JP6487171B2 - Functional fiber yarn - Google Patents

Functional fiber yarn Download PDF

Info

Publication number
JP6487171B2
JP6487171B2 JP2014201417A JP2014201417A JP6487171B2 JP 6487171 B2 JP6487171 B2 JP 6487171B2 JP 2014201417 A JP2014201417 A JP 2014201417A JP 2014201417 A JP2014201417 A JP 2014201417A JP 6487171 B2 JP6487171 B2 JP 6487171B2
Authority
JP
Japan
Prior art keywords
fine particles
fiber
core
far
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014201417A
Other languages
Japanese (ja)
Other versions
JP2016069765A (en
Inventor
直哉 山内
直哉 山内
真史 山本
真史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Unitika Trading Co Ltd
Original Assignee
Nippon Ester Co Ltd
Unitika Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd, Unitika Trading Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2014201417A priority Critical patent/JP6487171B2/en
Publication of JP2016069765A publication Critical patent/JP2016069765A/en
Application granted granted Critical
Publication of JP6487171B2 publication Critical patent/JP6487171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発熱性能及び遠赤外線放射性能に優れた機能性繊維糸に関するものである。   The present invention relates to a functional fiber yarn excellent in heat generation performance and far infrared radiation performance.

従来、保温を目的とした織編物は数多く上市されており、中空糸等によるデッドエアーの利用や吸湿発熱効果の利用、太陽光を熱に変換して利用する方法等、様々な手法を用いた素材が提案されている。しかしながら、デッドエアーの利用は、空気を含ませることで放熱を抑えるという消極的な手法であるため、寒さに対する保温性には限界があり、また空気層を利用するため、織編物が嵩高になってしまうという問題があった。また、吸湿発熱効果の利用については、不感蒸泄等の湿気を吸収することで発熱するものであるが、湿気を吸収した際には発熱するものの、持続性が低く、すぐに放熱してしまうという問題があった。一方、太陽光を熱に変換する方法は、晴天時の屋外においては十分な効果が認められるものの、雨天時や室内ではその効果がほとんど期待できないという問題があった。   Conventionally, many knitted and knitted fabrics for the purpose of keeping warm have been put on the market, and various techniques such as the use of dead air by hollow fibers, the use of moisture absorption heat generation effect, the method of converting sunlight into heat, etc. were used. Material has been proposed. However, the use of dead air is a passive method of suppressing heat dissipation by including air, so there is a limit to heat retention against the cold, and the use of an air layer makes the woven or knitted fabric bulky. There was a problem that. In addition, the use of the moisture absorption heat generation effect generates heat by absorbing moisture such as insensitive excretion, but when it absorbs moisture, it generates heat, but it has low sustainability and immediately releases heat. There was a problem. On the other hand, the method of converting sunlight into heat has a problem that although a sufficient effect is recognized outdoors in fine weather, the effect is hardly expected in rainy weather or indoors.

これに対して、近年、遠赤外線放射性微粒子を利用して繊維に保温効果を付与する技術が提案されている。例えば、特許文献1には、遠赤外線放射性微粒子を3重量%以上含有又は付着させた繊維が開示されている。また、特許文献2には、ポリエステルに平均粒子径2.5〜5.0μmの雲母と平均粒子径8.0〜13.0μmの雲母を重量比4/6〜8/2の割合で合計3〜8重量%含有させた遠赤外線照射性ポリエステルが開示されている。さらに、特許文献3には、特定の遠赤外線照射率を示す遠赤外線放射性微粒子を1〜10重量%含有するポリマーからなる鞘部と、当該微粒子を10〜70重量%含有するポリマーからなる芯部より構成される遠赤外線放射性機能性繊維が開示されている。また、特許文献4には、遠赤外線放射性微粒子を含有する熱可塑性重合体を鞘部に含む芯鞘構造の機能性繊維であって、遠赤外線放射性微粒子が繊維全体の3重量%である機能性繊維が開示されている。   On the other hand, in recent years, a technique for imparting a heat retaining effect to fibers using far-infrared radioactive fine particles has been proposed. For example, Patent Document 1 discloses a fiber containing 3% by weight or more of far-infrared radioactive fine particles. In Patent Document 2, mica having an average particle diameter of 2.5 to 5.0 μm and mica having an average particle diameter of 8.0 to 13.0 μm are added to polyester in a ratio of 4/6 to 8/2 in total. Far-infrared ray irradiating polyester containing ˜8% by weight is disclosed. Further, Patent Document 3 discloses a sheath part made of a polymer containing 1 to 10% by weight of far-infrared radioactive fine particles exhibiting a specific far-infrared irradiation rate, and a core part made of a polymer containing 10 to 70% by weight of the fine particles. Disclosed is a far-infrared radioactive functional fiber. Further, Patent Document 4 discloses a functional fiber having a core-sheath structure including a thermoplastic polymer containing far-infrared radiation fine particles in a sheath portion, and the far-infrared radiation fine particles are 3% by weight of the whole fiber. A fiber is disclosed.

特開昭63−227828号公報JP-A 63-227828 特開平9−77961号公報Japanese Patent Laid-Open No. 9-77961 特開昭63−152413号公報JP 63-152413 A 特開平2−154009号公報Japanese Patent Laid-Open No. 2-154209

しかしながら、特許文献1〜4のように、遠赤外線放射性微粒子のみを利用して繊維の保温効果を高めるには、遠赤外線放射性微粒子を多量に含有又は付着させる必要があり、紡糸の際に糸切れやガイド摩耗等が生じやすくなり、紡糸操業性を悪化させるという問題があった。また、特許文献4の技術では、遠赤外線放射性微粒子を芯鞘構造の鞘部に局在化させることにより、紡糸操業性の改善が図られているものの、依然として満足できるものではない。   However, as in Patent Documents 1 to 4, in order to increase the heat retention effect of the fiber using only the far-infrared radioactive fine particles, it is necessary to contain or attach a large amount of the far-infrared radioactive fine particles, and the yarn breaks during spinning. There is a problem that the wear of the guide and the guide are likely to occur and the spinning operability is deteriorated. In the technique of Patent Document 4, although the far-infrared radioactive fine particles are localized in the sheath portion of the core-sheath structure, the spinning operability is improved, but it is still not satisfactory.

さらに、特許文献1〜4のように、遠赤外線放射特性を有する微粒子のみを利用して繊維に保温効果を付与する技術では、実現可能な保温効果には限界があり、十分な暖かさを実現するには至っていないのが現状である。   Furthermore, as in Patent Documents 1 to 4, the technology for providing a warming effect to the fiber using only fine particles having far-infrared radiation characteristics has a limit to the possible warming effect and realizes sufficient warmth. The current situation has not yet been reached.

本発明は、遠赤外線放射性能及び発熱性能に優れ、室内でも十分に保温効果を発揮できる織編物に好適で、しかも紡糸操業性が良好で織編物を作製する際にガイド摩耗が生じ難い、新規な機能性繊維糸を提供することを技術的な課題とするものである。   The present invention is suitable for a woven or knitted fabric that is excellent in far-infrared radiation performance and heat generation performance, and that can sufficiently exhibit a heat retaining effect even in a room, and has good spinning operability and is less likely to cause guide wear when producing a woven or knitted fabric. Providing a functional fiber yarn is a technical issue.

本発明者らは、上記課題を解決すべく検討した結果、本発明に到達した。すなわち、本発明は以下を要旨とするものである。   The inventors of the present invention have arrived at the present invention as a result of studies to solve the above problems. That is, this invention makes the following a summary.

(1)断面が芯鞘構造をなすと共に芯部に発熱性微粒子及び遠赤外線放射性微粒子を含有する機能性繊維から構成される糸条であって、前記機能性繊維において、前記発熱性微粒子及び前記遠赤外線放射性微粒子を前記芯部100質量部に対してそれぞれ0.1〜2.5質量部ずつ含有し、両微粒子を前記芯部100質量部に対して合計で0.2〜3.5質量部含有し、かつ芯鞘質量比(芯/鞘)が75/25〜10/90の範囲にあることを特徴とする機能性繊維糸。
(2)前記機能性繊維において、前記芯部の断面形状が繊維のほぼ中心から放射状に延びる多葉型断面形状をなし、かつ前記多葉型断面形状の葉数が6〜20の範囲にあることを特徴とする(1)記載の機能性繊維糸。
(3)前記発熱性微粒子として炭化ジルコニウム及びカーボンの少なくとも一方を使用し、前記遠赤外線放射性微粒子としてマイカを使用することを特徴とする(1)又は(2)記載の機能性繊維糸。
(1) A yarn having a core-sheath structure and a functional fiber containing exothermic fine particles and far-infrared radiation fine particles in the core, wherein the exothermic fine particles and the The far-infrared radioactive fine particles are contained in an amount of 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the core part, and both fine particles are 0.2 to 3.5 parts by mass in total with respect to 100 parts by mass of the core part. And a core-sheath mass ratio (core / sheath) is in the range of 75/25 to 10/90.
(2) In the functional fiber, the cross-sectional shape of the core portion is a multi-leaf type cross-sectional shape that extends radially from the center of the fiber, and the number of leaves of the multi-leaf type cross-sectional shape is in the range of 6 to 20. (1) The functional fiber yarn according to (1).
(3) The functional fiber yarn according to (1) or (2), wherein at least one of zirconium carbide and carbon is used as the exothermic fine particles, and mica is used as the far infrared radiation fine particles.

本発明によれば、保温効果に優れる織編物を構成するのに好適な機能性繊維糸が提供できる。本発明では、機能性繊維糸を構成する機能性繊維において、その芯部に発熱性微粒子及び遠赤外線放射性微粒子を含有させているため、両者が近接している。これため、発熱性微粒子が発する熱を遠赤外線放射性微粒子そのものの温度上昇にも利用できる結果、より多くの遠赤外線が発せられ、より一層の保温効果が期待できる。   ADVANTAGE OF THE INVENTION According to this invention, the functional fiber yarn suitable for comprising the woven / knitted fabric excellent in a heat retention effect can be provided. In the present invention, in the functional fiber constituting the functional fiber yarn, since the exothermic fine particles and far-infrared radiation fine particles are contained in the core portion, they are close to each other. For this reason, as a result of being able to utilize the heat | fever which an exothermic microparticles | fine-particles also raises the temperature of far-infrared radiation | emission fine particles themselves, more far-infrared rays are emitted and the further heat retention effect can be anticipated.

さらに本発明では、繊維芯部の断面形状として特定の多葉型断面形状を採用することで、保温効果を一層発揮させつつより紡糸操業性を改善できる。   Furthermore, in the present invention, by adopting a specific multi-leaf type cross-sectional shape as the cross-sectional shape of the fiber core portion, it is possible to further improve the spinning operability while further exerting the heat retaining effect.

本発明における機能性繊維の好ましい断面形状を例示する模式図である。It is a schematic diagram which illustrates the preferable cross-sectional shape of the functional fiber in this invention. 本発明における機能性繊維の好ましい断面形状を例示する模式図である。It is a schematic diagram which illustrates the preferable cross-sectional shape of the functional fiber in this invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の機能性繊維糸は、特定の機能性繊維から構成される。機能性繊維は、断面が芯鞘構造をなし、その芯部に発熱性微粒子と遠赤外線放射性微粒子とを特定量含有する。本発明における保温効果は、このような特定の微粒子に由来するものであるから、この微粒子を含有する繊維並びにこの繊維を含む糸条及び布帛も同様の効果を有する。   The functional fiber yarn of this invention is comprised from a specific functional fiber. The functional fiber has a core-sheath structure in cross section, and contains a specific amount of exothermic fine particles and far-infrared radioactive fine particles in the core. Since the heat retention effect in the present invention is derived from such specific fine particles, the fiber containing the fine particles and the yarns and fabrics containing the fibers also have the same effect.

機能性繊維を構成するポリマーとしては、溶融紡糸が可能であることを限度として特に限定されず、従来、繊維の原料として使用されているポリマーを使用することができる。このようなポリマーとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン46、ナイロン11、ナイロン12等のポリアミド;ポリプロピレン、ポリエチレン等のポリオレフィン;ポリ塩化ビニル、ポリ塩化ビニリデン等のポリ塩化ポリマー;ポリ4フッ化エチレン、ポリフッ化ビニリデン等のフッ素系ポリマー;PLA(ポリ乳酸)やPBS(ポリブチレンサクシネート)等のバイオマス由来モノマーを化学的に重合してなるバイオマスポリマー;これらのポリマーを構成するモノマーの2種以上からなる共重合体等が挙げられる。   The polymer constituting the functional fiber is not particularly limited as long as melt spinning is possible, and a polymer conventionally used as a raw material for the fiber can be used. Examples of such polymers include polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, and polytrimethylene terephthalate; polyamides such as nylon 6, nylon 66, nylon 46, nylon 11, and nylon 12; polypropylene, polyethylene, and the like. Polyolefins; Polychlorinated polymers such as polyvinyl chloride and polyvinylidene chloride; Fluoropolymers such as polytetrafluoroethylene and polyvinylidene fluoride; Biomass-derived monomers such as PLA (polylactic acid) and PBS (polybutylene succinate) Biomass polymer obtained by polymerization of the polymer; a copolymer comprising two or more monomers constituting these polymers;

これらのポリマーは、粘度、熱的特性、相溶性等を鑑みて、他の構成モノマーを含む共重合体であってもよい。例えば、ポリエステルの共重合体(共重合ポリエステル)を使用する場合であれば、イソフタル酸、5−スルホイソフタル酸等の芳香族ジカルボン酸:アジピン酸、コハク酸、スベリン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸;エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール等の脂肪族ジオール;グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシペンタン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等のヒドロキシカルボン酸;ε−カプロラクトン等の脂肪族ラクトンと、ポリエステルとの共重合体を使用してもよい。   These polymers may be copolymers containing other constituent monomers in view of viscosity, thermal characteristics, compatibility, and the like. For example, when a polyester copolymer (copolyester) is used, aromatic dicarboxylic acids such as isophthalic acid and 5-sulfoisophthalic acid: adipic acid, succinic acid, suberic acid, sebacic acid, dodecanedioic acid Aliphatic dicarboxylic acids such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, etc .; glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxypentanoic acid Hydroxycarboxylic acids such as hydroxyheptanoic acid and hydroxyoctanoic acid; copolymers of aliphatic lactones such as ε-caprolactone and polyesters may be used.

また、本発明では発熱性微粒子を用いるが、発熱性微粒子としては、例えば電磁波(太陽光を含む)の吸収により発熱可能な物質からなる微粒子が使用できる。本発明において使用される発熱性微粒子としては、特に制限されないが、例えば、酸化ジルコニウム、炭化ジルコニウム、カーボン等が挙げられる。これらの発熱性微粒子の中でも、紡糸操業性と発熱性能をより向上させるという観点から、好ましくは炭化ジルコニウム、カーボンが挙げられる。これらの発熱性微粒子は、1種単独で使用してもよく、また2種以上を組合せて使用してもよい。   In the present invention, exothermic fine particles are used. As the exothermic fine particles, for example, fine particles made of a substance capable of generating heat by absorbing electromagnetic waves (including sunlight) can be used. The exothermic fine particles used in the present invention are not particularly limited, and examples thereof include zirconium oxide, zirconium carbide, and carbon. Among these exothermic fine particles, zirconium carbide and carbon are preferably used from the viewpoint of further improving the spinning operability and the exothermic performance. These exothermic fine particles may be used individually by 1 type, and may be used in combination of 2 or more type.

発熱性微粒子の平均粒子径については、特に限定されないが、例えば0.01〜5μm、好ましくは0.05〜3μm、さらに好ましくは0.1〜2μmが挙げられる。発熱性微粒子の平均粒子径が前記範囲内であれば、紡糸操業性に悪影響を及ぼすことなく、より優れた保温効果を奏することができる。ここで平均粒子径は、レーザー回折散乱法粒度分布測定装置を用いて測定される体積平均粒子径である。   The average particle size of the exothermic fine particles is not particularly limited, and for example, 0.01 to 5 μm, preferably 0.05 to 3 μm, and more preferably 0.1 to 2 μm. When the average particle diameter of the exothermic fine particles is within the above range, a more excellent heat retention effect can be achieved without adversely affecting the spinning operability. Here, the average particle diameter is a volume average particle diameter measured using a laser diffraction scattering method particle size distribution measuring apparatus.

さらに、本発明では遠赤外線放射性微粒子も用いるが、遠赤外線放射性微粒子としては、遠赤外線を放射可能な物質であればどのようなものでも使用できる。例えば、マイカ、タルク、方解石等の鉱物;酸化錫、アルミナ、二酸化珪素等の酸化物系セラミックス;炭化珪素、炭化ホウ素等の炭化物系セラミックス;白金、タングステン等の金属類が挙げられる。これらの遠赤外線放射性微粒子の中でも、紡糸操業性と遠赤外線放射性能をより向上させるという観点から、好ましくはマイカ、酸化錫、タルク、さらに好ましくはマイカ、酸化錫、最も好ましくはマイカが挙げられる。特に、マイカは硬度が低く、製織編工程においてガイド摩耗を抑えるのに効果的であるため、本発明に好適である。また、価格が比較的廉価である点でも好ましい。これらの遠赤外線放射性微粒子は、1種単独で使用してもよく、また2種以上を組合せて使用してもよい。   Furthermore, although far-infrared radioactive fine particles are used in the present invention, any material can be used as the far-infrared radioactive fine particles as long as it is a substance capable of emitting far-infrared rays. Examples thereof include minerals such as mica, talc and calcite; oxide ceramics such as tin oxide, alumina and silicon dioxide; carbide ceramics such as silicon carbide and boron carbide; metals such as platinum and tungsten. Among these far infrared radiation fine particles, mica, tin oxide, talc, more preferably mica, tin oxide, and most preferably mica are preferable from the viewpoint of further improving the spinning operability and far infrared radiation performance. In particular, mica is suitable for the present invention because it has low hardness and is effective in suppressing guide wear in the weaving and knitting process. It is also preferable in that the price is relatively low. These far-infrared radioactive fine particles may be used alone or in combination of two or more.

遠赤外線放射性微粒子の平均粒子径については、特に限定されないが、例えば4μm以下、好ましくは0.1〜4μm、さらに好ましくは0.3〜3μmが挙げられる。遠赤外線放射性微粒子の平均粒子径が前記範囲内であれば、紡糸操業性に悪影響を及ぼすことなく、より優れた保温効果を奏することができる。ここで平均粒子径は、レーザー回折散乱法粒度分布測定装置を用いて測定される体積平均粒子径である。   The average particle diameter of the far-infrared radioactive fine particles is not particularly limited, but for example, 4 μm or less, preferably 0.1 to 4 μm, more preferably 0.3 to 3 μm. If the average particle diameter of the far-infrared radiation fine particles is within the above range, a superior heat retention effect can be achieved without adversely affecting the spinning operability. Here, the average particle diameter is a volume average particle diameter measured using a laser diffraction scattering method particle size distribution measuring apparatus.

本発明に用いる繊維は、以上の発熱性微粒子及び遠赤外線放射性微粒子を含有する。この場合、製織編時の糸切れ、ローラ摩耗、ガイド摩耗等を抑える観点から、両微粒子を繊維内部に配する必要がある。すなわち、機能性繊維の断面形状を芯鞘構造にしたうえで微粒子を芯部に配する必要がある。微粒子を繊維鞘部に配してしまうと、繊維表面に微粒子が露出する。その状態で糸を走行させると、次第にローラやガイド等が損傷することになる。   The fiber used in the present invention contains the above exothermic fine particles and far-infrared radioactive fine particles. In this case, from the viewpoint of suppressing yarn breakage, roller wear, guide wear and the like during weaving and knitting, it is necessary to dispose both fine particles inside the fiber. That is, it is necessary to arrange the fine particles in the core portion after making the cross-sectional shape of the functional fiber into a core-sheath structure. If the fine particles are arranged in the fiber sheath, the fine particles are exposed on the fiber surface. If the yarn is run in this state, the rollers, guides and the like are gradually damaged.

繊維芯部の断面形状としては、任意の形状が採用できる。具体的には、円形、三角、星形などが挙げられ、例えば円形を採用すれば、繊維は同心芯鞘構造又は偏心芯鞘構造となる。中でも同心芯鞘構造は、芯鞘構造の最も一般的な形状であり、紡糸、延伸の生産性を安定させるうえで好ましい。図1に同心芯鞘構造の繊維断面を例示する。   Any shape can be adopted as the cross-sectional shape of the fiber core. Specific examples include a circle, a triangle, and a star. For example, when a circle is employed, the fiber has a concentric core-sheath structure or an eccentric core-sheath structure. Among these, the concentric core-sheath structure is the most common shape of the core-sheath structure, and is preferable for stabilizing the spinning and drawing productivity. FIG. 1 illustrates a fiber cross section of a concentric core-sheath structure.

そして、両微粒子の含有量としては、芯部100質量部に対してそれぞれを0.1〜2.5質量部ずつ含有させる。各微粒子の含有量のうち一方でも上記範囲に満たない場合、遠赤外線放射性能及び発熱性能のいずれかに欠ける織編物しか得られず、十分な保温効果を持つ織編物が得られない。一方、いずれかの含有量が上記範囲を超えてしまうと、糸の紡糸操業性が低下する。糸を紡糸するときの生産性すなわち紡糸操業性は、繊維に異物を含ませると一般に低下するといわれており、その意味で上記微粒子は異物に相当するから、当該微粒子を多く使用することは、紡糸操業性の観点でいえば好ましいとはいえない。   And as content of both microparticles | fine-particles, 0.1-2.5 mass parts is contained with respect to 100 mass parts of core parts, respectively. When one of the contents of each fine particle is less than the above range, only a woven or knitted fabric lacking in either far-infrared radiation performance or heat generation performance can be obtained, and a woven or knitted fabric having a sufficient heat retaining effect cannot be obtained. On the other hand, when any content exceeds the above range, the spinning operability of the yarn is lowered. It is said that the productivity when spinning yarn, that is, the spinning operability, generally decreases when foreign matters are included in the fiber. In this sense, the fine particles correspond to foreign matters. From the viewpoint of operability, it is not preferable.

本発明では、このように発熱性微粒子を含有することで、太陽光を効率的に熱に変換し、十分な暖かさを付与できる。同時に、雨天時や室内など太陽光の届きにくい場合でも、遠赤外線放射性微粒子により暖かさを維持することができる。しかも本発明では、発熱性微粒子及び遠赤外線放射性微粒子を同一繊維の同一部位(芯部)に含有させているため、両者が近接している。これにより、上記発熱性微粒子が発する熱を、暖かさを付与することに利用するのみならず、近接する遠赤外線放射性微粒子そのものの温度を上昇させることに利用できる。これにより、遠赤外線放射性微粒子からは温度上昇に応じてより多くの遠赤外線が発せられるから、結果としてより優れた保温効果が奏される。   In this invention, by containing exothermic fine particles in this way, sunlight can be efficiently converted into heat, and sufficient warmth can be imparted. At the same time, warmth can be maintained by the far-infrared radiation fine particles even when it is difficult to reach sunlight such as in rainy weather or indoors. Moreover, in the present invention, since the exothermic fine particles and the far-infrared radioactive fine particles are contained in the same portion (core portion) of the same fiber, they are close to each other. Thereby, the heat generated by the exothermic fine particles can be used not only for imparting warmth but also for increasing the temperature of the adjacent far-infrared radioactive fine particles themselves. Thereby, more far infrared rays are emitted from the far-infrared radioactive fine particles as the temperature rises, and as a result, a better heat retention effect is exhibited.

本発明ではこのように保温効果が効率的に奏されるから、微粒子の含有量をことさら増やなくてもよく、これにより所望の紡糸操業性が確保できる。本発明では、保温効果と紡糸操業性とを両立させる観点から、機能性繊維において、芯部100質量部に対して微粒子を合計で0.2〜3.5質量部含有させる。両微粒子の合計の含有量がこの範囲を下回ると、十分な保温効果が得られず、この範囲を上回ると、満足できる紡糸操業性が得られない。   In the present invention, since the heat retention effect is efficiently achieved as described above, it is not necessary to further increase the content of the fine particles, thereby ensuring the desired spinning operability. In the present invention, from the viewpoint of achieving both a heat retention effect and spinning operability, the functional fiber contains a total of 0.2 to 3.5 parts by mass of fine particles with respect to 100 parts by mass of the core. If the total content of both fine particles is below this range, a sufficient heat retention effect cannot be obtained, and if it exceeds this range, satisfactory spinning operability cannot be obtained.

本発明における機能性繊維には、このように特定の微粒子が特定量含有されており、さらに必要に応じて艶消し剤、難燃剤、酸化防止剤、制電剤、抗菌剤等の各種微粒子を併含させてもよい。   The functional fiber in the present invention contains a specific amount of specific fine particles as described above, and further includes various fine particles such as a matting agent, a flame retardant, an antioxidant, an antistatic agent, and an antibacterial agent as necessary. It may be included.

さらに、機能性繊維の芯鞘質量比(芯/鞘)としては、75/25〜10/90とする必要があり、50/50〜20/80とするのが好ましい。芯鞘質量比がこの範囲を満足することで、紡糸操業性に悪影響を及ぼすことなく、より優れた保温効果を奏することができる。   Furthermore, the core-sheath mass ratio (core / sheath) of the functional fiber needs to be 75/25 to 10/90, and is preferably 50/50 to 20/80. When the core-sheath mass ratio satisfies this range, a more excellent heat retention effect can be achieved without adversely affecting the spinning operability.

本発明では、機能性繊維の断面形状を芯鞘構造とし、微粒子のそれぞれの含有量及び合計の含有量、さらには芯鞘質量比を特定範囲に規定することで、保温効果を発揮させつつ紡糸操業性も良好なものにできるが、本発明者らがさらに検討を進めたところ、繊維芯部の断面形状を工夫すると、両性能を一層両立できることがわかった。具体的には、多葉型断面形状を採用するとよいことを見出した。   In the present invention, the cross-sectional shape of the functional fiber is a core-sheath structure, and the content and total content of the fine particles, and further the core-sheath mass ratio is defined within a specific range, thereby spinning while exhibiting a heat retaining effect. Although the operability can be improved, the present inventors have further studied, and it has been found that if the cross-sectional shape of the fiber core part is devised, both performances can be more compatible. Specifically, it has been found that a multi-leaf type cross-sectional shape may be adopted.

一般に、織編物における保温効果は、繊維表層により多くの微粒子を配することにより強く奏される傾向にある。これは、繊維中で微粒子が配合されている位置と外気との距離を縮めることで、発熱性微粒子であればより多くの光を吸収できる結果、発熱効果が高まり、一方、遠赤外線放射性微粒子であれば、衣服着用者の身体との距離が縮まる結果、着用者が遠赤外線放射効果をより享受できるようになるからである。しかし、繊維表層近くまで微粒子を配してしまうと、繊維断面において、芯部がかなり肉厚となり、繊維全体に占める微粒子の含有量が大幅に増えることになる。そうすると、紡糸操業性は大きく低下する。   Generally, the heat retention effect in a woven or knitted fabric tends to be strongly exerted by arranging more fine particles on the fiber surface layer. By reducing the distance between the position where the fine particles are mixed in the fiber and the outside air, the exothermic fine particles can absorb more light. As a result, the exothermic effect is enhanced. This is because the wearer can enjoy the far-infrared radiation effect more as a result of the distance from the body of the wearer being reduced. However, if the fine particles are arranged near the fiber surface layer, the core portion becomes considerably thick in the fiber cross section, and the content of the fine particles in the entire fiber is greatly increased. If it does so, spinning operativity will fall large.

そこで、本発明者らは、繊維芯部の断面形状を検討した結果、部分的に繊維表層近傍に突き出したような形状、すなわち多葉型断面形状を採用すれば、一部分ながらも芯部と外気との距離が縮まり、より多くの保温効果を創出できることを見出した。この考えの下、さらに最適な多葉型断面形状について検討を重ねたところ、繊維のほぼ中心から放射状に延びる形状をなし、その葉数が6〜20の範囲にある多葉型断面形状を採用すると、保温効果と紡糸操業性との一層の両立が可能となることを見出したのである。   Therefore, as a result of studying the cross-sectional shape of the fiber core, the present inventors have adopted a shape that partially protrudes in the vicinity of the fiber surface layer, that is, if a multi-leaf type cross-sectional shape is adopted, the core portion and the outside air are partly used. It was found that the distance between and could be reduced, and more heat retention effect could be created. Based on this idea, further investigations were made on the optimum multi-leaf type cross-sectional shape. As a result, a multi-leaf type cross-sectional shape in which the number of leaves is in the range of 6 to 20 is formed. As a result, it has been found that it is possible to achieve both a heat retention effect and a spinning operability.

このような多葉型断面形状としては、図2記載のものが例示され、同(a)に図示する放射状型、同(b)(c)に図示する分離型フルーツセクション状型、同(d)に図示する連結型フルーツセクション状型等が好ましく採用できる。中でも、(a)に例示する形状が好ましい。(a)における形状では、葉数は8である。   As such a multi-leaf type cross-sectional shape, the one shown in FIG. 2 is exemplified, and a radial type shown in FIG. 2A, a separated fruit section type shown in FIGS. The connected fruit section type shown in FIG. Especially, the shape illustrated to (a) is preferable. In the shape in (a), the number of leaves is eight.

多葉型断面形状の先端から繊維の縁に至る距離としては、葉の先端から繊維の縁に至る最短距離と繊維半径との比率(DC)、すなわち、DC=(葉の先端から繊維の縁に至る最短距離)/繊維半径×100(%)なる式で算出されるDCを、40%以下とするのが好ましく、25%以下とするのがより好ましい。このような数値範囲を採用することで、保温効果をより向上できる。DCの下限としては、特に限定されないが、過度に小さく設計すると、紡糸、延伸又は製織編や糸加工の過程で繊維芯部の断面形状が崩れたとき、微粒子が繊維表面に露出することがあり、それが要因となって糸切れやガイド摩耗等が起こることがある。このような点から、DCは5%以上とするのがよい。DCは、紡糸ノズルを適宜選択することにより調整できる。   The distance from the tip of the multi-leaf type cross-sectional shape to the edge of the fiber is the ratio (DC) of the shortest distance from the tip of the leaf to the edge of the fiber and the fiber radius, that is, DC = (edge of the fiber from the tip of the leaf DC calculated by the formula of (shortest distance to reach) / fiber radius × 100 (%) is preferably 40% or less, and more preferably 25% or less. By adopting such a numerical range, the heat retention effect can be further improved. The lower limit of DC is not particularly limited, but if designed to be too small, fine particles may be exposed on the fiber surface when the cross-sectional shape of the fiber core part collapses during spinning, drawing, weaving or knitting or yarn processing. This may cause thread breakage and guide wear. From such a point, DC is preferably 5% or more. The DC can be adjusted by appropriately selecting a spinning nozzle.

本発明の機能性繊維糸は、このような機能性繊維からなる糸条であり、通常、複数の機能性繊維を束にすることにより構成される。   The functional fiber yarn of the present invention is a yarn composed of such functional fibers, and is usually constituted by bundling a plurality of functional fibers.

本発明において、機能性繊維の形態としては、ステープル、フィラメントのいずれでもよい。特にフィラメントとして使用する場合、モノフィラメント又はマルチフィラメントのいずれの形態でも使用できるが、一般にマルチフィラメントが好ましい。この場合、当該機能性繊維のみでマルチフィラメントを構成することが好ましいが、本発明の効果を損なわない限り、他の任意の繊維と混用してマルチフィラメントを構成してもよい。   In the present invention, the form of the functional fiber may be staple or filament. In particular, when used as a filament, it can be used in any form of monofilament or multifilament, but multifilament is generally preferred. In this case, it is preferable that the multifilament is composed only of the functional fiber, but the multifilament may be composed by mixing with other arbitrary fibers as long as the effects of the present invention are not impaired.

本発明の機能性繊維糸がマルチフィラメント糸の形態である場合、その単糸繊度としては、例えば0.2〜30dtexが好ましく、1〜10dtexがより好ましく、2〜5dtexがさらに好ましい。また、総(トータル)繊度としては、例えば1〜500dtexが好ましく、5〜300dtexがより好ましく、10〜200dtexがさらに好ましい。単糸繊度を小さくすることにより繊維表面積が増加し、それに伴って遠赤外線放射性能及び発熱性能を向上させ、保温効果を一層高めることができる。また、単糸繊度を小さくするか又は仮撚りを付与すると、空気層が増加し、結果としてデッドエアーに起因する保温効果がさらに付加され得る。   When the functional fiber yarn of the present invention is in the form of a multifilament yarn, the single yarn fineness is, for example, preferably 0.2 to 30 dtex, more preferably 1 to 10 dtex, and further preferably 2 to 5 dtex. Moreover, as total (total) fineness, 1-500 dtex is preferable, for example, 5-300 dtex is more preferable, 10-200 dtex is further more preferable. By reducing the single yarn fineness, the fiber surface area is increased, and accordingly, the far-infrared radiation performance and the heat generation performance can be improved, and the heat retention effect can be further enhanced. Further, when the single yarn fineness is reduced or false twist is applied, the air layer is increased, and as a result, a heat retaining effect due to dead air can be further added.

本発明の機能性繊維糸は、既述した溶融紡糸可能なポリマー、及び上記発熱性微粒子、上記遠赤外線放射性微粒子を用いて従来公知の方法により得ることができる。この場合、予めポリマーと両微粒子とを混ぜ合わせた混合物を用意し、この混合物とポリマーとを複合紡糸することにより、目的の機能性繊維糸となすのがよい。   The functional fiber yarn of the present invention can be obtained by a conventionally known method using the above-described melt-spinnable polymer, the exothermic fine particles, and the far infrared radiation fine particles. In this case, a desired functional fiber yarn is preferably prepared by preparing a mixture in which a polymer and both fine particles are mixed in advance, and performing a composite spinning of the mixture and the polymer.

ポリマー、発熱性微粒子及び遠赤外線放射性微粒子を混ぜる方法としては、特に限定されないが、例えば、発熱性微粒子を含むポリマーと遠赤外線放射性微粒子を含むポリマーとをドライブレンドする方法、ポリマーに発熱性微粒子及び遠赤外線放射性微粒子を添加する方法等が挙げられる。   The method of mixing the polymer, the exothermic fine particles and the far-infrared emitting fine particles is not particularly limited. For example, a method of dry blending a polymer containing the exothermic fine particles and a polymer containing the far-infrared emitting fine particles, Examples include a method of adding far-infrared radioactive fine particles.

そして、複合紡糸としては、紡糸速度が2000m/分以上の高速紡糸により半未延伸糸を得るPOY法;一旦2000m/分未満の低速又は2000m/分以上の高速で溶融紡糸し、巻き取った糸条を延伸熱処理する方法;巻き取ることなく続いて延伸を行う直接紡糸延伸法等が挙げられる。   As composite spinning, a POY method in which a semi-undrawn yarn is obtained by high-speed spinning at a spinning speed of 2000 m / min or higher; yarn that has been melt-spun once at a low speed of less than 2000 m / min or higher than 2000 m / min and wound up Examples thereof include a method of drawing and heat-treating the strip; a direct spinning drawing method in which drawing is carried out without winding.

本発明では、このような機能性繊維糸を用いて織編物とするが、これに先立ち、機能性繊維糸を糸加工してもよい。糸加工としては、撚糸、仮撚り、インターレース加工、タスラン加工等が挙げられる。特に仮撚糸とする場合、半未延伸糸とした後、延伸仮撚りするのがよい。また、糸加工にあたり、本発明の効果を損なわない範囲で他の任意の繊維を混用してもよく、通常は、本発明の機能性繊維糸を50質量%以上混用させるのがよい。   In the present invention, such a functional fiber yarn is used to form a woven or knitted fabric, but prior to this, the functional fiber yarn may be processed. Examples of the yarn processing include twisted yarn, false twist, interlace processing, and taslan processing. In particular, when a false twisted yarn is used, it is preferable that the false false twist is made after a semi-undrawn yarn. In yarn processing, other arbitrary fibers may be mixed as long as the effects of the present invention are not impaired. Usually, the functional fiber yarn of the present invention is preferably mixed in an amount of 50% by mass or more.

織編物とするには、公知の織機、編機を使用して製織編すればよい。この場合も、本発明の効果を損なわない範囲で、他の糸条が組み合わされていてもよい。   In order to obtain a knitted or knitted fabric, the knitting and knitting may be performed using a known loom or knitting machine. Also in this case, other yarns may be combined as long as the effects of the present invention are not impaired.

製織編後は、従来公知の方法に従って後加工する。この場合、必要に応じて染色、着色プリント、エンボス加工、撥水加工、抗菌加工、蓄光加工、消臭加工等されていてもよい。   After weaving and knitting, post-processing is performed according to a conventionally known method. In this case, dyeing, coloring printing, embossing, water repellent processing, antibacterial processing, phosphorescent processing, deodorizing processing, and the like may be performed as necessary.

本発明にかかる織編物の用途については、特に制限されないが、例えば、各種インナー、Tシャツ、ジャケット、ウインドブレーカー、ウェットスーツ、スキーウエア、手袋、帽子、テント、靴の中敷き、布団の側地等の保温性が求められる繊維製品の素材として好適である。   The use of the knitted or knitted fabric according to the present invention is not particularly limited. For example, various inners, T-shirts, jackets, windbreakers, wet suits, ski wear, gloves, hats, tents, insoles of shoes, futon lining It is suitable as a raw material for textile products that are required to have high heat retention.

以下、実施例及び比較例を挙げて更に詳細に本発明を説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these.

各測定方法及び評価方法は以下の通りである。   Each measuring method and evaluation method are as follows.

(1)極限粘度
フェノールと四塩化エタンとの等質量混合物を溶媒として、温度20℃の条件下で常法に基づき測定した。
(1) Intrinsic Viscosity The intrinsic viscosity was measured based on a conventional method under the condition of a temperature of 20 ° C. using a mixture of equal mass of phenol and ethane tetrachloride as a solvent.

(2)遠赤外線放射性微粒子の平均粒子径
株式会社島津製作所製「SALD−7100」を使用して測定した。測定分散液の調製は、エチレングリコール溶媒に、回折/散乱光強度が40〜60%になるように微粒子を希釈混合し、これを測定分散液とした。測定は各4回行い、その平均を平均粒子径とした。
(2) Average particle diameter of far-infrared radioactive fine particles It measured using "SALD-7100" by Shimadzu Corporation. The measurement dispersion was prepared by diluting and mixing fine particles in an ethylene glycol solvent so that the diffraction / scattering light intensity was 40 to 60%, and this was used as the measurement dispersion. The measurement was performed 4 times, and the average was taken as the average particle size.

(3)DC
機能性繊維糸から機能性繊維(単糸)を取り出した後、その単糸の断面を光学顕微鏡(稲畑産業株式会社製「PCSCOPE PCS−81X(商品名)」)を使用して写真撮影し、DCを下記式に基づいて算出した。
DC=(葉の先端から繊維の縁に至る最短距離)/繊維半径×100(%)
この場合、各葉について各々の先端から繊維外周に至る最短距離を測定し、それらを平均したものを、『葉の先端から繊維の縁に至る最短距離』とした。なお、葉がない場合は、芯部外周上に均一に配置された任意の8ヶ所を起点にして、芯部外周と繊維外周との距離を測定した。また、各々の葉の先端(又は芯部外周上に均一配置された任意の8ヶ所)を経由させるようにして、繊維中心から繊維外周まで各々線を引き、それらを平均したものを、『繊維半径』とした。
(3) DC
After taking out the functional fiber (single yarn) from the functional fiber yarn, the cross section of the single yarn was photographed using an optical microscope ("PCSCOPE PCS-81X (trade name)" manufactured by Inabata Sangyo Co., Ltd.), DC was calculated based on the following formula.
DC = (shortest distance from leaf tip to fiber edge) / fiber radius × 100 (%)
In this case, the shortest distance from each tip to the outer periphery of the fiber was measured for each leaf, and the average of them was defined as “the shortest distance from the tip of the leaf to the edge of the fiber”. When there was no leaf, the distance between the outer periphery of the core and the outer periphery of the fiber was measured starting from arbitrary 8 locations uniformly arranged on the outer periphery of the core. In addition, a line is drawn from the center of the fiber to the outer periphery of the fiber so as to pass through the tip of each leaf (or any eight locations uniformly arranged on the outer periphery of the core), and the average of them is “fiber Radius ”.

(4)発熱性能
各実施例および比較例で得られた織物に、照度10000LUXとなるようにレフランプを照射し、裏面からサーモグラフィーで織物の表面温度を観察した。なお、測定の際の環境条件は、20℃65%RHとした。また、ブランクとして、発熱性微粒子及び遠赤外線放射性微粒子を含まないこと以外は、各実施例及び比較例と同組成の繊維を用いて作製した織物(比較例1)を用い、当該ブランクについても表面温度を測定した。発熱特性は、測定した各実施例および比較例の表面温度とブランクとの表面温度の差を算出して評価した。
(4) Heat generation performance The fabric obtained in each Example and Comparative Example was irradiated with a reflex lamp so that the illuminance was 10,000 LUX, and the surface temperature of the fabric was observed by thermography from the back side. The environmental conditions for the measurement were 20 ° C. and 65% RH. Further, as a blank, except that exothermic fine particles and far-infrared emitting fine particles are not included, a woven fabric (Comparative Example 1) prepared using fibers having the same composition as each Example and Comparative Example is used. The temperature was measured. The heat generation characteristics were evaluated by calculating the difference between the measured surface temperature of each Example and Comparative Example and the surface temperature of the blank.

(5)遠赤外線放射性能
各実施例及び比較例で得られた織物の遠赤外線放射強度を測定した。測定は、赤外分光光度計FT−IR装置を使用し、測定温度40℃、測定波長域5〜20μmで行った。その際、同条件における黒体の遠赤外線放射強度も測定し、各波長における黒体の放射強度を100%とした場合の各織物の放射強度の比率(%)を求め、各波長で算出された比率の平均値を平均放射率(%)として算出した。また、ブランクの織物(比較例1)を用い、同様に平均放射率(%)を求めた。そして、次式に基づいて、遠赤外線放射性能を算出した。
<遠赤外線放射性能の算出式>
遠赤外線放射性能=〔(得られた織物の平均放射率(%)−ブランクの平均放射率(%))/ブランクの平均放射率(%)〕×100
(5) Far-infrared radiation performance The far-infrared radiation intensity | strength of the textile fabric obtained by each Example and the comparative example was measured. The measurement was performed using an infrared spectrophotometer FT-IR apparatus at a measurement temperature of 40 ° C. and a measurement wavelength range of 5 to 20 μm. At that time, the far-infrared radiant intensity of the black body under the same conditions is also measured, and the ratio (%) of the radiant intensity of each fabric when the radiant intensity of the black body at each wavelength is defined as 100% is calculated at each wavelength. The average value of the ratio was calculated as the average emissivity (%). Moreover, the average emissivity (%) was similarly calculated | required using the blank fabric (comparative example 1). And far-infrared radiation performance was computed based on the following formula.
<Calculation formula for far-infrared radiation performance>
Far-infrared radiation performance = [(average emissivity of the obtained fabric (%) − average emissivity of blank (%)) / average emissivity of blank (%)] × 100

(6)紡糸操業性
機能性繊維糸を得るべく24時間操業したときの糸切れ回数を計測し、下記基準に基づいて紡糸操業性を評価した。
<紡糸操業性の判定基準>
○:糸切れ回数が0〜2回
△:糸切れ回数が3〜5回
×:糸切れ回数が6回以上
(6) Spinning operability The number of yarn breaks when operated for 24 hours to obtain functional fiber yarns was measured, and the spinning operability was evaluated based on the following criteria.
<Criteria for spinning operability>
○: Number of thread breaks 0-2 times Δ: Number of thread breaks 3-5 times ×: Number of thread breaks 6 times or more

(7)ガイド摩耗性
各実施例及び比較例で得られた機能性繊維糸について、ステンレス製のトラベラーを有するリワインド機で100000mリワインドした後、トラベラーの表面状態を顕微鏡で観察し、下記判定基準に従ってガイド摩耗性を評価した。
<ガイド摩耗性の判定基準>
○:摩耗が認められないか、又はわずかな摩耗があるが問題のない程度である。
△:やや摩耗している。
×:強い摩耗が認められる。
(7) Guide wear property About the functional fiber yarn obtained in each Example and Comparative Example, after rewinding 100000 m with a rewind machine having a stainless steel traveler, the surface state of the traveler was observed with a microscope, and in accordance with the following criteria. The guide wear was evaluated.
<Guidelines for guide wear resistance>
○: No wear is observed, or there is slight wear but no problem.
Δ: Slightly worn.
X: Strong wear is recognized.

(実施例1)
繊維の鞘部材料として、極限粘度が0.65のポリエチレンテレフタレートを用意した。一方、芯部材料として、極限粘度0.65のポリエチレンテレフタレート98質量部に、発熱性微粒子としてカーボンを1.0質量部、及び遠赤外線放射性微粒子として平均粒子径1.4μmのマイカを1.0質量部含有させたものを用意した。そして、鞘部材料及び芯部材料を、孔数48孔の芯鞘複合ノズルプレートを備えた複合紡糸装置に導入し、芯鞘質量比(芯/鞘)20/80、紡糸温度290℃の条件で複合紡糸した。紡糸後、糸条を冷却し、油剤を付与した。そして、引き続き1400m/分の速度で回転する第一ローラに糸条を導入し、3600m/分の速度で回転する第二ローラとの間で2.57倍に熱延伸し、本発明の機能性繊維糸とした。ここで、上記第一ローラ温度は95℃であり、第二ローラ温度は100℃であった。
Example 1
As the fiber sheath material, polyethylene terephthalate having an intrinsic viscosity of 0.65 was prepared. On the other hand, as the core material, 98 parts by mass of polyethylene terephthalate having an intrinsic viscosity of 0.65, 1.0 part by mass of carbon as exothermic fine particles, and 1.0% of mica having an average particle diameter of 1.4 μm as far-infrared radioactive fine particles. What contained the mass part was prepared. Then, the sheath material and the core material are introduced into a composite spinning apparatus equipped with a 48-hole core-sheath composite nozzle plate, and the conditions of the core-sheath mass ratio (core / sheath) 20/80 and the spinning temperature of 290 ° C. And composite spinning. After spinning, the yarn was cooled and an oil was applied. Then, the yarn is continuously introduced into the first roller that rotates at a speed of 1400 m / min, and is thermally stretched 2.57 times with the second roller that rotates at a speed of 3600 m / min. Fiber yarn was used. Here, the first roller temperature was 95 ° C., and the second roller temperature was 100 ° C.

得られた機能性繊維糸の総繊度は65dtex48fであり、繊維の断面形状は図2(a)記載のような芯鞘構造をなし、芯部断面は葉数8の多葉型断面形状をなしていた。   The total fineness of the obtained functional fiber yarn is 65 dtex48f, the cross-sectional shape of the fiber has a core-sheath structure as shown in FIG. 2 (a), and the cross-section of the core has a multi-leaf type cross-sectional shape with 8 leaves. It was.

次に、カーボン、マイカを含まないこと以外は、上記機能性繊維糸と同様の構成を有するポリエステル糸56dtex48fを用意し、経糸に上記ポリエステル糸を、緯糸に上記機能性繊維糸を用いて、経糸密度153本/2.54cm、緯糸密度111本/2.54cmの設計で平組織の生機を製織した。そして、生機を常法に基づいて精練し、130℃で染色した後、仕上げセットし、目的の織物となした。   Next, a polyester yarn 56dtex48f having the same configuration as that of the above functional fiber yarn is prepared except that carbon and mica are not included, and the above polyester fiber is used as a warp and the above functional fiber yarn is used as a weft. A plain machine was woven with a density of 153 yarns / 2.54 cm and a weft density of 111 yarns / 2.54 cm. Then, the raw machine was scoured according to a conventional method, dyed at 130 ° C., finished and set, and the desired woven fabric was obtained.

(比較例1)
極限粘度0.65のポリエチレンテレフタレートのみを紡糸した以外は、実施例1と同様に行い、機能性繊維糸及び織物を得た。
(Comparative Example 1)
A functional fiber yarn and a woven fabric were obtained in the same manner as in Example 1 except that only polyethylene terephthalate having an intrinsic viscosity of 0.65 was spun.

(実施例2〜9、比較例2〜4)
発熱性微粒子及び遠赤外線放射性微粒子の種類、含有量、並びに芯鞘質量比等を表1記載のものに変更する以外は、実施例1の場合と同様に行い、機能性繊維糸及び織物を得た。
(Examples 2-9, Comparative Examples 2-4)
Except for changing the types, contents, and core-sheath mass ratio of the exothermic fine particles and far-infrared radioactive fine particles to those shown in Table 1, the same procedure as in Example 1 was carried out to obtain a functional fiber yarn and woven fabric. It was.

(実施例10)
繊維断面形状として図1に示すような同心芯鞘構造を採用すること(芯部材料に上記微粒子を含む)以外は、実施例1の場合と同様に紡糸して機能性繊維糸を得、以降も実施例1の場合と同様に行い、織物を得た。
(Example 10)
A functional fiber yarn is obtained by spinning in the same manner as in Example 1 except that a concentric core-sheath structure as shown in FIG. 1 is adopted as the fiber cross-sectional shape (including the fine particles in the core material). Was performed in the same manner as in Example 1 to obtain a woven fabric.

Figure 0006487171
Figure 0006487171

以上より、本発明の機能性繊維糸を含む織物は、発熱及び遠赤外線放出の両方の作用を同時に実現することができ、保温効果に優れていた。また、本発明の機能性繊維糸は、生産時、紡糸操業性に優れており、製織編時、ガイド摩耗等を引き起こしづらいものであった。   From the above, the woven fabric containing the functional fiber yarn of the present invention was able to realize both functions of heat generation and far-infrared emission at the same time, and was excellent in the heat retaining effect. In addition, the functional fiber yarn of the present invention was excellent in spinning operability during production, and was difficult to cause guide wear during weaving and knitting.

なお、実施例6にかかる機能性繊維糸は、繊維断面において芯部の厚みが肉厚となったため、繊維全体に占める微粒子の含有量が増えた結果、実施例1の場合と比べ紡糸操業性が相対的に低下した。さらに、繊維芯部の厚みが増したことに伴い、糸の紡糸、延伸、仮撚りの過程で、繊維芯部の葉の一部が繊維表面に僅かに露出してしまい、ガイド摩耗性が相対的に低下した。   In addition, since the thickness of the core part of the functional fiber yarn according to Example 6 became thicker in the fiber cross section, the content of fine particles in the entire fiber was increased. As a result, the spinning operability was higher than that in Example 1. Decreased relatively. Furthermore, as the thickness of the fiber core increases, some of the leaves of the fiber core are slightly exposed on the fiber surface during the spinning, drawing, and false twisting of the yarn, and the guide wear resistance is relatively low. Declined.

また、実施例1、8、9の結果から、微粒子としてカーボン、マイカの組み合わせが保温効果の点で好ましいことがわかった。
実施例10にかかる機能性繊維糸は、繊維の芯鞘質量比や微粒子の含有量等が実施例1の場合と同じであるが、繊維形状が同心芯鞘構造をなしており、芯部外周と繊維外周との距離が、実施例1の場合よりも長くなったため、実施例1の場合と比べ総じて保温効果は低下した。
Further, from the results of Examples 1, 8, and 9, it was found that a combination of carbon and mica as fine particles was preferable in terms of the heat retaining effect.
The functional fiber yarn according to Example 10 has the same fiber sheath / core mass ratio and fine particle content as in Example 1, but the fiber shape has a concentric core / sheath structure, and the outer periphery of the core part. Since the distance between the fiber and the outer periphery of the fiber was longer than in the case of Example 1, the heat retaining effect was generally reduced as compared with the case of Example 1.

これに対し、比較例2、3では、繊維に含まれる微粒子の含有量が所定範囲を満たしていなかったため、所望の保温効果、紡糸操業性のいずれかに欠ける結果となった。   On the other hand, in Comparative Examples 2 and 3, since the content of the fine particles contained in the fibers did not satisfy the predetermined range, the desired heat retention effect and spinning operability were lacking.

また、比較例4では、繊維芯部の質量比が大きくなり過ぎたことにより、鞘部の厚みが増し、結果、紡糸操業性及びガイド摩耗性が低下した。
Moreover, in the comparative example 4, when the mass ratio of the fiber core part was too large, the thickness of the sheath part was increased, and as a result, the spinning operability and the guide wearability were reduced.

Claims (2)

断面が芯鞘構造をなすと共に芯部にカーボン及びマイカを含有する機能性繊維から構成される糸条であって、前記機能性繊維において、前記カーボン及び前記マイカを前記芯部100質量部に対してそれぞれ0.1〜2.5質量部ずつ含有し、前記カーボン及び前記マイカを前記芯部100質量部に対して合計で0.2〜3.5質量部含有し、かつ芯鞘質量比(芯/鞘)が75/25〜10/90の範囲にあることを特徴とする機能性繊維糸。 The cross-section is a yarn composed of a functional fiber containing a core-sheath structure and containing carbon and mica in the core, and in the functional fiber, the carbon and the mica are added to 100 parts by mass of the core. 0.1 to 2.5 parts by mass of each, and 0.2 to 3.5 parts by mass in total of the carbon and the mica with respect to 100 parts by mass of the core, and a core-sheath mass ratio ( A functional fiber yarn having a core / sheath range of 75/25 to 10/90. 前記機能性繊維において、前記芯部の断面形状が繊維のほぼ中心から放射状に延びる多葉型断面形状をなし、かつ前記多葉型断面形状の葉数が6〜20の範囲にあることを特徴とする請求項1記載の機能性繊維糸。   In the functional fiber, the cross-sectional shape of the core portion is a multi-leaf type cross-sectional shape extending radially from the substantially center of the fiber, and the number of leaves of the multi-leaf type cross-sectional shape is in the range of 6 to 20. The functional fiber yarn according to claim 1.
JP2014201417A 2014-09-30 2014-09-30 Functional fiber yarn Active JP6487171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201417A JP6487171B2 (en) 2014-09-30 2014-09-30 Functional fiber yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201417A JP6487171B2 (en) 2014-09-30 2014-09-30 Functional fiber yarn

Publications (2)

Publication Number Publication Date
JP2016069765A JP2016069765A (en) 2016-05-09
JP6487171B2 true JP6487171B2 (en) 2019-03-20

Family

ID=55866267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201417A Active JP6487171B2 (en) 2014-09-30 2014-09-30 Functional fiber yarn

Country Status (1)

Country Link
JP (1) JP6487171B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6684697B2 (en) * 2016-12-07 2020-04-22 株式会社クラレ Core-sheath composite fiber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392720A (en) * 1986-10-03 1988-04-23 Nobuhide Maeda Sheath-core composite fiber emitting far infrared radiation
JPH0351312A (en) * 1989-07-14 1991-03-05 Unitika Ltd Heat-accumulating and heat retaining fiber having improved whiteness
JPH06272166A (en) * 1993-03-18 1994-09-27 Unitika Ltd Moisture-permeable and waterproof fabric
JP4917992B2 (en) * 2007-08-08 2012-04-18 日本エステル株式会社 Core-sheath type composite fiber

Also Published As

Publication number Publication date
JP2016069765A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6106487B2 (en) Functional fiber
JP6360319B2 (en) Long / short composite spun yarn and fabric using the same
JP6523462B2 (en) Heat storage and heat retention fleece and method for producing the same
JP6315897B2 (en) Multifilament yarn and its knitted fabric
JP6319735B2 (en) Multifilament yarn and its knitted fabric
JP4228856B2 (en) Thermoplastic fibers, fabrics and textile products
JP6487171B2 (en) Functional fiber yarn
JP6498873B2 (en) Functional fiber yarn and woven or knitted fabric using the same
JP5735377B2 (en) Core-sheath type polyester flat cross-section fiber and fabric having permeation resistance
JP2015101815A (en) Functional fiber, and heat retaining woven fabric to be constituted of the fiber
JP6751558B2 (en) Double-sided knitted fabric
JP6360318B2 (en) Composite-bound spun yarn and fabric using the same
JP6538340B2 (en) Hollow multifilament yarn, false twist hollow multifilament yarn, and woven and knitted fabric
JP2016113714A (en) False-twisted hollow multifilament yarn, and woven or knitted fabric
JP2015218413A (en) Far infrared radiation multifilament yarn
JP2016056464A (en) Functional fiber
JP2015105444A (en) Functional composite yarn
JP6388471B2 (en) Thermal insulation fabric
JP2017125293A (en) Functional fiber
JP6259318B2 (en) Method for producing false twisted yarn for black formal clothing
JP2016027212A (en) Functional fiber
JP6211885B2 (en) Thermal insulation fabric
JP6501839B2 (en) Multifilament yarn and woven or knitted fabric thereof
JP6829005B2 (en) Tricot knitted fabric
JP6501840B2 (en) Multifilament yarn and woven or knitted fabric thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190221

R150 Certificate of patent or registration of utility model

Ref document number: 6487171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150