JP2007107143A - High strength fusing conjugate fiber - Google Patents

High strength fusing conjugate fiber Download PDF

Info

Publication number
JP2007107143A
JP2007107143A JP2005300429A JP2005300429A JP2007107143A JP 2007107143 A JP2007107143 A JP 2007107143A JP 2005300429 A JP2005300429 A JP 2005300429A JP 2005300429 A JP2005300429 A JP 2005300429A JP 2007107143 A JP2007107143 A JP 2007107143A
Authority
JP
Japan
Prior art keywords
molecular weight
heat
average molecular
fiber
core component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005300429A
Other languages
Japanese (ja)
Other versions
JP4670580B2 (en
Inventor
Minoru Miyauchi
実 宮内
Akinori Maekawa
明範 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Fibers Corp
Original Assignee
Chisso Polypro Fiber Co Ltd
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Polypro Fiber Co Ltd, Chisso Corp filed Critical Chisso Polypro Fiber Co Ltd
Priority to JP2005300429A priority Critical patent/JP4670580B2/en
Publication of JP2007107143A publication Critical patent/JP2007107143A/en
Application granted granted Critical
Publication of JP4670580B2 publication Critical patent/JP4670580B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing high strength fusing conjugate fiber industrially at a low cost. <P>SOLUTION: The fusing conjugate fiber comprises crystalline propylene-based polymer as the core component and olefinic polymer having lower melting point than that of the core component as the sheath component, wherein the conjugate fiber has a ratio of the core component weight-average molecular weight measured by cross fractionation chromatograph to the sheath component weight-average molecular weight (core component weight-average molecular weight/sheath component weight-average molecular weight) in a specific range. By properly selecting melt flow rate of the both sheath and core components after discharged from nozzles to obtain undrawn fiber, the undrawn fiber can be drawn at a high magnification and as the strength development to the draw ratio is high, so the high strength fusing conjugate fiber can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱融着性複合繊維に関する。さらに詳しくは、鞘芯構造の熱融着性複合繊維であって、高強度を有し、かつ工業的に安価に高生産性で製造する事ができ、乾式不織布や電池用セパレータ等の湿式不織布などの用途に適した熱融着性複合繊維に関するものである。   The present invention relates to a heat-fusible conjugate fiber. More specifically, it is a heat-fusible conjugate fiber having a sheath-core structure, which has high strength and can be manufactured industrially at low cost with high productivity, and is a wet nonwoven fabric such as a dry nonwoven fabric or a battery separator. It is related with the heat-fusible composite fiber suitable for uses, such as.

合成繊維やフィルムなど、延伸処理が施される高分子製品の物性は、その高次構造(分子鎖集合体が形成する構造:分子配向度や結晶化度など)の影響を強く受け、また、その高次構造は延伸処理や熱処理の方法、程度などに依存する。一般的に、延伸処理を施すことで分子鎖は延伸方向に一軸配向して、延伸方向の強度、ヤング率などの力学特性が向上する。よって、力学特性に優れた高分子製品を得ようとするならば、より高倍率で延伸処理を行う事が好適であり、また延伸工程の後に必要に応じて熱処理が行われている。   The physical properties of polymer products such as synthetic fibers and films that are stretched are strongly influenced by their higher order structure (structure formed by molecular chain aggregates: molecular orientation, crystallinity, etc.) The higher order structure depends on the stretching process and the method and degree of heat treatment. In general, by performing the stretching treatment, the molecular chain is uniaxially oriented in the stretching direction, and mechanical properties such as strength in the stretching direction and Young's modulus are improved. Therefore, if it is intended to obtain a polymer product having excellent mechanical properties, it is preferable to perform a stretching process at a higher magnification, and a heat treatment is performed as necessary after the stretching process.

力学特性に優れた高分子製品を得るためには、延伸工程は特に重要であり、高倍率で延伸を行うために、種々の方策が採られている。大きくは、高倍率で延伸できる未延伸糸を得る事、高倍率で延伸できる延伸方法の採用である。   In order to obtain a polymer product having excellent mechanical properties, the stretching process is particularly important, and various measures have been taken to perform stretching at a high magnification. Largely, to obtain an undrawn yarn that can be drawn at a high magnification, and to adopt a drawing method that can be drawn at a high magnification.

一般的に、高倍率で延伸できる未延伸糸を得るためには、紡糸過程での紡糸線に働く応力を低減する事で、高分子鎖の分子配向を抑制した未延伸糸を得る事が有効である。紡糸線応力を低減する方法としては、例えば、吐出樹脂温度を高くする、吐出樹脂の分子量を小さくするなどの方法が挙げられる。しかし、これら方法は、ノズル直下における張力の低下を招いて糸揺れを引き起こし、紡糸性の悪化につながる事もある。また、分子量を極端に小さくした場合には、最終繊維製品の物性低下を招く事もある。   Generally, in order to obtain an undrawn yarn that can be drawn at a high magnification, it is effective to obtain an undrawn yarn that suppresses the molecular orientation of the polymer chain by reducing the stress acting on the spinning line during the spinning process. It is. Examples of a method for reducing the spinning line stress include a method of increasing the discharge resin temperature and decreasing the molecular weight of the discharge resin. However, these methods may cause a decrease in tension just below the nozzle, causing yarn swaying, and may lead to deterioration of spinnability. Further, when the molecular weight is extremely reduced, the physical properties of the final fiber product may be deteriorated.

他に、紡糸口金からの引き取り速度をなるべく低速としたり、紡糸口金の孔径をなるべく小さくしたりする事も、高倍率で延伸できる未延伸糸を得るためには有効である。しかし、引き取り速度を低速にする事は、生産性の低下を招く。また、孔径を小さくしすぎた場合には、樹脂の詰まりなどを引き起こし、生産性の低下を招く事もある。   In addition, reducing the take-up speed from the spinneret as much as possible or reducing the hole diameter of the spinneret as much as possible is effective for obtaining an undrawn yarn that can be drawn at a high magnification. However, lowering the take-off speed causes a decrease in productivity. Further, if the hole diameter is too small, clogging of the resin or the like may be caused, leading to a decrease in productivity.

これら未延伸糸の延伸方法としては、金属加熱ロールや金属加熱板を用いた接触加熱延伸、あるいは温水、沸水、加圧飽和水蒸気、熱風、遠赤外線、炭酸ガスレーザーを用いた非接触加熱延伸などが挙げられる。一般的に、高倍率で延伸処理を行って、より繊維強度の高い延伸合成繊維を得るためには、非接触加熱延伸が有効である。なかでも、被延伸物の温度を高倍率で延伸できる温度まで瞬時に昇温できるという観点から、加圧飽和水蒸気(特許文献1参照)や炭酸ガスレーザー(特許文献2参照)による延伸が好適である。しかし、これら延伸方法は、設備投資に多額の費用が必要であったり、ランニングコストが高額になったり、また操業性に難があったりするといった問題もある。   As methods for drawing these undrawn yarns, contact heating drawing using a metal heating roll or metal heating plate, or non-contact heating drawing using hot water, boiling water, pressurized saturated steam, hot air, far infrared rays, carbon dioxide laser, etc. Is mentioned. In general, in order to obtain a stretched synthetic fiber having higher fiber strength by performing a stretching process at a high magnification, non-contact heating stretching is effective. Among these, from the viewpoint that the temperature of the stretched object can be instantaneously increased to a temperature at which stretching can be performed at a high magnification, stretching by pressurized saturated water vapor (see Patent Document 1) or carbon dioxide laser (see Patent Document 2) is suitable. is there. However, these stretching methods also have problems that a large amount of capital investment is required, a running cost is high, and operability is difficult.

一方、熱融着不織布などには、高融点成分を芯成分に配し、それよりも低融点の成分を鞘成分に配した、鞘芯型熱融着性複合繊維が使用されている(特許文献1参照)。例えば、芯成分にポリプロピレンを配し、鞘成分にポリエチレンを配した鞘芯型熱融着性複合繊維は、その熱融着特性の優良性、コスト、安全性、環境負荷の小ささなどの点から、広く使用されている。そして、この熱融着性複合繊維は、繊維強度を高めるために延伸処理が施されている。
特開2002−180330号公報 特開2002−115117号公報
On the other hand, a sheath-core type heat-fusible composite fiber in which a high-melting-point component is arranged in the core component and a lower-melting-point component is arranged in the sheath component is used for the heat-bonding nonwoven fabric (patent) Reference 1). For example, a sheath-core type heat-fusible composite fiber with polypropylene as the core component and polyethylene as the sheath component has excellent heat-sealing properties, cost, safety, and low environmental impact. Widely used. And this heat-fusible conjugate fiber is subjected to a stretching treatment in order to increase the fiber strength.
JP 2002-180330 A JP 2002-115117 A

近年、より高い繊維強度を有する熱融着性複合繊維への要望が高まっており、強度特性の向上が常に求められている。そして、高強度の熱融着性複合繊維を得るために、高倍率延伸できる未延伸糸を得る方策が採られ、高倍率延伸できる延伸方法が採用されている。一般的に、繊維強度は延伸倍率に強く依存し、ほぼ比例関係にある。よって、いかに高倍率で延伸できるかが、高強度の熱融着性複合繊維を得るためには重要になる。しかし、無理に延伸しようとすると延伸切れ等の不具合を生じるわけであり、工業レベルの操業性と生産性を維持しての延伸倍率には、おのずと限界がある。即ち、繊維強度にも上限があるのである。   In recent years, there has been an increasing demand for heat-fusible composite fibers having higher fiber strength, and there is a constant demand for improvement in strength characteristics. In order to obtain a high-strength heat-fusible conjugate fiber, a measure for obtaining an undrawn yarn that can be drawn at a high magnification is adopted, and a drawing method that can be drawn at a high magnification is adopted. In general, the fiber strength strongly depends on the draw ratio and is in a proportional relationship. Therefore, how to draw at a high magnification is important for obtaining a high-strength heat-fusible conjugate fiber. However, forcibly stretching causes problems such as stretching breakage, and the stretching ratio while maintaining industrial-level operability and productivity is naturally limited. That is, there is an upper limit to the fiber strength.

本発明が解決しようとする課題は、このような事情のもとで、鞘芯構造の熱融着性複合繊維であって、高強度を有し、かつ工業的に安価に高生産性で製造する事ができ、乾式不織布や電池用セパレータ等の湿式不織布などの用途に適した熱融着性複合繊維を提供する事を目的としたものである。   Under such circumstances, the problem to be solved by the present invention is a heat-fusible conjugate fiber having a sheath-core structure, which has high strength and is industrially inexpensive and manufactured with high productivity. The object of the present invention is to provide a heat-fusible conjugate fiber suitable for applications such as dry nonwoven fabrics and wet nonwoven fabrics such as battery separators.

本発明者らは、上記した課題を解決すべく鋭意研究を重ねた結果、結晶性プロピレン系重合体を芯成分に配し、かつ芯成分よりも融点の低いオレフィン系重合体を鞘成分に配し、溶融紡糸して得られた未延伸糸を延伸して得られた熱融着性複合繊維の、クロス分別クロマトグラフによって測定される芯成分の重量平均分子量と鞘成分の重量平均分子量の比(芯成分重量平均分子量/鞘成分重量平均分子量)を特定の範囲に制御する事によって、高強度の熱融着性複合繊維が得られる事を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have arranged a crystalline propylene polymer as a core component and an olefin polymer having a melting point lower than that of the core component as a sheath component. The ratio of the weight average molecular weight of the core component and the weight average molecular weight of the sheath component measured by cross-fractionation chromatography of the heat-fusible conjugate fiber obtained by drawing an undrawn yarn obtained by melt spinning It has been found that by controlling (core component weight average molecular weight / sheath component weight average molecular weight) within a specific range, a high-strength heat-fusible conjugate fiber can be obtained, and the present invention has been completed.

本発明は以下の構成を有する。
(1) 結晶性プロピレン系重合体を芯成分に配し、かつ芯成分よりも融点の低いオレフィン系重合体を鞘成分に配する未延伸糸を、延伸して得られた熱融着性複合繊維であって、熱融着性複合繊維のクロス分別クロマトグラフによって測定される、芯成分の重量平均分子量と鞘成分の重量平均分子量の比(芯成分重量平均分子量/鞘成分重量平均分子量)が2.5以下であることを特徴とする熱融着性複合繊維。
The present invention has the following configuration.
(1) A heat-fusible composite obtained by drawing an undrawn yarn in which a crystalline propylene polymer is arranged in a core component and an olefin polymer having a melting point lower than that of the core component is arranged in a sheath component. The ratio of the weight average molecular weight of the core component to the weight average molecular weight of the sheath component (core component weight average molecular weight / sheath component weight average molecular weight) measured by cross-fractionation chromatography of the heat-fusible conjugate fiber. A heat-fusible conjugate fiber characterized by being 2.5 or less.

(2) 鞘成分の樹脂原料の190℃におけるMFRが3〜18g/10minである請求項1記載の熱融着性複合繊維。
(3) 芯成分の樹脂原料の230℃におけるMFRが5〜60g/10minである前記(1)又は(2)記載の熱融着性複合繊維。
(4) 繊維破断強度が6.0cN/dtex以上である前記(1)〜(3)のいずれかに記載の熱融着性複合繊維。
(5) 145℃における乾熱収縮率が20%以下である前記(4)に記載の熱融着性複合繊維。
(6) 芯成分がアイソタクチックポリプロピレンであり、鞘成分が高密度ポリエチレンである前記(1)〜(3)のいずれかに記載の熱融着性複合繊維。
(7) 芯成分のアイソタクチックポリプロピレンのQ値(分子量分布:重量平均分子量/数平均分子量)が4以下である前記(6)に記載の熱融着性複合繊維。
(2) The heat-fusible conjugate fiber according to claim 1, wherein the resin raw material of the sheath component has an MFR at 190 ° C. of 3 to 18 g / 10 min.
(3) The heat-fusible conjugate fiber according to (1) or (2) above, wherein the MFR of the core component resin raw material at 230 ° C. is 5 to 60 g / 10 min.
(4) The heat-fusible conjugate fiber according to any one of (1) to (3), wherein the fiber breaking strength is 6.0 cN / dtex or more.
(5) The heat-fusible conjugate fiber according to (4), wherein the dry heat shrinkage at 145 ° C. is 20% or less.
(6) The heat-fusible conjugate fiber according to any one of (1) to (3), wherein the core component is isotactic polypropylene and the sheath component is high-density polyethylene.
(7) The heat-fusible conjugate fiber according to (6), wherein the core component isotactic polypropylene has a Q value (molecular weight distribution: weight average molecular weight / number average molecular weight) of 4 or less.

本発明の熱融着性複合繊維は、結晶性プロピレン系重合体を芯成分に配し、芯成分よりも融点の低いオレフィン系重合体を鞘成分に配して、溶融紡糸して得られた未延伸糸を延伸して得られる延伸繊維である。該熱融着複合繊維のクロス分別クロマトグラフによって測定される、芯成分重量平均分子量/鞘成分重量平均分子量が2.5以下となるように、紡糸口金吐出後の芯成分のMFRと鞘成分のMFR等を適宜選択する事で、延伸性を確保しつつも、延伸倍率に対する強度発現性を高める事ができるので、工業的に高生産性で高強度の熱融着性複合繊維が得られる。この高強度を有する熱融着性複合繊維は、乾式不織布においては生産性向上や不織布嵩高化などを目的に、また電池用セパレータ等の湿式不織布においては突刺し強度向上などを目的に、好適に用いられる。   The heat-fusible conjugate fiber of the present invention was obtained by disposing a crystalline propylene polymer as a core component, an olefin polymer having a melting point lower than that of the core component as a sheath component, and melt spinning. A drawn fiber obtained by drawing an undrawn yarn. The MFR of the core component after discharging the spinneret and the sheath component so that the core component weight average molecular weight / sheath component weight average molecular weight measured by the cross-fractionation chromatograph of the heat-fusible conjugate fiber is 2.5 or less. By appropriately selecting MFR and the like, it is possible to increase the strength development property with respect to the draw ratio while securing the drawability, and thus, a high-strength and heat-strengthening conjugate fiber can be obtained industrially. This high-strength heat-fusible conjugate fiber is suitable for the purpose of improving productivity and bulking of the nonwoven fabric in dry nonwoven fabrics, and for improving the piercing strength in wet nonwoven fabrics such as battery separators. Used.

以下、本発明を発明の実施の形態に則して詳細に説明する。
本発明の熱融着性複合繊維は、結晶性プロピレン系重合体を芯成分に配し、かつ芯成分よりも低融点のオレフィン系重合体を鞘成分に配し、溶融紡糸して得られた未延伸糸を延伸処理して得られるものであって、該熱融着性複合繊維のクロス分別クロマトグラフによって測定される、芯成分の重量平均分子量と鞘成分の重量平均分子量の比(芯成分重量平均分子量/鞘成分重量平均分子量)が2.5以下である事を特徴とする。芯成分重量平均分子量/鞘成分重量平均分子量が2.5以下であれば本発明の効果を十分に発揮するが、より好ましくは2.3以下であり、更に好ましくは2.1以下である。
Hereinafter, the present invention will be described in detail according to embodiments of the invention.
The heat-fusible conjugate fiber of the present invention was obtained by disposing a crystalline propylene polymer as a core component and an olefin polymer having a melting point lower than that of the core component as a sheath component and melt spinning. The ratio of the weight average molecular weight of the core component to the weight average molecular weight of the sheath component (core component) obtained by drawing an undrawn yarn and measured by cross-fractionation chromatography of the heat-fusible conjugate fiber (Weight average molecular weight / sheath component weight average molecular weight) is 2.5 or less. If the core component weight average molecular weight / sheath component weight average molecular weight is 2.5 or less, the effect of the present invention is sufficiently exerted, more preferably 2.3 or less, and still more preferably 2.1 or less.

ここで、クロス分別クロマトグラフとは、温度上昇溶離分別法(TREF)とゲル透過クロマトグラフィー(GPC)法を組み合わせたものであり、ポリマーの結晶性分布と分子量分布を同時に知る事ができる方法である。本発明の熱融着性複合繊維は、芯に高融点成分を、鞘に低融点成分を配しているが、しかるにこの融点差に起因した溶出温度の差によって、芯成分と鞘成分を分別し、それぞれの重量平均分子量を測定する事ができる。紡糸口金から吐出された樹脂は溶融紡糸過程を経て未延伸糸となり、延伸過程、熱処理過程を経て熱融着性複合繊維となるが、この溶融紡糸過程、延伸過程、熱処理過程では分子量の変化はほとんどないと見なすことができる。よって、熱融着性複合繊維の芯成分重量平均分子量/鞘成分重量平均分子量を特定の範囲に制御する事は、言い換えると、紡糸口金吐出後の芯成分樹脂のMFRと鞘成分樹脂のMFRの比を特定の範囲に制御する事を意味する。   Here, the cross-fractionation chromatograph is a combination of the temperature rise elution fractionation method (TREF) and the gel permeation chromatography (GPC) method, and is a method that can simultaneously know the crystallinity distribution and molecular weight distribution of the polymer. is there. The heat-fusible conjugate fiber of the present invention has a high-melting-point component in the core and a low-melting-point component in the sheath. However, the core component and the sheath component are separated by the difference in elution temperature due to this melting-point difference. Each weight average molecular weight can be measured. The resin discharged from the spinneret becomes an undrawn yarn through a melt spinning process, and becomes a heat-fusible conjugate fiber through a drawing process and a heat treatment process. In this melt spinning process, drawing process, and heat treatment process, the molecular weight changes. It can be regarded as almost none. Therefore, controlling the core component weight average molecular weight / sheath component weight average molecular weight of the heat-fusible conjugate fiber to a specific range means, in other words, the MFR of the core component resin and the MFR of the sheath component resin after discharging the spinneret. It means controlling the ratio to a specific range.

本発明の熱融着性複合繊維の、クロス分別クロマトグラフで測定される芯成分の重量平均分子量と鞘成分の重量平均分子量の比(芯成分重量平均分子量/鞘成分重量平均分子量)を、前述の範囲とするためには、芯成分の重量平均分子量を小さくし、鞘成分の重量平均分子量を大きくする事が好ましい。また、芯成分重量平均分子量/鞘成分重量平均分子量が2.5以下であるという条件のもとで、芯成分の重量平均分子量が10万〜16万、鞘成分の重量平均分子量が4万〜8万の範囲である事が好ましく、更に好ましいのは、芯成分の重量平均分子量が12万〜15万、鞘成分の重量平均分子量が5万〜7万の範囲である。   The ratio of the weight average molecular weight of the core component and the weight average molecular weight of the sheath component (core component weight average molecular weight / sheath component weight average molecular weight) measured by the cross-fractionation chromatograph of the heat-fusible conjugate fiber of the present invention is as described above. In order to achieve this range, it is preferable to decrease the weight average molecular weight of the core component and increase the weight average molecular weight of the sheath component. The weight average molecular weight of the core component is 100,000 to 160,000, and the weight average molecular weight of the sheath component is 40,000 to 40,000, provided that the core component weight average molecular weight / sheath component weight average molecular weight is 2.5 or less. A range of 80,000 is preferable, and a weight average molecular weight of the core component is preferably 120,000 to 150,000, and a weight average molecular weight of the sheath component is preferably 50,000 to 70,000.

本発明の熱融着性複合繊維の、クロス分別クロマトグラフで測定される芯成分の重量平均分子量と鞘成分の重量平均分子量の比(芯成分重量平均分子量/鞘成分重量平均分子量)を前述の範囲とする方法としては、例えば以下の方法を挙げることができる。これらの方法を適宜組み合わせることにより、上記重量平均分子量比を本発明の特定の範囲に調整することができる。   The ratio of the weight average molecular weight of the core component and the weight average molecular weight of the sheath component (core component weight average molecular weight / sheath component weight average molecular weight) measured by the cross-fractionation chromatograph of the heat-fusible conjugate fiber of the present invention is described above. Examples of the range method include the following methods. By appropriately combining these methods, the weight average molecular weight ratio can be adjusted to a specific range of the present invention.

本発明の複合繊維のクロス分別クロマトグラフによって測定される、鞘芯両成分の重量平均分子量は、例えば、紡糸口金から吐出された芯成分樹脂および鞘成分樹脂のメルトフローレート(MFR)の値と相関する数値であり、重量平均分子量が大きい場合にはMFRは小さく、重量平均分子量が小さい場合にはMFRは大きい。従って、芯成分の重量平均分子量を小さく、鞘成分の重量平均分子量を大きくする事が好ましい。言い換えると、芯成分のMFRを大きく、鞘成分のMFRを小さくする事が好ましい。   The weight average molecular weight of both sheath core components measured by the cross-fractionation chromatograph of the conjugate fiber of the present invention is, for example, the value of the melt flow rate (MFR) of the core component resin and sheath component resin discharged from the spinneret. It is a correlated numerical value. When the weight average molecular weight is large, the MFR is small, and when the weight average molecular weight is small, the MFR is large. Therefore, it is preferable to decrease the weight average molecular weight of the core component and increase the weight average molecular weight of the sheath component. In other words, it is preferable to increase the MFR of the core component and decrease the MFR of the sheath component.

また、MFRが比較的小さい樹脂原料を用いた場合でも、紡糸時の押出温度を変更する事によって分子量降下の程度を調整し、ノズルから吐出される樹脂のMFRを大きくする事が可能である。従って、鞘芯両成分の樹脂原料のMFRと紡糸押出条件を適宜選択する事などによって、本発明の上記重量平均分子量の比(芯成分重量平均分子量/鞘成分重量平均分子量)を2.5以下とする事ができる。   Even when a resin material having a relatively low MFR is used, it is possible to increase the MFR of the resin discharged from the nozzle by adjusting the degree of molecular weight drop by changing the extrusion temperature during spinning. Accordingly, the ratio of the weight average molecular weight of the present invention (core component weight average molecular weight / sheath component weight average molecular weight) of 2.5 or less is selected by appropriately selecting the MFR of the resin raw material for both sheath core components and the spinning extrusion conditions. Can be.

用いる樹脂原料のMFRは特に制限されるものではないが、芯成分の樹脂原料の230℃におけるMFRは5〜60g/10minである事が好ましく、より好ましくは8〜40g/10minである。また、紡糸時の押出温度は特に制限されるものではないが、200〜350℃の範囲が好ましく、より好ましくは260〜330℃である。同様に、鞘成分の樹脂原料の190℃におけるMFRは3〜30g/10minである事が好ましく、より好ましくは8〜18g/10minである。また、紡糸時の押出温度は特に制限されるものではないが、180〜300℃の範囲が好ましく、より好ましくは220〜260℃である。   The MFR of the resin raw material to be used is not particularly limited, but the MFR at 230 ° C. of the resin raw material of the core component is preferably 5 to 60 g / 10 min, and more preferably 8 to 40 g / 10 min. The extrusion temperature during spinning is not particularly limited, but is preferably in the range of 200 to 350 ° C, more preferably 260 to 330 ° C. Similarly, the MFR at 190 ° C. of the resin raw material for the sheath component is preferably 3 to 30 g / 10 min, more preferably 8 to 18 g / 10 min. The extrusion temperature during spinning is not particularly limited, but is preferably in the range of 180 to 300 ° C, more preferably 220 to 260 ° C.

一般的に、溶融紡糸によって得られた未延伸糸の延伸性は、それが紡糸過程において受けた応力の影響を強く受ける。これは紡糸線に作用する応力によって、分子鎖が繊維軸に沿って配向するからであり、高い紡糸線応力によって分子鎖が高度に配向した未延伸糸は、伸度が低く、高倍率で延伸する事ができない。ここで、複合繊維の場合には両成分の固化温度について考慮する必要がある。例えば、鞘芯型複合繊維の場合、紡糸過程においてどちらか1成分が固化温度まで冷却された時点で、複合繊維としての変形能を失い、よってもう一方の成分も変形できなくなる。つまり、より低温で固化する成分は、複合繊維としての細化が生じない状態で固化する事となり、この場合には大きな応力が働かず、よって該成分の分子鎖の配向は低く抑えられる。   Generally, the drawability of an undrawn yarn obtained by melt spinning is strongly influenced by the stress that it receives during the spinning process. This is because the molecular chain is oriented along the fiber axis due to the stress acting on the spinning line, and the unstretched yarn in which the molecular chain is highly oriented by the high spinning line stress is low in elongation and stretched at a high magnification. I can't do it. Here, in the case of a composite fiber, it is necessary to consider the solidification temperature of both components. For example, in the case of a sheath-core type composite fiber, when one of the components is cooled to the solidification temperature in the spinning process, the deformability as the composite fiber is lost, and thus the other component cannot be deformed. That is, the component that solidifies at a lower temperature is solidified in a state where the composite fiber is not thinned, and in this case, a large stress does not act, and thus the molecular chain orientation of the component is kept low.

高分子材料の固化はガラス転移、もしくは結晶化によって生じるが、ポリレフィン系樹脂の場合には、そのガラス転移温度は一般的に室温以下であり、よって結晶化によって固化が生じる。そして、結晶化温度は融点の大小と相関する傾向にあり、高融点のポリオレフィン系樹脂の方が、結晶化温度も高いと言える。即ち、本発明の鞘芯型熱融着性繊維の場合には、芯に高融点の成分を配し、鞘にそれよりも低融点の成分を配している事から、高融点である芯成分の固化によって複合繊維の細化は完了し、その後に低融点である鞘成分の固化が生じる。つまり、芯成分は高配向、鞘成分は低配向の未延伸糸構造となる。   Solidification of the polymer material is caused by glass transition or crystallization, but in the case of a polyolefin-based resin, the glass transition temperature is generally not more than room temperature, and thus solidification is caused by crystallization. The crystallization temperature tends to correlate with the melting point, and it can be said that the high melting point polyolefin resin has a higher crystallization temperature. That is, in the case of the sheath-core type heat-fusible fiber of the present invention, a high melting point component is disposed in the core and a lower melting point component is disposed in the sheath. The solidification of the component completes the thinning of the composite fiber, followed by the solidification of the sheath component having a low melting point. That is, the core component has a highly oriented unstretched yarn structure and the sheath component has a low orientation.

こうして得られた未延伸糸を延伸処理した場合、高配向である芯成分の延伸性が律速となり、延伸倍率が制限される。つまり、低配向である鞘成分の延伸性には、まだ余裕のある状態の延伸倍率でしか延伸できず、即ち、鞘成分の強度発現は十分でないと言える。   When the undrawn yarn obtained in this way is drawn, the drawability of the core component that is highly oriented becomes rate-limiting, and the draw ratio is limited. In other words, it can be said that the stretchability of the sheath component that is low-oriented can be stretched only at a stretch ratio with a sufficient margin, that is, the strength expression of the sheath component is not sufficient.

ここで、熱融着性複合繊維の芯成分重量平均分子量/鞘成分重量平均分子量を2.5以下とする事が重要になってくる。この事は、芯成分の重量平均分子量を小さく、鞘成分の重量平均分子量を大きくする事、つまり紡糸工程におけるノズル吐出後の芯成分のMFRを大きく、鞘成分のMFRを小さくする事を意味する。これによって、紡糸工程で得られる未延伸糸の芯成分の配向と鞘成分の配向の度合いを、延伸工程において繊維強度を発現しやすいように制御する事ができる。こういった樹脂構成、および押出条件にて溶融紡糸を行った場合、芯成分には大きな紡糸線応力が作用しなくなるので分子配向が抑制され、逆に、鞘成分には大きな紡糸線応力が作用するようになるので分子配向が促進される。   Here, it is important that the core component weight average molecular weight / sheath component weight average molecular weight of the heat-fusible conjugate fiber is 2.5 or less. This means that the weight average molecular weight of the core component is decreased and the weight average molecular weight of the sheath component is increased, that is, the MFR of the core component after nozzle discharge in the spinning process is increased and the MFR of the sheath component is decreased. . This makes it possible to control the degree of orientation of the core component and the sheath component of the undrawn yarn obtained in the spinning process so that the fiber strength is easily developed in the drawing process. When melt spinning is performed under such a resin composition and extrusion conditions, a large spinning line stress does not act on the core component, so molecular orientation is suppressed, and conversely, a large spinning line stress acts on the sheath component. As a result, molecular orientation is promoted.

熱融着性複合繊維の芯成分重量平均分子量/鞘成分重量平均分子量が2.5以下となるように、紡糸工程におけるノズル吐出後の芯成分のMFRを大きく、鞘成分のMFRを小さくする事は、紡糸安定性の向上にも繋がる。前述したように、高倍率で延伸可能な未延伸糸を得るためには、一般的には吐出樹脂温度を高くする、吐出樹脂の分子量を小さくする(MFRを大きくする)といった方法が採られるが、著しく吐出樹脂温度を高くしたり、著しく吐出樹脂の分子量を小さくした場合には、ノズル直下における張力の低下を招いて糸揺れを引き起こし、紡糸性の悪化につながる事もある。しかし本発明の、熱融着性複合繊維の芯成分重量平均分子量/鞘成分重量平均分子量が2.5以下となるように、紡糸工程におけるノズル吐出後の芯成分のMFRを大きく、鞘成分のMFRを小さくした樹脂構成、および押出条件を採用する事で、芯成分の請け負う紡糸線張力は小さいが、鞘成分が請け負う紡糸線張力は大きくなる。この鞘成分に作用する大きな張力は複合繊維全体の張力を高める事に繋がり、これによって雰囲気の乱れ、冷却風の風速変動などによる糸揺れが抑制され、紡糸性の悪化を最小限に留める事ができ、かつ延伸性に優れる未延伸糸を得る事ができる。   The core component MFR after nozzle discharge in the spinning process is increased and the sheath component MFR is decreased so that the core component weight average molecular weight / sheath component weight average molecular weight of the heat-fusible conjugate fiber is 2.5 or less. Leads to an improvement in spinning stability. As described above, in order to obtain an undrawn yarn that can be drawn at a high magnification, generally, a method of increasing the temperature of the discharged resin or decreasing the molecular weight of the discharged resin (increasing MFR) is employed. If the discharge resin temperature is remarkably increased or the molecular weight of the discharge resin is remarkably reduced, the tension is lowered directly under the nozzle, causing yarn swinging, which may lead to deterioration of spinnability. However, the MFR of the core component after nozzle discharge in the spinning process is increased so that the core component weight average molecular weight / sheath component weight average molecular weight of the heat-fusible conjugate fiber of the present invention is 2.5 or less. By adopting a resin configuration with a reduced MFR and extrusion conditions, the spinning line tension contracted by the core component is small, but the spinning line tension contracted by the sheath component is increased. This large tension acting on the sheath component leads to an increase in the overall tension of the composite fiber, which suppresses yarn fluctuations due to turbulence in the atmosphere and fluctuations in the speed of the cooling air, and minimizes deterioration of spinnability. And an undrawn yarn having excellent drawability can be obtained.

この、芯成分の配向抑制、鞘成分の配向促進を意図した樹脂構成、および押出条件は、高強度の延伸繊維を得るための未延伸糸として好適である。なぜなら、延伸性を支配する芯成分の配向を抑制する事で高倍率延伸を可能とし、更には未延伸糸における鞘成分の配向を促進することで、延伸処理による強度発現性を高める事ができるからである。   This resin composition intended to suppress the orientation of the core component and promote the orientation of the sheath component, and the extrusion conditions are suitable as an undrawn yarn for obtaining a high-strength drawn fiber. This is because it is possible to stretch at a high magnification by suppressing the orientation of the core component that governs stretchability, and further, by enhancing the orientation of the sheath component in the unstretched yarn, it is possible to increase the strength expression by the stretching treatment. Because.

芯成分と鞘成分の断面複合比は特に限定されるものではないが、芯/鞘=40/60〜70/30vol%の範囲である事が好ましい。芯成分の比率が高くなった場合には、延伸性が僅かに低下する傾向にあるが、延伸倍率に対する強度発現性は逆に高くなるので、最終的に得られる延伸繊維の強度は同程度となる。また、延伸繊維の熱収縮抑制を重視するのであれば、芯成分の比率を高める事が有効である。また、繊維断面形状は円及び楕円の丸型、三角及び四角の角型、鍵型及び八葉型などの異型、または中空型のいずれをも用いることができる。   The cross-sectional composite ratio of the core component and the sheath component is not particularly limited, but is preferably in the range of core / sheath = 40/60 to 70/30 vol%. When the ratio of the core component is high, the stretchability tends to slightly decrease, but the strength expression with respect to the draw ratio is increased, so the strength of the stretched fiber finally obtained is about the same. Become. Further, if importance is attached to suppression of thermal shrinkage of the drawn fiber, it is effective to increase the ratio of the core component. The fiber cross-sectional shape may be any of circular and elliptical round shapes, triangular and square square shapes, key shapes and different types such as an eight-leaf shape, and hollow shapes.

芯成分の結晶性プロピレン系重合体としては、アイソタクチックポリプロピレン系樹脂が望ましく、中でもQ値(重量平均分子量/数平均分子量)が4以下である事が好ましく、より好ましくは3.5以下、更に好ましくは3.0以下である。ここでQ値が4以下のアイソタクチックポリプロピレン系樹脂を選択する事は、延伸性を著しく阻害する高分子量成分が少ない樹脂を選択するという事であり、高い延伸性が得られるので好ましい。また、アイソタクチックペンタッドフラクション(IPF:mol%)は特に限定されるものではないが、好ましくは90%以上、より好ましくは95%以上である事が好適である。ここで、IPFとは立体規則性の高さであり、IPFが高い樹脂ほど結晶性が高いと言える。延伸繊維の結晶性は該繊維の熱収縮特性と密接な関係にあり、延伸繊維の結晶性が高い方が熱収縮を抑制できる傾向にある。   As the crystalline propylene-based polymer as the core component, an isotactic polypropylene-based resin is desirable, and among them, the Q value (weight average molecular weight / number average molecular weight) is preferably 4 or less, more preferably 3.5 or less, More preferably, it is 3.0 or less. Here, selecting an isotactic polypropylene resin having a Q value of 4 or less is to select a resin having a small amount of a high molecular weight component that significantly impairs stretchability, and is preferable because high stretchability is obtained. The isotactic pentad fraction (IPF: mol%) is not particularly limited, but is preferably 90% or more, more preferably 95% or more. Here, IPF means high stereoregularity, and it can be said that the higher the IPF, the higher the crystallinity. The crystallinity of the drawn fiber is closely related to the heat shrinkage characteristics of the fiber, and the higher the crystallinity of the drawn fiber, the more the heat shrinkage tends to be suppressed.

この、芯成分として用いられる結晶性プロピレン系重合体は、プロピレンの単独重合体であってもよいし、プロピレンとα−オレフィン(エチレン、ブテン−1など)の共重合体であってもよい。中でも、延伸繊維の熱収縮を抑制できる点から、ホモのアイソタクチックポリプロピレン重合体が好ましい。   The crystalline propylene polymer used as the core component may be a homopolymer of propylene or a copolymer of propylene and an α-olefin (ethylene, butene-1, etc.). Among these, a homoisotactic polypropylene polymer is preferable from the viewpoint that thermal contraction of the drawn fiber can be suppressed.

一方、鞘成分として配される、上記結晶性プロピレン系重合体よりも低融点のオレフィン系重合体としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレンなどのエチレン系重合体、プロピレンと他のα−オレフィンとの共重合体である低結晶性プロピレン系重合体を挙げる事ができる。これらのオレフィン系重合体は単独で用いてもよいし、2種類以上を組み合わせて用いても何ら問題ないが、中でも、繊維強度特性や熱融着特性の観点からは高密度ポリエチレンが望ましい。   On the other hand, the olefin polymer having a lower melting point than the crystalline propylene polymer disposed as a sheath component includes ethylene-based polymers such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, and linear low-density polyethylene. A low crystalline propylene polymer which is a polymer and a copolymer of propylene and another α-olefin can be exemplified. These olefin-based polymers may be used alone or in combination of two or more, but no particular problem is posed, but among these, high-density polyethylene is desirable from the viewpoint of fiber strength characteristics and heat-sealing characteristics.

また、本発明に関わる芯成分に使用される結晶性プロピレン系重合体、及び鞘成分に使用されるオレフィン系重合体には、本発明の効果を妨げない範囲内で、必要に応じて種々の性能を発揮させるための添加剤、例えば酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安定剤、滑剤、抗菌剤、消臭剤、難燃剤、帯電防止剤、顔料、可塑剤などを適宜添加してもよい。   In addition, the crystalline propylene polymer used for the core component related to the present invention and the olefin polymer used for the sheath component may be variously modified as necessary within the range not hindering the effects of the present invention. Additives for exhibiting performance, such as antioxidants, light stabilizers, UV absorbers, neutralizers, nucleating agents, epoxy stabilizers, lubricants, antibacterial agents, deodorants, flame retardants, antistatic agents, You may add a pigment, a plasticizer, etc. suitably.

本発明で用いる未延伸糸は、前述の芯成分と鞘成分から構成され、かつ本発明の熱融着性複合繊維の、クロス分別クロマトグラフで測定される芯成分重量平均分子量/鞘成分重量平均分子量が2.5以下となるように、樹脂原料のMFRを選択し、押出条件を選択して得られるものであり、その溶融紡糸方法については特に制限されるものではなく、公知の方法を用いる事ができる。   The undrawn yarn used in the present invention is composed of the core component and the sheath component described above, and the core component weight average molecular weight / sheath component weight average of the heat-fusible conjugate fiber of the present invention measured by cross fractionation chromatography. It is obtained by selecting the MFR of the resin raw material and selecting the extrusion conditions so that the molecular weight is 2.5 or less. The melt spinning method is not particularly limited, and a known method is used. I can do things.

紡糸温度(吐出樹脂温度)については200〜350℃の範囲で紡糸する事が好ましく、更に好ましくは260〜300℃である。紡糸温度が200℃以上において、樹脂粘度が適度に低い状態で紡糸口金から吐出することができ、複合繊維が細化する過程で大きな紡糸線応力が作用しにくく、芯成分の分子配向が抑制され易いため好ましい。また、紡糸温度が350℃以下において、樹脂の劣化や熱分解を起こすことなく、紡糸工程が著しく不安定化する事なく、後の延伸処理によって高強度の延伸繊維を得ることができ、好ましい。紡糸温度が260〜300℃の範囲であれば、芯成分の配向抑制の効果と、紡糸工程の安定性、延伸処理による強度発現性のバランスがとれるので、特に好ましい。   The spinning temperature (discharge resin temperature) is preferably 200 to 350 ° C, more preferably 260 to 300 ° C. When the spinning temperature is 200 ° C. or higher, the resin viscosity can be discharged from the spinneret in a moderately low state, and a large spinning line stress is difficult to act in the process of thinning the composite fiber, and the molecular orientation of the core component is suppressed. It is preferable because it is easy. In addition, when the spinning temperature is 350 ° C. or lower, it is preferable that a high-strength drawn fiber can be obtained by the subsequent drawing treatment without causing deterioration or thermal decomposition of the resin and without significantly destabilizing the spinning process. If the spinning temperature is in the range of 260 to 300 ° C., the balance between the effect of suppressing the orientation of the core component, the stability of the spinning process, and the strength development by the stretching treatment is particularly preferable.

紡糸口金から吐出された繊維状の樹脂を冷却する場合、従来の方法、例えば空気、水、グリセリン等の媒体中で固化温度以下まで冷却し、引き取る事ができるが、未延伸糸の、特に芯成分の分子配向を抑制するためには、急冷却するのではなく、空気によって徐冷却する事が望ましい。空気の温度、風速は任意に設定できるが、より分子配向を抑制するためには風速は低く、温度はあまり低すぎない事が望ましい。紡糸口金から吐出された樹脂温度が高く、かつ適切な冷却速度である場合には、未延伸糸の芯成分である結晶性プロピレン系重合体の結晶高次構造を延伸性に優れる擬似六方晶に制御する事が可能である。   When the fibrous resin discharged from the spinneret is cooled, it can be cooled to a solidification temperature or lower in a conventional method, for example, a medium such as air, water, glycerin, and the like. In order to suppress the molecular orientation of the components, it is desirable to cool slowly with air rather than rapidly cooling. Air temperature and wind speed can be set arbitrarily, but in order to further suppress molecular orientation, it is desirable that the wind speed is low and the temperature is not too low. When the temperature of the resin discharged from the spinneret is high and the cooling rate is appropriate, the crystalline higher order structure of the crystalline propylene polymer that is the core component of the undrawn yarn is changed to a pseudo hexagonal crystal that has excellent drawability. It is possible to control.

未延伸糸の引き取り速度は、任意の速度を設定する事ができる。引き取り速度が溶融未延伸糸の自由落下速度よりも低速の場合には、均一な未延伸糸が得られなくなり、延伸性の低下を招く。更には、引き取り速度の低速化は、生産性の低下につながる。また、引き取り速度が著しく高速の場合には、複合繊維の細化が完了する位置における変形速度が大きくなり、芯成分の分子配向が進んだ未延伸糸となる。これは延伸性の低下を招く。従って、生産性や紡糸安定性、後の延伸過程での延伸性を考慮すると、引き取り速度は200〜1500m/minの範囲が好ましく、300〜1000m/minの範囲がより好ましい。   The take-up speed of the undrawn yarn can be set at an arbitrary speed. When the take-up speed is lower than the free fall speed of the melted undrawn yarn, a uniform undrawn yarn cannot be obtained, leading to a reduction in drawability. Furthermore, the reduction in the take-up speed leads to a decrease in productivity. In addition, when the take-up speed is extremely high, the deformation speed at the position where the composite fiber is thinned is increased, and an undrawn yarn having advanced molecular orientation of the core component is obtained. This leads to a decrease in stretchability. Accordingly, in consideration of productivity, spinning stability, and stretchability in the subsequent stretching process, the take-up speed is preferably in the range of 200 to 1500 m / min, and more preferably in the range of 300 to 1000 m / min.

次に、本発明の鞘芯型熱融着性複合繊維の延伸方法について説明する。延伸方法についても特に制限されるものではなく、公知のいずれの延伸方法を採用しても、本発明の効果、即ち、熱融着性複合繊維の芯成分重量平均分子量/鞘成分重量平均分子量が2.5以下となるように、鞘芯両成分の樹脂原料のMFRを選択し、押出条件を選択する事によって、高倍率延伸可能で、かつ延伸倍率に対する強度発現性が高い未延伸糸が得られ、結果として高強度の熱融着性複合繊維が得られるという効果が得られる。   Next, the drawing method of the sheath-core type heat-fusible conjugate fiber of the present invention will be described. The stretching method is not particularly limited, and even if any known stretching method is adopted, the effect of the present invention, that is, the core component weight average molecular weight / sheath component weight average molecular weight of the heat-fusible conjugate fiber is By selecting the MFR of the resin raw material for both the sheath and core components and selecting the extrusion conditions so as to be 2.5 or less, an unstretched yarn that can be stretched at a high magnification and has high strength expression with respect to the stretch ratio is obtained. As a result, the effect of obtaining a high-strength heat-fusible conjugate fiber is obtained.

中でも、金属加熱ロールや金属加熱板を用いた接触加熱延伸よりは、温水、沸水、加圧飽和水蒸気、熱風、遠赤外線、炭酸ガスレーザーを用いた非接触加熱延伸の方が高倍率延伸できる傾向にあり、好ましい。特に簡便性及び操作性の観点から、温水、沸水、熱風、遠赤外線を用いた非接触加熱延伸が好ましい。また、延伸温度については、用いる鞘成分の融点以下で、できるだけ高温である事が望ましい。この場合、高倍率延伸が可能となり、よって高強度の熱融着性複合繊維が得られる。よって、被延伸物の温度を高温まで昇温でき、またその温度まで瞬時に昇温できるという観点から、沸水や加圧飽和水蒸気による延伸が更に好適である。この場合には、延伸速度を高速化する事が可能となり、生産性向上の効果も得られる。なお、加圧飽和水蒸気を加熱媒体に用いる方法としては、ラビリンス式加圧飽和水蒸気延伸機であってもよく、両端を加圧水槽部でシールした加圧飽和水蒸気延伸機(特許文献1参照)であってもよい。   Among them, rather than contact heating stretching using metal heating rolls and metal heating plates, non-contact heating stretching using hot water, boiling water, pressurized saturated steam, hot air, far infrared rays, carbon dioxide laser tends to be able to stretch at a higher magnification. And preferred. In particular, from the viewpoint of simplicity and operability, non-contact heating stretching using warm water, boiling water, hot air, and far infrared rays is preferable. The stretching temperature is desirably as high as possible below the melting point of the sheath component used. In this case, high-strength drawing is possible, and thus a high-strength heat-fusible conjugate fiber can be obtained. Therefore, stretching from boiling water or pressurized saturated steam is more preferable from the viewpoint that the temperature of the stretched object can be increased to a high temperature and can be instantaneously increased to that temperature. In this case, the stretching speed can be increased, and the effect of improving productivity can be obtained. In addition, as a method of using pressurized saturated steam for a heating medium, a labyrinth type pressurized saturated steam stretching machine may be used, and a pressurized saturated steam stretching machine with both ends sealed by a pressurized water tank (see Patent Document 1). There may be.

本発明の未延伸糸は、延伸倍率に対する強度発現性が高い事を特徴とするが、延伸倍率をなるべく大きくする事で、より熱融着性複合繊維の強度を高める事ができる。延伸倍率は未延伸糸の繊度や鞘芯比、樹脂構成に応じて適宜選定可能であるが、実効延伸倍率を4.0倍〜8.0倍とする事が好ましく、より好ましくは5.0倍〜7.0倍である。延伸速度についても特に制限されるものではないが、生産性を考慮すると、50m/min以上である事が好ましく、より好ましくは100m/min以上である。   The undrawn yarn of the present invention is characterized by high strength development with respect to the draw ratio. However, by increasing the draw ratio as much as possible, the strength of the heat-fusible conjugate fiber can be further increased. The draw ratio can be appropriately selected according to the fineness of the undrawn yarn, the sheath core ratio, and the resin configuration, but the effective draw ratio is preferably 4.0 times to 8.0 times, more preferably 5.0. Double to 7.0 times. The stretching speed is not particularly limited, but considering productivity, it is preferably 50 m / min or more, and more preferably 100 m / min or more.

延伸工程は1段延伸、多段延伸のいずれであってもよく、多段延伸を行う場合には、前述の延伸方法を組み合わせて行う事も可能で、例えば、1段目は熱ロール延伸、2段目は加圧飽和水蒸気延伸といった延伸方法を採用することもできる。   The stretching step may be either one-stage stretching or multi-stage stretching. When performing multi-stage stretching, it is possible to combine the above-described stretching methods. For example, the first stage is hot roll stretching, two-stage stretching. The eye can also employ a stretching method such as pressurized saturated steam stretching.

前述の延伸工程の後に、必要に応じて熱処理工程を設ける事ができる。熱処理方法については特に制限されるものではなく、公知のいずれの延伸方法をも採用する事ができる。一般的に、高倍率で延伸された延伸繊維は高い熱収縮率を示す事が多いが、熱処理工程を経ることで、熱収縮を低減する事ができる。熱処理温度は鞘成分の融点以下で、できるだけ高温である事が、より熱収縮を抑制できるので好ましい。   A heat treatment step can be provided as necessary after the above-described stretching step. The heat treatment method is not particularly limited, and any known stretching method can be employed. In general, drawn fibers drawn at a high magnification often exhibit a high thermal shrinkage rate, but thermal shrinkage can be reduced by undergoing a heat treatment step. The heat treatment temperature is preferably not higher than the melting point of the sheath component and as high as possible because heat shrinkage can be further suppressed.

本発明の鞘芯型熱融着性複合繊維には、加工適正や製品物性を満たすために、その繊維表面に界面活性剤を付着させる事が望ましい。界面活性剤の種類は特に限定されるものではなく、また付着方法も公知の方法、例えば、ローラー法、浸漬法、噴霧法、パットドライ法などを採用する事ができる。   In order to satisfy processing suitability and physical properties of the product, it is desirable to attach a surfactant to the surface of the sheath-core type heat-fusible conjugate fiber of the present invention. The type of the surfactant is not particularly limited, and a known method such as a roller method, a dipping method, a spraying method, or a pad drying method can also be adopted as an adhesion method.

本発明の熱融着性複合繊維は、前述した鞘芯の樹脂構成、紡糸方法、延伸方法、熱処理方法を採用し、熱融着性複合繊維の芯成分重量平均分子量/鞘成分重量平均分子量を2.5以下とする事で、高い繊維強度と優れた耐熱収縮性を併せ持った延伸繊維となる。繊維破断強度は6.0cN/dtex以上であり、より好ましくは6.3cN/dtex、更に好ましくは6.5cN/dtexである。また、145℃における乾熱収縮率は20%以下であり、好ましくは18%以下、更に好ましくは15%以下である。   The heat-fusible conjugate fiber of the present invention employs the above-described resin composition of the sheath core, the spinning method, the stretching method, and the heat treatment method, and the core component weight average molecular weight / sheath component weight average molecular weight of the heat fusible conjugate fiber is determined. By setting it to 2.5 or less, it becomes a drawn fiber having both high fiber strength and excellent heat shrinkage resistance. The fiber breaking strength is 6.0 cN / dtex or more, more preferably 6.3 cN / dtex, and still more preferably 6.5 cN / dtex. Further, the dry heat shrinkage at 145 ° C. is 20% or less, preferably 18% or less, more preferably 15% or less.

本発明の鞘芯型熱融着性複合繊維は、様々な用途に使用する事ができ、その用途に合わせて種々の繊維形態とする事ができる。例えば、カード不織布用繊維の場合には、捲縮を付与したステープルの繊維形態が好ましい。本発明の鞘芯型熱融着性複合繊維は、高い繊維強度と熱融着力を有しており、不織布の嵩高化や高強力化、カード生産性の向上を図る事ができるので、特に好適であると考えられる。繊度、捲縮数、繊維長は特に制限されるものではなく、適宜選択する事ができる。織布フィルター用繊維やワインディングフィルター用繊維、織布シート用繊維、編み加工ネット用繊維などの場合には、フィラメントの繊維形態が好ましい。繊度は特に限定されるものではなく、適宜選択する事ができる。エアレイド不織布用繊維の場合には、ショートカットチョップの形態が好ましい。繊度は特に限定されるものではなく、更には、捲縮を付与したものであってもよく、捲縮を付与していないものでもよい。また繊維長については加工機のタイプ、要求物性、生産性などを考慮して、適宜選択する事ができる。コンクリート補強用繊維や抄紙不織布用繊維の場合には、ショートカットチョップの繊維形態が好ましい。捲縮を付与したものであってもよく、捲縮を付与していないものでもよく、また繊維長については加工方法、要求物性、生産性などを考慮して、適宜選択する事ができる。繊度についても特に限定されるものではないが、例えば電池用セパレータ等の湿式不織布の場合には、繊度は小さい方が好適であり、好ましくは2.2dtex以下であり、より好ましくは1.5dtex以下であり、更に好ましくは1.0dtex以下である。本発明の鞘芯型熱融着性複合繊維を用いて電池用セパレータ湿式不織布を作製した場合、高い繊維強度を有しており、また熱処理によって不織布化した際の熱融着力も高い事から、金属などの鋭利な硬質物が不織布を貫通する事を抑止する効果が高く、特に好適である。   The sheath-core type heat-fusible conjugate fiber of the present invention can be used for various applications, and can be made into various fiber forms according to the application. For example, in the case of the fiber for card nonwoven fabric, the fiber form of the staple which gave the crimp is preferable. The sheath-core type heat-fusible conjugate fiber of the present invention has high fiber strength and heat-fusibility, and is particularly suitable because it can increase the bulk and strength of nonwoven fabrics and improve card productivity. It is thought that. The fineness, the number of crimps, and the fiber length are not particularly limited and can be appropriately selected. In the case of fibers for woven fabric filters, fibers for winding filters, fibers for woven fabric sheets, fibers for knitted nets, etc., the fiber form of filaments is preferred. The fineness is not particularly limited and can be appropriately selected. In the case of an airlaid nonwoven fabric, a shortcut chop is preferred. The fineness is not particularly limited, and may be crimped or may not be crimped. The fiber length can be appropriately selected in consideration of the type of processing machine, required physical properties, productivity, and the like. In the case of a fiber for concrete reinforcement or a fiber for papermaking nonwoven fabric, the fiber form of a shortcut chop is preferable. It may be crimped or may not be crimped, and the fiber length can be appropriately selected in consideration of processing methods, required physical properties, productivity, and the like. Although the fineness is not particularly limited, for example, in the case of a wet nonwoven fabric such as a battery separator, it is preferable that the fineness is small, preferably 2.2 dtex or less, more preferably 1.5 dtex or less. More preferably, it is 1.0 dtex or less. When a battery separator wet nonwoven fabric is produced using the sheath-core type heat-fusible conjugate fiber of the present invention, it has a high fiber strength, and also has a high heat-sealing power when made into a nonwoven fabric by heat treatment, This is particularly suitable because it has a high effect of preventing sharp hard objects such as metals from penetrating the nonwoven fabric.

以下、実施例によって本発明を詳細に説明するが、本発明はそれらによって限定されるものではない。なお、実施例中に示した物性値の測定方法又は定義を以下に示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by them. In addition, the measuring method or definition of the physical-property value shown in the Example is shown below.

(1)単糸繊度
未延伸糸、延伸糸について、JIS−L−1015に準じて測定した。
(2)MFR
ペレット、及び紡糸口金から吐出された鞘芯それぞれの繊維状物について、以下の条件で測定を行った。
ポリプロピレン樹脂原料の場合:試験温度230℃、試験荷重21.18Nで測定。
(JIS−K−7210「表1」の試験条件14)
ポリエチレン樹脂原料の場合:試験温度190℃、試験荷重21.18Nで測定。
(JIS−K−7210「表1」の試験条件4)
ノズル吐出後の繊維状物の場合:試験温度230℃、試験荷重21.18Nで測定。
(JIS−K−7210「表1」の試験条件14)
(1) Single yarn fineness The undrawn yarn and the drawn yarn were measured according to JIS-L-1015.
(2) MFR
Measurements were performed under the following conditions for the fibrous materials of each of the pellet core and the sheath core discharged from the spinneret.
In the case of a polypropylene resin raw material: measured at a test temperature of 230 ° C. and a test load of 21.18 N.
(Test condition 14 of JIS-K-7210 “Table 1”)
For polyethylene resin raw material: Measured at a test temperature of 190 ° C. and a test load of 21.18N.
(Test condition 4 of JIS-K-7210 “Table 1”)
In the case of fibrous material after nozzle discharge: measured at a test temperature of 230 ° C. and a test load of 21.18 N.
(Test condition 14 of JIS-K-7210 “Table 1”)

(3)重量平均分子量
延伸処理の施された熱融着性複合繊維について、クロス分別クロマトグラフよって芯成分と鞘成分のそれぞれの重量平均分子量を測定した。本発明の熱融着性複合繊維をオルトジクロルベンゼンに完全に溶解させた高温の試料溶液を、ガラスビーズ等の不活性担体を充填したカラム内に注入し、カラム温度を降下させて試料を充填剤表面に付着させた後、該カラム内にオルトジクロルベンゼンを流しながら、カラムの温度を徐々に上昇させ、各温度で溶出してくる成分の濃度を検出し、同時に各温度で溶出した成分をフラクションごとにオンラインでGPC装置に送り込み、そこで得られたクロマトグラムから各成分の重量平均分子量が得られる。
(3) Weight average molecular weight With respect to the heat-fusible conjugate fiber subjected to the stretching treatment, the weight average molecular weight of each of the core component and the sheath component was measured by cross fractionation chromatography. A high-temperature sample solution in which the heat-fusible conjugate fiber of the present invention is completely dissolved in orthodichlorobenzene is injected into a column filled with an inert carrier such as glass beads, and the sample is dropped by lowering the column temperature. After adhering to the surface of the packing material, while flowing orthodichlorobenzene into the column, the temperature of the column is gradually increased to detect the concentration of the components eluted at each temperature, and the elution is performed at each temperature simultaneously. The components are sent to the GPC device on-line for each fraction, and the weight average molecular weight of each component is obtained from the chromatogram obtained there.

測定装置は、三菱化学(株)製のCFC装置(T150A型、充填剤:ガラスビーズ(昭和電工製Shodex GPC AD−806MS))を用い、次の条件で測定した。140℃に加熱したカラムに試料溶液(溶媒:オルトジクロルベンゼン、試料濃度:40mg/10mL)4mLを注入した後、1℃/minの速度で0℃まで冷却して、試料ポリマーを充填剤表面に吸着(析出)させた。次いで、オルトジクロルベンゼンを60mL/hの流速で流しながら、カラムを140℃まで徐々にステップ昇温させ、各温度で充填剤表面から溶出してくるポリマーを逐次オンラインでGPCカラムに送った。そこで得られたクロマトグラムから鞘芯両成分それぞれの重量平均分子量を得た。   The measuring apparatus used was a CFC apparatus (T150A type, filler: glass beads (Shodex GPC AD-806MS manufactured by Showa Denko)) manufactured by Mitsubishi Chemical Corporation under the following conditions. After injecting 4 mL of the sample solution (solvent: orthodichlorobenzene, sample concentration: 40 mg / 10 mL) into the column heated to 140 ° C., the sample polymer is cooled to 0 ° C. at a rate of 1 ° C./min, and the sample polymer is placed on the packing surface. Adsorbed (deposited). Next, while the orthodichlorobenzene was flowed at a flow rate of 60 mL / h, the column was gradually heated up to 140 ° C., and the polymer eluted from the surface of the filler at each temperature was sequentially sent to the GPC column on-line. The weight average molecular weights of both sheath core components were obtained from the chromatogram obtained there.

(4)実効延伸倍率
未延伸糸繊度/延伸糸繊度の式より算出した。
(5)単糸強伸度
JIS−L−1015に準じて測定した。
(6)乾熱収縮率
JIS−L−1015に準じて測定した。なお、熱処理温度は145℃とし、熱処理時間は10分間とした。
(7)不織布突刺し強度
捲縮を付与していない繊維長5mmのショートカットチョップを用い、抄造法にてウェブを作製し、これを136℃にて熱融着して50目付の不織布を得た。これの突刺し強度を、JIS−Z−1707に記載の方法に準じて測定した。
(4) Effective draw ratio It calculated from the formula of undrawn yarn fineness / drawn yarn fineness.
(5) Single yarn strong elongation It measured according to JIS-L-1015.
(6) Dry heat shrinkage rate Measured according to JIS-L-1015. The heat treatment temperature was 145 ° C. and the heat treatment time was 10 minutes.
(7) Nonwoven fabric piercing strength Using a short-cut chop with a fiber length of 5 mm that has not been crimped, a web was produced by a papermaking method, and this was heat-sealed at 136 ° C. to obtain a nonwoven fabric with 50 basis weight. . The puncture strength of this was measured according to the method described in JIS-Z-1707.

実施例1
芯成分としてアイソタクチックポリプロピレン「SA2D」(日本ポリプロ(株)製、樹脂原料MFR=14g/10min、Q値=3.1)を用い、鞘成分として高密度ポリエチレン「M6800」(京葉ポリエチ(株)製、樹脂原料MFR=8g/10min)を用い、鞘芯の断面複合比が50/50になるように、鞘芯型複合紡糸口金を用いて、芯成分の押出機シリンダー温度が300℃、鞘成分の押出機シリンダー温度が240℃、紡糸口金温度が250℃、巻き取り速度が920m/minの条件にて、未延伸糸繊度が4.2dtexの熱融着性複合繊維を紡糸した。紡糸口金から吐出された、芯成分のMFRは54.1g/minであり、鞘成分のMFRは11.1g/10minであった。その後、ロール間に温水槽を有するロール延伸機にて、1段目ロール温度が室温、温水槽温度は102℃に設定する事で沸騰状態(100℃)、2段目ロール温度は110℃の条件にて、延伸処理を行った。工業的に安定して延伸できる最大実効延伸倍率は4.7倍であり、得られた延伸繊維の強度は6.4cN/dtex、145℃における乾熱収縮率は16.9%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は12.8万であり、鞘成分の重量平均分子量は6.46万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、13.0Nであった。このように、実施例1の方法で得られた熱融着性複合繊維は、高い繊維強度を有し、かつ乾熱収縮率は低く抑えられていた。
Example 1
Isotactic polypropylene “SA2D” (manufactured by Nippon Polypro Co., Ltd., resin raw material MFR = 14 g / 10 min, Q value = 3.1) is used as the core component, and high-density polyethylene “M6800” (Kyoyo Polytech Co., Ltd.) is used as the sheath component. ), Resin raw material MFR = 8 g / 10 min), using a sheath core type composite spinneret so that the cross-sectional composite ratio of the sheath core is 50/50, the extruder cylinder temperature of the core component is 300 ° C., A heat-fusible conjugate fiber having an undrawn yarn fineness of 4.2 dtex was spun under the conditions of an extruder cylinder temperature of the sheath component of 240 ° C., a spinneret temperature of 250 ° C., and a winding speed of 920 m / min. The MFR of the core component discharged from the spinneret was 54.1 g / min, and the MFR of the sheath component was 11.1 g / 10 min. Then, in a roll stretching machine having a hot water tank between the rolls, the first stage roll temperature is set to room temperature and the hot water tank temperature is set to 102 ° C. to bring it into a boiling state (100 ° C.), and the second stage roll temperature is 110 ° C. The stretching process was performed under the conditions. The maximum effective draw ratio that can be drawn industrially stably was 4.7 times, and the strength of the obtained drawn fiber was 6.4 cN / dtex, and the dry heat shrinkage at 145 ° C. was 16.9%. When the molecular weight of the drawn fiber was measured by a cross-fractionation chromatograph, the weight average molecular weight of the core component was 1280,000, and the weight average molecular weight of the sheath component was 64,600. Moreover, when this was cut into 5 mm and the puncture strength of the 50-weight nonwoven fabric produced by heat-sealing the paper web was measured, it was 13.0 N. Thus, the heat-fusible conjugate fiber obtained by the method of Example 1 had high fiber strength, and the dry heat shrinkage rate was kept low.

実施例2
鞘芯の断面複合比を40/60とした以外は実施例1と同様にして、熱融着性複合繊維の未延伸糸を紡糸した。紡糸口金から吐出された、芯成分のMFRは55.0g/minであり、鞘成分のMFRは11.5g/10minであった。その後、ロール間に温水槽を有するロール延伸機にて、1段目ロール温度が室温、温水槽温度は95℃、2段目ロール温度は110℃の条件にて、延伸処理を行った。工業的に安定して延伸できる最大実効延伸倍率は4.2倍であり、得られた延伸繊維の強度は6.3cN/dtex、145℃における乾熱収縮率は15.1%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は12.5万であり、鞘成分の重量平均分子量は6.30万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、12.2Nであった。このように、実施例2の方法で得られた熱融着性複合繊維は、高い繊維強度を有し、かつ乾熱収縮率は低く抑えられていた。
Example 2
An undrawn yarn of a heat-fusible conjugate fiber was spun in the same manner as in Example 1 except that the cross-sectional composite ratio of the sheath core was 40/60. The MFR of the core component discharged from the spinneret was 55.0 g / min, and the MFR of the sheath component was 11.5 g / 10 min. Thereafter, a roll stretching machine having a hot water tank between the rolls was subjected to a stretching process under the conditions that the first stage roll temperature was room temperature, the hot water tank temperature was 95 ° C., and the second stage roll temperature was 110 ° C. The maximum effective draw ratio at which it can be drawn industrially stably was 4.2 times. The strength of the obtained drawn fiber was 6.3 cN / dtex, and the dry heat shrinkage at 145 ° C. was 15.1%. When the molecular weight of the drawn fiber was measured by a cross-fractionation chromatograph, the weight average molecular weight of the core component was 125,000, and the weight average molecular weight of the sheath component was 63,000,000. Moreover, when this was cut into 5 mm and the puncture strength of the 50-weight nonwoven fabric produced by heat-sealing the papermaking web was measured, it was 12.2N. Thus, the heat-fusible conjugate fiber obtained by the method of Example 2 had high fiber strength and the dry heat shrinkage rate was kept low.

実施例3
芯成分の押出機シリンダー温度を290℃、巻き取り速度を670m/minとした以外は実施例2と同様にして、未延伸糸繊度が5.8dtexの熱融着性複合繊維の未延伸糸を紡糸した。紡糸口金から吐出された、芯成分のMFRは37.6g/minであり、鞘成分のMFRは10.8g/10minであった。その後、ロール間に加圧飽和水蒸気延伸槽を有するロール延伸機にて、1段目ロール温度が室温、温水槽温度は125℃、2段目ロール温度は110℃の条件にて、延伸処理を行った。なお、この加圧飽和水蒸気延伸槽は延伸槽の両端にラビリンス構造物を設け、これによって加圧水蒸気のリークを抑制している。工業的に安定して延伸できる最大実効延伸倍率は5.3倍であり、得られた延伸繊維の強度は6.8cN/dtex、145℃における乾熱収縮率は14.1%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は14.6万であり、鞘成分の重量平均分子量は6.50万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、13.7Nであった。このように、実施例3の方法で得られた熱融着性複合繊維は、高い繊維強度を有し、かつ乾熱収縮率は低く抑えられていた。
Example 3
An undrawn yarn of a heat-fusible composite fiber having an undrawn yarn fineness of 5.8 dtex was obtained in the same manner as in Example 2 except that the extruder cylinder temperature of the core component was 290 ° C. and the winding speed was 670 m / min. Spinned. The core component MFR discharged from the spinneret was 37.6 g / min, and the sheath component MFR was 10.8 g / 10 min. Thereafter, in a roll stretching machine having a pressurized saturated steam stretching tank between the rolls, the first stage roll temperature is room temperature, the hot water tank temperature is 125 ° C., and the second stage roll temperature is 110 ° C. went. The pressurized saturated steam stretching tank is provided with a labyrinth structure at both ends of the stretching tank, thereby suppressing the leakage of pressurized steam. The maximum effective draw ratio that can be drawn industrially stably was 5.3 times, and the strength of the obtained drawn fiber was 6.8 cN / dtex, and the dry heat shrinkage at 145 ° C. was 14.1%. When the molecular weight of the stretched fiber was measured by a cross-fractionation chromatograph, the weight average molecular weight of the core component was 146,000 and the weight average molecular weight of the sheath component was 650,000. Moreover, when this was cut into 5 mm and the puncture strength of the 50-weight nonwoven fabric produced by heat-sealing the paper web was measured, it was 13.7 N. Thus, the heat-fusible conjugate fiber obtained by the method of Example 3 had high fiber strength, and the dry heat shrinkage rate was kept low.

実施例4
芯成分としてアイソタクチックポリプロピレン「SA04D」(日本ポリプロ(株)製、樹脂原料MFR=40g/10min、Q値=3.0)を用い、鞘成分として高密度ポリエチレン「3S01A」(東ソー(株)製、樹脂原料MFR=13g/10min)を用い、鞘芯の断面複合比が60/40になるように、鞘芯型複合紡糸口金を用いて、芯成分の押出機シリンダー温度が260℃、鞘成分の押出機シリンダー温度が220℃、紡糸口金温度が240℃、巻き取り速度が720m/minの条件にて、未延伸糸繊度が7.8dtexの熱融着性複合繊維の未延伸糸を紡糸した。紡糸口金から吐出された、芯成分のMFRは59.0g/minであり、鞘成分のMFRは24.3g/10minであった。その後、ロール間に温水槽を有するロール延伸機にて、1段目ロール温度が室温、温水槽温度は102℃に設定する事で沸騰状態(100℃)、2段目ロール温度は110℃の条件にて、延伸処理を行った。工業的に安定して延伸できる最大実効延伸倍率は5.2倍であり、得られた延伸繊維の強度は6.3cN/dtex、145℃における乾熱収縮率は18.2%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は12.3万であり、鞘成分の重量平均分子量は5.21万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、繊度が大きいためか、7.8Nと低かった。このように、実施例4の方法で得られた熱融着性複合繊維は、高い繊維強度を有し、かつ乾熱収縮率は低く抑えられていた。
Example 4
Isotactic polypropylene “SA04D” (manufactured by Nippon Polypro Co., Ltd., resin raw material MFR = 40 g / 10 min, Q value = 3.0) is used as the core component, and high-density polyethylene “3S01A” (Tosoh Corp.) is used as the sheath component. Made of resin raw material MFR = 13 g / 10 min), using a sheath-core type composite spinneret so that the cross-sectional composite ratio of the sheath core becomes 60/40, the core temperature of the extruder cylinder of the core component is 260 ° C. Spinning unstretched yarn of heat-fusible conjugate fiber with unstretched yarn fineness of 7.8 dtex under the conditions that the extruder cylinder temperature is 220 ° C, the spinneret temperature is 240 ° C, and the winding speed is 720 m / min. did. The MFR of the core component discharged from the spinneret was 59.0 g / min, and the MFR of the sheath component was 24.3 g / 10 min. Then, in a roll stretching machine having a hot water tank between the rolls, the first stage roll temperature is set to room temperature and the hot water tank temperature is set to 102 ° C. to bring it into a boiling state (100 ° C.), and the second stage roll temperature is 110 ° C. The stretching process was performed under the conditions. The maximum effective draw ratio at which industrially stable drawing was possible was 5.2 times, and the strength of the obtained drawn fiber was 6.3 cN / dtex, and the dry heat shrinkage at 145 ° C. was 18.2%. When the molecular weight of the stretched fiber was measured by a cross-fractionation chromatograph, the weight average molecular weight of the core component was 123,000 and the weight average molecular weight of the sheath component was 521,000. Moreover, when this was cut into 5 mm and the piercing strength of the 50-weight nonwoven fabric produced by heat-sealing the paper web was measured, it was as low as 7.8 N because of its large fineness. Thus, the heat-fusible conjugate fiber obtained by the method of Example 4 had high fiber strength, and the dry heat shrinkage rate was kept low.

実施例5
芯成分としてアイソタクチックポリプロピレン「SA03D」(日本ポリプロ(株)製、樹脂原料MFR=30g/10min、Q値=2.8)を用い、鞘成分として高密度ポリエチレン「S6900」(京葉ポリエチ(株)製、樹脂原料MFR=16.5g/10min)を用い、鞘芯の断面複合比が50/50になるように、鞘芯型複合紡糸口金を用いて、芯成分の押出機シリンダー温度が310℃、鞘成分の押出機シリンダー温度が220℃、紡糸口金温度が260℃、巻き取り速度が940m/minの条件にて、未延伸糸繊度が3.6dtexの熱融着性複合繊維の未延伸糸を紡糸した。紡糸口金から吐出された、芯成分のMFRは62.6g/minであり、鞘成分のMFRは27.6g/10minであった。その後、3組のロールと、それぞれのロール間に温水槽を有するロール延伸機にて、1段目ロール温度が室温、第1温水槽温度は90℃、2段目ロール温度は90℃、第2温水槽温度は95℃、3段目ロール温度は120℃の条件にて、2段の延伸処理を行った。工業的に安定して延伸できる最大実効延伸倍率は5.1倍であり、得られた延伸繊維の強度は6.1cN/dtex、145℃における乾熱収縮率は15.2%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は12.2万であり、鞘成分の重量平均分子量は5.10万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、16.0Nであった。このように、実施例5の方法で得られた熱融着性複合繊維は、高い繊維強度を有し、かつ乾熱収縮率は低く抑えられていた。
Example 5
Isotactic polypropylene “SA03D” (manufactured by Nippon Polypro Co., Ltd., resin raw material MFR = 30 g / 10 min, Q value = 2.8) is used as the core component, and high-density polyethylene “S6900” (Kyoyo Polyethylene Co., Ltd.) is used as the sheath component. ), Resin raw material MFR = 16.5 g / 10 min), and a sheath core type composite spinneret is used so that the cross-sectional composite ratio of the sheath core is 50/50, and the extruder cylinder temperature of the core component is 310. Unstretched heat-fusible conjugate fiber with unstretched yarn fineness of 3.6 dtex under the conditions of ℃, sheath cylinder extruder cylinder temperature is 220 ℃, spinneret temperature is 260 ℃, and winding speed is 940 m / min The yarn was spun. The core component MFR discharged from the spinneret was 62.6 g / min, and the sheath component MFR was 27.6 g / 10 min. Thereafter, in a roll stretching machine having three sets of rolls and a hot water tank between the rolls, the first stage roll temperature is room temperature, the first hot water tank temperature is 90 ° C., the second stage roll temperature is 90 ° C., Two-stage stretching treatment was performed under the condition that the temperature of the two warm water tanks was 95 ° C and the temperature of the third-stage roll was 120 ° C. The maximum effective draw ratio at which it can be drawn industrially stably was 5.1 times, and the strength of the obtained drawn fiber was 6.1 cN / dtex, and the dry heat shrinkage at 145 ° C. was 15.2%. When the molecular weight of the stretched fiber was measured by a cross-fractionation chromatograph, the weight average molecular weight of the core component was 122,000, and the weight average molecular weight of the sheath component was 51 million. Further, the puncture strength of a 50-percent nonwoven fabric produced by cutting this into 5 mm and thermally fusing the papermaking web was 16.0 N. Thus, the heat-fusible conjugate fiber obtained by the method of Example 5 had high fiber strength, and the dry heat shrinkage rate was kept low.

実施例6
芯成分としてポリプロピレン「SA2E」(日本ポリプロ(株)製、樹脂原料MFR=16.0g/10min、Q値=5.3)を用い、芯成分の押出機シリンダー温度を330℃とした以外は実施例1と同様にして、未延伸糸を紡糸した。紡糸口金から吐出された、芯成分のMFRは38.4g/minであり、鞘成分のMFRは11.1g/10minであった。延伸工程も実施例1と同様としたところ、工業的に安定して延伸できる最大実効延伸倍率は4.2倍であり、得られた延伸繊維の強度は6.0cN/dtex、145℃における乾熱収縮率は14.5%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は14.3万であり、鞘成分の重量平均分子量は6.44万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、12.6Nであった。このように、実施例6の方法で得られた熱融着性複合繊維は、高い繊維強度を有し、かつ乾熱収縮率は低く抑えられていた。
Example 6
Implemented except that polypropylene “SA2E” (manufactured by Nippon Polypro Co., Ltd., resin raw material MFR = 16.0 g / 10 min, Q value = 5.3) was used as the core component, and the extruder cylinder temperature of the core component was set to 330 ° C. In the same manner as in Example 1, an undrawn yarn was spun. The MFR of the core component discharged from the spinneret was 38.4 g / min, and the MFR of the sheath component was 11.1 g / 10 min. The stretching process was also the same as in Example 1. As a result, the maximum effective stretch ratio that enables industrially stable stretching was 4.2 times, and the strength of the obtained stretched fiber was 6.0 cN / dtex and a dryness at 145 ° C. The heat shrinkage rate was 14.5%. When the molecular weight of the drawn fiber was measured by a cross-fractionation chromatograph, the weight average molecular weight of the core component was 143,000, and the weight average molecular weight of the sheath component was 64.40 million. In addition, the puncture strength of a 50-weight non-woven fabric produced by cutting this into 5 mm and heat-sealing the paper web was 12.6 N. Thus, the heat-fusible conjugate fiber obtained by the method of Example 6 had high fiber strength, and the dry heat shrinkage rate was kept low.

実施例7
鞘成分として直鎖状低密度ポリエチレン「M60」(東ソー(株)製:樹脂原料MFR=8.0g/10min)を用い、鞘成成分の押出機シリンダー温度を200℃とした以外は実施例1と同様にして、未延伸糸を紡糸した。紡糸口金から吐出された、芯成分のMFRは54.6g/minであり、鞘成分のMFRは13.2g/10minであった。延伸工程も実施例1と同様としたところ、工業的に安定して延伸できる最大実効延伸倍率は4.2倍であり、得られた延伸繊維の強度は6.1cN/dtex、145℃における乾熱収縮率は16.1%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は12.8万であり、鞘成分の重量平均分子量は6.39万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、9.9Nであった。実施例1と比べると突刺し強度が低いが、これは鞘成分が直鎖状低密度ポリエチレンであるがゆえに、不織布の繊維交絡点における熱融着力が低いためであろう。このように、実施例6の方法で得られた熱融着性複合繊維は、高い繊維強度を有し、かつ乾熱収縮率は低く抑えられていた。
Example 7
Example 1 except that linear low-density polyethylene “M60” (manufactured by Tosoh Corporation: resin raw material MFR = 8.0 g / 10 min) was used as the sheath component, and the extruder cylinder temperature of the sheath component was 200 ° C. In the same manner as above, an undrawn yarn was spun. The MFR of the core component discharged from the spinneret was 54.6 g / min, and the MFR of the sheath component was 13.2 g / 10 min. The stretching process was also the same as in Example 1. As a result, the maximum effective draw ratio at which industrially stable stretching was possible was 4.2 times, and the strength of the obtained drawn fiber was 6.1 cN / dtex and a dryness at 145 ° C. The heat shrinkage rate was 16.1%. When the molecular weight of the stretched fiber was measured by a cross-fractionation chromatograph, the weight average molecular weight of the core component was 128,000 and the weight average molecular weight of the sheath component was 63,990. Further, the puncture strength of a 50-percent nonwoven fabric produced by cutting this into 5 mm and thermally fusing the papermaking web was 9.9 N. Compared with Example 1, the piercing strength is low, which is because the sheath component is a linear low-density polyethylene, and therefore the thermal fusion force at the fiber entanglement point of the nonwoven fabric is low. Thus, the heat-fusible conjugate fiber obtained by the method of Example 6 had high fiber strength, and the dry heat shrinkage rate was kept low.

比較例1
鞘成分として高密度ポリエチレン「S6920」(京葉ポリエチ(株)製、ペレットMFR=26g/10min)を用いた以外は実施例1と同様にして、未延伸糸繊度が4.2dtexの熱融着性複合繊維を紡糸した。紡糸口金から吐出された、芯成分のMFRは54.9g/minであり、鞘成分のMFRは42.2g/10minであった。その後、実施例1と同様の方法で延伸処理を行った。工業的に安定して延伸できる最大実効延伸倍率は4.7倍であり、得られた延伸繊維の強度は5.0cN/dtex、145℃における乾熱収縮率は16.5%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は12.9万であり、鞘成分の重量平均分子量は4.46万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、実施例1と同じ繊度であるにも関わらず、9.4Nと低かった。このように、比較例1の方法で得られた熱融着性複合繊維は、実施例1と同じ実効延伸倍率で延伸されているにも関わらず、繊維強度が低かった。
Comparative Example 1
Heat-sealability of unstretched yarn fineness of 4.2 dtex in the same manner as in Example 1 except that high-density polyethylene “S6920” (manufactured by Keiyo Polyethylene Co., Ltd., pellet MFR = 26 g / 10 min) was used as the sheath component. Composite fiber was spun. The core component MFR discharged from the spinneret was 54.9 g / min, and the sheath component MFR was 42.2 g / 10 min. Then, the extending | stretching process was performed by the method similar to Example 1. FIG. The maximum effective draw ratio that can be drawn industrially stably was 4.7 times, and the strength of the obtained drawn fiber was 5.0 cN / dtex, and the dry heat shrinkage at 145 ° C. was 16.5%. When the molecular weight of the stretched fiber was measured by a cross-fractionation chromatograph, the weight average molecular weight of the core component was 1290,000, and the weight average molecular weight of the sheath component was 44,600. In addition, when the puncture strength of a 50-mesh non-woven fabric prepared by cutting this into 5 mm and heat-sealing the paper web was measured, it was as low as 9.4 N despite the same fineness as in Example 1. It was. Thus, although the heat-fusible conjugate fiber obtained by the method of Comparative Example 1 was drawn at the same effective draw ratio as Example 1, the fiber strength was low.

比較例2
鞘成分として高密度ポリエチレン「J302」(東ソー(株)製、ペレットMFR=41.5g/10min)を用いた以外は実施例1と同様にして、未延伸糸繊度が4.2dtexの熱融着性複合繊維を紡糸した。紡糸口金から吐出された、芯成分のMFRは54.1g/minであり、鞘成分のMFRは72.6g/10minであった。その後、実施例1と同様の方法で延伸処理を行った。工業的に安定して延伸できる最大実効延伸倍率は4.7倍であり、得られた延伸繊維の強度は5.0cN/dtex、145℃における乾熱収縮率は16.0%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は12.9万であり、鞘成分の重量平均分子量は3.91万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、実施例1と同じ繊度であるにも関わらず、8.0Nと低かった。このように、比較例1の方法で得られた熱融着性複合繊維は、実施例1と同じ実効延伸倍率で延伸されているにも関わらず、繊維強度が低かった。
Comparative Example 2
Heat fusion of unstretched yarn fineness of 4.2 dtex in the same manner as in Example 1 except that high density polyethylene “J302” (manufactured by Tosoh Corporation, pellet MFR = 41.5 g / 10 min) was used as the sheath component. Conjugated composite fiber was spun. The MFR of the core component discharged from the spinneret was 54.1 g / min, and the MFR of the sheath component was 72.6 g / 10 min. Then, the extending | stretching process was performed by the method similar to Example 1. FIG. The maximum effective draw ratio that can be drawn industrially stably was 4.7 times, and the strength of the obtained drawn fiber was 5.0 cN / dtex, and the dry heat shrinkage at 145 ° C. was 16.0%. When the molecular weight of the drawn fiber was measured with a cross-fractionation chromatograph, the weight average molecular weight of the core component was 12.9 million, and the weight average molecular weight of the sheath component was 391,000. Further, when the puncture strength of a 50-percent nonwoven fabric prepared by cutting this into 5 mm and heat-sealing the paper web was measured, it was as low as 8.0 N despite the same fineness as in Example 1. It was. Thus, although the heat-fusible conjugate fiber obtained by the method of Comparative Example 1 was drawn at the same effective draw ratio as Example 1, the fiber strength was low.

比較例3
鞘成分として「S6920」(京葉ポリエチ(株)製、ペレットMFR=26g/10min)を用いた以外は実施例3と同様にして、未延伸糸繊度が5.8dtexの熱融着性複合繊維を紡糸した。紡糸口金から吐出された、芯成分のMFRは37.6g/minであり、鞘成分のMFRは43.0g/10minであった。その後、実施例3と同様の方法で延伸処理を行った。工業的に安定して延伸できる最大実効延伸倍率は4.8倍であり、得られた延伸繊維の強度は5.8cN/dtex、145℃における乾熱収縮率は14.2%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は14.2万であり、鞘成分の重量平均分子量は4.47万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、8.8Nであった。このように、比較例1の方法で得られた熱融着性複合繊維は、実施例3とほぼ同じ実効延伸倍率で延伸されているにもかかわらず、繊維強度が低かった。
Comparative Example 3
A heat-fusible conjugate fiber having an undrawn yarn fineness of 5.8 dtex was obtained in the same manner as in Example 3 except that “S6920” (manufactured by Keiyo Polyethylene Co., Ltd., pellet MFR = 26 g / 10 min) was used as the sheath component. Spinned. The core component MFR discharged from the spinneret was 37.6 g / min, and the sheath component MFR was 43.0 g / 10 min. Then, the extending | stretching process was performed by the method similar to Example 3. FIG. The maximum effective draw ratio at which it can be industrially drawn stably was 4.8 times, and the strength of the obtained drawn fiber was 5.8 cN / dtex, and the dry heat shrinkage at 145 ° C. was 14.2%. When the molecular weight of the stretched fiber was measured by a cross-fractionation chromatograph, the weight average molecular weight of the core component was 142,000, and the weight average molecular weight of the sheath component was 44,000. Further, the puncture strength of a 50-percent nonwoven fabric produced by cutting this into 5 mm and thermally fusing the papermaking web was 8.8N. Thus, although the heat-fusible conjugate fiber obtained by the method of Comparative Example 1 was drawn at substantially the same effective draw ratio as Example 3, the fiber strength was low.

比較例4
鞘成分として「J302」(東ソー(株)製、ペレットMFR=41.5g/10min)を用いた以外は実施例4と同様にして、未延伸糸繊度が7.8dtexの熱融着性複合繊維を紡糸した。紡糸口金から吐出された、芯成分のMFRは59.0g/minであり、鞘成分のMFRは74.1g/10minであった。その後、実施例4と同様の方法で延伸処理を行った。工業的に安定して延伸できる最大実効延伸倍率は5.2倍であり、得られた延伸繊維の強度は5.2cN/dtex、145℃における乾熱収縮率は20.6%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は12.4万であり、鞘成分の重量平均分子量は3.88万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、6.1Nであった。このように、比較例4の方法で得られた熱融着性複合繊維は、実施例4と同じ実効延伸倍率で延伸されているにもかかわらず、繊維強度が低かった。
Comparative Example 4
A heat-fusible conjugate fiber having an undrawn yarn fineness of 7.8 dtex in the same manner as in Example 4 except that “J302” (manufactured by Tosoh Corporation, pellet MFR = 41.5 g / 10 min) was used as the sheath component. Was spun. The MFR of the core component discharged from the spinneret was 59.0 g / min, and the MFR of the sheath component was 74.1 g / 10 min. Then, the extending | stretching process was performed by the method similar to Example 4. FIG. The maximum effective draw ratio at which it can be drawn industrially stably was 5.2 times, and the strength of the obtained drawn fiber was 5.2 cN / dtex, and the dry heat shrinkage at 145 ° C. was 20.6%. When the molecular weight of the stretched fiber was measured with a cross-fractionation chromatograph, the weight average molecular weight of the core component was 1240,000 and the weight average molecular weight of the sheath component was 38,880. Further, the puncture strength of a 50-percent nonwoven fabric produced by cutting this into 5 mm and heat-sealing the paper web was 6.1 N. Thus, although the heat-fusible conjugate fiber obtained by the method of Comparative Example 4 was drawn at the same effective draw ratio as Example 4, the fiber strength was low.

比較例5
芯成分の押出機シリンダー温度を260℃とした以外は実施例1と同様にして、未延伸糸繊度が4.2dtexの熱融着性複合繊維を紡糸した。紡糸口金から吐出された、芯成分のMFRは20.9g/minであり、鞘成分のMFRは10.1g/10minであった。その後、実施例1と同様の方法で延伸処理を行った。工業的に安定して延伸できる最大実効延伸倍率は3.2倍であり、得られた延伸繊維の強度は3.4cN/dtex、145℃における乾熱収縮率は12.1%であった。この延伸繊維についてクロス分別クロマトグラフにて分子量測定を実施したところ、芯成分の重量平均分子量は17.4万であり、鞘成分の重量平均分子量は6.56万であった。また、これを5mmにカットし、抄造ウェブを熱融着させて作製した50目付の不織布の突刺し強度を測定したところ、実施例1と比べて繊度が大きく、また繊維強度も低いためか、9.0Nと低かった。このように、比較例5の方法で得られた熱融着性複合繊維は、実施例1と比べて低い延伸倍率でしか延伸できず、繊維強度が低かった。これは、紡糸口金から吐出された、芯成分のMFRが低すぎたためと考えられる。
Comparative Example 5
A heat-fusible conjugate fiber having an undrawn yarn fineness of 4.2 dtex was spun in the same manner as in Example 1 except that the extruder cylinder temperature of the core component was 260 ° C. The core component MFR discharged from the spinneret was 20.9 g / min, and the sheath component MFR was 10.1 g / 10 min. Then, the extending | stretching process was performed by the method similar to Example 1. FIG. The maximum effective draw ratio at which the fiber can be drawn industrially stably was 3.2 times, and the strength of the obtained drawn fiber was 3.4 cN / dtex, and the dry heat shrinkage at 145 ° C. was 12.1%. When the molecular weight of the drawn fiber was measured with a cross-fractionation chromatograph, the weight average molecular weight of the core component was 174,000, and the weight average molecular weight of the sheath component was 65,600. Moreover, when this was cut into 5 mm and the piercing strength of a 50-percent nonwoven fabric produced by heat-sealing the paper web was measured, the fineness was greater than in Example 1 and the fiber strength was low. It was as low as 9.0N. Thus, the heat-fusible conjugate fiber obtained by the method of Comparative Example 5 could be drawn only at a lower draw ratio than Example 1, and the fiber strength was low. This is presumably because the core component MFR discharged from the spinneret was too low.

Figure 2007107143
Figure 2007107143

Figure 2007107143
Figure 2007107143

Claims (7)

結晶性プロピレン系重合体を芯成分に配し、かつ芯成分よりも融点の低いオレフィン系重合体を鞘成分に配する未延伸糸を、延伸して得られた熱融着性複合繊維であって、該熱融着性複合繊維のクロス分別クロマトグラフによって測定される、芯成分の重量平均分子量と鞘成分の重量平均分子量の比(芯成分重量平均分子量/鞘成分重量平均分子量)が2.5以下であることを特徴とする熱融着性複合繊維。   This is a heat-fusible conjugate fiber obtained by drawing an undrawn yarn in which a crystalline propylene polymer is arranged in the core component and an olefin polymer having a melting point lower than that of the core component is arranged in the sheath component. The ratio of the weight average molecular weight of the core component to the weight average molecular weight of the sheath component (core component weight average molecular weight / sheath component weight average molecular weight) measured by cross-fractionation chromatography of the heat-fusible conjugate fiber is 2. A heat-fusible conjugate fiber characterized by being 5 or less. 鞘成分の樹脂原料の190℃におけるMFRが3〜18g/10minである請求項1記載の熱融着性複合繊維。   The heat-fusible conjugate fiber according to claim 1, wherein the resin raw material of the sheath component has an MFR at 190 ° C of 3 to 18 g / 10 min. 芯成分の樹脂原料の230℃におけるMFRが5〜60g/10minである請求項1又は2記載の熱融着性複合繊維。   The heat-fusible conjugate fiber according to claim 1 or 2, wherein the resin raw material of the core component has an MFR at 230 ° C of 5 to 60 g / 10 min. 繊維破断強度が6.0cN/dtex以上である請求項1〜3のいずれかに記載の熱融着性複合繊維。   The heat-fusible conjugate fiber according to any one of claims 1 to 3, which has a fiber breaking strength of 6.0 cN / dtex or more. 145℃における乾熱収縮率が20%以下である請求項4に記載の熱融着性複合繊維。   The heat-fusible conjugate fiber according to claim 4, wherein the dry heat shrinkage at 145 ° C is 20% or less. 芯成分がアイソタクチックポリプロピレンであり、鞘成分が高密度ポリエチレンである請求項1〜3のいずれかに記載の熱融着性複合繊維。   The heat-fusible conjugate fiber according to any one of claims 1 to 3, wherein the core component is isotactic polypropylene and the sheath component is high-density polyethylene. 芯成分のアイソタクチックポリプロピレンのQ値(分子量分布:重量平均分子量/数平均分子量)が4以下である請求項6に記載の熱融着性複合繊維。   The heat-fusible composite fiber according to claim 6, wherein the core component isotactic polypropylene has a Q value (molecular weight distribution: weight average molecular weight / number average molecular weight) of 4 or less.
JP2005300429A 2005-10-14 2005-10-14 High-strength heat-fusible composite fiber Expired - Fee Related JP4670580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300429A JP4670580B2 (en) 2005-10-14 2005-10-14 High-strength heat-fusible composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300429A JP4670580B2 (en) 2005-10-14 2005-10-14 High-strength heat-fusible composite fiber

Publications (2)

Publication Number Publication Date
JP2007107143A true JP2007107143A (en) 2007-04-26
JP4670580B2 JP4670580B2 (en) 2011-04-13

Family

ID=38033226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300429A Expired - Fee Related JP4670580B2 (en) 2005-10-14 2005-10-14 High-strength heat-fusible composite fiber

Country Status (1)

Country Link
JP (1) JP4670580B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144360A (en) * 2008-12-17 2010-07-01 Kfc Ltd Concrete repair sheet and concrete repair method
US8281857B2 (en) 2007-12-14 2012-10-09 3M Innovative Properties Company Methods of treating subterranean wells using changeable additives
US8353344B2 (en) 2007-12-14 2013-01-15 3M Innovative Properties Company Fiber aggregate
US8596361B2 (en) 2007-12-14 2013-12-03 3M Innovative Properties Company Proppants and uses thereof
JP2014196577A (en) * 2013-03-29 2014-10-16 帝人株式会社 Polypropylene fiber and method of producing the same
WO2015012281A1 (en) 2013-07-23 2015-01-29 宇部エクシモ株式会社 Method for producing drawn conjugated fiber, and drawn conjugated fiber
CN108779581A (en) * 2016-03-11 2018-11-09 Es飞博比琼斯株式会社 The polyethylene-based fiber of low stripping property and use its nonwoven fabric
KR20210142608A (en) 2019-03-29 2021-11-25 우베 에쿠시모 가부시키가이샤 Drawn composite fiber, nonwoven fabric and method for manufacturing drawn composite fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269706A (en) * 1986-05-16 1987-11-24 Mitsubishi Rayon Co Ltd Composite membrane of porous hollow polyolefin yarn and its production
JPH059809A (en) * 1991-07-02 1993-01-19 Daiwabo Create Kk Hot-melt conjugate and fiber aggregate
JPH0754213A (en) * 1993-08-20 1995-02-28 Unitika Ltd Sheath-core type composite short fiber and production thereof
JPH11286862A (en) * 1998-04-06 1999-10-19 Oji Paper Co Ltd Spun-bonded nonwoven fabric for clothes and its production
JP2003171825A (en) * 2001-12-07 2003-06-20 Daiwabo Co Ltd Heat-adhesive conjugated fiber, and nonwoven fabric and synthetic fiber paper using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269706A (en) * 1986-05-16 1987-11-24 Mitsubishi Rayon Co Ltd Composite membrane of porous hollow polyolefin yarn and its production
JPH059809A (en) * 1991-07-02 1993-01-19 Daiwabo Create Kk Hot-melt conjugate and fiber aggregate
JPH0754213A (en) * 1993-08-20 1995-02-28 Unitika Ltd Sheath-core type composite short fiber and production thereof
JPH11286862A (en) * 1998-04-06 1999-10-19 Oji Paper Co Ltd Spun-bonded nonwoven fabric for clothes and its production
JP2003171825A (en) * 2001-12-07 2003-06-20 Daiwabo Co Ltd Heat-adhesive conjugated fiber, and nonwoven fabric and synthetic fiber paper using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8281857B2 (en) 2007-12-14 2012-10-09 3M Innovative Properties Company Methods of treating subterranean wells using changeable additives
US8353344B2 (en) 2007-12-14 2013-01-15 3M Innovative Properties Company Fiber aggregate
US8596361B2 (en) 2007-12-14 2013-12-03 3M Innovative Properties Company Proppants and uses thereof
JP2010144360A (en) * 2008-12-17 2010-07-01 Kfc Ltd Concrete repair sheet and concrete repair method
JP2014196577A (en) * 2013-03-29 2014-10-16 帝人株式会社 Polypropylene fiber and method of producing the same
CN105308227A (en) * 2013-07-23 2016-02-03 宇部爱科喜模株式会社 Method for producing drawn conjugated fiber, and drawn conjugated fiber
WO2015012281A1 (en) 2013-07-23 2015-01-29 宇部エクシモ株式会社 Method for producing drawn conjugated fiber, and drawn conjugated fiber
KR20160034245A (en) 2013-07-23 2016-03-29 우베 에쿠시모 가부시키가이샤 Method for producing drawn conjugated fiber, and drawn conjugated fiber
JP5938149B2 (en) * 2013-07-23 2016-06-22 宇部エクシモ株式会社 Method for producing drawn composite fiber and drawn composite fiber
KR102115064B1 (en) * 2013-07-23 2020-05-25 우베 에쿠시모 가부시키가이샤 Method for producing drawn conjugated fiber, and drawn conjugated fiber
CN108779581A (en) * 2016-03-11 2018-11-09 Es飞博比琼斯株式会社 The polyethylene-based fiber of low stripping property and use its nonwoven fabric
US20190062952A1 (en) * 2016-03-11 2019-02-28 Es Fibervisions Co., Ltd. Low-elution polyethylene-based fibers and nonwoven fabric using same
KR20210142608A (en) 2019-03-29 2021-11-25 우베 에쿠시모 가부시키가이샤 Drawn composite fiber, nonwoven fabric and method for manufacturing drawn composite fiber
DE112020001647T5 (en) 2019-03-29 2021-12-16 Ube Exsymo Co., Ltd. Drawn composite fiber, nonwoven fabric, and methods of making the drawn composite fiber
JP7432994B2 (en) 2019-03-29 2024-02-19 宇部エクシモ株式会社 Method for producing drawn composite fibers, nonwoven fabrics, and drawn composite fibers

Also Published As

Publication number Publication date
JP4670580B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4670580B2 (en) High-strength heat-fusible composite fiber
CA2764741C (en) Heat-storing moldings
JP5260274B2 (en) Method for producing polyphenylene sulfide filament yarn
EP0674726A1 (en) Meso triad syndiotactic polypropylene fibers
KR20130141484A (en) Ultrafine polyamide fiber, and melt-spinning method and device therefor
JP4544600B2 (en) Drawn composite fiber
JP6345938B2 (en) Thermal adhesive long fiber
US11702779B2 (en) Spunbonded non-woven fabric, sanitary material, and method of manufacturing spunbonded non-woven fabric
CA2348518C (en) Highly oriented polyolefin fibre
JP3774114B2 (en) Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same
JP7042269B2 (en) Low elution fibers and fiber structures
SK8622002A3 (en) Apparatus for manufacturing optical fiber made of semi-crystalline polymer
JP4582886B2 (en) Weatherproof long fiber nonwoven fabric
JPWO2018021522A1 (en) Polyolefin fiber and method for producing the same
JP7432994B2 (en) Method for producing drawn composite fibers, nonwoven fabrics, and drawn composite fibers
JP6084398B2 (en) Manufacturing method of core-sheath type composite fiber
JP6142265B2 (en) Polymethylpentene monofilament and method for producing the same
JP2006054124A (en) Battery separator, its manufacturing method, and battery
JP2006214019A (en) Sheath core type polyolefin-based composite fiber and method for producing the same
JP2018188742A (en) Liquid crystalline polyester multifilament
KR20080105079A (en) Crosslinked polyethylene elastic fibers
JP2842243B2 (en) Melt spinning equipment
JPH1181036A (en) High strength polypropylene fiber and its production
JP2022077507A (en) Core-sheath conjugated fiber
JP3165758B2 (en) Polypropylene long fiber non-woven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R150 Certificate of patent or registration of utility model

Ref document number: 4670580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees