JPH04245910A - Photothermal converting fiber and photothermal fusible fiber - Google Patents

Photothermal converting fiber and photothermal fusible fiber

Info

Publication number
JPH04245910A
JPH04245910A JP1113991A JP1113991A JPH04245910A JP H04245910 A JPH04245910 A JP H04245910A JP 1113991 A JP1113991 A JP 1113991A JP 1113991 A JP1113991 A JP 1113991A JP H04245910 A JPH04245910 A JP H04245910A
Authority
JP
Japan
Prior art keywords
fiber
infrared
group
fibers
infrared absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1113991A
Other languages
Japanese (ja)
Other versions
JPH0762283B2 (en
Inventor
Hisami Satake
寿巳 佐竹
Tomoaki Nagai
永井 共章
Yoshiyuki Yokoyama
横山 美幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jujo Paper Co Ltd
Original Assignee
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jujo Paper Co Ltd filed Critical Jujo Paper Co Ltd
Priority to JP3011139A priority Critical patent/JPH0762283B2/en
Publication of JPH04245910A publication Critical patent/JPH04245910A/en
Publication of JPH0762283B2 publication Critical patent/JPH0762283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain fiber, converting near infrared rays in sunlight into heat, having heat insulating and storing properties and capable of instantaneously fusing mutual fibers with the near infrared rays and producing nonwoven fabrics. CONSTITUTION:The following fiber is provided. The fiber is obtained by including a product of reaction between a thiourea derivative and a copper compound as a near infrared ray absorbent in synthetic fiber by a method for mixing diphenylthiourea with copper stearate in a resin such as polyethylene terephthalate, melt spinning the resultant mixture, etc. Furthermore, the fiber is prepared by mixing the product of the reaction between the thiourea derivative with the copper compound as the near infrared absorbent in a resin to be a sheath part of fiber having a sheath-core structure and including the above- mentioned reaction product in the aforementioned sheath part.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、太陽光の近赤外領域の
光を吸収して熱に変換する機能を有する光熱変換繊維お
よび光熱融着繊維に関するものであり、その蓄熱保温性
を利用してスキーウエアなどの冬期のスポーツ衣料や、
繊維表面の融解接着性を利用して主として不織布の材料
として利用することができる。
[Industrial Application Field] The present invention relates to photothermal conversion fibers and photothermal fusion fibers that have the function of absorbing light in the near-infrared region of sunlight and converting it into heat, and utilizes its heat storage and heat retention properties. Winter sports clothing such as ski wear,
It can be used primarily as a material for nonwoven fabrics by utilizing the melt adhesive properties of the fiber surface.

【0002】0002

【従来の技術】蓄熱保温繊維は、中心部に炭化ジルコニ
ウム等のセラミックを封じ込めた繊維、あるいはナイロ
ンの織物に炭化ジルコニウムを含むフイルムを融着した
ものや炭化ジルコニウムをコーテイングしたものが、知
られている。
[Prior Art] Heat storage and insulation fibers include fibers with ceramics such as zirconium carbide sealed in the center, fibers with a nylon fabric fused to a film containing zirconium carbide, and fibers coated with zirconium carbide. There is.

【0003】これらは太陽光の近赤外領域の光を吸収し
て熱に変換すると同時に人体から出る遠赤外線を熱とし
て衣服の内側に蓄える。
[0003] These absorb light in the near-infrared region of sunlight and convert it into heat, while at the same time storing far-infrared rays emitted from the human body as heat inside the clothing.

【0004】しかし、保温物質の主流となっている炭化
ジルコニウムは濃い黒色であり、これを含有した繊維は
黒味がかったくすんだ色になるので、鮮やかなあるいは
微妙な色合いを必要とするファッション性を強調する衣
服に使うのには難点があった。
[0004] However, zirconium carbide, which is the mainstream heat-insulating material, has a deep black color, and fibers containing it have a dark, dull color, so fashionability that requires bright or subtle colors There were some difficulties in using it for clothing that emphasizes.

【0005】又、近年その用途が広がっている不織布は
、ウェブ形成−ウェブ接着−仕上げという工程で製造さ
れ、スパンボンド方式とメルトブロー方式ではウェブ形
成工程の中で生じる接着によって高い強度の不織布が得
られる。しかしその他の方法で形成されたウェブは改め
て接着しないと十分な強度が得られない。その方法とし
てはラテックス等の接着剤を浸積または印刷する方法、
溶剤を使用して繊維の一部を溶解させる方法、ニードル
パンチによる機械的方法及びサーマルボンド法(溶融融
着法)等が知られているが、これらの方法で十分な強度
を得るためには、乾燥や、溶剤の回収等の後工程が必要
であったり、繊維を押しつぶしてしまうなど機能と美観
を損なう欠点があった。
[0005] In addition, nonwoven fabrics, whose uses have been expanding in recent years, are manufactured through a process of web formation, web adhesion, and finishing.In the spunbond method and the melt blow method, high strength nonwoven fabrics can be obtained by the adhesion that occurs during the web formation process. It will be done. However, webs formed by other methods cannot obtain sufficient strength unless they are bonded again. Methods include dipping or printing adhesive such as latex,
Methods such as a method of dissolving part of the fiber using a solvent, a mechanical method using a needle punch, and a thermal bond method (melt fusion method) are known, but in order to obtain sufficient strength with these methods, However, it requires post-processes such as drying and solvent recovery, and has disadvantages such as crushing the fibers, which impairs functionality and aesthetics.

【0006】[0006]

【発明が解決しょうとする課題】上記現状に鑑み、本発
明者らは光を吸収して熱に変換し得る材料であって、可
視部における着色が少ない近赤外吸収材の使用を検討し
た。ところが、光ディスクなどの光記録媒体、電子写真
方式の感光体に使用されている近赤外吸収材は、熱によ
り溶融紡糸するプラスチック繊維中に均一に含有するに
は、十分な耐熱性がなくまた可視的に着色の少ないもの
がなく、また、使用量が少なく化学構造が複雑なたこと
もあって高価であり、一般の合成繊維への添加剤として
使用するには無理があった。更に、上記用途のため開発
された近赤外吸収材は、近赤外領域に広い吸収性を有す
る繊維は見当たらず、特定の狭い範囲の近赤外線しか利
用できないので変換効率も悪いものであった。
[Problem to be solved by the invention] In view of the above-mentioned current situation, the present inventors have considered the use of a near-infrared absorbing material that is a material that can absorb light and convert it into heat, and has less coloration in the visible region. . However, near-infrared absorbing materials used in optical recording media such as optical disks and electrophotographic photoreceptors do not have sufficient heat resistance to be uniformly incorporated into plastic fibers that are melt-spun by heat. There is no visible coloration, and the amount used is small and the chemical structure is complex, making it expensive, making it unreasonable to use it as an additive to general synthetic fibers. Furthermore, in the near-infrared absorbing materials developed for the above-mentioned applications, there were no fibers with broad absorption in the near-infrared region, and the conversion efficiency was poor because only a specific narrow range of near-infrared rays could be used. .

【0007】そこで本発明は、700 〜2600nm
の近赤外領域全体に一様に吸収がみられ、可視的に着色
が少なく、かつ耐久性の優れた光熱変換繊維、及び非接
触で短時間に接着処理するため光で融着することができ
る光熱融着繊維の提供を課題にした。
[0007] Therefore, the present invention focuses on
A photothermal conversion fiber that absorbs uniformly in the entire near-infrared region, has little visible coloring, and has excellent durability, and can be fused with light because it can be bonded in a short time without contact. The challenge was to provide photothermal bondable fibers that could be bonded with light and heat.

【0008】[0008]

【課題を解決するための手段】本発明の課題は、合成繊
維中に、 一般式  (1)◎
[Means for Solving the Problems] The object of the present invention is to provide synthetic fibers with the general formula (1)◎

【0009】[0009]

【化3】[Chemical 3]

【0010】(式中R1 、R2 、R3 は、水素、
アルキル基、シクロアルキル基、アリール基アラルキル
及び5員環または6員環の複素環残基、からなる群から
選ばれた一価基を表し各基は1個以上の置換基を有して
いてもよく、R1 とR2 又はR2 とR3 は連結
して環を形成してもよい)から選択された少なくとも1
種のチオ尿素誘導体と少なくとも1種の銅化合物との反
応生成物を近赤外吸収材として含有させることによって
解決することを見いだし本発明を完成した。
(In the formula, R1, R2, R3 are hydrogen,
Represents a monovalent group selected from the group consisting of an alkyl group, a cycloalkyl group, an aralkyl aryl group, and a 5- or 6-membered heterocyclic residue, each group having one or more substituents. R1 and R2 or R2 and R3 may be connected to form a ring).
The present invention has been completed based on the discovery that the problem can be solved by incorporating a reaction product of a certain thiourea derivative and at least one copper compound as a near-infrared absorbing material.

【0011】本発明で使用する上記近赤外吸収材は、本
発明者らによって見いだされ特開平2−3493号公報
に開示したものが全て使用することができるが、本発明
において好ましく使用できる化合物は主として以下の条
件を勘案して選択することができる。
[0011] As the near-infrared absorbing material used in the present invention, all those discovered by the present inventors and disclosed in JP-A-2-3493 can be used, but compounds that can be preferably used in the present invention are can be selected mainly by considering the following conditions.

【0012】繊維原料となる樹脂を合成する過程、ある
いは得られた合成樹脂を繊維化する過程で必要とされる
温度で十分に反応して近赤外吸収材となるもの。この反
応温度で安定な近赤外吸収材を与えるもの。得られた近
赤外吸収材は通常の環境条件下で経時的に安定であるも
の。原料および近赤外吸収材がともに安全性の高いもの
。得られた近赤外吸収材の可視部の着色が少ないこと。 近赤外領域全体にわたって吸収があるもの。安価で工業
的に入手性の良いもの。これら条件に合うチオ尿素誘導
体のとして以下の化合物が例示できる。 チオウレア◎ 1−エチルチオウレア◎ 1−フェニルチオウレア◎ 1−m−ニトロフェニルチオウレア◎ 1−p−アミノフェニルチオウレア◎ 1,1−ジフェニルチオウレア◎ 1,3−ジメチルチオウレア◎ 1,3−ジシクロヘキシルチオウレア◎1,3−ジステ
アリルチオウレア◎ 1,3−ジベヘニルチオウレア◎ 1,3−ジフェニルチオウレア◎ 1,3−ジ−m−クロロフェニルチオウレア◎1,3−
ビス(2−ヒドロキシエチル)チオウレア◎1−メチル
−3−p−ヒドロキシフェニルチオウレア◎1−エチル
−3−フェニルチオウレア◎1−エチル−3−p−クロ
ロフェニルチオウレア◎1−エチル−3−(2−ヒドロ
キシエチル)チオウレア◎ 1ーフェニル−3−p−クロロフェニルチオウレア◎1
ーフェニル−3−p−メトキシフェニルチオウレア◎1
−p−ヒドロキシフェニル−3−フェニルチオウレア◎ 1−p−ブロモフェニル−3−フェニルチオウレア◎1
−p−アミノフェニル−3−フェニルチオウレア◎1−
p−ニトロフェニル−3−フェニルチオウレア◎1−(
2−チオフェニル)−3−フェニルチオウレア◎1−(
2−チアゾリル)−3−フェニルチオウレア◎1,1−
ジベンジル−3−フェネチルチオウレア◎エチレンチオ
ウレア また、好ましい銅化合物としては次の化合物を例示する
ことができる。ステアリン酸銅、パルミチン酸銅、オレ
イン酸銅、ラウリル酸銅、安息香酸銅、パラトルイル酸
銅、p−ターシャリブチル安息香酸銅、パラクロル安息
香酸銅、p−フェニル安息香酸銅、o−ベンゾイル安息
香酸銅、p−ニトロ安息香酸銅、アミノ安息香酸銅、ジ
エチルジカルバミン酸銅、アルキルベンゼンスルホン酸
銅、p−トルエンスルホン酸銅、ナフタリンスルホン酸
銅、ドデシルベンゼンスルホン酸銅。このほか、本願発
明者らの発明になり、特願平1−250863号とし得
出願した明細書に記載したフタル酸誘導体の銅塩を使用
することが出来、具体的には下記のようなフタル酸の(
メタ)アクリルロイルエステルの銅塩を好ましいものと
して例示することができる。 フタル酸(メタ)アクリロイルオキシエチル銅塩◎フタ
ル酸(メタ)アクリロイルオキシ−2−プロピル銅塩◎ フタル酸(メタ)アクリロイルオキシ−2−ブチル銅塩
◎フタル酸(メタ)アクリロイルオキシ−2−アシル銅
塩近赤外吸収材は、これらチオウレア誘導体と銅化合物
を混合し80゜C以上、好ましくは90゜C〜300゜
Cの温度で反応させれば簡単に生成する。通常の繊維の
製造工程では紡糸法によらずこの温度以上になる工程を
含むので、本発明の近赤外吸収材を繊維に含ませること
はきわめて容易である。
[0012] A material that fully reacts to become a near-infrared absorbing material at a temperature required in the process of synthesizing resin as a fiber raw material or in the process of fiberizing the obtained synthetic resin. It provides a near-infrared absorbing material that is stable at this reaction temperature. The obtained near-infrared absorbing material is stable over time under normal environmental conditions. Both raw materials and near-infrared absorbing material are highly safe. The resulting near-infrared absorbing material has little coloration in the visible region. Something that has absorption throughout the near-infrared region. Cheap and industrially available. The following compounds can be exemplified as thiourea derivatives that meet these conditions. Thiourea◎ 1-ethylthiourea◎ 1-phenylthiourea◎ 1-m-nitrophenylthiourea◎ 1-p-aminophenylthiourea◎ 1,1-diphenylthiourea◎ 1,3-dimethylthiourea◎ 1,3-dicyclohexylthiourea◎1 ,3-distearylthiourea◎ 1,3-dibehenylthiourea◎ 1,3-diphenylthiourea◎ 1,3-di-m-chlorophenylthiourea◎1,3-
Bis(2-hydroxyethyl)thiourea◎1-methyl-3-p-hydroxyphenylthiourea◎1-ethyl-3-phenylthiourea◎1-ethyl-3-p-chlorophenylthiourea◎1-ethyl-3-(2- Hydroxyethyl)thiourea◎ 1-phenyl-3-p-chlorophenylthiourea◎1
-Phenyl-3-p-methoxyphenylthiourea◎1
-p-hydroxyphenyl-3-phenylthiourea◎ 1-p-bromophenyl-3-phenylthiourea◎1
-p-aminophenyl-3-phenylthiourea◎1-
p-Nitrophenyl-3-phenylthiourea◎1-(
2-thiophenyl)-3-phenylthiourea◎1-(
2-thiazolyl)-3-phenylthiourea◎1,1-
Dibenzyl-3-phenethylthiourea ◎ Ethylenethiourea Further, as preferred copper compounds, the following compounds can be exemplified. Copper stearate, copper palmitate, copper oleate, copper laurate, copper benzoate, copper paratoluate, copper p-tert-butylbenzoate, copper parachlorobenzoate, copper p-phenylbenzoate, o-benzoylbenzoic acid Copper, copper p-nitrobenzoate, copper aminobenzoate, copper diethyldicarbamate, copper alkylbenzenesulfonate, copper p-toluenesulfonate, copper naphthalenesulfonate, copper dodecylbenzenesulfonate. In addition, copper salts of phthalic acid derivatives, which were invented by the present inventors and described in the specification filed as Japanese Patent Application No. 1-250863, can be used. Specifically, the following phthalic acid derivatives can be used. acid (
Preferred examples include copper salts of meth)acryloyl esters. (meth)acryloyloxyethyl copper phthalate ◎(meth)acryloyloxy-2-propyl copper phthalate ◎(meth)acryloyloxy-2-butyl copper phthalate ◎(meth)acryloyloxy-2-acyl phthalate A copper salt near-infrared absorbing material can be easily produced by mixing these thiourea derivatives with a copper compound and reacting the mixture at a temperature of 80°C or higher, preferably 90°C to 300°C. Since normal fiber manufacturing processes include steps at temperatures above this temperature regardless of the spinning method, it is extremely easy to incorporate the near-infrared absorbing material of the present invention into fibers.

【0013】したがって、合成繊維中に近赤外吸収材を
含有させるには、チオウレア誘導体および銅化合物を別
々にあるいは混合して、繊維製造工程中に添加した後8
0゜C以上の温度下において反応させるか、あるいは予
めチオウレア誘導体と銅化合物を反応させて得られた近
赤外吸収材を単に繊維製造工程中の適当なところで添加
すればよい。繊維製造工程とは、通常原料樹脂の製造、
チップあるいはペレット等の粒状化物の製造、紡糸、お
よび後処理の各工程を含むが、この内のいくつかの工程
が省略される場合もある。
[0013] Therefore, in order to incorporate a near-infrared absorbing material into synthetic fibers, the thiourea derivative and the copper compound are added separately or as a mixture during the fiber manufacturing process.
A near-infrared absorbing material obtained by reacting at a temperature of 0° C. or higher or by reacting a thiourea derivative and a copper compound in advance may be simply added at an appropriate point during the fiber manufacturing process. The fiber manufacturing process usually involves the production of raw material resin,
It includes the steps of producing granules such as chips or pellets, spinning, and post-processing, but some of these steps may be omitted.

【0014】紡糸工程は、湿式紡糸、乾式紡糸、溶融紡
糸あるいは直接紡糸の各方法が知れられており、本発明
はこのどの紡糸法にも適用できる。本発明はこれらの紡
糸方法の中、近赤外吸収材の生成に十分な温度が特別な
工程を要せず満足される点で溶融紡糸法が使用し易すく
、従って、原料樹脂も溶融紡糸法に適したものが本発明
にも好ましく使用することができる。
The spinning process includes wet spinning, dry spinning, melt spinning, and direct spinning, and the present invention can be applied to any of these spinning methods. Among these spinning methods, the melt spinning method of the present invention is easy to use in that a temperature sufficient to generate the near-infrared absorbing material is satisfied without requiring any special steps, and therefore, the raw material resin can also be melt-spun. Those suitable for this method can be preferably used in the present invention.

【0015】この場合、原料樹脂中に、チオウレアと銅
化合物を未反応のまま含有させるか、予め作成した近赤
外吸収材を含有させたペレット、チップ等の粒状物を溶
融紡糸するか、原料を溶融させたホッパ等の中にチオウ
レアと銅化合物をそのまま、あるいは予め作成した近赤
外吸収材を添加混合する方法が簡便に使用できる。
In this case, either thiourea and the copper compound are contained unreacted in the raw material resin, or granules such as pellets or chips containing a near-infrared absorbing material prepared in advance are melt-spun, or the raw material resin is It is easy to use a method in which thiourea and a copper compound are mixed as they are, or a near-infrared absorbing material prepared in advance is added and mixed in a hopper etc. in which the thiourea and copper compound are melted.

【0016】本発明で使用することができる合成樹脂は
、上記公知の方法で繊維化できるものであれば使用でき
るから、その種類は特に限定されない。湿式紡糸に適し
たものとしては、芳香族ポリアミド、アクリル、モダク
リル、ビニロン等、乾式紡糸に適したものとしては、ア
クリル、塩化ビニル、ビニロン、ポリウレタン、芳香族
ポリアミド等、溶融紡糸に適したものとしては、ナイロ
ン、脂環族ポリアミド、ポリエステル、塩化ビニリデン
、ポリエチレン、ポリプロピレン、ポリウレタン等を例
示することができる。
The synthetic resin that can be used in the present invention is not particularly limited as long as it can be made into fibers by the above-mentioned known methods. Materials suitable for wet spinning include aromatic polyamide, acrylic, modacrylic, vinylon, etc. Materials suitable for dry spinning include acrylic, vinyl chloride, vinylon, polyurethane, aromatic polyamide, etc. Examples of the material include nylon, alicyclic polyamide, polyester, vinylidene chloride, polyethylene, polypropylene, and polyurethane.

【0017】ポリエステルポリマーは通常の繊維形成性
ポリエステルのことで、特に限定されないが、例えばテ
レフタル酸あるいはそのエステルを主たるジカルボン酸
成分とし、エチレングリコールを主たるグリコール成分
とするポリエチレンテレフタレートが好ましい。このテ
レフタル酸あるいはそのエステルの一部を、例えばアジ
ピン酸、セバシン酸等のジカルボン酸またはそのエステ
ル、p−オキシ安息香酸、p−β−オキシエトキシ安息
香酸などのオキシカルボン酸またはそのエステルで置き
換えてもよく、またエチレングリコール成分の一部を例
えばテトラメチルグリコール、1,4−ビス(β−オキ
シエトキシ)ベンゼン、ビスフェノールA等のビスグリ
コールエーテル、ポリアルキレングリコールなどのグリ
コールで置き換えることもできる。
The polyester polymer is an ordinary fiber-forming polyester, and is not particularly limited, but preferably polyethylene terephthalate, which has terephthalic acid or its ester as the main dicarboxylic acid component and ethylene glycol as the main glycol component. A part of this terephthalic acid or its ester is replaced with a dicarboxylic acid or its ester such as adipic acid or sebacic acid, or an oxycarboxylic acid or its ester such as p-oxybenzoic acid or p-β-oxyethoxybenzoic acid. Alternatively, a part of the ethylene glycol component can be replaced with a glycol such as tetramethyl glycol, 1,4-bis(β-oxyethoxy)benzene, bisglycol ether such as bisphenol A, or polyalkylene glycol.

【0018】チオ尿素誘導体と銅化合物との反応生成物
の合成繊維原料樹脂に対する添加比率は樹脂100 重
量部に対して0.01〜20重量部、好ましくは0.0
5〜10重量部である。またチオ尿素誘導体と銅化合物
の比率は、チオ尿素誘導体の硫黄原子1に対し銅化合物
の銅原子が0.01〜6程度が好ましく、特に銅原子0
.1〜3が好ましい。
The addition ratio of the reaction product of the thiourea derivative and the copper compound to the synthetic fiber raw material resin is 0.01 to 20 parts by weight, preferably 0.0 parts by weight per 100 parts by weight of the resin.
It is 5 to 10 parts by weight. The ratio of the thiourea derivative to the copper compound is preferably about 0.01 to 6 copper atoms in the copper compound to 1 sulfur atom in the thiourea derivative, particularly 0.01 to 6 copper atoms in the copper compound.
.. 1 to 3 are preferred.

【0019】本発明の合成繊維はチオ尿素誘導体と銅化
合物以外に、酸化防止剤、安定剤、分散助剤、坑菌剤、
消臭剤、難燃剤、着色剤、紫外線吸収剤等の改質剤や機
能性付与剤が含有されてもよい。
In addition to the thiourea derivative and the copper compound, the synthetic fiber of the present invention contains an antioxidant, a stabilizer, a dispersion aid, an antibacterial agent,
Modifiers and functional agents such as deodorants, flame retardants, colorants, and ultraviolet absorbers may also be contained.

【0020】また本発明の繊維は単繊維でも複合繊維で
もよく、断面の形状は丸断面、中空面及び異形断面でも
よい。複合繊維は2成分以上の樹脂からなるものであっ
て、成分の配置のしかたによって、バイメタル型(サイ
ドバイサイド型)やシースアンドコア型(芯鞘型)、キ
ドニー型、マトリックス型、多層接合型等が知られてお
り、どの型の複合繊維も本発明の繊維として利用するこ
とができる。
[0020]Furthermore, the fibers of the present invention may be single fibers or composite fibers, and the cross-sectional shape may be round, hollow, or irregularly shaped. Composite fibers are made of two or more resin components, and depending on how the components are arranged, there are bimetal type (side-by-side type), sheath-and-core type (core-sheath type), kidney type, matrix type, multilayer bonded type, etc. Any type of conjugate fiber known in the art can be utilized as the fiber of the present invention.

【0021】複合繊維の場合、低融点の1成分中に前記
チオウレアと銅化合物からなる近赤外吸収材を含有させ
ることによって、光熱融着型繊維とすることができる。
[0021] In the case of a composite fiber, it can be made into a photothermal bondable fiber by incorporating a near-infrared absorbing material made of the above-mentioned thiourea and a copper compound into one component having a low melting point.

【0022】バイメタル型や多層接合型の場合は最も低
融点の成分であって融解して接着性を生ずる成分中に近
赤外吸収材を含有させ、シースアンドコア型、キドニー
型、マトリックス型の場合は外層に低融点で融解して接
着性を生ずる樹脂成分を使用し、この外層成分中に近赤
外吸収材を含有させる。この複合繊維に低融点成分の表
面が融解するに足る近赤外光を含む光を照射すれば、近
赤外吸収材が近赤外線を吸収して熱に変換し、発生した
熱で成分樹脂が融解して接着性を生じる。
In the case of a bimetal type or a multilayer bonding type, a near-infrared absorbing material is contained in the component with the lowest melting point that melts to produce adhesive properties, and a sheath-and-core type, kidney type, or matrix type is used. In this case, a resin component that melts at a low melting point to produce adhesive properties is used for the outer layer, and a near-infrared absorbing material is contained in this outer layer component. When this composite fiber is irradiated with light containing enough near-infrared light to melt the surface of the low-melting point component, the near-infrared absorbing material absorbs the near-infrared light and converts it into heat, and the generated heat causes the component resin to melt. Melts and produces adhesive properties.

【0023】従来の熱融着繊維の融着は、加熱体または
加熱エアと直接接触させ、場合により加圧も必要として
いたので、短時間に非接触で融着はできなかったが、本
発明の光熱融着繊維は適当な光源からの照射によって瞬
時に光融着が可能である。
[0023] Conventional fusing of heat-fusible fibers required direct contact with a heating element or heated air, and in some cases also required pressure, making it impossible to fuse them in a short time without contact. However, the present invention The photothermal fusible fibers can be instantaneously photofused by irradiation from an appropriate light source.

【0024】このようにして得られた本願発明の光融着
繊維は、不織布の製造に効果的に使用することができる
。すなわち、繊維同士を接着するため特別の接着剤や加
圧設備を必要としないから工程に加えられる制約が少な
く、また、非接触で融着する事ができるからバルキーで
、美観と強度が優れた不織布となる。
The photofusion fiber of the present invention thus obtained can be effectively used in the production of nonwoven fabrics. In other words, there is no need for special adhesives or pressure equipment to bond fibers together, so there are fewer restrictions on the process, and since the fibers can be fused together without contact, it is bulky and has excellent aesthetics and strength. It becomes a non-woven fabric.

【0025】一例を挙げれば、光熱融着繊維を1〜8デ
ニールの繊維とし、乾式不織布の場合はロングカット、
湿式不織布の場合はショートカットすればよい。また、
スパンレース方式でレーヨン、ポリエチレンテレフタレ
ート、パルプと水流絡合装置を使用して湿式で光熱融着
繊維を不織布とすることができる。
[0025] For example, the photothermal adhesive fibers are fibers of 1 to 8 deniers, and in the case of dry nonwoven fabrics, long cut fibers,
In the case of wet-processed nonwoven fabrics, a shortcut is sufficient. Also,
Using the spunlace method, rayon, polyethylene terephthalate, and pulp can be wet-processed into a nonwoven fabric using a hydroentangling device.

【0026】光融着繊維を使用した不織布は、各種フイ
ルター、紙おむつや生理用品のフェーシング材などの通
常の用途のほか、メデカル用、ふとんやキルティングの
中綿等光熱変換特性も有効に利用するに用途に使用でき
る。
[0026] Non-woven fabrics using photo-bonding fibers are used not only for general purposes such as various filters and facing materials for disposable diapers and sanitary products, but also for medical purposes, futons, quilting padding, etc., where the light-to-heat conversion properties can be effectively utilized. Can be used for

【0027】また、シースアンドコア型、キドニー型、
マトリックス型複合繊維の内側成分(芯)に例えば炭化
ジルコニウムなどの赤外放射性物質を使用し、この外側
を本発明の近赤外吸収材を含むポリマーで覆うことによ
って更に保温性が高まる。
[0027] Also, sheath and core type, kidney type,
Heat retention can be further enhanced by using an infrared emitting substance such as zirconium carbide for the inner component (core) of the matrix-type composite fiber and covering the outside with a polymer containing the near-infrared absorbing material of the present invention.

【0028】内側成分に赤外放射性物質を含有した複合
繊維と、本発明の近赤外吸収材を含有した光熱変換繊維
とを混紡したり、繊維同士を撚り合わせて複合製糸した
ものも同様に使用できる。このような繊維は耐寒衣料用
素材に適している。
The same applies to composite fibers containing an infrared radioactive substance in the inner component and light-to-heat converting fibers containing the near-infrared absorbing material of the present invention, or composite fibers made by twisting the fibers together. Can be used. Such fibers are suitable as materials for cold-resistant clothing.

【0029】赤外放射性物質は、炭化系セラミック、酸
化物系セラミック、窒化系素セラミックなど従来公知の
材料であるが、なかでは酸化物系のジルコニア(ZrO
2)、シリカ(SiO2)、アルミナ(Al2O3)を
好ましく使用することができるが、特に好ましいものは
高純度炭化ジルコニアである。
Infrared radioactive substances are conventionally known materials such as carbide ceramics, oxide ceramics, and nitride ceramics, but among them, oxide-based zirconia (ZrO
2), silica (SiO2), and alumina (Al2O3) can be preferably used, but particularly preferred is high-purity zirconia carbide.

【0030】これらの、光熱変換繊維および光熱融着繊
維は、これのみであるいは近赤外吸収材を含有しない一
般の繊維とともに織る、編むなどして保温性のよい織物
や編物としたり、不織布とすることができる。
[0030] These photothermal conversion fibers and photothermal fusion fibers can be woven or knitted alone or together with general fibers that do not contain near-infrared absorbers to make fabrics or knitted fabrics with good heat retention, or they can be combined with non-woven fabrics. can do.

【0031】本発明に使用される光は太陽光、ハロゲン
ランプ、キセノンランプ、水銀ランプ、レーサザー光等
で近赤外線領域の波長を含む光であれば利用できるが、
光熱変換繊維は太陽光など比較的弱い光源が望ましく、
光熱融着体及び繊維はハロゲンランプ、キセノンランプ
、水銀ランプ、レーザー光等の強力な光源の使用が望ま
しい。
The light used in the present invention may be sunlight, a halogen lamp, a xenon lamp, a mercury lamp, a laser beam, etc., as long as it includes wavelengths in the near-infrared region.
For photothermal conversion fibers, a relatively weak light source such as sunlight is preferable.
It is desirable to use a strong light source such as a halogen lamp, xenon lamp, mercury lamp, or laser light for the photothermal fused body and fibers.

【0032】[0032]

【作用】チオウレア誘導体と銅化合物化およびこれらを
反応させて得られる近赤外吸収材は、繊維製造工程中に
含有させても繊維製造工程に悪影響がなく、また、近赤
外吸収材を含有した繊維の強度など物性値に悪影響を与
えない。光熱変換繊維はチオ尿素誘導体と銅化合物から
の近赤外吸収性の反応生成物が800 〜2600nm
の広い範囲の広い近赤外線領域の光を吸収して効率良く
熱に変換し、繊維自体が暖められるとともに、光熱融着
繊維は、近赤外吸収材により照射された光の中の近赤外
線を瞬時に効率よく熱に変換し、発生した熱で繊維の一
部を融解し繊維同士を互いに接着する。本発明の光熱融
着体及び繊維は強力な光(近赤外線領域の光)を照射に
よって近赤外吸収性の反応生成物が光を吸収して100
 ゜C以上の熱に変換、バインダーポリマーが溶融して
瞬時に融着する。繊維、フイルム及び接着が可能となる
[Action] The near-infrared absorbing material obtained by converting a thiourea derivative into a copper compound and reacting them has no adverse effect on the fiber manufacturing process even if it is included in the fiber manufacturing process, and it also contains a near-infrared absorbing material. It does not adversely affect the physical properties such as the strength of the fibers. The photothermal conversion fiber is a near-infrared absorbing reaction product from a thiourea derivative and a copper compound that absorbs in the wavelength range of 800 to 2600 nm.
The fiber absorbs light in a wide range of near-infrared rays and efficiently converts it into heat, warming the fiber itself, and the photothermal fusion fiber absorbs near-infrared light in the light irradiated by the near-infrared absorbing material. It instantly and efficiently converts into heat, and the generated heat melts some of the fibers and bonds them together. The photothermal fused body and fiber of the present invention are produced by irradiating strong light (light in the near-infrared region), and the near-infrared-absorbing reaction product absorbs the light.
Converts into heat above °C, melts the binder polymer and instantly fuses it. Fibers, films and adhesives are possible.

【0033】[0033]

【実施例】以下、実施例を用いて本発明を更に詳細に説
明する。以下の実施例及び比較例において、部は全て重
量部である。
EXAMPLES The present invention will be explained in more detail below using examples. In the following Examples and Comparative Examples, all parts are parts by weight.

【0034】実施例1◎ ジフェニルチオ尿素0.4 部とステアリン酸銅0.2
 部をポリエチレンテレフタレートポリマー100部に
ブレンドして押出機に供給し、紡糸口金装置に導き28
3゜Cで紡糸した。紡糸した糸条は、常法に従って空冷
し油剤を付与したあと680m/ 分で引取り集束した
。この未延伸糸を25゜C、65%R.H.の条件下で
20時間シーズニングし、延伸機にて90m/分で4倍
に延伸し、この繊維にクリンプを付与し、得られた繊維
をカットし紡績した後、丸編みを作製した。この編み物
にハロゲンランプにより近赤外線を照射した後、繊維の
温度と繊維から放射される赤外線放射エネルギーを測定
して光熱変換特性と赤外線放射特性を評価した。
Example 1 ◎ 0.4 part of diphenylthiourea and 0.2 part of copper stearate
100 parts of polyethylene terephthalate polymer were blended into an extruder and led to a spinneret device at 28 parts.
Spinning was carried out at 3°C. The spun yarn was air-cooled and oiled according to a conventional method, and then taken off and bundled at 680 m/min. This undrawn yarn was heated at 25°C and 65% R. H. The fibers were seasoned for 20 hours under the following conditions, stretched four times at 90 m/min using a stretching machine, crimped the fibers, cut and spun the resulting fibers, and then produced circular knits. After irradiating this knitted fabric with near-infrared rays using a halogen lamp, the temperature of the fibers and the infrared radiation energy emitted from the fibers were measured to evaluate the photothermal conversion characteristics and infrared radiation characteristics.

【0035】比較例1◎ 実施例1においてジフェニルチオ尿素0.4 部とステ
アリン酸銅0.2部を添加せず、実施例1と同様の方法
で比較用の丸編みを作製した。                          
 表1◎                  繊維の
昇温温度  赤外線放射エネルギー◎        
実施例1    23.4゜C      0.21m
J/cm2     ◎        比較例1  
    6.9゜C      0.08mJ/cm2
   表1に示すようにハロゲンランプの照射によって
、繊維の温度が比較例より高く、赤外線放射エネルギー
も高く、近赤外線を効果的に吸収して熱変換され、その
繊維が優れた保温効果を有するものであることを示して
いる。
Comparative Example 1 ◎ A circular knit for comparison was produced in the same manner as in Example 1 except that 0.4 part of diphenylthiourea and 0.2 part of copper stearate were not added.
Table 1 ◎ Fiber heating temperature Infrared radiant energy ◎
Example 1 23.4°C 0.21m
J/cm2 ◎ Comparative example 1
6.9°C 0.08mJ/cm2
As shown in Table 1, when irradiated with a halogen lamp, the temperature of the fiber is higher than that of the comparative example, the infrared radiant energy is also high, the near-infrared rays are effectively absorbed and converted into heat, and the fiber has an excellent heat retention effect. It shows that.

【0036】繊維温度測定法:太陽光の変わりに、30
0Wのハロゲンランプを20cmの距離から10秒間照
射して編み物裏面に設置した熱電子対センサーによって
繊維の温度変化を測定。赤外線放射エネルギー測定法:
ハロゲンランプを10秒間照射した後、照射した編み物
の表面を1cmの位置からレーザパワーエネルギーメー
ター(TEMco.,LTD.製)を使用して赤外線放
射エネルギーを測定。
Fiber temperature measurement method: Instead of sunlight, 30
A 0W halogen lamp was irradiated for 10 seconds from a distance of 20 cm, and a thermoelectron couple sensor installed on the back of the knitted fabric measured the temperature change in the fiber. Infrared radiant energy measurement method:
After irradiating with a halogen lamp for 10 seconds, infrared radiation energy was measured from a position 1 cm from the surface of the irradiated knitted fabric using a laser power energy meter (manufactured by TEMco., LTD.).

【0037】実施例2◎ 実施例1においてジフェニルチオ尿素とステアリン酸銅
の変わりに表2に示すチオ尿素及び銅化合物を各配合比
率で、また繊維ポリマーとしてポエチレンテレフレート
の代わりにPMMAなど下表の樹脂を使用して同様の操
作をして各丸編みの編物を作製した。これらの編物の熱
変換特性と赤外線放射特性を実施例1と同様に評価した
Example 2 ◎ In Example 1, thiourea and copper compounds shown in Table 2 were used in place of diphenylthiourea and copper stearate at various blending ratios, and PMMA or the like was used in place of polyethylene terephrate as the fiber polymer. Each circular knitted fabric was produced using the resin shown on the front side and performing the same operation. The heat conversion properties and infrared radiation properties of these knitted fabrics were evaluated in the same manner as in Example 1.

【0038】                          
 表  2◎  NO  チオ尿素化合物  銅化合物
    樹脂    配合比      繊維の昇温温
度◎  1    ClPTU     STCu  
PMMA  0.4:0.1:100     40゜
C◎  2    DPTU      PTCu  
PMMA  0.4:0.1:100     38゜
C◎  3    ClPTU     STCu  
PET    0.3:0.1:100     39
゜C◎  4    DLTU      BACu 
 HDPE  0.4:0.1:100     37
゜C◎  5      −            
−      PMMA  0  :  0:100 
      5゜C◎◎       ClPTU:1,3−ジm−クロルフェニ
ルチオ尿素     ◎      DPTU :1,
3−ジフェニルチオ尿素            ◎ 
       ClPTU:1,3−ジラウリルチオ尿
素              ◎      STC
u :ステアリン酸銅◎      PTCu :パル
ミチン酸銅◎      BACu :安息香酸銅◎ 
     PMMA :ポリメタクリル樹脂  ◎  
    PET   :ポリエチレンテレフタレート◎
      HDPE :高密度ポリエチレン    
      実施例3◎ 炭化ジルコニウム2部をポリエチレンテレフタレートポ
リマー100 部に混合して繊維芯部の組成とした。繊
維の外側の鞘部材料をジフェニルチオ尿素0.5 部と
ステアリン酸銅0.3 部をポエチレンテレフレートポ
リマー100 部にブレンドして押出機に供給し、中心
と外側に異なる組成になるような同心円型の芯鞘構造と
なる2重の紡糸口金装置に導き283゜Cで紡糸した。 紡糸した糸条は、常法に従って空冷し油剤を付与したあ
と680m/ 分で引取り集束した。この未延伸糸を2
5゜C、65%R.H.の条件下で20時間シーズニン
グし、延伸機にて90m/分で4倍に延伸してこの繊維
にクリンプを付与し、得られた繊維をカットし紡績した
後、平織りの織物作製し、これらの織物の熱変換特性と
赤外線放射特性を実施例1と同様に評価した。
[0038]
Table 2◎ NO Thiourea compound Copper compound Resin Mixing ratio Fiber heating temperature◎ 1 ClPTU STCu
PMMA 0.4:0.1:100 40°C◎ 2 DPTU PTCu
PMMA 0.4:0.1:100 38°C◎ 3 ClPTU STCu
PET 0.3:0.1:100 39
゜C◎ 4 DLTU BACu
HDPE 0.4:0.1:100 37
゜C◎ 5 -
- PMMA 0:0:100
5゜C◎◎ ClPTU: 1,3-di-m-chlorophenylthiourea ◎ DPTU: 1,
3-Diphenylthiourea ◎
ClPTU: 1,3-dilaurylthiourea ◎ STC
u: Copper stearate◎ PTCu: Copper palmitate◎ BACu: Copper benzoate◎
PMMA: Polymethacrylic resin ◎
PET: Polyethylene terephthalate◎
HDPE: High density polyethylene
Example 3 ◎ Two parts of zirconium carbide were mixed with 100 parts of polyethylene terephthalate polymer to form a fiber core composition. The outer sheath material of the fiber was blended with 0.5 parts of diphenylthiourea and 0.3 parts of copper stearate into 100 parts of polyethylene terephrate polymer and fed into an extruder so that the composition was different in the center and outside. The resulting material was introduced into a double spinneret device with a concentric core-sheath structure and spun at 283°C. The spun yarn was air-cooled and oiled according to a conventional method, and then taken off and bundled at 680 m/min. This undrawn yarn is
5°C, 65%R. H. Seasoned for 20 hours under the conditions of The heat conversion properties and infrared radiation properties of the fabric were evaluated in the same manner as in Example 1.

【0039】比較例2◎ 実施例3においてジフェニルチオ尿素とステアリン酸銅
を添加せず、実施例3と同様の方法で比較用の織物を作
製した。
Comparative Example 2 ◎ A comparative fabric was produced in the same manner as in Example 3, except that diphenylthiourea and copper stearate were not added.

【0040】                          
 表3◎                  繊維の
昇温温度  赤外線放射エネルギー◎        
実施例3    25.4゜C        0.2
7mJ/cm2◎        比較例3     
 9.8゜C        0.13mJ/cm2 
 表3に示すように、鞘部に本発明の近赤外吸収材を含
む実施例3の繊維は、近赤外吸収材を含まない比較例2
に比べて繊維の昇温温度及び赤外線放射エネルギーが高
く、外部から光によって先ず、効率よく繊維の外側が暖
められ、次に芯部の赤外線放射性によってさらに繊維内
部が保温された事を示す。実施例4◎ 芯成分がポリエチレンテレフタレートポリマー100 
部で、鞘成分にポリエチレン100 部にジフェニルチ
オ尿素0.6部とステアリン酸銅0.4部を混合して押
出機に供給し、中心と外側に異なる組成になるような同
心円型の芯鞘構造をとなる2重の紡糸口金装置に導き2
83 ゜Cで紡糸した。紡糸した糸条は常法に従って空
冷し油剤を付与したあと680m/ 分で引取り集束し
た。この未延伸糸を25゜C、65%R.H.の条件下
で20時間シーズニングし、延伸機にて90m/分で4
倍に延伸し、この繊維にクリンプを付与、得られた繊維
をカットし紡績した後、丸編みを作製した。ポリエステ
ルを芯成分とする同心円型の芯鞘構造をもつ光融着繊維
を得た。
[0040]
Table 3 ◎ Fiber heating temperature Infrared radiant energy ◎
Example 3 25.4°C 0.2
7mJ/cm2◎ Comparative example 3
9.8°C 0.13mJ/cm2
As shown in Table 3, the fiber of Example 3 containing the near-infrared absorbing material of the present invention in the sheath portion is different from that of Comparative Example 2 containing no near-infrared absorbing material.
The heating temperature and infrared radiant energy of the fiber were higher than that of the fiber, indicating that the outside of the fiber was first efficiently warmed by light from the outside, and then the inside of the fiber was further kept warm by the infrared radiation of the core. Example 4 ◎ Core component is polyethylene terephthalate polymer 100
In this section, 100 parts of polyethylene, 0.6 parts of diphenylthiourea, and 0.4 parts of copper stearate were mixed as a sheath component and fed to an extruder to form a concentric core-sheath with different compositions in the center and outside. The structure is guided into the double spinneret device 2.
Spun at 83°C. The spun yarn was air-cooled and oiled according to a conventional method, and then taken off and bundled at 680 m/min. This undrawn yarn was heated at 25°C and 65% R. H. Seasoned for 20 hours under the conditions of
The fibers were stretched twice, crimped, and the resulting fibers were cut and spun to produce circular knits. A light-fused fiber with a concentric core-sheath structure containing polyester as a core component was obtained.

【0041】この繊維に50.8WSのストロボフラッ
シュ光を1cmの距離から照射したところ、光が当たっ
た部分は、繊維の鞘部分が瞬時に溶融し、鞘部同志が互
いにした。この光融着した繊維は外観が優れ、適度のバ
ルキー性の強度のあるシートが得られた。
When this fiber was irradiated with a strobe flash light of 50.8 WS from a distance of 1 cm, the sheath portion of the fiber instantaneously melted in the portion that was hit by the light, and the sheath portions joined together. The optically fused fibers had an excellent appearance, and a sheet with appropriate bulkiness and strength was obtained.

【0042】比較例3               
         ◎実施例4において、ジフェニルチ
オ尿素0.6 部とステアリン酸銅0.4 部を鞘成分
にポリエチレン100 部に添加しない以外は実施例4
と同様の方法で比較繊維を得た。この繊維に実施例4と
同様に光照射したが、全く光融着しなかった。
Comparative example 3
◎Example 4 except that 0.6 parts of diphenylthiourea and 0.4 parts of copper stearate are not added to 100 parts of polyethylene as sheath components.
Comparative fibers were obtained in the same manner. This fiber was irradiated with light in the same manner as in Example 4, but no photofusion occurred.

【0043】実施例5◎ ポリプロピレン100 部にジフェニルチオ尿素0.5
 部とステアリン酸銅0.3 部を混合して押出機に供
給し、フイラメント状に押出して乾式ウエブ  を形成
しする。この乾式ウエブに500Wのハロゲンランプを
3秒間照射して光熱融着により接着した。単に押出し時
に融着したり、カレンダー加圧加熱処理による不織布よ
り、外観、嵩高さ等が優れた不織布が得られた。
Example 5 ◎ 0.5 parts of diphenylthiourea in 100 parts of polypropylene
and 0.3 parts of copper stearate are mixed and fed into an extruder and extruded into filaments to form a dry web. This dry web was irradiated with a 500 W halogen lamp for 3 seconds and bonded by photothermal fusion. A nonwoven fabric with superior appearance, bulkiness, etc., was obtained than a nonwoven fabric simply fused during extrusion or subjected to calender pressure and heat treatment.

【0044】比較例4◎ 実施例5において、ジフェニルチオ尿素0.5 部とス
テアリン酸銅0.3 部を鞘成分にポリエチレン100
 部に添加しない以外は実施例5と同様の方法で比較繊
維を得た。この繊維に実施例5と同様に光照射したが、
全く光融着しなかった。
Comparative Example 4 ◎ In Example 5, 0.5 part of diphenylthiourea and 0.3 part of copper stearate were used as a sheath component and polyethylene 100%
Comparative fibers were obtained in the same manner as in Example 5, except that the fibers were not added. This fiber was irradiated with light in the same manner as in Example 5, but
There was no photofusion at all.

【0045】[0045]

【発明の効果】以上述べたとおり、本発明繊維はチオ尿
素化合物と銅化合物との反応生成物を合成繊維中に含有
させたことにより、安価で着色が少なく、照射された近
赤外光を吸収して熱に変換し、その熱によって保温効果
のある光熱変換繊維、およびその熱によって繊維外側を
瞬時に融着する光熱融着繊維を提供することができた。 またこの繊維を冬期のスポーツウエアや水着等に用いる
と太陽光中の近赤外線を吸収して保温、蓄熱の熱エネル
ギーを得られるばかりでなく、上記の光より強力な近赤
外光の照射によって変換発生する熱を利用して瞬時に繊
維同士を融着し、バルキー性の高い独自の仕上がりの不
織布が得られるといった顕著な効果がある。
Effects of the Invention As described above, the fibers of the present invention contain a reaction product of a thiourea compound and a copper compound in the synthetic fibers, so they are inexpensive, have little coloring, and can absorb near-infrared light when irradiated. It was possible to provide a photothermal conversion fiber that absorbs and converts it into heat and has a heat-retaining effect using the heat, and a photothermal fusion fiber that instantaneously fuses the outside of the fiber with the heat. In addition, when this fiber is used in winter sportswear and swimwear, it not only absorbs near-infrared rays in sunlight to retain heat and store thermal energy, but also by irradiating it with near-infrared light, which is more powerful than the above-mentioned light. Using the heat generated by the conversion, the fibers are instantly fused together, resulting in a highly bulky nonwoven fabric with a unique finish.

Claims

【特許請求の範囲】 【請求項1】合成繊維が一般式(1)◎【化1】 (式中R1 、R2 、R3 は、水素、アルキル基、
シクロアルキル基、アリール基、アラルキル基及び5員
環または6員環の複素環残基、からなる群から選ばれた
一価基を表し各基は1個以上の置換基を有していてもよ
く、R1 とR2 又はR2とR3 は連結して環を形
成してもよい)から選択された少なくとも1種のチオ尿
素誘導体と少なくとも1種の銅化合物との反応生成物を
近赤外吸収材として含有する光熱変換繊維。
   【請求項2】請求項1記載の光熱変換繊維が、ポリエス
テル樹脂、ナイロン、ポリオレフィン樹脂、塩化ビニリ
デン樹脂、ポリウレタンを溶融紡糸して作成した光熱変
換繊維。
【請求項3】40゜Cにおける赤外放射率が波長6〜1
4μmの領域で平均70%以上の赤外放射特性を有する
赤外放射性物質を含む合成樹脂と請求項1記載の近赤外
吸収材を含有する合成樹脂とを複合紡糸したことを特徴
とする複合光熱変換繊維。
【請求項4】40゜Cにおける赤外放射率が波長6〜1
4μmの領域で平均70%以上の赤外放射特性を有する
赤外放射性物質を含む赤外放射性繊維と請求項1記載の
光熱変換繊維とを混紡あるいは撚り合わせて複合化した
ことを特徴とする複合光熱変換繊維。
【請求項5】繊維原料が2種以上の合成樹脂よりなる複
合組成であって、紡糸したとき外側になる合成樹脂中に
請求項1記載の近赤外吸収材を含有させたことを特徴と
する光熱融着繊維。
【請求項6】請求項1ないし5記載の繊維を使用した織
物、不織布あるいは編み物。
【請求項7】一般式  (1)◎ 【化2】 (式中R1 、R2 、R3 は、水素、アルキル基、
シクロアルキル基、アリール基アラルキル及び5員環ま
たは6員環の複素環残基、からなる群から選ばれた一価
基を表し各基は1個以上の置換基を有していてもよく、
R1 とR2 又はR2 とR3 は連結して環を形成
してもよい)から選択された少なくとも1種のチオ尿素
誘導体と少なくとも1種の銅化合物との混合物からなる
近赤外吸収用組成物を、合成繊維の原料樹脂と混練りし
て含有させた後、該近赤外吸収用組成物が反応して近赤
外吸収材となるのに十分な温度で溶融紡糸する光熱変換
繊維の製造方法。
[Claims] Claim 1: The synthetic fiber has the general formula (1)◎ [Formula 1] (wherein R1, R2, and R3 are hydrogen, an alkyl group,
Represents a monovalent group selected from the group consisting of a cycloalkyl group, an aryl group, an aralkyl group, and a 5- or 6-membered heterocyclic residue; each group may have one or more substituents. A reaction product of at least one thiourea derivative selected from R1 and R2 or R2 and R3 may be connected to form a ring) and at least one copper compound is used as a near-infrared absorbing material. Photothermal conversion fiber containing as.
2. The light-to-heat converting fiber according to claim 1, which is prepared by melt-spinning polyester resin, nylon, polyolefin resin, vinylidene chloride resin, and polyurethane. Claim 3: Infrared emissivity at 40°C for wavelengths 6 to 1
A composite material obtained by spinning a synthetic resin containing an infrared radioactive substance having an average infrared radiation characteristic of 70% or more in a 4 μm area and a synthetic resin containing the near-infrared absorbing material according to claim 1. Photothermal conversion fiber.
Claim 4: Infrared emissivity at 40°C for wavelengths 6 to 1
A composite obtained by blending or twisting an infrared emitting fiber containing an infrared emitting substance having infrared emitting characteristics of 70% or more on average in a 4 μm area and the photothermal conversion fiber according to claim 1. Photothermal conversion fiber.
5. The fiber raw material has a composite composition of two or more types of synthetic resins, and the near-infrared absorbing material according to claim 1 is contained in the synthetic resin that becomes the outer side when spun. A photothermal bonding fiber. 6. A woven fabric, nonwoven fabric, or knitted fabric using the fibers according to claims 1 to 5. [Claim 7] General formula (1)◎ [Formula 2] (wherein R1, R2, R3 are hydrogen, an alkyl group,
Represents a monovalent group selected from the group consisting of a cycloalkyl group, an aryl group, an aralkyl group, and a 5- or 6-membered ring heterocyclic residue, each group may have one or more substituents,
R1 and R2 or R2 and R3 may be linked to form a ring) and at least one copper compound. A method for producing a light-to-heat converting fiber, which involves kneading and incorporating the near-infrared absorbing composition with a raw material resin for synthetic fibers, and then melt-spinning at a temperature sufficient for the near-infrared absorbing composition to react and become a near-infrared absorbing material. .
JP3011139A 1991-01-31 1991-01-31 Photothermal conversion fiber and photothermal fusion fiber Expired - Fee Related JPH0762283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3011139A JPH0762283B2 (en) 1991-01-31 1991-01-31 Photothermal conversion fiber and photothermal fusion fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3011139A JPH0762283B2 (en) 1991-01-31 1991-01-31 Photothermal conversion fiber and photothermal fusion fiber

Publications (2)

Publication Number Publication Date
JPH04245910A true JPH04245910A (en) 1992-09-02
JPH0762283B2 JPH0762283B2 (en) 1995-07-05

Family

ID=11769690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3011139A Expired - Fee Related JPH0762283B2 (en) 1991-01-31 1991-01-31 Photothermal conversion fiber and photothermal fusion fiber

Country Status (1)

Country Link
JP (1) JPH0762283B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298991A (en) * 2004-04-08 2005-10-27 National Institute Of Advanced Industrial & Technology Method for heat-treating fiber and device for executing the same
WO2006008785A1 (en) * 2004-07-15 2006-01-26 Sumitomo Metal Mining Co., Ltd. Fiber containing boride microparticle and textile product therefrom
JP2006291378A (en) * 2005-04-07 2006-10-26 Toyota Boshoku Corp Fiber assembly and method for producing the same
CN110846896A (en) * 2019-11-14 2020-02-28 南通大学 Preparation method of textile material for photo-thermal seawater desalination
CN112899887A (en) * 2021-01-19 2021-06-04 中国科学院合肥物质科学研究院 Temperature-adjusting anti-fouling fiber membrane and temperature-adjusting anti-fouling breathable double-layer fiber membrane based on same
CN113089123A (en) * 2021-04-21 2021-07-09 上海工程技术大学 Zirconium carbide/polypyrrole-polyurethane composite fiber and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211315A (en) * 1987-02-27 1988-09-02 Kawashima Orimono:Kk Photosensitive synthetic fiber
JPH0192463A (en) * 1987-10-05 1989-04-11 Nobuhide Maeda Production of far infrared ray emitting nonwoven fabric
JPH01132815A (en) * 1987-11-13 1989-05-25 Inaba Kasen Kk Production of far infrared-emissive filament
JPH023493A (en) * 1988-06-13 1990-01-09 Jujo Paper Co Ltd Near-infrared absorber composition, near-infrared absorber materials, and shaped articles containing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211315A (en) * 1987-02-27 1988-09-02 Kawashima Orimono:Kk Photosensitive synthetic fiber
JPH0192463A (en) * 1987-10-05 1989-04-11 Nobuhide Maeda Production of far infrared ray emitting nonwoven fabric
JPH01132815A (en) * 1987-11-13 1989-05-25 Inaba Kasen Kk Production of far infrared-emissive filament
JPH023493A (en) * 1988-06-13 1990-01-09 Jujo Paper Co Ltd Near-infrared absorber composition, near-infrared absorber materials, and shaped articles containing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298991A (en) * 2004-04-08 2005-10-27 National Institute Of Advanced Industrial & Technology Method for heat-treating fiber and device for executing the same
WO2006008785A1 (en) * 2004-07-15 2006-01-26 Sumitomo Metal Mining Co., Ltd. Fiber containing boride microparticle and textile product therefrom
JP2006291378A (en) * 2005-04-07 2006-10-26 Toyota Boshoku Corp Fiber assembly and method for producing the same
JP4548188B2 (en) * 2005-04-07 2010-09-22 トヨタ紡織株式会社 Manufacturing method of fiber assembly
CN110846896A (en) * 2019-11-14 2020-02-28 南通大学 Preparation method of textile material for photo-thermal seawater desalination
CN112899887A (en) * 2021-01-19 2021-06-04 中国科学院合肥物质科学研究院 Temperature-adjusting anti-fouling fiber membrane and temperature-adjusting anti-fouling breathable double-layer fiber membrane based on same
CN113089123A (en) * 2021-04-21 2021-07-09 上海工程技术大学 Zirconium carbide/polypyrrole-polyurethane composite fiber and preparation method and application thereof
CN113089123B (en) * 2021-04-21 2022-09-20 上海工程技术大学 Zirconium carbide/polypyrrole-polyurethane composite fiber and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0762283B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JP2824130B2 (en) Thermochromic composite fiber
EP2185752B1 (en) Multi-component fibres
Yang et al. incorporation of organic PCMs into textiles
JPH09506305A (en) Composite non-woven fabric and products manufactured from it
JP2014079367A (en) Inner cotton and fiber product
JP3883007B2 (en) Boride fine particle-containing fiber and fiber product using the same
CN102597344A (en) Fiber and fiber structure
US10480103B2 (en) Self-warming insulation
JPH04245910A (en) Photothermal converting fiber and photothermal fusible fiber
JP2014189937A (en) Functional fiber
JPH05239716A (en) Thermally insulating conjugate fiber
JP3371047B2 (en) Thermal storage fiber
JPH05331754A (en) Heat-absorbing and releasing nonwoven fabric of conjugate fiber
JP2877525B2 (en) Endothermic composite fiber
KR20120109802A (en) Core-sheath type conjugate yarn with light weight and excellent heat insulation and process of preparing same
KR100713246B1 (en) Master polymer capable of controlling temperature and process thereof and conjugate fiber using therof
JPH01132816A (en) Selectively absorptive fiber for solar heat and warmth-retentive fiber therefrom
JP6007156B2 (en) Woven knitted fabric having temperature control function and garment using the woven or knitted fabric
JP2911621B2 (en) Thermochromic composite fiber
TW201922317A (en) UV color changing mask
KR101045957B1 (en) Master polymer capable of controlling temperature and process thereof and conjugate fiber using therof
JPH04241115A (en) Temperature-sensitive color changing conjugate fiber and its production
JP6487171B2 (en) Functional fiber yarn
JPH08170218A (en) Heat storage and warmth retaining fiber
KR101230528B1 (en) Intelligent conjugate fiber by direct-injection and method for producing thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees