JP6894698B2 - Reticulated structure and its manufacturing method - Google Patents

Reticulated structure and its manufacturing method Download PDF

Info

Publication number
JP6894698B2
JP6894698B2 JP2016241514A JP2016241514A JP6894698B2 JP 6894698 B2 JP6894698 B2 JP 6894698B2 JP 2016241514 A JP2016241514 A JP 2016241514A JP 2016241514 A JP2016241514 A JP 2016241514A JP 6894698 B2 JP6894698 B2 JP 6894698B2
Authority
JP
Japan
Prior art keywords
less
ethylene
thermoplastic elastomer
strands
network structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016241514A
Other languages
Japanese (ja)
Other versions
JP2018095998A (en
Inventor
乙村 幸明
幸明 乙村
鈴木 謙一
謙一 鈴木
義幸 茂呂
義幸 茂呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Airweave Inc
Original Assignee
Tosoh Corp
Airweave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, Airweave Inc filed Critical Tosoh Corp
Priority to JP2016241514A priority Critical patent/JP6894698B2/en
Publication of JP2018095998A publication Critical patent/JP2018095998A/en
Application granted granted Critical
Publication of JP6894698B2 publication Critical patent/JP6894698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Description

本発明は、立体網状構造体に関する。 The present invention relates to a three-dimensional network structure.

熱可塑性弾性樹脂からなる立体網状構造体として、例えば、特許文献1などが開示されている。この立体網状構造体はポリエステル系、ポリアミド系、ポリウレタン系を用いる例示があり優れたクッション性と常温及び乾熱下での耐熱耐久性に優れている。しかし、耐加水分解性がやや劣る問題がある。 For example, Patent Document 1 is disclosed as a three-dimensional network structure made of a thermoplastic elastic resin. This three-dimensional network structure is exemplified by using polyester-based, polyamide-based, and polyurethane-based structures, and has excellent cushioning properties and excellent heat resistance and durability at room temperature and dry heat. However, there is a problem that the hydrolysis resistance is slightly inferior.

この問題を解決すべく、例えば特許文献2では、特定のエチレン系共重合体に特定のエチレン性不飽和シラン化合物をグラフトさせたものを用いている。しかしながら、エチレン性不飽和シラン化合物をエチレン系重合体にグラフトさせるにあたっては、温水を霧状に散水する部屋中において一週間という長時間を要し、生産性に劣る。尚且つ架橋処理を行っているため変形回復性および耐熱性に優れるものの、リサイクル性に劣るものであった。 In order to solve this problem, for example, Patent Document 2 uses a specific ethylene-based copolymer grafted with a specific ethylenically unsaturated silane compound. However, in grafting the ethylenically unsaturated silane compound to the ethylene-based polymer, it takes a long time of one week in a room where hot water is sprayed in a mist form, which is inferior in productivity. Moreover, since the cross-linking treatment was performed, the deformation recovery property and the heat resistance were excellent, but the recyclability was inferior.

特許第2921638号公報Japanese Patent No. 291638 特開2013−181117号公報Japanese Unexamined Patent Publication No. 2013-181117

本発明は、成形加工性と耐久性に優れた網状構造体を提供するものである。 The present invention provides a network structure having excellent molding processability and durability.

上記課題を解決するため鋭意研究をした結果、本発明を完成するに到った。すなわち本発明は、熱可塑性エラストマーからなる繊維径が0.1mm以上3.0mm以下のストランドが曲がりくねったランダムループを形成し、それぞれのループが接合した三次元ランダムループ接合構造体を備え、見かけ密度が0.005g/cm以上0.30g/cm以下であり、接合しているストランドの接合強度が25N以上であることを特徴とする網状構造体に関する。 As a result of diligent research to solve the above problems, the present invention has been completed. That is, the present invention comprises a three-dimensional random loop bonding structure in which strands made of a thermoplastic elastomer having a fiber diameter of 0.1 mm or more and 3.0 mm or less form a winding random loop, and the respective loops are bonded to each other. There is less 0.005 g / cm 3 or more 0.30 g / cm 3, about the network structure in which the bonding strength of the strands are joined is characterized in that at least 25 N.

本発明によれば、成形加工性と耐久性に優れた網状構造体を提供することができる。すなわち、本発明の網状構造体は耐久性に優れており、例えばオフィスチェア、家具、ソファー、ベッド等寝具、電車・自動車・二輪車等の車両用座席等に用いられる。また、熱成型加工されても離型性に優れており、次工程における生産性の良好な成型加工性に優れた網状構造体を提供することが可能である。 According to the present invention, it is possible to provide a net-like structure having excellent molding processability and durability. That is, the net-like structure of the present invention has excellent durability, and is used, for example, for office chairs, furniture, sofas, bedding such as beds, and vehicle seats for trains, automobiles, motorcycles, and the like. Further, it is possible to provide a network structure having excellent mold releasability even when thermoformed, and having good productivity in the next step and excellent molding processability.

以下、本発明を詳細に説明する。
本発明は、熱可塑性エラストマーからなる繊維径が0.1mm以上3.0mm以下のストランドが曲がりくねったランダムループを形成しており、それぞれのループが接合しているランダムループ接合構造体を備え、見かけ密度が0.005g/cm以上0.30g/cm以下であり、接合しているストランドの接合強度が25N以上であることを特徴とする網状構造体を提供するものである。
Hereinafter, the present invention will be described in detail.
The present invention comprises a random loop joining structure in which strands made of a thermoplastic elastomer having a fiber diameter of 0.1 mm or more and 3.0 mm or less form a winding random loop, and each loop is joined. density of less 0.005 g / cm 3 or more 0.30 g / cm 3, the bonding strength of the strands are joined is intended to provide a network structure, characterized in that at least 25 N.

本発明における熱可塑性エラストマーとしては、密度が940kg/m以下のエチレン・α−オレフィンポリエチレン樹脂であることが好ましく、特にエチレンと炭素数3以上のα−オレフィンからなるエチレン・α−オレフィン共重合体樹脂からなることが好ましい。本発明のエチレン・α−オレフィン共重合体は、特開平6−293813号公報に記載されている共重合であることが好ましく、エチレンと炭素数3以上のα−オレフィンを共重合してなるものである。ここで、炭素数3以上のα−オレフィンとしては、例えばプロピレン、ブテン−1、ペンテン−1、ヘキセン−1、4−メチル−1−ペンテン、ヘプテン−1、オクテン−1、ノネン−1、デセン−1、ウンデセン−1、ドデセン−1、トリデセン−1、テトラデセン−1、ペンタデセン−1、ヘキサデセン−1、ヘプタデセン−1、オクタデセン−1、ノナデセン−1、エイコセン−1などが挙げられ、好ましくはブテン−1、ペンテン−1、ヘキセン−1、4−メチル−1−ペンテン、ヘプテン−1、オクテン−1、ノネン−1、デセン−1、ウンデセン−1、ドデセン−1、トリデセン−1、テトラデセン−1、ペンタデセン−1、ヘキサデセン−1、ヘプタデセン−1、オクタデセン−1、ノナデセン−1、エイコセン−1である。また、これら2種類以上を用いることもでき、これらα−オレフィンは通常1重量%以上40重量%以下共重合される。この共重合体は、特定のメタロセン化合物と有機金属化合物を基本構成とする触媒系を用いてエチレンとα−オレフィンを共重合することによって得ることができる。 The thermoplastic elastomer in the present invention is preferably an ethylene / α-olefin polyethylene resin having a density of 940 kg / m 3 or less, and in particular, an ethylene / α-olefin co-weight composed of ethylene and an α-olefin having 3 or more carbon atoms. It is preferably made of a coalesced resin. The ethylene / α-olefin copolymer of the present invention is preferably a copolymer described in JP-A-6-293813, and is obtained by copolymerizing ethylene with an α-olefin having 3 or more carbon atoms. Is. Here, examples of the α-olefin having 3 or more carbon atoms include propylene, butene-1, penten-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, and decene. -1, undecene-1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nonenedecene-1, eikosen-1, and the like, preferably butene. -1, penten-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, decene-1, undecene-1, dodecene-1, tridecene-1, tetradecene-1 , Pentadecene-1, Hexadecene-1, Heptene-1, Octadecene-1, Nonadecene-1, Eikosen-1. Further, two or more of these can be used, and these α-olefins are usually copolymerized in an amount of 1% by weight or more and 40% by weight or less. This copolymer can be obtained by copolymerizing ethylene and α-olefin using a catalyst system based on a specific metallocene compound and an organometallic compound.

熱可塑性エラストマーの密度が940kg/m以下であると、本発明の網状構造体をクッション材としたときにより柔らかくなる。密度はより好ましくは930kg/m以下、さらに好ましくは915kg/m以下、よりさらに好ましくは910kg/m以下である。下限は特に限定するものではないが、耐熱性保持の観点から好ましくは880kg/m以上、より好ましくは890kg/m以上である。 When the density of the thermoplastic elastomer is 940 kg / m 3 or less, it becomes softer when the reticulated structure of the present invention is used as a cushioning material. Density is more preferably 930 kg / m 3 or less, more preferably 915 kg / m 3 or less, still more preferably 910 kg / m 3 or less. The lower limit is not particularly limited, it is preferably from the viewpoint of heat resistance holding 880 kg / m 3 or more, more preferably 890 kg / m 3 or more.

熱可塑性エラストマーが、エチレン・α−オレフィン共重合体であるときは、分子量(Mw)が高いほどタイ分子(非晶部中において1つの結晶ラメラと他の結晶ラメラの間にまたがって存在する分子)を形成しやすい。タイ分子存在確率(P)が高くなると、耐久性の向上に有効である。しかし、成形加工性の観点からMwは4万以上15万以下、タイ分子存在確率(P)0.15以上が好ましく、Mw5万以上11万以下、タイ分子存在確率(P)0.16以上がより好ましい。 When the thermoplastic elastomer is an ethylene / α-olefin copolymer, the higher the molecular weight (Mw), the more Thai molecules (molecules existing between one crystalline lamella and another crystalline lamella in the amorphous part). ) Is easy to form. The higher the tie molecule existence probability (P), the more effective it is in improving the durability. However, from the viewpoint of molding processability, Mw is preferably 40,000 or more and 150,000 or less, and the Thai molecule presence probability (P) is 0.15 or more, and Mw is 50,000 or more and 110,000 or less, and the Thai molecule presence probability (P) is 0.16 or more. More preferred.

前述したタイ分子存在確率(P)は、本発明の熱可塑性エラストマーのゲル浸透クロマトグラフィー(GPC)測定により得られる分子量−溶出量の関係において、タイ分子が形成可能な臨界分子量(Mc)以上の溶出面積と全溶出面積の比から算出することができる。
ここで、タイ分子が形成可能な臨界分子量(Mc)は、J.Polym.Sci.,Polym.Phys.Ed.,29,129(1991)に記載されたタイ分子形成の考え方を参考として以下の方法により算出できる。以下にその詳細を説明する。タイ分子は、溶融状態での分子鎖の広がり(分子末端間の平均距離:r)が、固体状態での結晶、非晶から成る臨界厚み(2Lc+La)より大きい場合に形成されるため、タイ分子が形成される臨界条件は次式(I)で表わせる。
r=(2Lc+La) (I)
(式中、Lcは結晶厚みであり、Laは非晶厚みである。)
エチレン・α-オレフィン共重合体の場合、rは分子量(M)との間に次式(II)の関係にある。
r=C・M/M・lv (II)
ここでC∞は特性比6.8、M0は骨格分子量14、lv骨格結合長1.53、Mは分子量である。
式(II)を式(I)に代入するとMcは、Mと同じであるため式(III)が得られ、LcとLaの値を求めることにより、式(III)からタイ分子が形成可能な臨界分子量(Mc)を計算することができる。
Mc=0.88(2Lc+La) (III)
また、Lcは示差走査型熱量計(DSC)を用いた測定により求められるエチレン・α−オレフィン共重合体の融点(Tm)から次式(IV)により算出できる。
Lc=(6.26×414)/(414−Tm) (IV)
(ここで、Tmの単位は[K]である。)
LaはLcと結晶化度(Xc)から次式(V)により算出できる。
La=(Lc(1−Xc))/Xc (V)
Xcは密度勾配管により測定された密度(d)から次式(VI)により算出できる。
Xc=(d−0.86)/0.14d (VI)
The above-mentioned tie molecule existence probability (P) is equal to or higher than the critical molecular weight (Mc) at which the tie molecule can be formed in the relationship of molecular weight-elution amount obtained by gel permeation chromatography (GPC) measurement of the thermoplastic elastomer of the present invention. It can be calculated from the ratio of the elution area to the total elution area.
Here, the critical molecular weight (Mc) at which Thai molecules can be formed is determined by J.I. Polym. Sci. , Polym. Phys. Ed. , 29, 129 (1991), can be calculated by the following method with reference to the concept of Thai molecule formation. The details will be described below. Tie molecules are formed when the spread of the molecular chain in the molten state (average distance between molecular ends: r) is larger than the critical thickness (2 Lc + La) consisting of crystals and amorphous in the solid state. The critical condition in which is formed can be expressed by the following equation (I).
r = (2Lc + La) (I)
(In the formula, Lc is the crystal thickness and La is the amorphous thickness.)
In the case of an ethylene / α-olefin copolymer, r has a relationship of the following formula (II) with the molecular weight (M).
r = C ・ M / M 0・ lv 2 (II)
Here, C ∞ is a characteristic ratio of 6.8, M 0 is a skeletal molecular weight 14, lv skeletal bond length is 1.53, and M is a molecular weight.
Substituting the formula (II) into the formula (I), Mc is the same as M, so that the formula (III) is obtained, and the Thai molecule can be formed from the formula (III) by obtaining the values of Lc and La. The critical molecular weight (Mc) can be calculated.
Mc = 0.88 (2Lc + La) 2 (III)
Further, Lc can be calculated by the following formula (IV) from the melting point (Tm) of the ethylene / α-olefin copolymer obtained by measurement using a differential scanning calorimeter (DSC).
Lc = (6.26 × 414) / (414-Tm) (IV)
(Here, the unit of Tm is [K].)
La can be calculated from Lc and the crystallinity (Xc) by the following equation (V).
La = (Lc (1-Xc)) / Xc (V)
Xc can be calculated by the following equation (VI) from the density (d) measured by the density gradient tube.
Xc = (d-0.86) /0.14d (VI)

本発明の網状構造体を構成する熱可塑性エラストマーは、示差走査型熱量計を用いて測定した融解曲線において、融点以下に吸熱ピークを有することが好ましい。融点以下に吸熱ピークを有するものは、耐熱耐へたり性が吸熱ピークを有しないものより著しく向上する。
例えば、熱可塑性エラストマーの密度が905kg/m以下のエチレン・α‐オレフィン共重合体であるとき、示差走査型熱量計を用いて測定される融解曲線において吸熱ピークが80℃以上130℃以下の範囲で1つであり、融点(99℃)よりも低い温度である80℃未満の範囲で2つ以上であることが、耐熱耐へたり性の観点から好ましい。このとき、エチレン・α‐オレフィン共重合体の融点は99℃である。
例えば、本発明の好ましい熱可塑性エラストマーとして、メタロセン化合物を触媒として、ヘキサン、ヘキセン、エチレンを公知の方法で重合し、得られたエチレン・α−オレフィン共重合体の場合、主鎖の分岐数を少なくすると結晶が分子鎖を拘束し耐熱性および耐へたり性が向上するが、成形後にさらに融点より少なくとも20℃から50℃低い温度でアニーリング処理するとより耐へたり性が向上する。アニーリング処理は、融点より少なくとも20℃以上低い温度でサンプルを熱処理することができれば良い。融点に近い温度でアニールをすると形状を保持できずに変形するため好ましくない。このような処理をした網状構造体を示差走査型熱量計で測定した融解曲線においては、80℃以上110℃以下の範囲で吸熱ピークが1つ発現するとともに、室温以上融点以下の温度で吸熱ピークが2つ以上発現する。なおアニーリングしない場合は融解曲線において30℃から40℃の範囲に吸熱ピークが1つ発現する。このことから、アニーリング温度よりも5℃から10℃高い温度で結晶が生成し、耐へたり性が向上しているのではないかと考えられる。本発明における耐へたり性向上効果の活用方法としては、クッションや敷きマット等、比較的繰り返し圧縮される使用用途において、耐久性を向上させるために有用である。
The thermoplastic elastomer constituting the network structure of the present invention preferably has an endothermic peak below the melting point in the melting curve measured by using a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and settling resistance as compared with those having no endothermic peak.
For example, when the density of the thermoplastic elastomer is 905 kg / m 3 or less, the heat absorption peak is 80 ° C. or more and 130 ° C. or less in the melting curve measured by a differential scanning calorimeter. It is preferably one in the range and two or more in the range of less than 80 ° C., which is a temperature lower than the melting point (99 ° C.), from the viewpoint of heat resistance and sag resistance. At this time, the melting point of the ethylene / α-olefin copolymer is 99 ° C.
For example, in the case of an ethylene / α-olefin copolymer obtained by polymerizing hexane, hexene, and ethylene by a known method using a metallocene compound as a preferable thermoplastic elastomer of the present invention, the number of branches of the main chain can be determined. If the amount is reduced, the crystal restrains the molecular chain and the heat resistance and settling resistance are improved, but if the annealing treatment is further performed at a temperature at least 20 ° C. to 50 ° C. lower than the melting point after molding, the settling resistance is further improved. The annealing treatment may be performed as long as the sample can be heat-treated at a temperature at least 20 ° C. lower than the melting point. Annealing at a temperature close to the melting point is not preferable because the shape cannot be maintained and the shape is deformed. In the melting curve of the reticulated structure treated in this way measured with a differential scanning calorimeter, one endothermic peak appears in the range of 80 ° C. or higher and 110 ° C. or lower, and the endothermic peak appears at a temperature of room temperature or higher and melting point or lower. Is expressed in two or more. If annealing is not performed, one endothermic peak appears in the range of 30 ° C. to 40 ° C. on the melting curve. From this, it is considered that crystals are formed at a temperature 5 to 10 ° C. higher than the annealing temperature, and the settling resistance is improved. As a method of utilizing the sagging resistance improving effect in the present invention, it is useful for improving durability in a usage application such as a cushion or a mat, which is relatively repeatedly compressed.

本発明に係る熱可塑性エラストマーには、必要に応じて、上記方法によって重合された二種類以上のポリマーや、水素添加ポリブタジエンや水素添加ポリイソプレンなどのポリマーをブレンドすることができる。また、熱可塑性エラストマーに改質剤をブレンドするようにしてもよく、酸化防止剤、滑剤、耐侯剤、難燃剤などを必要に応じて添加することができる。 If necessary, the thermoplastic elastomer according to the present invention can be blended with two or more types of polymers polymerized by the above method, or polymers such as hydrogenated polybutadiene and hydrogenated polyisoprene. Further, a modifier may be blended with the thermoplastic elastomer, and an antioxidant, a lubricant, a weather resistant agent, a flame retardant and the like can be added as needed.

酸化防止剤としては、公知のフェノール系酸化防止剤、ホスファイト系酸化防止剤、チオエーテル系酸化防止剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、N−H型ヒンダードアミン系光安定剤、N−CH3型ヒンダードアミン系光安定剤の少なくとも1種類以上を添加することが望ましい。 Examples of the antioxidant include known phenol-based antioxidants, phosphite-based antioxidants, thioether-based antioxidants, benzotriazole-based UV absorbers, triazine-based UV absorbers, benzophenone-based UV absorbers, and NH-type. It is desirable to add at least one of a hindered amine-based light stabilizer and an N-CH3 type hindered amine-based light stabilizer.

フェノール系酸化防止剤としては、1,3,5−トリス[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、4,4’−ブチリデンビス(6−tert−ブチル−m−クレゾール)、3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオン酸ステアリル、ペンタエリトリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナート]、Sumilizer AG 80、2,4,6−トリス(3’,5’−ジ−tertブチル−4’−ヒドロキシベンジル)メシチレンなどが挙げられる。 Examples of the phenolic antioxidant include 1,3,5-tris [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] -1,3,5-triazine-2,4. , 6 (1H, 3H, 5H) -trione, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4'-butylidenebis (6-tert-butyl-) m-cresol), 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate stearyl, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate ], Sumilizer AG 80, 2,4,6-tris (3', 5'-di-tertbutyl-4'-hydroxybenzyl) mecitylene and the like.

ホスファイト系酸化防止剤としては、3,9−ビス(オクタデシルオキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン、3,9−ビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン、2,4,8,10−テトラキス(1,1−ジメチルエチル)−6−[(2−エチルヘキシル)オキシ]−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、亜りん酸トリス(2,4−ジ−tert−ブチルフェニル)、亜リン酸トリス(4−ノニルフェニル)、4,4’−Isopropylidenediphenol C12−15 alchohol phosphite、亜りん酸ジフェニル(2−エチルヘキシル)、ジフェニルイソデシルホスファイト、トリイソデシル ホスファイト、亜りん酸トリフェニルなどが挙げられる。 Phosphite-based antioxidants include 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane and 3,9-bis (2,6). -Di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 2,4,8,10-tetrakis (1,1-dimethyl) Ethyl) -6-[(2-ethylhexyl) oxy] -12H-dibenzo [d, g] [1,3,2] dioxaphosphosin, tris phosphite (2,4-di-tert-butylphenyl) , Tris (4-nonylphenyl) phosphite, 4,4'-Isopropylidenediphenyl C12-15 alchohol phosphite, diphenyl phosphite (2-ethylhexyl), diphenylisodecylphosphite, triisodecylphosphite, triphenyl phosphite, etc. Can be mentioned.

チオエーテル系酸化防止剤としては、ビス[3−(ドデシルチオ)プロピオン酸]2,2−ビス[[3−(ドデシルチオ)1−1オキソプロピルオキシ]メチル]1,3−プロパンジイル、3,3’−チオビスプロピオン酸ジトリデシルなどが挙げられる。 As thioether-based antioxidants, bis [3- (dodecylthio) propionic acid] 2,2-bis [[3- (dodecylthio) 1-1oxopropyloxy] methyl] 1,3-propanediyl, 3,3' -Ditridecyl thiobispropionate and the like.

熱劣化を防ぐためには、フェノール系酸化防止剤とホスファイト系酸化防止剤を混合して使用することが望ましい。酸化防止剤の添加量は0.1重量%以上、0.6重量%以下が好ましい。 In order to prevent thermal deterioration, it is desirable to use a mixture of a phenolic antioxidant and a phosphite-based antioxidant. The amount of the antioxidant added is preferably 0.1% by weight or more and 0.6% by weight or less.

滑剤は、炭化水素系ワックス、高級アルコール系ワックス、アミド系ワックス、エステル系ワックス、金属石鹸系等が選択される。滑剤は添加しなくても良く、添加する場合は0.1重量%以下であることが好ましい。 As the lubricant, a hydrocarbon-based wax, a higher alcohol-based wax, an amide-based wax, an ester-based wax, a metal soap-based wax, or the like is selected. The lubricant does not have to be added, and when it is added, it is preferably 0.1% by weight or less.

本発明の網状構造体を構成するストランドは、本発明の目的を損なわない範囲で、他の熱可塑性樹脂と組み合わせた複合線状としても良い。複合形態としては、線状体自身を複合化した場合として、シース・コア型、サイドバイサイド型、偏芯シース・コア型等の複合線状体が挙げられる。 The strands constituting the network structure of the present invention may be formed into a composite linear shape in combination with another thermoplastic resin as long as the object of the present invention is not impaired. Examples of the composite form include a composite linear body such as a sheath-core type, a side-by-side type, and an eccentric sheath-core type when the linear body itself is composited.

本発明の網状構造体は、本発明の目的を損なわない範囲で、多層構造化しても良い。多層構造としては、表層と裏層を異なった繊度の線状体で構成することや、表層と裏層で異なった見掛け密度を持つ構造体で構成する等の構造体が挙げられる。多層化方法としては、ノズルオリフィスの穴径を変える方法、網状構造体同士を積み重ねて側地等で固定する方法、加熱により溶融固着する方法、接着剤で接着させる方法、縫製やバンド等で拘束する方法等が挙げられる。 The network structure of the present invention may have a multi-layer structure as long as the object of the present invention is not impaired. Examples of the multi-layer structure include a structure in which the surface layer and the back layer are composed of linear bodies having different fineness, and a structure in which the surface layer and the back layer are composed of structures having different apparent densities. As a multi-layer method, a method of changing the hole diameter of the nozzle orifice, a method of stacking network structures and fixing them on a side surface, a method of melting and fixing by heating, a method of adhering with an adhesive, a method of binding with an adhesive, a method of restraining with sewing or a band, etc. The method of doing this can be mentioned.

本発明の網状構造体は、本発明の目的を損なわない範囲で、樹脂製造過程から成形体に加工し、製品化する任意の段階で、防臭抗菌、消臭、防黴、着色、芳香、難燃、吸放湿等の機能付与を薬剤添加等の処理加工により行うようにしてもよい。 The reticulated structure of the present invention is deodorized and antibacterial, deodorant, antifungal, colored, fragrant, and difficult at any stage of processing into a molded product from the resin manufacturing process and commercializing the structure without impairing the object of the present invention. Functions such as combustion and moisture absorption / desorption may be imparted by a treatment process such as addition of a chemical agent.

本発明の網状構造体を成型加工したものは、自動車用、鉄道用の座席、または椅子、ベッド、ソファー、マットレス、または枕等に用いることが出来る。 The molded reticulated structure of the present invention can be used for automobile and railroad seats, chairs, beds, sofas, mattresses, pillows and the like.

本発明の網状構造体を構成するストランドの繊維径は、繊維径が小さいとクッション材として使用する際に必要な硬度が保てなくなり、逆に繊維径が大きすぎると硬くなり過ぎてしまうため、適正な範囲に設定する必要がある。繊維径は0.1mm以上であり、好ましくは0.5mm以上である。繊維径が0.1mm未満だと細すぎてしまい、緻密性やソフトな触感は良好となるが網状構造体として必要な硬度を確保することが困難である。また、繊維径は3.0mm以下であり、好ましくは2.0mm以下である。繊維径が3.0mmを超えると網状構造体の硬度は十分に確保できるが、網状構造が粗くなり、クッション性能が劣る場合がある。 If the fiber diameter of the strands constituting the network structure of the present invention is small, the hardness required for use as a cushioning material cannot be maintained, and conversely, if the fiber diameter is too large, the fiber diameter becomes too hard. It is necessary to set it in an appropriate range. The fiber diameter is 0.1 mm or more, preferably 0.5 mm or more. If the fiber diameter is less than 0.1 mm, it will be too thin, and the fineness and soft touch will be good, but it will be difficult to secure the hardness required for the network structure. The fiber diameter is 3.0 mm or less, preferably 2.0 mm or less. When the fiber diameter exceeds 3.0 mm, the hardness of the reticulated structure can be sufficiently secured, but the reticulated structure becomes rough and the cushioning performance may be inferior.

ストランドは、曲がりくねったランダムループを形成している。それぞれのループは接合し3次元ランダムループ接合構造体となっている。ランダムループ接合構造体は、例えば、溶融した熱可塑性エラストマーを複数の孔を有するダイスからストランド状に下方へ押し出し、当該ストランドを曲がりくねらせランダムループを形成させるとともに、それぞれのループを互いに溶融状態で接触させることにより形成することができる。これにより得られるランダムループ接合構造体は、複数本のストランドが螺旋状に無秩序に絡まり合い部分的に熱接着した網状構造となっている。 The strands form a winding random loop. Each loop is joined to form a three-dimensional random loop joining structure. In the random loop bonding structure, for example, the molten thermoplastic elastomer is extruded downward in a strand shape from a die having a plurality of holes to bend the strand to form a random loop, and each loop is in a molten state with each other. It can be formed by contact. The resulting random loop junction structure has a network structure in which a plurality of strands are spirally entwined in a disorderly manner and partially heat-bonded.

本発明の網状構造体の見かけ密度は、0.005g/cm以上0.30g/cm以下であり、0.01g/cm以上0.18g/cm以下が好ましく、0.02g/cm以上0.15g/cm以下がより好ましい。見かけ密度が0.005g/cmより小さいとクッション材として使用する際に必要な硬度が保てなくなり、逆に0.30g/cmを超えると硬くなり過ぎてしまい、クッション材に不適なものとなる場合がある。 Apparent density of the network structure of the present invention is less 0.005 g / cm 3 or more 0.30g / cm 3, 0.01g / cm 3 or more 0.18 g / cm 3 or less are preferred, 0.02 g / cm 3 to 0.15 g / cm 3 or less is more preferable. Apparent density is not maintained when the hardness required when used as 0.005 g / cm 3 less than the cushion member, becomes too hard exceeds 0.30 g / cm 3 Conversely, unsuitable cushioning material May be.

接合しているストランドの接合強度は25N以上であり、好ましくは、30N以上である。接合強度は25N未満であるとクッション材の耐へたり性が低下するため好ましくない。 The bonding strength of the strands to be bonded is 25 N or more, preferably 30 N or more. If the joint strength is less than 25 N, the settling resistance of the cushion material is lowered, which is not preferable.

耐久性と成型加工性に優れた本発明の網状構造体は、例えば、熱可塑性エラストマーをゼロ剪断粘度が、200Pa・s以上1000Pa・s以下となる温度で溶融して繊維径が0.1mm以上3.0mm以下のストランドを形成し、当該ストランドを曲がりくねらせランダムループを形成し、それぞれループを互いに溶融状態で接触せしめることにより得ることができる。
具体的には、本発明の網状構造体は国際公開第2012/035736号等に記載された公知の方法に準じて得ることができる。例えば、複数のオリフィスを持つ多列ノズルより熱可塑性エラストマーをノズルオリフィスに分配し、ゼロ剪断粘度が200Pa・sから1000Pa・sの範囲となる温度で、該ノズルより下方に向け吐出させ、溶融状態で互いにストランドを接触させて融着させ3次元構造を形成しつつ、引取りコンベアネットで挟み込み、冷却槽中の冷却水で冷却せしめた後、引出し、水切り後または乾燥して、両面または片面が平滑化した網状構造体を得る。片面のみを平滑化させる場合は、傾斜を持つ引取ネット上に吐出させて、溶融状態で互いに接触させて融着させ3次元構造を形成しつつ引取ネット面のみ形態を緩和させつつ冷却すると良い。得られた網状構造体をアニーリング処理することもできる。なお、網状構造体の乾燥処理をアニーリング処理としても良い。
In the network structure of the present invention having excellent durability and moldability, for example, a thermoplastic elastomer is melted at a temperature at which the zero shear viscosity is 200 Pa · s or more and 1000 Pa · s or less, and the fiber diameter is 0.1 mm or more. It can be obtained by forming strands of 3.0 mm or less, winding the strands to form random loops, and bringing the loops into contact with each other in a molten state.
Specifically, the network structure of the present invention can be obtained according to a known method described in International Publication No. 2012/035736 and the like. For example, a thermoplastic elastomer is distributed to the nozzle orifice from a multi-row nozzle having a plurality of orifices, and is discharged downward from the nozzle at a temperature in which the zero shear viscosity is in the range of 200 Pa · s to 1000 Pa · s, and is in a molten state. While forming a three-dimensional structure by bringing the strands into contact with each other and fusing them together, they are sandwiched between take-back conveyor nets, cooled with the cooling water in the cooling tank, and then drawn out, drained or dried to form both sides or one side. Obtain a smoothed reticulated structure. When smoothing only one surface, it is preferable to discharge it onto a take-up net having an inclination, bring it into contact with each other in a molten state and fuse it to form a three-dimensional structure, and cool only the take-up net surface while relaxing the form. The obtained network structure can also be annealed. The drying treatment of the reticulated structure may be an annealing treatment.

本発明の網状構造体の成形温度は、熱可塑性エラストマーの溶融粘度が200Pa・s以上1000Pa・s以下であることが好ましく、300Pa・s以上800Pa・s以下の範囲がより好ましい。溶融粘度が200Pa・sより低いとストランドが網状構造を形成できずに塊となり、クッション材とするときに不適なものとなる場合がある。また、1000Pa・sより粘度が高いと融着したストランドの強度が低くなり耐久性が悪化する場合がある。 The molding temperature of the network structure of the present invention preferably has a melt viscosity of the thermoplastic elastomer of 200 Pa · s or more and 1000 Pa · s or less, and more preferably 300 Pa · s or more and 800 Pa · s or less. If the melt viscosity is lower than 200 Pa · s, the strands cannot form a network structure and become lumps, which may be unsuitable for cushioning material. Further, if the viscosity is higher than 1000 Pa · s, the strength of the fused strand becomes low and the durability may deteriorate.

本発明の網状構造体の厚みは、10mm以上が好ましく、20mm以上がより好ましい。厚みが10mm未満ではクッション材に使用すると薄すぎてしまい底付き感が出てしまう場合がある。厚みの上限は製造装置の関係から、300mm以下が好ましく、100mm以下がより好ましく、80mm以下がさらに好ましい。 The thickness of the network structure of the present invention is preferably 10 mm or more, more preferably 20 mm or more. If the thickness is less than 10 mm, it may be too thin when used as a cushioning material, giving a feeling of bottoming. The upper limit of the thickness is preferably 300 mm or less, more preferably 100 mm or less, and further preferably 80 mm or less from the viewpoint of the manufacturing apparatus.

次に本発明を具体的な実施例で説明するが本発明はこれらによって限定されるものではない。なお、実施例中における特性値の評価は、以下のとおりである。 Next, the present invention will be described with specific examples, but the present invention is not limited thereto. The evaluation of the characteristic values in the examples is as follows.

(1)熱可塑性エラストマーの密度
フード付きMI計を用いて、190℃、5kg荷重で押し出した試料を、フード内で5分間徐冷した後、23℃の密度勾配管により測定した。
(1) Density of Thermoplastic Elastomer Using a MI meter with a hood, a sample extruded at 190 ° C. with a load of 5 kg was slowly cooled in the hood for 5 minutes, and then measured with a density gradient tube at 23 ° C.

(2)GPC
GPCは以下の条件で測定した。
[装置]東ソー(株)製 HLC−8121GPC/HT
[測定条件]カラム:TSKgel GMHHR−H(20)HT×3本、溶離液:トリクロロベンゼン+酸化防止剤(BHT0.05%)、流速:1.0ml/分、試料濃度:1.0mg/ml、注入量:0.3ml、カラム温度:140℃、検出器:HLC−8121GPC/HT
(2) GPC
GPC was measured under the following conditions.
[Device] HLC-8121GPC / HT manufactured by Tosoh Corporation
[Measurement conditions] Column: TSKgel GMHHR-H (20) HT x 3, eluent: trichlorobenzene + antioxidant (BHT 0.05%), flow velocity: 1.0 ml / min, sample concentration: 1.0 mg / ml , Injection volume: 0.3 ml, Column temperature: 140 ° C., Detector: HLC-8121 GPC / HT

(3)メルトフローレート(MFR)
JIS K7210に従い、温度190℃、荷重21.18Nで測定した。
(3) Melt flow rate (MFR)
According to JIS K7210, the measurement was performed at a temperature of 190 ° C. and a load of 21.18 N.

(4)ゼロ剪断粘度(加工温度における溶融粘度)
ゼロ剪断粘度は以下の条件で測定した。
[装置]レオメトリックスサイエンフィック製 ストレスレオメーター SR2000
[測定条件]周波数(ω)が0.01〜100rad/sの範囲、歪み10〜15%で動的溶融粘度η*(ω)を測定した。樹脂にせん断を加えるための冶具としては、直径25mmのパラレルプレートを使用し、プレート間隔を1.5mmとした。
(4) Zero shear viscosity (melt viscosity at processing temperature)
Zero shear viscosity was measured under the following conditions.
[Device] Reometrics Scientific Stress Rheometer SR2000
[Measurement conditions] The dynamic melt viscosity η * (ω) was measured with a frequency (ω) in the range of 0.01 to 100 rad / s and a strain of 10 to 15%. As a jig for applying shear to the resin, a parallel plate having a diameter of 25 mm was used, and the plate spacing was set to 1.5 mm.

(5)接合強度
JIS L 1096(一般織物試験方法)のA法(ストリップ法)、試験速度:200mm/min、初期試験長(引張り試験機のチャック間距離):200mm、試験数:5で測定した。
(5) Bond strength Measured with JIS L 1096 (general textile test method) method A (strip method), test speed: 200 mm / min, initial test length (distance between chucks of tensile tester): 200 mm, number of tests: 5. did.

(6)硬度保持率
試料を30cm×30cmの大きさに切断し、加熱オーブン中で60℃で10分間熱処理した。ノギスを使用し厚みを測定した後に、速度10mm/分の速度で圧縮し25%圧縮時硬度を処理前荷重(c)とした。その後、島津製作所サーボパルサーで、20℃±2℃環境下で処理前厚みの50%の厚みまで1Hzのサイクルで圧縮回復を繰り返し、8万回後の試料を30分静置後、速度10mm/分の速度で圧縮し、25%圧縮時硬度を処理後荷重(d)とした。式(d)/(c)×100より50%定変位繰返し圧縮後の25%圧縮時硬度保持率を算出した:単位%(n=3の平均値)。
(6) Hardness retention rate The sample was cut into a size of 30 cm × 30 cm and heat-treated at 60 ° C. for 10 minutes in a heating oven. After measuring the thickness using a caliper, compression was performed at a speed of 10 mm / min, and the hardness at 25% compression was defined as the pretreatment load (c). After that, with a Shimadzu servo pulsar, compression recovery was repeated in a 1 Hz cycle to a thickness of 50% of the pre-treatment thickness in an environment of 20 ° C ± 2 ° C, and the sample after 80,000 times was allowed to stand for 30 minutes, and then the speed was 10 mm / It was compressed at a rate of minutes and the hardness at 25% compression was defined as the post-treatment load (d). From the formula (d) / (c) × 100, the hardness retention rate at the time of 25% compression after 50% constant displacement repeated compression was calculated: unit% (average value of n = 3).

(7)見かけ密度
試料を30cm×30cmの大きさに切断し、無荷重で24時間放置した後、製FD−80N型測厚器にて4か所の高さを測定して平均値を試料厚みとする。試料重さは、上記試料を電子天秤に載せて計測する。また見掛け密度は、試料厚みから体積を求め、試料の重さを体積で除した値で示す(それぞれn=3の平均値)。
(7) Apparent density A sample is cut into a size of 30 cm x 30 cm, left unloaded for 24 hours, and then the heights of four locations are measured with an FD-80N type thickener manufactured by FD-80N, and the average value is used as the sample. The thickness. The sample weight is measured by placing the sample on an electronic balance. The apparent density is indicated by the volume obtained from the sample thickness and the weight of the sample divided by the volume (the average value of n = 3 for each).

(8)成形加工性
所定の温度でダイから押出されたストランドの状態を以下の基準で判定した。
「○」:ループ状になりストランドが垂れ落ちない。
「×」:ストランドが垂れ落ちてループ状にならない。
(8) Formability The state of the strands extruded from the die at a predetermined temperature was determined according to the following criteria.
"○": It becomes a loop and the strand does not hang down.
"X": The strands do not hang down and form a loop.

(9)示差走査型熱量計を用いての測定
エスアイアイナノテクノロジー製DSC6220ASD型示差熱分析計を使用し、60℃でアニール後の網状構造体を10mgサンプリングし、昇温速度10℃/分で測定した吸発熱曲線から吸熱ピ−ク(融解ピ−ク)温度を求めた。
(9) Measurement using a differential scanning calorimeter Using a DSC6220 ASD differential thermal analyzer manufactured by SII Nanotechnology, 10 mg of the reticulated structure after annealing was sampled at 60 ° C, and the temperature rise rate was 10 ° C / min. The endothermic peak (melting peak) temperature was determined from the measured endothermic heat absorption curve.

[実施例1]
特開平7−133323号公報に記載の公知の方法で重合したエチレン・α−オレフィン共重合体 密度905kg/m、MFR4.0g/10分を2軸押出機(東洋精機(株)製)を用いて、フェノール系酸化防止剤(商品名イルガノックス1010 BASFジャパン製) 1000ppm、リン系酸化防止剤(イルガフォス168 BASFジャパン製)1000ppmを添加後、スクリュー回転数20rpm、バレル設定温度220℃の条件で混合練込みしてペレット化し、熱可塑性エラストマーを得た。
得られた熱可塑性エラストマーを国際公開第2012/035736号等に記載された公知の方法に準じて樹脂温度260℃(ゼロ剪断粘度:450Pa・s)で繊維径0.9mmのストランドをダイから押出し、網状構造体を成形した。
得られた網状構造体の硬度保持率は80%、接合強度は35N、見かけ密度は0.06g/cmであり、成形加工性に優れるものであった。
[Example 1]
An ethylene / α-olefin copolymer polymerized by a known method described in JP-A No. 7-133323 with a density of 905 kg / m 3 and an MFR of 4.0 g / 10 minutes using a twin-screw extruder (manufactured by Toyo Seiki Co., Ltd.). After adding 1000 ppm of a phenolic antioxidant (trade name: Irganox 1010, manufactured by BASF Japan) and 1000 ppm of a phosphorus-based antioxidant (manufactured by Irgafos 168 BASF Japan), the screw rotation speed is 20 rpm and the barrel set temperature is 220 ° C. It was mixed and kneaded and pelletized to obtain a thermoplastic elastomer.
The obtained thermoplastic elastomer is extruded from a die having a fiber diameter of 0.9 mm at a resin temperature of 260 ° C. (zero shear viscosity: 450 Pa · s) according to a known method described in International Publication No. 2012/035736 and the like. , A reticulated structure was formed.
The hardness retention rate of the obtained network structure was 80%, the bonding strength was 35 N, and the apparent density was 0.06 g / cm 3 , which were excellent in molding processability.

[実施例2]
特開平7−133323号公報に記載の公知の方法で重合したエチレン・α−オレフィン共重合体 密度890kg/m、MFR1.0g/10分を2軸押出機(東洋精機(株)製)を用いて、フェノール系酸化防止剤(商品名イルガノックス1010 BASFジャパン製) 1000ppm、リン系酸化防止剤(商品名イルガフォス168 BASFジャパン製)1000ppmを添加後、スクリュー回転数20rpm、バレル設定温度220℃の条件で溶融混練を行い、熱可塑性エラストマーを得た。
得られた熱可塑性エラストマーを国際公開第2012/035736号等に記載された公知の方法に準じて樹脂温度300℃(ゼロ剪断粘度:530Pa・s)で網状構造体を成形した(繊維径:1.05mm)。
得られた網状構造体の硬度保持率は83%、接合強度は、38N、見かけ密度は0.070g/cmであり、成形加工性に優れるものであった。
[Example 2]
An ethylene / α-olefin copolymer polymerized by a known method described in JP-A No. 7-133323 with a density of 890 kg / m 3 and an MFR of 1.0 g / 10 minutes using a twin-screw extruder (manufactured by Toyo Seiki Co., Ltd.). After adding 1000 ppm of a phenolic antioxidant (trade name: Irganox 1010 BASF Japan) and 1000 ppm of a phosphorus-based antioxidant (trade name: Irgafos 168 BASF Japan), the screw rotation speed is 20 rpm and the barrel set temperature is 220 ° C. Melt-kneading was carried out under the conditions to obtain a thermoplastic elastomer.
The obtained thermoplastic elastomer was molded into a network structure at a resin temperature of 300 ° C. (zero shear viscosity: 530 Pa · s) according to a known method described in International Publication No. 2012/037576 (fiber diameter: 1). .05 mm).
The hardness retention rate of the obtained network structure was 83%, the bonding strength was 38 N, and the apparent density was 0.070 g / cm 3 , which were excellent in molding processability.

[実施例3]
特開平7−133323号公報に記載の公知の方法で重合したエチレン・α−オレフィン共重合体 密度910kg/m、MFR6.0g/10分を2軸押出機(東洋精機(株)製)を用いて、フェノール系酸化防止剤(商品名イルガノックス1010 BASFジャパン製) 1000ppm、リン系酸化防止剤(商品名イルガフォス168 BASFジャパン製)1000ppmを添加後、スクリュー回転数20rpm、バレル設定温度220℃の条件で溶融混練を行い、熱可塑性エラストマーを得た。
得られた熱可塑性エラストマーを国際公開第2012/035736号等に記載された公知の方法に準じて樹脂温度240℃(ゼロ剪断粘度:680Pa・s)で網状構造体を成形した(繊維径:1.10mm)。
得られた網状構造体の硬度保持率は78%、接合強度は、33N、見かけ密度は0.075g/cmであり、成形加工性に優れるものであった。
[Example 3]
An ethylene / α-olefin copolymer polymerized by a known method described in JP-A No. 7-133323 with a density of 910 kg / m 3 and an MFR of 6.0 g / 10 minutes using a twin-screw extruder (manufactured by Toyo Seiki Co., Ltd.). After adding 1000 ppm of a phenolic antioxidant (trade name: Irganox 1010 BASF Japan) and 1000 ppm of a phosphorus-based antioxidant (trade name: Irgafos 168 BASF Japan), the screw rotation speed is 20 rpm and the barrel set temperature is 220 ° C. Melt-kneading was carried out under the conditions to obtain a thermoplastic elastomer.
The obtained thermoplastic elastomer was molded into a network structure at a resin temperature of 240 ° C. (zero shear viscosity: 680 Pa · s) according to a known method described in International Publication No. 2012/037576 (fiber diameter: 1). .10 mm).
The hardness retention rate of the obtained network structure was 78%, the bonding strength was 33 N, and the apparent density was 0.075 g / cm 3 , which were excellent in molding processability.

[比較例1]
特開平7−133323号公報に記載の公知の方法で重合したエチレン・α−オレフィン共重合体 密度905kg/m、MFR20g/10分を2軸押出機(東洋精機(株)製)を用いて、フェノール系酸化防止剤(商品名イルガノックス1010 BASFジャパン製) 1000ppm、リン系酸化防止剤(商品名イルガフォス168 BASFジャパン製)1000ppmを添加後、スクリュー回転数20rpm、バレル設定温度220℃の条件で溶融混練を行い、熱可塑性エラストマーを得た。得られた熱可塑性エラストマーを国際公開第2012/035736号等に記載された公知の方法に準じて樹脂温度200℃(ゼロ剪断粘度:120Pa・s)で網状構造体を成形した。
溶融粘度が最適な範囲よりも低いため、ストランドがループ状にならず網状構造体を得ることができなかった。
[Comparative Example 1]
Ethylene / α-olefin copolymer polymerized by a known method described in JP-A No. 7-133323 with a density of 905 kg / m 3 and MFR of 20 g / 10 minutes using a twin-screw extruder (manufactured by Toyo Seiki Co., Ltd.). After adding 1000 ppm of phenolic antioxidant (trade name: Irganox 1010 BASF Japan) and 1000 ppm of phosphorus-based antioxidant (trade name: Irgafos 168 BASF Japan), the screw rotation speed is 20 rpm and the barrel set temperature is 220 ° C. Melt-kneading was performed to obtain a thermoplastic elastomer. The obtained thermoplastic elastomer was molded into a network structure at a resin temperature of 200 ° C. (zero shear viscosity: 120 Pa · s) according to a known method described in International Publication No. 2012/035736 and the like.
Since the melt viscosity was lower than the optimum range, the strands did not form a loop and a network structure could not be obtained.

[比較例2]
特開平7−133323号公報に記載の公知の方法で重合したエチレン・α−オレフィン共重合体 密度905kg/m、MFR12g/10分を2軸押出機(東洋精機(株)製)を用いて、フェノール系酸化防止剤(商品名イルガノックス1010 BASFジャパン製) 1000ppm、リン系酸化防止剤(商品名イルガフォス168 BASFジャパン製)1000ppmを添加後、スクリュー回転数20rpm、バレル設定温度230℃の条件で溶融混練を行い、熱可塑性エラストマーを得た。得られた熱可塑性エラストマーを国際公開第2012/035736号等に記載された公知の方法に準じて樹脂温度230℃(ゼロ剪断粘度:190Pa・s)で網状構造体を成形した(繊維径:0.55mm)。
得られた網状構造体の硬度保持率は73%、接合強度は、23N、見かけ密度は0.0048g/cmであった。網状構造体の成形加工性は良好であったが、硬度保持率は73%であり耐久性が満足できるものでなかった。
[Comparative Example 2]
Ethylene / α-olefin copolymer polymerized by a known method described in JP-A-7-133323 with a density of 905 kg / m 3 and MFR of 12 g / 10 minutes using a twin-screw extruder (manufactured by Toyo Seiki Co., Ltd.). After adding 1000 ppm of phenolic antioxidant (trade name: Irganox 1010 BASF Japan) and 1000 ppm of phosphorus-based antioxidant (trade name: Irgafos 168 BASF Japan), the screw rotation speed is 20 rpm and the barrel setting temperature is 230 ° C. Melt-kneading was performed to obtain a thermoplastic elastomer. The obtained thermoplastic elastomer was molded into a network structure at a resin temperature of 230 ° C. (zero shear viscosity: 190 Pa · s) according to a known method described in International Publication No. 2012/037576 (fiber diameter: 0). .55 mm).
The hardness retention rate of the obtained network structure was 73%, the bonding strength was 23 N, and the apparent density was 0.0048 g / cm 3 . The molding processability of the reticulated structure was good, but the hardness retention rate was 73%, and the durability was not satisfactory.

[比較例3]
特開平7−133323号公報に記載の公知の方法で重合したエチレン・α−オレフィン共重合体 密度905kg/m、MFR4g/10分を2軸押出機(東洋精機(株)製)を用いて、フェノール系酸化防止剤(商品名イルガノックス1010 BASFジャパン製) 1000ppm、リン系酸化防止剤(商品名イルガフォス168 BASFジャパン製)1000ppmを添加後、スクリュー回転数20rpm、バレル設定温度220℃の条件で溶融混練を行い、熱可塑性エラストマーを得た。得られた熱可塑性エラストマーを国際公開第2012/035736号等に記載された公知の方法に準じて樹脂温度200℃(ゼロ剪断粘度:1600Pa・s)で網状構造体を成形した(繊維径:1.8mm)。
得られた網状構造体の硬度保持率は63%、接合強度は、15N、見かけ密度は0.0105g/cmであった。硬度保持率は63%であり耐久性が満足できるものでなかった。
[Comparative Example 3]
Ethylene / α-olefin copolymer polymerized by a known method described in JP-A-7-133323 with a density of 905 kg / m 3 and MFR of 4 g / 10 minutes using a twin-screw extruder (manufactured by Toyo Seiki Co., Ltd.). After adding 1000 ppm of phenolic antioxidant (trade name: Irganox 1010 BASF Japan) and 1000 ppm of phosphorus-based antioxidant (trade name: Irgafos 168 BASF Japan), the screw rotation speed is 20 rpm and the barrel set temperature is 220 ° C. Melt-kneading was performed to obtain a thermoplastic elastomer. The obtained thermoplastic elastomer was molded into a network structure at a resin temperature of 200 ° C. (zero shear viscosity: 1600 Pa · s) according to a known method described in International Publication No. 2012/035736 (fiber diameter: 1). .8 mm).
The hardness retention rate of the obtained network structure was 63%, the bonding strength was 15 N, and the apparent density was 0.0105 g / cm 3 . The hardness retention rate was 63%, and the durability was not satisfactory.

Figure 0006894698
Figure 0006894698

Claims (2)

熱可塑性エラストマーからなる繊維径が0.1mm以上3.0mm以下のストランドが曲がりくねったランダムループを形成し、それぞれのループが接合した三次元ランダムループ接合構造体を備え、見かけ密度が0.005g/cm以上0.30g/cm以下であり、接合しているストランドの接合強度が25N以上であり、
熱可塑性エラストマーが、密度が940kg/m 以下のエチレン・α‐オレフィン共重合体であり、
エチレン・α‐オレフィン共重合体の重量分子量が4万以上15万以下、タイ分子存在確率(P)が、0.15以上であり、
エチレン・α‐オレフィン共重合体の密度が905kg/m 以下であり、エチレン・α‐オレフィン共重合体の示差走査型熱量計を用いて測定される融解曲線において吸熱ピークが80℃以上110℃以下の範囲で1つであり、80℃未満の範囲で2つ以上であることを特徴とする網状構造体。
Strands made of thermoplastic elastomer having a fiber diameter of 0.1 mm or more and 3.0 mm or less form a winding random loop, and each loop is provided with a three-dimensional random loop bonding structure to which the loops are bonded, and the apparent density is 0.005 g /. cm 3 or more 0.30 g / cm 3 or less state, and are joint strength than 25N strands are joined,
The thermoplastic elastomer is an ethylene / α-olefin copolymer having a density of 940 kg / m 3 or less.
The weight molecular weight of the ethylene / α-olefin copolymer is 40,000 or more and 150,000 or less, and the Thai molecule existence probability (P) is 0.15 or more.
The density of the ethylene / α-olefin copolymer is 905 kg / m 3 or less, and the endothermic peak is 80 ° C. or higher and 110 ° C. in the melting curve measured using a differential scanning calorimeter of the ethylene / α-olefin copolymer. A network structure characterized by one in the following range and two or more in a range of less than 80 ° C.
熱可塑性エラストマーをゼロ剪断粘度が、200Pa・s以上1000Pa・s以下となる温度で溶融し、繊維径が0.1mm以上3.0mm以下のストランドを形成し、
当該ストランドを曲がりくねらせランダムループを形成し、
それぞれのループを互いに溶融状態で接触せしめることを特徴とする請求項1に記載の網状構造体の製造方法。
The thermoplastic elastomer is melted at a temperature at which the zero shear viscosity is 200 Pa · s or more and 1000 Pa · s or less to form strands having a fiber diameter of 0.1 mm or more and 3.0 mm or less.
The strands are twisted to form a random loop,
The method for manufacturing a network structure according to claim 1 , wherein the loops are brought into contact with each other in a molten state.
JP2016241514A 2016-12-13 2016-12-13 Reticulated structure and its manufacturing method Active JP6894698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016241514A JP6894698B2 (en) 2016-12-13 2016-12-13 Reticulated structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241514A JP6894698B2 (en) 2016-12-13 2016-12-13 Reticulated structure and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018095998A JP2018095998A (en) 2018-06-21
JP6894698B2 true JP6894698B2 (en) 2021-06-30

Family

ID=62632607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241514A Active JP6894698B2 (en) 2016-12-13 2016-12-13 Reticulated structure and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6894698B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7329849B2 (en) * 2019-09-30 2023-08-21 株式会社エコ・ワールド comforter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007011328A (en) * 2005-03-17 2008-03-12 Dow Global Technologies Inc Three-dimensional random looped structures made from interpolymers of ethylene/alpha-olefins and uses thereof.
JP5459438B1 (en) * 2013-11-18 2014-04-02 東洋紡株式会社 Network structure with excellent thermal dimensional stability
JP6318825B2 (en) * 2014-04-28 2018-05-09 東洋紡株式会社 Lightweight network structure
JPWO2016093334A1 (en) * 2014-12-12 2017-09-21 東洋紡株式会社 Network structure with excellent heat resistance
JP6819297B2 (en) * 2015-02-04 2021-01-27 東洋紡株式会社 Reticulated structure with excellent low resilience

Also Published As

Publication number Publication date
JP2018095998A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
TWI441863B (en) Fibers and non-wovens prepared with propylene-based elastomers
EP2822995B1 (en) Polyolefin based formulations for membranes and fabrics
EP2452737B1 (en) Air filter material using multilayer electret nonwoven fabric
KR102083055B1 (en) Net-shaped structure having excellent compression durability
TWI336334B (en) Reversible, heat-set, elastic fibers, and method of making and articles made from same
TW200848566A (en) Fibers and non-wovens prepared with propylene-based elastomers
US8101534B2 (en) Fibers and non-wovens prepared with propylene-based elastomers
JP6819297B2 (en) Reticulated structure with excellent low resilience
JP5454733B1 (en) Network structure with excellent compression durability
JP2001226865A (en) Nonwoven fabric, method for producing the same and sanitary material
CA2667878A1 (en) Adhesive films
KR20160075534A (en) Network structure having excellent durability against compression
EP3660091A1 (en) Polypropylene-based resin composition, and fiber and nonwoven fabric using same
JP2020204143A (en) Network structure excellent in heat-resistant durability
JP2015067933A (en) Net-like structure excellent in compression durability
JP6894698B2 (en) Reticulated structure and its manufacturing method
JP6492710B2 (en) Network structure with excellent low resilience
JP2020110718A (en) Molded article of network structure and manufacturing method thereof
MXPA02008545A (en) Fibers and fabrics prepared with propylene impact copolymers.
JPH05247819A (en) Cushioning material
JP6786773B2 (en) Manufacturing method of reticulated structure molded product
JP2016000876A (en) Network structured body excellent in molding processability
JP6911344B2 (en) Thermoplastic elastomer resin composition
JP3946981B2 (en) Flat yarn for artificial turf pile yarn and pile yarn for artificial turf using the same
Kolgjini et al. Influence of heat treatment on the bendIng behavIour of lldPe monofIlaments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210604

R150 Certificate of patent or registration of utility model

Ref document number: 6894698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250