JP2020051023A - Composite yarn - Google Patents

Composite yarn Download PDF

Info

Publication number
JP2020051023A
JP2020051023A JP2020001099A JP2020001099A JP2020051023A JP 2020051023 A JP2020051023 A JP 2020051023A JP 2020001099 A JP2020001099 A JP 2020001099A JP 2020001099 A JP2020001099 A JP 2020001099A JP 2020051023 A JP2020051023 A JP 2020051023A
Authority
JP
Japan
Prior art keywords
temperature
component
core
synthetic fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020001099A
Other languages
Japanese (ja)
Other versions
JP6858894B2 (en
Inventor
史彦 多賀
Fumihiko TAGA
史彦 多賀
斉藤 雅春
Masaharu Saito
雅春 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KB Seiren Ltd
Original Assignee
KB Seiren Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KB Seiren Ltd filed Critical KB Seiren Ltd
Publication of JP2020051023A publication Critical patent/JP2020051023A/en
Application granted granted Critical
Publication of JP6858894B2 publication Critical patent/JP6858894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

To provide a fiber having a good temperature control function both at time of temperature rise and at time of temperature fall.SOLUTION: A synthetic fiber comprises a thermoplastic resin containing a component 1 and a component 2. The component 1 has a melting start temperature of 34°C or higher and a melting peak temperature of 50°C or lower. The component 2 has a crystallization start temperature of lower than 30°C and a crystallization peak temperature of 5°C or higher. In particular, a synthetic fiber preferably has: a melting heat value ΔHm of the component 1 of 10 to 150 J/g ; a crystallization heat value ΔHc of the component 2 of 10 to 150 J/g; a melting heat value ΔHm of synthetic fiber observed at 50°C or lower of 1 to 5 J/g; and a crystallization heat value ΔHc of 1 to 5 J/g observed at 50°C or lower.SELECTED DRAWING: None

Description

本発明は、温度調節機能を有する合成繊維(温度調節繊維)に関する。 The present invention relates to a synthetic fiber having a temperature control function (temperature control fiber).

温度調節繊維とは、昇温もしくは降温の温度変化がある際に急激な温度変化を緩和する機能を付与した合成繊維である。
このような温度調節繊維として、常温付近に融点を有する物質をマイクロカプセルに封入し、このマイクロカプセルを基材に付着させるものや、前記物質そのものまたはマイクロカプセルを繊維中に混入するものが従来から提案されている(例えば、特許文献1〜3)。
The temperature control fiber is a synthetic fiber provided with a function of alleviating a rapid temperature change when there is a temperature change of a temperature increase or a temperature decrease.
As such a temperature-controlling fiber, a material having a melting point near room temperature is encapsulated in a microcapsule, and a material in which the microcapsule is adhered to a base material, or a material in which the substance itself or the microcapsule is mixed in the fiber, have conventionally been used. It has been proposed (for example, Patent Documents 1 to 3).

特開昭58−55699号公報JP-A-58-55699 特開平1−85374号公報JP-A-1-85374 特表2004−510068号公報Japanese Patent Publication No. 2004-510068

しかしながら、上記のものは、衣服内温度(肌−衣服間の温度)31〜32℃よりも高い融点の物質(平常時、固体で存在)、もしくは低い融点の物質(平常時、液体で存在)のいずれか一方を繊維に複合している。前者の場合、31〜32℃以上に外気が変化した場合、固体から液体に相変化する際にみられる吸熱効果は現れるが、31〜32℃以下に外気が変化した場合、液体から固体に相変化する際にみられる発熱効果は現れない。後者の場合、31〜32℃以上に外気が変化した場合、固体から液体に相変化する際にみられる吸熱効果は現れないが、31〜32℃以下に外気が変化した場合、液体から固体に相変化する際にみられる発熱効果が現れる。上記のように、どちらか一方の効果しか有さず、温度調節機能が十分発揮されないのが現状である。
従って、本発明は、吸熱効果と発熱効果の両機能を持った良好な温度調節機能を有する繊維を得ることをその目的とする。
However, the above substances are substances having a melting point higher than the temperature in the garment (the temperature between the skin and the garment) of 31 to 32 ° C. (normally, present as a solid) or a substance having a lower melting point (normally, present as a liquid). Is combined with the fiber. In the former case, when the outside air changes above 31-32 ° C, the endothermic effect seen when the phase changes from solid to liquid appears, but when the outside air changes below 31-32 ° C, the phase changes from liquid to solid. There is no heating effect seen when changing. In the latter case, when the outside air changes to 31 to 32 ° C or higher, the endothermic effect seen when the phase changes from solid to liquid does not appear, but when the outside air changes to 31 to 32 ° C or lower, the liquid changes to solid. Exothermic effects appear during the phase change. As described above, at present, it has only one of the effects and the temperature control function is not sufficiently exhibited.
Therefore, an object of the present invention is to obtain a fiber having both a heat absorbing effect and a heat generating effect and having a good temperature control function.

本発明者達は、衣服内温度31〜32℃よりも低い融点を持つ物質と高い融点を持つ物質の2種を繊維に複合し、特定の性質を有する2種類の温度調節材料を繊維中に含有させることにより、全ての季節において昇温時も降温時も温度調節機能を発揮でき、快適な衣料素材を提供できることを見出し、本発明に到達した。
すなわち、本発明は、成分1と成分2とを含む熱可塑性樹脂からなる合成繊維であって、成分1は融解開始温度が34℃以上、融解ピーク温度が50℃以下の範囲であり、成分2は結晶化開始温度が30℃未満、結晶化ピーク温度が5℃以上の範囲であることを特徴とする合成繊維を要旨とする。
上記合成繊維において、成分1の融解熱量ΔHmが10〜150J/g、成分2の結晶化熱量ΔHcが10〜150J/gであり、50℃以下に観測される合成繊維の融解熱量ΔHmが1〜5J/g、50℃以下に観測される合成繊維の結晶化熱量ΔHcが1〜5J/gである合成繊維であることが好ましい。
また、上記合成繊維において、示差走査熱量分析した際に得られる成分1の融解ピークおよび成分2の結晶化ピークの半値幅が10℃以下であることが好ましい。
さらに、上記合成繊維おいて、成分1は、側鎖炭素鎖がC18、C20、C22の少なくとも1つ以上からなる結晶性ポリα−オレフィンであり、成分2は、側鎖炭素鎖がC12、C14、C16の少なくとも1つ以上からなる結晶性ポリα−オレフィンであることが好ましく、特に、成分1、成分2および熱可塑性樹脂の質量比率が、5:5:90〜20:20:60であることが好ましい。
また本発明は、融解開始温度が34℃以上、融解ピーク温度が50℃以下の範囲である成分1を含む熱可塑性樹脂からなる合成繊維と、結晶化開始温度が30℃未満、結晶化ピーク温度が5℃以上の範囲である成分2を含む熱可塑性樹脂からなる合成繊維とを合糸せしめたことを特徴とする複合糸でもある。
The present inventors have combined two kinds of materials, a substance having a melting point lower than the temperature in the garment of 31 to 32 ° C. and a substance having a high melting point, into a fiber, and added two kinds of temperature control materials having specific properties to the fiber. It has been found that by containing the same, it is possible to exert a temperature control function at both rising and falling temperatures in all seasons, and to provide a comfortable clothing material, and reached the present invention.
That is, the present invention relates to a synthetic fiber comprising a thermoplastic resin containing Component 1 and Component 2, wherein Component 1 has a melting onset temperature of 34 ° C. or higher, a melting peak temperature of 50 ° C. or lower, and Component 2 The gist of the present invention is a synthetic fiber having a crystallization start temperature of less than 30 ° C. and a crystallization peak temperature of 5 ° C. or more.
In the above synthetic fiber, the heat of fusion ΔHm of the component 1 is 10 to 150 J / g, the heat of crystallization ΔHc of the component 2 is 10 to 150 J / g, and the heat of fusion ΔHm of the synthetic fiber observed at 50 ° C or lower is 1 to 10. It is preferable that the synthetic fiber has a heat of crystallization ΔHc of 1 to 5 J / g, which is observed at 5 J / g and 50 ° C. or lower.
Further, in the above synthetic fiber, it is preferable that a half width of a melting peak of the component 1 and a half value width of a crystallization peak of the component 2 obtained by differential scanning calorimetry are 10 ° C. or less.
Further, in the above synthetic fiber, the component 1 is a crystalline poly-α-olefin having a side chain carbon chain composed of at least one of C18, C20 and C22, and the component 2 is a side chain carbon chain having a carbon chain of C12 and C14. , C16, and more preferably a crystalline poly-α-olefin comprising at least one component. In particular, the mass ratio of Component 1, Component 2, and the thermoplastic resin is from 5: 5: 90 to 20:20:60. Is preferred.
The present invention also provides a synthetic fiber comprising a thermoplastic resin containing Component 1 having a melting start temperature of 34 ° C. or higher and a melting peak temperature of 50 ° C. or lower, a crystallization start temperature of less than 30 ° C., and a crystallization peak temperature. Is a composite yarn obtained by twisting synthetic fibers made of a thermoplastic resin containing Component 2 having a temperature of 5 ° C. or higher.

本発明によれば、屋内から屋外、屋外から屋内への移動時や夏場・冬場の環境の違いがもたらす温度変化に対して、温度調節材料が敏感に相変化することができるため、肌−衣服間の急激な温度変化を抑制できる、優れた温度調節機能を有する繊維を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the phase of the temperature control material can be sensitively changed with respect to the temperature change caused by the difference in the environment between summer and winter when moving from indoor to outdoor, from outdoor to indoor, and thus the skin-clothes. It is possible to provide a fiber having an excellent temperature control function capable of suppressing a rapid temperature change during the operation.

本発明の実施例および比較例から得られた繊維の昇温時(31℃から50℃)の温度調節機能評価を示す図である。It is a figure which shows the temperature control function evaluation at the time of temperature rise (31 to 50 degreeC) of the fiber obtained from the Example of this invention and the comparative example. 本発明の実施例および比較例から得られた繊維の降温時(31℃から3℃)の温度調節機能評価を示す図である。It is a figure which shows the temperature control function evaluation at the time of the temperature fall (31 degreeC-3 degreeC) of the fiber obtained from the Example of this invention and the comparative example. 温度調節機能の評価方法を説明する図である。It is a figure explaining the evaluation method of a temperature control function. 本発明の実施例および比較例から得られた繊維の温度調節機能評価を示す図である。It is a figure which shows the temperature control function evaluation of the fiber obtained from the Example of this invention, and the comparative example.

以下、本発明について詳細に説明する。
本発明は、成分1と成分2とを含む熱可塑性樹脂からなる合成繊維である。
本発明の成分1、成分2は、融点、凝固点は、衣服内温度の前後に設定する。通常、衣服内温度は31〜32℃であり、この温度を境にして昇温時は、固体から溶融体への相転移がもたらす融解熱による吸熱効果、降温時は、溶融体から固体への相転移がもたらす凝固熱による発熱効果を発揮し、昇温時も降温時も、良好な温度調節機能を発揮する構成とする。
以下、成分1および成分2について、詳細に説明する。
Hereinafter, the present invention will be described in detail.
The present invention is a synthetic fiber made of a thermoplastic resin containing Component 1 and Component 2.
The melting point and the freezing point of the components 1 and 2 of the present invention are set before and after the temperature in clothes. Usually, the temperature in the garment is 31 to 32 ° C. At this temperature, when the temperature rises, an endothermic effect due to heat of fusion caused by a phase transition from the solid to the melt, and when the temperature falls, the temperature changes from the melt to the solid. It is configured to exhibit a heat-generating effect due to solidification heat caused by the phase transition, and to exhibit a good temperature control function both when the temperature is increased and when the temperature is decreased.
Hereinafter, the components 1 and 2 will be described in detail.

まず、成分1について説明する。成分1は融解開始温度が34℃以上、融解ピーク温度が50℃以下の範囲である。中でも、融解開始温度が34℃以上、融解ピーク温度が45℃以下の範囲にあることが好ましい。
肌と衣服との間の温度は、通常31〜32℃程度となる。このとき、成分1は、固体で存在し、外気温が上昇したときに、固体から溶融体への相転移が生じ、吸熱効果により、衣服内部の急激な温度上昇を抑制できる。
First, component 1 will be described. Component 1 has a melting onset temperature of 34 ° C. or higher and a melting peak temperature of 50 ° C. or lower. Especially, it is preferable that the melting start temperature is in the range of 34 ° C. or more and the melting peak temperature is in the range of 45 ° C. or less.
The temperature between the skin and the clothes is usually about 31 to 32 ° C. At this time, the component 1 exists as a solid, and when the outside air temperature rises, a phase transition from the solid to the melt occurs, and a rapid temperature rise inside the clothes can be suppressed by an endothermic effect.

成分1としては、アクリル酸またはメタクリル酸、それらの誘導体エステルと、ワックスとの重合体、側鎖結晶性ポリマー等が好適に挙げられる。
より具体的には、例えば、アクリル酸としては、ポリエイコシルアクリレート、ポリノナデシルアクリレート、ポリヘプタデシルアクリレート、ポリパルミチルアクリレート、ポリペンタデシルアクリレート、ポリステアリルアクリレート、ポリラウリルアクリレート、ポリミリスチルアクリレート等、またはこれらのアクリル酸の誘導体が挙げられる。
メタクリル酸としては、ポリドコシルメタクリレート、ポリヘンエイコシルメタクリレート、ポリミリスチルメタクリレート、ポリペンタデシルメタクリレート、ポリパルミチルメタクリレート、ポリヘプタデシルメタクリレート、ポリノナデシルメタクリレート、ポリエイコシルメタクリレート、ポリヘステアリルメタクリレート、ポリ(パルミチル/ステアリル)メタクリレート等、またはこれらのメタクリル酸のエステルが挙げられる。
側鎖結晶性ポリマーとしては、α−オレフィン系ポリマー(結晶性ポリα−オレフィン)、アルキルアクリレート系ポリマー、アルキルメタクリレート系ポリマー、アルキルエチレンオキシド系ポリマー、ポリシロキサン系ポリマーおよびアクリルアミド系ポリマー等の側鎖結晶性ポリマーが挙げられる。
これらの中でも、特に好ましくは、結晶性ポリα−オレフィンである。結晶性ポリα−オレフィンはホモポリマーでも、エチレン、プロピレン等のオレフィンとの共重合体でもよい。また側鎖の炭素鎖は、C18、C20、C22のいずれかであることが好ましい。
Preferred examples of the component 1 include a polymer of acrylic acid or methacrylic acid, a derivative ester thereof and a wax, a side-chain crystalline polymer, and the like.
More specifically, for example, acrylic acid includes polyeicosyl acrylate, polynonadecyl acrylate, polyheptadecyl acrylate, polypalmityl acrylate, polypentadecyl acrylate, polystearyl acrylate, polylauryl acrylate, polymyristyl acrylate, etc. Or derivatives of these acrylic acids.
As methacrylic acid, polydocosyl methacrylate, polyphenicosyl methacrylate, polymyristyl methacrylate, polypentadecyl methacrylate, polypalmityl methacrylate, polyheptadecyl methacrylate, polynonadecyl methacrylate, polyeicosyl methacrylate, polyhestearyl methacrylate, Examples include poly (palmityl / stearyl) methacrylate and the like, or esters of these methacrylic acids.
Examples of the side-chain crystalline polymer include side-chain crystals such as α-olefin polymers (crystalline poly-α-olefins), alkyl acrylate polymers, alkyl methacrylate polymers, alkyl ethylene oxide polymers, polysiloxane polymers and acrylamide polymers. Polymer.
Among these, crystalline poly-α-olefin is particularly preferred. The crystalline poly-α-olefin may be a homopolymer or a copolymer with an olefin such as ethylene or propylene. Further, the carbon chain of the side chain is preferably any of C18, C20 and C22.

成分1の融解熱量ΔHmは、10〜150J/gであることが好ましく、より好ましくは、60〜150J/gである。この範囲であると、良好な吸熱効果が得られやすい。 The heat of fusion ΔHm of the component 1 is preferably from 10 to 150 J / g, and more preferably from 60 to 150 J / g. Within this range, a good endothermic effect is likely to be obtained.

示差走査熱量分析した際に得られる成分1の融解ピークの半値幅は、10℃以下であることが好ましい。より好ましくは、5℃以下である。この範囲であると、昇温時のDSCチャートの成分1の融解ピークがシャープであり、ピンポイントでの吸熱効果が優れることとなり、特に、昇温時の温度調節機能が優れたものとなる。 The half width of the melting peak of Component 1 obtained by differential scanning calorimetry is preferably 10 ° C. or less. More preferably, it is 5 ° C. or lower. Within this range, the melting peak of the component 1 in the DSC chart at the time of temperature rise is sharp, and the heat absorption effect at the pinpoint is excellent. In particular, the temperature control function at the time of temperature rise is excellent.

次に、成分2について説明する。成分2は結晶化開始温度が30℃未満、結晶化ピーク温度が5℃以上の範囲である。
肌と衣服との間の温度は、通常31〜32℃程度となる。このとき成分2は、液体で存在し、外気温が降下した場合、溶融体から固体への相転移が生じ、発熱効果により、衣服内部の急激な温度降下を抑制できる。これら成分1と成分2を含有させることにより、昇温時も降温時も、温度調節機能を有することができる。
Next, the component 2 will be described. Component 2 has a crystallization onset temperature of less than 30 ° C and a crystallization peak temperature of 5 ° C or more.
The temperature between the skin and the clothes is usually about 31 to 32 ° C. At this time, the component 2 exists as a liquid, and when the outside air temperature drops, a phase transition from a melt to a solid occurs, and a rapid temperature drop inside the garment can be suppressed by the heat generation effect. By including these components 1 and 2, it is possible to have a temperature control function both when raising and lowering the temperature.

成分2としては、上記記載の成分1と同種物質が好適に挙げられる。
すなわち、アクリル酸またはメタクリル酸、それらの誘導体エステルと、ワックスとの重合体、側鎖結晶性ポリマー等が好適に挙げられる。
より具体的には、例えば、アクリル酸としては、ポリエイコシルアクリレート、ポリノナデシルアクリレート、ポリヘプタデシルアクリレート、ポリパルミチルアクリレート、ポリペンタデシルアクリレート、ポリステアリルアクリレート、ポリラウリルアクリレート、ポリミリスチルアクリレート等、またはこれらのアクリル酸の誘導体が挙げられる。
メタクリル酸としては、ポリドコシルメタクリレート、ポリヘンエイコシルメタクリレート、ポリミリスチルメタクリレート、ポリペンタデシルメタクリレート、ポリパルミチルメタクリレート、ポリヘプタデシルメタクリレート、ポリノナデシルメタクリレート、ポリエイコシルメタクリレート、ポリヘステアリルメタクリレート、ポリ(パルミチル/ステアリル)メタクリレート等、またはこれらのメタクリル酸のエステルが挙げられる。
側鎖結晶性ポリマーとしては、α−オレフィン系ポリマー(結晶性ポリα−オレフィン)、アルキルアクリレート系ポリマー、アルキルメタクリレート系ポリマー、アルキルエチレンオキシド系ポリマー、ポリシロキサン系ポリマーおよびアクリルアミド系ポリマー等の側鎖結晶性ポリマーが挙げられる。
これらの中でも、特に好ましくは、結晶性ポリα−オレフィンである。結晶性ポリα−オレフィンはホモポリマーでも、エチレン、プロピレン等のオレフィンとの共重合体でもよい。また側鎖の炭素鎖は、C12、C14、C16のいずれかであることが好ましい。
As the component 2, a substance similar to the component 1 described above is preferably used.
That is, a polymer of acrylic acid or methacrylic acid, a derivative ester thereof and a wax, a side chain crystalline polymer, or the like is preferably used.
More specifically, for example, acrylic acid includes polyeicosyl acrylate, polynonadecyl acrylate, polyheptadecyl acrylate, polypalmityl acrylate, polypentadecyl acrylate, polystearyl acrylate, polylauryl acrylate, polymyristyl acrylate, etc. Or derivatives of these acrylic acids.
As methacrylic acid, polydocosyl methacrylate, polyphenicosyl methacrylate, polymyristyl methacrylate, polypentadecyl methacrylate, polypalmityl methacrylate, polyheptadecyl methacrylate, polynonadecyl methacrylate, polyeicosyl methacrylate, polyhestearyl methacrylate, Examples include poly (palmityl / stearyl) methacrylate and the like, or esters of these methacrylic acids.
Examples of the side-chain crystalline polymer include side-chain crystals such as α-olefin polymers (crystalline poly-α-olefins), alkyl acrylate polymers, alkyl methacrylate polymers, alkyl ethylene oxide polymers, polysiloxane polymers and acrylamide polymers. Polymer.
Among these, crystalline poly-α-olefin is particularly preferred. The crystalline poly-α-olefin may be a homopolymer or a copolymer with an olefin such as ethylene or propylene. Further, the carbon chain of the side chain is preferably any of C12, C14 and C16.

成分2としては、結晶化熱量ΔHcが10〜150J/gであることが好ましく、より好ましくは40〜150J/gである。この範囲であると、良好な発熱効果が得られやすい。 Component 2 preferably has a heat of crystallization ΔHc of 10 to 150 J / g, more preferably 40 to 150 J / g. Within this range, a good heat-generating effect can be easily obtained.

示差走査熱量分析した際に得られる成分2の結晶化ピークの半値幅は、10℃以下であることが好ましい。より好ましくは、5℃以下である。この範囲であると、降温時のDSCチャートの成分2の結晶化ピークがシャープであり、ピンポイントでの発熱効果が優れることとなり、特に、降温時の温度調節機能が優れたものとなる。 The FWHM of the crystallization peak of Component 2 obtained by differential scanning calorimetry is preferably 10 ° C. or less. More preferably, it is 5 ° C. or lower. Within this range, the crystallization peak of the component 2 in the DSC chart at the time of temperature decrease is sharp, and the exothermic effect at the pinpoint is excellent. In particular, the temperature control function at the time of temperature decrease is excellent.

本発明の合成繊維において、種々の熱可塑性樹脂を用いることができる。
具体的には、例えば、ポリアミド6(以下、PA6と呼ぶことがある)、ポリアミド66、ポリアミド12等のポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリ乳酸等のポリエステル、ポリエチレンやポリプロピレン等のポリオレフィン、またはこれらを主成分とする重合体等が挙げられる。
上記成分1、成分2と相溶性に優れる点では、ポリオレフィン系の熱可塑性樹脂が好ましい。このようなポリオレフィン系熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等が挙げられる。
In the synthetic fiber of the present invention, various thermoplastic resins can be used.
Specifically, for example, polyamides such as polyamide 6 (hereinafter sometimes referred to as PA6), polyamide 66 and polyamide 12, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid, polyethylene and polypropylene And the like, or a polymer containing these as a main component.
A polyolefin-based thermoplastic resin is preferable in that it has excellent compatibility with the above components 1 and 2. Examples of such a polyolefin-based thermoplastic resin include polyethylene, polypropylene, polybutene, and polymethylpentene.

本発明の合成繊維は、芯部に、成分1と成分2とを含む熱可塑性樹脂、鞘部に、繊維形成性可能な熱可塑性樹脂を配した、芯鞘型複合繊維であることが好ましい。
この場合、芯部および鞘部の熱可塑性樹脂は、上記のような種々の熱可塑性樹脂を用いることができる。
特に、好ましい熱可塑性樹脂の組合せは、芯部にポリオレフィン系の熱可塑性樹脂、鞘部にポリエステル、ポリアミド、ポリオレフィンから選択される熱可塑性樹脂を用いることである。
The synthetic fiber of the present invention is preferably a core-in-sheath type composite fiber in which a thermoplastic resin containing Component 1 and Component 2 is disposed in a core portion, and a thermoplastic resin capable of forming fibers is disposed in a sheath portion.
In this case, various thermoplastic resins as described above can be used as the thermoplastic resin for the core and the sheath.
In particular, a preferred combination of thermoplastic resins is to use a polyolefin-based thermoplastic resin for the core and a thermoplastic resin selected from polyester, polyamide, and polyolefin for the sheath.

本発明において、上記のような芯鞘型複合繊維とする場合、温度調節機能や取扱い性の点から、芯部が繊維表面に露出しない形状とすることが好ましい。
この場合、成分1、成分2および熱可塑性樹脂を溶融混練して得られるアロイ樹脂組成物を芯部の成分とし、鞘部の成分として、上記から選択される熱可塑性樹脂とした複合繊維であることが好ましい。
In the present invention, when the above-mentioned core-sheath type conjugate fiber is used, it is preferable that the core is not exposed to the fiber surface from the viewpoint of temperature control function and handleability.
In this case, the composite fiber is made of an alloy resin composition obtained by melt-kneading the component 1, the component 2 and the thermoplastic resin as a core component and a thermoplastic resin selected from the above as a sheath component. Is preferred.

芯鞘型複合繊維とする場合、温度調節機能および繊維形成の点から、芯鞘比率(体積比)は20:80〜80:20であることが好ましく、より好ましくは、30:70〜70:30である。
尚、芯鞘型複合繊維とする場合、単芯の芯鞘型としても多芯の多芯型(海島型)としてもよい。
When the core-sheath type composite fiber is used, the core-sheath ratio (volume ratio) is preferably from 20:80 to 80:20, more preferably from 30:70 to 70: 30.
When the core-sheath type conjugate fiber is used, it may be a single core-sheath type or a multi-core multi-core type (sea-island type).

また、本発明において、成分1および成分2を熱可塑性樹脂に含有させる方法としては、熱可塑性樹脂に成分1および成分2を溶融混練して、混合して複合する方法が好ましい。
複合方法については、例えば、以下が考えられる。
(1)成分1および成分2、熱可塑性樹脂の3種類を混練する(樹脂組成物化)
(2)成分1と熱可塑性樹脂を混練して得られる樹脂組成物および成分2と熱可塑性樹脂を混練して得られる樹脂組成物の2種類を繊維化する際にブレンドする
(3)芯部の成分に(2)で得られた2種類のアロイを多島状に配して繊維化する
In addition, in the present invention, as a method for incorporating Component 1 and Component 2 into the thermoplastic resin, a method in which Component 1 and Component 2 are melt-kneaded with the thermoplastic resin, mixed, and then combined is preferable.
For example, the following methods can be considered for the composite method.
(1) Kneading three kinds of components 1 and 2 and a thermoplastic resin (formation of resin composition)
(2) A resin composition obtained by kneading the component 1 and the thermoplastic resin and a resin composition obtained by kneading the component 2 and the thermoplastic resin are blended when fiberizing. (3) Core part The two kinds of alloys obtained in (2) are arranged in a multi-island state in the component

成分1:成分2:熱可塑性樹脂の割合(質量比)は、温度調節機能・衣料素材としての快適さの点からは、5:5:90〜20:20:60であることが好ましく、10:10:80〜15:15:70であることがさらに好ましい。
芯鞘型複合繊維の場合、芯部に、成分1:成分2:熱可塑性樹脂を含有する際は、芯部が上記の割合となることが好ましい。
Component 1: Component 2: The ratio (mass ratio) of the thermoplastic resin is preferably from 5: 5: 90 to 20:20:60 from the viewpoint of temperature control function and comfort as a clothing material. : 10:80 to 15:15:70.
In the case of the core-sheath type composite fiber, when the core contains Component 1: Component 2: Thermoplastic resin, the core preferably has the above ratio.

本発明の合成繊維は、成分1および成分2を含む熱可塑性樹脂からなる単独繊維や複合繊維であってもよいし、上述した成分1および成分2を芯部に含む芯鞘型複合繊維であってもよい。 The synthetic fiber of the present invention may be a single fiber or a composite fiber made of a thermoplastic resin containing the components 1 and 2, or a core-sheath type composite fiber containing the above components 1 and 2 in the core. You may.

本発明の合成繊維は、温度調節機能の点から、50℃以下に観測される合成繊維の融解熱量ΔHmが1〜5J/gであることが好ましく、50℃以下に観測される合成繊維の結晶化熱量ΔHcが1〜5J/gであることが好ましい。 The synthetic fiber of the present invention preferably has a heat of fusion ΔHm of 1 to 5 J / g, which is observed at 50 ° C. or lower, from the viewpoint of the temperature control function, and a crystal of the synthetic fiber which is observed at 50 ° C. or lower. It is preferable that the heat of formation ΔHc be 1 to 5 J / g.

また、本発明は、上記成分1を含む熱可塑性樹脂からなる合成繊維と、上記成分2を含む熱可塑性樹脂からなる合成繊維とを合糸せしめた複合糸でもある。本発明の複合糸に用いるそれぞれの合成繊維は、単独繊維であっても、複合繊維であってもよい。特に好ましい態様として、芯部に成分1を含む芯鞘型複合繊維と、芯部に成分2を含む芯鞘型複合繊維を合糸したものが挙げられる。
合糸の形態としては、(1)それぞれの合成繊維を引き揃える(2)それぞれの合成繊維をエア交絡等により混繊する(3)それぞれの合成繊維を合撚する等が好適に挙げられる。
Further, the present invention is also a composite yarn in which synthetic fibers made of a thermoplastic resin containing the above component 1 and synthetic fibers made of a thermoplastic resin containing the above component 2 are combined. Each synthetic fiber used in the composite yarn of the present invention may be a single fiber or a composite fiber. In a particularly preferred embodiment, a core-sheath composite fiber containing the component 1 in the core portion and a core-sheath composite fiber containing the component 2 in the core portion are combined.
Preferable examples of the form of the composite yarn include (1) aligning the respective synthetic fibers, (2) blending the respective synthetic fibers by air entanglement and the like, and (3) twisting the respective synthetic fibers.

本発明の複合糸は、温度調節機能の点から、50℃以下に観測される複合糸の融解熱量ΔHmが1〜5J/gであることが好ましく、50℃以下に観測される複合糸の結晶化熱量ΔHcが1〜5J/gであることが好ましい。 In the composite yarn of the present invention, the heat of fusion ΔHm of the composite yarn observed at 50 ° C or lower is preferably 1 to 5 J / g, and the crystal of the composite yarn observed at 50 ° C or lower, from the viewpoint of the temperature control function. It is preferable that the heat of formation ΔHc be 1 to 5 J / g.

次に、本発明の合成繊維を製造する方法について例示する。
芯部を形成する熱可塑性樹脂に成分1および成分2を、二軸混練機にて複合化させる。鞘部の熱可塑性樹脂を準備する。上記の2種の樹脂を各々、樹脂の融点以上、望ましくは融点より20℃以上の温度の押出機を用いて溶融する。溶融した樹脂を芯鞘形成する口金を通し、口金表面の孔より、所定の断面形状に樹脂を押出し、繊維化する。押出された繊維を冷風にて冷却して、油剤を付与し、巻き取る。巻き取った繊維に、熱を加えて延伸し、熱セットして、本発明の合成繊維を得る。尚、巻き取り速度は特に限定されないが、700m/min〜2000m/minであることが好ましい。
Next, a method for producing the synthetic fiber of the present invention will be described.
Component 1 and Component 2 are compounded with a thermoplastic resin forming a core by a twin-screw kneader. A sheath thermoplastic resin is prepared. Each of the above two resins is melted using an extruder having a temperature equal to or higher than the melting point of the resin, preferably equal to or higher than 20 ° C. from the melting point. The molten resin is passed through a die for forming a core and a sheath, and the resin is extruded into a predetermined cross-sectional shape from a hole in the surface of the die to be fiberized. The extruded fiber is cooled by cold air, an oil agent is applied, and the fiber is wound. The wound fiber is stretched by applying heat, and heat-set to obtain the synthetic fiber of the present invention. The winding speed is not particularly limited, but is preferably from 700 m / min to 2000 m / min.

以下、実施例および具体例を挙げて本発明をより具体的に説明するが、本発明はこれに限られるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and specific examples, but the present invention is not limited thereto.

<混練>
ベース樹脂:ポリプロピレン80質量%に、温調剤:1種または2種以上の結晶性ポリα−オレフィン(融点40℃タイプを成分1、融点29℃タイプを成分2として以下に記載する)20質量%の組成として、二軸混練機によりポリプロピレン8.0kg/hrを供給し、250℃にて溶融混練し、索状溶融物を水冷してペレタイザーによりペレット化してポリプロピレン系樹脂組成物を得た。
<紡糸>
前記ポリプロピレン系樹脂組成物およびポリアミド6を主たる紡糸原料として溶融押出型複合紡糸機を用いて温度250℃で複合紡糸を行った。
紡糸に際しては、ポリプロピレン系樹脂組成物を芯部の成分、ポリアミド6が鞘部の成分となるように別々に溶融してから、芯鞘型紡糸用口金よりあわせて芯鞘の形態にして紡出し、冷却して、油剤を付与しつつ紡速800m/minにて捲き取った。その後50℃の熱ローラー上で3.0倍に延伸し、延伸ローラーにて140℃で熱セットした後、巻き上げ、84dtex/24fの合成繊維を得た。
<筒編み布帛の作製>
得られた合成繊維または複合糸を、筒編機(英光産業株式会社製CR−B、径3.5インチ、針数260本)にて筒編布帛を作製した。
<熱量分析:融解ピーク温度、結晶化ピーク温度、融解開始温度、結晶化開始温度>
示差走査熱量計(Diamond DSC:パーキンエルマージャパン社製)を用いて測定した。昇温、降温速度は10℃/minで統一した。温度条件は0℃〜60℃昇温、60℃で5分間保持、60℃〜0℃に降温、0℃で5分間保持しこれを1stスキャンとし、0℃〜60℃昇温、60℃で5分間保持、60℃〜0℃に降温、0℃で5分間保持したものを2ndスキャンとした。なお、融解ピーク温度、結晶化ピーク温度、融解開始温度、結晶化開始温度および融解熱量、結晶化熱量についてはJIS K 7121に準拠して算出した。
<温度調節機能評価>
10cm角の筒編布帛(試験品)を80℃に設定された熱風乾燥機内で1.0hr静置して、成分1および成分2を完全に溶融後、5℃で24hr静置し凝固させ成分1および成分2における熱履歴を統一した。熱電対型温度計を筒編布帛に包み、肌−衣服間温度である31℃にて1.0hr静置し、温度安定後、50℃に設定された乾燥機に移動した際の高温下、3℃以下に設定した断熱容器に移動した際の低温下での布帛内部の温度変化を確認した。
対照品としてポリアミド6の単独糸で作製した筒編布帛を用いて、試験品との温度差を求めた。得られたグラフから最大温度差の値および高温下に移動させてから20分後、低温下に移動させてから12分後までの温度差グラフから面積(図3の温度差グラフ:斜線部分の面積で比較)を算出し、これを評価の指標とした。
尚、最大温度差は、絶対値が、大きいほど、温度調節機能は優れている。
また温度差面積が大きいほど、温度調節機能は優れている。
尚、温度調節機能(高温下、低温下)は、以下の要領で、を評価した。
○:最大温度差の絶対値が0.5℃以上の場合
△:最大温度差の絶対値が0.4℃を超えて、0.5℃未満の場合
×:最大温度差の絶対値が0.4℃以下の場合
<Kneading>
Base resin: 80% by mass of polypropylene, 20% by mass of temperature control agent: One or more crystalline poly-α-olefins (described below as component 1 for a melting point of 40 ° C. and component 2 for a melting point of 29 ° C.) As a composition of the above, 8.0 kg / hr of polypropylene was supplied by a twin-screw kneader, melt-kneaded at 250 ° C., the cord-like melt was cooled with water, and pelletized by a pelletizer to obtain a polypropylene-based resin composition.
<Spinning>
Composite spinning was performed at a temperature of 250 ° C. using a melt extrusion type composite spinning machine using the polypropylene resin composition and polyamide 6 as main spinning raw materials.
At the time of spinning, the polypropylene resin composition is separately melted so that the core component and the polyamide 6 become the sheath component, and then combined with a core-sheath type spinneret into a core-sheath form and spun. Then, it was cooled and wound up at a spinning speed of 800 m / min while applying an oil agent. Thereafter, the film was stretched 3.0 times on a hot roller at 50 ° C., heat-set at 140 ° C. with a stretching roller, and wound up to obtain a synthetic fiber of 84 dtex / 24f.
<Production of tubular knitted fabric>
A tubular knitted fabric was produced from the obtained synthetic fiber or composite yarn using a tubular knitting machine (CR-B, manufactured by Eiko Sangyo Co., Ltd., 3.5 inches in diameter, 260 needles).
<Calibration analysis: melting peak temperature, crystallization peak temperature, melting start temperature, crystallization start temperature>
The measurement was performed using a differential scanning calorimeter (Diamond DSC: manufactured by PerkinElmer Japan). The heating and cooling rates were unified at 10 ° C./min. The temperature condition is 0 ° C to 60 ° C, the temperature is maintained at 60 ° C for 5 minutes, the temperature is lowered to 60 ° C to 0 ° C, the temperature is maintained at 0 ° C for 5 minutes, and the first scan is performed. The sample was held for 5 minutes, the temperature was lowered to 60 ° C. to 0 ° C., and the sample held at 0 ° C. for 5 minutes was used as a second scan. The melting peak temperature, crystallization peak temperature, melting start temperature, crystallization start temperature, heat of fusion, and heat of crystallization were calculated in accordance with JIS K7121.
<Evaluation of temperature control function>
A 10 cm square tubular knitted fabric (test sample) was allowed to stand in a hot air dryer set at 80 ° C. for 1.0 hr to completely melt the components 1 and 2, and then allowed to stand at 5 ° C. for 24 hr to solidify. The heat histories for 1 and component 2 were unified. The thermocouple type thermometer was wrapped in a tubular knitted fabric, allowed to stand for 1.0 hour at 31 ° C., which is the temperature between the skin and the clothes, and, after the temperature was stabilized, was transferred to a dryer set at 50 ° C. A change in temperature inside the fabric at a low temperature when transferred to a heat insulating container set at 3 ° C. or lower was confirmed.
The temperature difference from the test product was determined using a tubular knitted fabric made of a single yarn of polyamide 6 as a control product. From the obtained graph, the value of the maximum temperature difference and the area from the temperature difference graph 20 minutes after moving to a high temperature and 12 minutes after moving to a low temperature (the temperature difference graph of FIG. Area), and this was used as an evaluation index.
The larger the absolute value of the maximum temperature difference, the better the temperature control function.
Also, the larger the temperature difference area, the better the temperature control function.
The temperature control function (high temperature, low temperature) was evaluated in the following manner.
:: When the absolute value of the maximum temperature difference is 0.5 ° C or more
Δ: Absolute value of maximum temperature difference exceeds 0.4 ° C. and less than 0.5 ° C. X: Absolute value of maximum temperature difference is 0.4 ° C. or less

〔実施例1〕
成分2として融点29℃タイプの結晶性ポリα−オレフィン、成分1として融点40℃タイプの結晶性ポリα−オレフィンを準備し、ポリプロピレンに対し各10質量%の組成で同時添加し、前記方法にて混練してポリプロピレン系樹脂組成物を得た。次いで、前記紡糸方法にて、この樹脂組成物を芯部に配して芯鞘比率(体積比)が67:33の芯鞘型複合繊維を得て、前記方法にて筒編み布帛を作製した。
成分1および成分2の物性は以下の通りである。

Figure 2020051023
[Example 1]
A crystalline poly-α-olefin having a melting point of 29 ° C. was prepared as Component 2, and a crystalline poly-α-olefin having a melting point of 40 ° C. was prepared as Component 1. The components were simultaneously added at a composition of 10% by mass with respect to polypropylene. And kneaded to obtain a polypropylene resin composition. Then, by the spinning method, the resin composition was disposed on a core portion to obtain a core-sheath type composite fiber having a core-sheath ratio (volume ratio) of 67:33, and a tubular knitted fabric was produced by the method. .
The physical properties of Component 1 and Component 2 are as follows.

Figure 2020051023

〔実施例2〕
芯鞘比率(体積比)を50:50と変更する以外は実施例1と同様に芯鞘型複合繊維を得て、筒編み布帛を作製した。
[Example 2]
A core-sheath type composite fiber was obtained in the same manner as in Example 1 except that the core-sheath ratio (volume ratio) was changed to 50:50, and a tubular knitted fabric was produced.

〔実施例3〕
成分2として、融点29℃タイプの結晶性ポリα−オレフィンをポリプロピレンに対し20質量%の組成で前記方法にて混練して樹脂組成物を得た。得られたポリプロピレン系樹脂組成物を、芯部に配する以外は実施例1と同様に芯鞘型複合繊維Aを得た。
次に、成分1として、融点40℃タイプの結晶性ポリα−オレフィンをポリプロピレンに対し20質量%の組成で前記方法にて混練して樹脂組成物を得た。得られたポリプロピレン系樹脂組成物を、芯部に配する以外は実施例1と同様に芯鞘型複合繊維Bを得た。
得られた芯鞘型複合繊維Aと芯鞘型複合繊維Bを、引き揃えて合糸し複合糸を得て、前記方法にて筒編み布帛を作製した。
[Example 3]
As the component 2, a crystalline poly-α-olefin having a melting point of 29 ° C. was kneaded by the above-mentioned method at a composition of 20% by mass with respect to polypropylene to obtain a resin composition. A core-sheath type composite fiber A was obtained in the same manner as in Example 1, except that the obtained polypropylene-based resin composition was disposed on the core.
Next, as a component 1, a crystalline poly-α-olefin having a melting point of 40 ° C. was kneaded by the above-described method at a composition of 20% by mass with respect to polypropylene to obtain a resin composition. A core-sheath type composite fiber B was obtained in the same manner as in Example 1, except that the obtained polypropylene-based resin composition was disposed on the core.
The obtained core-in-sheath type composite fiber A and core-in-sheath type composite fiber B were aligned and combined to obtain a composite yarn, and a tubular knitted fabric was produced by the above method.

〔比較例1〕
融点29℃タイプの結晶性ポリα−オレフィンのみを、ポリプロピレンに対し20質量%の組成で前記方法にて混練して樹脂組成物を得た。得られた樹脂組成物を、芯部に配する以外は実施例1と同様に芯鞘型複合繊維を得て、筒編み布帛を作製した。
[Comparative Example 1]
Only a crystalline poly-α-olefin having a melting point of 29 ° C. was kneaded by the above method at a composition of 20% by mass with respect to polypropylene to obtain a resin composition. A core-sheath type composite fiber was obtained in the same manner as in Example 1 except that the obtained resin composition was disposed on a core portion, and a tubular knitted fabric was produced.

〔比較例2〕
融点40℃タイプの結晶性ポリα−オレフィンのみを、ポリプロピレンに対し20質量%の組成で前記方法にて混練して樹脂組成物を得た。得られた樹脂組成物を、芯部に配する以外は実施例1と同様に芯鞘型複合繊維を得て、筒編み布帛を作製した。
[Comparative Example 2]
Only a crystalline poly-α-olefin having a melting point of 40 ° C. was kneaded by the above method at a composition of 20% by mass relative to polypropylene to obtain a resin composition. A core-sheath type composite fiber was obtained in the same manner as in Example 1 except that the obtained resin composition was disposed on a core portion, and a tubular knitted fabric was produced.

〔比較例3〕
ポリプロピレンを芯部に配する以外は実施例1と同様に芯鞘型複合繊維を得て、筒編み布帛を作製した。
[Comparative Example 3]
A core-sheath type conjugate fiber was obtained in the same manner as in Example 1 except that polypropylene was disposed on the core portion, and a tubular knitted fabric was produced.

〔比較例4〕
84dtex/24fのポリアミド単独繊維を準備し、前記方法で筒編み布帛を作製した。
[Comparative Example 4]
Polyamide single fiber of 84 dtex / 24f was prepared, and a tubular knitted fabric was produced by the above method.

実施例および比較例から得られた繊維および複合糸の原料、物性、芯鞘比率、50℃以下に観測される相転移温度、相転移熱量、温度調節機能について、表1、表2に示す。 Tables 1 and 2 show the raw materials, physical properties, core-sheath ratios, phase transition temperatures observed at 50 ° C. or lower, phase transition calories, and temperature control functions of the fibers and composite yarns obtained from Examples and Comparative Examples.

Figure 2020051023
Figure 2020051023

Figure 2020051023
Figure 2020051023

図1は、温度調節機能評価において、試験品と対照品を、それぞれ、31℃にて1.0hr静置後、50℃に移動した際の時間経過による布帛内部の温度変化を採取し、試験品の温度変化と対照品の温度変化の差を示した図である。最大温度差の絶対値が大きい程、温度調節機能は優れる。また、温度差による面積が大きい程、温度調節機能は優れる。 FIG. 1 shows that, in the evaluation of the temperature control function, the test article and the control article were each allowed to stand at 31 ° C. for 1.0 hour, and then the temperature change inside the cloth with the passage of time when moved to 50 ° C. was collected. FIG. 4 is a diagram showing a difference between a temperature change of an article and a temperature change of a control article. The larger the absolute value of the maximum temperature difference, the better the temperature control function. Also, the larger the area due to the temperature difference, the better the temperature control function.

図2は、温度調節機能評価において、試験品と対照品を、それぞれ、31℃にて1.0hr静置後、3℃に移動した際移動した際の、時間経過による布帛内部の温度変化を採取し、試験品の温度変化と対照品の温度変化の差を示した図である。最大温度差の絶対値が大きい程、温度調節機能は優れる。また、温度差による面積が大きい程、温度調節機能は優れる。 FIG. 2 shows, in the evaluation of the temperature control function, the change in the temperature inside the cloth over time when the test article and the control article were allowed to stand at 31 ° C. for 1.0 hour and then moved to 3 ° C. It is the figure which showed the difference of the temperature change of the test sample and the control sample which were sampled. The larger the absolute value of the maximum temperature difference, the better the temperature control function. Also, the larger the area due to the temperature difference, the better the temperature control function.

温度調節機能において、温度差面積値を図4に示す。Y軸は、正の絶対値が大きいほど、昇温時の温度調整機能が高く、負の絶対値が大きいほど、降温時の温度調節機能が高いことを示す。 FIG. 4 shows the temperature difference area value in the temperature control function. The Y-axis indicates that the larger the positive absolute value, the higher the temperature adjustment function at the time of temperature rise, and the larger the negative absolute value, the higher the temperature adjustment function at the time of temperature decrease.

以上のように、実施例1〜3から得られた合成繊維および複合糸は、昇温時、降温時とも優れた温度調節機能を有するものであった。比較例1から得られた合成繊維は、昇温時に十分な温度調節機能を有さず、降温時にのみ機能を有した。一方、比較例2から得られた合成繊維は、比較例1と逆の挙動を示した。また、温度調節材料を含まない比較例3から得られた合成繊維は昇温時、降温時とも温度調節機能を有さない結果を得た。 As described above, the synthetic fibers and composite yarns obtained from Examples 1 to 3 had an excellent temperature control function both when the temperature was raised and when the temperature was lowered. The synthetic fiber obtained from Comparative Example 1 did not have a sufficient temperature control function at the time of temperature rise, and had a function only at the time of temperature decrease. On the other hand, the synthetic fiber obtained from Comparative Example 2 showed the opposite behavior to that of Comparative Example 1. In addition, the synthetic fiber obtained from Comparative Example 3 containing no temperature control material obtained a result having no temperature control function both when the temperature was raised and when the temperature was lowered.

本発明は、温度調節機能を有する合成繊維(温度調節繊維)からなる複合糸に関する。 The present invention relates to a composite yarn composed of a synthetic fiber having a temperature control function (temperature control fiber).

温度調節繊維とは、昇温もしくは降温の温度変化がある際に急激な温度変化を緩和する機能を付与した合成繊維である。
このような温度調節繊維として、常温付近に融点を有する物質をマイクロカプセルに封入し、このマイクロカプセルを基材に付着させるものや、前記物質そのものまたはマイクロカプセルを繊維中に混入するものが従来から提案されている(例えば、特許文献1〜3)。
The temperature control fiber is a synthetic fiber provided with a function of alleviating a rapid temperature change when there is a temperature change of a temperature increase or a temperature decrease.
As such a temperature-controlling fiber, a material having a melting point near room temperature is encapsulated in a microcapsule, and a material in which the microcapsule is adhered to a base material, or a material in which the substance itself or the microcapsule is mixed in the fiber, have conventionally been used. It has been proposed (for example, Patent Documents 1 to 3).

特開昭58−55699号公報JP-A-58-55699 特開平1−85374号公報JP-A-1-85374 特表2004−510068号公報Japanese Patent Publication No. 2004-510068

しかしながら、上記のものは、衣服内温度(肌−衣服間の温度)31〜32℃よりも高い融点の物質(平常時、固体で存在)、もしくは低い融点の物質(平常時、液体で存在)のいずれか一方を繊維に複合している。前者の場合、31〜32℃以上に外気が変化した場合、固体から液体に相変化する際にみられる吸熱効果は現れるが、31〜32℃以下に外気が変化した場合、液体から固体に相変化する際にみられる発熱効果は現れない。後者の場合、31〜32℃以上に外気が変化した場合、固体から液体に相変化する際にみられる吸熱効果は現れないが、31〜32℃以下に外気が変化した場合、液体から固体に相変化する際にみられる発熱効果が現れる。上記のように、どちらか一方の効果しか有さず、温度調節機能が十分発揮されないのが現状である。
従って、本発明は、吸熱効果と発熱効果の両機能を持った良好な温度調節機能を有する繊維を得ることをその目的とする。
However, the above substances are substances having a melting point higher than the temperature in the garment (the temperature between the skin and the garment) of 31 to 32 ° C. (normally, present as a solid) or a substance having a lower melting point (normally, present as a liquid). Is combined with the fiber. In the former case, when the outside air changes above 31-32 ° C, the endothermic effect seen when the phase changes from solid to liquid appears, but when the outside air changes below 31-32 ° C, the phase changes from liquid to solid. There is no heating effect seen when changing. In the latter case, when the outside air changes to 31 to 32 ° C or higher, the endothermic effect seen when the phase changes from solid to liquid does not appear, but when the outside air changes to 31 to 32 ° C or lower, the liquid changes to solid. Exothermic effects appear during the phase change. As described above, at present, it has only one of the effects and the temperature control function is not sufficiently exhibited.
Therefore, an object of the present invention is to obtain a fiber having both a heat absorbing effect and a heat generating effect and having a good temperature control function.

本発明者達は、衣服内温度31〜32℃よりも低い融点を持つ特定の温度調節材料を含有する繊維と、衣服内温度31〜32℃よりも高い融点を有する特定の温度調節材料を含有する繊維とを合糸した複合糸とすることにより、全ての季節において昇温時も降温時も温度調節機能を発揮でき、快適な衣料素材を提供できることを見出し、本発明に到達した。
すなわち本発明は、融解開始温度が34℃以上、融解ピーク温度が50℃以下の範囲である成分1を含む熱可塑性樹脂からなる合成繊維と、結晶化開始温度が30℃未満、結晶化ピーク温度が5℃以上の範囲である成分2を含む熱可塑性樹脂からなる合成繊維とを合糸せしめたことを特徴とする複合糸である
上記複合糸において、成分1は、側鎖炭素鎖がC18、C20、C22の少なくとも1つ以上からなる結晶性ポリα−オレフィンであり、成分2は、側鎖炭素鎖がC12、C14、C16の少なくとも1つ以上からなる結晶性ポリα−オレフィンであることが好ましい。
上記複合糸において、成分1を含む熱可塑性樹脂からなる合成繊維が成分1を芯部に含む芯鞘型複合繊維であり、成分2を含む熱可塑性樹脂からなる合成繊維が芯部に成分2を含む芯鞘型複合繊維であることが好ましく、50℃以下に観測される融解熱量ΔHmが1〜5J/gであり、50℃以下に観測される結晶化熱量ΔHcが1〜5J/gであることが好ましい。
The present inventors have disclosed a fiber containing a specific temperature control material having a melting point lower than the temperature in the garment of 31 to 32 ° C, and a fiber containing a specific temperature control material having a melting point higher than the temperature in the garment of 31 to 32 ° C. The present inventors have found that, by using a composite yarn obtained by tying the fibers with the fibers, a temperature control function can be exerted in all seasons both when the temperature is raised and when the temperature is lowered, and a comfortable garment material can be provided.
That is , the present invention provides a synthetic fiber comprising a thermoplastic resin containing Component 1 having a melting onset temperature of 34 ° C. or higher and a melting peak temperature of 50 ° C. or lower, a crystallization onset temperature of less than 30 ° C., and a crystallization peak. A composite yarn comprising a synthetic fiber made of a thermoplastic resin containing a component 2 having a temperature in the range of 5 ° C. or more, and a synthetic fiber .
In the composite yarn, Component 1 is a crystalline poly-α-olefin having a side chain carbon chain composed of at least one of C18, C20 and C22, and Component 2 is composed of a side chain carbon chain having C12, C14 and C16. It is preferably a crystalline poly-α-olefin comprising at least one or more.
In the above-mentioned composite yarn, the synthetic fiber composed of the thermoplastic resin containing the component 1 is a core-sheath type composite fiber containing the component 1 in the core, and the synthetic fiber composed of the thermoplastic resin containing the component 2 has the component 2 in the core. It is preferably a core-in-sheath type composite fiber, and the heat of fusion ΔHm observed at 50 ° C or lower is 1 to 5 J / g, and the heat of crystallization ΔHc observed at 50 ° C or lower is 1 to 5 J / g. Is preferred.

本発明によれば、屋内から屋外、屋外から屋内への移動時や夏場・冬場の環境の違いがもたらす温度変化に対して、温度調節材料が敏感に相変化することができるため、肌−衣服間の急激な温度変化を抑制できる、優れた温度調節機能を有する繊維を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the phase of the temperature control material can be sensitively changed with respect to the temperature change caused by the difference in the environment between summer and winter when moving from indoor to outdoor, from outdoor to indoor, and thus the skin-clothes. It is possible to provide a fiber having an excellent temperature control function capable of suppressing a rapid temperature change during the operation.

本発明の参考例、実施例および比較例から得られた繊維の昇温時(31℃から50℃)の温度調節機能評価を示す図である。It is a figure which shows the temperature control function evaluation at the time of temperature rise (31 degreeC-50 degreeC) of the fiber obtained from the reference example of this invention, an Example, and a comparative example. 本発明の参考例、実施例および比較例から得られた繊維の降温時(31℃から3℃)の温度調節機能評価を示す図である。It is a figure which shows the temperature control function evaluation at the time of the temperature fall (31 degreeC-3 degreeC) of the fiber obtained from the reference example of this invention, an Example, and a comparative example. 温度調節機能の評価方法を説明する図である。It is a figure explaining the evaluation method of a temperature control function. 本発明の参考例、実施例および比較例から得られた繊維の温度調節機能評価を示す図である。It is a figure which shows the temperature control function evaluation of the fiber obtained from the reference example of this invention, an Example, and a comparative example.

以下、本発明について詳細に説明する。
本発明は、成分1と成分2とを含む熱可塑性樹脂からなる合成繊維である。
本発明の成分1、成分2は、融点、凝固点は、衣服内温度の前後に設定する。通常、衣服内温度は31〜32℃であり、この温度を境にして昇温時は、固体から溶融体への相転移がもたらす融解熱による吸熱効果、降温時は、溶融体から固体への相転移がもたらす凝固熱による発熱効果を発揮し、昇温時も降温時も、良好な温度調節機能を発揮する構成とする。
以下、成分1および成分2について、詳細に説明する。
Hereinafter, the present invention will be described in detail.
The present invention is a synthetic fiber made of a thermoplastic resin containing Component 1 and Component 2.
The melting point and the freezing point of the components 1 and 2 of the present invention are set before and after the temperature in clothes. Usually, the temperature in the garment is 31 to 32 ° C. At this temperature, when the temperature rises, an endothermic effect due to heat of fusion caused by a phase transition from the solid to the melt, and when the temperature falls, the temperature changes from the melt to the solid. It is configured to exhibit a heat-generating effect due to solidification heat caused by the phase transition, and to exhibit a good temperature control function both when the temperature is increased and when the temperature is decreased.
Hereinafter, the components 1 and 2 will be described in detail.

まず、成分1について説明する。成分1は融解開始温度が34℃以上、融解ピーク温度が50℃以下の範囲である。中でも、融解開始温度が34℃以上、融解ピーク温度が45℃以下の範囲にあることが好ましい。
肌と衣服との間の温度は、通常31〜32℃程度となる。このとき、成分1は、固体で存在し、外気温が上昇したときに、固体から溶融体への相転移が生じ、吸熱効果により、衣服内部の急激な温度上昇を抑制できる。
First, component 1 will be described. Component 1 has a melting onset temperature of 34 ° C. or higher and a melting peak temperature of 50 ° C. or lower. Especially, it is preferable that the melting start temperature is in the range of 34 ° C. or more and the melting peak temperature is in the range of 45 ° C. or less.
The temperature between the skin and the clothes is usually about 31 to 32 ° C. At this time, the component 1 exists as a solid, and when the outside air temperature rises, a phase transition from the solid to the melt occurs, and a rapid temperature rise inside the clothes can be suppressed by an endothermic effect.

成分1としては、アクリル酸またはメタクリル酸、それらの誘導体エステルと、ワックスとの重合体、側鎖結晶性ポリマー等が好適に挙げられる。
より具体的には、例えば、アクリル酸としては、ポリエイコシルアクリレート、ポリノナデシルアクリレート、ポリヘプタデシルアクリレート、ポリパルミチルアクリレート、ポリペンタデシルアクリレート、ポリステアリルアクリレート、ポリラウリルアクリレート、ポリミリスチルアクリレート等、またはこれらのアクリル酸の誘導体が挙げられる。
メタクリル酸としては、ポリドコシルメタクリレート、ポリヘンエイコシルメタクリレート、ポリミリスチルメタクリレート、ポリペンタデシルメタクリレート、ポリパルミチルメタクリレート、ポリヘプタデシルメタクリレート、ポリノナデシルメタクリレート、ポリエイコシルメタクリレート、ポリヘステアリルメタクリレート、ポリ(パルミチル/ステアリル)メタクリレート等、またはこれらのメタクリル酸のエステルが挙げられる。
側鎖結晶性ポリマーとしては、α−オレフィン系ポリマー(結晶性ポリα−オレフィン)、アルキルアクリレート系ポリマー、アルキルメタクリレート系ポリマー、アルキルエチレンオキシド系ポリマー、ポリシロキサン系ポリマーおよびアクリルアミド系ポリマー等の側鎖結晶性ポリマーが挙げられる。
これらの中でも、特に好ましくは、結晶性ポリα−オレフィンである。結晶性ポリα−オレフィンはホモポリマーでも、エチレン、プロピレン等のオレフィンとの共重合体でもよい。また側鎖の炭素鎖は、C18、C20、C22のいずれかであることが好ましい。
Preferred examples of the component 1 include a polymer of acrylic acid or methacrylic acid, a derivative ester thereof and a wax, a side-chain crystalline polymer, and the like.
More specifically, for example, acrylic acid includes polyeicosyl acrylate, polynonadecyl acrylate, polyheptadecyl acrylate, polypalmityl acrylate, polypentadecyl acrylate, polystearyl acrylate, polylauryl acrylate, polymyristyl acrylate, etc. Or derivatives of these acrylic acids.
As methacrylic acid, polydocosyl methacrylate, polyphenicosyl methacrylate, polymyristyl methacrylate, polypentadecyl methacrylate, polypalmityl methacrylate, polyheptadecyl methacrylate, polynonadecyl methacrylate, polyeicosyl methacrylate, polyhestearyl methacrylate, Examples include poly (palmityl / stearyl) methacrylate and the like, or esters of these methacrylic acids.
Examples of the side-chain crystalline polymer include side-chain crystals such as α-olefin polymers (crystalline poly-α-olefins), alkyl acrylate polymers, alkyl methacrylate polymers, alkyl ethylene oxide polymers, polysiloxane polymers and acrylamide polymers. Polymer.
Among these, crystalline poly-α-olefin is particularly preferred. The crystalline poly-α-olefin may be a homopolymer or a copolymer with an olefin such as ethylene or propylene. Further, the carbon chain of the side chain is preferably any of C18, C20 and C22.

成分1の融解熱量ΔHmは、10〜150J/gであることが好ましく、より好ましくは、60〜150J/gである。この範囲であると、良好な吸熱効果が得られやすい。 The heat of fusion ΔHm of the component 1 is preferably from 10 to 150 J / g, and more preferably from 60 to 150 J / g. Within this range, a good endothermic effect is likely to be obtained.

示差走査熱量分析した際に得られる成分1の融解ピークの半値幅は、10℃以下であることが好ましい。より好ましくは、5℃以下である。この範囲であると、昇温時のDSCチャートの成分1の融解ピークがシャープであり、ピンポイントでの吸熱効果が優れることとなり、特に、昇温時の温度調節機能が優れたものとなる。 The half width of the melting peak of Component 1 obtained by differential scanning calorimetry is preferably 10 ° C. or less. More preferably, it is 5 ° C. or lower. Within this range, the melting peak of the component 1 in the DSC chart at the time of temperature rise is sharp, and the heat absorption effect at the pinpoint is excellent. In particular, the temperature control function at the time of temperature rise is excellent.

次に、成分2について説明する。成分2は結晶化開始温度が30℃未満、結晶化ピーク温度が5℃以上の範囲である。
肌と衣服との間の温度は、通常31〜32℃程度となる。このとき成分2は、液体で存在し、外気温が降下した場合、溶融体から固体への相転移が生じ、発熱効果により、衣服内部の急激な温度降下を抑制できる。これら成分1と成分2を含有させることにより、昇温時も降温時も、温度調節機能を有することができる。
Next, the component 2 will be described. Component 2 has a crystallization onset temperature of less than 30 ° C and a crystallization peak temperature of 5 ° C or more.
The temperature between the skin and the clothes is usually about 31 to 32 ° C. At this time, the component 2 exists as a liquid, and when the outside air temperature drops, a phase transition from a melt to a solid occurs, and a rapid temperature drop inside the garment can be suppressed by the heat generation effect. By including these components 1 and 2, it is possible to have a temperature control function both when raising and lowering the temperature.

成分2としては、上記記載の成分1と同種物質が好適に挙げられる。
すなわち、アクリル酸またはメタクリル酸、それらの誘導体エステルと、ワックスとの重合体、側鎖結晶性ポリマー等が好適に挙げられる。
より具体的には、例えば、アクリル酸としては、ポリエイコシルアクリレート、ポリノナデシルアクリレート、ポリヘプタデシルアクリレート、ポリパルミチルアクリレート、ポリペンタデシルアクリレート、ポリステアリルアクリレート、ポリラウリルアクリレート、ポリミリスチルアクリレート等、またはこれらのアクリル酸の誘導体が挙げられる。
メタクリル酸としては、ポリドコシルメタクリレート、ポリヘンエイコシルメタクリレート、ポリミリスチルメタクリレート、ポリペンタデシルメタクリレート、ポリパルミチルメタクリレート、ポリヘプタデシルメタクリレート、ポリノナデシルメタクリレート、ポリエイコシルメタクリレート、ポリヘステアリルメタクリレート、ポリ(パルミチル/ステアリル)メタクリレート等、またはこれらのメタクリル酸のエステルが挙げられる。
側鎖結晶性ポリマーとしては、α−オレフィン系ポリマー(結晶性ポリα−オレフィン)、アルキルアクリレート系ポリマー、アルキルメタクリレート系ポリマー、アルキルエチレンオキシド系ポリマー、ポリシロキサン系ポリマーおよびアクリルアミド系ポリマー等の側鎖結晶性ポリマーが挙げられる。
これらの中でも、特に好ましくは、結晶性ポリα−オレフィンである。結晶性ポリα−オレフィンはホモポリマーでも、エチレン、プロピレン等のオレフィンとの共重合体でもよい。また側鎖の炭素鎖は、C12、C14、C16のいずれかであることが好ましい。
As the component 2, a substance similar to the component 1 described above is preferably used.
That is, a polymer of acrylic acid or methacrylic acid, a derivative ester thereof and a wax, a side chain crystalline polymer, or the like is preferably used.
More specifically, for example, acrylic acid includes polyeicosyl acrylate, polynonadecyl acrylate, polyheptadecyl acrylate, polypalmityl acrylate, polypentadecyl acrylate, polystearyl acrylate, polylauryl acrylate, polymyristyl acrylate, etc. Or derivatives of these acrylic acids.
As methacrylic acid, polydocosyl methacrylate, polyphenicosyl methacrylate, polymyristyl methacrylate, polypentadecyl methacrylate, polypalmityl methacrylate, polyheptadecyl methacrylate, polynonadecyl methacrylate, polyeicosyl methacrylate, polyhestearyl methacrylate, Examples include poly (palmityl / stearyl) methacrylate and the like, or esters of these methacrylic acids.
Examples of the side-chain crystalline polymer include side-chain crystals such as α-olefin polymers (crystalline poly-α-olefins), alkyl acrylate polymers, alkyl methacrylate polymers, alkyl ethylene oxide polymers, polysiloxane polymers and acrylamide polymers. Polymer.
Among these, crystalline poly-α-olefin is particularly preferred. The crystalline poly-α-olefin may be a homopolymer or a copolymer with an olefin such as ethylene or propylene. Further, the carbon chain of the side chain is preferably any of C12, C14 and C16.

成分2としては、結晶化熱量ΔHcが10〜150J/gであることが好ましく、より好ましくは40〜150J/gである。この範囲であると、良好な発熱効果が得られやすい。 Component 2 preferably has a heat of crystallization ΔHc of 10 to 150 J / g, more preferably 40 to 150 J / g. Within this range, a good heat-generating effect can be easily obtained.

示差走査熱量分析した際に得られる成分2の結晶化ピークの半値幅は、10℃以下であることが好ましい。より好ましくは、5℃以下である。この範囲であると、降温時のDSCチャートの成分2の結晶化ピークがシャープであり、ピンポイントでの発熱効果が優れることとなり、特に、降温時の温度調節機能が優れたものとなる。 The FWHM of the crystallization peak of Component 2 obtained by differential scanning calorimetry is preferably 10 ° C. or less. More preferably, it is 5 ° C. or lower. Within this range, the crystallization peak of the component 2 in the DSC chart at the time of temperature decrease is sharp, and the exothermic effect at the pinpoint is excellent. In particular, the temperature control function at the time of temperature decrease is excellent.

本発明の合成繊維において、種々の熱可塑性樹脂を用いることができる。
具体的には、例えば、ポリアミド6(以下、PA6と呼ぶことがある)、ポリアミド66、ポリアミド12等のポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリ乳酸等のポリエステル、ポリエチレンやポリプロピレン等のポリオレフィン、またはこれらを主成分とする重合体等が挙げられる。
上記成分1、成分2と相溶性に優れる点では、ポリオレフィン系の熱可塑性樹脂が好ましい。このようなポリオレフィン系熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等が挙げられる。
In the synthetic fiber of the present invention, various thermoplastic resins can be used.
Specifically, for example, polyamides such as polyamide 6 (hereinafter sometimes referred to as PA6), polyamide 66 and polyamide 12, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid, polyethylene and polypropylene And the like, or a polymer containing these as a main component.
A polyolefin-based thermoplastic resin is preferable in that it has excellent compatibility with the above components 1 and 2. Examples of such a polyolefin-based thermoplastic resin include polyethylene, polypropylene, polybutene, and polymethylpentene.

本発明の合成繊維は、芯部に、成分1と成分2とを含む熱可塑性樹脂、鞘部に、繊維形成性可能な熱可塑性樹脂を配した、芯鞘型複合繊維であることが好ましい。
この場合、芯部および鞘部の熱可塑性樹脂は、上記のような種々の熱可塑性樹脂を用いることができる。
特に、好ましい熱可塑性樹脂の組合せは、芯部にポリオレフィン系の熱可塑性樹脂、鞘部にポリエステル、ポリアミド、ポリオレフィンから選択される熱可塑性樹脂を用いることである。
The synthetic fiber of the present invention is preferably a core-in-sheath type composite fiber in which a thermoplastic resin containing Component 1 and Component 2 is disposed in a core portion, and a thermoplastic resin capable of forming fibers is disposed in a sheath portion.
In this case, various thermoplastic resins as described above can be used as the thermoplastic resin for the core and the sheath.
In particular, a preferred combination of thermoplastic resins is to use a polyolefin-based thermoplastic resin for the core and a thermoplastic resin selected from polyester, polyamide, and polyolefin for the sheath.

本発明において、上記のような芯鞘型複合繊維とする場合、温度調節機能や取扱い性の点から、芯部が繊維表面に露出しない形状とすることが好ましい。
この場合、成分1、成分2および熱可塑性樹脂を溶融混練して得られるアロイ樹脂組成物を芯部の成分とし、鞘部の成分として、上記から選択される熱可塑性樹脂とした複合繊維であることが好ましい。
In the present invention, when the above-mentioned core-sheath type conjugate fiber is used, it is preferable that the core is not exposed to the fiber surface from the viewpoint of temperature control function and handleability.
In this case, the composite fiber is made of an alloy resin composition obtained by melt-kneading the component 1, the component 2 and the thermoplastic resin as a core component and a thermoplastic resin selected from the above as a sheath component. Is preferred.

芯鞘型複合繊維とする場合、温度調節機能および繊維形成の点から、芯鞘比率(体積比)は20:80〜80:20であることが好ましく、より好ましくは、30:70〜70:30である。
尚、芯鞘型複合繊維とする場合、単芯の芯鞘型としても多芯の多芯型(海島型)としてもよい。
When the core-sheath type composite fiber is used, the core-sheath ratio (volume ratio) is preferably from 20:80 to 80:20, more preferably from 30:70 to 70: 30.
When the core-sheath type conjugate fiber is used, it may be a single core-sheath type or a multi-core multi-core type (sea-island type).

また、本発明において、成分1および成分2を熱可塑性樹脂に含有させる方法としては、熱可塑性樹脂に成分1および成分2を溶融混練して、混合して複合する方法が好ましい。
複合方法については、例えば、以下が考えられる。
(1)成分1および成分2、熱可塑性樹脂の3種類を混練する(樹脂組成物化)
(2)成分1と熱可塑性樹脂を混練して得られる樹脂組成物および成分2と熱可塑性樹脂を混練して得られる樹脂組成物の2種類を繊維化する際にブレンドする
(3)芯部の成分に(2)で得られた2種類のアロイを多島状に配して繊維化する
In addition, in the present invention, as a method for incorporating Component 1 and Component 2 into the thermoplastic resin, a method in which Component 1 and Component 2 are melt-kneaded with the thermoplastic resin, mixed, and then combined is preferable.
For example, the following methods can be considered for the composite method.
(1) Kneading three kinds of components 1 and 2 and a thermoplastic resin (formation of resin composition)
(2) A resin composition obtained by kneading the component 1 and the thermoplastic resin and a resin composition obtained by kneading the component 2 and the thermoplastic resin are blended when fiberizing. (3) Core part The two kinds of alloys obtained in (2) are arranged in a multi-island state in the component

成分1:成分2:熱可塑性樹脂の割合(質量比)は、温度調節機能・衣料素材としての快適さの点からは、5:5:90〜20:20:60であることが好ましく、10:10:80〜15:15:70であることがさらに好ましい。
芯鞘型複合繊維の場合、芯部に、成分1:成分2:熱可塑性樹脂を含有する際は、芯部が上記の割合となることが好ましい。
Component 1: Component 2: The ratio (mass ratio) of the thermoplastic resin is preferably from 5: 5: 90 to 20:20:60 from the viewpoint of temperature control function and comfort as a clothing material. : 10:80 to 15:15:70.
In the case of the core-sheath type composite fiber, when the core contains Component 1: Component 2: Thermoplastic resin, the core preferably has the above ratio.

本発明の合成繊維は、成分1および成分2を含む熱可塑性樹脂からなる単独繊維や複合繊維であってもよいし、上述した成分1および成分2を芯部に含む芯鞘型複合繊維であってもよい。 The synthetic fiber of the present invention may be a single fiber or a composite fiber made of a thermoplastic resin containing the components 1 and 2, or a core-sheath type composite fiber containing the above components 1 and 2 in the core. You may.

本発明の合成繊維は、温度調節機能の点から、50℃以下に観測される合成繊維の融解熱量ΔHmが1〜5J/gであることが好ましく、50℃以下に観測される合成繊維の結晶化熱量ΔHcが1〜5J/gであることが好ましい。 The synthetic fiber of the present invention preferably has a heat of fusion ΔHm of 1 to 5 J / g, which is observed at 50 ° C. or lower, from the viewpoint of the temperature control function, and a crystal of the synthetic fiber which is observed at 50 ° C. or lower. It is preferable that the heat of formation ΔHc be 1 to 5 J / g.

また、本発明は、上記成分1を含む熱可塑性樹脂からなる合成繊維と、上記成分2を含む熱可塑性樹脂からなる合成繊維とを合糸せしめた複合糸でもある。本発明の複合糸に用いるそれぞれの合成繊維は、単独繊維であっても、複合繊維であってもよい。特に好ましい態様として、芯部に成分1を含む芯鞘型複合繊維と、芯部に成分2を含む芯鞘型複合繊維を合糸したものが挙げられる。
合糸の形態としては、(1)それぞれの合成繊維を引き揃える(2)それぞれの合成繊維をエア交絡等により混繊する(3)それぞれの合成繊維を合撚する等が好適に挙げられる。
Further, the present invention is also a composite yarn in which synthetic fibers made of a thermoplastic resin containing the above component 1 and synthetic fibers made of a thermoplastic resin containing the above component 2 are combined. Each synthetic fiber used in the composite yarn of the present invention may be a single fiber or a composite fiber. In a particularly preferred embodiment, a core-sheath composite fiber containing the component 1 in the core portion and a core-sheath composite fiber containing the component 2 in the core portion are combined.
Preferable examples of the form of the composite yarn include (1) aligning the respective synthetic fibers, (2) blending the respective synthetic fibers by air entanglement and the like, and (3) twisting the respective synthetic fibers.

本発明の複合糸は、温度調節機能の点から、50℃以下に観測される複合糸の融解熱量ΔHmが1〜5J/gであることが好ましく、50℃以下に観測される複合糸の結晶化熱量ΔHcが1〜5J/gであることが好ましい。 In the composite yarn of the present invention, the heat of fusion ΔHm of the composite yarn observed at 50 ° C or lower is preferably 1 to 5 J / g, and the crystal of the composite yarn observed at 50 ° C or lower, from the viewpoint of the temperature control function. It is preferable that the heat of formation ΔHc be 1 to 5 J / g.

次に、本発明の合成繊維を製造する方法について例示する。
芯部を形成する熱可塑性樹脂に成分1および成分2を、二軸混練機にて複合化させる。鞘部の熱可塑性樹脂を準備する。上記の2種の樹脂を各々、樹脂の融点以上、望ましくは融点より20℃以上の温度の押出機を用いて溶融する。溶融した樹脂を芯鞘形成する口金を通し、口金表面の孔より、所定の断面形状に樹脂を押出し、繊維化する。押出された繊維を冷風にて冷却して、油剤を付与し、巻き取る。巻き取った繊維に、熱を加えて延伸し、熱セットして、本発明の合成繊維を得る。尚、巻き取り速度は特に限定されないが、700m/min〜2000m/minであることが好ましい。
Next, a method for producing the synthetic fiber of the present invention will be described.
Component 1 and Component 2 are compounded with a thermoplastic resin forming a core by a twin-screw kneader. A sheath thermoplastic resin is prepared. Each of the above two resins is melted using an extruder having a temperature equal to or higher than the melting point of the resin, preferably equal to or higher than 20 ° C. from the melting point. The molten resin is passed through a die for forming a core and a sheath, and the resin is extruded into a predetermined cross-sectional shape from a hole in the surface of the die to be fiberized. The extruded fiber is cooled by cold air, an oil agent is applied, and the fiber is wound. The wound fiber is stretched by applying heat, and heat-set to obtain the synthetic fiber of the present invention. The winding speed is not particularly limited, but is preferably from 700 m / min to 2000 m / min.

以下、参考例、実施例および具体例を挙げて本発明をより具体的に説明するが、本発明はこれに限られるものではない。 Hereinafter, the present invention will be described more specifically with reference to Reference Examples, Examples, and Specific Examples, but the present invention is not limited thereto.

<混練>
ベース樹脂:ポリプロピレン80質量%に、温調剤:1種または2種以上の結晶性ポリα−オレフィン(融点40℃タイプを成分1、融点29℃タイプを成分2として以下に記載する)20質量%の組成として、二軸混練機によりポリプロピレン8.0kg/hrを供給し、250℃にて溶融混練し、索状溶融物を水冷してペレタイザーによりペレット化してポリプロピレン系樹脂組成物を得た。
<紡糸>
前記ポリプロピレン系樹脂組成物およびポリアミド6を主たる紡糸原料として溶融押出型複合紡糸機を用いて温度250℃で複合紡糸を行った。
紡糸に際しては、ポリプロピレン系樹脂組成物を芯部の成分、ポリアミド6が鞘部の成分となるように別々に溶融してから、芯鞘型紡糸用口金よりあわせて芯鞘の形態にして紡出し、冷却して、油剤を付与しつつ紡速800m/minにて捲き取った。その後50℃の熱ローラー上で3.0倍に延伸し、延伸ローラーにて140℃で熱セットした後、巻き上げ、84dtex/24fの合成繊維を得た。
<筒編み布帛の作製>
得られた合成繊維または複合糸を、筒編機(英光産業株式会社製CR−B、径3.5インチ、針数260本)にて筒編布帛を作製した。
<熱量分析:融解ピーク温度、結晶化ピーク温度、融解開始温度、結晶化開始温度>
示差走査熱量計(Diamond DSC:パーキンエルマージャパン社製)を用いて測定した。昇温、降温速度は10℃/minで統一した。温度条件は0℃〜60℃昇温、60℃で5分間保持、60℃〜0℃に降温、0℃で5分間保持しこれを1stスキャンとし、0℃〜60℃昇温、60℃で5分間保持、60℃〜0℃に降温、0℃で5分間保持したものを2ndスキャンとした。なお、融解ピーク温度、結晶化ピーク温度、融解開始温度、結晶化開始温度および融解熱量、結晶化熱量についてはJIS K 7121に準拠して算出した。
<温度調節機能評価>
10cm角の筒編布帛(試験品)を80℃に設定された熱風乾燥機内で1.0hr静置して、成分1および成分2を完全に溶融後、5℃で24hr静置し凝固させ成分1および成分2における熱履歴を統一した。熱電対型温度計を筒編布帛に包み、肌−衣服間温度である31℃にて1.0hr静置し、温度安定後、50℃に設定された乾燥機に移動した際の高温下、3℃以下に設定した断熱容器に移動した際の低温下での布帛内部の温度変化を確認した。
対照品としてポリアミド6の単独糸で作製した筒編布帛を用いて、試験品との温度差を求めた。得られたグラフから最大温度差の値および高温下に移動させてから20分後、低温下に移動させてから12分後までの温度差グラフから面積(図3の温度差グラフ:斜線部分の面積で比較)を算出し、これを評価の指標とした。
尚、最大温度差は、絶対値が、大きいほど、温度調節機能は優れている。
また温度差面積が大きいほど、温度調節機能は優れている。
尚、温度調節機能(高温下、低温下)は、以下の要領で、を評価した。
○:最大温度差の絶対値が0.5℃以上の場合
△:最大温度差の絶対値が0.4℃を超えて、0.5℃未満の場合
×:最大温度差の絶対値が0.4℃以下の場合
<Kneading>
Base resin: 80% by mass of polypropylene, 20% by mass of temperature control agent: One or more crystalline poly-α-olefins (described below as component 1 for a melting point of 40 ° C. and component 2 for a melting point of 29 ° C.) As a composition of the above, 8.0 kg / hr of polypropylene was supplied by a twin-screw kneader, melt-kneaded at 250 ° C., the cord-like melt was cooled with water, and pelletized by a pelletizer to obtain a polypropylene-based resin composition.
<Spinning>
Composite spinning was performed at a temperature of 250 ° C. using a melt extrusion type composite spinning machine using the polypropylene resin composition and polyamide 6 as main spinning raw materials.
At the time of spinning, the polypropylene resin composition is separately melted so that the core component and the polyamide 6 become the sheath component, and then combined with a core-sheath type spinneret into a core-sheath form and spun. Then, it was cooled and wound up at a spinning speed of 800 m / min while applying an oil agent. Thereafter, the film was stretched 3.0 times on a hot roller at 50 ° C., heat-set at 140 ° C. with a stretching roller, and wound up to obtain a synthetic fiber of 84 dtex / 24f.
<Production of tubular knitted fabric>
A tubular knitted fabric was produced from the obtained synthetic fiber or composite yarn using a tubular knitting machine (CR-B, manufactured by Eiko Sangyo Co., Ltd., 3.5 inches in diameter, 260 needles).
<Calibration analysis: melting peak temperature, crystallization peak temperature, melting start temperature, crystallization start temperature>
The measurement was performed using a differential scanning calorimeter (Diamond DSC: manufactured by PerkinElmer Japan). The heating and cooling rates were unified at 10 ° C./min. The temperature condition is 0 ° C to 60 ° C, the temperature is maintained at 60 ° C for 5 minutes, the temperature is lowered to 60 ° C to 0 ° C, the temperature is maintained at 0 ° C for 5 minutes, and the first scan is performed. The sample was held for 5 minutes, the temperature was lowered to 60 ° C. to 0 ° C., and the sample held at 0 ° C. for 5 minutes was used as a second scan. The melting peak temperature, crystallization peak temperature, melting start temperature, crystallization start temperature, heat of fusion, and heat of crystallization were calculated in accordance with JIS K7121.
<Evaluation of temperature control function>
A 10 cm square tubular knitted fabric (test sample) was allowed to stand in a hot air dryer set at 80 ° C. for 1.0 hr to completely melt the components 1 and 2, and then allowed to stand at 5 ° C. for 24 hr to solidify. The heat histories for 1 and component 2 were unified. The thermocouple type thermometer was wrapped in a tubular knitted fabric, allowed to stand for 1.0 hour at 31 ° C., which is the temperature between the skin and the clothes, and, after the temperature was stabilized, was transferred to a dryer set at 50 ° C. A change in temperature inside the fabric at a low temperature when transferred to a heat insulating container set at 3 ° C. or lower was confirmed.
The temperature difference from the test product was determined using a tubular knitted fabric made of a single yarn of polyamide 6 as a control product. From the obtained graph, the value of the maximum temperature difference and the area from the temperature difference graph 20 minutes after moving to a high temperature and 12 minutes after moving to a low temperature (the temperature difference graph in FIG. Area), and this was used as an evaluation index.
The larger the absolute value of the maximum temperature difference, the better the temperature control function.
Also, the larger the temperature difference area, the better the temperature control function.
The temperature control function (high temperature, low temperature) was evaluated in the following manner.
:: When the absolute value of the maximum temperature difference is 0.5 ° C or more
Δ: Absolute value of maximum temperature difference exceeds 0.4 ° C. and less than 0.5 ° C. X: Absolute value of maximum temperature difference is 0.4 ° C. or less

参考例1〕
成分2として融点29℃タイプの結晶性ポリα−オレフィン、成分1として融点40℃タイプの結晶性ポリα−オレフィンを準備し、ポリプロピレンに対し各10質量%の組成で同時添加し、前記方法にて混練してポリプロピレン系樹脂組成物を得た。次いで、前記紡糸方法にて、この樹脂組成物を芯部に配して芯鞘比率(体積比)が67:33の芯鞘型複合繊維を得て、前記方法にて筒編み布帛を作製した。
成分1および成分2の物性は以下の通りである。

Figure 2020051023
[ Reference Example 1]
A crystalline poly-α-olefin having a melting point of 29 ° C. was prepared as Component 2, and a crystalline poly-α-olefin having a melting point of 40 ° C. was prepared as Component 1. The components were simultaneously added at a composition of 10% by mass with respect to polypropylene. And kneaded to obtain a polypropylene resin composition. Then, by the spinning method, the resin composition was disposed on a core portion to obtain a core-sheath type composite fiber having a core-sheath ratio (volume ratio) of 67:33, and a tubular knitted fabric was produced by the method. .
The physical properties of Component 1 and Component 2 are as follows.

Figure 2020051023

参考例2〕
芯鞘比率(体積比)を50:50と変更する以外は参考例1と同様に芯鞘型複合繊維を得て、筒編み布帛を作製した。
[ Reference Example 2]
A core-sheath type composite fiber was obtained in the same manner as in Reference Example 1 except that the core-sheath ratio (volume ratio) was changed to 50:50, and a tubular knitted fabric was produced.

〔実施例3〕
成分2として、融点29℃タイプの結晶性ポリα−オレフィンをポリプロピレンに対し20質量%の組成で前記方法にて混練して樹脂組成物を得た。得られたポリプロピレン系樹脂組成物を、芯部に配する以外は参考例1と同様に芯鞘型複合繊維Aを得た。
次に、成分1として、融点40℃タイプの結晶性ポリα−オレフィンをポリプロピレンに対し20質量%の組成で前記方法にて混練して樹脂組成物を得た。得られたポリプロピレン系樹脂組成物を、芯部に配する以外は参考例1と同様に芯鞘型複合繊維Bを得た。
得られた芯鞘型複合繊維Aと芯鞘型複合繊維Bを、引き揃えて合糸し複合糸を得て、前記方法にて筒編み布帛を作製した。
[Example 3]
As the component 2, a crystalline poly-α-olefin having a melting point of 29 ° C. was kneaded by the above-mentioned method at a composition of 20% by mass with respect to polypropylene to obtain a resin composition. A core-sheath composite fiber A was obtained in the same manner as in Reference Example 1 except that the obtained polypropylene-based resin composition was disposed on the core.
Next, as a component 1, a crystalline poly-α-olefin having a melting point of 40 ° C. was kneaded by the above-described method at a composition of 20% by mass with respect to polypropylene to obtain a resin composition. A core-sheath type composite fiber B was obtained in the same manner as in Reference Example 1, except that the obtained polypropylene-based resin composition was disposed on the core.
The obtained core-in-sheath type composite fiber A and core-in-sheath type composite fiber B were aligned and combined to obtain a composite yarn, and a tubular knitted fabric was produced by the above method.

〔比較例1〕
融点29℃タイプの結晶性ポリα−オレフィンのみを、ポリプロピレンに対し20質量%の組成で前記方法にて混練して樹脂組成物を得た。得られた樹脂組成物を、芯部に配する以外は参考例1と同様に芯鞘型複合繊維を得て、筒編み布帛を作製した。
[Comparative Example 1]
Only a crystalline poly-α-olefin having a melting point of 29 ° C. was kneaded by the above method at a composition of 20% by mass with respect to polypropylene to obtain a resin composition. A core-sheath type conjugate fiber was obtained in the same manner as in Reference Example 1 except that the obtained resin composition was disposed on the core, and a tubular knitted fabric was produced.

〔比較例2〕
融点40℃タイプの結晶性ポリα−オレフィンのみを、ポリプロピレンに対し20質量%の組成で前記方法にて混練して樹脂組成物を得た。得られた樹脂組成物を、芯部に配する以外は参考例1と同様に芯鞘型複合繊維を得て、筒編み布帛を作製した。
[Comparative Example 2]
Only a crystalline poly-α-olefin having a melting point of 40 ° C. was kneaded by the above method at a composition of 20% by mass relative to polypropylene to obtain a resin composition. A core-sheath type conjugate fiber was obtained in the same manner as in Reference Example 1 except that the obtained resin composition was disposed on the core, and a tubular knitted fabric was produced.

〔比較例3〕
ポリプロピレンを芯部に配する以外は参考例1と同様に芯鞘型複合繊維を得て、筒編み布帛を作製した。
[Comparative Example 3]
A core-sheath type composite fiber was obtained in the same manner as in Reference Example 1 except that polypropylene was provided in the core portion, and a tubular knitted fabric was produced.

〔比較例4〕
84dtex/24fのポリアミド単独繊維を準備し、前記方法で筒編み布帛を作製した。
[Comparative Example 4]
Polyamide single fiber of 84 dtex / 24f was prepared, and a tubular knitted fabric was produced by the above method.

参考例、実施例および比較例から得られた繊維および複合糸の原料、物性、芯鞘比率、50℃以下に観測される相転移温度、相転移熱量、温度調節機能について、表1、表2に示す。 Tables 1 and 2 show the raw materials, physical properties, core-sheath ratio, phase transition temperature observed below 50 ° C., phase transition calorie, and temperature control function of the fibers and composite yarns obtained from Reference Examples, Examples and Comparative Examples. Shown in

Figure 2020051023
Figure 2020051023

Figure 2020051023
Figure 2020051023

図1は、温度調節機能評価において、試験品と対照品を、それぞれ、31℃にて1.0hr静置後、50℃に移動した際の時間経過による布帛内部の温度変化を採取し、試験品の温度変化と対照品の温度変化の差を示した図である。最大温度差の絶対値が大きい程、温度調節機能は優れる。また、温度差による面積が大きい程、温度調節機能は優れる。 FIG. 1 shows that, in the evaluation of the temperature control function, the test article and the control article were each allowed to stand at 31 ° C. for 1.0 hour, and then the temperature change inside the cloth with the passage of time when moved to 50 ° C. was collected. FIG. 4 is a diagram showing a difference between a temperature change of an article and a temperature change of a control article. The larger the absolute value of the maximum temperature difference, the better the temperature control function. Also, the larger the area due to the temperature difference, the better the temperature control function.

図2は、温度調節機能評価において、試験品と対照品を、それぞれ、31℃にて1.0hr静置後、3℃に移動した際移動した際の、時間経過による布帛内部の温度変化を採取し、試験品の温度変化と対照品の温度変化の差を示した図である。最大温度差の絶対値が大きい程、温度調節機能は優れる。また、温度差による面積が大きい程、温度調節機能は優れる。 FIG. 2 shows, in the evaluation of the temperature control function, the change in the temperature inside the cloth over time when the test article and the control article were allowed to stand at 31 ° C. for 1.0 hour and then moved to 3 ° C. It is the figure which showed the difference of the temperature change of the test sample and the control sample which were sampled. The larger the absolute value of the maximum temperature difference, the better the temperature control function. Also, the larger the area due to the temperature difference, the better the temperature control function.

温度調節機能において、温度差面積値を図4に示す。Y軸は、正の絶対値が大きいほど、昇温時の温度調整機能が高く、負の絶対値が大きいほど、降温時の温度調節機能が高いことを示す。 FIG. 4 shows the temperature difference area value in the temperature control function. The Y-axis indicates that the larger the positive absolute value, the higher the temperature adjustment function at the time of temperature rise, and the larger the negative absolute value, the higher the temperature adjustment function at the time of temperature decrease.

以上のように、参考例1〜2、実施3から得られた合成繊維および複合糸は、昇温時、降温時とも優れた温度調節機能を有するものであった。比較例1から得られた合成繊維は、昇温時に十分な温度調節機能を有さず、降温時にのみ機能を有した。一方、比較例2から得られた合成繊維は、比較例1と逆の挙動を示した。また、温度調節材料を含まない比較例3から得られた合成繊維は昇温時、降温時とも温度調節機能を有さない結果を得た。 As described above, the synthetic fibers and the composite yarns obtained from Reference Examples 1 and 2 and Example 3 had excellent temperature control functions both when the temperature was raised and when the temperature was lowered. The synthetic fiber obtained from Comparative Example 1 did not have a sufficient temperature control function at the time of temperature rise, and had a function only at the time of temperature decrease. On the other hand, the synthetic fiber obtained from Comparative Example 2 showed the opposite behavior to that of Comparative Example 1. In addition, the synthetic fiber obtained from Comparative Example 3 containing no temperature control material obtained a result having no temperature control function both when the temperature was raised and when the temperature was lowered.

Claims (6)

成分1と成分2とを含む熱可塑性樹脂からなる合成繊維であって、成分1は融解開始温度が34℃以上、融解ピーク温度が50℃以下の範囲であり、成分2は結晶化開始温度が30℃未満、結晶化ピーク温度が5℃以上の範囲であることを特徴とする合成繊維。 A synthetic fiber comprising a thermoplastic resin containing Component 1 and Component 2, wherein Component 1 has a melting onset temperature of 34 ° C. or more and a melting peak temperature of 50 ° C. or less, and Component 2 has a crystallization onset temperature of A synthetic fiber having a crystallization peak temperature of less than 30 ° C and a crystallization peak temperature of 5 ° C or more. 成分1の融解熱量ΔHmが10〜150J/g、成分2の結晶化熱量ΔHcが10〜150J/gであり、50℃以下に観測される合成繊維の融解熱量ΔHmが1〜5J/g、50℃以下に観測される合成繊維の結晶化熱量ΔHcが1〜5J/gである請求項1記載の合成繊維。 The heat of fusion ΔHm of component 1 is 10 to 150 J / g, the heat of crystallization ΔHc of component 2 is 10 to 150 J / g, and the heat of fusion ΔHm of synthetic fibers observed at 50 ° C or lower is 1 to 5 J / g, 50 The synthetic fiber according to claim 1, wherein the heat of crystallization ΔHc of the synthetic fiber observed at a temperature of not more than ° C is 1 to 5 J / g. 示差走査熱量分析した際に得られる成分1の融解ピークおよび成分2の結晶化ピークの半値幅が10℃以下であることを特徴とする請求項1または2記載の合成繊維。 The synthetic fiber according to claim 1 or 2, wherein a half width of a melting peak of component 1 and a crystallization peak of component 2 obtained by differential scanning calorimetry is 10 ° C or less. 成分1は、側鎖炭素鎖がC18、C20、C22の少なくとも1つ以上からなる結晶性ポリα−オレフィンであり、成分2は、側鎖炭素鎖がC12、C14、C16の少なくとも1つ以上からなる結晶性ポリα−オレフィンであることを特徴とする請求項1〜3いずれか1項に記載の合成繊維。 Component 1 is a crystalline poly-α-olefin having a side chain carbon chain composed of at least one of C18, C20 and C22, and Component 2 is composed of a side chain carbon chain composed of at least one of C12, C14 and C16. The synthetic fiber according to any one of claims 1 to 3, which is a crystalline poly-α-olefin. 成分1、成分2および熱可塑性樹脂の質量比率が、5:5:90〜20:20:60である請求項1〜4いずれか1項に記載の合成繊維。 The synthetic fiber according to any one of claims 1 to 4, wherein the mass ratio of Component 1, Component 2, and the thermoplastic resin is from 5: 5: 90 to 20:20:60. 融解開始温度が34℃以上、融解ピーク温度が50℃以下の範囲である成分1を含む熱可塑性樹脂からなる合成繊維と、結晶化開始温度が30℃未満、結晶化ピーク温度が5℃以上の範囲である成分2を含む熱可塑性樹脂からなる合成繊維とを合糸せしめたことを特徴とする複合糸。 A synthetic fiber made of a thermoplastic resin containing Component 1 having a melting start temperature of 34 ° C. or more and a melting peak temperature of 50 ° C. or less, and a crystallization start temperature of less than 30 ° C. and a crystallization peak temperature of 5 ° C. or more A composite yarn comprising a synthetic fiber made of a thermoplastic resin containing the component 2 in the range, which is combined with the synthetic fiber.
JP2020001099A 2015-12-28 2020-01-07 Composite yarn Active JP6858894B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015257530 2015-12-28
JP2015257530 2015-12-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016254544A Division JP6643974B2 (en) 2015-12-28 2016-12-27 Synthetic fibers

Publications (2)

Publication Number Publication Date
JP2020051023A true JP2020051023A (en) 2020-04-02
JP6858894B2 JP6858894B2 (en) 2021-04-14

Family

ID=59271765

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016254544A Active JP6643974B2 (en) 2015-12-28 2016-12-27 Synthetic fibers
JP2020001099A Active JP6858894B2 (en) 2015-12-28 2020-01-07 Composite yarn

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016254544A Active JP6643974B2 (en) 2015-12-28 2016-12-27 Synthetic fibers

Country Status (1)

Country Link
JP (2) JP6643974B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6937719B2 (en) * 2018-03-31 2021-09-22 Kbセーレン株式会社 Composite fibers and fabrics made of them

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055215A (en) * 1991-06-28 1993-01-14 Nippon Ester Co Ltd Endothermic and exothermic conjugate fiber
JP2005314827A (en) * 2004-04-28 2005-11-10 Oomi Techno:Kk Covered yarn and fabric member

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2877525B2 (en) * 1990-12-11 1999-03-31 日本エステル株式会社 Endothermic composite fiber
JPH05331754A (en) * 1992-05-28 1993-12-14 Nippon Ester Co Ltd Heat-absorbing and releasing nonwoven fabric of conjugate fiber
JPH06200417A (en) * 1992-11-13 1994-07-19 Toyobo Co Ltd Conjugate fiber containing heat-accumulation material and its production
JPH06280101A (en) * 1993-01-27 1994-10-04 Toyobo Co Ltd Stockings
JPH07207531A (en) * 1994-01-10 1995-08-08 Nippon Ester Co Ltd Polyester fiber
JP3371047B2 (en) * 1995-03-14 2003-01-27 株式会社クラレ Thermal storage fiber
JPH08311716A (en) * 1995-05-12 1996-11-26 Nippon Ester Co Ltd Endothermic and exothermic conjugate fiber
JP2003246931A (en) * 2002-02-25 2003-09-05 Toyobo Co Ltd Microcapsule-holding molded product
JP4339006B2 (en) * 2002-04-08 2009-10-07 出光テクノファイン株式会社 Thermal storage composite fiber and thermal storage cloth member
JP2004011032A (en) * 2002-06-03 2004-01-15 Idemitsu Technofine Co Ltd Temperature control fiber, and temperature control fabric member
WO2005005699A1 (en) * 2003-07-10 2005-01-20 Kanebo, Limited Fabric having temperature control function
JP2006183194A (en) * 2004-12-28 2006-07-13 Kb Seiren Ltd Leg product having temperature control function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055215A (en) * 1991-06-28 1993-01-14 Nippon Ester Co Ltd Endothermic and exothermic conjugate fiber
JP2005314827A (en) * 2004-04-28 2005-11-10 Oomi Techno:Kk Covered yarn and fabric member

Also Published As

Publication number Publication date
JP2017119939A (en) 2017-07-06
JP6643974B2 (en) 2020-02-12
JP6858894B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
AU2007358683B2 (en) Multi-component fibres
JP5535911B2 (en) Composite fiber having low-temperature processability, nonwoven fabric and molded body using the same
TW200634189A (en) Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof
WO2007035483A1 (en) Multicomponent fiber comprising a phase change material
TW201109489A (en) Polyglycolic acid fibers and method for producing same
US20200157327A1 (en) Polypropylene-based resin composition, and fiber and nonwoven fabric using same
JP5355225B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
TW202136605A (en) Ecofriendly composite fiber spunbond non-woven fabric comprising plant-derived polyethylene and manufacturing method thereof
JP6858894B2 (en) Composite yarn
JP5355295B2 (en) Biodegradable face cover
JPH1088459A (en) Nonwoven fabric of filament
JP2006274453A (en) Nonwoven fabric having temperature-adjusting function and method for producing the same
JP6652855B2 (en) Continuous fiber nonwoven fabric and method for producing the same
JP5361420B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
TWI582278B (en) A material for producing fibers and fibers made
JP4914794B2 (en) Method for producing core-sheath type composite fiber containing polycarbonate
JP2007107154A (en) Method for producing core-sheath composite fiber
JP6084398B2 (en) Manufacturing method of core-sheath type composite fiber
JP6736444B2 (en) Sea-island type composite fiber and cloth using the same
JP2002088630A (en) Weather-resistant filament nonwoven fabric
JP4785596B2 (en) Composite fiber, production method thereof, and fiber structure using the same
JP7275557B2 (en) Composite fiber and fiber structure made of same
JP3951147B2 (en) Long fiber nonwoven fabric
JP2009102796A (en) Nonwoven fabric formed of polylactic acid based composite staple fiber, and method for producing the same
JP6937719B2 (en) Composite fibers and fabrics made of them

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210324

R150 Certificate of patent or registration of utility model

Ref document number: 6858894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150