JP6911344B2 - Thermoplastic elastomer resin composition - Google Patents

Thermoplastic elastomer resin composition Download PDF

Info

Publication number
JP6911344B2
JP6911344B2 JP2016243388A JP2016243388A JP6911344B2 JP 6911344 B2 JP6911344 B2 JP 6911344B2 JP 2016243388 A JP2016243388 A JP 2016243388A JP 2016243388 A JP2016243388 A JP 2016243388A JP 6911344 B2 JP6911344 B2 JP 6911344B2
Authority
JP
Japan
Prior art keywords
ethylene
thermoplastic elastomer
weight
density
hexene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016243388A
Other languages
Japanese (ja)
Other versions
JP2018095774A (en
Inventor
鈴木 謙一
謙一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016243388A priority Critical patent/JP6911344B2/en
Publication of JP2018095774A publication Critical patent/JP2018095774A/en
Application granted granted Critical
Publication of JP6911344B2 publication Critical patent/JP6911344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐熱性及び変形回復性に優れた熱可塑性エラストマーに関し、詳しくは、45℃以上の温度条件下でも形状を保持できる耐熱性を有し、且つ継続した負荷により継続して変形せしめられた後、負荷を除去した際に変形回復性を有する熱可塑性エラストマー樹脂組成物に関する。 The present invention relates to a thermoplastic elastomer having excellent heat resistance and deformation recovery. Specifically, the present invention has heat resistance capable of maintaining its shape even under a temperature condition of 45 ° C. or higher, and is continuously deformed by a continuous load. After that, the present invention relates to a thermoplastic elastomer resin composition having deformation recovery property when the load is removed.

近年、ゴム弾性を有する軟質材料であって、加硫工程を必要とせず、熱可塑性樹脂と同様に成形加工およびリサイクルが可能な熱可塑性エラストマー材料が、枕、マットレス等の寝具、自動車部品、家電部品、電線被覆、医療用部品、雑貨、履物等の分野で多用されている。このような熱可塑性エラストマー材料の中で、ポリオレフィン系樹脂からなるオレフィン系熱可塑性エラストマーは変形回復性に優れることから広く使用されている。 In recent years, thermoplastic elastomer materials, which are soft materials having rubber elasticity and which do not require a vulcanization process and can be molded and recycled in the same manner as thermoplastic resins, have been used for bedding such as pillows and mattresses, automobile parts, and home appliances. It is widely used in the fields of parts, wire coating, medical parts, miscellaneous goods, bedding, etc. Among such thermoplastic elastomer materials, olefin-based thermoplastic elastomers made of polyolefin-based resins are widely used because they are excellent in deformation recovery.

エチレン・α−オレフィン共重合体は、押出加工が可能で、ゴム弾性および変形回復性に優れているため、クッション材、クッションや敷きマット等、比較的繰り返し圧縮される使用用途において、耐久性を向上させるために有用である。一般にエチレン・α−オレフィン共重合体は、密度が低いほど変形回復性、柔軟性がすぐれている有用なエラストマーである反面、耐熱性と変形回復性を両立することが困難であった。 Ethylene / α-olefin copolymers can be extruded and have excellent rubber elasticity and deformation recovery, so they are durable in applications that are relatively repeatedly compressed, such as cushioning materials, cushions and mats. Useful for improving. In general, an ethylene / α-olefin copolymer is a useful elastomer having better deformation recovery and flexibility as the density is lower, but it is difficult to achieve both heat resistance and deformation recovery.

この問題を解決すべく、例えば特許文献1では、特定のエチレン系共重合体に特定のエチレン性不飽和シラン化合物をグラフトさせている。しかし、温水を霧状に散水する部屋中に一週間という長時間を要し、生産性に劣るものであり、尚且つ架橋処理を行っているため変形回復性および耐熱性に優れるものの、リサイクル性に劣るものであった。 In order to solve this problem, for example, in Patent Document 1, a specific ethylenically unsaturated silane compound is grafted onto a specific ethylene-based copolymer. However, it takes a long time of one week in a room where hot water is sprayed in the form of mist, which is inferior in productivity, and because it is crosslinked, it is excellent in deformation recovery and heat resistance, but it is recyclable. It was inferior to.

特開2013−181117号公報Japanese Unexamined Patent Publication No. 2013-181117

本発明は、耐熱性及び変形回復性に優れた熱可塑性エラストマー樹脂組成物に関し、詳しくは、45℃以上の温度条件下でも形状を保持できる耐熱性を有し、且つ継続した負荷により継続して変形せしめられた後、負荷を除去した際に変形回復性を有する熱可塑性エラストマー樹脂組成物を提供するものである。 The present invention relates to a thermoplastic elastomer resin composition having excellent heat resistance and deformation recovery. Specifically, the present invention has heat resistance capable of maintaining a shape even under a temperature condition of 45 ° C. or higher, and continuously under a continuous load. It is an object of the present invention to provide a thermoplastic elastomer resin composition having deformation recovery property when a load is removed after being deformed.

上記課題を解決するため鋭意研究をした結果、本発明を完成するに到った。すなわち本発明は、密度が900〜920kg/m、GPCにより測定される重量平均分子量が4万〜10万の範囲にあるエチレン・α−オレフィン共重合体(A) 30〜95重量部と密度が890〜920kg/m、GPCにより測定される重量平均分子量が11万〜25万の範囲にあるエチレン・α−オレフィン共重合体(B) 5〜70重量部((A)及び(B)の合計は100重量部)を含む組成物であって、23℃におけるヒステリシスロス率が30%以下であり、45℃における変形回復率が70%以上である熱可塑性エラストマー樹脂組成物に関するものである。 As a result of diligent research to solve the above problems, the present invention has been completed. That is, the present invention has a density of 30 to 95 parts by weight of the ethylene / α-olefin copolymer (A) having a density of 900 to 920 kg / m 3 and a weight average molecular weight measured by GPC in the range of 40,000 to 100,000. Ethylene / α-olefin copolymer (B) 5 to 70 parts by weight ((A) and (B)) having a weight average molecular weight of 890 to 920 kg / m 3 and a weight average molecular weight in the range of 110,000 to 250,000 measured by GPC. The total is 100 parts by weight), and the present invention relates to a thermoplastic elastomer resin composition having a hysteresis loss rate of 30% or less at 23 ° C. and a deformation recovery rate of 70% or more at 45 ° C. ..

本発明の熱可塑性エラストマー組成物は、優れた歪回復性を有し、オフィスチェアー、家具、ソファー、ベッドパッド、マットレス、電車・自動車・二輪車・ベビーカー・チャイルドシート等の車両用座席、フロアーマットや衝突や挟まれ防止部材等の衝撃吸収用のマット等に用いられるクッション材に好適な樹脂を提供することが可能となった。なかでも、夏場や体温によって温度がかかりへたりを生じ易いオフィスチェアー、家具、ソファー、ベッドパッド、マットレス等のクッション材に好適な樹脂組成物を提供することが可能となった。 The thermoplastic elastomer composition of the present invention has excellent strain recovery properties, and has excellent strain recovery properties, such as office chairs, furniture, sofas, bed pads, mattresses, vehicle seats such as trains, automobiles, motorcycles, strollers, and child seats, floor mats, and collisions. It has become possible to provide a resin suitable for a cushion material used for a mat for shock absorption such as a pinch prevention member or the like. In particular, it has become possible to provide a resin composition suitable for cushioning materials such as office chairs, furniture, sofas, bed pads, and mattresses, which are prone to settling due to temperature due to summer or body temperature.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の熱可塑性エラストマー樹脂組成物は、密度の異なる2種類のエチレン・α−オレフィン共重合体樹脂を含む。本発明のエチレン・α−オレフィン共重合体は、エチレンと炭素数3以上のα−オレフィンを共重合してなるものである。ここで、炭素数3以上のα−オレフィンとしては、例えばプロピレン、ブテン−1、ペンテン−1、ヘキセン−1、4−メチル−1−ペンテン、ヘプテン−1、オクテン−1、ノネン−1、デセン−1、ウンデセン−1、ドデセン−1、トリデセン−1、テトラデセン−1、ペンタデセン−1、ヘキサデセン−1、ヘプタデセン−1、オクタデセン−1、ノナデセン−1、エイコセン−1などが挙げられ、好ましくはブテン−1、ペンテン−1、ヘキセン−1、4−メチル−1−ペンテン、ヘプテン−1、オクテン−1、ノネン−1、デセン−1、ウンデセン−1、ドデセン−1、トリデセン−1、テトラデセン−1、ペンタデセン−1、ヘキサデセン−1、ヘプタデセン−1、オクタデセン−1、ノナデセン−1、エイコセン−1である。また、これら2種類以上を用いることもでき、これらα−オレフィンは通常1〜40重量%共重合される。この共重合体は、メタロセン化合物と有機金属化合物を基本構成とする触媒系を用いてエチレンとα−オレフィンを共重合することによって得ることができる。 The thermoplastic elastomer resin composition of the present invention contains two types of ethylene / α-olefin copolymer resins having different densities. The ethylene / α-olefin copolymer of the present invention is obtained by copolymerizing ethylene with an α-olefin having 3 or more carbon atoms. Here, examples of the α-olefin having 3 or more carbon atoms include propylene, butene-1, penten-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, and decene. -1, undecene-1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nonenecene-1, eikocene-1, etc. -1, penten-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, decene-1, undecene-1, dodecene-1, tridecene-1, tetradecene-1 , Pentadecene-1, Hexadecene-1, Heptene-1, Octadecene-1, Nonadesen-1, Eikosen-1. Further, two or more of these can be used, and these α-olefins are usually copolymerized in an amount of 1 to 40% by weight. This copolymer can be obtained by copolymerizing ethylene and α-olefin using a catalyst system based on a metallocene compound and an organometallic compound.

エチレン・α−オレフィン共重合体(A)の密度は、900〜920kg/mである。915kg/m以下であることが好ましく、より好ましくは0.913kg/m以下である。密度の下限としては耐熱性の観点から900kg/m以上であり、901kg/m以上が好ましい。密度が920kg/cmを超えると、熱可塑性エラストマー樹脂組成物のヒステリシスロス率が大きくなり、弾性的な性質を損なうため好ましくない。密度が900kg/mよりも小さくなると、ヒステリシスロスが小さくなるが、耐熱性を損なうため好ましくない。 The density of the ethylene / α-olefin copolymer (A) is 900 to 920 kg / m 3 . It is preferably 915 kg / m 3 or less, more preferably 0.913 kg / m 3 or less. The lower limit of the density is from the viewpoint of heat resistance 900 kg / m 3 or more, 901kg / m 3 or more. If the density exceeds 920 kg / cm 3 , the hysteresis loss rate of the thermoplastic elastomer resin composition increases, which impairs the elastic properties, which is not preferable. When the density is smaller than 900 kg / m 3 , the hysteresis loss becomes small, but it is not preferable because the heat resistance is impaired.

エチレン・α−オレフィン共重合体(B)の密度は、890〜920kg/mであり、好ましくは915kg/m以下である。密度が920kg/mを超えると、熱可塑性エラストマー樹脂組成物のヒステリシスロス率が大きくなり、弾性的な性質を損なうため好ましくない。密度が890kg/m未満であると、耐熱性を損なうため好ましくない。 The density of the ethylene / α-olefin copolymer (B) is 890 to 920 kg / m 3 , preferably 915 kg / m 3 or less. If the density exceeds 920 kg / m 3 , the hysteresis loss rate of the thermoplastic elastomer resin composition increases, which impairs the elastic properties, which is not preferable. If the density is less than 890 kg / m 3 , the heat resistance is impaired, which is not preferable.

エチレン・α−オレフィン共重合体(A)の分子量は、重量平均分子量が4万〜10万の範囲であり、好ましくは、4万〜9万の範囲である。重量平均分子量が10万を超えると成形性を著しく損なうため好ましくない。重量平均分子量が4万未満であると、変形回復性を損なうため好ましくない。 The molecular weight of the ethylene / α-olefin copolymer (A) has a weight average molecular weight in the range of 40,000 to 100,000, preferably in the range of 40,000 to 90,000. If the weight average molecular weight exceeds 100,000, the moldability is significantly impaired, which is not preferable. If the weight average molecular weight is less than 40,000, the deformation recovery is impaired, which is not preferable.

エチレン・α−オレフィン共重合体(B)の分子量は、重量平均分子量が11万〜25万の範囲であり、好ましくは11万〜20万の範囲である。重量平均分子量が25万を超えると成形性を著しく損なうため好ましくない。重量平均分子量が10万未満であると、変形回復性の改良効果が小さいため好ましくない。 The molecular weight of the ethylene / α-olefin copolymer (B) has a weight average molecular weight in the range of 110,000 to 250,000, preferably in the range of 110,000 to 200,000. If the weight average molecular weight exceeds 250,000, the moldability is significantly impaired, which is not preferable. If the weight average molecular weight is less than 100,000, the effect of improving the deformation recovery is small, which is not preferable.

エチレン・α−オレフィン共重合体(A)の成分比率は、30〜95重量部であり、好ましくは30〜90重量部である。エチレン・α−オレフィン共重合体(A)の成分比率が、95重量部を超える範囲では、変形回復性の改良効果が小さく、また30重量部未満の範囲では成形性を損なうため好ましくない。 The component ratio of the ethylene / α-olefin copolymer (A) is 30 to 95 parts by weight, preferably 30 to 90 parts by weight. When the component ratio of the ethylene / α-olefin copolymer (A) exceeds 95 parts by weight, the effect of improving the deformation recovery is small, and when it is less than 30 parts by weight, the moldability is impaired, which is not preferable.

エチレン・α−オレフィン共重合体(B)の成分比率は、5〜70重量部であり、好ましくは、10〜70重量部である。なお、(A)及び(B)の合計は100重量部である。 The component ratio of the ethylene / α-olefin copolymer (B) is 5 to 70 parts by weight, preferably 10 to 70 parts by weight. The total of (A) and (B) is 100 parts by weight.

本発明の熱可塑性エラストマー樹脂組成物の23℃におけるヒステリシスロス率は30%以下である。ヒステリシスロス率が30%超であると、弾性的な性質を損なうため好ましくない。 The hysteresis loss rate of the thermoplastic elastomer resin composition of the present invention at 23 ° C. is 30% or less. If the hysteresis loss rate is more than 30%, the elastic property is impaired, which is not preferable.

本発明の熱可塑性エラストマー樹脂組成物の45℃における歪回復率は70%以上である。歪回復率が70%未満であると、変形が大きくなるため好ましくない。 The strain recovery rate of the thermoplastic elastomer resin composition of the present invention at 45 ° C. is 70% or more. If the strain recovery rate is less than 70%, the deformation becomes large, which is not preferable.

得られた熱可塑性エラストマー組成物の曲げ弾性率は、40〜110MPaの範囲であることがクッション性に優れるため好ましくい。 The flexural modulus of the obtained thermoplastic elastomer composition is preferably in the range of 40 to 110 MPa because it has excellent cushioning properties.

得られた熱可塑性エラストマー組成物のJIS K 7210に従い、190℃、荷重21.18Nで測定したメルトフローレート(MFR)は、0.1〜10g/10分であることが、成形性に優れるため好ましい。 According to JIS K 7210 of the obtained thermoplastic elastomer composition, the melt flow rate (MFR) measured at 190 ° C. and a load of 21.18 N is 0.1 to 10 g / 10 minutes, because the moldability is excellent. preferable.

また、タイ分子存在確率(P)が0.20以上であることが変形回復性を損なうことがないため好ましい。 Further, it is preferable that the tie molecule existence probability (P) is 0.20 or more because the deformation recovery property is not impaired.

前述したタイ分子存在確率(P)は、本発明の熱可塑性エラストマーのゲル浸透クロマトグラフィー(GPC)測定により得られる分子量−溶出量の関係において、タイ分子が形成可能な臨界分子量(Mc)以上の溶出面積と全溶出面積の比から算出することができる。 The above-mentioned tie molecule existence probability (P) is equal to or higher than the critical molecular weight (Mc) at which the tie molecule can be formed in the relationship of molecular weight-elution amount obtained by gel permeation chromatography (GPC) measurement of the thermoplastic elastomer of the present invention. It can be calculated from the ratio of the elution area to the total elution area.

ここで、タイ分子が形成可能な臨界分子量(Mc)は、J.Polym.Sci.,Polym.Phys.Ed.,29,129(1991)に記載されたタイ分子形成の考え方を参考として以下の方法により算出できる。以下にその詳細を説明する。タイ分子は、溶融状態での分子鎖の広がり(分子末端間の平均距離:r)が、固体状態での結晶、非晶から成る臨界厚み(2Lc+La)より大きい場合に形成されるため、タイ分子が形成される臨界条件は次式(I)で表わせる。 Here, the critical molecular weight (Mc) at which Thai molecules can be formed is determined by J.I. Polym. Sci. , Polym. Phys. Ed. , 29, 129 (1991), can be calculated by the following method with reference to the concept of Thai molecule formation. The details will be described below. Tie molecules are formed when the spread of the molecular chain in the molten state (average distance between molecular ends: r) is larger than the critical thickness (2 Lc + La) consisting of crystals and amorphous in the solid state. The critical condition in which is formed can be expressed by the following equation (I).

r=(2Lc+La) (I)
(式中、Lcは結晶厚みであり、Laは非晶厚みである。)
エチレン・α−オレフィン共重合体の場合、rは分子量(M)との間に次式(II)の関係にある。
r = (2Lc + La) (I)
(In the formula, Lc is the crystal thickness and La is the amorphous thickness.)
In the case of an ethylene / α-olefin copolymer, r has a relationship of the following formula (II) with the molecular weight (M).

r=C・M/M・lv (II)
ここでC∞は特性比6.8、Mは骨格分子量14、lv骨格結合長1.53、Mは分子量である。
r = C ・ M / M 0・ lv 2 (II)
Here C∞ the characteristic ratio 6.8, M 0 is the backbone molecular weight 14, lv backbone bond length 1.53, M is the molecular weight.

式(II)を式(I)に代入するとMcは、Mと同じであるため式(III)が得られ、LcとLaの値を求めることにより、式(III)からタイ分子が形成可能な臨界分子量(Mc)を計算することができる。 Substituting the formula (II) into the formula (I), Mc is the same as M, so that the formula (III) is obtained, and the Thai molecule can be formed from the formula (III) by obtaining the values of Lc and La. The critical molecular weight (Mc) can be calculated.

Mc=0.88(2Lc+La) (III)
また、Lcは示差走査型熱量計(DSC)を用いた測定により求められるエチレン・α−オレフィン共重合体の融点(Tm)から次式(IV)により算出できる。
Mc = 0.88 (2Lc + La) 2 (III)
Further, Lc can be calculated by the following formula (IV) from the melting point (Tm) of the ethylene / α-olefin copolymer obtained by measurement using a differential scanning calorimeter (DSC).

Lc=(6.26×414)/(414−Tm) (IV)
(ここで、Tmの単位は[K]である。)
LaはLcと結晶化度(Xc)から次式(V)により算出できる。
Lc = (6.26 × 414) / (414-Tm) (IV)
(Here, the unit of Tm is [K].)
La can be calculated from Lc and the crystallinity (Xc) by the following equation (V).

La=(Lc(1−Xc))/Xc (V)
Xcは密度勾配管により測定された密度(d)から次式(VI)により算出できる。
La = (Lc (1-Xc)) / Xc (V)
Xc can be calculated by the following equation (VI) from the density (d) measured by the density gradient tube.

Xc=(d−0.86)/0.14d (VI)
なお、本発明の熱可塑性エラストマー樹脂組成物の融点は、耐熱耐久性が保持できる80℃以上が好ましく、85℃以上のものが耐熱耐久性が向上するのでより好ましい。なお、必要に応じ、ポリブタジエン、ポリイソプレン、スチレン系熱可塑性エラストマーとしてスチレンイソプレン共重合体やスチレンブタジエン共重合体やそれらの水添共重合体などのポリマー改質剤をブレンドすることができる。さらに、フタル酸エステル系、トリメリット酸エステル系、脂肪酸系、エポキシ系、アジピン酸エステル系、ポリエステル系の可塑剤、公知のヒンダードフェノール系、硫黄系、燐系、アミン系の酸化防止剤、ヒンダードアミン系、トリアゾール系、ベンゾフェノン系、ベンゾエート系、ニッケル系、サリチル系などの光安定剤、帯電防止剤、エポキシ系化合物、イソシアネート系化合物、カルボジイミド系化合物などの反応基を有する化合物、金属不活性剤、有機及び無機系の核剤、中和剤、制酸剤、防菌剤、蛍光増白剤、充填剤、難燃剤、難燃助剤、有機及び無機系の顔料を添加することができる。
Xc = (d-0.86) /0.14d (VI)
The melting point of the thermoplastic elastomer resin composition of the present invention is preferably 80 ° C. or higher, which can maintain heat resistance, and more preferably 85 ° C. or higher because the heat resistance is improved. If necessary, polymer modifiers such as styrene isoprene copolymers, styrene butadiene copolymers, and hydrogenated copolymers thereof can be blended as polybutadienes, polyisoprenes, and styrene-based thermoplastic elastomers. Furthermore, phthalic acid ester-based, trimellitic acid ester-based, fatty acid-based, epoxy-based, adipic acid ester-based, polyester-based plasticizers, known hindered phenol-based, sulfur-based, phosphorus-based, and amine-based antioxidants, Hindered amine-based, triazole-based, benzophenone-based, benzoate-based, nickel-based, salicyl-based light stabilizers, antistatic agents, epoxy compounds, isocyanate compounds, carbodiimide compounds and other reactive groups, metal inactive agents , Organic and inorganic nucleating agents, neutralizing agents, antioxidants, antibacterial agents, fluorescent whitening agents, fillers, flame retardants, flame retardant aids, organic and inorganic pigments can be added.

本発明の熱可塑性エラストマー樹脂組成物は、変形回復性に優れかつ、夏場や体温によって温度がかかりへたりを生じ易い環境下でも、形状を保持できる耐熱性を有する。 The thermoplastic elastomer resin composition of the present invention has excellent deformation recovery and has heat resistance that can maintain its shape even in the summer or in an environment where the temperature tends to cause settling due to body temperature.

熱可塑性エラストマー樹脂組成物の成形方法、用途は特に制限は無いが、継続した負荷により継続して変形せしめられた後、負荷を除去した際に、変形回復性が求められる用途に用いられる。 The molding method and application of the thermoplastic elastomer resin composition are not particularly limited, but it is used in applications where deformation recovery is required when the load is removed after the thermoplastic elastomer resin composition is continuously deformed by a continuous load.

例えば、射出成形や、押出成形により、平板や棒状、らせん状、さらには異型断面や中空断面を有する成形体を緩衝用のバネに類する用途に適用する場合や、クッション等の支持体に適用する場合等が挙げられる。例としては、押出成形により得られる複数のストランドからなる連続線状体を三次元ランダムループ状に曲がりくねらせて、複数のループの接触部の少なくとも一部が融着してなる立体網目状構造を有する網状構造体や、特開2012−112072号公報や特開平5−163657号公報に例示される繊維集合体からなる構造体などが挙げられる。 For example, by injection molding or extrusion molding, a molded body having a flat plate, a rod shape, a spiral shape, a deformed cross section or a hollow cross section is applied to an application similar to a cushioning spring, or is applied to a support such as a cushion. Cases and the like can be mentioned. As an example, a three-dimensional network structure in which a continuous linear body composed of a plurality of strands obtained by extrusion molding is wound in a three-dimensional random loop shape, and at least a part of contact portions of the plurality of loops is fused. Examples thereof include a network structure having the above, and a structure composed of fiber aggregates exemplified in JP-A-2012-112072 and JP-A-5-163657.

次に本発明を具体的な実施例で説明するが、本発明はこれらによって限定されるものではない。なお、実施例中における特性値の評価は、以下のとおりである。
(1)密度
フード付きMI計を用いて、190℃、5kg荷重で押し出した試料を、フード内で5分間徐冷した後、23℃の密度勾配管により測定した。
(2)GPC
本発明におけるGPCは以下の条件で測定される。
[装置]東ソー(株)製 HLC−8121GPC/HT
[測定条件]カラム:TSKgel GMHHR−H(20)HT×3本、溶離液:トリクロロベンゼン+酸化防止剤(BHT0.05%)、流速:1.0ml/分、試料濃度:1.0mg/ml、注入量:0.3ml、カラム温度:140℃、検出器:HLC−8121GPC/HT
(3)MFR
JIS K7210に従い、温度190℃、荷重21.18Nで測定した。
(4)歪回復率
50トン圧縮成型機(AWFA−50 神藤製)を用いて温度200℃、冷却温度10℃の条件で1mmのシートを作製した。得られたシートから幅10mm、長さ100mmの短冊を切り出し、試験前距離50mmの印をつけた。引張試験機(RTG−1210 オリエンテック社製)を用い温度45℃の雰囲気下で距離50mmのつかみ具に固定し、引張速度50mm/分の速度で75mmまで変形させ60分間保持した。その後、つかみ具から瞬時に試験片を取り外し、温度23℃の雰囲気下で10分間放置し、印の距離をノギスを用いて測定し、以下の式で歪回復率を求めた。
Next, the present invention will be described with specific examples, but the present invention is not limited thereto. The evaluation of the characteristic values in the examples is as follows.
(1) Density Using a MI meter with a hood, a sample extruded at 190 ° C. with a load of 5 kg was slowly cooled in the hood for 5 minutes, and then measured with a density gradient tube at 23 ° C.
(2) GPC
The GPC in the present invention is measured under the following conditions.
[Device] HLC-8121GPC / HT manufactured by Tosoh Corporation
[Measurement conditions] Column: TSKgel GMHHR-H (20) HT x 3, eluent: trichlorobenzene + antioxidant (BHT 0.05%), flow velocity: 1.0 ml / min, sample concentration: 1.0 mg / ml , Injection volume: 0.3 ml, Column temperature: 140 ° C., Detector: HLC-8121 GPC / HT
(3) MFR
According to JIS K7210, the measurement was performed at a temperature of 190 ° C. and a load of 21.18 N.
(4) Strain recovery rate A 1 mm sheet was prepared under the conditions of a temperature of 200 ° C. and a cooling temperature of 10 ° C. using a compression molding machine (AWFA-50 manufactured by Shinto) having a strain recovery rate of 50 tons. A strip having a width of 10 mm and a length of 100 mm was cut out from the obtained sheet and marked with a distance of 50 mm before the test. Using a tensile tester (manufactured by RTG-1210 Orientec Co., Ltd.), it was fixed to a gripper having a distance of 50 mm in an atmosphere at a temperature of 45 ° C., deformed to 75 mm at a tensile speed of 50 mm / min, and held for 60 minutes. Then, the test piece was instantly removed from the grip, left for 10 minutes in an atmosphere of a temperature of 23 ° C., the distance marked was measured using a caliper, and the strain recovery rate was calculated by the following formula.

歪回復率=試験前の距離/試験後の距離×100
(5)ヒステリシスロス率
50トン圧縮成型機(AWFA−50 神藤製)を用いて、温度200℃、冷却温度10℃の条件で1mmのシートを作製した。得られたシートから幅10mm、長さ100mmの短冊を切り出し、距離50mmのつかみ具に固定し、速度50mm/分の速度で25%まで引張り、ホールドタイム無しで同一速度にてつかみ具をゼロ点まで戻した。
Strain recovery rate = distance before test / distance after test x 100
(5) Hysteresis loss rate A 1 mm sheet was produced under the conditions of a temperature of 200 ° C. and a cooling temperature of 10 ° C. using a compression molding machine (AWFA-50 manufactured by Shinto) having a hysteresis loss rate of 50 tons. A strip with a width of 10 mm and a length of 100 mm is cut out from the obtained sheet, fixed to a gripper with a distance of 50 mm, pulled to 25% at a speed of 50 mm / min, and the gripper is zeroed at the same speed without a hold time. Returned to.

引張変形時の応力曲線の示す引張エネルギー(EC)、除力時応力曲線の示す引張エネルギー(EC’)とし、下記式に従ってヒステリシスロスを求めた。 The tensile energy (EC) indicated by the stress curve during tensile deformation and the tensile energy (EC') indicated by the stress curve during decompression were used, and the hysteresis loss was determined according to the following equation.

ヒステリシスロス(%)=(EC−EC’)/EC×100
WC=∫PdT(0%から25%まで変形したときの面積)
WC’=∫PdT(25%から0%まで変形したときの面積)
簡易的には、パソコンによるデータ解析によって算出することができる。(n=5の平均値)
(6)曲げ弾性率
曲げ弾性率 JIS−K6922−2に準拠して、所定条件で射出成形した多目的試験片を用いて、スパン間64mm、曲げ速度2mm/分の条件下で測定した。
Hysteresis loss (%) = (EC-EC') / EC × 100
WC = ∫PdT (area when deformed from 0% to 25%)
WC'= ∫PdT (area when deformed from 25% to 0%)
Simply, it can be calculated by data analysis with a personal computer. (Average value of n = 5)
(6) Bending Elastic Modulus Bending Elastic Modulus Measured using a multipurpose test piece injection-molded under predetermined conditions in accordance with JIS-K6922-2 under the conditions of a span of 64 mm and a bending speed of 2 mm / min.

実施例中における合成例は、エチレン・α−オレフィン共重合体の製造例を以下に記す。 Examples of synthesis in the examples are described below as examples of production of an ethylene / α-olefin copolymer.

製造例1
[変性粘土化合物の調製]
N,N−ジメチル−オクタデシルアミン29.7gと37%塩酸10mLを500mLの脱イオン水に加え、N,N−ジメチル−オクタデシルアンモニウム塩酸塩水溶液を調製した。平均粒径7.8μmのモンモリロナイト100g(クニピアF(クニミネ工業製)をジェット粉砕機で粉砕することによって調製した)を上記塩酸塩水溶液に加え、6時間反応させた。反応終了後、反応溶液を濾過し、得られたケーキを6時間減圧乾燥し、変性粘土化合物120gを得た。有機カチオン導入量は1.0mmol/gであった。
[触媒の調製]
窒素雰囲気下の20Lステンレス容器に、ヘプタン3.3L、トリエチルアルミニウム(TEAL)のヘキサン溶液(20wt%希釈品)をアルミニウム原子当たり1.125mol(0.9L)、および[変性粘土化合物の調製]に従って調製した変性粘土化合物38gを加えて1 時間攪拌した。そこへ製造例1に従って合成したジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリドをジルコニウム原子当たり1.25mmol加えて12時間攪拌した。得られた懸濁系に脂肪族系飽和炭化水素溶媒(IPソルベント2835(出光石油化学社製))を5.8L加えることにより、触媒を調製した(ジルコニウム濃度0.125mmol/L)。
[重合]
槽型反応器を用いて重合を行った。エチレンおよびヘキセン−1を連続的に反応器内に圧入して、全圧を950kgf/cm、エチレン濃度を65mol%、およびヘキセン−1濃度を35mol%になるように設定した。そして、反応器を1500rpmで撹拌した。
Manufacturing example 1
[Preparation of modified clay compound]
29.7 g of N, N-dimethyl-octadecylamine and 10 mL of 37% hydrochloric acid were added to 500 mL of deionized water to prepare an aqueous solution of N, N-dimethyl-octadecylammonium hydrochloride. 100 g of montmorillonite having an average particle size of 7.8 μm (prepared by pulverizing Kunipia F (manufactured by Kunimine Industries) with a jet pulverizer) was added to the above-mentioned aqueous hydrochloride solution and reacted for 6 hours. After completion of the reaction, the reaction solution was filtered, and the obtained cake was dried under reduced pressure for 6 hours to obtain 120 g of a modified clay compound. The amount of organic cation introduced was 1.0 mmol / g.
[Catalyst preparation]
In a 20 L stainless steel container under a nitrogen atmosphere, add 3.3 L of heptane, a hexane solution of triethylaluminum (TEAL) (20 wt% diluted product) to 1.125 mol (0.9 L) per aluminum atom, and according to [Preparation of Modified Clay Compound]. 38 g of the prepared modified clay compound was added, and the mixture was stirred for 1 hour. 1.25 mmol of diphenylmethylene (4-phenyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride synthesized according to Production Example 1 was added thereto, and the mixture was stirred for 12 hours. A catalyst was prepared by adding 5.8 L of an aliphatic saturated hydrocarbon solvent (IP Solvent 2835 (manufactured by Idemitsu Petrochemical Co., Ltd.)) to the obtained suspension system (zirconium concentration 0.125 mmol / L).
[polymerization]
Polymerization was carried out using a tank reactor. Ethylene and hexene-1 were continuously press-fitted into the reactor to set the total pressure to 950 kgf / cm 2 , the ethylene concentration to 65 mol%, and the hexene-1 concentration to 35 mol%. Then, the reactor was stirred at 1500 rpm.

そして、調製した触媒を連続的に反応器へ供給して、平均温度が200℃に保たれるように重合を行った。その結果、密度900kg/m、MFR0.1g/10分のエチレン・ヘキセン−1共重合体が得られた。 Then, the prepared catalyst was continuously supplied to the reactor, and polymerization was carried out so that the average temperature was maintained at 200 ° C. As a result, an ethylene-hexene-1 copolymer having a density of 900 kg / m 3 and an MFR of 0.1 g / 10 minutes was obtained.

製造例2
エチレン濃度を70mol%、ヘキセン−1濃度を30mol%、および平均温度が225℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度905kg/m、MFR4.0g/10分のエチレン・ヘキセン−1共重合体が得られた。
Manufacturing example 2
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 70 mol%, the hexene-1 concentration was 30 mol%, and the polymerization was carried out so that the average temperature was maintained at 225 ° C. As a result, an ethylene-hexene-1 copolymer having a density of 905 kg / m 3 and an MFR of 4.0 g / 10 minutes was obtained.

製造例3
エチレン濃度を72mol%、ヘキセン−1濃度を28mol%、および平均温度が250℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度905kg/m、MFR20g/10分のエチレン・ヘキセン−1共重合体が得られた。
Manufacturing example 3
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 72 mol%, the hexene-1 concentration was 28 mol%, and the polymerization was carried out so that the average temperature was maintained at 250 ° C. As a result, an ethylene-hexene-1 copolymer having a density of 905 kg / m 3 and an MFR of 20 g / 10 minutes was obtained.

製造例4
エチレン濃度を70mol%、ヘキセン−1濃度を30mol%、および平均温度が220℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度905kg/m、MFR1.0g/10分のエチレン・ヘキセン−1共重合体が得られた。
Manufacturing example 4
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 70 mol%, the hexene-1 concentration was 30 mol%, and the polymerization was carried out so that the average temperature was maintained at 220 ° C. As a result, an ethylene-hexene-1 copolymer having a density of 905 kg / m 3 and an MFR of 1.0 g / 10 minutes was obtained.

製造例5
エチレン濃度を72mol%、ヘキセン−1濃度を28mol%、および平均温度が240℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度905kg/m、MFR12g/10分のエチレン・ヘキセン共重合体−1が得られた。
Production example 5
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 72 mol%, the hexene-1 concentration was 28 mol%, and the polymerization was carried out so that the average temperature was maintained at 240 ° C. As a result, an ethylene / hexene copolymer-1 having a density of 905 kg / m 3 and an MFR of 12 g / 10 minutes was obtained.

製造例6
エチレン濃度を75mol%、ヘキセン−1濃度を25mol%、および平均温度が220℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度910kg/m、MFR1.0g/10分のエチレン・ヘキセン共重合体−1が得られた。
Production example 6
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 75 mol%, the hexene-1 concentration was 25 mol%, and the polymerization was carried out so that the average temperature was maintained at 220 ° C. As a result, an ethylene / hexene copolymer-1 having a density of 910 kg / m 3 and an MFR of 1.0 g / 10 minutes was obtained.

製造例7
[重合]
エチレン濃度を75mol%、ヘキセン−1濃度を25mol%、および平均温度が240℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度910kg/m、MFR12g/10分のエチレン・ヘキセン共重合体−1が得られた。
Production example 7
[polymerization]
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 75 mol%, the hexene-1 concentration was 25 mol%, and the polymerization was carried out so that the average temperature was maintained at 240 ° C. As a result, an ethylene / hexene copolymer-1 having a density of 910 kg / m 3 and an MFR of 12 g / 10 minutes was obtained.

製造例8
[重合]
エチレン濃度を75mol%、ヘキセン−1濃度を25mol%、および平均温度が210℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度910kg/m、MFR0.5g/10分のエチレン・ヘキセン共重合体−1が得られた。
Production Example 8
[polymerization]
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 75 mol%, the hexene-1 concentration was 25 mol%, and the polymerization was carried out so that the average temperature was maintained at 210 ° C. As a result, an ethylene / hexene copolymer-1 having a density of 910 kg / m 3 and an MFR of 0.5 g / 10 minutes was obtained.

製造例9
[重合]
エチレン濃度を65mol%、1−ヘキセン濃度を35mol%、および平均温度が230℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度900kg/m、MFR8.0g/10分のエチレン・1−ヘキセン共重合体が得られた。
Manufacturing example 9
[polymerization]
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 65 mol%, the 1-hexene concentration was 35 mol%, and the polymerization was carried out so that the average temperature was maintained at 230 ° C. As a result, an ethylene / 1-hexene copolymer having a density of 900 kg / m 3 and an MFR of 8.0 g / 10 minutes was obtained.

製造例10
[重合]
エチレン濃度を63mol%、ヘキセン−1濃度を37mol%、および平均温度が210℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度895kg/m、MFR2.0g/10分のエチレン・ヘキセン−1共重合体が得られた。
Production Example 10
[polymerization]
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 63 mol%, the hexene-1 concentration was 37 mol%, and the polymerization was carried out so that the average temperature was maintained at 210 ° C. As a result, an ethylene-hexene-1 copolymer having a density of 895 kg / m 3 and an MFR of 2.0 g / 10 minutes was obtained.

製造例11
[重合]
エチレン濃度を80mol%、ヘキセン−1濃度を20mol%、および平均温度が210℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度928kg/m、MFR0.5g/10分のエチレン・ヘキセン−1共重合体が得られた。
Production Example 11
[polymerization]
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 80 mol%, the hexene-1 concentration was 20 mol%, and the polymerization was carried out so that the average temperature was maintained at 210 ° C. As a result, an ethylene-hexene-1 copolymer having a density of 928 kg / m 3 and an MFR of 0.5 g / 10 minutes was obtained.

製造例12
[重合]
エチレン濃度を80mol%、ヘキセン−1濃度を20mol%、および平均温度が240℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度930kg/m、MFR12g/10分のエチレン・ヘキセン−1共重合体が得られた。
Production Example 12
[polymerization]
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 80 mol%, the hexene-1 concentration was 20 mol%, and the polymerization was carried out so that the average temperature was maintained at 240 ° C. As a result, an ethylene-hexene-1 copolymer having a density of 930 kg / m 3 and an MFR of 12 g / 10 minutes was obtained.

製造例13
[重合]
エチレン濃度を63mol%、ヘキセン−1濃度を37mol%、および平均温度が260℃に保たれるように重合を行った以外は、製造例1と同様に重合を実施した。その結果、密度900kg/m、MFR40g/10分のエチレン・ヘキセン−1共重合体が得られた。
Production Example 13
[polymerization]
The polymerization was carried out in the same manner as in Production Example 1 except that the ethylene concentration was 63 mol%, the hexene-1 concentration was 37 mol%, and the polymerization was carried out so that the average temperature was maintained at 260 ° C. As a result, an ethylene-hexene-1 copolymer having a density of 900 kg / m 3 and an MFR of 40 g / 10 minutes was obtained.

実施例1
エチレン・α−オレフィン共重合体(A)として、製造例2で重合した密度905kg/m、MFR4.0g/10分のエチレン・ヘキセン−1共重合体とエチレン・α−オレフィン共重合体(B)として、製造例1で重合した密度900kg/m、MFR0.1g/10分のエチレン・ヘキセン−1共重合体を90/10(重量部/重量部)で配合し、2軸押出機(東洋精機(株)製)を用いて、スクリュー回転数20rpm、バレル設定温度220℃の条件で溶融混練を行い、熱可塑性エラストマー樹脂組成物を得た。
Example 1
As the ethylene / α-olefin copolymer (A), the ethylene / hexene-1 copolymer and the ethylene / α-olefin copolymer having a density of 905 kg / m 3 and an MFR of 4.0 g / 10 minutes polymerized in Production Example 2 ( As B), an ethylene / hexene-1 copolymer having a density of 900 kg / m 3 and an MFR of 0.1 g / 10 min, which was polymerized in Production Example 1, was blended at 90/10 (part by weight / part by weight), and a twin-screw extruder was used. Using (manufactured by Toyo Seiki Co., Ltd.), melt-kneading was carried out under the conditions of a screw rotation speed of 20 rpm and a barrel set temperature of 220 ° C. to obtain a thermoplastic elastomer resin composition.

得られた熱可塑性エラストマー樹脂組成物の歪回復率は75%、ヒステリシスロス率は27%であり、耐熱性と回復性に優れるものであった。 The obtained thermoplastic elastomer resin composition had a strain recovery rate of 75% and a hysteresis loss rate of 27%, and were excellent in heat resistance and recovery.

実施例2
エチレン・α−オレフィン共重合体(A)として、製造例3で重合した密度905kg/m、MFR20g/10分のエチレン・ヘキセン−1共重合体とエチレン・α−オレフィン共重合体(B)として、製造例4で重合した密度905kg/m、MFR1.0g/10分のエチレン・ヘキセン−1共重合体を30/70(重量部/重量部)で配合し、実施例1と同じ方法で熱可塑性エラストマー樹脂組成物を得た。
Example 2
As the ethylene / α-olefin copolymer (A), the ethylene / hexene-1 copolymer and the ethylene / α-olefin copolymer (B) polymerized in Production Example 3 at a density of 905 kg / m 3 and MFR of 20 g / 10 minutes. The same method as in Example 1 was prepared by blending an ethylene / hexene-1 copolymer having a density of 905 kg / m 3 and an MFR of 1.0 g / 10 minutes polymerized in Production Example 4 at 30/70 (parts by weight / part by weight). Obtained a thermoplastic elastomer resin composition in the above.

得られた熱可塑性エラストマー樹脂組成物の歪回復率は79%、ヒステリシスロス率は27%であり、耐熱性と回復性に優れるものであった。 The obtained thermoplastic elastomer resin composition had a strain recovery rate of 79% and a hysteresis loss rate of 27%, and were excellent in heat resistance and recovery.

実施例3
エチレン・α−オレフィン共重合体(A)として、製造例7で重合した密度910kg/m、MFR12g/10分のエチレン・ヘキセン−1共重合体とエチレン・α−オレフィン共重合体(B)として、製造例6で重合した密度910kg/m、MFR1.0g/10分のエチレン・ヘキセン−1共重合体を70/30(重量部/重量部)で配合し、実施例1と同じ方法で熱可塑性エラストマー樹脂組成物を得た。
Example 3
As the ethylene / α-olefin copolymer (A), the ethylene / hexene-1 copolymer and the ethylene / α-olefin copolymer (B) polymerized in Production Example 7 having a density of 910 kg / m 3 and an MFR of 12 g / 10 min. The same method as in Example 1 was prepared by blending an ethylene / hexene-1 copolymer having a density of 910 kg / m 3 and an MFR of 1.0 g / 10 minutes polymerized in Production Example 6 at 70/30 (parts by weight / part by weight). Obtained a thermoplastic elastomer resin composition in the above.

得られた熱可塑性エラストマー樹脂組成物の歪回復率は73%、ヒステリシスロス率は28%であり、耐熱性と回復性に優れるものであった。 The strain recovery rate of the obtained thermoplastic elastomer resin composition was 73%, and the hysteresis loss rate was 28%, which were excellent in heat resistance and recovery property.

実施例4
エチレン・α−オレフィン共重合体(A)として、製造例9で重合した密度900kg/m、MFR8g/10分のエチレン・ヘキセン−1共重合体とエチレン・α−オレフィン共重合体(B)として、製造例8で重合した密度910kg/m、MFR0.5g/10分のエチレン・ヘキセン−1共重合体80/20(重量部/重量部)で配合し、実施例1と同じ方法で熱可塑性エラストマー樹脂組成物を得た。
Example 4
As the ethylene / α-olefin copolymer (A), the ethylene / hexene-1 copolymer and the ethylene / α-olefin copolymer (B) polymerized in Production Example 9 having a density of 900 kg / m 3 and an MFR of 8 g / 10 minutes. As a result, the ethylene / hexene-1 copolymer having a density of 910 kg / m 3 and an MFR of 0.5 g / 10 min, which was polymerized in Production Example 8, was blended with 80/20 (parts by weight / part by weight) in the same manner as in Example 1. A thermoplastic elastomer resin composition was obtained.

得られた熱可塑性エラストマー樹脂組成物の歪回復率は74%、ヒステリシスロス率は27%であり、耐熱性と回復性に優れるものであった。 The obtained thermoplastic elastomer resin composition had a strain recovery rate of 74% and a hysteresis loss rate of 27%, and were excellent in heat resistance and recovery.

比較例1
製造例5で重合した密度905kg/m、MFR12g/10分のエチレン・ヘキセン−1共重合体は、歪回復率は68%、ヒステリシスロス率は33%であり、耐熱性と歪回復性が低かった。
Comparative Example 1
The ethylene / hexene-1 copolymer having a density of 905 kg / m 3 and an MFR of 12 g / 10 minutes polymerized in Production Example 5 has a strain recovery rate of 68% and a hysteresis loss rate of 33%, and has excellent heat resistance and strain recovery. It was low.

比較例2
エチレン・α−オレフィン共重合体(A)として、製造例12で重合した密度930kg/m、MFR12g/10分のエチレン・ヘキセン−1共重合体とエチレン・α−オレフィン共重合体(B)として、製造例10で重合した密度895kg/m、MFR2.0g/10分のエチレン・ヘキセン−1共重合体を60/40(重量部/重量部)で配合し、実施例1と同じ方法で熱可塑性エラストマー樹脂組成物を得た。
Comparative Example 2
As the ethylene / α-olefin copolymer (A), the ethylene / hexene-1 copolymer and the ethylene / α-olefin copolymer (B) polymerized in Production Example 12 at a density of 930 kg / m 3 and MFR of 12 g / 10 minutes. The same method as in Example 1 was prepared by blending an ethylene / hexene-1 copolymer having a density of 895 kg / m 3 and an MFR of 2.0 g / 10 min, which was polymerized in Production Example 10, at 60/40 (parts by weight / part by weight). Obtained a thermoplastic elastomer resin composition in the above.

得られた熱可塑性エラストマー樹脂組成物の歪回復率は62%、ヒステリシスロス率は39%であり、耐熱性と歪回復性に劣るものであった。 The obtained thermoplastic elastomer resin composition had a strain recovery rate of 62% and a hysteresis loss rate of 39%, which were inferior in heat resistance and strain recovery.

比較例3
エチレン・α−オレフィン共重合体(A)として、製造例13で重合した密度900kg/m、MFR40g/10分のエチレン・ヘキセン−1共重合体とエチレン・α−オレフィン共重合体(B)として、製造例11で重合した密度928kg/m、MFR0.5g/10分のエチレン・ヘキセン−1共重合体を50/50(重量部/重量部)で配合し、実施例1と同じ方法で熱可塑性エラストマー樹脂組成物を得た。
Comparative Example 3
As the ethylene / α-olefin copolymer (A), the ethylene / hexene-1 copolymer and the ethylene / α-olefin copolymer (B) polymerized in Production Example 13 at a density of 900 kg / m 3 and MFR of 40 g / 10 minutes. The same method as in Example 1 was prepared by blending an ethylene / hexene-1 copolymer having a density of 928 kg / m 3 and an MFR of 0.5 g / 10 min, which was polymerized in Production Example 11, at 50/50 (parts by weight / part by weight). Obtained a thermoplastic elastomer resin composition in the above.

得られた熱可塑性エラストマー樹脂組成物の歪回復率は63%、ヒステリシスロス率は34%であり、耐熱性と歪回復性に劣るものであった。 The obtained thermoplastic elastomer resin composition had a strain recovery rate of 63% and a hysteresis loss rate of 34%, which were inferior in heat resistance and strain recovery.

Figure 0006911344
Figure 0006911344

Claims (3)

密度が900〜920kg/m、GPCにより測定される重量平均分子量が4万〜10万の範囲にあるエチレン・α−オレフィン共重合体(A) 30〜95重量部と密度が890〜920kg/m、GPCにより測定される重量平均分子量が11万〜25万の範囲にあるエチレン・α−オレフィン共重合体(B) 5〜70重量部((A)及び(B)の合計は100重量部)を含む組成物であって、下記の23℃におけるヒステリシスロス率が30%以下であり、下記の45℃における歪回復率が70%以上であり、下記の曲げ弾性率が40〜110MPaの範囲にある熱可塑性エラストマー樹脂組成物。
なお、上記α−オレフィンはブテン−1、ペンテン−1、ヘキセン−1、4−メチル−1−ペンテン、ヘプテン−1、オクテン−1、ノネン−1及びデセン−1から選ばれる1種又は2種以上である。
歪回復率:圧縮成型機を用いて温度200℃、冷却温度10℃の条件で1mmのシートを作製した。得られたシートから幅10mm、長さ100mmの短冊を切り出し、試験前距離50mmの印をつけた。引張試験機を用い温度45℃の雰囲気下で距離50mmのつかみ具に固定し、引張速度50mm/分の速度で75mmまで変形させ60分間保持した。その後、つかみ具から瞬時に試験片を取り外し、温度23℃の雰囲気下で10分間放置し、印の距離をノギスを用いて測定し、以下の式で歪回復率を求めた。
歪回復率=試験前の距離/試験後の距離×100
ヒステリシスロス率:圧縮成型機を用いて、温度200℃、冷却温度10℃の条件で1mmのシートを作製した。得られたシートから幅10mm、長さ100mmの短冊を切り出し、距離50mmのつかみ具に固定し、速度50mm/分の速度で25%まで引張り、ホールドタイム無しで同一速度にてつかみ具をゼロ点まで戻した。
引張変形時の応力曲線の示す引張エネルギー(EC)、除力時応力曲線の示す引張エネ
ルギー(EC’)とし、下記式に従ってヒステリシスロスを求めた。
ヒステリシスロス(%)=(EC−EC’)/EC×100
WC=∫PdT(0%から25%まで変形したときの面積)
WC’=∫PdT(25%から0%まで変形したときの面積)
曲げ弾性率:曲げ弾性率 JIS−K6922−2に準拠して、所定条件で射出成形した多目的試験片を用いて、スパン間64mm、曲げ速度2mm/分の条件下で測定した。
Ethylene / α-olefin copolymer (A) having a density of 900 to 920 kg / m 3 and a weight average molecular weight measured by GPC in the range of 40,000 to 100,000 (A) 30 to 95 parts by weight and a density of 890 to 920 kg / m 3. m 3 , Weight average molecular weight measured by GPC is in the range of 110,000 to 250,000 Ethylene / α-olefin copolymer (B) 5 to 70 parts by weight ((A) and (B) total 100 weight The composition contains (parts), and the hysteresis loss rate at 23 ° C. below is 30% or less, the strain recovery rate at 45 ° C. below is 70% or more, and the bending elasticity below is 40 to 110 MPa. A thermoplastic elastomer resin composition in the range.
The α-olefin is one or two selected from butene-1, penten-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, and decene-1. That is all.
Strain recovery rate: A 1 mm sheet was produced under the conditions of a temperature of 200 ° C. and a cooling temperature of 10 ° C. using a compression molding machine. A strip having a width of 10 mm and a length of 100 mm was cut out from the obtained sheet and marked with a distance of 50 mm before the test. It was fixed to a gripper having a distance of 50 mm in an atmosphere of a temperature of 45 ° C. using a tensile tester, deformed to 75 mm at a tensile speed of 50 mm / min, and held for 60 minutes. Then, the test piece was instantly removed from the grip, left for 10 minutes in an atmosphere of a temperature of 23 ° C., the distance marked was measured using a caliper, and the strain recovery rate was calculated by the following formula.
Strain recovery rate = distance before test / distance after test x 100
Hysteresis loss rate: A 1 mm sheet was produced under the conditions of a temperature of 200 ° C. and a cooling temperature of 10 ° C. using a compression molding machine. A strip with a width of 10 mm and a length of 100 mm is cut out from the obtained sheet, fixed to a gripper with a distance of 50 mm, pulled to 25% at a speed of 50 mm / min, and the gripper is zeroed at the same speed without a hold time. Returned to.
Tensile energy (EC) indicated by stress curve during tensile deformation, tensile energy indicated by stress curve during decompression
Hysteresis loss was calculated according to the following formula using ruggy (EC').
Hysteresis loss (%) = (EC-EC') / EC × 100
WC = ∫PdT (area when deformed from 0% to 25%)
WC'= ∫PdT (area when deformed from 25% to 0%)
Bending elastic modulus: Bending elastic modulus Measured using a multipurpose test piece injection-molded under predetermined conditions in accordance with JIS-K6922-2 under the conditions of a span of 64 mm and a bending speed of 2 mm / min.
タイ分子存在確率(P)が0.20以上であることを特徴する請求項1に記載のオレフィン系熱可塑性エラストマー組成物。 The olefin-based thermoplastic elastomer composition according to claim 1, wherein the tie molecule presence probability (P) is 0.20 or more. MFRが、0.1〜10g/10分の範囲にある請求項1又は2記載のオレフィン系熱可塑性エラストマー組成物。 The olefin-based thermoplastic elastomer composition according to claim 1 or 2, wherein the MFR is in the range of 0.1 to 10 g / 10 minutes.
JP2016243388A 2016-12-15 2016-12-15 Thermoplastic elastomer resin composition Active JP6911344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243388A JP6911344B2 (en) 2016-12-15 2016-12-15 Thermoplastic elastomer resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243388A JP6911344B2 (en) 2016-12-15 2016-12-15 Thermoplastic elastomer resin composition

Publications (2)

Publication Number Publication Date
JP2018095774A JP2018095774A (en) 2018-06-21
JP6911344B2 true JP6911344B2 (en) 2021-07-28

Family

ID=62632531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243388A Active JP6911344B2 (en) 2016-12-15 2016-12-15 Thermoplastic elastomer resin composition

Country Status (1)

Country Link
JP (1) JP6911344B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3710562B2 (en) * 1996-07-10 2005-10-26 新日本石油化学株式会社 Wrap film
JP2005097383A (en) * 2003-09-24 2005-04-14 Idemitsu Kosan Co Ltd Ethylene copolymer composition for use in pipe, and pipe and joint composed of it
JP5891902B2 (en) * 2011-03-30 2016-03-23 日本ポリエチレン株式会社 Polyethylene resin composition and use thereof
CA2862245C (en) * 2011-12-28 2016-10-25 Prime Polymer Co., Ltd. Ethylene polymer composition and shaped article of the same

Also Published As

Publication number Publication date
JP2018095774A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
CN104861252B (en) Crosslinked polyethylene product and preparation method thereof
JP4782800B2 (en) Homogeneous polymer blends and products from the blends
US6787593B2 (en) Sound-deadening composites of metallocene copolymers for use in vehicle applications
US8557906B2 (en) Flame resistant polyolefin compositions and methods for making the same
US20070037913A1 (en) Filled, low gloss, TPO compositions as substitutes for polycarbonate-abs blends
JP6256156B2 (en) Thermoplastic elastomer composition
JP2000501140A (en) Products made from polypropylene, higher alpha-olefin copolymer
EP2190918B1 (en) Filled tpo compositions with good low temperature ductility
EP0760833A1 (en) ARTICLES MADE FROM POLYPROPYLENE, HIGHER $g(a)-OLEFIN COPOLYMERS
JP2012522073A (en) Process for producing heterophase copolymer and use thereof
JP2004238586A (en) Polypropylene resin composition and molding obtained therefrom
JP2010265449A (en) Propylene polymer resin composition
JP3945264B2 (en) Polylactic acid composite material and molded body
JP6911344B2 (en) Thermoplastic elastomer resin composition
JP5135280B2 (en) Flame retardant resin composition and molded body comprising the same
JP5137734B2 (en) Flame-retardant polypropylene-based resin composition and molded article using the composition
US20220186012A1 (en) Propylene resin composition and molded body
JP2017061595A (en) Fiber-reinforced polypropylene resin composition
JP5167900B2 (en) Thermoplastic elastomer composition, foam, and method for producing foam
JP2008169316A (en) Propylene polymer composition, pellet made from the composition, modifier for resin, method for producing thermoplastic resin composition, method for producing molding of propylene-based polymer composition, and molding comprising propylenic polymer composition
CN107531966A (en) Poly- 1 butylene resin composition and formed body therefrom
JP5672531B2 (en) Biodegradable resin composition for foaming and foamed molded article
JP3933534B2 (en) Polypropylene resin composition for self-extinguishing molded body and molded body comprising the same
JP2011001506A (en) Flame-retardant resin composition and molding obtained therefrom
JP2019178282A (en) Thermoplastic elastomer composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R151 Written notification of patent or utility model registration

Ref document number: 6911344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151