WO2017056413A1 - Fiber assembly and sound absorbing material - Google Patents

Fiber assembly and sound absorbing material Download PDF

Info

Publication number
WO2017056413A1
WO2017056413A1 PCT/JP2016/004109 JP2016004109W WO2017056413A1 WO 2017056413 A1 WO2017056413 A1 WO 2017056413A1 JP 2016004109 W JP2016004109 W JP 2016004109W WO 2017056413 A1 WO2017056413 A1 WO 2017056413A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fiber assembly
range
fibers
thermoplastic resin
Prior art date
Application number
PCT/JP2016/004109
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 亨
俊文 名木野
和史 宮武
航太 中平
徹 藤澤
悠 中嶋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017056413A1 publication Critical patent/WO2017056413A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)

Definitions

  • the present disclosure relates to a fiber assembly applicable to a sound absorbing material and a sound absorbing material including the fiber assembly.
  • the driving source of the conventional transportation vehicle is mainly an internal combustion engine such as a gasoline engine. Since the driving sound of the internal combustion engine includes a lot of high-frequency sounds, the sound-absorbing material is required to have high absorbability of high-frequency sounds, particularly sounds having a frequency of 2 kHz or higher.
  • Patent Document 1 discloses that the fiber is made of thermoplastic resin fiber, and the fiber diameter integration frequency of 1 ⁇ m or less is 5% or more and the fiber diameter integration frequency of 10 ⁇ m or more is 0.1 to 5%. Melt blown nonwoven fabrics in the range are disclosed.
  • the present disclosure provides a fiber assembly having high mid-range sound absorbability and a sound absorbing material including the fiber assembly.
  • the fiber assembly according to one embodiment of the present disclosure is a fiber assembly including a thermoplastic resin, and the fiber has a melt viscosity in the range of 250 mPa ⁇ s to 7000 mPa ⁇ s.
  • the median diameter of the fibers is in the range of 0.3 ⁇ m to 0.9 ⁇ m.
  • the ratio of the number of fibers having a diameter of 8 ⁇ m or less to the total number of fibers is 99% or more.
  • a fiber assembly according to another embodiment of the present disclosure is a fiber assembly including a thermoplastic resin, and the fiber has a melt flow rate within a range of 1600 g / 10 min to 5000 g / 10 min.
  • the median diameter of the fibers is in the range of 0.3 ⁇ m to 0.9 ⁇ m.
  • the ratio of the number of fibers having a diameter of 8 ⁇ m or less to the total number of fibers is 99% or more.
  • a sound-absorbing material according to another aspect of the present disclosure includes a fiber assembly according to any one of the above-described fibers.
  • a fiber assembly and a sound absorbing material that can effectively absorb mid-range sound can be obtained.
  • FIG. 1 is a schematic diagram of a fiber assembly according to an embodiment.
  • FIG. 2 is a diagram showing the relationship between the melt flow rate and the melt viscosity diagram.
  • FIG. 3 is a schematic diagram of a sound absorbing material according to the embodiment.
  • FIG. 1 is a schematic diagram of a fiber assembly according to an embodiment.
  • the fiber assembly 1 is an assembly of fibers 2 containing a thermoplastic resin.
  • the fiber 2 has a melt viscosity in the range of 250 mPa ⁇ s to 7000 mPa ⁇ s.
  • the median diameter of the fibers 2 is in the range of 0.3 ⁇ m or more and 0.9 ⁇ m or less.
  • the ratio of the quantity of the fibers 2 having a diameter of 8 ⁇ m or less to the total quantity of the fibers 2 is 99% or more.
  • the fiber 2 has a melt viscosity in the range of 1600 g / 10 min to 5000 g / 10 min.
  • the median diameter of the fiber 2 is in the range of 0.3 ⁇ m to 0.9 ⁇ m.
  • the ratio of the quantity of the fibers 2 having a diameter of 8 ⁇ m or less to the total quantity of the fibers 2 is 99% or more.
  • the fiber assembly 1 and the sound-absorbing material 11 (see FIG. 3 described later) including the fiber assembly 1 can effectively absorb mid-range sound, particularly sound having a frequency of 500 Hz to 1500 Hz.
  • the sound absorbing material 11 provided with the fiber assembly 1 is preferably for vehicle use.
  • the sound absorbing material 11 is applied for driving sound suppression in a transportation vehicle including a driving source other than the internal combustion engine such as an electric vehicle or a hybrid vehicle, the driving sound from the driving source can be effectively absorbed.
  • the fiber 2 in the fiber assembly 1 includes a thermoplastic resin.
  • the fiber 2 has at least one of a melt flow rate in the range of 1600 g / 10 min to 5000 g / 10 min and a melt viscosity in the range of 250 mPa ⁇ s to 7000 mPa ⁇ s.
  • melt flow rate and the melt viscosity have a certain correlation, and the melt flow rate can be used as a substitute evaluation value of the melt viscosity. That is, the value of the common logarithm of the melt viscosity with respect to the value of the melt flow rate is correlated as shown in FIG. 2, and the range of the melt viscosity from 250 mPa ⁇ s to 7000 mPa ⁇ s is 1600 g / This corresponds to a range of 10 min to 5000 g / 10 min.
  • melt flow rate and melt viscosity of the fiber 2 in this embodiment will be described in detail.
  • melt flow rate within the range of 1600 g / 10 min or more and 5000 g / 10 min or less and the melt viscosity within the range of 250 mPa ⁇ s or more and 7000 mPa ⁇ s or less of the fiber 2 as described above. If there is, it has been found that the mid-range sound absorption is greatly improved.
  • the fiber assembly 1 since the melt flow rate of the fiber 2 is 5000 g / 10 min or less, the fiber assembly 1 also has high heat resistance.
  • the fiber High heat resistance can be imparted to the aggregate 1.
  • the high heat resistance of the fiber assembly 1 means that even if the fiber assembly 1 is heated, it is difficult to reduce the sound absorbability of the midrange of the fiber assembly 1.
  • the fiber 2 has at least one of a melt flow rate in the range of 1600 g / 10 min or more and 5000 g / 10 min and a melt viscosity in the range of 250 mPa ⁇ s or more and 7000 mPa ⁇ s
  • a spinning material a material (hereinafter referred to as a spinning material)
  • the median diameter of the fiber 2 is a small value within a range of 0.3 ⁇ m or more and 0.9 ⁇ m or less.
  • the fibers 2 can be manufactured stably, and the fiber assembly 1 can be easily reduced in density.
  • the fiber 2 has at least one of a melt flow rate of 1600 g / 10 min or more and a melt viscosity of 7000 mPa ⁇ s or less, the spinning material flows when the fiber 2 is produced by spinning the spinning material. Therefore, it is easy to reduce the diameter of the fiber 2. In this case, when air current is blown during spinning as in the melt blown method, the diameter of the fiber 2 can be further reduced even in a weak air current, and the density of the fiber assembly 1 can be reduced. Is easy.
  • the fiber 2 has at least one of a melt flow rate of 1600 g / 10 min or more and a melt viscosity of 7000 mPa ⁇ s or less, the fiber 2 has a higher viscosity than the other cases.
  • the diameter can be reduced and the density of the fiber assembly 1 can be reduced.
  • the fiber 2 has at least one of a melt flow rate of 5000 g / 10 min or less and a melt viscosity of 250 mPa ⁇ s or more, it is easy to form the fiber 2 having a sufficient length by spinning. Therefore, it is easy to collect the fiber 2 and produce the fiber assembly 1. For this reason, it becomes possible to manufacture the fiber 2 which has a small diameter, suppressing the amount of the airflow at the time of spinning the spinning material, and it becomes possible to manufacture the fiber assembly 1 having a low density.
  • the fiber 2 preferably has a melt flow rate in the range of 2000 g / 10 min to 5000 g / 10 min, and more preferably has a melt flow rate in the range of 3500 g / 10 min to 5000 g / 10 min.
  • the diameter of the fiber 2 can be further reduced and the density of the fiber assembly 1 can be reduced.
  • the fiber 2 has a melt flow rate of 3500 g / 10 min or more, particularly the diameter of the fiber 2 can be reduced and the density of the fiber assembly 1 can be reduced.
  • the fiber 2 preferably has a melt viscosity in the range of 250 mPa ⁇ s to 3000 mPa ⁇ s, more preferably in the range of 250 mPa ⁇ s to 800 mPa ⁇ s.
  • the fiber diameter can be further reduced and the density of the fiber assembly 1 can be reduced.
  • the diameter of the fiber 2 can be particularly reduced and the density of the fiber assembly 1 can be reduced.
  • the melting point or softening point of the fiber 2 is preferably 130 ° C. or higher. In this case, even if the fiber assembly 1 is heated, it is difficult to reduce the sound absorbability of the midrange of the fiber assembly 1. More preferably, the melting point or softening point is 140 ° C. or higher. More preferably, the melting point or softening point is 150 ° C. or higher.
  • melt flow rate of the fiber 2 is measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D1238.
  • the melt viscosity of the fiber 2 is a melt viscosity at 230 ° C.
  • the melting point and softening point of the fiber 2 are determined from the peak of the heat of fusion peak obtained by a DSC (Differential Scanning Colorimetry) method at a temperature rising rate of 5 ° C./min.
  • the melt flow rate, melt viscosity, melting point, and softening point of the fiber 2 are values related to the fiber 2 in the fiber assembly 1, and are not related to the spinning material, but are related to the components contained in the spinning material. Not a value.
  • the median diameter of the fibers 2 is in the range of 0.3 ⁇ m to 0.9 ⁇ m, and the ratio of the number of fibers 2 having a diameter of 8 ⁇ m or less to the total number of fibers 2 is 99% or more.
  • the diameter of the fiber 2 in the fiber assembly 1 in this way, it is possible to improve the mid-range sound absorbability of the fiber assembly 1 and the sound absorbing material 11.
  • the improvement of the mid-range sound absorbency by defining the diameter of the fiber 2 will be described in detail.
  • the peak of the sound absorbing characteristic of the sound absorbing material 11 shifts from 2 kHz to a lower frequency region as the diameter of the fiber 2 in the sound absorbing material 11 becomes smaller.
  • simply including the fibers 2 having a small diameter does not sufficiently increase the mid-range sound absorbability. This is because if the small-diameter fiber 2 and the large-diameter fiber 2 are mixed in the sound-absorbing material 11, air flow in the sound-absorbing material 11 is likely to occur, and this impedes the sound absorption of the mid-range. The inventor speculated that this was the case.
  • the inventor tried to improve the mid-range sound absorbability by defining the diameter of the fiber 2.
  • the median diameter of the fibers 2 is in the range of 0.3 ⁇ m or more and 0.9 ⁇ m or less as described above, but also the fibers 2 having a diameter of 8 ⁇ m or less with respect to the total number of fibers 2.
  • the inventor has found that when the ratio of the quantity is 99% or more, the mid-range sound absorbability is greatly improved.
  • the ratio of the number of fibers having a diameter of 5 ⁇ m or less to the total number of fibers 2 is 99% or more. In this case, the mid-range sound absorbability can be further improved.
  • the maximum diameter of the fiber 2 is smaller than 10 ⁇ m. That is, it is particularly preferable that the fiber assembly 1 does not include the fiber 2 having a diameter of 10 ⁇ m or more. In this case, the weight ratio of the fibers 2 having a small diameter per unit volume of the fiber assembly 1 increases, and therefore, the sound absorbability in the middle range is particularly high.
  • the length of the fiber 2 is preferably 5 mm or more, for example, but is not particularly limited as long as the fiber 2 has a length that allows the fibers 2 to sufficiently intertwine.
  • the value of the aspect ratio of each fiber 2 is preferably 1000 or more.
  • the diameter and length of the fiber 2 are measured by performing image processing on an image obtained by photographing the fiber 2 with an electron microscope.
  • the median diameter of the fibers 2 is a quantity-based median value calculated from the measurement results of the diameters of the 200 fibers 2.
  • the portions where the fibers 2 are thermally fused together and the portions which are not formed into fibers and are agglomerated are not regarded as fibers.
  • the fiber assembly 1 preferably has a density of 0.03 g / cm 3 or less. In this case, the absorbability of the midrange sound of the fiber assembly 1 is further improved. It is also preferable that the fiber assembly 1 has a density of 0.003 g / cm 3 or more. In this case, the deformation and density change due to the weight of the fiber assembly 1 are suppressed, and therefore, good absorbability of the fiber assembly 1 can be maintained over a long period of time.
  • the fiber assembly 1 is, for example, a sheet or a layer.
  • the basis weight of the fiber assembly 1 (that is, the mass per unit plan view area) is preferably within a range of 100 g / m 2 or more and 1000 g / m 2 or less. Preferably, it is in the range of 100 g / m 2 or more and 600 g / m 2 or less, more preferably in the range of 100 g / m 2 or more and 500 g / m 2 or less.
  • the basis weight is 100 g / m 2 or more, the fiber assembly 1 can have higher sound absorption. Further, if the basis weight is 1000 g / m 2 or less, the fiber assembly 1 can be made compact and light, and therefore, the degree of freedom in vehicle design, particularly when the fiber assembly 1 is for vehicle use. Will increase.
  • thermoplastic resin examples include polypropylene, polyethylene, polyolefin-based thermoplastic elastomer, 1-butene polymer, 1-hexene polymer, 1-octene polymer, 1-decene polymer, 1-hexadecene polymer, and 1-heptadecene polymer.
  • thermoplastic resin may contain a wax-like component such as polyethylene wax, polypropylene wax, and paraffin wax.
  • thermoplastic resin preferably contains at least one component selected from the group consisting of polypropylene, polyethylene, polyolefin-based thermoplastic elastomer and paraffin.
  • the mid-range sound absorbability of the fiber assembly 1 is particularly high.
  • the thermoplastic resin can contain two or more kinds of resins. In this case, these resins can have at least one of different melt flow rates and different melt viscosities. In this case, at least one of the melt flow rate and the melt viscosity of the fibers 2 can be easily adjusted by adjusting the amount of each resin in the thermoplastic resin. Further, as a component of the thermoplastic resin, a component whose physical properties do not match those of the fiber 2, that is, its melt flow rate is not in the range of 1600 g / 10 min to 5000 g / 10 min and its melt viscosity is 250 mPa ⁇ s to 7000 mPa. It is possible to apply ingredients that are not within the range of s or less. For this reason, the freedom degree of selection of the component of a thermoplastic resin increases.
  • the thermal decomposition step is a step of obtaining a specific component having a molecular weight adjusted by thermally decomposing a raw material of a specific component (hereinafter referred to as a specific raw material).
  • a specific raw material a raw material of a specific component
  • the specific raw material it is possible to apply a component having a melt flow rate lower than 1600 g / 10 min and a melt viscosity higher than 7000 mPa ⁇ s.
  • thermoplastic resin contains 2 or more types of resin
  • at least 1 type of resin may be manufactured through a thermal decomposition process.
  • all of the thermoplastic resin may be manufactured through a thermal decomposition process.
  • thermoplastic resin has high crystallinity. It is also preferable that the surface tension of the thermoplastic resin is as low as possible. In this case, when the fiber 2 is produced by spinning a spinning material containing the thermoplastic resin, stable spinning is possible.
  • the fiber 2 may contain a plasticizer having at least one of a melt flow rate lower than that of the thermoplastic resin and a melt viscosity lower than that of the thermoplastic resin.
  • a plasticizer having at least one of a melt flow rate lower than that of the thermoplastic resin and a melt viscosity lower than that of the thermoplastic resin.
  • at least one of the melt flow rate and the melt viscosity of the fiber 2 can be easily adjusted by adjusting the amount of the plasticizer.
  • a thermoplastic resin it is possible to apply a component having a melt flow rate lower than 1600 g / 10 min and a melt viscosity higher than 7000 mPa ⁇ s. For this reason, the freedom degree of selection of a thermoplastic resin increases.
  • the plasticizer preferably has compatibility with the thermoplastic resin. In this case, bleeding of the plasticizer from the fiber 2 is suppressed. However, a material that is not compatible with the thermoplastic resin may be contained in the fiber 2 as long as the material does not cause bleeding out.
  • the plasticizer may contain a liquid material such as oil.
  • the plasticizer can contain, for example, one or more materials selected from the group consisting of liquid paraffin, petroleum lubricant, naphtha lubricant, synthetic oil such as silicone oil, fluorine oil, and grease.
  • the plasticizer is within the range of 0.1% by mass or more and 50% by mass or less with respect to the total of the thermoplastic resin and the plasticizer, but is not limited thereto.
  • the melt viscosity of the resin and the plasticizer is measured using a viscoelasticity measuring device MCR302 manufactured by Anton Paar Japan Co., Ltd. under a nitrogen atmosphere at 230 ° C. under a shear rate of 10 [1 / s]. Viscosity. Moreover, the melt viscosity of resin and a plasticizer is a melt viscosity in 230 degreeC.
  • the fiber 2 in the fiber assembly 1 can contain an antioxidant. In this case, the heat resistance of the fiber assembly 1 is improved. Further, when the fiber 2 is produced by spinning a spinning material containing a base resin, when the spinning material contains an antioxidant, the base resin at the time of material kneading, spinning, and the like after spinning Oxidative deterioration of the sound absorbing material 11 is suppressed.
  • the antioxidant may be mixed with the raw material of the base resin when synthesizing the material such as the base resin. Further, the antioxidant may be mixed with a base resin or the like when the spinning material is prepared.
  • Antioxidants include, for example, phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, amine antioxidants, hydrazine antioxidants, amide antioxidants, and light stabilizers (HALS). At least one material selected from the group consisting of:
  • the long-term heat resistance of the fiber assembly can be improved.
  • the phenolic antioxidant may be any of a hindered type, a semi-hindered type, and a less hindered type. Further, when the antioxidant contains at least one of a phosphorus-based antioxidant and a sulfur-based antioxidant in addition to the phenol-based antioxidant, oxidative deterioration of the base resin and the like during spinning is further suppressed.
  • the antioxidant contains both a phenolic antioxidant and a phosphorus antioxidant.
  • the total percentage of the phenol-based antioxidant and the phosphorus-based antioxidant with respect to the thermoplastic resin is 0.1% by mass or more; It is preferably within the range of 0% by mass or less. If this percentage is 0.1% by mass or more, oxidative degradation of the fiber can be particularly suppressed. Moreover, when this percentage is more than 2.0 mass%, the inhibitory action of the oxidative degradation of the fiber assembly 1 will be saturated, and the amount of phenolic antioxidant and phosphorus antioxidant will increase unnecessarily. At the same time, an economical disadvantage is also caused, so that the percentage is preferably 2.0% by mass or less.
  • the mass ratio of the phenolic antioxidant to the phosphorus antioxidant is preferably within the range of 1.0 / 3.0 to 3.0 / 1.0.
  • this mass ratio is 1.0 / 3.0 or more, high heat resistance is maintained particularly for a long period of time.
  • this mass ratio is 3.0 / 1.0 or less, the heat resistance of the fiber assembly is particularly high. Furthermore, consumption of the phenolic antioxidant in obtaining the fiber by spinning can be suppressed.
  • the fiber 2 may contain additives such as a weather resistance stabilizer, a light resistance stabilizer, an anti-blocking agent, a lubricant, a nucleating agent, a pigment, a softening agent, a hydrophilic material, an auxiliary agent, a water repellent, a filler, and an antibacterial agent.
  • additives such as a weather resistance stabilizer, a light resistance stabilizer, an anti-blocking agent, a lubricant, a nucleating agent, a pigment, a softening agent, a hydrophilic material, an auxiliary agent, a water repellent, a filler, and an antibacterial agent.
  • the fiber 2 can be produced by spinning a spinning material containing, for example, a thermoplastic resin as described above.
  • the composition of the spinning material is determined so as to match the composition of the fiber 2. That is, the spinning material can include a plasticizer.
  • the spinning material can also contain an antioxidant.
  • the spinning material may contain a phenolic antioxidant and a phosphorus antioxidant.
  • the spinning material contains additives such as weathering stabilizer, light stabilizer, anti-blocking agent, lubricant, nucleating agent, pigment, softener, hydrophilic material, auxiliary agent, water repellent, filler, antibacterial agent. May be.
  • the components of the spinning material may be dry blended, or the components of the spinning material may be mixed while being heated and melted.
  • the components may be mixed batchwise in a heating vessel or may be mixed with a continuous spinning extruder.
  • the spinning extruder may be any of a single screw type, a twin screw type, and a multi-screw type.
  • a melt spinning method such as a melt blown method or an electrospinning method can be applied.
  • the fiber can be manufactured stably.
  • the spinning material is first melted by heating.
  • the spinning material is prepared with a continuous spinning extruder, the spinning material is prepared in a molten state.
  • the melted spinning material is discharged from a nozzle.
  • the spinning material may be stretched by blowing a heated air current onto the spinning material discharged from the nozzle.
  • the direction of the airflow may be a direction along the discharge direction of the spinning material from the nozzle, or may be a direction different from the discharge direction.
  • the fiber may be drawn by applying a voltage to the spinning material discharged from the nozzle. Thereby, the fiber 2 can be manufactured.
  • the diameter of the fiber 2 depends on the composition of the spinning material, for example, the heating conditions when melting the spinning material, the hole diameter of the nozzle, the discharge amount of the spinning material from the nozzle, the temperature of the airflow when blowing the airflow
  • the voltage can be controlled by adjusting the flow rate and the voltage application condition when applying the voltage.
  • the heating temperature for melting the spinning material depends on the composition of the spinning material, but it is at least 10 ° C higher than the melting point or softening point of the thermoplastic resin in the spinning material and below the thermal decomposition temperature of the thermoplastic resin. It is preferable to be within the range.
  • the discharge amount of the spinning material from the nozzle is preferably in the range of 0.05 g / min or more and 0.5 g / min or less per hole of the nozzle. In the case where an air stream is blown onto the fiber during spinning, the temperature of the air stream is preferably in the range of 200 ° C. or higher and 450 ° C. or lower.
  • the flow rate of air flow, 50 Nm 3 / h ⁇ m or more, is preferably in the range of 500 Nm 3 / h ⁇ m.
  • the specific raw material may be manufactured by pyrolyzing the specific raw material to obtain the specific component whose molecular weight is adjusted.
  • the specific raw material is preferably brought to a temperature at which thermal decomposition of the specific raw material occurs in an inert atmosphere (for example, under a nitrogen atmosphere) or a reduced pressure atmosphere.
  • the specific raw material is thermally decomposed. This temperature depends on the type of the specific raw material. For example, when the specific raw material is a polypropylene resin, the temperature is 300 ° C. or higher.
  • the thermal decomposition of the specific raw material may be performed batchwise in a heating vessel, or may be performed continuously in a closed continuous reactor.
  • a spinning material can be prepared by mixing the specific component thus obtained and a component other than the specific component of the fiber.
  • a fiber containing a specific component can be produced by spinning this spinning material.
  • a specific raw material and a component other than the specific component of the fiber are mixed to prepare a spinning material containing the specific raw material, and when the spinning material is spun to produce a fiber, the specific raw material in the spinning material is heated.
  • the temperature at which thermal decomposition occurs is, for example, the temperature at which the weight loss of the specific raw material occurs under an inert atmosphere, or the temperature at which the melt viscosity of the specific raw material decreases under an inert atmosphere.
  • the fiber 2 has at least one of a melt flow rate within a range of 1600 g / 10 min to 5000 g / 10 min and a melt viscosity within a range of 250 mPa ⁇ s to 7000 mPa ⁇ s. Therefore, such a fiber 2 can be stably produced by the melt spinning method described above, whereby the ratio of the quantity of the fibers 2 having a diameter of 8 ⁇ m or less to the total quantity of the fibers 2 is 99% or more. The fiber 2 can be stably produced.
  • the fiber assembly 1 is obtained by assembling the fibers 2. In the fiber assembly 1, it is preferable that the fibers 2 are intertwined.
  • the fiber assembly 1 is, for example, a nonwoven fabric, but is not limited thereto.
  • anneal the fiber assembly 1 It is preferable to anneal the fiber assembly 1. For example, it is preferable to treat the fiber assembly 1 at a heating temperature of 100 ° C. for 2 hours. The annealing process promotes crystallization of the fibers 2 and increases the shape stability of the fiber assembly 1.
  • FIG. 3 is a schematic diagram of a sound absorbing material according to the embodiment.
  • the sound absorbing material 11 may be composed of only the fiber assembly 1 or may include the fiber assembly 1 and the support 3 that supports the fiber assembly 1.
  • the support 3 is, for example, a microfiber nonwoven fabric.
  • the sound absorbing material 11 may include a fiber assembly 1 and a bag containing the fiber assembly 1.
  • the bag is made of, for example, a microfiber nonwoven fabric.
  • the fiber assembly 1 may be thermally fused to the support 3 by hot pressing or blowing hot air.
  • the fiber assembly 1 preferably has a heat resistance of 120 ° C. This heat resistance is evaluated based on the vertical sound absorption coefficient of the fiber assembly 1 after the fiber assembly 1 is subjected to a treatment of exposure to a high-temperature air atmosphere at 120 ° C. for 500 hours. When the sound absorption coefficient of 600 Hz sound of the fiber assembly 1 after this treatment is 20% or more and the sound absorption coefficient of sound of 1000 Hz is 50% or more, it is evaluated as having heat resistance of 120 ° C.
  • Such high heat resistance can be achieved by appropriately adjusting the composition of the fibers 2 constituting the fiber assembly 1 within the range described above.
  • Example 10 components other than the antioxidants shown in the “Composition” column of Tables 1 and 2 below were placed in a reaction vessel under a nitrogen atmosphere to obtain a mixture.
  • the temperature of the mixture was raised to 350 ° C. while stirring in the reaction vessel and then held for 10 minutes, whereby the PP (polypropylene) resin (f) in the mixture was thermally decomposed.
  • the mixture was cooled to 200 ° C.
  • an antioxidant was added to the mixture, mixed for 5 minutes, solidified by cooling to room temperature, and further pulverized to obtain a spinning material.
  • a fiber 2 was obtained by spinning the spinning material by the melt spinning method. Specifically, after the spinning material was melted, the fiber 2 was obtained by blowing an air current onto the spinning material while discharging the spinning material from the nozzle.
  • the conditions for the heating temperature for melting the spinning material, the discharge amount of the spinning material per hole in the nozzle, the nozzle hole diameter, the air temperature and the air velocity are shown in Tables 1 and 2. As shown in the column “Condition”. In the case of Comparative Example 3, a nozzle having a 0.25 mm diameter hole and a 1.0 mm diameter hole in a quantity ratio of 15: 1 was used. The discharge amount of the spinning material was adjusted by extruding a specified amount of the spinning material from an independent extruder for each nozzle hole diameter value.
  • the fiber assembly 1 was obtained by collecting the fibers 2 formed by cooling the spinning material discharged from the nozzles on a conveyor. The feed rate of the conveyor was adjusted so that the basis weight of the fiber assembly 1 was 400 g / m 2 .
  • the spunbonded nonwoven fabric and the fiber assembly 1 were bonded by a hot roll press.
  • PE resin polyethylene wax manufactured by Mitsui Chemicals, product number 40800, 230 ° C.
  • Comparative Example 4 Although it was difficult to form into a fiber shape even when the spinning material was spun, only the molded body that can be regarded as a fiber was collected to produce the fiber assembly 1. Evaluation was performed.
  • melt flow rate evaluation test The melt flow rate of the fibers 2 in the fiber assembly 1 was measured in accordance with ASTM D-1238. The measurement conditions of the melt flow rate are determined according to the type of the thermoplastic resin in the spinning material used for producing the fiber 2, and the thermoplastic resin in the spinning material contains two or more types of resins. When it contained, it determined according to the kind of resin with the largest mass ratio among them.
  • the percentage of the quantity was calculated.
  • the fiber assembly 1 was cut to prepare ten samples having dimensions of 50 mm ⁇ 50 mm in plan view. The mass of the sample was measured, and the average value of the mass was calculated from the result. The basis weight of the fiber assembly 1 was calculated by dividing the average value of the mass of the sample by the area of the sample in plan view.
  • the thickness of the central part of each of the four sides of the sample was measured with a caliper, and the average value of the sample thickness was calculated from the measurement result.
  • the value obtained by multiplying the planar view area of the sample by the average value of the thickness of the sample was taken as the average value of the volume of the sample.
  • the density of the fiber assembly 1 was calculated by dividing the average value of the mass of the sample by the average value of the volume of the sample.
  • the fiber assembly of the present disclosure and the sound absorbing material including the fiber assembly are useful in a transportation vehicle including a drive source other than an internal combustion engine such as an electric vehicle and a hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

This fiber assembly is an assembly of fibers containing a thermoplastic resin. The fibers have a melt viscosity within the range of from 250 mPa·s to 7,000 mPa·s (inclusive). The number-based median diameter of the fibers is within the range of from 0.3 μm to 0.9 μm (inclusive). The ratio of the number of fibers having diameters of 8 μm or less relative to the total number of fibers is 99% or more.

Description

繊維集合体及び吸音材Fiber assembly and sound absorbing material
 本開示は、吸音材に適用可能な繊維集合体及びこの繊維集合体を備える吸音材に関する。 The present disclosure relates to a fiber assembly applicable to a sound absorbing material and a sound absorbing material including the fiber assembly.
 従来、吸音材は、例えば自動車などの輸送車両から発せられる駆動音を抑制するために用いられている。従来の輸送車両の駆動源は主としてガソリンエンジン等の内燃機関である。内燃機関の駆動音には、高音域の音が多く含まれるため、吸音材には、高音域の音、特に2kHz以上の周波数を有する音の吸収性が高いことが求められていた。 Conventionally, sound absorbing materials have been used to suppress driving sound emitted from transport vehicles such as automobiles. The driving source of the conventional transportation vehicle is mainly an internal combustion engine such as a gasoline engine. Since the driving sound of the internal combustion engine includes a lot of high-frequency sounds, the sound-absorbing material is required to have high absorbability of high-frequency sounds, particularly sounds having a frequency of 2 kHz or higher.
 このような吸音材として、特許文献1には、熱可塑性樹脂繊維からなり、その繊維が、1μm以下の繊維径積算頻度が5%以上、10μm以上の繊維径積算頻度が0.1~5%の範囲にあるメルトブローン不織布が開示されている。 As such a sound-absorbing material, Patent Document 1 discloses that the fiber is made of thermoplastic resin fiber, and the fiber diameter integration frequency of 1 μm or less is 5% or more and the fiber diameter integration frequency of 10 μm or more is 0.1 to 5%. Melt blown nonwoven fabrics in the range are disclosed.
 近年、電気自動車、ハイブリッド車等のような内燃機関以外の駆動源を備える輸送車両が実用化され、それに伴って、吸音材に、中音域の音、例えば500Hz以上、1500Hz以下の周波数を有する音の吸収性が要求されるようになった。 In recent years, transportation vehicles including a drive source other than an internal combustion engine such as an electric vehicle and a hybrid vehicle have been put into practical use, and accordingly, a sound having a medium frequency range, for example, a sound having a frequency of 500 Hz or more and 1500 Hz or less, is applied to the sound absorbing material. Absorbability is now required.
特開2013-147771号公報JP 2013-147771 A
 本開示は、中音域の音の吸収性が高い繊維集合体及びこの繊維集合体を備える吸音材を提供する。 The present disclosure provides a fiber assembly having high mid-range sound absorbability and a sound absorbing material including the fiber assembly.
 本開示の一態様に係る繊維集合体は、熱可塑性樹脂を含む繊維の集合体であり、前記繊維が、250mPa・s以上、7000mPa・s以下の範囲内の溶融粘度を有する。前記繊維の直径の中央値が0.3μm以上、0.9μm以下の範囲内である。前記繊維の合計数量に対して8μm以下の直径を有する繊維の数量の割合が99%以上である。 The fiber assembly according to one embodiment of the present disclosure is a fiber assembly including a thermoplastic resin, and the fiber has a melt viscosity in the range of 250 mPa · s to 7000 mPa · s. The median diameter of the fibers is in the range of 0.3 μm to 0.9 μm. The ratio of the number of fibers having a diameter of 8 μm or less to the total number of fibers is 99% or more.
 本開示の別の一態様に係る繊維集合体は、熱可塑性樹脂を含む繊維の集合体であり、前記繊維が、1600g/10min以上、5000g/10min以下の範囲内のメルトフローレートを有する。前記繊維の直径の中央値が0.3μm以上、0.9μm以下の範囲内である。前記繊維の合計数量に対して8μm以下の直径を有する繊維の数量の割合が99%以上である。 A fiber assembly according to another embodiment of the present disclosure is a fiber assembly including a thermoplastic resin, and the fiber has a melt flow rate within a range of 1600 g / 10 min to 5000 g / 10 min. The median diameter of the fibers is in the range of 0.3 μm to 0.9 μm. The ratio of the number of fibers having a diameter of 8 μm or less to the total number of fibers is 99% or more.
 本開示のさらに別の一態様に係る吸音材は、上記のいずれかの繊維に係る繊維集合体を備える。 A sound-absorbing material according to another aspect of the present disclosure includes a fiber assembly according to any one of the above-described fibers.
 本開示の一態様によれば、中音域の音を効果的に吸収できる繊維集合体及び吸音材が得られる。 According to one aspect of the present disclosure, a fiber assembly and a sound absorbing material that can effectively absorb mid-range sound can be obtained.
図1は、実施の形態に係る繊維集合体の模式図である。FIG. 1 is a schematic diagram of a fiber assembly according to an embodiment. 図2は、メルトフローレートと溶融粘度図との関係を示す図である。FIG. 2 is a diagram showing the relationship between the melt flow rate and the melt viscosity diagram. 図3は、実施の形態に係る吸音材の模式図である。FIG. 3 is a schematic diagram of a sound absorbing material according to the embodiment.
 以下、本開示の実施形態について説明する。 Hereinafter, embodiments of the present disclosure will be described.
 図1は、実施の形態に係る繊維集合体の模式図である。繊維集合体1は、熱可塑性樹脂を含む繊維2の集合体である。実施形態の一側面においては、繊維2が、250mPa・s以上7000mPa・s以下の範囲内の溶融粘度を有する。繊維2の直径の中央値が0.3μm以上、0.9μm以下の範囲内である。繊維2の合計数量に対して8μm以下の直径を有する繊維2の数量の割合が99%以上である。 FIG. 1 is a schematic diagram of a fiber assembly according to an embodiment. The fiber assembly 1 is an assembly of fibers 2 containing a thermoplastic resin. In one aspect of the embodiment, the fiber 2 has a melt viscosity in the range of 250 mPa · s to 7000 mPa · s. The median diameter of the fibers 2 is in the range of 0.3 μm or more and 0.9 μm or less. The ratio of the quantity of the fibers 2 having a diameter of 8 μm or less to the total quantity of the fibers 2 is 99% or more.
 また、実施形態の別の一側面においては、繊維2が、1600g/10min以上、5000g/10min以下の範囲内の溶融粘度を有する。繊維2の直径の中央値が0.3μm~0.9μmの範囲内である。繊維2の合計数量に対して8μm以下の直径を有する繊維2の数量の割合が99%以上である。 In another aspect of the embodiment, the fiber 2 has a melt viscosity in the range of 1600 g / 10 min to 5000 g / 10 min. The median diameter of the fiber 2 is in the range of 0.3 μm to 0.9 μm. The ratio of the quantity of the fibers 2 having a diameter of 8 μm or less to the total quantity of the fibers 2 is 99% or more.
 繊維集合体1及びこの繊維集合体1を備える吸音材11(後述、図3参照)は、中音域の音、特に500Hz以上、1500Hz以下の周波数を有する音を、効果的に吸収できる。 The fiber assembly 1 and the sound-absorbing material 11 (see FIG. 3 described later) including the fiber assembly 1 can effectively absorb mid-range sound, particularly sound having a frequency of 500 Hz to 1500 Hz.
 繊維集合体1を備える吸音材11は、車載用であることが好ましい。特に吸音材11が、電気自動車、ハイブリッド車等のような内燃機関以外の駆動源を備える輸送車両における駆動音抑制用に適用された場合、駆動源からの駆動音を効果的に吸収できる。 The sound absorbing material 11 provided with the fiber assembly 1 is preferably for vehicle use. In particular, when the sound absorbing material 11 is applied for driving sound suppression in a transportation vehicle including a driving source other than the internal combustion engine such as an electric vehicle or a hybrid vehicle, the driving sound from the driving source can be effectively absorbed.
 本実施形態に係る繊維集合体1及び吸音材11について、更に詳しく説明する。 The fiber assembly 1 and the sound absorbing material 11 according to this embodiment will be described in more detail.
 上記の通り、繊維集合体1中の繊維2は、熱可塑性樹脂を含む。 As described above, the fiber 2 in the fiber assembly 1 includes a thermoplastic resin.
 上記の通り、繊維2は、1600g/10min以上、5000g/10min以下の範囲内のメルトフローレートと、250mPa・s以上、7000mPa・s以下の範囲内の溶融粘度とのうち、少なくとも一方を有する。 As described above, the fiber 2 has at least one of a melt flow rate in the range of 1600 g / 10 min to 5000 g / 10 min and a melt viscosity in the range of 250 mPa · s to 7000 mPa · s.
 ここで、メルトフローレートと溶融粘度とは、一定の相関関係を有しており、メルトフローレートを溶融粘度の代用評価値として用いることができる。すなわち、メルトフローレートの値に対する溶融粘度の常用対数の値は、図2に示すように相関しており、溶融粘度の250mPa・s以上、7000mPa・s以下の範囲は、メルトフローレートの1600g/10min以上、5000g/10min以下の範囲に相当する。 Here, the melt flow rate and the melt viscosity have a certain correlation, and the melt flow rate can be used as a substitute evaluation value of the melt viscosity. That is, the value of the common logarithm of the melt viscosity with respect to the value of the melt flow rate is correlated as shown in FIG. 2, and the range of the melt viscosity from 250 mPa · s to 7000 mPa · s is 1600 g / This corresponds to a range of 10 min to 5000 g / 10 min.
 本実施形態における繊維2のメルトフローレート及び溶融粘度の意義について、詳しく説明する。発明者は、多くの実験を通じて、繊維2の材質が中音域の音の吸収性に大きく影響することを見いだし、その要因を検討した結果、繊維2のメルトフローレート及び溶融粘度が中音域の音の吸収性と大きく相関するとの知見を得た。この知見に基づいて、発明者は繊維2のメルトフローレート又は溶融粘度を規定することにより中音域の音の吸収性を向上することを試みた。その結果、上記のように繊維2が1600g/10min以上、5000g/10min以下の範囲内のメルトフローレートと、250mPa・s以上、7000mPa・s以下の範囲内の溶融粘度とのうち、少なくとも一方を有すれば、中音域の音の吸収性が大きく向上することを、見いだした。 The significance of the melt flow rate and melt viscosity of the fiber 2 in this embodiment will be described in detail. The inventor found that the material of the fiber 2 has a great influence on the mid-range sound absorbability through many experiments, and as a result of examining the factors, the melt flow rate and melt viscosity of the fiber 2 are low. It was found that there is a large correlation with the absorbability of Based on this knowledge, the inventors tried to improve the mid-range sound absorbency by defining the melt flow rate or melt viscosity of the fiber 2. As a result, at least one of the melt flow rate within the range of 1600 g / 10 min or more and 5000 g / 10 min or less and the melt viscosity within the range of 250 mPa · s or more and 7000 mPa · s or less of the fiber 2 as described above. If there is, it has been found that the mid-range sound absorption is greatly improved.
 また、特に繊維2のメルトフローレートが5000g/10min以下であることで、繊維集合体1は、高い耐熱性も有する。 In particular, since the melt flow rate of the fiber 2 is 5000 g / 10 min or less, the fiber assembly 1 also has high heat resistance.
 さらに、繊維2が1600g/10min以上、5000g/10min以下の範囲内のメルトフローレートと、250mPa・s以上、7000mPa・s以下の範囲内の溶融粘度とのうち、少なくとも一方を有すれば、繊維集合体1に高い耐熱性を付与できる。なお、本明細書において、繊維集合体1の耐熱性が高いとは、繊維集合体1が加熱されても、繊維集合体1の中音域の音の吸収性が、低減しにくいことをいう。 Furthermore, if the fiber 2 has at least one of a melt flow rate in the range of 1600 g / 10 min to 5000 g / 10 min and a melt viscosity in the range of 250 mPa · s to 7000 mPa · s, the fiber High heat resistance can be imparted to the aggregate 1. In the present specification, the high heat resistance of the fiber assembly 1 means that even if the fiber assembly 1 is heated, it is difficult to reduce the sound absorbability of the midrange of the fiber assembly 1.
 さらに、繊維2が1600g/10min以上、5000g/10minの範囲内のメルトフローレートと、250mPa・s以上、7000mPa・sの範囲内の溶融粘度とのうち、少なくとも一方を有すれば、繊維2の材料(以下、紡糸用材料という)を紡糸して繊維2を製造する際に、繊維2の直径の中央値が0.3μm以上、0.9μm以下の範囲内という小さい値であるにもかかわらず、繊維2を安定して製造できるとともに、繊維集合体1の低密度化が容易である。すなわち、繊維2が1600g/10min以上のメルトフローレートと7000mPa・s以下の溶融粘度とのうち少なくとも一方を有すると、紡糸用材料を紡糸して繊維2を製造する際に、紡糸用材料が流動しやすいために繊維2の直径を小さくすることが容易である。また、この場合において、メルトブローン法のように紡糸時に気流の吹きつけを行う場合には、弱い気流においても繊維2の直径を更に小さくすることが可能となり、繊維集合体1の密度を低くすることが容易である。そのため、紡糸の条件が同じであれば、繊維2が1600g/10min以上のメルトフローレートと7000mPa・s以下の溶融粘度とのうち少なくとも一方を有する場合には、そうでない場合よりも、繊維2の直径を小さくできるとともに、繊維集合体1の密度を低くできる。また、繊維2が5000g/10min以下のメルトフローレートと250mPa・s以上の溶融粘度とのうち少なくとも一方を有すると、紡糸によって十分な長さを有する繊維2を形成することが容易であり、このため繊維2を捕集して繊維集合体1を作製することが容易である。このため、紡糸用材料を紡糸する際の気流の量を抑制しながら、小さい直径を有する繊維2を製造することが可能となり、密度が低い繊維集合体1を製造することが可能となる。 Furthermore, if the fiber 2 has at least one of a melt flow rate in the range of 1600 g / 10 min or more and 5000 g / 10 min and a melt viscosity in the range of 250 mPa · s or more and 7000 mPa · s, When a fiber 2 is produced by spinning a material (hereinafter referred to as a spinning material), the median diameter of the fiber 2 is a small value within a range of 0.3 μm or more and 0.9 μm or less. The fibers 2 can be manufactured stably, and the fiber assembly 1 can be easily reduced in density. That is, if the fiber 2 has at least one of a melt flow rate of 1600 g / 10 min or more and a melt viscosity of 7000 mPa · s or less, the spinning material flows when the fiber 2 is produced by spinning the spinning material. Therefore, it is easy to reduce the diameter of the fiber 2. In this case, when air current is blown during spinning as in the melt blown method, the diameter of the fiber 2 can be further reduced even in a weak air current, and the density of the fiber assembly 1 can be reduced. Is easy. Therefore, if the spinning conditions are the same, when the fiber 2 has at least one of a melt flow rate of 1600 g / 10 min or more and a melt viscosity of 7000 mPa · s or less, the fiber 2 has a higher viscosity than the other cases. The diameter can be reduced and the density of the fiber assembly 1 can be reduced. Further, when the fiber 2 has at least one of a melt flow rate of 5000 g / 10 min or less and a melt viscosity of 250 mPa · s or more, it is easy to form the fiber 2 having a sufficient length by spinning. Therefore, it is easy to collect the fiber 2 and produce the fiber assembly 1. For this reason, it becomes possible to manufacture the fiber 2 which has a small diameter, suppressing the amount of the airflow at the time of spinning the spinning material, and it becomes possible to manufacture the fiber assembly 1 having a low density.
 繊維2は、好ましくは2000g/10min以上、5000g/10min以下の範囲内のメルトフローレートを有し、より好ましくは3500g/10min以上、5000g/10min以下の範囲内のメルトフローレートを有する。繊維2が2000g/10min以上のメルトフローレートを有する場合は、更に繊維2の直径を小さくできるとともに、繊維集合体1の密度を低くできる。繊維2が3500g/10min以上のメルトフローレートを有する場合は、特に繊維2の直径を小さくできるとともに、繊維集合体1の密度を低くできる。 The fiber 2 preferably has a melt flow rate in the range of 2000 g / 10 min to 5000 g / 10 min, and more preferably has a melt flow rate in the range of 3500 g / 10 min to 5000 g / 10 min. When the fiber 2 has a melt flow rate of 2000 g / 10 min or more, the diameter of the fiber 2 can be further reduced and the density of the fiber assembly 1 can be reduced. When the fiber 2 has a melt flow rate of 3500 g / 10 min or more, particularly the diameter of the fiber 2 can be reduced and the density of the fiber assembly 1 can be reduced.
 また、繊維2は、好ましくは250mPa・s以上、3000mPa・s以下の範囲内の溶融粘度を有し、より好ましくは250mPa・s以上、800mPa・s以下の範囲内の溶融粘度を有する。繊維2が3000mPa・s以下の溶融粘度を有する場合は、更に繊維の直径を小さくできるとともに、繊維集合体1の密度を低くできる。繊維2が800mPa・s以下の溶融粘度を有する場合は、特に繊維2の直径を小さくできるとともに、繊維集合体1の密度を低くできる。 Further, the fiber 2 preferably has a melt viscosity in the range of 250 mPa · s to 3000 mPa · s, more preferably in the range of 250 mPa · s to 800 mPa · s. When the fiber 2 has a melt viscosity of 3000 mPa · s or less, the fiber diameter can be further reduced and the density of the fiber assembly 1 can be reduced. When the fiber 2 has a melt viscosity of 800 mPa · s or less, the diameter of the fiber 2 can be particularly reduced and the density of the fiber assembly 1 can be reduced.
 繊維2の融点若しくは軟化点は、130℃以上であることが好ましい。この場合、繊維集合体1が加熱されても、繊維集合体1の中音域の音の吸収性が低減しにくい。融点若しくは軟化点が140℃以上であれば、より好ましい。融点若しくは軟化点が150℃以上であれば更に好ましい。 The melting point or softening point of the fiber 2 is preferably 130 ° C. or higher. In this case, even if the fiber assembly 1 is heated, it is difficult to reduce the sound absorbability of the midrange of the fiber assembly 1. More preferably, the melting point or softening point is 140 ° C. or higher. More preferably, the melting point or softening point is 150 ° C. or higher.
 なお、繊維2のメルトフローレートは、ASTM D1238に準拠し、温度230℃、荷重2.16kgの条件で測定される。また、繊維2の溶融粘度は、230℃における溶融粘度である。また、繊維2の融点及び軟化点は、DSC(Differential Scanning Calorimetry)法にて昇温速度5℃/分の条件で得られる融解熱ピークの頂点から求められる。 In addition, the melt flow rate of the fiber 2 is measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D1238. The melt viscosity of the fiber 2 is a melt viscosity at 230 ° C. Further, the melting point and softening point of the fiber 2 are determined from the peak of the heat of fusion peak obtained by a DSC (Differential Scanning Colorimetry) method at a temperature rising rate of 5 ° C./min.
 また、上記の繊維2のメルトフローレート、溶融粘度、並びに融点及び軟化点は、繊維集合体1中の繊維2に関する値であり、紡糸用材料に関する値ではなく、紡糸用材料に含まれる成分に関する値でもない。 The melt flow rate, melt viscosity, melting point, and softening point of the fiber 2 are values related to the fiber 2 in the fiber assembly 1, and are not related to the spinning material, but are related to the components contained in the spinning material. Not a value.
 繊維2の直径の中央値は0.3μm以上、0.9μm以下の範囲内であり、繊維2の合計数量に対する、8μm以下の直径を有する繊維2の数量の割合は、99%以上である。本実施形態では、このように繊維集合体1中の繊維2の直径が規定されることで、繊維集合体1及び吸音材11の、中音域の音の吸収性を向上できる。 The median diameter of the fibers 2 is in the range of 0.3 μm to 0.9 μm, and the ratio of the number of fibers 2 having a diameter of 8 μm or less to the total number of fibers 2 is 99% or more. In the present embodiment, by defining the diameter of the fiber 2 in the fiber assembly 1 in this way, it is possible to improve the mid-range sound absorbability of the fiber assembly 1 and the sound absorbing material 11.
 繊維2の直径を規定することによる中音域の音の吸収性向上について、詳しく説明する。多孔質型の吸音材11について公知のBiotモデルによると、吸音材11中の繊維2の直径が小さくなるほど、吸音材11の吸音特性のピークが2kHzより低周波領域にシフトする。しかし、実際には、単に直径が小さい繊維2を含むだけでは中音域の音の吸収性は十分には高くならない。これは、吸音材11中に直径の小さい繊維2と直径の大きい繊維2とが混在すると、吸音材11中の空気の流動が生じやすくなり、そのことが中音域の音の吸収性を阻害するためであると、発明者は推測した。この推測に基づいて、発明者は繊維2の直径を規定することにより中音域の音の吸収性を向上することを試みた。その結果、上記のように繊維2の直径の中央値が0.3μm以上、0.9μm以下の範囲内であるだけでなく、更に繊維2の合計数量に対する、8μm以下の直径を有する繊維2の数量の割合が99%以上であると、中音域の音の吸収性が大きく向上することを、発明者は見いだした。 The improvement of the mid-range sound absorbency by defining the diameter of the fiber 2 will be described in detail. According to the well-known Biot model for the porous sound absorbing material 11, the peak of the sound absorbing characteristic of the sound absorbing material 11 shifts from 2 kHz to a lower frequency region as the diameter of the fiber 2 in the sound absorbing material 11 becomes smaller. However, in reality, simply including the fibers 2 having a small diameter does not sufficiently increase the mid-range sound absorbability. This is because if the small-diameter fiber 2 and the large-diameter fiber 2 are mixed in the sound-absorbing material 11, air flow in the sound-absorbing material 11 is likely to occur, and this impedes the sound absorption of the mid-range. The inventor speculated that this was the case. Based on this assumption, the inventor tried to improve the mid-range sound absorbability by defining the diameter of the fiber 2. As a result, not only the median diameter of the fibers 2 is in the range of 0.3 μm or more and 0.9 μm or less as described above, but also the fibers 2 having a diameter of 8 μm or less with respect to the total number of fibers 2. The inventor has found that when the ratio of the quantity is 99% or more, the mid-range sound absorbability is greatly improved.
 繊維2の合計数量に対する、5μm以下の直径を有する繊維の数量の割合が99%以上であれば、特に好ましい。この場合、中音域の音の吸収性を更に向上できる。 It is particularly preferable that the ratio of the number of fibers having a diameter of 5 μm or less to the total number of fibers 2 is 99% or more. In this case, the mid-range sound absorbability can be further improved.
 繊維2の最大直径が10μmより小さいことが、特に好ましい。すなわち、繊維集合体1が、10μm以上の直径を有する繊維2を含まないことが、特に好ましい。この場合、繊維集合体1の単位体積あたりの、小さい直径を有する繊維2の重量割合が増大し、このため、中音域の音の吸収性が特に高くなる。 It is particularly preferable that the maximum diameter of the fiber 2 is smaller than 10 μm. That is, it is particularly preferable that the fiber assembly 1 does not include the fiber 2 having a diameter of 10 μm or more. In this case, the weight ratio of the fibers 2 having a small diameter per unit volume of the fiber assembly 1 increases, and therefore, the sound absorbability in the middle range is particularly high.
 繊維2の長さは、例えば5mm以上あれば好ましいが、繊維2同士が十分に絡み合うことが可能な長さがあれば、特にこれに制限されない。 The length of the fiber 2 is preferably 5 mm or more, for example, but is not particularly limited as long as the fiber 2 has a length that allows the fibers 2 to sufficiently intertwine.
 各繊維2のアスペクト比の値は、1000以上であることが好ましい。 The value of the aspect ratio of each fiber 2 is preferably 1000 or more.
 なお、繊維2の直径及び長さは、繊維2を電子顕微鏡で撮影して得られる画像を画像処理することで測定される。また繊維2の直径の中央値は、200本の繊維2の直径の測定結果から算出される、数量基準の中央値である。本実施形態における繊維2の直径及び長さを規定するに当たっては、繊維2同士が熱融着している部分、及び繊維化しきらずに塊状となっている部分は、繊維とはみなされない。 In addition, the diameter and length of the fiber 2 are measured by performing image processing on an image obtained by photographing the fiber 2 with an electron microscope. The median diameter of the fibers 2 is a quantity-based median value calculated from the measurement results of the diameters of the 200 fibers 2. In defining the diameter and length of the fibers 2 in the present embodiment, the portions where the fibers 2 are thermally fused together and the portions which are not formed into fibers and are agglomerated are not regarded as fibers.
 繊維集合体1は、0.03g/cm3以下の密度を有することが好ましい。この場合、繊維集合体1の、中音域の音の吸収性が、更に向上する。繊維集合体1が、0.003g/cm3以上の密度を有することも好ましい。この場合、繊維集合体1の自重による変形及び密度変化が抑制され、このため、繊維集合体1の良好な吸収性が長期にわたって維持されうる。 The fiber assembly 1 preferably has a density of 0.03 g / cm 3 or less. In this case, the absorbability of the midrange sound of the fiber assembly 1 is further improved. It is also preferable that the fiber assembly 1 has a density of 0.003 g / cm 3 or more. In this case, the deformation and density change due to the weight of the fiber assembly 1 are suppressed, and therefore, good absorbability of the fiber assembly 1 can be maintained over a long period of time.
 繊維集合体1は、例えばシート又は層状である。繊維集合体1がシート又は層状である場合、繊維集合体1の目付け量(すなわち、単位平面視面積あたりの質量)は、好ましくは100g/m2以上、1000g/m2以下の範囲内、より好ましくは100g/m2以上、600g/m2以下の範囲内、更に好ましくは100g/m2以上、500g/m2以下の範囲内である。目付け量が100g/m2以上であれば、繊維集合体1はより高い吸音性を有することができる。また、目付け量が1000g/m2以下であれば、繊維集合体1のコンパクト化及び軽量化が可能であり、このため、特に繊維集合体1が車載用である場合の、車両設計の自由度が高まる。 The fiber assembly 1 is, for example, a sheet or a layer. When the fiber assembly 1 is a sheet or a layer, the basis weight of the fiber assembly 1 (that is, the mass per unit plan view area) is preferably within a range of 100 g / m 2 or more and 1000 g / m 2 or less. Preferably, it is in the range of 100 g / m 2 or more and 600 g / m 2 or less, more preferably in the range of 100 g / m 2 or more and 500 g / m 2 or less. If the basis weight is 100 g / m 2 or more, the fiber assembly 1 can have higher sound absorption. Further, if the basis weight is 1000 g / m 2 or less, the fiber assembly 1 can be made compact and light, and therefore, the degree of freedom in vehicle design, particularly when the fiber assembly 1 is for vehicle use. Will increase.
 繊維2に含まれる成分について、詳しく説明する。 The components contained in the fiber 2 will be described in detail.
 熱可塑性樹脂は、例えばポリプロピレン、ポリエチレン、ポリオレフィン系熱可塑性エラストマー、1-ブテン重合体、1-ヘキセン重合体、1-オクテン重合体、1-デセン重合体、1-ヘキサデセン重合体、1-ヘプタデセン重合体、1-オクタデセン重合体、ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド、ポリウレタン、ポリブテン、ポリ乳酸、ポリビニールアルコール、ポリフェニレンスルフィド、ポリスルフォン、液晶ポリマー、エチレン酢酸ビニル共重合体、ポリアクリロニトリル、環状ポリオレフィン及びポリオキシメチレンからなる群から選択される少なくとも一種の成分を含有する。また、熱可塑性樹脂は、ポリエチレンワックス、ポリプロピレンワックス、パラフィンワックスといった、ワックス状の成分を含有してもよい。特に、熱可塑性樹脂がポリプロピレン、ポリエチレン、ポリオレフィン系熱可塑性エラストマー及びパラフィンからなる群から選択される少なくとも一種の成分を含有することが好ましい。この場合、繊維集合体1の、中音域の音の吸収性が、特に高くなる。 Examples of the thermoplastic resin include polypropylene, polyethylene, polyolefin-based thermoplastic elastomer, 1-butene polymer, 1-hexene polymer, 1-octene polymer, 1-decene polymer, 1-hexadecene polymer, and 1-heptadecene polymer. Polymer, 1-octadecene polymer, polyester, polyethylene terephthalate, polybutylene terephthalate, polyamide, polyurethane, polybutene, polylactic acid, polyvinyl alcohol, polyphenylene sulfide, polysulfone, liquid crystal polymer, ethylene vinyl acetate copolymer, polyacrylonitrile, cyclic It contains at least one component selected from the group consisting of polyolefin and polyoxymethylene. The thermoplastic resin may contain a wax-like component such as polyethylene wax, polypropylene wax, and paraffin wax. In particular, the thermoplastic resin preferably contains at least one component selected from the group consisting of polypropylene, polyethylene, polyolefin-based thermoplastic elastomer and paraffin. In this case, the mid-range sound absorbability of the fiber assembly 1 is particularly high.
 熱可塑性樹脂は、二種以上の樹脂を含有でき、この場合、これらの樹脂は、互いに異なるメルトフローレートと、互いに異なる溶融粘度とのうち、少なくとも一方を有することができる。この場合、熱可塑性樹脂中の各樹脂の量を調整することで、繊維2のメルトフローレートと溶融粘度とのうち少なくとも一方を、容易に調整できる。また、熱可塑性樹脂の成分として、その物性が繊維2と合致しない成分、すなわちそのメルトフローレートが1600g/10min以上、5000g/10min以下の範囲内にないとともにその溶融粘度が250mPa・s以上、7000mPa・s以下の範囲内にない成分を、適用することが可能である。このため、熱可塑性樹脂の成分の選択の自由度が高まる。 The thermoplastic resin can contain two or more kinds of resins. In this case, these resins can have at least one of different melt flow rates and different melt viscosities. In this case, at least one of the melt flow rate and the melt viscosity of the fibers 2 can be easily adjusted by adjusting the amount of each resin in the thermoplastic resin. Further, as a component of the thermoplastic resin, a component whose physical properties do not match those of the fiber 2, that is, its melt flow rate is not in the range of 1600 g / 10 min to 5000 g / 10 min and its melt viscosity is 250 mPa · s to 7000 mPa. It is possible to apply ingredients that are not within the range of s or less. For this reason, the freedom degree of selection of the component of a thermoplastic resin increases.
 熱可塑性樹脂中の少なくとも一部の成分(以下、特定成分という)は、熱分解工程を経て製造されてもよい。熱分解工程とは、特定成分の原料(以下、特定原料という)を熱分解させることで、分子量が調整された特定成分を得る工程のことである。この場合、特定成分の分子量を調整することで、繊維のメルトフローレートと溶融粘度とのうち少なくとも一方を、容易に調整できる。また、特定原料として、そのメルトフローレートが1600g/10minよりも小さいとともにその溶融粘度が7000mPa・sよりも高い成分を適用することが可能である。このため、熱可塑性樹脂の原料の選択の自由度が高まる。例えば熱可塑性樹脂が二種以上の樹脂を含有する場合、このうち少なくとも一種の樹脂が、熱分解工程を経て製造されてもよい。また、熱可塑性樹脂の全てが、熱分解工程を経て製造されてもよい。 At least a part of the components in the thermoplastic resin (hereinafter referred to as a specific component) may be manufactured through a thermal decomposition step. The thermal decomposition step is a step of obtaining a specific component having a molecular weight adjusted by thermally decomposing a raw material of a specific component (hereinafter referred to as a specific raw material). In this case, at least one of the melt flow rate and the melt viscosity of the fiber can be easily adjusted by adjusting the molecular weight of the specific component. Moreover, as the specific raw material, it is possible to apply a component having a melt flow rate lower than 1600 g / 10 min and a melt viscosity higher than 7000 mPa · s. For this reason, the freedom degree of selection of the raw material of a thermoplastic resin increases. For example, when a thermoplastic resin contains 2 or more types of resin, at least 1 type of resin may be manufactured through a thermal decomposition process. Further, all of the thermoplastic resin may be manufactured through a thermal decomposition process.
 また、繊維集合体1を支持体等に熱融着させる際に溶融しないためには、熱可塑性樹脂が高い結晶性を有することが好ましい。熱可塑性樹脂の表面張力ができるだけ低いことも好ましく、この場合、熱可塑性樹脂を含有する紡糸用材料を紡糸して繊維2を作製する場合に安定した紡糸が可能である。 Also, in order not to melt when the fiber assembly 1 is heat-sealed to a support or the like, it is preferable that the thermoplastic resin has high crystallinity. It is also preferable that the surface tension of the thermoplastic resin is as low as possible. In this case, when the fiber 2 is produced by spinning a spinning material containing the thermoplastic resin, stable spinning is possible.
 繊維2は、熱可塑性樹脂よりも低いメルトフローレートと熱可塑性樹脂よりも低い溶融粘度とのうち少なくとも一方を有する可塑剤を含有してもよい。この場合、可塑剤の量を調整することで、繊維2のメルトフローレートと溶融粘度とのうち少なくとも一方を、容易に調整できる。また、熱可塑性樹脂として、そのメルトフローレートが1600g/10minよりも小さいとともにその溶融粘度が7000mPa・sよりも高い成分を適用することが可能である。このため、熱可塑性樹脂の選択の自由度が高まる。 The fiber 2 may contain a plasticizer having at least one of a melt flow rate lower than that of the thermoplastic resin and a melt viscosity lower than that of the thermoplastic resin. In this case, at least one of the melt flow rate and the melt viscosity of the fiber 2 can be easily adjusted by adjusting the amount of the plasticizer. Moreover, as a thermoplastic resin, it is possible to apply a component having a melt flow rate lower than 1600 g / 10 min and a melt viscosity higher than 7000 mPa · s. For this reason, the freedom degree of selection of a thermoplastic resin increases.
 可塑剤は、熱可塑性樹脂との相溶性を有することが好ましい。この場合、繊維2から可塑剤がブリードアウトすることが抑制される。ただし、熱可塑性樹脂との相溶性を有さない材料も、ブリードアウトが生じない程度の少量であれば、繊維2に含有されていてもよい。 The plasticizer preferably has compatibility with the thermoplastic resin. In this case, bleeding of the plasticizer from the fiber 2 is suppressed. However, a material that is not compatible with the thermoplastic resin may be contained in the fiber 2 as long as the material does not cause bleeding out.
 可塑剤は、例えばオイルなどの液状の材料を含有してもよい。具体的には、可塑剤は、例えば流動パラフィン、石油系潤滑油、ナフサ潤滑油、シリコーンオイル、フッ素形オイルなどの合成油、及びグリースからなる群から選択される一種以上の材料を含有できる。 The plasticizer may contain a liquid material such as oil. Specifically, the plasticizer can contain, for example, one or more materials selected from the group consisting of liquid paraffin, petroleum lubricant, naphtha lubricant, synthetic oil such as silicone oil, fluorine oil, and grease.
 熱可塑性樹脂と可塑剤の合計に対し、可塑剤は例えば0.1質量%以上、50質量%以下の範囲内であるが、これに限定されない。 The plasticizer is within the range of 0.1% by mass or more and 50% by mass or less with respect to the total of the thermoplastic resin and the plasticizer, but is not limited thereto.
 なお、樹脂及び可塑剤の溶融粘度は、株式会社アントンパール・ジャパン製粘弾性測定装置MCR302を用いて、窒素雰囲気下、230℃においてせん断速度10〔1/s〕の条件下で測定される動的粘度である。また、樹脂及び可塑剤の溶融粘度は、230℃における溶融粘度である。 The melt viscosity of the resin and the plasticizer is measured using a viscoelasticity measuring device MCR302 manufactured by Anton Paar Japan Co., Ltd. under a nitrogen atmosphere at 230 ° C. under a shear rate of 10 [1 / s]. Viscosity. Moreover, the melt viscosity of resin and a plasticizer is a melt viscosity in 230 degreeC.
 繊維集合体1中の繊維2は酸化防止剤を含むことができる。この場合、繊維集合体1の耐熱性が向上する。さらに、ベース樹脂を含有する紡糸用材料を紡糸して繊維2を作製する場合には、紡糸用材料に酸化防止剤を含有させると、材料混練時、紡糸時のベース樹脂等、そして紡糸後の吸音材11の酸化劣化が抑制される。 The fiber 2 in the fiber assembly 1 can contain an antioxidant. In this case, the heat resistance of the fiber assembly 1 is improved. Further, when the fiber 2 is produced by spinning a spinning material containing a base resin, when the spinning material contains an antioxidant, the base resin at the time of material kneading, spinning, and the like after spinning Oxidative deterioration of the sound absorbing material 11 is suppressed.
 酸化防止剤は、ベース樹脂等の材料の合成時に、ベース樹脂の原料と混合されていてもよい。また、酸化防止剤は、紡糸用材料の調製時に、ベース樹脂等と混合されてもよい。 The antioxidant may be mixed with the raw material of the base resin when synthesizing the material such as the base resin. Further, the antioxidant may be mixed with a base resin or the like when the spinning material is prepared.
 酸化防止剤は、例えばフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、アミン系酸化防止剤、ヒドラジン系酸化防止剤、アミド系酸化防止剤及び光安定化剤(HALS)からなる群から選択される少なくとも一種の材料を含有できる。 Antioxidants include, for example, phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, amine antioxidants, hydrazine antioxidants, amide antioxidants, and light stabilizers (HALS). At least one material selected from the group consisting of:
 特に酸化防止剤がフェノール系酸化防止剤を含有すると、繊維集合体の長期的な耐熱性の向上が得られる。フェノール系酸化防止剤は、ヒンダードタイプ、セミヒンダードタイプ及びレスヒンダードタイプのうち、いずれでもよい。また、酸化防止剤がフェノール系酸化防止剤に加えてリン系酸化防止剤と硫黄系酸化防止剤とのうち少なくとも一方を含有すると、紡糸時のベース樹脂等の酸化劣化が更に抑制される。 Especially when the antioxidant contains a phenolic antioxidant, the long-term heat resistance of the fiber assembly can be improved. The phenolic antioxidant may be any of a hindered type, a semi-hindered type, and a less hindered type. Further, when the antioxidant contains at least one of a phosphorus-based antioxidant and a sulfur-based antioxidant in addition to the phenol-based antioxidant, oxidative deterioration of the base resin and the like during spinning is further suppressed.
 酸化防止剤がフェノール系酸化防止剤とリン系酸化防止剤とを共に含むことが特に好ましい。このような二種の酸化防止剤が組み合わされることで、繊維集合体の耐熱性が向上するとともに高い耐熱性が長期にわたって維持される。すなわち、高温下でも、中音域の音の高い吸収性が長期にわたって維持される。 It is particularly preferred that the antioxidant contains both a phenolic antioxidant and a phosphorus antioxidant. By combining such two kinds of antioxidants, the heat resistance of the fiber assembly is improved and high heat resistance is maintained over a long period of time. That is, even at high temperatures, the mid-range high sound absorptivity is maintained for a long time.
 繊維2がフェノール系酸化防止剤とリン系酸化防止剤とを含む場合、熱可塑性樹脂に対するフェノール系酸化防止剤とリン系酸化防止剤との合計の百分比は、0.1質量%以上、2.0質量%以下の範囲内であることが好ましい。この百分比が0.1質量%以上であれば、繊維の酸化劣化を特に抑制できる。またこの百分比が2.0質量%より多くなると、繊維集合体1の酸化劣化の抑制作用が飽和してしまい、フェノール系酸化防止剤とリン系酸化防止剤の量が不必要に増大してしまうとともに経済的な不利益も生じるため、百分比は2.0質量%以下が好ましい。フェノール系酸化防止剤のリン系酸化防止剤に対する質量比は1.0/3.0以上、3.0/1.0以下の範囲内であることが好ましい。この質量比が1.0/3.0以上であることで、高い耐熱性が特に長期にわたって維持される。またこの質量比が3.0/1.0以下であることで、繊維集合体の耐熱性が特に高くなる。さらに、紡糸によって繊維を得る際のフェノール系酸化防止剤の消費を抑えることができる。 When the fiber 2 contains a phenol-based antioxidant and a phosphorus-based antioxidant, the total percentage of the phenol-based antioxidant and the phosphorus-based antioxidant with respect to the thermoplastic resin is 0.1% by mass or more; It is preferably within the range of 0% by mass or less. If this percentage is 0.1% by mass or more, oxidative degradation of the fiber can be particularly suppressed. Moreover, when this percentage is more than 2.0 mass%, the inhibitory action of the oxidative degradation of the fiber assembly 1 will be saturated, and the amount of phenolic antioxidant and phosphorus antioxidant will increase unnecessarily. At the same time, an economical disadvantage is also caused, so that the percentage is preferably 2.0% by mass or less. The mass ratio of the phenolic antioxidant to the phosphorus antioxidant is preferably within the range of 1.0 / 3.0 to 3.0 / 1.0. When this mass ratio is 1.0 / 3.0 or more, high heat resistance is maintained particularly for a long period of time. Moreover, when this mass ratio is 3.0 / 1.0 or less, the heat resistance of the fiber assembly is particularly high. Furthermore, consumption of the phenolic antioxidant in obtaining the fiber by spinning can be suppressed.
 繊維2は、耐候安定剤、耐光安定剤、ブロッキング防止剤、滑剤、核剤、顔料、柔軟剤、親水材、助剤、撥水剤、フィラー、抗菌剤等の添加剤を含有してもよい。 The fiber 2 may contain additives such as a weather resistance stabilizer, a light resistance stabilizer, an anti-blocking agent, a lubricant, a nucleating agent, a pigment, a softening agent, a hydrophilic material, an auxiliary agent, a water repellent, a filler, and an antibacterial agent. .
 繊維2は、上述の通り、例えば熱可塑性樹脂を含有する紡糸用材料を紡糸することで作製されうる。 The fiber 2 can be produced by spinning a spinning material containing, for example, a thermoplastic resin as described above.
 紡糸用材料の組成は、繊維2の組成に合致するように決定される。すなわち、紡糸用材料は、可塑剤を含むことができる。紡糸用材料は、酸化防止剤を含むこともできる。紡糸用材料がフェノール系酸化防止剤とリン系酸化防止剤とを含んでもよい。また、紡糸用材料は、耐候安定剤、耐光安定剤、ブロッキング防止剤、滑剤、核剤、顔料、柔軟剤、親水材、助剤、撥水剤、フィラー、抗菌剤といった、添加剤を含有してもよい。 The composition of the spinning material is determined so as to match the composition of the fiber 2. That is, the spinning material can include a plasticizer. The spinning material can also contain an antioxidant. The spinning material may contain a phenolic antioxidant and a phosphorus antioxidant. The spinning material contains additives such as weathering stabilizer, light stabilizer, anti-blocking agent, lubricant, nucleating agent, pigment, softener, hydrophilic material, auxiliary agent, water repellent, filler, antibacterial agent. May be.
 紡糸用材料の調製のためには、例えば紡糸用材料の成分をドライブレンドしてもよく、紡糸用材料の成分を加熱して溶融させた状態で混合してもよい。紡糸用材料の成分を加熱して溶融させた状態で混合する場合は、成分を加熱容器内でバッチ式で混合してもよく、連続式の紡糸押出機で混合してもよい。連続式の紡糸押出機で混合する場合は、紡糸押出機は、単軸式、二軸式及び多軸式のうちいずれでもよい。 In order to prepare the spinning material, for example, the components of the spinning material may be dry blended, or the components of the spinning material may be mixed while being heated and melted. In the case where the components of the spinning material are mixed while being heated and melted, the components may be mixed batchwise in a heating vessel or may be mixed with a continuous spinning extruder. When mixing with a continuous spinning extruder, the spinning extruder may be any of a single screw type, a twin screw type, and a multi-screw type.
 紡糸用材料を紡糸する方法として、メルトブローン法、電界紡糸法といった、溶融紡糸法を適用できる。この場合、繊維を安定して製造できる。 As a method for spinning a spinning material, a melt spinning method such as a melt blown method or an electrospinning method can be applied. In this case, the fiber can be manufactured stably.
 溶融紡糸法で繊維を製造する場合、例えばまず紡糸用材料を加熱することで溶融させる。なお、連続式の紡糸押出機で紡糸用材料を調製する場合は、紡糸用材料は溶融した状態で調製される。この溶融した紡糸用材料をノズルから吐出する。ノズルから吐出された紡糸用材料に加熱された気流を吹き付けることで、紡糸用材料を延伸してもよい。気流の方向は、ノズルからの紡糸用材料の吐出方向に沿った方向でもよく、この吐出方向とは異なる方向でもよい。ノズルから吐出された紡糸用材料に電圧を印加することで、繊維を延伸してもよい。これにより、繊維2を製造できる。 When producing fibers by the melt spinning method, for example, the spinning material is first melted by heating. When the spinning material is prepared with a continuous spinning extruder, the spinning material is prepared in a molten state. The melted spinning material is discharged from a nozzle. The spinning material may be stretched by blowing a heated air current onto the spinning material discharged from the nozzle. The direction of the airflow may be a direction along the discharge direction of the spinning material from the nozzle, or may be a direction different from the discharge direction. The fiber may be drawn by applying a voltage to the spinning material discharged from the nozzle. Thereby, the fiber 2 can be manufactured.
 繊維2の直径は、紡糸用材料の組成に応じて、例えば紡糸用材料を溶融させる際の加熱条件、ノズルの穴径、ノズルからの紡糸用材料の吐出量、気流を吹き付ける場合の気流の温度及び流量、並びに電圧を印加する場合の電圧の印加条件を調整することで、制御されうる。 The diameter of the fiber 2 depends on the composition of the spinning material, for example, the heating conditions when melting the spinning material, the hole diameter of the nozzle, the discharge amount of the spinning material from the nozzle, the temperature of the airflow when blowing the airflow In addition, the voltage can be controlled by adjusting the flow rate and the voltage application condition when applying the voltage.
 紡糸用材料を溶融させるための加熱温度は、紡糸用材料の組成に依存するが、紡糸用材料中の熱可塑性樹脂の融点又は軟化点より10℃高い温度以上、熱可塑性樹脂の熱分解温度以下の範囲内であることが好ましい。ノズルからの紡糸用材料の吐出量は、ノズルの一つの穴当り0.05g/分以上、0.5g/分以下の範囲内であることが好ましい。紡糸時に繊維に気流を吹き付ける場合は、気流の温度は200℃以上、450℃以下の範囲内であることが好ましい。気流の流量は、50Nm3/時・m以上、500Nm3/時・m以下の範囲内であることが好ましい。 The heating temperature for melting the spinning material depends on the composition of the spinning material, but it is at least 10 ° C higher than the melting point or softening point of the thermoplastic resin in the spinning material and below the thermal decomposition temperature of the thermoplastic resin. It is preferable to be within the range. The discharge amount of the spinning material from the nozzle is preferably in the range of 0.05 g / min or more and 0.5 g / min or less per hole of the nozzle. In the case where an air stream is blown onto the fiber during spinning, the temperature of the air stream is preferably in the range of 200 ° C. or higher and 450 ° C. or lower. The flow rate of air flow, 50 Nm 3 / h · m or more, is preferably in the range of 500 Nm 3 / h · m.
 繊維2を製造する際、上述の通り、特定原料を熱分解させて分子量が調整された特定成分を得ることで、特定成分を含有する繊維を製造してもよい。 When manufacturing the fiber 2, as described above, the specific raw material may be manufactured by pyrolyzing the specific raw material to obtain the specific component whose molecular weight is adjusted.
 特定原料の熱分解に当たっては、例えば紡糸用材料を調製する前に、特定原料を、好ましくは不活性雰囲気下(例えば窒素雰囲気下)又は減圧雰囲気下で、特定原料の熱分解が生じる温度下に配置することで、特定原料を熱分解させる。この温度は、特定原料の種類に依存し、例えば特定原料がポリプロピレン樹脂である場合には、300℃以上である。特定原料の熱分解は、加熱容器内でバッチ式で行われてもよく、密閉式の連続式反応機内で連続式で行われてもよい。これより得られた特定成分と、繊維の特定成分以外の成分とを混合することで、紡糸用材料を調製できる。この紡糸用材料を紡糸することにより、特定成分を含有する繊維を作製できる。 In the thermal decomposition of the specific raw material, for example, before preparing the spinning material, the specific raw material is preferably brought to a temperature at which thermal decomposition of the specific raw material occurs in an inert atmosphere (for example, under a nitrogen atmosphere) or a reduced pressure atmosphere. By arranging, the specific raw material is thermally decomposed. This temperature depends on the type of the specific raw material. For example, when the specific raw material is a polypropylene resin, the temperature is 300 ° C. or higher. The thermal decomposition of the specific raw material may be performed batchwise in a heating vessel, or may be performed continuously in a closed continuous reactor. A spinning material can be prepared by mixing the specific component thus obtained and a component other than the specific component of the fiber. A fiber containing a specific component can be produced by spinning this spinning material.
 特定原料と繊維の特定成分以外の成分とを混合して特定原料を含有する紡糸用材料を調製し、この紡糸用材料を紡糸して繊維を作製する際に紡糸用材料中の特定原料を熱分解させることで、特定成分を含有する繊維を作製してもよい。例えば紡糸用材料を上記のように溶融紡糸することで繊維を作製する場合に、紡糸用材料を溶融させる際の温度を紡糸用材料を特定原料の熱分解が生じる温度とすることで、特定原料を熱分解させてもよい。ただし、繊維集合体をより安定して製造するためには、紡糸用材料を調製する前に特定原料を熱分解させる方が好ましい。 A specific raw material and a component other than the specific component of the fiber are mixed to prepare a spinning material containing the specific raw material, and when the spinning material is spun to produce a fiber, the specific raw material in the spinning material is heated. You may produce the fiber containing a specific component by making it decompose. For example, when a fiber is produced by melt spinning the spinning material as described above, the temperature at which the spinning material is melted is set to a temperature at which the thermal decomposition of the particular raw material is performed. May be thermally decomposed. However, in order to produce the fiber assembly more stably, it is preferable to thermally decompose the specific raw material before preparing the spinning material.
 なお、熱分解が生じる温度は、例えば不活性雰囲気下で特定原料の重量減少が生じる温度、又は不活性雰囲気下で特定原料の溶融粘度が低下する温度である。 The temperature at which thermal decomposition occurs is, for example, the temperature at which the weight loss of the specific raw material occurs under an inert atmosphere, or the temperature at which the melt viscosity of the specific raw material decreases under an inert atmosphere.
 本実施形態では、繊維2が、1600g/10min以上、5000g/10min以下の範囲内のメルトフローレートと、250mPa・s以上、7000mPa・s以下の範囲内の溶融粘度とのうち、少なくとも一方を有するため、このような繊維2を上記の溶融紡糸法で安定して製造することができ、これにより、繊維2の合計数量に対して8μm以下の直径を有する繊維2の数量の割合が99%以上である繊維2を安定して製造できる。 In this embodiment, the fiber 2 has at least one of a melt flow rate within a range of 1600 g / 10 min to 5000 g / 10 min and a melt viscosity within a range of 250 mPa · s to 7000 mPa · s. Therefore, such a fiber 2 can be stably produced by the melt spinning method described above, whereby the ratio of the quantity of the fibers 2 having a diameter of 8 μm or less to the total quantity of the fibers 2 is 99% or more. The fiber 2 can be stably produced.
 繊維2を集合させることで、繊維集合体1が得られる。繊維集合体1内では、繊維2が絡み合っていることが好ましい。繊維集合体1は、例えば不織布状であるが、これに制限されない。 The fiber assembly 1 is obtained by assembling the fibers 2. In the fiber assembly 1, it is preferable that the fibers 2 are intertwined. The fiber assembly 1 is, for example, a nonwoven fabric, but is not limited thereto.
 繊維集合体1には、アニール処理を施すことが好ましい。例えば繊維集合体1を100℃の加熱温度で2時間処理することが好ましい。アニール処理により、繊維2の結晶化が促進されて、繊維集合体1の形状安定性が増す。 It is preferable to anneal the fiber assembly 1. For example, it is preferable to treat the fiber assembly 1 at a heating temperature of 100 ° C. for 2 hours. The annealing process promotes crystallization of the fibers 2 and increases the shape stability of the fiber assembly 1.
 図3は、実施の形態に係る吸音材の模式図である。吸音材11は、繊維集合体1のみで構成されてもよいし、繊維集合体1と、繊維集合体1を支持する支持体3とを備えてもよい。支持体3は、例えばマイクロファイバー不織布である。吸音材11は、繊維集合体1と、繊維集合体1を内包する袋とを備えてもよい。袋は、例えばマイクロファイバー不織布製である。繊維集合体1を支持体3に支持させるためには、熱間プレス又は熱風の吹きつけによって繊維集合体1を支持体3に熱融着させてもよい。 FIG. 3 is a schematic diagram of a sound absorbing material according to the embodiment. The sound absorbing material 11 may be composed of only the fiber assembly 1 or may include the fiber assembly 1 and the support 3 that supports the fiber assembly 1. The support 3 is, for example, a microfiber nonwoven fabric. The sound absorbing material 11 may include a fiber assembly 1 and a bag containing the fiber assembly 1. The bag is made of, for example, a microfiber nonwoven fabric. In order to support the fiber assembly 1 on the support 3, the fiber assembly 1 may be thermally fused to the support 3 by hot pressing or blowing hot air.
 繊維集合体1は、120℃の耐熱性を有することが好ましい。この耐熱性は、繊維集合体1に対して、120℃の高温空気雰囲気下に500時間曝露する処理を施した後の繊維集合体1の垂直吸音率に基づいて評価される。この処理後の繊維集合体1の600Hzの音の吸音率が20%以上かつ1000Hzの音の吸音率が50%以上である場合、120℃の耐熱性を有すると評価される。 The fiber assembly 1 preferably has a heat resistance of 120 ° C. This heat resistance is evaluated based on the vertical sound absorption coefficient of the fiber assembly 1 after the fiber assembly 1 is subjected to a treatment of exposure to a high-temperature air atmosphere at 120 ° C. for 500 hours. When the sound absorption coefficient of 600 Hz sound of the fiber assembly 1 after this treatment is 20% or more and the sound absorption coefficient of sound of 1000 Hz is 50% or more, it is evaluated as having heat resistance of 120 ° C.
 このような高い耐熱性は、繊維集合体1を構成する繊維2の組成を、上記説明の範囲内で適宜調整することで、達成可能である。 Such high heat resistance can be achieved by appropriately adjusting the composition of the fibers 2 constituting the fiber assembly 1 within the range described above.
 (1)実施例及び比較例の繊維集合体の作製
 実施例10の場合を除き、後掲の表1及び表2の「組成」の欄に示す成分を、不活性条件下で、200℃で溶融させた状態で10分間混合してから、室温まで冷却することで固化させ、更に粉砕することで、紡糸用材料を得た。
(1) Production of fiber assemblies of Examples and Comparative Examples Except in the case of Example 10, the components shown in the column of “Composition” in Tables 1 and 2 below are 200 ° C. under inert conditions. After mixing for 10 minutes in the molten state, the mixture was solidified by cooling to room temperature, and further pulverized to obtain a spinning material.
 実施例10の場合は、後掲の表1及び表2の「組成」の欄に示す成分のうち酸化防止剤以外を、窒素雰囲気下の反応容器内に入れて、混合物を得た。反応容器内で混合物を撹拌しながら350℃まで昇温させてから、10分間保持することで、混合物中のPP(ポリプロピレン)樹脂(f)を熱分解させた。続いて、混合物を200℃まで冷却した。続いて混合物に酸化防止剤を加えて5分間混合してから、室温に冷却することで固化させ、更に粉砕することで、紡糸用材料を得た。 In the case of Example 10, components other than the antioxidants shown in the “Composition” column of Tables 1 and 2 below were placed in a reaction vessel under a nitrogen atmosphere to obtain a mixture. The temperature of the mixture was raised to 350 ° C. while stirring in the reaction vessel and then held for 10 minutes, whereby the PP (polypropylene) resin (f) in the mixture was thermally decomposed. Subsequently, the mixture was cooled to 200 ° C. Subsequently, an antioxidant was added to the mixture, mixed for 5 minutes, solidified by cooling to room temperature, and further pulverized to obtain a spinning material.
 紡糸用材料を溶融紡糸法で紡糸することで、繊維2を得た。具体的には、紡糸用材料を溶融させてから、紡糸用材料をノズルから吐出しながら、この紡糸用材料に気流を吹き付けることで、繊維2を得た。紡糸用材料を溶融させるための加熱温度、ノズルの一つの穴当りの紡糸用材料の吐出量、ノズルの穴径、気流の温度及び気流の速度の条件は、表1及び表2中の「紡糸条件」の欄に示す通りである。なお、比較例3の場合は、0.25mm径の穴と、1.0mm径の穴とを、15:1の数量比で有するノズルを用いた。紡糸用材料の吐出量は、ノズルの穴径の値ごとに独立した押し出し機から規定量の紡糸用材料を押し出すことで調整した。 A fiber 2 was obtained by spinning the spinning material by the melt spinning method. Specifically, after the spinning material was melted, the fiber 2 was obtained by blowing an air current onto the spinning material while discharging the spinning material from the nozzle. The conditions for the heating temperature for melting the spinning material, the discharge amount of the spinning material per hole in the nozzle, the nozzle hole diameter, the air temperature and the air velocity are shown in Tables 1 and 2. As shown in the column “Condition”. In the case of Comparative Example 3, a nozzle having a 0.25 mm diameter hole and a 1.0 mm diameter hole in a quantity ratio of 15: 1 was used. The discharge amount of the spinning material was adjusted by extruding a specified amount of the spinning material from an independent extruder for each nozzle hole diameter value.
 さらに、ノズルから吐出した紡糸用材料が冷却されることで形成された繊維2を、コンベア上で捕集することで、不織布状の繊維集合体1を得た。コンベアの送り速度は、繊維集合体1の目付け量が400g/m2となるように調整した。なお、実施例11の場合は、目付け量20g/m2のスパンボンド不織布上で繊維集合体1を作製してから、熱ロールプレスによってスパンボンド不織布と繊維集合体1とを接着した。 Furthermore, the fiber assembly 1 was obtained by collecting the fibers 2 formed by cooling the spinning material discharged from the nozzles on a conveyor. The feed rate of the conveyor was adjusted so that the basis weight of the fiber assembly 1 was 400 g / m 2 . In the case of Example 11, after producing the fiber assembly 1 on a spunbonded nonwoven fabric having a basis weight of 20 g / m 2 , the spunbonded nonwoven fabric and the fiber assembly 1 were bonded by a hot roll press.
 後掲の表1及び表2中の成分の詳細は下記の通りである。
・PP樹脂(a):サンアロマー社製のポリプロピレン樹脂、品番PWH00N、重量平均分子量8.7万、メルトフローレート1700g/10min、230℃溶融粘度6000mPa・s、融点166℃。
・PP樹脂(b):三井化学社製の結晶性ポリプロピレン樹脂(ホモポリマー)、品番NP805、重量平均分子量3.5万、メルトフローレート3500g/10min、230℃溶融粘度800mPa・s、融点155℃。
・PP樹脂(c):三井化学社製の結晶性ポリプロピレン樹脂(ホモポリマー)、品番NP500、重量平均分子量3.5万、メルトフローレート5000g/10min、230℃溶融粘度270mPa・s、融点164℃。
・PP樹脂(d):三井化学社製の結晶性ポリプロピレン樹脂(ホモポリマー)、品番NP055、重量平均分子量1.0万、メルトフローレート6000g/10min、230℃溶融粘度25mPa・s、融点145℃。
・PP樹脂(e):トータルペトロケミカル製のポリプロピレン樹脂、品番3962、重量平均分子量14.5万、メルトフローレート1300g/10min、230℃溶融粘度7500mPa・s、融点165℃。
・PP樹脂(f):ポリミレイ製のポリプロピレン樹脂、品番HP461X、重量平均分子量15万、メルトフローレート1100g/10min、230℃溶融粘度8600mPa・s、融点168℃。
・PE樹脂:三井化学社製のポリエチレンワックス、品番40800、230℃溶融粘度135mPa・s、融点130℃。
・パラフィン:日本精鑞社製のパラフィンワックス、品番FT115、230℃溶融粘度5mPa・s、融点113℃。
・熱可塑性エラストマー:エクソンモービル社製の品名VISTAMAXX、品番6202、メルトフローレート20g/10min、230℃溶融粘度196000mPa・s、軟化点94℃。
・フェノール系酸化防止剤:BASF社製のフェノール系酸化防止剤、品名IRGANOX 1010。
・リン系酸化防止剤:株式会社ADEKA製のリン系酸化防止剤、品名アデカスタブPEP-36。
Details of the components in Tables 1 and 2 below are as follows.
PP resin (a): Polypropylene resin manufactured by Sun Allomer, product number PWH00N, weight average molecular weight 87,000, melt flow rate 1700 g / 10 min, 230 ° C. melt viscosity 6000 mPa · s, melting point 166 ° C.
PP resin (b): crystalline polypropylene resin (homopolymer) manufactured by Mitsui Chemicals, product number NP805, weight average molecular weight 35,000, melt flow rate 3500 g / 10 min, 230 ° C. melt viscosity 800 mPa · s, melting point 155 ° C. .
PP resin (c): crystalline polypropylene resin (homopolymer) manufactured by Mitsui Chemicals, product number NP500, weight average molecular weight 35,000, melt flow rate 5000 g / 10 min, 230 ° C. melt viscosity 270 mPa · s, melting point 164 ° C. .
PP resin (d): crystalline polypropylene resin (homopolymer) manufactured by Mitsui Chemicals, product number NP055, weight average molecular weight 10,000, melt flow rate 6000 g / 10 min, 230 ° C. melt viscosity 25 mPa · s, melting point 145 ° C. .
PP resin (e): polypropylene resin manufactured by Total Petrochemical, product number 3962, weight average molecular weight 145,000, melt flow rate 1300 g / 10 min, 230 ° C. melt viscosity 7500 mPa · s, melting point 165 ° C.
PP resin (f): Polymylay polypropylene resin, product number HP461X, weight average molecular weight 150,000, melt flow rate 1100 g / 10 min, 230 ° C. melt viscosity 8600 mPa · s, melting point 168 ° C.
PE resin: polyethylene wax manufactured by Mitsui Chemicals, product number 40800, 230 ° C. melt viscosity 135 mPa · s, melting point 130 ° C.
Paraffin: Paraffin wax manufactured by Nippon Seiki Co., Ltd., product number FT115, 230 ° C. melt viscosity 5 mPa · s, melting point 113 ° C.
-Thermoplastic elastomer: Product name VISTAMAXX manufactured by ExxonMobil, product number 6202, melt flow rate 20 g / 10 min, 230 ° C melt viscosity 196000 mPa · s, softening point 94 ° C.
Phenol antioxidant: phenolic antioxidant manufactured by BASF, product name IRGANOX 1010.
Phosphorous antioxidant: Phosphoric antioxidant manufactured by ADEKA Corporation, product name ADK STAB PEP-36.
 (2)評価試験
 各実施例及び比較例について、下記の評価試験を行った。その結果を後掲の表1及び表2の「評価試験」の欄に示す。
(2) Evaluation test The following evaluation tests were conducted for each of the examples and comparative examples. The results are shown in the column “Evaluation Test” in Tables 1 and 2 below.
 なお、比較例4の場合は、紡糸用材料を紡糸しても、繊維状に成形することは困難であったが、繊維とみなせる成形体のみを集めて繊維集合体1を作製し、これについて評価を行った。 In the case of Comparative Example 4, although it was difficult to form into a fiber shape even when the spinning material was spun, only the molded body that can be regarded as a fiber was collected to produce the fiber assembly 1. Evaluation was performed.
 (2-1)メルトフローレート評価試験
 ASTM D-1238に準拠して、繊維集合体1中の繊維2のメルトフローレートを測定した。なお、メルトフローレートの測定条件は、繊維2を作製するために用いた紡糸用材料中の熱可塑性樹脂の種類に応じて決定され、紡糸用材料中の熱可塑性樹脂が二種以上の樹脂を含有する場合は、そのうち最も質量割合が大きい樹脂の種類に応じて決定された。
(2-1) Melt flow rate evaluation test The melt flow rate of the fibers 2 in the fiber assembly 1 was measured in accordance with ASTM D-1238. The measurement conditions of the melt flow rate are determined according to the type of the thermoplastic resin in the spinning material used for producing the fiber 2, and the thermoplastic resin in the spinning material contains two or more types of resins. When it contained, it determined according to the kind of resin with the largest mass ratio among them.
 (2-2)溶融粘度評価試験
 株式会社アントンパール・ジャパン製の粘弾性測定装置(型番MCR302)を用いて、繊維集合体1中の繊維2の、230℃における溶融粘度を、窒素雰囲気下、せん断速度10〔1/s〕の条件下で測定した。
(2-2) Melt Viscosity Evaluation Test Using a viscoelasticity measuring device (model number MCR302) manufactured by Anton Paar Japan Co., Ltd., the melt viscosity at 230 ° C. of the fibers 2 in the fiber assembly 1 was measured under a nitrogen atmosphere. The measurement was performed under the condition of a shear rate of 10 [1 / s].
 (2-3)繊維径の測定
 カーボンテープにおける3mm×3mmの領域に繊維集合体1中の繊維2を貼り付けてから、繊維2にAuを2分間程度蒸着することで、繊維2をAuでコーティングした。続いて、走査型電子顕微鏡(株式会社キーエンス製、型番VE-7800)を用いて繊維2の3000倍の画像を得た。この画像を画像処理することで、任意の200本の繊維2の直径を測定し、この測定結果から、繊維2の直径の中央値を算出した。
(2-3) Measurement of fiber diameter After attaching the fiber 2 in the fiber assembly 1 to a 3 mm × 3 mm region of the carbon tape, the fiber 2 is made of Au by vapor-depositing Au on the fiber 2 for about 2 minutes. Coated. Subsequently, a 3000 times image of the fiber 2 was obtained using a scanning electron microscope (manufactured by Keyence Corporation, model number VE-7800). By processing this image, the diameters of arbitrary 200 fibers 2 were measured, and the median value of the diameters of the fibers 2 was calculated from the measurement results.
 また、この測定結果から、200本の繊維2のうち、10μm以上の直径を有する繊維2の数量の割合、8μm以下の直径を有する繊維2の数量の割合、及び5μm以下の直径を有する繊維2の数量の割合を、算出した。 Further, from this measurement result, the ratio of the number of fibers 2 having a diameter of 10 μm or more, the ratio of the number of fibers 2 having a diameter of 8 μm or less, and the fibers 2 having a diameter of 5 μm or less among the 200 fibers 2. The percentage of the quantity was calculated.
 (2-4)目付け量及び密度
 繊維集合体1を切断して、平面視50mm×50mmの寸法を有する10個のサンプルを作製した。サンプルの質量を測定し、その結果から質量の平均値を算出した。サンプルの質量の平均値を、サンプルの平面視面積で除することで、繊維集合体1の目付量を算出した。
(2-4) Weight per unit area and density The fiber assembly 1 was cut to prepare ten samples having dimensions of 50 mm × 50 mm in plan view. The mass of the sample was measured, and the average value of the mass was calculated from the result. The basis weight of the fiber assembly 1 was calculated by dividing the average value of the mass of the sample by the area of the sample in plan view.
 また、サンプルにおける四つの辺の各々の中央部の厚みをノギスで測定し、その測定結果からサンプルの厚みの平均値を算出した。サンプルの平面視面積にサンプルの厚みの平均値を乗じて得た値を、サンプルの体積の平均値とした。サンプルの質量の平均値を、サンプルの体積の平均値で除することで、繊維集合体1の密度を算出した。 Also, the thickness of the central part of each of the four sides of the sample was measured with a caliper, and the average value of the sample thickness was calculated from the measurement result. The value obtained by multiplying the planar view area of the sample by the average value of the thickness of the sample was taken as the average value of the volume of the sample. The density of the fiber assembly 1 was calculated by dividing the average value of the mass of the sample by the average value of the volume of the sample.
 (2-5)吸音特性試験
 繊維集合体1から、平面視直径29mmの寸法を有する試験片を切り出した。この試験片の、600Hz、1000Hz及び1500Hzの各周波数の音の垂直入射吸音率を、JIS A1405-2に基づいて、音響インピーダンス管を備える垂直吸音システム(株式会社小野測器製、型番DS-200)で測定した。
(2-5) Sound absorption characteristic test A test piece having a diameter of 29 mm in plan view was cut out from the fiber assembly 1. Based on JIS A1405-2, a vertical sound absorption system (manufactured by Ono Sokki Co., Ltd., model number DS-200) is used to calculate the normal incident sound absorption coefficient of sound of each frequency of 600 Hz, 1000 Hz, and 1500 Hz. ).
 (2-6)耐熱性試験
 上記の吸音特性試験後の繊維集合体1を、120℃で500時間加熱してから、上記吸音特性試験の場合と同じ方法で、600Hz、1000Hz及び1500Hzの各周波数の音の垂直入射吸音率を測定した。
(2-6) Heat resistance test The fiber assembly 1 after the above sound absorption characteristic test was heated at 120 ° C. for 500 hours, and then each frequency of 600 Hz, 1000 Hz and 1500 Hz was used in the same manner as in the above sound absorption characteristic test. The normal incident sound absorption coefficient of the sound was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本開示の繊維集合体、並びに、この繊維集合体を備える吸音材は、電気自動車、ハイブリッド車等のような内燃機関以外の駆動源を備える輸送車両等において有用である。 The fiber assembly of the present disclosure and the sound absorbing material including the fiber assembly are useful in a transportation vehicle including a drive source other than an internal combustion engine such as an electric vehicle and a hybrid vehicle.
 1  繊維集合体
 2  繊維
 3  支持体
 11  吸音材
DESCRIPTION OF SYMBOLS 1 Fiber assembly 2 Fiber 3 Support body 11 Sound absorbing material

Claims (13)

  1.  熱可塑性樹脂を含む繊維の集合体であり、
     前記繊維は、250mPa・s以上、7000mPa・s以下の範囲内の溶融粘度を有し、
     前記繊維の直径の数量基準の中央値は、0.3μm以上、0.9μm以下の範囲内であり、
     前記繊維の合計数量に対する、8μm以下の直径を有する繊維の数量の割合は、99%以上である、
     繊維集合体。
    An aggregate of fibers containing a thermoplastic resin;
    The fiber has a melt viscosity within a range of 250 mPa · s to 7000 mPa · s,
    The median value of the fiber diameter is in the range of 0.3 μm or more and 0.9 μm or less,
    The ratio of the number of fibers having a diameter of 8 μm or less to the total number of fibers is 99% or more.
    Fiber assembly.
  2.  熱可塑性樹脂を含む繊維の集合体であり、
     前記繊維は、1600g/10min以上、5000g/10min以下の範囲内のメルトフローレートを有し、
     前記繊維の直径の数量基準の中央値は、0.3μm以上、0.9μm以下の範囲内であり、
     前記繊維の合計数量に対する、8μm以下の直径を有する繊維の数量の割合は、99%以上である、
     繊維集合体。
    An aggregate of fibers containing a thermoplastic resin;
    The fiber has a melt flow rate within a range of 1600 g / 10 min to 5000 g / 10 min,
    The median value of the fiber diameter is in the range of 0.3 μm or more and 0.9 μm or less,
    The ratio of the number of fibers having a diameter of 8 μm or less to the total number of fibers is 99% or more.
    Fiber assembly.
  3.  前記繊維は、1600g/10min以上、5000g/10min以下の範囲内のメルトフローレートを有する、
     請求項1に記載の繊維集合体。
    The fiber has a melt flow rate within a range of 1600 g / 10 min to 5000 g / 10 min.
    The fiber assembly according to claim 1.
  4.  前記繊維は、2000g/10min以上、5000g/10min以下の範囲内のメルトフローレートを有する、
     請求項1又は3に記載の繊維集合体。
    The fiber has a melt flow rate within a range of 2000 g / 10 min to 5000 g / 10 min.
    The fiber assembly according to claim 1 or 3.
  5.  前記繊維は、250mPa・s以上、3000mPa・s以下の範囲内の溶融粘度を有する、
     請求項2又は3に記載の繊維集合体。
    The fiber has a melt viscosity within a range of 250 mPa · s to 3000 mPa · s.
    The fiber assembly according to claim 2 or 3.
  6.  0.03g/cm3以下の密度を有する、
     請求項1又は2に記載の繊維集合体。
    Having a density of 0.03 g / cm 3 or less,
    The fiber assembly according to claim 1 or 2.
  7.  前記熱可塑性樹脂は、二種以上の樹脂を含有し、
     前記樹脂は、互いに異なるメルトフローレートを有する、あるいは、互いに異なる溶融粘度を有する、
     請求項1又は2に記載の繊維集合体。
    The thermoplastic resin contains two or more kinds of resins,
    The resins have different melt flow rates, or have different melt viscosities,
    The fiber assembly according to claim 1 or 2.
  8.  前記熱可塑性樹脂は、ポリプロピレン、ポリエチレン、ポリオレフィン系熱可塑性エラストマー及びパラフィンからなる群から選択される少なくとも一種の成分を含有する、
     請求項1又は2に記載の繊維集合体。
    The thermoplastic resin contains at least one component selected from the group consisting of polypropylene, polyethylene, polyolefin-based thermoplastic elastomer and paraffin.
    The fiber assembly according to claim 1 or 2.
  9.  前記繊維は、可塑剤を含有し、
     前記可塑剤は、前記熱可塑性樹脂よりも高いメルトフローレートを有する、あるいは、前記熱可塑性樹脂よりも低い溶融粘度を有する、
     請求項1又は2に記載の繊維集合体。
    The fiber contains a plasticizer,
    The plasticizer has a higher melt flow rate than the thermoplastic resin, or a lower melt viscosity than the thermoplastic resin,
    The fiber assembly according to claim 1 or 2.
  10.  前記熱可塑性樹脂中の少なくとも一部の成分は、熱分解工程を経て製造されたものである、
     請求項1又は2に記載の繊維集合体。
    At least some of the components in the thermoplastic resin are manufactured through a thermal decomposition step.
    The fiber assembly according to claim 1 or 2.
  11.  120℃の耐熱性を有する、
     請求項1又は2に記載の繊維集合体。
    Having heat resistance of 120 ° C,
    The fiber assembly according to claim 1 or 2.
  12.  請求項1から11のいずれか一項に記載の繊維集合体を備える吸音材。 Sound absorbing material comprising the fiber assembly according to any one of claims 1 to 11.
  13.  車載用である請求項12に記載の吸音材。 The sound-absorbing material according to claim 12, which is used for in-vehicle use.
PCT/JP2016/004109 2015-09-28 2016-09-09 Fiber assembly and sound absorbing material WO2017056413A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-190012 2015-09-28
JP2015190012 2015-09-28
JP2016088961A JP6037322B1 (en) 2015-09-28 2016-04-27 Fiber assembly and sound absorbing material
JP2016-088961 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017056413A1 true WO2017056413A1 (en) 2017-04-06

Family

ID=57483093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004109 WO2017056413A1 (en) 2015-09-28 2016-09-09 Fiber assembly and sound absorbing material

Country Status (2)

Country Link
JP (2) JP6037322B1 (en)
WO (1) WO2017056413A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6349019B1 (en) * 2017-09-22 2018-06-27 オーウエル株式会社 Melt blown non-woven fabric, its use and production method thereof
CN108611758A (en) * 2018-04-24 2018-10-02 大连神润新材料有限公司 No finish polyamide fibre, acrylic fibers, polypropylene fibre composite fibre needle pierce electrostatic net production technology
JP7107831B2 (en) * 2018-12-28 2022-07-27 花王株式会社 MELT ELECTROSPINN COMPOSITION AND FIBERS AND METHOD FOR MANUFACTURE THEREOF
JP7245048B2 (en) * 2018-12-28 2023-03-23 花王株式会社 MELT ELECTROSPINN COMPOSITION AND FIBERS AND METHOD FOR MANUFACTURE THEREOF
MX2022004302A (en) * 2019-12-27 2022-05-10 Kolon Inc Polyethylene yarn, method for manufacturing same, and cool-feeling fabric comprising same.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102236A (en) * 2008-10-27 2010-05-06 Teijin Fibers Ltd Manufacturing method for sound-absorbing structure, and the sound-absorbing structure
JP2011162636A (en) * 2010-02-09 2011-08-25 Japan Polypropylene Corp Propylene resin material for melt electrospinning and melt spinning method of ultrafine fiber
JP2012112067A (en) * 2010-11-24 2012-06-14 Univ Of Fukui Method for producing fiber mat, and fiber mat
JP2013044067A (en) * 2011-08-24 2013-03-04 Japan Polypropylene Corp Propylene-based resin composition to be used in melt-spinning type electrospinning and melt-spinning method of ultrafine fiber using the same
JP5503816B1 (en) * 2012-08-23 2014-05-28 三井化学株式会社 Meltblown nonwoven fabric and its use
JP2015030218A (en) * 2013-08-05 2015-02-16 東レ株式会社 Nonwoven fabric excellent in absorbing property
JP2015183308A (en) * 2014-03-24 2015-10-22 日本バイリーン株式会社 Ultrafine fiber non-woven fabric and apparatus for producing non-woven fabric
JP2016089317A (en) * 2014-11-11 2016-05-23 日本ポリプロ株式会社 Propylene-based resin composition for melt spinning type electrospinning, manufacturing method of propylene-based ultra fine fiber and propylene-based ultra fine fiber manufactured by using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089317A (en) * 2011-10-13 2013-05-13 Sanyo Electric Co Ltd Storage battery unit, display system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102236A (en) * 2008-10-27 2010-05-06 Teijin Fibers Ltd Manufacturing method for sound-absorbing structure, and the sound-absorbing structure
JP2011162636A (en) * 2010-02-09 2011-08-25 Japan Polypropylene Corp Propylene resin material for melt electrospinning and melt spinning method of ultrafine fiber
JP2012112067A (en) * 2010-11-24 2012-06-14 Univ Of Fukui Method for producing fiber mat, and fiber mat
JP2013044067A (en) * 2011-08-24 2013-03-04 Japan Polypropylene Corp Propylene-based resin composition to be used in melt-spinning type electrospinning and melt-spinning method of ultrafine fiber using the same
JP5503816B1 (en) * 2012-08-23 2014-05-28 三井化学株式会社 Meltblown nonwoven fabric and its use
JP2015030218A (en) * 2013-08-05 2015-02-16 東レ株式会社 Nonwoven fabric excellent in absorbing property
JP2015183308A (en) * 2014-03-24 2015-10-22 日本バイリーン株式会社 Ultrafine fiber non-woven fabric and apparatus for producing non-woven fabric
JP2016089317A (en) * 2014-11-11 2016-05-23 日本ポリプロ株式会社 Propylene-based resin composition for melt spinning type electrospinning, manufacturing method of propylene-based ultra fine fiber and propylene-based ultra fine fiber manufactured by using the same

Also Published As

Publication number Publication date
JP6037322B1 (en) 2016-12-07
JP2017066584A (en) 2017-04-06
JP6653476B2 (en) 2020-02-26
JP2017066575A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
WO2017056413A1 (en) Fiber assembly and sound absorbing material
JP5503816B1 (en) Meltblown nonwoven fabric and its use
JP4733108B2 (en) Elastomer composite fiber containing block copolymer with high flow
JP6546336B2 (en) Nonwoven fabric, filter and method of manufacturing nonwoven fabric
JP5580963B2 (en) Propylene-based resin material for melt spinning type electrospinning and method for melt spinning ultrafine fibers
TW201412385A (en) Microporous film, method for fabricating the same, separator for battery, and resin composition for nonaqueous electrolyte secondary cell separator
WO2003006723A1 (en) Resin compositions for composite fiber
CN103320969A (en) Recyclable acoustic absorbent and manufacturing method thereof
JP2007107143A (en) High strength fusing conjugate fiber
US8053380B2 (en) Extensible spunbonded non-woven fabrics
JP5434823B2 (en) Electret filter for vehicle interior and manufacturing method thereof
DE112016003564T5 (en) Assemblies comprising a compressible pressure pad, methods of reducing hum distortion in a display device, and methods of improving shock absorption in a display device
CA2563984C (en) Polypropylene blends for non-woven fabrics
US20210060896A1 (en) Composite Fiber Web Having Superior Heat Resistance and Sound Absorption and Method of Manufacturing Same
JP6894698B2 (en) Reticulated structure and its manufacturing method
JP2020051023A (en) Composite yarn
JP2017519127A (en) Thermally stable nonwoven web containing meltblown blend polymer fibers
KR102514631B1 (en) Manufacturing Method of Carbon Nanotube Masterbatch and Manufacturing Method of Electroconductive Polymer Composite by Using the Same
JP6729921B1 (en) Spunbond nonwoven
US20220389622A1 (en) Staple fiber for airlaying, and method for producing same
TWI818054B (en) Fiber with odor control component
JP2005139227A (en) Polyolefin resin cleansing film
JP2021161593A (en) Nonwoven fabric
JP2023094862A (en) Spun-bonded nonwoven fabric
WO2000028143A2 (en) Method for the hydrophilic finishing of fibres on the basis of polyolefins or polyester, using alkylethoxylates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850594

Country of ref document: EP

Kind code of ref document: A1