JPH05331754A - Heat-absorbing and releasing nonwoven fabric of conjugate fiber - Google Patents

Heat-absorbing and releasing nonwoven fabric of conjugate fiber

Info

Publication number
JPH05331754A
JPH05331754A JP4161949A JP16194992A JPH05331754A JP H05331754 A JPH05331754 A JP H05331754A JP 4161949 A JP4161949 A JP 4161949A JP 16194992 A JP16194992 A JP 16194992A JP H05331754 A JPH05331754 A JP H05331754A
Authority
JP
Japan
Prior art keywords
heat
polymer component
temperature
nonwoven fabric
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4161949A
Other languages
Japanese (ja)
Inventor
Tomoko Watanabe
智子 渡辺
Bunpei Hosoi
文平 細井
Tetsuo Matsumoto
哲夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP4161949A priority Critical patent/JPH05331754A/en
Publication of JPH05331754A publication Critical patent/JPH05331754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To provide a nonwoven fabric of conjugate fiber capable of absorbing or releasing heat according to the change in the body heat and the ambient temperature even in the absence of solar radiation, usable without restriction by color and suitable as a material for winter wear, sports wear, etc. CONSTITUTION:The heat-absorbing and releasing conjugate fiber nonwoven fabric is composed of a conjugate fiber consisting of a thermoplastic polymer component A having a melting point of 15-50 deg.C, a heat of fusion of >=10mJ/mg, a cooling crystallization temperature of <=40 deg.C and a crystallization heat of >=10mJ/mg and a thermoplastic polymer component B having a melting point or softening point of >=110 deg.C, wherein the polymer component B is present in a state to cover the fiber surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,吸発熱性を有し,かつ
防寒衣料やスポーツ衣料等の素材として好適な不織布に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-woven fabric which has heat absorbing properties and is suitable as a material for winter clothes, sports clothes and the like.

【0002】[0002]

【従来の技術】従来から,防寒衣料やスポーツ衣料にお
いて,保温性の向上を目的として表地と裏地の間に中綿
材料を入れた三層構造の布帛が,その素材として採用さ
れている。この三層構造の布帛は,中綿材料中の空気層
の厚みにより保温性を向上させようとするものである。
ところが,このような三層構造の布帛は,これを防寒衣
料や特に動き易さが要求されるスポーツ衣料用素材とし
て採用すると,着用時に衣料が重く嵩張り,しかも自由
な動きが阻害されるという問題を有していた。近年,上
記問題を解決すべく,アルミニウムやチタン等の金属を
表面に蒸着した不織布を中綿材料として採用することが
提案されている。しかしながら,このような不織布は,
太陽光線を吸収することにより初めて保温性が向上する
ものであり,太陽光線の照射が弱いときなど十分な保温
性の向上が得られないという問題を,また,上記金属を
蒸着させるため,色調の面から用途が限定されるという
問題を有していた。
2. Description of the Related Art Conventionally, a three-layer structure cloth in which a batting material is inserted between a front material and a lining has been used as a material for winter clothes and sports clothes for the purpose of improving heat retention. This three-layer structure cloth is intended to improve the heat retaining property by the thickness of the air layer in the batting material.
However, when such a three-layered fabric is used as a material for winter clothing and sports clothing that requires particularly easy movement, the clothing is heavy and bulky when worn, and free movement is hindered. Had a problem. In recent years, in order to solve the above problems, it has been proposed to employ a non-woven fabric having a metal such as aluminum or titanium deposited on its surface as a batting material. However, such non-woven fabrics
Since the heat retention is improved only by absorbing the sun rays, there is a problem that the heat retention is not sufficiently improved when the irradiation of the sun rays is weak. However, there is a problem in that the use is limited.

【0003】[0003]

【発明が解決しようとする課題】本発明は,前記問題を
解決し,太陽光線の照射がなくても体温又は外気温度の
変化に対応して吸熱あるいは発熱をし,色調面からの用
途の制限がなく,かつ防寒衣料やスポーツ衣料等の素材
として好適な不織布を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and absorbs heat or generates heat in response to changes in body temperature or outside air temperature even without the irradiation of sunlight, thus limiting the application in terms of color tone. The present invention is intended to provide a non-woven fabric which is suitable as a material for cold weather clothing, sports clothing, etc.

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記問題
を解決すべく鋭意検討の結果,体温又は外気温度に近い
融点及び結晶化温度を有する熱可塑性重合体を繊維の内
部に包含する複合繊維からなる不織布を中綿材料として
採用すると,中綿材料として実用上十分な性能を保持し
つつ吸発熱性を有する不織布が得られることを見出し,
本発明に到達したのである。すなわち,本発明は,融点
が15〜50℃,融解熱が10mJ/mg以上,降温結
晶化温度が40℃以下,結晶化熱が10mJ/mg以上
の熱可塑性重合体成分Aと,融点又は軟化点温度が11
0℃以上の熱可塑性重合体成分Bとからなり,かつ前記
重合体成分Bが繊維表面を被覆する複合繊維から構成さ
れることを特徴とする吸発熱性複合繊維不織布,を要旨
とするものである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have included a thermoplastic polymer having a melting point and a crystallization temperature close to the body temperature or the outside temperature in the inside of the fiber. It was found that when a non-woven fabric composed of composite fibers is adopted as a batting material, a non-woven fabric having heat absorption and exothermic properties while maintaining practically sufficient performance as a batting material can be obtained.
The present invention has been reached. That is, the present invention relates to a thermoplastic polymer component A having a melting point of 15 to 50 ° C, a heat of fusion of 10 mJ / mg or more, a cooling crystallization temperature of 40 ° C or less, and a heat of crystallization of 10 mJ / mg or more, and a melting point or softening. Point temperature is 11
A heat-absorbing composite fiber nonwoven fabric comprising a thermoplastic polymer component B having a temperature of 0 ° C. or higher, and the polymer component B being composed of a composite fiber coating the fiber surface. is there.

【0005】次に,本発明の不織布を構成する複合繊維
に関して,説明する。本発明における熱可塑性重合体成
分Aは,その融点が15〜50℃のものであることが必
要であり,好ましくは20〜45℃,より好ましくは3
0〜40℃の融点を有するものがよい。融点があまりに
も低いと室温下で融解状態となり,逆にあまりにも高い
と外気温度下で融解せず,いずれも本発明の上記目的を
達成することができない。また,重合体成分Aは,その
降温結晶化温度が40℃以下のものであることが必要で
あり,好ましくは35℃以下,より好ましくは30℃以
下のものがよい。当然のことながら結晶化は融点より低
い温度で生じるのであり,外気の温度が高いところから
低いところへ移動したときに不織布の構成繊維が発熱す
る必要があるため,降温結晶化温度は40℃以下でなけ
ればならないのである。さらに,重合体成分Aは,融解
熱及び結晶化熱が10mJ/mg以上のものであること
が必要であり,好ましくは30mJ/mg以上,より好
ましくは50mJ/mg以上のものがよい。融解熱及び
結晶化熱が10mJ/mg未満であると吸発熱性が十分
に発現せず,本発明の上記目的を達成することができな
い。このような重合体成分Aは,直鎖状脂肪族ジカルボ
ン酸成分と直鎖状脂肪族ジオール成分とから得られるも
のであり,直鎖状脂肪族ジカルボン酸としては,例え
ば,グルタル酸,アジピン酸,ピメリン酸又はこれらの
エステル形成性誘導体等が,直鎖状脂肪族ジオール成分
としては,例えば,エチレングリコール,プロパンジオ
ール,1,4−ブタンジオール,1,5−ペンタンジオ
ール又は1,6−ヘキサンジオール等が挙げられる。直
鎖状脂肪族ジカルボン酸及び直鎖状脂肪族ジオール成分
は,各々単独であっても又は2種以上の併用であっても
よい。また,本発明における吸発熱性を損なわない範囲
内で,テレフタル酸,イソフタル酸,5−ナトリウムス
ルホイソフタル酸,コハク酸,トリメリツト酸,オキシ
安息香酸,デカン−1,10−ジカルボン酸,オクタデ
カン−1,18−ジカルボン酸,1,4−シクロヘキサ
ンジカルボン酸,ジエチレングリコール,1,4−シク
ロヘキサンジメタノール等を共重合成分として併用して
もよい。さらに,必要に応じて,艶消剤,安定剤又は着
色剤等の添加剤を添加してもよい。このような重合体成
分Aは,常法により容易に製造することができる。すな
わち,直鎖状脂肪族ジカルボン酸成分と直鎖状脂肪族ジ
オール成分とをエステル化反応又はエステル交換反応さ
せた後,重縮合反応をさせることにより製造することが
できる。そして,重合体成分Aの降温結晶化温度は,重
合体に結晶核剤を含有させることにより調整することが
でき,結晶核剤としては,例えば,タルクやシリカ,チ
ヨツプドガラスストランド,二酸化チタン,珪酸カルシ
ウム,三酸化アンチモン等の無機化合物の微粒子,ステ
アリン酸マグネシウムや安息香酸ナトリウム等の有機酸
塩の微粒子,ジナトリウムスルホビスフエノールAのエ
チレンオキシド付加物や弗素樹脂,有機シリコン,ポリ
アクリル酸架橋体,ポリスチレン架橋体,ポリアリレー
ト等の有機化合物の微粒子等が挙げられる。また,これ
らの結晶核剤は,各々単独であっても又は2種以上の併
用であってもよい。重合体成分Aに上記のような結晶核
剤を含有させる場合,含有量は重合体に対し0.01〜
3.0重量%とするのがよい。この含有率が0.01重
量%未満であると結晶核剤としての効果が乏しく,一
方,3.0重量%を超えると溶融紡糸時又は延伸時に複
合繊維が切断し易くなったり,また,紡糸口金パツク内
のフイルタに堆積して紡糸口金パツクの寿命が短くなっ
たりする等の問題を生じるため好ましくない。なお,重
合体成分Aに上記のような結晶核剤を含有させるに際し
ては,直鎖状脂肪族ジカルボン酸成分と直鎖状脂肪族ジ
オール成分とのエステル化反応時又はエステル交換反応
させた後の重縮合反応時に添加するとよい。
Next, the composite fiber constituting the nonwoven fabric of the present invention will be described. The thermoplastic polymer component A in the present invention needs to have a melting point of 15 to 50 ° C, preferably 20 to 45 ° C, more preferably 3
It preferably has a melting point of 0 to 40 ° C. If the melting point is too low, it will be in a molten state at room temperature, and if it is too high, it will not melt at the outside air temperature, and neither of them can achieve the above object of the present invention. Further, the polymer component A needs to have a temperature falling crystallization temperature of 40 ° C. or lower, preferably 35 ° C. or lower, more preferably 30 ° C. or lower. As a matter of course, crystallization occurs at a temperature lower than the melting point, and it is necessary for the constituent fibers of the nonwoven fabric to generate heat when the temperature of the outside air moves from a high temperature to a low temperature. It must be. Further, the polymer component A needs to have a heat of fusion and a heat of crystallization of 10 mJ / mg or more, preferably 30 mJ / mg or more, more preferably 50 mJ / mg or more. When the heat of fusion and the heat of crystallization are less than 10 mJ / mg, the endothermic property is not sufficiently developed, and the above object of the present invention cannot be achieved. Such a polymer component A is obtained from a linear aliphatic dicarboxylic acid component and a linear aliphatic diol component, and examples of the linear aliphatic dicarboxylic acid include glutaric acid and adipic acid. , Pimelic acid or their ester-forming derivatives are examples of linear aliphatic diol components such as ethylene glycol, propanediol, 1,4-butanediol, 1,5-pentanediol or 1,6-hexane. Examples include diol and the like. The linear aliphatic dicarboxylic acid and linear aliphatic diol components may be used alone or in combination of two or more. Further, terephthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, succinic acid, trimellitic acid, oxybenzoic acid, decane-1,10-dicarboxylic acid, octadecane-1 within the range that does not impair the endothermic and exothermic properties in the present invention. , 18-dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, diethylene glycol, 1,4-cyclohexanedimethanol and the like may be used together as a copolymerization component. Further, if necessary, additives such as a matting agent, a stabilizer or a coloring agent may be added. Such polymer component A can be easily produced by a conventional method. That is, it can be produced by subjecting a linear aliphatic dicarboxylic acid component and a linear aliphatic diol component to an esterification reaction or a transesterification reaction and then a polycondensation reaction. The temperature-lowering crystallization temperature of the polymer component A can be adjusted by incorporating a crystal nucleating agent into the polymer. Examples of the crystal nucleating agent include talc, silica, chopped glass strands, and dioxide. Fine particles of inorganic compounds such as titanium, calcium silicate and antimony trioxide, fine particles of organic acid salts such as magnesium stearate and sodium benzoate, ethylene oxide adducts of disodium sulfobisphenol A, fluororesins, organic silicon, polyacrylic acid Examples thereof include crosslinked products, polystyrene crosslinked products, and fine particles of organic compounds such as polyarylate. These crystal nucleating agents may be used alone or in combination of two or more kinds. When the polymer nucleating agent is contained in the polymer component A, the content is 0.01 to the polymer.
It is preferably 3.0% by weight. If this content is less than 0.01% by weight, the effect as a crystal nucleating agent will be poor, while if it exceeds 3.0% by weight, the composite fiber will be easily cut during melt spinning or drawing, and spinning will also occur. It is not preferable because it causes problems such as accumulation on the filter in the spinneret pack and shortening of the life of the spinneret pack. When the polymer component A contains the crystal nucleating agent as described above, it may be added after the esterification reaction between the linear aliphatic dicarboxylic acid component and the linear aliphatic diol component or after the transesterification reaction. It may be added during the polycondensation reaction.

【0006】本発明における熱可塑性重合体成分Bは,
その融点又は軟化点温度が110℃以上のものであるこ
とが必要であり,好ましくは170℃以上,より好まし
くは210℃以上のものがよい。融点又は軟化点温度が
110℃未満であると,得られた不織布が熱湯に耐える
ことができず,また,アイロン掛けが困難となり,好ま
しくない。このような重合体成分Bとしては,ポリエス
テル,ポリアミド又はポリオレフイン等の重合体が挙げ
られ,特に,ポリエチレンテレフタレートやポリブチレ
ンテレフタレートあるいはこれらを主体とするポリエス
テルが好ましい。
The thermoplastic polymer component B in the present invention is
It is necessary that its melting point or softening point temperature is 110 ° C. or higher, preferably 170 ° C. or higher, more preferably 210 ° C. or higher. If the melting point or softening point temperature is less than 110 ° C, the obtained nonwoven fabric cannot withstand hot water and ironing becomes difficult, which is not preferable. Examples of the polymer component B include polymers such as polyesters, polyamides, and polyolefins, and polyethylene terephthalate, polybutylene terephthalate, and polyesters containing these as a main component are particularly preferable.

【0007】本発明の不織布を構成する複合繊維は,前
記重合体成分A及びBとから構成され,かつ重合体成分
Bが繊維表面を被覆した複合形態を有するものである。
複合形態は,重合体成分Aを芯部とし重合体成分Bを鞘
部とする同心又は偏心芯鞘型,重合体成分Aを島部とし
重合体成分Bを海部とする海島型,重合体成分Bの中に
重合体成分Aが層状に配列された多層型等が挙げられる
が,特に,芯鞘型が本発明の効果の上で好ましい。な
お,複合繊維の断面形状は特に円形断面に限定されるも
のではなく,三角形や四角形等の形態であってもよい。
複合比すなわち重合体成分Bと重合体成分Aとの重量比
(B/A)は,1/4〜4/1とするのがよい。重合体
成分Bの複合比が少ないと,溶融紡糸時の紡糸性が低下
したり,また,重合体成分Aが繊維表面に露出して均一
な不織布を得ることが困難となったり,不織布の強度が
低下したりするため,好ましくない。一方,重合体成分
Bの複合比が多過ぎると重合体成分Aの複合比が少な過
ぎることになり,吸発熱性が十分に発現せず,本発明の
上記目的を達成することができない。
The composite fiber constituting the nonwoven fabric of the present invention is composed of the above-mentioned polymer components A and B, and has a composite form in which the polymer component B covers the fiber surface.
The composite form is a concentric or eccentric core-sheath type in which the polymer component A is the core portion and the polymer component B is the sheath portion, and a sea-island type in which the polymer component A is the island portion and the polymer component B is the sea portion, the polymer component Examples of B include a multi-layer type in which the polymer component A is arranged in layers, and a core-sheath type is particularly preferable in terms of the effect of the present invention. The cross-sectional shape of the composite fiber is not particularly limited to a circular cross section, and may be a triangular shape, a quadrangular shape, or the like.
The composite ratio, that is, the weight ratio (B / A) of the polymer component B and the polymer component A is preferably 1/4 to 4/1. If the composite ratio of the polymer component B is low, the spinnability during melt spinning will be reduced, and the polymer component A will be exposed on the fiber surface, making it difficult to obtain a uniform nonwoven fabric. It is not preferable because it decreases. On the other hand, if the compounding ratio of the polymer component B is too high, the compounding ratio of the polymer component A will be too low, and the heat absorption and exothermic properties will not be sufficiently exhibited, and the above object of the present invention cannot be achieved.

【0008】次に,本発明の不織布に関して,説明す
る。本発明の不織布は,上述したように,融点が15〜
50℃,融解熱が10mJ/mg以上,降温結晶化温度
が40℃以下,結晶化熱が10mJ/mg以上の熱可塑
性重合体成分Aと,融点又は軟化点温度が110℃以上
の熱可塑性重合体成分Bとからなり,かつ前記重合体成
分Bが繊維表面を被覆する複合繊維から構成されるもの
である。この不織布は,10〜200g/m2 の目付け
を有するのが好ましい。目付けが10g/m2 未満であ
ると不織布の厚みが不足するため,吸発熱性が十分に発
現せず,本発明の上記目的を達成することができない。
一方,200g/m2 を超えると不織布が重くかつ嵩高
くなって衣料用不織布として不適当なものとなるため,
好ましくない。なお,本発明の不織布は,不織布そのま
まで用いることができるが,必要に応じて,染色加工や
樹脂加工を施して用いることもできる。
Next, the nonwoven fabric of the present invention will be described. As described above, the nonwoven fabric of the present invention has a melting point of 15 to
50 ° C, thermoplastic polymer component A having a heat of fusion of 10 mJ / mg or more, a crystallization temperature of 40 ° C or less, a heat of crystallization of 10 mJ / mg or more, and a thermoplastic polymer having a melting point or softening point temperature of 110 ° C or more. The polymer component B is composed of a composite component B, and the polymer component B is composed of a composite fiber coating the fiber surface. This non-woven fabric preferably has a basis weight of 10 to 200 g / m 2 . If the basis weight is less than 10 g / m 2 , the thickness of the non-woven fabric is insufficient, so that heat absorption and exothermic properties are not sufficiently developed, and the above object of the present invention cannot be achieved.
On the other hand, if it exceeds 200 g / m 2 , the non-woven fabric becomes heavy and bulky and unsuitable as a non-woven fabric for clothing.
Not preferable. The nonwoven fabric of the present invention can be used as it is, but may be used after being subjected to dyeing processing or resin processing, if necessary.

【0009】次に,本発明の不織布の製造法に関して,
説明する。本発明の不織布は,上記重合体成分Aと上記
重合体成分Bとを複合成分とし通常の溶融複合紡糸装置
を用いて溶融複合紡出し,紡出繊維を開繊した後ウエブ
化する方法により製造することができる。すなわち,上
記重合体成分Aと上記重合体成分Bとを通常の溶融複合
紡糸装置を用いて溶融複合紡出し,エアーサツカ等の引
き取り手段を用いて紡出複合繊維を延伸しつつ引き取
り,開繊装置を用いて開繊し,引続き移動する網状体上
に堆積させてウエブを形成し,得られたウエブに接着処
理を施して構成繊維間を接着させることにより,本発明
の不織布を得るのである。この接着処理に際しては,ウ
エブに接着剤を含浸させる方法,熱融着繊維をウエブに
混合し加熱処理を施して熱融着繊維と複合繊維間を接着
させる方法,ニードルパンチング処理により複合繊維を
押し込み交絡させる方法,高圧水流処理により複合繊維
間に交絡を施す方法,加熱された彫刻ローラと表面平滑
なローラとの間にウエブを通して部分的に複合繊維間に
接着処理を施す方法等を採用することができるが,特
に,ニードルパンチング処理や高圧水流処理による方法
が複合繊維内部を潰すことがない点で好ましい。なお,
得られた不織布に,必要に応じて,染色加工や樹脂加工
を施してもよい。
Next, regarding the method for producing the nonwoven fabric of the present invention,
explain. The nonwoven fabric of the present invention is produced by a method in which the polymer component A and the polymer component B are used as a composite component and melt-composite spinning is performed using a usual melt-composite spinning device, and the spun fiber is opened and then formed into a web. can do. That is, the polymer component A and the polymer component B are melt-composite-spun by using a normal melt-composite spinning device, and the spun-out composite fiber is drawn while being drawn by using a take-up means such as an air sucker, and an opening device is provided. The non-woven fabric of the present invention is obtained by opening the fiber by using the above-mentioned method, depositing it on a continuously moving mesh body to form a web, and subjecting the obtained web to an adhesive treatment to bond the constituent fibers. In this adhesion treatment, the web is impregnated with the adhesive, the heat-sealing fibers are mixed with the web and heat-treated to bond the heat-sealing fibers to the composite fibers, and the composite fibers are pushed by needle punching. Use a method of entanglement, a method of entanglement between composite fibers by high-pressure water flow treatment, a method of partially adhering between composite fibers through a web between a heated engraving roller and a roller with a smooth surface. However, a method using needle punching treatment or high-pressure water flow treatment is particularly preferable in that the inside of the composite fiber is not crushed. In addition,
The obtained non-woven fabric may be subjected to dyeing processing or resin processing, if necessary.

【0010】[0010]

【作用】本発明の不織布は,上記複合繊維から構成され
るものであり,複合繊維を構成する熱可塑性重合体成分
Aが融解するときに吸収する融解熱により吸熱性を発現
し,また,結晶化するときに発熱する結晶化熱により発
熱性を発現するものであって,この吸発熱性を有する重
合体成分Bは繊維表面に露出することがなく,繊維表面
は高融点又は高軟化点温度を有する熱可塑性重合体成分
Bにより被覆されているため,衣料用不織布として必要
な特性を保持しつつ,かつ吸発熱性を発現するのであ
る。
The non-woven fabric of the present invention is composed of the above-mentioned composite fiber, and exhibits the endothermic property due to the heat of fusion absorbed when the thermoplastic polymer component A constituting the composite fiber is melted, and also has a crystal structure. The polymer component B having an endothermic exothermic property is not exposed on the fiber surface, and the fiber surface has a high melting point or a high softening point temperature. Since it is coated with the thermoplastic polymer component B having the above-mentioned properties, it exhibits exothermicity while maintaining the properties required for a nonwoven fabric for clothing.

【0011】[0011]

【実施例】次に,実施例に基づいて本発明を具体的に説
明する。なお,実施例における極限粘度,融点,降温結
晶化温度,結晶化熱,軟化点温度の測定,吸発熱性の評
価は,次の方法により実施した。 極限粘度:フエノールと四塩化エタンとの等重量混合物
を溶媒とし,温度20℃で測定した。 融点Tm及び降温結晶化温度Tc:パーキンエルマ社製
示差走査型熱量計DSC−2型を用い,次の条件で測定
して得た。すなわち,窒素気流中において,−30℃か
ら昇温速度10℃/分で温度280℃まで昇温して5分
間保持した後に降温速度10℃/分で温度−30℃まで
降温して3分間保持し,昇温速度10℃/分で温度28
0℃まで再度昇温して測定した。再昇温時の融解ピーク
温度曲線のピーク値を融点Tmとし,降温時の結晶化ピ
ーク温度曲線のピーク温度を結晶化温度Tcとした。 融解熱△Hf及び結晶化熱△Hc:パーキンエルマ社製
示差走査型熱量計DSC−2型を用い,次の条件で測定
して得た。すなわち,再昇温時の融解ピーク面積を融解
熱△Hf,結晶化ピーク面積を結晶化熱△Hcとした。 軟化点温度:柳本製作所製自動軟化点測定装置AMP−
1型を用い,30℃から昇温速度10℃/分で昇温測定
した。 吸発熱性:本発明の不織布試料片とポリエチレンテレフ
タレート繊維の不織布試料片とを金属板に貼り,空気中
において,常温より温度40℃まで昇温して保持したも
のと,常温より温度60℃まで昇温して30分間保持し
た後に温度5℃まで自然冷却して保持したものについ
て,日本電子株式会社製赤外線映像装置サーモビユーア
JTG−IB/IBT型を用い,両試料片の表面温度を
観察し,得られた表面温度の差により吸発熱性を評価し
た。
EXAMPLES Next, the present invention will be specifically described based on Examples. The intrinsic viscosity, melting point, cooling crystallization temperature, crystallization heat, softening point temperature and endothermic exothermicity in the examples were evaluated by the following methods. Intrinsic viscosity: Measured at a temperature of 20 ° C. using an equal weight mixture of phenol and ethane tetrachloride as a solvent. Melting point Tm and falling crystallization temperature Tc: Measured under the following conditions using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elmer. That is, in a nitrogen stream, the temperature was raised from -30 ° C to a temperature of 280 ° C at a temperature rising rate of 10 ° C / min and held for 5 minutes, and then the temperature was lowered to -30 ° C at a temperature lowering rate of 10 ° C / min and held for 3 minutes. Then, the temperature rise rate is 10 ° C / min and the temperature is 28
The temperature was raised again to 0 ° C. and the measurement was performed. The peak value of the melting peak temperature curve when the temperature was raised again was taken as the melting point Tm, and the peak temperature of the crystallization peak temperature curve when the temperature was lowered was taken as the crystallization temperature Tc. Heat of fusion ΔHf and heat of crystallization ΔHc: Measured under the following conditions using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elmer. That is, the melting peak area at the time of reheating was taken as the heat of melting ΔHf, and the crystallization peak area was taken as the heat of crystallization ΔHc. Softening point temperature: Automatic softening point measuring device AMP- manufactured by Yanagimoto Seisakusho
The temperature was measured at 30 ° C. at a temperature rising rate of 10 ° C./min using the 1st type. Endothermicity: One in which the non-woven fabric sample piece of the present invention and the non-woven fabric sample piece of polyethylene terephthalate fiber were attached to a metal plate and held in air at a temperature of 40 ° C. from room temperature to 60 ° C. from room temperature. The temperature of the sample was raised and kept for 30 minutes, then naturally cooled to 5 ° C. and kept, and the surface temperature of both sample pieces was observed by using an infrared imager Thermoviewer JTG-IB / IBT manufactured by JEOL Ltd. The endothermic and exothermic properties were evaluated based on the obtained difference in surface temperature.

【0012】実施例1 グルタル酸(GA)とグルタル酸に対し1.6倍モルの
1,6−ヘキサンジオール(HD)とを常法によりエス
テル化反応させ,反応生成物にGA1モルに対して3×
10-4モルのテトラブチルチタネートを触媒として加
え,温度270℃かつ1トールの条件で3時間重縮合反
応させ,ポリエステル重合体Aを得た。得られたポリエ
ステル重合体Aは,極限粘度が0.62,融点Tmが3
1℃,降温結晶化温度Tcが4℃,融解熱△Hfが53
mJ/mg,結晶化熱△Hcが55mJ/mgのもので
あった。次に,ポリエステル重合体Aを芯成分,極限粘
度が0.68のポリエチレンテレフタレート重合体Bを
鞘成分とし,溶融複合紡糸装置を用いて複合比(B/
A)を1/1として溶融紡出し,エアーサツカを用いて
紡出複合繊維を延伸しつつ引き取って単糸繊度が3デニ
ールのフイラメント繊維とし,開繊装置を用いてこれを
開繊し,移動する網状体上に堆積させてウエブを形成し
た。次いで,得られたウエブにニードルパンチング処理
を施し,目付けが15g/m2 の不織布を作成した。得
られた不織布の各種特性を表1に示す。
Example 1 Glutaric acid (GA) and 1.6 times mol of 1,6-hexanediol (HD) with respect to glutaric acid were subjected to an esterification reaction by a conventional method, and the reaction product was added to 1 mol of GA. 3x
10 −4 mol of tetrabutyl titanate was added as a catalyst and a polycondensation reaction was carried out at a temperature of 270 ° C. and 1 Torr for 3 hours to obtain a polyester polymer A. The obtained polyester polymer A has an intrinsic viscosity of 0.62 and a melting point Tm of 3
1 ° C, falling crystallization temperature Tc is 4 ° C, heat of fusion ΔHf is 53
mJ / mg, heat of crystallization ΔHc was 55 mJ / mg. Next, using polyester polymer A as a core component and polyethylene terephthalate polymer B having an intrinsic viscosity of 0.68 as a sheath component, a composite ratio (B /
A) is 1/1 and melt-spun, and the spun composite fiber is drawn and drawn by using an air sacker to obtain filament fiber having a single yarn fineness of 3 denier, which is opened and moved using an opening device. A web was formed by depositing on the mesh. Then, the obtained web was subjected to needle punching treatment to prepare a nonwoven fabric having a basis weight of 15 g / m 2 . Table 1 shows various properties of the obtained nonwoven fabric.

【0013】実施例2〜6及び比較例1〜6 重合体成分Aの極限粘度,融点Tm,降温結晶化温度T
c,融解熱△Hf,結晶化熱△Hcを表1に示したよう
に変更した以外は実施例1と同様にして,不織布を作成
した。得られた不織布の各種特性を表1に示す。
Examples 2-6 and Comparative Examples 1-6 Intrinsic viscosity, melting point Tm, and falling crystallization temperature T of polymer component A
A nonwoven fabric was prepared in the same manner as in Example 1 except that c, heat of fusion ΔHf, and heat of crystallization ΔHc were changed as shown in Table 1. Table 1 shows various properties of the obtained nonwoven fabric.

【0014】比較例7 比較例1における重合体成分Aを鞘成分とし,かつ表1
に示した重合体成分を芯成分とした以外は実施例1と同
様にして,不織布を作成した。得られた不織布の各種特
性を表1に示す。なお,この比較例では,溶融紡糸性が
低下し,しかも均一な不織布を得ることができなかっ
た。
Comparative Example 7 The polymer component A in Comparative Example 1 was used as a sheath component, and Table 1
A nonwoven fabric was prepared in the same manner as in Example 1 except that the polymer component shown in 1 was used as the core component. Table 1 shows various properties of the obtained nonwoven fabric. In this comparative example, melt spinnability was deteriorated and a uniform nonwoven fabric could not be obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明の不織布は,上記複合繊維から構
成され,複合繊維を構成する熱可塑性重合体成分Aが融
解するときに吸収する融解熱により吸熱性を発現し,ま
た結晶化するときに発熱する結晶化熱により発熱性を発
現し,この吸発熱性を有する重合体成分Bは繊維表面に
露出することがなく,繊維表面は高融点又は高軟化点温
度を有する熱可塑性重合体成分Bにより被覆されている
ため,衣料用不織布として必要な特性を保持しつつ,か
つ吸発熱性を発現する。したがって,太陽光線の照射が
なくても体温又は外気温度の変化に対応して吸熱あるい
は発熱をし,色調面からの用途の制限がなく,かつ防寒
衣料やスポーツ衣料等の素材として好適に用いることが
できる。
EFFECT OF THE INVENTION The nonwoven fabric of the present invention is composed of the above-mentioned composite fibers, and when the thermoplastic polymer component A constituting the composite fibers melts, it exhibits endothermic properties by the heat of fusion absorbed and when it is crystallized. The polymer component B, which exhibits exothermicity due to the heat of crystallization that is exothermic, does not expose to the fiber surface, and the fiber surface has a high melting point or a high softening point temperature. Since it is covered with B, it retains the properties required as a non-woven fabric for clothing and exhibits heat absorption and exothermic properties. Therefore, it absorbs or generates heat in response to changes in body temperature or outside temperature even without irradiation of sunlight, and there are no restrictions on the use in terms of color tone, and it is suitable for use as a material for winter clothing, sports clothing, etc. You can

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 融点が15〜50℃,融解熱が10mJ
/mg以上,降温結晶化温度が40℃以下,結晶化熱が
10mJ/mg以上の熱可塑性重合体成分Aと,融点又
は軟化点温度が110℃以上の熱可塑性重合体成分Bと
からなり,かつ前記重合体成分Bが繊維表面を被覆する
複合繊維から構成されることを特徴とする吸発熱性複合
繊維不織布。
1. A melting point of 15 to 50 ° C. and a heat of fusion of 10 mJ.
/ Mg or more, the temperature-lowering crystallization temperature is 40 ° C. or less, the heat of crystallization is 10 mJ / mg or more, and a thermoplastic polymer component B having a melting point or softening point temperature of 110 ° C. or more, An endothermic and exothermic composite fiber non-woven fabric characterized in that the polymer component B is composed of composite fibers covering the fiber surface.
【請求項2】 熱可塑性重合体成分Aが融点が30〜4
0℃,融解熱が50mJ/mg以上,降温結晶化温度が
30℃以下,結晶化熱が50mJ/mg以上のポリエス
テルであり,熱可塑性重合体成分Bがポリエチレンテレ
フタレート,ポリブチレンテレフタレート又はこれらを
主体とするポリエステルである請求項1記載の吸発熱性
複合繊維不織布。
2. The thermoplastic polymer component A has a melting point of 30-4.
A polyester having a temperature of 0 ° C., a heat of fusion of 50 mJ / mg or more, a crystallization temperature of 30 ° C. or less, and a heat of crystallization of 50 mJ / mg or more, and the thermoplastic polymer component B is polyethylene terephthalate, polybutylene terephthalate, or mainly these. The endothermic and exothermic composite fiber nonwoven fabric according to claim 1, which is a polyester.
【請求項3】 熱可塑性重合体成分Aが直鎖状脂肪族ポ
リエステルである請求項1又は2記載の吸発熱性複合繊
維不織布。
3. The endothermic composite fiber nonwoven fabric according to claim 1 or 2, wherein the thermoplastic polymer component A is a linear aliphatic polyester.
JP4161949A 1992-05-28 1992-05-28 Heat-absorbing and releasing nonwoven fabric of conjugate fiber Pending JPH05331754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4161949A JPH05331754A (en) 1992-05-28 1992-05-28 Heat-absorbing and releasing nonwoven fabric of conjugate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4161949A JPH05331754A (en) 1992-05-28 1992-05-28 Heat-absorbing and releasing nonwoven fabric of conjugate fiber

Publications (1)

Publication Number Publication Date
JPH05331754A true JPH05331754A (en) 1993-12-14

Family

ID=15745114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4161949A Pending JPH05331754A (en) 1992-05-28 1992-05-28 Heat-absorbing and releasing nonwoven fabric of conjugate fiber

Country Status (1)

Country Link
JP (1) JPH05331754A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005699A1 (en) * 2003-07-10 2005-01-20 Kanebo, Limited Fabric having temperature control function
JP2009062666A (en) * 2007-08-09 2009-03-26 Nippon Ester Co Ltd Staple fiber nonwoven fabric
JP2009215662A (en) * 2008-03-07 2009-09-24 Nippon Ester Co Ltd Staple fiber for nonwoven fabric and stape fiber nonwoven fabric
EP2145934A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials
EP2145935A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials and methods of manufacturing the same
WO2010008909A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
US8221910B2 (en) 2008-07-16 2012-07-17 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing polymeric phase change materials
JP2017119939A (en) * 2015-12-28 2017-07-06 Kbセーレン株式会社 Synthetic fiber and composite yarn
US9938365B2 (en) 2011-03-04 2018-04-10 Outlast Technologies, LLC Articles containing precisely branched functional polymeric phase change materials
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US10590321B2 (en) 2008-07-16 2020-03-17 Outlast Technologies, Gmbh Articles containing functional polymeric phase change materials and methods of manufacturing the same
USD911961S1 (en) 2017-04-03 2021-03-02 Latent Heat Solutions, Llc Battery container

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005699A1 (en) * 2003-07-10 2005-01-20 Kanebo, Limited Fabric having temperature control function
US8404341B2 (en) 2006-01-26 2013-03-26 Outlast Technologies, LLC Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
US9797087B2 (en) 2006-01-26 2017-10-24 Outlast Technologies, LLC Coated articles with microcapsules and other containment structures incorporating functional polymeric phase change materials
JP2009062666A (en) * 2007-08-09 2009-03-26 Nippon Ester Co Ltd Staple fiber nonwoven fabric
JP2009215662A (en) * 2008-03-07 2009-09-24 Nippon Ester Co Ltd Staple fiber for nonwoven fabric and stape fiber nonwoven fabric
EP2145934A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials
US8221910B2 (en) 2008-07-16 2012-07-17 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing polymeric phase change materials
WO2010008909A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
EP2145935A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials and methods of manufacturing the same
US10377936B2 (en) 2008-07-16 2019-08-13 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing phase change materials
US10590321B2 (en) 2008-07-16 2020-03-17 Outlast Technologies, Gmbh Articles containing functional polymeric phase change materials and methods of manufacturing the same
US9938365B2 (en) 2011-03-04 2018-04-10 Outlast Technologies, LLC Articles containing precisely branched functional polymeric phase change materials
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
JP2017119939A (en) * 2015-12-28 2017-07-06 Kbセーレン株式会社 Synthetic fiber and composite yarn
USD911961S1 (en) 2017-04-03 2021-03-02 Latent Heat Solutions, Llc Battery container

Similar Documents

Publication Publication Date Title
US6582818B2 (en) Polyesters having a controlled melting point and fibers formed therefrom
US6231976B1 (en) Copolyester binder fibers
JPH05331754A (en) Heat-absorbing and releasing nonwoven fabric of conjugate fiber
EP1115925B1 (en) Polyesters containing neopentyl glycol and fibers formed therefrom
KR101968793B1 (en) Melt Blowing Process, Low Shrinkage Melt Blown Polymer Fibers and Fibrous Structures, and Melt Blowable Polymer Compositions
JP2877525B2 (en) Endothermic composite fiber
JPH05239716A (en) Thermally insulating conjugate fiber
JP3023390B2 (en) Endothermic, exothermic composite fiber
JP3371047B2 (en) Thermal storage fiber
JPH09268490A (en) Polyester-based heat-resistant wet type nonwoven fabric and its production
JPH05117508A (en) Polyester composition having ultraviolet light screening performance, its production and fiber therfrom
CN1051115C (en) Temp. regulating fibre and its products
JP3053248B2 (en) Polyester composition having ultraviolet shielding performance, method for producing the polyester composition, and fiber
JPH04194026A (en) Polyester-based conjugate binder fiber
JP3296859B2 (en) Thermal storage fiber
JPH10212652A (en) Polyester filament based non woven fabric
JP4981721B2 (en) Method for producing heat-retaining polylactic acid fiber structure, heat-retaining polylactic acid fiber structure and fiber product
JPH04245910A (en) Photothermal converting fiber and photothermal fusible fiber
JP6537431B2 (en) Core-sheath composite binder fiber
JPH059804A (en) Synthetic fiber having excellent heat-accumulating and heat-insulation property
JP2555136B2 (en) Microporous polyester fiber manufacturing method
JPH07207531A (en) Polyester fiber
JP3605231B2 (en) Heat resistant nonwoven
JPS6081314A (en) Preparation of polyester yarn
JPH11302925A (en) Polylactic acid-based filament and its production