11, 12, 13, 14 mainly composed of glass, various conductors, and various electrodes on the top and bottom surfaces of a rectangular microwave ferrite 20.
  • the ferrite 20 is also provided with a plurality of through-hole conductors and a plurality of electrodes for connecting various conductors provided on the top surface side and the bottom surface side in a coil shape.
  • the first permanent magnet 31 is bonded and fixed to the top surface side of the ferrite 20, and the second permanent magnet 32 is bonded and fixed to the bottom surface side.
  • the conductors 21a, 21b, and 21c forming the first central conductor 21 (L1) are formed between the insulator layer 12 and the first permanent magnet 31, and the conductors 21d and 21e are formed of the insulator layer 13 and the ferrite 20. It is formed between.
  • An end portion of the conductor 21a is an external lead portion 41a
  • an end portion of the conductor 21c is an external lead portion 44a.
  • the other end of the conductor 21a is connected to one end of the conductor 21d via the conductor 21f
  • the other end of the conductor 21d is connected to one end of the conductor 21b via the conductor 21g.
  • the other end of the conductor 21b is connected to one end of a conductor 21e via a conductor 21h
  • the other end of the conductor 21e is connected to one end of a conductor 21c via a conductor 21i.
  • the conductors 22a, 22b and 22c forming the second center conductor 22 (L2) are formed between the insulator layer 11 and the ferrite 20, and the conductors 22d and 22e are formed between the insulator layer 14 and the second permanent magnet 32.
  • An end portion of the conductor 22a is an external lead portion 43a
  • an end portion of the conductor 22c is an external lead portion 46a.
  • the other end of the conductor 22a is connected to one end of the conductor 22d via the conductor 22f
  • the other end of the conductor 22d is connected to one end of the conductor 22b via the conductor 22g.
  • the other end of the conductor 22b is connected to one end of a conductor 22e via a conductor 22h
  • the other end of the conductor 22e is connected to one end of a conductor 22c via a conductor 22i.
  • the conductors 23a, 23b and 23c forming the third central conductor 23 (L3) are formed between the insulator layers 11 and 12, and the conductors 23d and 23e are formed between the insulator layers 13 and 14.
  • An end portion of the conductor 23a is an external lead portion 42a, and an end portion of the conductor 23c is an external lead portion 45a.
  • the other end of the conductor 23a is connected to one end of the conductor 23d through the conductor 23f, and the other end of the conductor 23d is connected to one end of the conductor 23b through the conductor 23g.
  • the other end of the conductor 23b is connected to one end of a conductor 23e through a conductor 23h, and the other end of the conductor 23e is connected to one end of a conductor 23c through a conductor 23i.
  • the center conductors 21, 22, and 23 can be formed as thin film conductors, thick film conductors, or conductor foils, and it is preferable to use a photosensitive metal paste.
  • Insulator layers 11 to 14 are preferably made of photosensitive glass.
  • Capacitance elements C1, C2, and C3 use chip parts.
  • the external connection electrodes 41 to 46 will be described with reference to FIGS.
  • the external connection electrodes 41, 42, 43 are formed in the horizontal direction on the first side surface 10 a (the back side in FIG. 5) of the ferrite / magnet assembly 10, and the external connection electrodes 44, 45, 46 are the first ones.
  • the two side surfaces 10b (front side in FIG. 5) are formed by being divided into three in the horizontal direction.
  • the external connection electrodes 41, 43, 44, and 46 disposed at the four corners are also formed continuously on the third side surface 10c or the fourth side surface 10d, and the top surface of the first permanent magnet 31 or the second permanent magnet. It is also formed continuously on the lower surface of 32.
  • the external connection electrodes 42 and 45 arranged at the central position are also formed continuously on the upper surface of the first permanent magnet 31 and the lower surface of the second permanent magnet 32.
  • the external connection electrode 41 is connected to the external lead portion 41a which is one end of the conductor 21a of the first central conductor 21, and is formed side by side in the conductor 24a (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32.
  • the external connection electrode 42 is connected to the external lead portion 42a, which is one end of the conductor 23a of the third central conductor 23, and is formed side by side in the conductor 24b (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32.
  • the external connection electrode 43 is connected to the external lead portion 43a which is one end of the conductor 22a of the second central conductor 22, and is formed side by side in the conductor 24c (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32.
  • the external connection electrode 44 is connected to the external lead portion 44a, which is one end of the conductor 21c of the first central conductor 21, and is formed side by side in the conductor 24d (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32.
  • the external connection electrode 45 is connected to the external lead portion 45a, which is one end of the conductor 23c of the third central conductor 23, and is formed side by side in the conductor 24e (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32.
  • the external connection electrode 46 is connected to the external lead portion 46a which is one end of the conductor 22c of the second central conductor 22, and is formed side by side in the conductor 24f (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32.
  • the external connection electrodes 41 to 46 are formed of a magnetic material including, for example, Fe, Ni, Co, ferrite, and the like.
  • a conductive electrode material (paste) mainly composed of Ag and Cu is applied and baked, a Ni plating layer is formed on the surface, and a plating layer such as Au and Sn is further formed.
  • solder 52 provided on the land 51 on the circuit board 50 is externally attached.
  • the solder fillets are formed by wetting along the connection electrodes 41 to 46.
  • the non-reciprocal circuit device 1A since the ferrite 20 having the central conductors 21, 22, and 23 disposed therebetween is sandwiched between the permanent magnets 31 and 32, the magnetic field distribution of the DC magnetic field is naturally made uniform. Since the external connection electrodes 41 to 46 are formed continuously from the side surface of the ferrite 20 to the side surfaces of the permanent magnets 31 and 32, the plurality of external connection electrodes 41 to 46 have an improved magnetic field distribution and a shielding action. As a result, the metal case used in Patent Document 1 is not necessary, so that the nonreciprocal circuit element 1A can be reduced in height and can be manufactured at low cost.
  • the magnetic field distribution of the DC magnetic field applied to the ferrite 20 can be made uniform. Moreover, since the entire top and bottom surfaces of the ferrite 20 are covered with the permanent magnets 31 and 32, the magnetic field distribution is made more uniform.
  • the high frequency signal input from the second port P2 is output from the first port P1
  • the high frequency signal input from the first port P1 is output from the third port P3, and input from the third port P3.
  • the high frequency signal is output from the second port P2.
  • FIG. 2 shows changes in the circularly polarized magnetic permeability ⁇ ⁇ (H / m) with respect to the magnetic field (A / m).
  • ⁇ + indicates positive circular polarization
  • indicates negative circular polarization.
  • the operation is performed in the low magnetic field region X1 surrounded by the dotted line in FIG. That is, a weak DC magnetic field is applied to the ferrite 20 so as to operate in a region where ⁇ > ⁇ +> 0.
  • the high magnetic field region X2 applies a strong DC magnetic field to the ferrite 20 so as to operate in a region where ⁇ +> ⁇ .
  • the magnetic field region is defined as a region where the magnetic field is higher than the magnetic resonance point as a high magnetic field, a region where the magnetic field is lower than the magnetic resonance point, and the ⁇ + circular polarization permeability is positive as a low magnetic field. Are used.
  • a lumped constant type circulator that operates in a low magnetic field can be realized by setting the internal magnetic field Hin and the saturation magnetization Ms so as to satisfy the expression (2).
  • the magnetic field applied by the permanent magnets 31 and 32 can be small, and the magnets 31 and 32 can be reduced in size. Moreover, since it operates at a position away from the magnetic resonance point, magnetic loss is reduced.
  • the size of the ferrite 20 is sufficiently smaller than ⁇ / 2 because the conventional waveguide type needs to have a ⁇ / 2 size, whereas the lumped constant type has only to form a necessary inductance. Therefore, it may be ⁇ / 4 or less.
  • each of the central conductors 21, 22 and 23 is wound around the ferrite 20 by a plurality of turns in order to ensure necessary inductance. Since the line-shaped conductors 21a to 21e, 22a to 22e, and 23a to 23e formed in each layer are formed in a coil shape via the interlayer connection conductor, each center conductor can be changed by changing the position of the interlayer connection conductor. The length (inductance value) of 21, 22, and 23 can be changed.
  • the central conductors 21, 22, and 23 can be arranged at equal distances from the ferrite 20, and the application of the magnetic field becomes uniform.
  • the insertion loss characteristic and the isolation characteristic can be adjusted by changing the laminated arrangement of the conductors 21a to 21e, 22a to 22e, and 23a to 23e.
  • the ferrite 20 is arranged in a horizontal direction with respect to the circuit board and operated with a low magnetic field, a required applied magnetic field can be reduced, and as a result, the permanent magnets 31 and 32 can be made thin. it can.
  • the external connection electrodes 41 to 46 are formed continuously over the side surface of the first permanent magnet 31 in addition to the side surface of the second permanent magnet 32, and further, the first permanent magnet 31.
  • the second permanent magnet 32 extends from the side surface to the surface opposite to the ferrite 32. That is, in the first embodiment, since the external connection electrodes 41 to 46 are formed on the side surfaces of the ferrite 20, the connection reliability when the nonreciprocal circuit device 1A is mounted on the circuit board is improved, and the low There is no loss of inversion. Further, since the external connection electrodes 41 to 46 are continuously formed over the side surface of the first permanent magnet 31, the connection strength when mounted on the circuit board is improved.
  • the external connection electrodes 41 to 46 may be formed continuously from at least the side surface of the ferrite 20 to the side surface of the second permanent magnet 32 while being connected to the lead portions 41a to 46a, respectively.
  • Such a nonreciprocal circuit device 1A ′ is shown in FIG. 6 as a modification of the first embodiment.
  • the nonreciprocal circuit device 1 ⁇ / b> B according to the second embodiment is thinner than the second permanent magnet 31 disposed on the top surface side with the second permanent magnet 32 disposed on the bottom surface side of the ferrite 20. is doing.
  • Other configurations in the second embodiment are the same as those in the first embodiment. Therefore, the operation and effect of the second embodiment is the same as that of the first embodiment.
  • the second permanent magnet 32 on the bottom side thinner, the parasitic inductance generated in the external connection electrodes 41 to 46 is reduced.
  • the height of the non-reciprocal circuit device 1A of the first embodiment is reduced.
  • the non-reciprocal circuit device 1C has the ferrite-magnet assembly 10 disposed upside down in the vertical direction as compared with the first embodiment, Both side portions of the arranged second permanent magnet 32 are notched, and the external connection electrodes 41 to 46 are formed by folding back to the top surface side of the ferrite 20 so that the folded portion is exposed to the peripheral portion of the ferrite 20. Is.
  • the circuit board 50 has a recess 55 formed therein.
  • the recess 55 has a slightly larger area than the ferrite / magnet assembly 10, and lands 51 are arranged at positions corresponding to the external connection electrodes 41 to 46.
  • the nonreciprocal circuit element 1C is mounted on the circuit board 50 by connecting the external connection electrodes 41 to 46 to the lands 51 with solder 52 in a state where the second permanent magnet 32 is embedded in the recess 55. Since the second permanent magnet 32 is embedded in the circuit board 50, the reduction in the height of the nonreciprocal circuit element 1C during mounting is further promoted.
  • the nonreciprocal circuit device 1D has external connection electrodes 41 to 46 extending from both side surfaces of the ferrite / magnet assembly 10 to the upper surface of the permanent magnet 31 and the lower surface of the permanent magnet 32.
  • the other configurations are the same as those of the first embodiment.
  • three external connection electrodes 41 to 46 are provided on the first and second side surfaces of the ferrite magnet assembly 10 facing each other. It is formed at a rotationally symmetric position of 180 degrees.
  • the external connection electrode 41 connected to the port P1 of the first central conductor 21 and the external connection electrode 44 connected to the ground port are arranged at a rotationally symmetric position of 180 degrees (see FIG. 10). ).
  • the external connection electrode 43 connected to the port P2 of the second center conductor 22 and the external connection electrode 46 connected to the ground port are arranged at a rotationally symmetric position of 180 degrees.
  • the external connection electrode 45 connected to the port P3 of the third central conductor 23 and the external connection electrode 42 connected to the ground port are disposed at a rotationally symmetric position of 180 degrees.
  • the nonreciprocal circuit element 1D when the nonreciprocal circuit element 1D is mounted on the circuit board in the state of FIG. 10A, one end of the external capacitive elements C1, C2, C3 is connected to the electrodes 41, 43, 45.
  • the electrodes 42, 44, 46 are connected to the ground
  • the electrodes 41, 43, 45 are on the hot side
  • the electrodes 42, 44, 46 are on the ground side.
  • the signal flows from the electrode 41 (port P1) to the electrode 45 (port P3) and from the electrode 45 (port P3) to the electrode 43 (port P2).
  • the application direction of the DC magnetic field is reversed, the signal flow is reversed.
  • this nonreciprocal circuit device 1D when this nonreciprocal circuit device 1D is mounted on a circuit board by rotating 180 degrees in plan view as shown in FIG. 10B, the combination of the electrodes 41, 44 and 43, 46 and 42, 45 is Although not changed, the electrodes 42, 44, and 46 are on the hot side, and the electrodes 41, 43, and 45 are on the ground side.
  • the signal flows from the electrode 44 (port P1) to the electrode 42 (port P3) and from the electrode 42 (port P3) to the electrode 46 (port P2). That is, since the direction of signal flow seen from the circuit board including the capacitive elements C1, C2, and C3 does not change, the nonreciprocal circuit element 1D is rotated by 180 degrees and the circuit shown in FIG. 10A or FIG. Regardless of the mounting direction, the signal flow is the same.
  • the nonreciprocal circuit element 1D functions as a circulator with the same signal flow regardless of the orientation on the circuit board. Since the function as a circulator does not change even if it is mounted in any direction, it is not necessary to align the direction of the nonreciprocal circuit element 1D in the mounting process, and the cost during mounting can be reduced.
  • the nonreciprocal circuit device 1E includes a conductive material (for example, Cu) on the external connection electrodes 41 to 46.
  • Terminals 51 to 56 made of a metal material as a main component) are joined via a solder material or the like. By providing the metal terminals 51 to 56, the connection reliability of the circuit board to the land is improved.
  • the terminals 51 to 56 shown in (A) are straight plate-like bodies. With such a shape, the manufacturing cost of the metal terminals can be suppressed.
  • Terminals 51 to 56 shown in (B) are bent outward on the same plane as the lower surface of the ferrite / magnet assembly 10 at the bottom. With such a shape, the nonreciprocal circuit element can be more firmly mounted on the substrate.
  • Terminals 51 to 56 shown in (C) are bent at the lower part so as to wrap around the lower surface of the ferrite / magnet assembly 10. With such a shape, the nonreciprocal circuit element can be firmly mounted on the substrate with a smaller area as compared with the shape of the metal terminal shown in FIG.
  • a resin material is filled between the terminals 51 and 52 and between the terminals 52 and 53 to integrate the terminals 51, 52 and 53 in advance.
  • the terminals 54, 55, 56 may be integrated in advance by filling a resin material between the terminals 55, 56, respectively. In this way, if the terminals 51, 52, 53 and the terminals 54, 55, 56 integrated with the resin material are used, the process for fixing the terminals 51 to 56 to the ferrite / magnet assembly 10 is simplified.
  • the nonreciprocal circuit device according to the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist thereof.
  • the configuration and shape of the central conductor are arbitrary.
  • the capacitive element or the like may be constituted by a conductor built in the circuit board in addition to being mounted on the circuit board as a chip type.
  • the present invention is useful for non-reciprocal circuit elements, and is particularly excellent in that it can achieve a reduction in height and cost, and improve the reliability of connection to a circuit board.
  • Nonreciprocal circuit element 10 ... Ferrite magnet assembly 20 ... Ferrite 21 ... 1st center conductor 22 ... 2nd center conductor 23 ... 3rd center conductor 31, 32 ... Permanent magnet 41-46 ... External connection electrode 50 ... Circuit boards 51 to 56 ... Terminals P1, P2, P3 ... Ports

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

In order to achieve a lower height and a lower cost and improve the reliability of connection to a circuit board in a non-reciprocal circuit element, a non-reciprocal circuit element is provided with a ferrite-magnet assembly (10) in which on a ferrite (20) to which a direct-current magnetic field is applied by permanent magnets (31, 32), a first center conductor, a second center conductor, and a third center conductor are disposed so as to intersect each other while being insulated from each other. The ferrite (20) has a top surface and a bottom surface which face each other, and side surfaces orthogonal to the top surface and the bottom surface, and the direct-current magnetic field is applied to the first center conductor, the second center conductor, and the third center conductor by the first permanent magnet (31) disposed on the top surface side of the ferrite (20) and the second permanent magnet (32) disposed on the bottom surface side thereof. A plurality of external connection electrodes (41-46) are formed continuously from the side surfaces of the ferrite (20) to the side surfaces of the second permanent magnet (32) while being separate in a horizontal direction, and the respective ends of the first center conductor, the second center conductor, and the third center conductor are connected to the respective plurality of external connection electrodes (41-46).

Description

非可逆回路素子Non-reciprocal circuit element
 本発明は、非可逆回路素子、特に、マイクロ波帯で使用されるアイソレータやサーキュレータなどの非可逆回路素子に関する。 The present invention relates to non-reciprocal circuit elements, and more particularly to non-reciprocal circuit elements such as isolators and circulators used in the microwave band.
 従来より、アイソレータやサーキュレータなどの非可逆回路素子は、予め定められた特定方向にのみ信号を伝送し、逆方向には伝送しない特性を有している。この特性を利用して、例えば、アイソレータは、携帯電話などの移動体通信機器の送信回路部に使用されている。 Conventionally, nonreciprocal circuit elements such as isolators and circulators have a characteristic of transmitting a signal only in a predetermined specific direction and not transmitting in a reverse direction. Utilizing this characteristic, for example, an isolator is used in a transmission circuit unit of a mobile communication device such as a mobile phone.
 この種の非可逆回路素子としては、特許文献1に、中心導体を設けたフェライトと永久磁石とを厚み方向に配置し、これらを金属ケースに内蔵したものが記載されている。フェライトを一対の永久磁石で挟み込むことで直流磁界の磁場分布の均一化を図っている。また、金属ケースは磁場分布の改善と周辺素子への磁気的な影響を低減するシールド作用を図るものである。しかしながら、この非可逆回路素子では、金属ケースを備えていること自体で高背化し(厚みが大きくなり)、基板への実装用の外部接続用電極を金属ケースの外側に設ける必要があるため、コストが上昇するという問題点を有している。 As this type of non-reciprocal circuit element, Patent Document 1 describes a structure in which a ferrite provided with a central conductor and a permanent magnet are arranged in the thickness direction and these are built in a metal case. The ferrite is sandwiched between a pair of permanent magnets to make the magnetic field distribution of the DC magnetic field uniform. In addition, the metal case serves to improve the magnetic field distribution and to provide a shielding action that reduces the magnetic influence on the peripheral elements. However, in this non-reciprocal circuit element, it is necessary to provide an external connection electrode for mounting on a substrate outside the metal case because the metal case is provided with a high profile (thickness increases). There is a problem that the cost increases.
特開平11-112208号公報Japanese Patent Laid-Open No. 11-112208
 本発明の目的は、低背化、低コスト化を達成でき、かつ、回路基板への接続信頼性が向上する非可逆回路素子を提供することにある。 An object of the present invention is to provide a non-reciprocal circuit device that can achieve a reduction in height and cost, and can improve connection reliability to a circuit board.
 本発明の一の形態である非可逆回路素子は、
 永久磁石により直流磁界が印加されるフェライトに第1中心導体、第2中心導体及び第3中心導体をそれぞれ絶縁状態で交差させて配置したフェライト・磁石組立体を備えた非可逆回路素子において、
 前記フェライトは、互いに対向する天面及び底面と、天面及び底面に直交する側面とを有し、
 前記フェライトの天面側に配置された第1永久磁石と底面側に配置された第2永久磁石によって前記第1中心導体、第2中心導体及び第3中心導体に直流磁界が印加され、
 前記フェライトの側面から前記第2永久磁石の側面にわたって連続して、複数の外部接続用電極が水平方向に分割された状態で形成されており、
 第1中心導体、第2中心導体及び第3中心導体のそれぞれの端部は前記複数の外部接続用電極のそれぞれに接続されていること、
 を特徴とする。
The non-reciprocal circuit device according to one aspect of the present invention is
In a non-reciprocal circuit device including a ferrite-magnet assembly in which a first central conductor, a second central conductor, and a third central conductor are arranged to intersect with each other in an insulated state to a ferrite to which a DC magnetic field is applied by a permanent magnet,
The ferrite has a top surface and a bottom surface facing each other, and a side surface orthogonal to the top surface and the bottom surface,
A DC magnetic field is applied to the first center conductor, the second center conductor, and the third center conductor by the first permanent magnet disposed on the top surface side of the ferrite and the second permanent magnet disposed on the bottom surface side,
A plurality of external connection electrodes are continuously formed from the side surface of the ferrite to the side surface of the second permanent magnet, and are divided in the horizontal direction.
The respective ends of the first center conductor, the second center conductor and the third center conductor are connected to the plurality of external connection electrodes;
It is characterized by.
 前記非可逆回路素子にあっては、中心導体を配置したフェライトを第1及び第2永久磁石で挟み込むようにしたため、直流磁界の磁場分布が均一化されることは勿論、複数の外部接続用電極がフェライトの側面から第2永久磁石の側面にわたって連続して形成されているため、複数の外部接続用電極が前記金属ケースと同様の作用(即ち、磁場分布の改善とシールド作用)を有することになり、金属ケースが不要となることから、非可逆回路素子が低背化し、かつ、低コストでの製造が可能となる。また、外部接続用電極がフェライトの側面に形成されているため、外部接続用電極を利用して非可逆回路素子を回路基板へ実装した際の接続信頼性が向上し、低背化を損なうことがない。 In the nonreciprocal circuit device, since the ferrite having the central conductor disposed between the first and second permanent magnets, the magnetic field distribution of the DC magnetic field is made uniform, and a plurality of external connection electrodes are provided. Is formed continuously from the side surface of the ferrite to the side surface of the second permanent magnet, so that the plurality of external connection electrodes have the same action as the metal case (that is, improvement of magnetic field distribution and shielding action). Thus, since the metal case is not required, the nonreciprocal circuit element can be reduced in height and can be manufactured at low cost. In addition, since the external connection electrode is formed on the side surface of the ferrite, the connection reliability when the nonreciprocal circuit element is mounted on the circuit board using the external connection electrode is improved, and the low profile is impaired. There is no.
 本発明によれば、非可逆回路素子の低背化、低コスト化を達成でき、かつ、回路基板への接続信頼性が向上する。 According to the present invention, the nonreciprocal circuit element can be reduced in height and cost, and the connection reliability to the circuit board is improved.
第1実施例である非可逆回路素子(3ポート型サーキュレータ)を示す等価回路図である。It is an equivalent circuit diagram which shows the nonreciprocal circuit element (3 port type circulator) which is 1st Example. フェライトにおける磁界に対する円偏波透磁率を示すグラフである。It is a graph which shows the circularly polarized magnetic permeability with respect to the magnetic field in a ferrite. 第1実施例である非可逆回路素子における中心導体の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the center conductor in the nonreciprocal circuit device which is 1st Example. 第1実施例である非可逆回路素子を示す分解斜視図である。It is a disassembled perspective view which shows the nonreciprocal circuit device which is 1st Example. (A)は第1実施例である非可逆回路素子を示す外観斜視図であり、(B)は回路基板への実装状態(はんだのフィレット形成状態)を示す外観斜視図である。(A) is an external perspective view showing a non-reciprocal circuit device according to the first embodiment, and (B) is an external perspective view showing a mounting state (solder fillet formation state) on a circuit board. 第1実施例の変形例である非可逆回路素子を示す外観斜視図である。It is an external appearance perspective view which shows the nonreciprocal circuit element which is a modification of 1st Example. 第2実施例である非可逆回路素子(3ポート型サーキュレータ)を示す外観斜視図である。It is an external appearance perspective view which shows the nonreciprocal circuit element (3 port type circulator) which is 2nd Example. (A)は第3実施例である非可逆回路素子(3ポート型サーキュレータ)を示す外観斜視図であり、(B)は回路基板への実装状態を示す断面図である。(A) is an external appearance perspective view which shows the nonreciprocal circuit element (3 port type circulator) which is 3rd Example, (B) is sectional drawing which shows the mounting state to a circuit board. 第4実施例である非可逆回路素子(3ポート型サーキュレータ)を示す外観斜視図である。It is an external appearance perspective view which shows the nonreciprocal circuit element (3 port type circulator) which is 4th Example. (A)は第4実施例である非可逆回路素子の第1実装形態を示す説明図、(B)はその第2実装形態を示す説明図である。(A) is explanatory drawing which shows the 1st mounting form of the nonreciprocal circuit element which is 4th Example, (B) is explanatory drawing which shows the 2nd mounting form. (A),(B),(C)はそれぞれ第5実施例である非可逆回路素子を示す斜視図である。(A), (B), (C) is a perspective view which shows the nonreciprocal circuit device which is a 5th Example, respectively.
 以下に、本発明に係る非可逆回路素子の実施例について添付図面を参照して説明する。なお、各図において同じ部材には共通する符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the non-reciprocal circuit device according to the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same member, and the overlapping description is abbreviate | omitted.
 (第1実施例、図1~図5参照)
 第1実施例である非可逆回路素子1Aは、図1に示す等価回路を有する集中定数型の3ポート型サーキュレータである。即ち、永久磁石により矢印A方向に直流磁界が印加されるフェライト20に第1中心導体21(L1)、第2中心導体22(L2)及び第3中心導体23(L3)をそれぞれ絶縁状態で所定の角度で交差させて配置している。第1中心導体21の一端を第1ポートP1、第2中心導体22の一端を第2ポートP2、第3中心導体23の一端を第3ポートP3としている。各中心導体21,22,23のそれぞれの他端はグランドに接続されている。さらに、各中心導体21,22,23に対して容量素子C1,C2,C3がそれぞれ並列に接続されている。
(Refer to the first embodiment, FIGS. 1 to 5)
The nonreciprocal circuit device 1A according to the first embodiment is a lumped constant type three-port circulator having the equivalent circuit shown in FIG. That is, the first central conductor 21 (L1), the second central conductor 22 (L2), and the third central conductor 23 (L3) are respectively insulated in the ferrite 20 to which a DC magnetic field is applied in the direction of arrow A by a permanent magnet. It is arranged to intersect at an angle of. One end of the first center conductor 21 is a first port P1, one end of the second center conductor 22 is a second port P2, and one end of the third center conductor 23 is a third port P3. The other ends of the center conductors 21, 22, and 23 are connected to the ground. Furthermore, capacitive elements C1, C2, and C3 are connected in parallel to the central conductors 21, 22, and 23, respectively.
 ここで、第1中心導体21の一端を外部接続用電極41、他端を外部接続用電極44とし、第2中心導体22の一端を外部接続用電極43、他端を外部接続用電極46とし、第3中心電極23の一端を外部接続用電極45、他端を外部接続用電極42とする。 Here, one end of the first center conductor 21 is an external connection electrode 41, the other end is an external connection electrode 44, one end of the second center conductor 22 is an external connection electrode 43, and the other end is an external connection electrode 46. The third center electrode 23 has one end as an external connection electrode 45 and the other end as an external connection electrode 42.
 以上の等価回路からなる3ポート型サーキュレータは、具体的には、図3に示すフェライト・磁石組立体10にて構成されている。このフェライト・磁石組立体10は、矩形状のマイクロ波フェライト20の天面側及び底面側にガラスを主成分とする絶縁体層11,12,13,14や各種導体、各種電極を積層したもので、フェライト20にも天面側及び底面側に設けた各種導体をコイル状に接続するための複数のスルーホール導体や複数の電極が形成されている。また、フェライト20の天面側に第1永久磁石31が接着固定され、底面側に第2永久磁石32が接着固定されている。 Specifically, the 3-port circulator composed of the above-described equivalent circuit is configured by a ferrite / magnet assembly 10 shown in FIG. This ferrite-magnet assembly 10 is a laminate of insulating layers 11, 12, 13, 14 mainly composed of glass, various conductors, and various electrodes on the top and bottom surfaces of a rectangular microwave ferrite 20. Thus, the ferrite 20 is also provided with a plurality of through-hole conductors and a plurality of electrodes for connecting various conductors provided on the top surface side and the bottom surface side in a coil shape. Further, the first permanent magnet 31 is bonded and fixed to the top surface side of the ferrite 20, and the second permanent magnet 32 is bonded and fixed to the bottom surface side.
 詳しくは、第1中心導体21(L1)を形成する導体21a,21b,21cは絶縁体層12と第1永久磁石31の間に形成され、導体21d,21eは絶縁体層13とフェライト20の間に形成されている。導体21aの端部は外部引出し部41aとされ、導体21cの端部は外部引出し部44aとされている。導体21aの他端は導体21fを介して導体21dの一端に接続され、該導体21dの他端は導体21gを介して導体21bの一端に接続されている。該導体21bの他端は導体21hを介して導体21eの一端に接続され、該導体21eの他端は導体21iを介して導体21cの一端に接続されている。 Specifically, the conductors 21a, 21b, and 21c forming the first central conductor 21 (L1) are formed between the insulator layer 12 and the first permanent magnet 31, and the conductors 21d and 21e are formed of the insulator layer 13 and the ferrite 20. It is formed between. An end portion of the conductor 21a is an external lead portion 41a, and an end portion of the conductor 21c is an external lead portion 44a. The other end of the conductor 21a is connected to one end of the conductor 21d via the conductor 21f, and the other end of the conductor 21d is connected to one end of the conductor 21b via the conductor 21g. The other end of the conductor 21b is connected to one end of a conductor 21e via a conductor 21h, and the other end of the conductor 21e is connected to one end of a conductor 21c via a conductor 21i.
 第2中心導体22(L2)を形成する導体22a,22b,22cは絶縁体層11とフェライト20の間に形成され、導体22d,22eは絶縁体層14と第2永久磁石32の間に形成されている。導体22aの端部は外部引出し部43aとされ、導体22cの端部は外部引出し部46aとされている。導体22aの他端は導体22fを介して導体22dの一端に接続され、該導体22dの他端は導体22gを介して導体22bの一端に接続されている。該導体22bの他端は導体22hを介して導体22eの一端に接続され、該導体22eの他端は導体22iを介して導体22cの一端に接続されている。 The conductors 22a, 22b and 22c forming the second center conductor 22 (L2) are formed between the insulator layer 11 and the ferrite 20, and the conductors 22d and 22e are formed between the insulator layer 14 and the second permanent magnet 32. Has been. An end portion of the conductor 22a is an external lead portion 43a, and an end portion of the conductor 22c is an external lead portion 46a. The other end of the conductor 22a is connected to one end of the conductor 22d via the conductor 22f, and the other end of the conductor 22d is connected to one end of the conductor 22b via the conductor 22g. The other end of the conductor 22b is connected to one end of a conductor 22e via a conductor 22h, and the other end of the conductor 22e is connected to one end of a conductor 22c via a conductor 22i.
 第3中心導体23(L3)を形成する導体23a,23b,23cは絶縁体層11,12の間に形成され、導体23d,23eは絶縁体層13,14の間に形成されている。導体23aの端部は外部引出し部42aとされ、導体23cの端部は外部引出し部45aとされている。導体23aの他端は導体23fを介して導体23dの一端に接続され、該導体23dの他端は導体23gを介して導体23bの一端に接続されている。該導体23bの他端は導体23hを介して導体23eの一端に接続され、該導体23eの他端は導体23iを介して導体23cの一端に接続されている。 The conductors 23a, 23b and 23c forming the third central conductor 23 (L3) are formed between the insulator layers 11 and 12, and the conductors 23d and 23e are formed between the insulator layers 13 and 14. An end portion of the conductor 23a is an external lead portion 42a, and an end portion of the conductor 23c is an external lead portion 45a. The other end of the conductor 23a is connected to one end of the conductor 23d through the conductor 23f, and the other end of the conductor 23d is connected to one end of the conductor 23b through the conductor 23g. The other end of the conductor 23b is connected to one end of a conductor 23e through a conductor 23h, and the other end of the conductor 23e is connected to one end of a conductor 23c through a conductor 23i.
 中心導体21,22,23は薄膜導体、厚膜導体又は導体箔として形成することができ、感光性の金属ペーストを使用することが好ましい。絶縁体層11~14は感光性ガラスを使用することが好ましい。また、容量素子C1,C2,C3はチップ部品を使用している。 The center conductors 21, 22, and 23 can be formed as thin film conductors, thick film conductors, or conductor foils, and it is preferable to use a photosensitive metal paste. Insulator layers 11 to 14 are preferably made of photosensitive glass. Capacitance elements C1, C2, and C3 use chip parts.
 ここで、外部接続用電極41~46について図4及び図5を参照して説明する。外部接続用電極41,42,43はフェライト・磁石組立体10の第1側面10a(図5の奥方側)に水平方向に3分割して形成され、外部接続用電極44,45,46は第2側面10b(図5の手前側)に水平方向に3分割して形成されている。4隅に配置された外部接続用電極41,43,44,46は、第3側面10c又は第4側面10dにも連続して形成され、かつ、第1永久磁石31の上面や第2永久磁石32の下面にも連続して形成されている。中央位置に配置された外部接続用電極42,45は、第1永久磁石31の上面や第2永久磁石32の下面にも連続して形成されている。 Here, the external connection electrodes 41 to 46 will be described with reference to FIGS. The external connection electrodes 41, 42, 43 are formed in the horizontal direction on the first side surface 10 a (the back side in FIG. 5) of the ferrite / magnet assembly 10, and the external connection electrodes 44, 45, 46 are the first ones. The two side surfaces 10b (front side in FIG. 5) are formed by being divided into three in the horizontal direction. The external connection electrodes 41, 43, 44, and 46 disposed at the four corners are also formed continuously on the third side surface 10c or the fourth side surface 10d, and the top surface of the first permanent magnet 31 or the second permanent magnet. It is also formed continuously on the lower surface of 32. The external connection electrodes 42 and 45 arranged at the central position are also formed continuously on the upper surface of the first permanent magnet 31 and the lower surface of the second permanent magnet 32.
 外部接続用電極41は第1中心導体21の導体21aの一端である外部引出し部41aと接続され、かつ、フェライト20に形成された導体24a(図3参照)やその上下方向に並んで形成されている導体とも接続され、さらに、永久磁石31,32の表面にわたって連続して形成されている。外部接続用電極42は第3中心導体23の導体23aの一端である外部引出し部42aと接続され、かつ、フェライト20に形成された導体24b(図3参照)やその上下方向に並んで形成されている導体とも接続され、さらに、永久磁石31,32の表面にわたって連続して形成されている。 The external connection electrode 41 is connected to the external lead portion 41a which is one end of the conductor 21a of the first central conductor 21, and is formed side by side in the conductor 24a (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32. The external connection electrode 42 is connected to the external lead portion 42a, which is one end of the conductor 23a of the third central conductor 23, and is formed side by side in the conductor 24b (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32.
 外部接続用電極43は第2中心導体22の導体22aの一端である外部引出し部43aと接続され、かつ、フェライト20に形成された導体24c(図3参照)やその上下方向に並んで形成されている導体とも接続され、さらに、永久磁石31,32の表面にわたって連続して形成されている。外部接続用電極44は第1中心導体21の導体21cの一端である外部引出し部44aと接続され、かつ、フェライト20に形成された導体24d(図3参照)やその上下方向に並んで形成されている導体とも接続され、さらに、永久磁石31,32の表面にわたって連続して形成されている。 The external connection electrode 43 is connected to the external lead portion 43a which is one end of the conductor 22a of the second central conductor 22, and is formed side by side in the conductor 24c (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32. The external connection electrode 44 is connected to the external lead portion 44a, which is one end of the conductor 21c of the first central conductor 21, and is formed side by side in the conductor 24d (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32.
 外部接続用電極45は第3中心導体23の導体23cの一端である外部引出し部45aと接続され、かつ、フェライト20に形成された導体24e(図3参照)やその上下方向に並んで形成されている導体とも接続され、さらに、永久磁石31,32の表面にわたって連続して形成されている。外部接続用電極46は第2中心導体22の導体22cの一端である外部引出し部46aと接続され、かつ、フェライト20に形成された導体24f(図3参照)やその上下方向に並んで形成されている導体とも接続され、さらに、永久磁石31,32の表面にわたって連続して形成されている。 The external connection electrode 45 is connected to the external lead portion 45a, which is one end of the conductor 23c of the third central conductor 23, and is formed side by side in the conductor 24e (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32. The external connection electrode 46 is connected to the external lead portion 46a which is one end of the conductor 22c of the second central conductor 22, and is formed side by side in the conductor 24f (see FIG. 3) formed on the ferrite 20 and in the vertical direction thereof. It is also connected to the existing conductor and is formed continuously over the surfaces of the permanent magnets 31 and 32.
 前記外部接続用電極41~46は、例えば、Fe,Ni,Co、フェライトなどを含む磁性体材料で形成される。好ましくは、Ag,Cuを主成分とする導電性の電極材料(ペースト)を塗布して焼き付け、その表面にNiのめっき層を形成し、さらに、Au,Snなどのめっき層を形成する。 The external connection electrodes 41 to 46 are formed of a magnetic material including, for example, Fe, Ni, Co, ferrite, and the like. Preferably, a conductive electrode material (paste) mainly composed of Ag and Cu is applied and baked, a Ni plating layer is formed on the surface, and a plating layer such as Au and Sn is further formed.
 以上の構成からなるフェライト・磁石組立体10を回路基板50上に実装する際には、図4及び図5(B)に示すように、回路基板50上のランド51に設けたはんだ52が外部接続用電極41~46に沿って濡れ上がり、はんだフィレットが形成される。 When the ferrite / magnet assembly 10 having the above configuration is mounted on the circuit board 50, as shown in FIGS. 4 and 5B, the solder 52 provided on the land 51 on the circuit board 50 is externally attached. The solder fillets are formed by wetting along the connection electrodes 41 to 46.
 前記非可逆回路素子1Aにあっては、中心導体21,22,23を配置したフェライト20を永久磁石31,32で挟み込むようにしたため、直流磁界の磁場分布が均一化されることは勿論、複数の外部接続用電極41~46がフェライト20の側面から永久磁石31,32の側面にわたって連続して形成されているため、複数の外部接続用電極41~46が磁場分布の改善とシールド作用を有することになり、前記特許文献1で用いていた金属ケースが不要となることから、非可逆回路素子1Aが低背化し、かつ、低コストでの製造が可能となる。 In the non-reciprocal circuit device 1A, since the ferrite 20 having the central conductors 21, 22, and 23 disposed therebetween is sandwiched between the permanent magnets 31 and 32, the magnetic field distribution of the DC magnetic field is naturally made uniform. Since the external connection electrodes 41 to 46 are formed continuously from the side surface of the ferrite 20 to the side surfaces of the permanent magnets 31 and 32, the plurality of external connection electrodes 41 to 46 have an improved magnetic field distribution and a shielding action. As a result, the metal case used in Patent Document 1 is not necessary, so that the nonreciprocal circuit element 1A can be reduced in height and can be manufactured at low cost.
 また、フェライト20を上下に挟み込む永久磁石31,32の厚みが同じであるため、フェライト20に印加される直流磁界の磁場分布を均一化することができる。しかも、フェライト20の天面及び底面の全面が永久磁石31,32によって覆われているため、磁場分布がより均一化される。 Moreover, since the thicknesses of the permanent magnets 31 and 32 sandwiching the ferrite 20 up and down are the same, the magnetic field distribution of the DC magnetic field applied to the ferrite 20 can be made uniform. Moreover, since the entire top and bottom surfaces of the ferrite 20 are covered with the permanent magnets 31 and 32, the magnetic field distribution is made more uniform.
 次に、第1実施例である3ポート型サーキュレータの動作について説明する。ここでは、第2ポートP2から入力された高周波信号は、第1ポートP1から出力され、第1ポートP1から入力された高周波信号は第3ポートP3から出力され、第3ポートP3から入力された高周波信号は第2ポートP2から出力される。 Next, the operation of the 3-port circulator according to the first embodiment will be described. Here, the high frequency signal input from the second port P2 is output from the first port P1, the high frequency signal input from the first port P1 is output from the third port P3, and input from the third port P3. The high frequency signal is output from the second port P2.
 本第1実施例における動作特性について図2を参照して説明する。図2は、磁界(A/m)に対する円偏波透磁率μ±(H/m)の変化を示している。なお、ここでμ+は正の円偏波、μ-は負の円偏波を示す。本実施例では、図2の点線で囲った低磁界領域X1で動作させる。つまり、μ->μ+>0となる領域で動作させるようにフェライト20に弱い直流磁界を与える。一方、高磁界領域X2はμ+>μ-となる領域で動作させるようにフェライト20に強い直流磁界を与える。低磁界領域X1と高磁界領域X2では、μ+とμ-との関係が逆転するため、磁界の印加方向が同じである場合、高周波信号の流れは逆方向となる。但し、磁界の印加方向を逆にすると、高周波信号の伝達経路が入れ替わる。換言すれば、挿入損失特性とアイソレーション特性が入れ替わる。 The operation characteristics in the first embodiment will be described with reference to FIG. FIG. 2 shows changes in the circularly polarized magnetic permeability μ ± (H / m) with respect to the magnetic field (A / m). Here, μ + indicates positive circular polarization, and μ− indicates negative circular polarization. In this embodiment, the operation is performed in the low magnetic field region X1 surrounded by the dotted line in FIG. That is, a weak DC magnetic field is applied to the ferrite 20 so as to operate in a region where μ−> μ +> 0. On the other hand, the high magnetic field region X2 applies a strong DC magnetic field to the ferrite 20 so as to operate in a region where μ +> μ−. In the low magnetic field region X1 and the high magnetic field region X2, since the relationship between μ + and μ− is reversed, the flow of the high frequency signal is reversed when the magnetic field application direction is the same. However, when the application direction of the magnetic field is reversed, the transmission path of the high-frequency signal is switched. In other words, the insertion loss characteristic and the isolation characteristic are interchanged.
 なお、ここでは、磁界領域を、磁気共鳴点よりも磁界が高い領域を高磁界、磁気共鳴点よりも磁界が低く、かつ、μ+の円偏波透磁率が正の領域を低磁界と定義して使用している。 Here, the magnetic field region is defined as a region where the magnetic field is higher than the magnetic resonance point as a high magnetic field, a region where the magnetic field is lower than the magnetic resonance point, and the μ + circular polarization permeability is positive as a low magnetic field. Are used.
 ところで、円偏波透磁率は次式(1)で表わされる。 Incidentally, the circularly polarized magnetic permeability is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 いま、損失項を無視すると、図2において磁界の強さが磁気共鳴点以下でμ+’>0となるのは前式(1)より導出された次式(2)となる。 Now, ignoring the loss term, the following equation (2) derived from the previous equation (1) indicates that μ + ′> 0 when the magnetic field strength is below the magnetic resonance point in FIG.
Figure JPOXMLDOC01-appb-M000003
 γ:磁気回転比
 μo:真空透磁率
 Hin:内部磁界
 Ms:飽和磁化
 ω:角周波数
Figure JPOXMLDOC01-appb-M000003
γ: Magnetic rotation ratio μo: Vacuum permeability Hin: Internal magnetic field Ms: Saturation magnetization ω: Angular frequency
 従って、前式(2)を満たすように内部磁界Hinや飽和磁化Msなどを設定することにより、低磁界で動作する集中定数型のサーキュレータが実現できる。低磁界で動作することで、永久磁石31,32による印加磁界が小さくて済み、磁石31,32がサイズ的に小型化する。また、磁気共鳴点よりも離れた位置で動作するため、磁気的な損失が低減する。 Therefore, a lumped constant type circulator that operates in a low magnetic field can be realized by setting the internal magnetic field Hin and the saturation magnetization Ms so as to satisfy the expression (2). By operating with a low magnetic field, the magnetic field applied by the permanent magnets 31 and 32 can be small, and the magnets 31 and 32 can be reduced in size. Moreover, since it operates at a position away from the magnetic resonance point, magnetic loss is reduced.
 フェライト20のサイズは、従来の導波管型がλ/2サイズ必要であったのに対して、集中定数型の場合は必要なインダクタンスを形成すればよいので、λ/2よりも十分に小さくなり、λ/4以下でよい。 The size of the ferrite 20 is sufficiently smaller than λ / 2 because the conventional waveguide type needs to have a λ / 2 size, whereas the lumped constant type has only to form a necessary inductance. Therefore, it may be λ / 4 or less.
 また、低磁界動作であるため、必要なインダクタンスを確保するのに、各中心導体21,22,23を、それぞれ、フェライト20に対して複数ターン巻回した構成を採用している。そして、各層に形成したライン状の導体21a~21e,22a~22e,23a~23eを層間接続導体を介してコイル状に形成しているので、層間接続導体の位置を変更することにより各中心導体21,22,23の長さ(インダクタンス値)を変えることができる。しかも、導体21a~21e,22a~22e,23a~23eをそれぞれの層に分割することで各中心導体21,22,23をフェライト20に対して等距離に配置でき、磁界の付与が均等になる。なお、導体21a~21e,22a~22e,23a~23eの積層配置を変えることで挿入損失特性やアイソレーション特性を調整可能である。 Further, since the operation is low magnetic field, a configuration in which each of the central conductors 21, 22 and 23 is wound around the ferrite 20 by a plurality of turns is employed in order to ensure necessary inductance. Since the line-shaped conductors 21a to 21e, 22a to 22e, and 23a to 23e formed in each layer are formed in a coil shape via the interlayer connection conductor, each center conductor can be changed by changing the position of the interlayer connection conductor. The length (inductance value) of 21, 22, and 23 can be changed. In addition, by dividing the conductors 21a to 21e, 22a to 22e, and 23a to 23e into the respective layers, the central conductors 21, 22, and 23 can be arranged at equal distances from the ferrite 20, and the application of the magnetic field becomes uniform. . The insertion loss characteristic and the isolation characteristic can be adjusted by changing the laminated arrangement of the conductors 21a to 21e, 22a to 22e, and 23a to 23e.
 特に、フェライト20を回路基板に対して水平方向に配置し、かつ、低磁界で動作させているため、必要となる印加磁界が小さくて済み、その結果、永久磁石31,32を薄くすることができる。 In particular, since the ferrite 20 is arranged in a horizontal direction with respect to the circuit board and operated with a low magnetic field, a required applied magnetic field can be reduced, and as a result, the permanent magnets 31 and 32 can be made thin. it can.
 なお、第1実施例において、外部接続用電極41~46は第2永久磁石32の側面に加えて第1永久磁石31の側面にわたっても連続して形成されており、さらに、第1永久磁石31及び第2永久磁石32の側面からフェライト32とは反対側の面まで延長されている。即ち、本第1実施例では、外部接続用電極41~46がフェライト20の側面に形成されているため、本非可逆回路素子1Aを回路基板へ実装した際の接続信頼性が向上し、低背化を損なうことがない。また、外部接続用電極41~46は第1永久磁石31の側面にわたっても連続して形成されているため、回路基板への実装時の接続強度が向上する。 In the first embodiment, the external connection electrodes 41 to 46 are formed continuously over the side surface of the first permanent magnet 31 in addition to the side surface of the second permanent magnet 32, and further, the first permanent magnet 31. The second permanent magnet 32 extends from the side surface to the surface opposite to the ferrite 32. That is, in the first embodiment, since the external connection electrodes 41 to 46 are formed on the side surfaces of the ferrite 20, the connection reliability when the nonreciprocal circuit device 1A is mounted on the circuit board is improved, and the low There is no loss of inversion. Further, since the external connection electrodes 41 to 46 are continuously formed over the side surface of the first permanent magnet 31, the connection strength when mounted on the circuit board is improved.
 但し、外部接続用電極41~46は、それぞれ引出し部41a~46aに接続された状態で、少なくともフェライト20の側面から第2永久磁石32の側面にわたって連続して形成されていればよい。このような非可逆回路素子1A'を図6に第1実施例の変形例として示す。 However, the external connection electrodes 41 to 46 may be formed continuously from at least the side surface of the ferrite 20 to the side surface of the second permanent magnet 32 while being connected to the lead portions 41a to 46a, respectively. Such a nonreciprocal circuit device 1A ′ is shown in FIG. 6 as a modification of the first embodiment.
 (第2実施例、図7参照)
 第2実施例である非可逆回路素子1Bは、図7に示すように、フェライト20の底面側に配置された第2永久磁石32を天面側に配置された第2永久磁石31よりも薄くしている。第2実施例における他の構成は前記第1実施例と同様である。従って、本第2実施例の作用効果は第1実施例と同様であり、加えて、底面側の第2永久磁石32を薄くすることで、外部接続用電極41~46で発生する寄生インダクタンスが低減され、かつ、第1実施例の非可逆回路素子1Aに比べてより低背化されることになる。
(Refer to the second embodiment, FIG. 7)
As shown in FIG. 7, the nonreciprocal circuit device 1 </ b> B according to the second embodiment is thinner than the second permanent magnet 31 disposed on the top surface side with the second permanent magnet 32 disposed on the bottom surface side of the ferrite 20. is doing. Other configurations in the second embodiment are the same as those in the first embodiment. Therefore, the operation and effect of the second embodiment is the same as that of the first embodiment. In addition, by making the second permanent magnet 32 on the bottom side thinner, the parasitic inductance generated in the external connection electrodes 41 to 46 is reduced. In addition, the height of the non-reciprocal circuit device 1A of the first embodiment is reduced.
 (第3実施例、図8参照)
 第3実施例である非可逆回路素子1Cは、図8(A)に示すように、前記第1実施例と比較すると、フェライト・磁石組立体10を上下方向に逆に配置し、底面側に配置された第2永久磁石32の両側部を切り欠き、外部接続用電極41~46をフェライト20の天面側に折り返して形成し、該折返し部分をフェライト20の周縁部に露出するようにしたものである。
(Refer to the third embodiment, FIG. 8)
As shown in FIG. 8A, the non-reciprocal circuit device 1C according to the third embodiment has the ferrite-magnet assembly 10 disposed upside down in the vertical direction as compared with the first embodiment, Both side portions of the arranged second permanent magnet 32 are notched, and the external connection electrodes 41 to 46 are formed by folding back to the top surface side of the ferrite 20 so that the folded portion is exposed to the peripheral portion of the ferrite 20. Is.
 図8(B)に示すように、回路基板50には凹所55が形成されている。凹所55はフェライト・磁石組立体10よりも若干広い面積であり、外部接続用電極41~46に対応する位置にランド51が配置されている。非可逆回路素子1Cは第2永久磁石32を凹所55に埋め込む状態で外部接続用電極41~46をランド51にはんだ52により接続することで回路基板50に実装される。第2永久磁石32は回路基板50に埋め込まれるので、実装時における非可逆回路素子1Cの低背化がより促進される。 As shown in FIG. 8B, the circuit board 50 has a recess 55 formed therein. The recess 55 has a slightly larger area than the ferrite / magnet assembly 10, and lands 51 are arranged at positions corresponding to the external connection electrodes 41 to 46. The nonreciprocal circuit element 1C is mounted on the circuit board 50 by connecting the external connection electrodes 41 to 46 to the lands 51 with solder 52 in a state where the second permanent magnet 32 is embedded in the recess 55. Since the second permanent magnet 32 is embedded in the circuit board 50, the reduction in the height of the nonreciprocal circuit element 1C during mounting is further promoted.
 (第4実施例、図9及び図10参照)
 第4実施例である非可逆回路素子1Dは、図9に示すように、フェライト・磁石組立体10の両側面から永久磁石31の上面及び永久磁石32の下面にわたって外部接続用電極41~46を形成したもので、他の構成は前記第1実施例と同様である。この第4実施例では(他の実施例でも同じであるが)、フェライト・磁石組立体10の互いに対向する第1の側面及び第2の側面に三つずつの外部接続用電極41~46が180度の回転対称位置に形成されている。
(Refer to the fourth embodiment, FIGS. 9 and 10)
As shown in FIG. 9, the nonreciprocal circuit device 1D according to the fourth embodiment has external connection electrodes 41 to 46 extending from both side surfaces of the ferrite / magnet assembly 10 to the upper surface of the permanent magnet 31 and the lower surface of the permanent magnet 32. The other configurations are the same as those of the first embodiment. In the fourth embodiment (as in the other embodiments), three external connection electrodes 41 to 46 are provided on the first and second side surfaces of the ferrite magnet assembly 10 facing each other. It is formed at a rotationally symmetric position of 180 degrees.
 より詳しくは、第1中心導体21のポートP1に接続された外部接続用電極41とグランドポートに接続された外部接続用電極44とが180度の回転対称位置に配置されている(図10参照)。第2中心導体22のポートP2に接続された外部接続用電極43とグランドポートに接続された外部接続用電極46とが180度の回転対称位置に配置されている。さらに、第3中心導体23のポートP3に接続された外部接続用電極45とグランドポートに接続された外部接続用電極42とが180度の回転対称位置に配置されている。 More specifically, the external connection electrode 41 connected to the port P1 of the first central conductor 21 and the external connection electrode 44 connected to the ground port are arranged at a rotationally symmetric position of 180 degrees (see FIG. 10). ). The external connection electrode 43 connected to the port P2 of the second center conductor 22 and the external connection electrode 46 connected to the ground port are arranged at a rotationally symmetric position of 180 degrees. Further, the external connection electrode 45 connected to the port P3 of the third central conductor 23 and the external connection electrode 42 connected to the ground port are disposed at a rotationally symmetric position of 180 degrees.
 以上の電極配置によれば、図10(A)の状態で非可逆回路素子1Dを回路基板上に実装した場合、電極41,43,45に外付けの容量素子C1,C2,C3の一端を接続するとともに他端をグランドに接続し、電極42,44,46をグランドに接続すると、電極41,43,45がホット側となり、電極42,44,46がグランド側となる。このとき、信号の流れは、電極41(ポートP1)から電極45(ポートP3)、電極45(ポートP3)から電極43(ポートP2)の方向となる。但し、直流磁界の印加方向を逆にすると、信号の流れが逆になる。 According to the above electrode arrangement, when the nonreciprocal circuit element 1D is mounted on the circuit board in the state of FIG. 10A, one end of the external capacitive elements C1, C2, C3 is connected to the electrodes 41, 43, 45. When the other end is connected to the ground and the electrodes 42, 44, 46 are connected to the ground, the electrodes 41, 43, 45 are on the hot side, and the electrodes 42, 44, 46 are on the ground side. At this time, the signal flows from the electrode 41 (port P1) to the electrode 45 (port P3) and from the electrode 45 (port P3) to the electrode 43 (port P2). However, if the application direction of the DC magnetic field is reversed, the signal flow is reversed.
 一方、この非可逆回路素子1Dを図10(B)に示すように、平面視で180度回転させて回路基板上に実装した場合、電極41,44と43,46と42,45の組合せは変わることがないが、電極42,44,46がホット側となり、電極41,43,45がグランド側となる。この場合、信号の流れは、電極44(ポートP1)から電極42(ポートP3)、電極42(ポートP3)から電極46(ポートP2)の方向となる。つまり、容量素子C1,C2,C3を含めた回路基板から見た信号の流れの方向は変わらないため、非可逆回路素子1Dを180度回転させて図10(A)あるいは図10(B)のいずれの方向に実装しても信号の流れは同じ方向になる。 On the other hand, when this nonreciprocal circuit device 1D is mounted on a circuit board by rotating 180 degrees in plan view as shown in FIG. 10B, the combination of the electrodes 41, 44 and 43, 46 and 42, 45 is Although not changed, the electrodes 42, 44, and 46 are on the hot side, and the electrodes 41, 43, and 45 are on the ground side. In this case, the signal flows from the electrode 44 (port P1) to the electrode 42 (port P3) and from the electrode 42 (port P3) to the electrode 46 (port P2). That is, since the direction of signal flow seen from the circuit board including the capacitive elements C1, C2, and C3 does not change, the nonreciprocal circuit element 1D is rotated by 180 degrees and the circuit shown in FIG. 10A or FIG. Regardless of the mounting direction, the signal flow is the same.
 従って、非可逆回路素子1Dにおいては、回路基板上にいずれの向きに配置しても信号の流れが同じのサーキュレータとして機能する。いずれの向きに実装してもサーキュレータとしての機能は変わることがないので、実装工程で非可逆回路素子1Dの方向を揃える必要がなく、実装時のコストダウンを図ることができる。 Therefore, the nonreciprocal circuit element 1D functions as a circulator with the same signal flow regardless of the orientation on the circuit board. Since the function as a circulator does not change even if it is mounted in any direction, it is not necessary to align the direction of the nonreciprocal circuit element 1D in the mounting process, and the cost during mounting can be reduced.
 (第5実施例、図11参照)
 第5実施例である非可逆回路素子1Eは、図11(A),(B),(C)のそれぞれに示すように、前記外部接続用電極41~46に導電性材料(例えば、Cuを主成分とする金属材料)からなる端子51~56をはんだ材料などを介して接合したものである。金属製の端子51~56を設けることで回路基板のランドへの接続信頼性が向上する。
(Refer to the fifth embodiment, FIG. 11)
As shown in FIGS. 11A, 11B, and 11C, the nonreciprocal circuit device 1E according to the fifth embodiment includes a conductive material (for example, Cu) on the external connection electrodes 41 to 46. Terminals 51 to 56 made of a metal material as a main component) are joined via a solder material or the like. By providing the metal terminals 51 to 56, the connection reliability of the circuit board to the land is improved.
 (A)に示す端子51~56は、ストレートな板状体であり、このような形状であると金属製の端子の製造コストが抑えられる。(B)に示す端子51~56は、下部においてフェライト・磁石組立体10の下面と同一平面上で外方に折れ曲がっている。このような形状であると、より強固に非可逆回路素子を基板に実装することができる。(C)に示す端子51~56は、下部においてフェライト・磁石組立体10の下面に回り込むように折れ曲がっている。このような形状であると、図11(B)に示す金属製の端子の形状と比較して、より小さい面積で強固に非可逆回路素子を基板に実装することができる。 The terminals 51 to 56 shown in (A) are straight plate-like bodies. With such a shape, the manufacturing cost of the metal terminals can be suppressed. Terminals 51 to 56 shown in (B) are bent outward on the same plane as the lower surface of the ferrite / magnet assembly 10 at the bottom. With such a shape, the nonreciprocal circuit element can be more firmly mounted on the substrate. Terminals 51 to 56 shown in (C) are bent at the lower part so as to wrap around the lower surface of the ferrite / magnet assembly 10. With such a shape, the nonreciprocal circuit element can be firmly mounted on the substrate with a smaller area as compared with the shape of the metal terminal shown in FIG.
 なお、本第5実施例において、端子51と52の間、端子52,53の間にそれぞれ樹脂材を充填して端子51,52,53を予め一体化しておき、また、端子54と55の間、端子55,56の間にそれぞれ樹脂材を充填して端子54,55,56を予め一体化しておいてもよい。このように、樹脂材にて一体化された端子51,52,53及び端子54,55,56を用いれば、端子51~56をフェライト・磁石組立体10に固定する際の工程が簡略化される。 In the fifth embodiment, a resin material is filled between the terminals 51 and 52 and between the terminals 52 and 53 to integrate the terminals 51, 52 and 53 in advance. The terminals 54, 55, 56 may be integrated in advance by filling a resin material between the terminals 55, 56, respectively. In this way, if the terminals 51, 52, 53 and the terminals 54, 55, 56 integrated with the resin material are used, the process for fixing the terminals 51 to 56 to the ferrite / magnet assembly 10 is simplified. The
 (他の実施例)
 なお、本発明に係る非可逆回路素子は、前記実施例に限定されるものではなく、その要旨の範囲内で種々に変更することができる。
(Other examples)
The nonreciprocal circuit device according to the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist thereof.
 例えば、中心導体の構成や形状などは任意である。また、容量素子などは、チップタイプとして回路基板上に実装する以外に、回路基板に内蔵した導体で構成してもよい。 For example, the configuration and shape of the central conductor are arbitrary. Further, the capacitive element or the like may be constituted by a conductor built in the circuit board in addition to being mounted on the circuit board as a chip type.
 以上のように、本発明は、非可逆回路素子に有用であり、特に、低背化、低コスト化が達成でき、回路基板への接続信頼性が向上する点で優れている。 As described above, the present invention is useful for non-reciprocal circuit elements, and is particularly excellent in that it can achieve a reduction in height and cost, and improve the reliability of connection to a circuit board.
  1A~1E…非可逆回路素子
  10…フェライト・磁石組立体
  20…フェライト
  21…第1中心導体
  22…第2中心導体
  23…第3中心導体
  31,32…永久磁石
  41~46…外部接続電極
  50…回路基板
  51~56…端子
  P1,P2,P3…ポート
DESCRIPTION OF SYMBOLS 1A-1E ... Nonreciprocal circuit element 10 ... Ferrite magnet assembly 20 ... Ferrite 21 ... 1st center conductor 22 ... 2nd center conductor 23 ... 3rd center conductor 31, 32 ... Permanent magnet 41-46 ... External connection electrode 50 ... Circuit boards 51 to 56 ... Terminals P1, P2, P3 ... Ports

Claims (9)

  1.  永久磁石により直流磁界が印加されるフェライトに第1中心導体、第2中心導体及び第3中心導体をそれぞれ絶縁状態で交差させて配置したフェライト・磁石組立体を備えた非可逆回路素子において、
     前記フェライトは、互いに対向する天面及び底面と、天面及び底面に直交する側面とを有し、
     前記フェライトの天面側に配置された第1永久磁石と底面側に配置された第2永久磁石によって前記第1中心導体、第2中心導体及び第3中心導体に直流磁界が印加され、
     前記フェライトの側面から前記第2永久磁石の側面にわたって連続して、複数の外部接続用電極が水平方向に分割された状態で形成されており、
     第1中心導体、第2中心導体及び第3中心導体のそれぞれの端部は前記複数の外部接続用電極のそれぞれに接続されていること、
     を特徴とする非可逆回路素子。
    In a non-reciprocal circuit device including a ferrite-magnet assembly in which a first central conductor, a second central conductor, and a third central conductor are arranged to intersect with each other in an insulated state to a ferrite to which a DC magnetic field is applied by a permanent magnet,
    The ferrite has a top surface and a bottom surface facing each other, and a side surface orthogonal to the top surface and the bottom surface,
    A DC magnetic field is applied to the first central conductor, the second central conductor, and the third central conductor by the first permanent magnet disposed on the top surface side of the ferrite and the second permanent magnet disposed on the bottom surface side,
    A plurality of external connection electrodes are continuously formed from the side surface of the ferrite to the side surface of the second permanent magnet, and are divided in the horizontal direction.
    The respective ends of the first center conductor, the second center conductor and the third center conductor are connected to the plurality of external connection electrodes;
    A nonreciprocal circuit device characterized by the above.
  2.  前記外部接続用電極は第1永久磁石の側面にわたって連続して形成されていること、を特徴とする請求項1に記載の非可逆回路素子。 The nonreciprocal circuit device according to claim 1, wherein the external connection electrode is formed continuously over a side surface of the first permanent magnet.
  3.  第1永久磁石及び第2永久磁石は同じ厚みであること、を特徴とする請求項1又は請求項2に記載の非可逆回路素子。 The nonreciprocal circuit device according to claim 1 or 2, wherein the first permanent magnet and the second permanent magnet have the same thickness.
  4.  第2永久磁石は第1永久磁石よりも薄いこと、を特徴とする請求項1又は請求項2に記載の非可逆回路素子。 The nonreciprocal circuit device according to claim 1 or 2, wherein the second permanent magnet is thinner than the first permanent magnet.
  5.  前記フェライトの天面及び底面の全面が第1永久磁石及び第2永久磁石によって覆われていること、を特徴とする請求項1ないし請求項4のいずれかに記載の非可逆回路素子。 5. The nonreciprocal circuit device according to claim 1, wherein the top and bottom surfaces of the ferrite are entirely covered with a first permanent magnet and a second permanent magnet.
  6.  第2永久磁石は前記複数の外部接続用電極を前記フェライトの周縁部に露出するように切り欠かれていること、を特徴とする請求項1ないし請求項4のいずれかに記載の非可逆回路素子。 5. The nonreciprocal circuit according to claim 1, wherein the second permanent magnet is cut out so as to expose the plurality of external connection electrodes to a peripheral edge portion of the ferrite. 6. element.
  7.  前記外部接続用電極は、第1永久磁石又は第2永久磁石の側面から前記フェライトとは反対側の面まで延長されていること、を特徴とする請求項1ないし請求項6のいずれかに記載の非可逆回路素子。 The external connection electrode is extended from a side surface of the first permanent magnet or the second permanent magnet to a surface opposite to the ferrite, according to any one of claims 1 to 6. Non-reciprocal circuit element.
  8.  平面視で、前記フェライト・磁石組立体の互いに対向する第1側面及び第2側面に三つずつの外部接続用電極が形成されており、
     第1中心導体、第2中心導体及び第3中心導体のそれぞれの入出力ポートに接続された外部接続用電極とそれぞれのグランドポートに接続された外部接続用電極とがそれぞれ180度の回転対称位置に配置されていること、
     を特徴とする請求項1ないし請求項7のいずれかに記載の非可逆回路素子。
    Three external connection electrodes are formed on the first side surface and the second side surface of the ferrite / magnet assembly facing each other in plan view,
    The external connection electrodes connected to the respective input / output ports of the first central conductor, the second central conductor, and the third central conductor and the external connection electrodes connected to the respective ground ports are 180 degree rotationally symmetric positions, respectively. Being placed in the
    The nonreciprocal circuit device according to any one of claims 1 to 7, wherein
  9.  前記フェライト・磁石組立体は、以下の式を満足するように内部磁界及び飽和磁化が設定されていること、
    Figure JPOXMLDOC01-appb-M000001
     γ:磁気回転比
     μo:真空透磁率
     Hin:内部磁界
     Ms:飽和磁化
     ω:角周波数
     を特徴とする請求項1ないし請求項8のいずれかに記載の非可逆回路素子。
    The ferrite magnet assembly has an internal magnetic field and saturation magnetization set so as to satisfy the following formula:
    Figure JPOXMLDOC01-appb-M000001
    The nonreciprocal circuit device according to claim 1, wherein: γ: magnetic rotation ratio μo: vacuum permeability Hin: internal magnetic field Ms: saturation magnetization ω: angular frequency
PCT/JP2014/062801 2013-06-07 2014-05-14 Non-reciprocal circuit element WO2014196324A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-120322 2013-06-07
JP2013120322 2013-06-07
JP2013-254841 2013-12-10
JP2013254841 2013-12-10

Publications (1)

Publication Number Publication Date
WO2014196324A1 true WO2014196324A1 (en) 2014-12-11

Family

ID=52007977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062801 WO2014196324A1 (en) 2013-06-07 2014-05-14 Non-reciprocal circuit element

Country Status (1)

Country Link
WO (1) WO2014196324A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431261A (en) * 2015-03-27 2017-12-01 株式会社村田制作所 Non-reciprocal circuit element, high-frequency circuit and communicator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284906A (en) * 1997-04-07 1998-10-23 Tdk Corp Concentrated contact circulator
WO2009031380A1 (en) * 2007-09-03 2009-03-12 Murata Manufacturing Co., Ltd. Irreversible circuit element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284906A (en) * 1997-04-07 1998-10-23 Tdk Corp Concentrated contact circulator
WO2009031380A1 (en) * 2007-09-03 2009-03-12 Murata Manufacturing Co., Ltd. Irreversible circuit element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431261A (en) * 2015-03-27 2017-12-01 株式会社村田制作所 Non-reciprocal circuit element, high-frequency circuit and communicator

Similar Documents

Publication Publication Date Title
JP4356787B2 (en) Non-reciprocal circuit device and communication device
JPH09232818A (en) Irreversible circuit component
JP5843007B2 (en) Non-reciprocal circuit element
JP4665786B2 (en) Non-reciprocal circuit device and communication device
WO2011089810A1 (en) Circuit module
JP4858542B2 (en) Non-reciprocal circuit element
WO2014196324A1 (en) Non-reciprocal circuit element
WO2015072252A1 (en) Non-reciprocal circuit element
JP5168011B2 (en) Non-reciprocal circuit element
JP3939622B2 (en) Non-reciprocal circuit element, isolator, and non-reciprocal circuit element manufacturing method
WO2016158044A1 (en) Irreversible circuit element, high-frequency circuit and communication apparatus
JP4530165B2 (en) Non-reciprocal circuit device and communication device
JP5136322B2 (en) Non-reciprocal circuit element
WO2016208643A1 (en) Non-reversible circuit element, high-frequency circuit, and communication device
JP5672014B2 (en) Non-reversible phase shifter
JP2011147011A (en) Circuit module
JP4929488B2 (en) Non-reciprocal circuit element
JP4915366B2 (en) Non-reciprocal circuit element
JP5652116B2 (en) Non-reciprocal circuit element
JP5799830B2 (en) Non-reciprocal circuit element
WO2017090304A1 (en) Non-reversible circuit element, front end circuit and communication device
JP2012138719A (en) Non-reciprocal circuit element and ferrite magnet element
JP4367367B2 (en) Non-reciprocal circuit element
JP5672413B2 (en) Non-reciprocal circuit element
WO2017056689A1 (en) Non-reversible circuit element, front end circuit and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP