JP2017125293A - Functional fiber - Google Patents

Functional fiber Download PDF

Info

Publication number
JP2017125293A
JP2017125293A JP2017041236A JP2017041236A JP2017125293A JP 2017125293 A JP2017125293 A JP 2017125293A JP 2017041236 A JP2017041236 A JP 2017041236A JP 2017041236 A JP2017041236 A JP 2017041236A JP 2017125293 A JP2017125293 A JP 2017125293A
Authority
JP
Japan
Prior art keywords
fine particles
far
sheath
functional fiber
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017041236A
Other languages
Japanese (ja)
Other versions
JP2017125293A5 (en
Inventor
恭雄 岸田
Yasuo Kishida
恭雄 岸田
酒部 一郎
Ichiro Sakabe
一郎 酒部
幹也 廣長
Mikiya Hironaga
幹也 廣長
慶 加藤
Kei Kato
慶 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Unitika Trading Co Ltd
Original Assignee
Nippon Ester Co Ltd
Unitika Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd, Unitika Trading Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2017041236A priority Critical patent/JP2017125293A/en
Publication of JP2017125293A publication Critical patent/JP2017125293A/en
Publication of JP2017125293A5 publication Critical patent/JP2017125293A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber producible without causing an adverse effect on spinning operability and further having an excellent heat insulation effect.SOLUTION: A functional fiber is a sheath-core composite fiber blended with pyrogenic fine particles and far-infrared emissive fine particles, and further has a sheath-core structure, where the far-infrared emissive fine particles are contained in the sheath part and the pyrogenic fine particles are contained in the core part or the sheath part. The far-infrared emissive fine particles are at least one kind selected from mica, tin oxide and talc, and the pyrogenic fine particles are at least one kind selected from carbon, zirconium oxide and zirconium carbide.EFFECT: In the functional fiber, thread breakage and guide wear are suppressed, and a fabric using the fiber has a high thermal insulation effect.SELECTED DRAWING: None

Description

本発明は、遠赤外線放射性能及び発熱性能に優れた機能性繊維に関する。   The present invention relates to a functional fiber excellent in far-infrared radiation performance and heat generation performance.

従来、保温を目的とした織編物は数多く上市されており、中空糸等によるデッドエアーの利用や吸湿発熱効果の利用、太陽光を熱に変換して利用する方法等、様々な手法を用いた素材が提案されている。しかしながら、デッドエアーの利用は、空気を含ませることで放熱を抑えるという消極的な手法であるため、寒さに対する保温性には限界があり、また空気層を利用するため、織編物が嵩高になってしまうという問題があった。また、吸湿発熱効果の利用については、不感蒸泄等の湿気を吸収することで発熱するものであるが、湿気を吸収した際には発熱するものの、持続性が低く、すぐに放熱してしまうという問題があった。一方、太陽光を熱に変換する方法は、晴天時の屋外においては十分な効果が認められるものの、雨天時や室内ではその効果がほとんど期待出来ないという問題があった。   Conventionally, many knitted and knitted fabrics for the purpose of keeping warm have been put on the market, and various techniques such as the use of dead air by hollow fibers, the use of moisture absorption heat generation effect, the method of converting sunlight into heat, etc. were used. Material has been proposed. However, the use of dead air is a passive method of suppressing heat dissipation by including air, so there is a limit to heat retention against the cold, and the use of an air layer makes the woven or knitted fabric bulky. There was a problem that. In addition, the use of the moisture absorption heat generation effect generates heat by absorbing moisture such as insensitive excretion, but when it absorbs moisture, it generates heat, but it has low sustainability and immediately releases heat. There was a problem. On the other hand, the method of converting sunlight into heat has a problem that although a sufficient effect is recognized outdoors in fine weather, the effect can hardly be expected in rainy weather or indoors.

これに対して、近年、遠赤外線放射性微粒子を利用して繊維に保温効果を付与する技術が提案されている。例えば、特許文献1には、遠赤外線放射性微粒子を3重量%以上含有又は付着させた繊維が開示されている。また、特許文献2には、ポリエステルに平均粒径2.5〜5.0μmの雲母と平均粒径8.0〜13.0μmの雲母を重量比4/6〜8/2の割合で合計で3〜8重量%含有させた遠赤外線照射性ポリエステルが開示されている。更に、特許文献3には、特定の遠赤外線照射率を示す遠赤外線放射性微粒子を1〜10重量%含有するポリマーからなる鞘部と、当該微粒子を10〜70重量%含有するポリマーからなる芯部より構成される遠赤外線放射性機能性繊維が開示されている。また、特許文献4には、遠赤外線放射性微粒子を含有する熱可塑性重合体を鞘部に含む芯鞘構造の機能性繊維であって、遠赤外線放射性微粒子が繊維全体の3重量%である機能性繊維が開示されている。   On the other hand, in recent years, a technique for imparting a heat retaining effect to fibers using far-infrared radioactive fine particles has been proposed. For example, Patent Document 1 discloses a fiber containing 3% by weight or more of far-infrared radioactive fine particles. In Patent Document 2, mica having an average particle diameter of 2.5 to 5.0 μm and mica having an average particle diameter of 8.0 to 13.0 μm are added to polyester in a ratio of 4/6 to 8/2 in a weight ratio. A far-infrared ray irradiating polyester containing 3 to 8% by weight is disclosed. Furthermore, Patent Document 3 discloses a sheath portion made of a polymer containing 1 to 10% by weight of far-infrared radioactive fine particles exhibiting a specific far-infrared irradiation rate, and a core portion made of a polymer containing 10 to 70% by weight of the fine particles. Disclosed is a far-infrared radioactive functional fiber. Further, Patent Document 4 discloses a functional fiber having a core-sheath structure including a thermoplastic polymer containing far-infrared radiation fine particles in a sheath portion, and the far-infrared radiation fine particles are 3% by weight of the whole fiber. A fiber is disclosed.

しかしながら、特許文献1〜4のように、遠赤外線放射性微粒子のみを利用して繊維の保温効果を高めるには、遠赤外線放射性微粒子を多量に含有又は付着させる必要があり、紡糸の際に糸切れやガイド摩耗等が生じやすくなり、紡糸操業性を悪化させるという問題があった。また、特許文献4の技術では、遠赤外線放射性微粒子を芯鞘構造の鞘部に局在化させることにより、紡糸操業性の改善が図られているものの、依然として満足できるものではない。   However, as in Patent Documents 1 to 4, in order to increase the heat retention effect of the fiber using only the far-infrared radioactive fine particles, it is necessary to contain or attach a large amount of the far-infrared radioactive fine particles, and the yarn breaks during spinning. There is a problem that the wear of the guide and the guide are likely to occur and the spinning operability is deteriorated. In the technique of Patent Document 4, although the far-infrared radioactive fine particles are localized in the sheath portion of the core-sheath structure, the spinning operability is improved, but it is still not satisfactory.

更に、特許文献1〜4のように、遠赤外線放射特性を有する微粒子のみを利用して繊維に保温効果を付与する技術では、実現可能な保温効果には限界があり、十分な暖かさを実現するには至っていないのが現状である。   Furthermore, as in Patent Documents 1 to 4, with the technology that provides the heat insulation effect to the fiber using only the fine particles having far-infrared radiation characteristics, there is a limit to the heat insulation effect that can be realized, and sufficient warmth is realized. The current situation has not yet been reached.

特開昭63−227828号公報JP-A 63-227828 特開平9−77961号公報Japanese Patent Laid-Open No. 9-77961 特開昭63−152413号公報JP 63-152413 A 特開平2−154009号公報Japanese Patent Laid-Open No. 2-154209

本発明は、紡糸操業性に悪影響を及ぼすことがなく製造可能であり、しかも優れた保温効果を備える繊維を提供することを目的とする。更に、本発明は、当該繊維を利用した糸条及び布帛を提供することを目的とする。   An object of the present invention is to provide a fiber that can be produced without adversely affecting the spinning operability and that has an excellent heat retaining effect. Furthermore, an object of this invention is to provide the thread | yarn and fabric using the said fiber.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、発熱性微粒子と遠赤外線放射性微粒子を含有する繊維は、高い保温効果を有することを見出した。更に、芯鞘構造を有する繊維の鞘部に遠赤外線放射性微粒子を含み、且つ芯部又は鞘部に発熱性微粒子を含有させることによって、発熱作用と遠赤外線放射作用が高まり、これらの相乗的作用によって保温効果が一層向上することを見出した。本発明はこれらの知見に基づいて更に検討を重ねた結果完成されたものである。即ち、本発明は下記態様の機能性繊維、糸条、及び布帛を提供する。   As a result of intensive studies to solve the above problems, the present inventors have found that fibers containing exothermic fine particles and far-infrared emitting fine particles have a high heat retention effect. Furthermore, by including far-infrared radiation fine particles in the sheath part of the fiber having a core-sheath structure, and by containing exothermic fine particles in the core part or the sheath part, the heat generation action and the far-infrared radiation action are enhanced, and these synergistic actions. It was found that the heat retention effect is further improved. The present invention has been completed as a result of further studies based on these findings. That is, this invention provides the functional fiber of the following aspect, a thread | yarn, and a fabric.

(1)発熱性微粒子及び遠赤外線放射性微粒子を含有することを特徴とする、機能性繊維。
(2)前記遠赤外線放射性微粒子が、マイカ、酸化錫、及びタルクからなる群より選択される少なくとも1種である、(1)に記載の機能性繊維。
(3)前記発熱性微粒子が、カーボン、酸化ジルコニウム、及び炭化ジルコニウムからなる群より選択される少なくとも1種である、(1)又は(2)に記載の機能性繊維。
(4)芯鞘構造を有し、遠赤外線放射性微粒子が鞘部に含まれ、発熱性微粒子が芯部又は鞘部に含まれている、(1)〜(3)のいずれかに記載の機能性繊維。
(5)遠赤外線放射性微粒子及び発熱性微粒子が鞘部に含まれ、遠赤外線放射性微粒子の含有量が鞘部100質量部に対して0.1〜2.5質量部であり、発熱性微粒子の含有量が鞘部100質量部に対して0.1〜2.5質量部である、(4)に記載の機能性繊維。(6)芯鞘の重量比(芯/鞘)が95/5〜15/85である、(4)又は(5)に記載の機能性繊維。
(7)(1)〜(6)のいずれかに記載の繊維を含む糸条。
(8)(7)に記載の糸条を含む布帛。
(9)カバーファクターが850〜3500である、(8)に記載の布帛。
(1) A functional fiber characterized by containing exothermic fine particles and far-infrared radioactive fine particles.
(2) The functional fiber according to (1), wherein the far-infrared radioactive fine particles are at least one selected from the group consisting of mica, tin oxide, and talc.
(3) The functional fiber according to (1) or (2), wherein the exothermic fine particles are at least one selected from the group consisting of carbon, zirconium oxide, and zirconium carbide.
(4) The function according to any one of (1) to (3), which has a core-sheath structure, far infrared radiation fine particles are contained in the sheath, and exothermic fine particles are contained in the core or the sheath. Sex fibers.
(5) The far-infrared radioactive fine particles and the exothermic fine particles are contained in the sheath part, and the content of the far-infrared radioactive fine particles is 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the sheath part. Functional fiber as described in (4) whose content is 0.1-2.5 mass parts with respect to 100 mass parts of sheath parts. (6) The functional fiber according to (4) or (5), wherein the weight ratio of the core sheath (core / sheath) is 95/5 to 15/85.
(7) A yarn containing the fiber according to any one of (1) to (6).
(8) A fabric comprising the yarn according to (7).
(9) The fabric according to (8), which has a cover factor of 850 to 3500.

本発明によれば、遠赤外線放射性及び発熱特性の両方を同時に実現し、優れた保温効果を有する機能性繊維が提供される。また、本発明の機能性繊維が芯鞘構造を有し、鞘部分に遠赤外線放射性微粒子及び発熱性微粒子を含有する場合には、これらの微粒子の含有量が比較的低量であっても、両者がより近接するため、効率的に発熱作用と遠赤外線作用を発揮して、更に優れた保温効果を奏することができる。そのため、本発明の機能性繊維によれば、繊維に配合する前記微粒子量を低減できるので、前記微粒子に起因する糸切れやガイド摩耗を抑制でき、紡糸操業性も良好になる。また、本発明の機能性繊維を使用した糸条及び布帛は、保温性に優れることから防寒用衣類の素材として有用である。   According to the present invention, a functional fiber that simultaneously realizes both far-infrared radiation and heat generation characteristics and has an excellent heat retaining effect is provided. Further, when the functional fiber of the present invention has a core-sheath structure and the sheath part contains far-infrared radiation fine particles and exothermic fine particles, even if the content of these fine particles is relatively low, Since both of them are closer to each other, the heat generation effect and the far-infrared effect can be efficiently exhibited, and a further excellent heat retention effect can be achieved. Therefore, according to the functional fiber of the present invention, since the amount of the fine particles blended in the fiber can be reduced, yarn breakage and guide wear caused by the fine particles can be suppressed, and the spinning operability is improved. In addition, the yarn and the fabric using the functional fiber of the present invention are useful as a material for a cold protection garment because of its excellent heat retention.

本発明の機能性繊維は、発熱性微粒子及び遠赤外線放射性微粒子を含有することを特徴とする。以下、本発明の機能性繊維について詳述する。   The functional fiber of the present invention is characterized by containing exothermic fine particles and far-infrared radioactive fine particles. Hereinafter, the functional fiber of the present invention will be described in detail.

本発明の繊維複合の構成ポリマーとしては、溶融紡糸が可能であることを限度として特に限定されず、従来、繊維の原料として使用されているポリマーを使用することができる。このようなポリマーとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン46、ナイロン11、ナイロン12等のポリアミド;ポリプロピレン、ポリエチレン等のポリオレフィン;ポリ塩化ビニル、ポリ塩化ビニリデン等のポリ塩化ポリマー;ポリ4フッ化エチレン、ポリフッ化ビニリデン等のフッ素系ポリマー;PLA(ポリ乳酸)やPBS(ポリブチレンサクシネート)等のバイオマス由来モノマーを化学的に重合してなるバイオマスポリマー;これらのポリマーを構成するモノマーの2種以上からなる共重合体等が挙げられる。   The constituent polymer of the fiber composite of the present invention is not particularly limited as long as melt spinning is possible, and a polymer conventionally used as a raw material for fibers can be used. Examples of such polymers include polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, and polytrimethylene terephthalate; polyamides such as nylon 6, nylon 66, nylon 46, nylon 11, and nylon 12; polypropylene, polyethylene, and the like. Polyolefins; Polychlorinated polymers such as polyvinyl chloride and polyvinylidene chloride; Fluoropolymers such as polytetrafluoroethylene and polyvinylidene fluoride; Biomass-derived monomers such as PLA (polylactic acid) and PBS (polybutylene succinate) Biomass polymer obtained by polymerization of the polymer; a copolymer comprising two or more monomers constituting these polymers;

また、これらのポリマーは、粘度、熱的特性、相溶性等を鑑みて、他の構成モノマーを含む共重合体であってもよい。例えば、ポリエステルの共重合体(共重合ポリエステル)を使用する場合であれば、イソフタル酸、5−スルホイソフタル酸等の芳香族ジカルボン酸:アジピン酸、コハク酸、スベリン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸;エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール等の脂肪族ジオール;グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシペンタン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等のヒドロキシカルボン酸;ε−カプロラクトン等の脂肪族ラクトンと、ポリエステルとの共重合体を使用してもよい。   These polymers may be copolymers containing other constituent monomers in view of viscosity, thermal characteristics, compatibility and the like. For example, when a polyester copolymer (copolyester) is used, aromatic dicarboxylic acids such as isophthalic acid and 5-sulfoisophthalic acid: adipic acid, succinic acid, suberic acid, sebacic acid, dodecanedioic acid Aliphatic dicarboxylic acids such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, etc .; glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxypentanoic acid Hydroxycarboxylic acids such as hydroxyheptanoic acid and hydroxyoctanoic acid; copolymers of aliphatic lactones such as ε-caprolactone and polyesters may be used.

遠赤外線放射性微粒子とは、遠赤外線を放射可能な物質からなる微粒子である。本発明において使用される遠赤外線放射性微粒子としては、特に制限されないが、例えば、マイカ、タルク、方解石等の鉱物;酸化錫、アルミナ、二酸化珪素等の酸化物系セラミックス;炭化珪素、炭化ホウ素等の炭化物系セラミックス;白金、タングステン等の金属類が挙げられる。これらの遠赤外線放射性微粒子の中でも、紡糸操業性と遠赤外線放射性能をより向上させるという観点から、好ましくはマイカ、酸化錫、タルク更に好ましくはマイカ、酸化錫が挙げられる。これらの遠赤外線放射性微粒子は、1種単独で使用してもよく、また2種以上を組合せて使用してもよい。   Far-infrared radioactive fine particles are fine particles made of a substance capable of emitting far-infrared rays. Although it does not restrict | limit especially as a far-infrared radioactive fine particle used in this invention, For example, minerals, such as a mica, a talc, a calcite; Oxide-type ceramics, such as a tin oxide, an alumina, a silicon dioxide; Silicon carbide, a boron carbide, etc. Carbide ceramics: metals such as platinum and tungsten. Among these far-infrared radioactive fine particles, mica, tin oxide, talc, and more preferably mica and tin oxide are preferable from the viewpoint of further improving spinning operability and far-infrared radiation performance. These far-infrared radioactive fine particles may be used alone or in combination of two or more.

遠赤外線放射性微粒子の平均粒子径については、特に限定されないが、例えば10μm以下、好ましくは0.1〜5μm、更に好ましくは0.3〜3μmが挙げられる。遠赤外線放射性微粒子の平均粒子径が前記範囲内であれば、紡糸操業性に悪影響を及ぼすことなく、より優れた保温効果を奏させることができる。ここで平均粒子径は、レーザー回折散乱法粒度分布測定装置を用いて測定される体積平均粒子径である。   The average particle diameter of the far-infrared radioactive fine particles is not particularly limited, but for example, 10 μm or less, preferably 0.1 to 5 μm, more preferably 0.3 to 3 μm. If the average particle diameter of the far-infrared radiation fine particles is within the above range, a superior heat retention effect can be achieved without adversely affecting the spinning operability. Here, the average particle diameter is a volume average particle diameter measured using a laser diffraction scattering method particle size distribution measuring apparatus.

本発明の機能性繊維中の遠赤外線放射性微粒子の含有量としては、特に制限されないが、例えば0.1〜10質量%が挙げられる。特に、本発明の機能性繊維では、遠赤外線放射性微粒子の低含有量であっても、後述する発熱性微粒子を併用しているため、優れた保温効果を奏するという利点がある。すなわち、本発明では、後述するように、発熱性微粒子が発する熱を保温効果の向上そのものに利用できるだけでなく、その熱を遠赤外線放射性微粒子の温度上昇にも利用でき、遠赤外線放射性微粒子からは温度上昇に応じてより多くの遠赤外線が発せられるため、結果としてより優れた保温効果が奏されるのである。   Although it does not restrict | limit especially as content of the far-infrared radiation fine particle in the functional fiber of this invention, For example, 0.1-10 mass% is mentioned. In particular, the functional fiber of the present invention has an advantage of having an excellent heat retaining effect because the exothermic fine particles described later are used in combination even if the content of far-infrared radioactive fine particles is low. That is, in the present invention, as will be described later, not only can the heat generated by the exothermic fine particles be used to improve the heat retaining effect itself, but the heat can also be used to increase the temperature of the far infrared radioactive fine particles. Since more far-infrared rays are emitted in response to the temperature rise, as a result, a better heat retention effect is achieved.

かかる観点から、遠赤外線放射性微粒子の含有量として、好ましくは0.2〜5質量%、より好ましくは0.5〜2.5質量%、更に好ましくは0.5〜2質量%が挙げられる。また、このように遠赤外線放射性微粒子の含有量を低減させることにより、紡糸操業性も一層良好になる。   From this viewpoint, the content of the far-infrared radioactive fine particles is preferably 0.2 to 5% by mass, more preferably 0.5 to 2.5% by mass, and still more preferably 0.5 to 2% by mass. Further, by reducing the content of far-infrared radioactive fine particles in this way, the spinning operability is further improved.

発熱性微粒子とは、電磁波(太陽光を含む)の吸収により発熱可能な物質からなる微粒子である。本発明において使用される発熱性微粒子としては、特に制限されないが、例えば、酸化ジルコニウム、炭化ジルコニウム、カーボン等が挙げられる。これらの発熱性微粒子の中でも、紡糸操業性と発熱性能をより向上させるという観点から、好ましくはカーボン、炭化ジルコニウムが挙げられる。これらの発熱性微粒子は、1種単独で使用してもよく、また2種以上を組合せて使用してもよい。   The exothermic fine particles are fine particles made of a substance that can generate heat by absorbing electromagnetic waves (including sunlight). The exothermic fine particles used in the present invention are not particularly limited, and examples thereof include zirconium oxide, zirconium carbide, and carbon. Among these exothermic fine particles, carbon and zirconium carbide are preferably used from the viewpoint of further improving the spinning operability and the exothermic performance. These exothermic fine particles may be used individually by 1 type, and may be used in combination of 2 or more type.

発熱性微粒子の平均粒子径については、特に限定されないが、例えば0.01〜5μm、好ましくは0.05〜3μm、更に好ましくは0.1〜2μmが挙げられる。発熱性微粒子の平均粒子径が前記範囲内であれば、紡糸操業性に悪影響を及ぼすことなく、より優れた保温効果を奏させることができる。ここで平均粒子径は、レーザー回折散乱法粒度分布測定装置を用いて測定される体積平均粒子径である。   The average particle size of the exothermic fine particles is not particularly limited, and for example, 0.01 to 5 μm, preferably 0.05 to 3 μm, and more preferably 0.1 to 2 μm. When the average particle diameter of the exothermic fine particles is within the above range, a more excellent heat retention effect can be achieved without adversely affecting the spinning operability. Here, the average particle diameter is a volume average particle diameter measured using a laser diffraction scattering method particle size distribution measuring apparatus.

本発明の機能性繊維中の発熱性微粒子の含有量としては、特に制限されないが、例えば0.1〜10質量%が挙げられる。特に、本発明の機能性繊維では、前記と同様の理由から、発熱性微粒子の低含有量であっても、優れた保温効果を奏するという利点がある。かかる観点から、発熱性微粒子の含有量として、好ましくは0.2〜5質量%、より好ましくは0.5〜2.5質量%、更に好ましくは0.5〜2質量%が挙げられる。また、このように発熱性微粒子の含有量を低減させることにより、紡糸操業性も一層良好になる。   Although content in particular in the functional fiber of this invention is not restrict | limited, For example, 0.1-10 mass% is mentioned. In particular, the functional fiber of the present invention has an advantage of exhibiting an excellent heat retaining effect even for a low content of exothermic fine particles for the same reason as described above. From this viewpoint, the content of the exothermic fine particles is preferably 0.2 to 5% by mass, more preferably 0.5 to 2.5% by mass, and still more preferably 0.5 to 2% by mass. Further, by reducing the content of the exothermic fine particles in this way, the spinning operability is further improved.

また、本発明の機能性繊維において、遠赤外線放射性微粒子と発熱性微粒子の比率については、特に制限されないが、一層優れた保温効果を奏させるという観点から、遠赤外線放射性微粒子1質量部に対して発熱性微粒子0.2〜5質量部、好ましくは0.5〜2質量部が挙げられる。   Further, in the functional fiber of the present invention, the ratio of the far-infrared radioactive fine particles to the exothermic fine particles is not particularly limited, but from the viewpoint of exerting a more excellent heat retention effect, with respect to 1 part by mass of the far-infrared radioactive fine particles. The exothermic fine particles are 0.2 to 5 parts by mass, preferably 0.5 to 2 parts by mass.

本発明の機能性繊維は、このように発熱性微粒子及び遠赤外線放射性微粒子を含有するものである。   The functional fiber of the present invention thus contains exothermic fine particles and far-infrared radioactive fine particles.

本発明では、かかる発熱性微粒子を含有することで、太陽光を効率的に熱に変換し、十分な暖かさを付与できると共に、雨天時や室内など太陽光の届きにくい場合でも、遠赤外線放射性微粒子により暖かさを維持することができる。しかも本発明では、発熱性微粒子及び遠赤外線放射性微粒子の双方を同一繊維中に含有させることで、上記発熱性微粒子が発する熱を、暖かさを付与することに利用するのみならず、近接する遠赤外線放射性微粒子そのものの温度を上昇させることに利用し、遠赤外線放射効果を更に高める相乗効果を有するものである。特に発熱性微粒子と遠赤外線放射性微粒子を双方とも繊維の鞘部に含有する場合には、両者がより近接するため、前記効果が効率的に奏され、微粒子の含有量を減少させても十分な保温効果が得られ、一方で、微粒子の含有量を減少させることにより紡糸操業性も安定するため、更に好ましい。   In the present invention, by containing such exothermic fine particles, sunlight can be efficiently converted into heat and sufficient warmth can be imparted, and even when it is difficult to reach sunlight, such as in rainy weather or indoors, far infrared radiation Warmness can be maintained by the fine particles. In addition, in the present invention, by including both the exothermic fine particles and the far-infrared emitting fine particles in the same fiber, the heat generated by the exothermic fine particles is not only used for imparting warmth, but also in the proximity of the far away particles. It is used to raise the temperature of the infrared radiation fine particles themselves and has a synergistic effect that further enhances the far infrared radiation effect. In particular, when both the exothermic fine particles and the far-infrared emitting fine particles are contained in the fiber sheath part, both of them are closer to each other, so that the above-mentioned effect is efficiently achieved and it is sufficient even if the content of the fine particles is reduced. On the other hand, a heat retention effect is obtained, and on the other hand, the spinning operability is stabilized by reducing the content of fine particles, which is more preferable.

本発明の機能性繊維に配合される遠赤外線放射性微粒子と発熱性微粒子の組み合わせとしては、特に限定されないが、例えば、酸化錫と炭化ジルコニウム、マイカと炭化ジルコニウム、酸化錫とカーボン、マイカとカーボン等の組み合わせは、これらの微粒子による相乗作用によって保温効果が格段に高まるため、好適である。   The combination of far-infrared radiation fine particles and exothermic fine particles blended in the functional fiber of the present invention is not particularly limited. For example, tin oxide and zirconium carbide, mica and zirconium carbide, tin oxide and carbon, mica and carbon, etc. This combination is preferable because the heat retention effect is remarkably enhanced by the synergistic action of these fine particles.

本発明の機能性繊維の構造については、特に制限されないが、発熱性能と遠赤外線放射性能を更に高めて一層優れた保温効果を奏させるという観点から、好ましくは、芯鞘構造であって、遠赤外線放射性微粒子が鞘部に含まれ、発熱性微粒子が芯部又は鞘部に含まれる構造が挙げられる。とりわけ、遠赤外線放射性微粒子及び発熱性微粒子が鞘部に含まれている芯鞘構造は、より一層優れた保温効果を奏することができるので、特に好適である。   The structure of the functional fiber of the present invention is not particularly limited, but from the viewpoint of further improving the heat generation performance and far-infrared radiation performance and exhibiting a more excellent heat retaining effect, the core-shell structure is preferably used. Examples include a structure in which infrared radioactive fine particles are contained in the sheath portion and exothermic fine particles are contained in the core portion or the sheath portion. In particular, a core-sheath structure in which far-infrared radioactive fine particles and exothermic fine particles are contained in the sheath portion is particularly suitable because it can exhibit a further excellent heat retaining effect.

本発明の機能性繊維が、遠赤外線放射性微粒子及び発熱性微粒子を鞘部に含む芯鞘構造である場合、鞘部に含まれる各微粒子の含有量については、前述の各微粒子の繊維中の含有量に基づいて適宜設定されるが、一層優れた保温効果を奏させるという観点から、鞘部100質量部に対して遠赤外線微粒子を0.1〜2.5質量部、好ましくは0.5〜2質量部、更に好ましくは1.0〜2質量部;鞘部100質量部に対して発熱性微粒子を0.1〜2.5質量部、好ましくは0.5〜2質量部、更に好ましくは1.0〜2質量部が挙げられる。更に、遠赤外線放射性微粒子と発熱性微粒子との合計の含有量としては、紡糸操業性の向上と保温効果の発現とを両立させる観点から、0.2〜4質量部が好ましい。   When the functional fiber of the present invention has a core-sheath structure including far-infrared radiation fine particles and exothermic fine particles in the sheath, the content of each fine particle contained in the sheath is included in the fiber of the aforementioned fine particles. Although it sets suitably based on quantity, 0.1-2.5 mass parts of far-infrared microparticles | fine-particles with respect to 100 mass parts of sheath parts from the viewpoint of having a further excellent heat retention effect, Preferably 0.5- 2 parts by mass, more preferably 1.0-2 parts by mass; 0.1 to 2.5 parts by mass, preferably 0.5-2 parts by mass, and more preferably 100 parts by mass of the exothermic fine particles. 1.0-2 mass parts is mentioned. Furthermore, the total content of the far-infrared radioactive fine particles and the exothermic fine particles is preferably 0.2 to 4 parts by mass from the viewpoint of achieving both improvement in spinning operability and expression of a heat retaining effect.

本発明の機能性繊維が、芯鞘構造を有する場合、芯部が鞘部により覆われている限りその断面形状は特に限定されず、丸断面又は異形断面(楕円断面、三角断面、凹凸断面等)のいずれでもよく、また芯鞘の関係が同心円形又は偏心円形のいずれであってもよい。芯鞘重量比(芯/鞘)については、特に制限されないが、例えば、95/5〜15/85、好ましくは85/15〜40/60が挙げられる。芯鞘重量比が前記範囲を充足することにより、紡糸操業性に悪影響を及ぼすことなく、より優れた保温効果を奏することができる。   When the functional fiber of the present invention has a core-sheath structure, the cross-sectional shape is not particularly limited as long as the core part is covered with the sheath part, and a round cross section or an irregular cross section (an elliptical cross section, a triangular cross section, an uneven cross section, etc.) ), And the core-sheath relationship may be concentric or eccentric. The core-sheath weight ratio (core / sheath) is not particularly limited, and examples thereof include 95/5 to 15/85, preferably 85/15 to 40/60. When the core-sheath weight ratio satisfies the above range, a superior heat retaining effect can be achieved without adversely affecting the spinning operability.

また本発明の機能性繊維には、上記成分以外に本発明の効果を損なわない範囲内で、従来公知の添加剤、艶消し剤、制電剤、酸化防止剤等が含まれても良い。   The functional fiber of the present invention may contain conventionally known additives, matting agents, antistatic agents, antioxidants and the like within the range not impairing the effects of the present invention, in addition to the above components.

本発明の機能性繊維の形態としては、ステープル、フィラメントのいずれでもよい。特にフィラメントとして使用する場合、モノフィラメント又はマルチフィラメントのいずれの形態でも使用できるが、一般にマルチフィラメントが好ましい。この場合、本発明の機能性繊維のみでマルチフィラメントを構成することが好ましいが、本発明の効果を損なわない限り、他の任意の繊維と混用してマルチフィラメントを構成してもよい。   As a form of the functional fiber of the present invention, either a staple or a filament may be used. In particular, when used as a filament, it can be used in any form of monofilament or multifilament, but multifilament is generally preferred. In this case, it is preferable that the multifilament is constituted only by the functional fiber of the present invention. However, the multifilament may be mixed with other arbitrary fibers as long as the effect of the present invention is not impaired.

本発明の機能性繊維がマルチフィラメントの形態である場合、その単糸繊度としては、例えば0.01〜30dtex、好ましくは0.1〜10dtexがより好ましく、更に好ましくは0.1〜3dtexが挙げられ、その総(トータル)繊度としては、例えば1〜500dtex、好ましくは5〜300dtex、更に好ましくは10〜200dtexが挙げられる。単糸繊度を小さくすることによって繊維表面積が増加し、それに伴って遠赤外線放射性能及び発熱性能を向上させ、保温効果を一層高めることができる。また、単糸繊度を小さくすると、空気層が増加するためデッドエアーに起因する保温効果が更に付加され得る。   When the functional fiber of the present invention is in the form of a multifilament, the single yarn fineness is, for example, 0.01 to 30 dtex, preferably 0.1 to 10 dtex, more preferably 0.1 to 3 dtex. The total (total) fineness is, for example, 1 to 500 dtex, preferably 5 to 300 dtex, and more preferably 10 to 200 dtex. By reducing the single yarn fineness, the fiber surface area is increased, and accordingly, the far-infrared radiation performance and the heat generation performance can be improved, and the heat retention effect can be further enhanced. Further, when the single yarn fineness is reduced, the air layer is increased, so that a heat retaining effect due to dead air can be further added.

本発明の機能性繊維は、ポリマー、遠赤外線放射性微粒子及び発熱性微粒子を用いて従来公知の方法で紡糸して得ることができる。本発明の機能性繊維を紡糸する方法としては、具体的には、紡糸速度が2000m/分以上の高速紡糸により半未延伸糸を得るPOY法;一旦2000m/分未満の低速若しくは2000m/分以上の高速で溶融紡糸し、巻き取った糸条を延伸熱処理する方法;巻き取ることなく続いて延伸を行う直接紡糸延伸法等が挙げられる。また、本発明の機能性繊維が芯鞘構造を有する場合、通常の芯鞘型複合溶融紡糸装置を用いて芯鞘構造を形成させることができる。   The functional fiber of the present invention can be obtained by spinning by a conventionally known method using a polymer, far infrared radiation fine particles and exothermic fine particles. As a method for spinning the functional fiber of the present invention, specifically, a POY method in which a semi-undrawn yarn is obtained by high-speed spinning with a spinning speed of 2000 m / min or higher; once at a low speed of less than 2000 m / min or 2000 m / min or higher. And a method of drawing and heat-treating the wound yarn at a high speed, and a direct spinning drawing method in which drawing is carried out without winding. Moreover, when the functional fiber of this invention has a core-sheath structure, a core-sheath structure can be formed using a normal core-sheath-type composite melt spinning apparatus.

糸条
本発明の糸条は、前記機能性繊維を用いて形成される。本発明の糸条は、前記繊維のみからなる糸条あってもよく、上記機能性繊維と他の繊維との混用糸条であってもよい。本発明の糸条が混用糸条である場合、使用される他の繊維としては、従来公知のものから選択することができ、例えば、綿、麻、絹、ウール等の天然繊維;ビスコースレーヨン、キュプラ、ポリノジック等の再生繊維;ポリアミド、ポリエステル、ポリウレタン等の合成繊維等が挙げられる。本発明の糸条が混用糸条である場合には、例えばインターレース加工、タスラン加工等の従来公知の方法により製造される。本発明の糸条が複合糸である場合、前記機能性繊維の含有量は、例えば、10質量%以上、好ましくは30〜90質量%、更に好ましくは50〜90質量%が挙げられる。
Yarn The yarn of the present invention is formed using the functional fiber. The yarn of the present invention may be a yarn composed only of the fiber, or may be a mixed yarn of the functional fiber and another fiber. When the yarn of the present invention is a mixed yarn, other fibers used can be selected from conventionally known fibers, such as natural fibers such as cotton, hemp, silk, wool; viscose rayon And recycled fibers such as cupra and polynosic; and synthetic fibers such as polyamide, polyester and polyurethane. When the yarn of the present invention is a mixed yarn, it is produced by a conventionally known method such as interlace processing or taslan processing. When the yarn of the present invention is a composite yarn, the content of the functional fiber is, for example, 10% by mass or more, preferably 30 to 90% by mass, and more preferably 50 to 90% by mass.

また、本発明の糸条を必要に応じて撚糸してもよい。この場合の撚り数としては、特に制限されないが、例えば10〜3000T/m、好ましくは50〜2000T/m、更に好ましくは100〜1000T/mが挙げられる。撚糸を行う際は、一般にリング式撚糸機やダブルツイスターが用いられる。更に、本発明の糸条を仮撚加工してもよい。仮撚りの方法は特に限定されず、従来公知の条件を採用して行うことができる。本発明の糸条が仮撚加工による捲縮が形成されている場合、空気層が増加するためデッドエアーに起因する保温効果が更に付加され得る。また、仮撚加工と混繊加工とを組み合わせて、加工糸としてもよい。   Moreover, you may twist the thread | yarn of this invention as needed. The number of twists in this case is not particularly limited, and examples thereof include 10 to 3000 T / m, preferably 50 to 2000 T / m, and more preferably 100 to 1000 T / m. When twisting, a ring-type twisting machine or a double twister is generally used. Furthermore, the yarn of the present invention may be false twisted. The method of false twisting is not particularly limited, and can be performed by employing conventionally known conditions. When the yarn of the present invention is crimped by false twisting, the air layer is increased, so that a heat retaining effect due to dead air can be further added. Moreover, it is good also as a processed thread | yarn combining a false twist process and a mixed fiber process.

布帛
本発明の布帛は、前記糸条を用いて形成される。本発明の布帛は、前記糸条単独で形成されていてもよく、又は本発明の効果を損なわない範囲で前記糸条と他の糸条が組み合わされて形成されていてもよい。また、本発明の布帛は、織物、編物、不織布等のいずれであってもよい。
Fabric The fabric of the present invention is formed using the yarn. The fabric of the present invention may be formed of the yarn alone, or may be formed of a combination of the yarn and other yarns as long as the effects of the present invention are not impaired. Further, the fabric of the present invention may be any of woven fabric, knitted fabric, non-woven fabric and the like.

本発明の布帛のカバーファクター(CF)としては、特に制限されないが、例えば850〜3500、より好ましくは1000〜3500、更に好ましくは1500〜2500が挙げられる。
なお、カバーファクターは次式で表される。
CF=Wa×√(Da/1.11)+We×√(De/1.11)
ここで、Wa:布帛の2.54cm(1インチ)当りの経糸本数
We:布帛の2.54cm(1インチ)当りの緯糸本数
Da:布帛構成経糸の繊度(dtex)
De:布帛構成緯糸の繊度(dtex)
Although it does not restrict | limit especially as a cover factor (CF) of the fabric of this invention, For example, 850-3500, More preferably, it is 1000-3500, More preferably, 1500-2500 is mentioned.
The cover factor is expressed by the following equation.
CF = Wa × √ (Da / 1.11) + We × √ (De / 1.11)
Here, Wa: the number of warp yarns per 2.54 cm (1 inch) of the fabric We: the number of weft yarns per 2.54 cm (1 inch) of the fabric Da: fineness (dtex) of the warp yarns constituting the fabric
De: Fineness of fabric weft (dtex)

本発明の布帛では、布帛のカバーファクターを前記範囲とすることで、布帛の密度が高くなるため、人体などの熱を逃がさず保温性を高くすることができると共に、機能性繊維同士の距離が近接するため、発熱性微粒子が発生した熱を逃がさず効率的に伝達し、かつ機能性繊維同士が隣接するため、全方向からの熱が遠赤外線放射性微粒子に効率的に伝達されるため、遠赤外線放射効果が更に高まる。   In the fabric of the present invention, by setting the cover factor of the fabric within the above range, the density of the fabric increases, so that heat retention can be increased without releasing heat from the human body and the distance between the functional fibers is increased. Because they are close to each other, the heat generated by the exothermic fine particles is efficiently transferred without escaping, and since the functional fibers are adjacent to each other, the heat from all directions is efficiently transferred to the far-infrared radioactive fine particles. The infrared radiation effect is further enhanced.

また、本発明の布帛は、保温効果を十分に発揮させるために、布帛全体に対し、前記機能性繊維を20〜100質量%使用することが好ましい。   Moreover, in order that the fabric of this invention may fully exhibit a heat retention effect, it is preferable to use the said functional fiber 20-20 mass% with respect to the whole fabric.

また、本発明の布帛は、必要に応じて、従来公知の方法に従い染色、着色プリント、エンボス加工、撥水加工、抗菌加工、蓄光加工、消臭加工等の処理が施されていてもよい。   In addition, the fabric of the present invention may be subjected to treatments such as dyeing, coloring print, embossing, water repellent, antibacterial, phosphorescent, and deodorizing according to a conventionally known method, if necessary.

本発明の布帛の用途については、特に制限されないが、例えば、各種インナー、Tシャツ、ジャケット、ウインドブレーカー、ウェットスーツ、スキーウエア、手袋、帽子、テント、靴の中敷き、布団の側地等の保温性が求められる繊維製品の素材として好適に使用される。   The use of the fabric of the present invention is not particularly limited. For example, various inners, T-shirts, jackets, windbreakers, wet suits, ski wear, gloves, hats, tents, insoles, futon side areas, etc. It is suitably used as a raw material for textile products that require properties.

以下、実施例及び比較例を挙げて更に詳細に本発明を説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these.

各測定方法及び評価方法は以下の通りである。
(1)極限粘度[η]
フェノールと四塩化エタンとの等質量混合物を溶媒として、20℃の条件下で常法に基づき測定した。
Each measuring method and evaluation method are as follows.
(1) Intrinsic viscosity [η]
It measured based on the conventional method on the conditions of 20 degreeC by using the equal mass mixture of phenol and ethane tetrachloride as a solvent.

(2)紡糸操業性
24時間紡糸した際の切糸回数を計測し、下記判定基準に従って紡糸操業性を評価した。
<紡糸操業性の判定基準>
○:切糸回数が0〜2回
△:切糸回数が3〜5回
×:切糸回数が6回以上
(2) Spinning operability The number of cuts when spinning for 24 hours was measured, and the spinning operability was evaluated according to the following criteria.
<Criteria for spinning operability>
○: Number of times of cutting thread 0-2 times △: Number of times of cutting thread 3-5 times ×: Number of times of cutting thread 6 times or more

(3)遠赤外線放射性
各実施例及び比較例で得られた織物の遠赤外線放射強度を測定した。測定は、赤外分光光度計FT−IR装置を使用し、測定温度40℃、測定波長域5〜20μmで行った。その際、同条件における黒体の遠赤外線放射強度も測定し、各波長における黒体の放射強度を100%とした場合の各織物の放射強度の比率(%)を求め、各波長で算出された比率の平均値を平均放射率(%)として算出した。また、ブランクとして、遠赤外線放射性微粒子及び発熱性微粒子を含まないこと以外は、各実施例及び比較例と同組成の繊維を用いて調製した各織物を用い、同様に平均放射率(%)を求めた。そして、次式に基づいて、遠赤外線放射性を算出した。
<遠赤外線放射性の算出式>
遠赤外線放射性=〔(得られた織物の平均放射率(%)−ブランクの平均放射率(%))/ブランクの平均放射率(%)〕×100
(3) Far-infrared radiation The far-infrared radiation intensity of the fabric obtained in each of the examples and comparative examples was measured. The measurement was performed using an infrared spectrophotometer FT-IR apparatus at a measurement temperature of 40 ° C. and a measurement wavelength range of 5 to 20 μm. At that time, the far-infrared radiant intensity of the black body under the same conditions is also measured, and the ratio (%) of the radiant intensity of each fabric when the radiant intensity of the black body at each wavelength is defined as 100% is calculated at each wavelength. The average value of the ratio was calculated as the average emissivity (%). Moreover, as a blank, except that far-infrared radioactive fine particles and exothermic fine particles are not included, each woven fabric prepared using fibers having the same composition as each Example and Comparative Example was used, and the average emissivity (%) was similarly determined. Asked. And far-infrared radiation was computed based on following Formula.
<Calculation formula of far-infrared radiation>
Far-infrared radiation = [(average emissivity of the resulting fabric (%) − average emissivity of blank (%)) / average emissivity of blank (%)] × 100

(4)発熱特性
各実施例及び比較例で得られた織物に、照度10000LUXとなるようにレフランプを照射し、裏面からサーモグラフィーで織物の表面温度を観察した。なお、上記ブランクについても表面温度を測定したところ、いずれも39.5℃であった。
(4) Heat generation characteristics The fabric obtained in each Example and Comparative Example was irradiated with a reflex lamp so that the illuminance was 10,000 LUX, and the surface temperature of the fabric was observed by thermography from the back side. In addition, when the surface temperature was measured also about the said blank, all were 39.5 degreeC.

(5)ガイド摩耗性
各実施例及び比較例で得られた各仮撚り糸(マルチフィラメント)について、ステンレス製のトラベラーを有するリワインド機で100000mリワインドした後、トラベラーの表面状態を顕微鏡で観察し、下記判定基準に従ってガイド摩耗性を評価した。
<ガイド摩耗性の判定基準>
○:摩耗が認められないか、又は摩耗があっても問題のない程度である。
△:やや摩耗している。
×:強い摩耗が認められる。
(5) Guide wear property About each false twisted yarn (multifilament) obtained in each Example and Comparative Example, after rewinding 100000 m with a rewinding machine having a stainless steel traveler, the surface state of the traveler was observed with a microscope. Guide wear was evaluated according to the criteria.
<Guidelines for guide wear resistance>
○: Wear is not recognized or there is no problem even if there is wear.
Δ: Slightly worn.
X: Strong wear is recognized.

実施例1
鞘部材料は、遠赤外線放射性微粒子として1.0質量%の酸化錫、及びポリエチレンテレフタレートを主体成分とするポリエステル樹脂(極限粘度0.65)99.0質量%を含む樹脂組成物を使用した。
一方、芯部材料は、発熱性微粒子として1.0質量%の炭化ジルコニウム、及びポリエチレンテレフタレートを主体成分とするポリエステル樹脂(極限粘度0.65)99.0質量%を含む樹脂組成物を使用した。
鞘部材料及び芯部材料を、孔数が24孔の芯鞘複合ノズルプレートを用いて、芯鞘重量比(芯/鞘)を15/85として、紡糸速度1400m/分、紡糸温度290℃、吐出量21g/分、延伸倍率2.9倍で紡糸し、延伸糸(本発明の糸条)を捲き取った。
次に、この延伸糸を仮撚機(三菱重工業社製「LS−6」)に給糸して、加工速度120m/分、延伸倍率1.03倍、仮撚数4200T/M、ヒーター温度170℃で仮撚加工を行い、56dtex/24fの仮撚糸を得た。
得られた仮撚糸を経緯糸に用いて製織し、得られ生機を常法にしたがって精練、染色、仕上げ加工し、経緯密度132×120本/2.54cm(CF:1789)の織物を得た。
Example 1
As the sheath material, a resin composition containing 1.0% by mass of tin oxide as far-infrared radiation fine particles and 99.0% by mass of a polyester resin (ultimate viscosity 0.65) having polyethylene terephthalate as a main component was used.
On the other hand, as the core material, a resin composition containing 1.0% by mass of zirconium carbide as exothermic fine particles and 99.0% by mass of a polyester resin (intrinsic viscosity 0.65) having polyethylene terephthalate as a main component was used. .
Using a core-sheath composite nozzle plate having 24 holes, the sheath-sheath material and the core material, the core-sheath weight ratio (core / sheath) is 15/85, the spinning speed is 1400 m / min, the spinning temperature is 290 ° C., The yarn was spun at a discharge rate of 21 g / min and a draw ratio of 2.9, and the drawn yarn (the yarn of the present invention) was scraped off.
Next, this drawn yarn is fed to a false twisting machine (“LS-6” manufactured by Mitsubishi Heavy Industries, Ltd.), a processing speed of 120 m / min, a draw ratio of 1.03 times, a false twist number of 4200 T / M, and a heater temperature of 170. False twisting was performed at 0 ° C. to obtain a false twisted yarn of 56 dtex / 24f.
The obtained false twisted yarn was woven using warp, and the resulting raw machine was scoured, dyed and finished according to a conventional method to obtain a weft with a weft density of 132 × 120 pieces / 2.54 cm (CF: 1789). .

実施例2〜4
遠赤外線放射性微粒子及び発熱性微粒子の種類、含有量を下表1に記載の通りに変更したこと以外は、実施例1と同様の方法により仮撚糸を得て、更に実施例1のものと同規格の織物を得た。
Examples 2-4
A false twisted yarn was obtained by the same method as in Example 1 except that the types and contents of far-infrared radioactive particles and exothermic fine particles were changed as shown in Table 1 below. A standard woven fabric was obtained.

実施例5
鞘部材料は、遠赤外線放射性微粒子として1.0質量%のマイカ、発熱性微粒子として1.0質量%のカーボン、及びポリエチレンテレフタレートを主体成分とするポリエステル樹脂(極限粘度0.65)98.0質量%を含む樹脂組成物を使用した。
一方、芯部材料は、ポリエチレンテレフタレートを主体成分とするポリエステル樹脂(極限粘度0.65)100質量%のものを使用した。
以降は、実施例1と同様の方法により仮撚糸を得、更に実施例1のものと同規格の織物を得た。
Example 5
The sheath material is 1.0% by weight of mica as far-infrared radiation fine particles, 1.0% by weight of carbon as exothermic fine particles, and a polyester resin mainly composed of polyethylene terephthalate (extreme viscosity 0.65) 98.0. A resin composition containing mass% was used.
On the other hand, the core material used was 100% by mass of a polyester resin (intrinsic viscosity 0.65) containing polyethylene terephthalate as a main component.
Thereafter, false twisted yarn was obtained by the same method as in Example 1, and further, a fabric of the same standard as that in Example 1 was obtained.

実施例6、7
鞘部中のマイカ及びカーボンの含有量を下表1に記載の量に変更したこと以外は実施例5と同様の組成の樹脂組成物を使用し、実施例1と同様の方法により仮撚糸を得て、更に実施例1のものと同規格の織物を得た。
Examples 6 and 7
A resin composition having the same composition as in Example 5 was used except that the contents of mica and carbon in the sheath were changed to the amounts shown in Table 1 below, and the false twisted yarn was prepared in the same manner as in Example 1. Further, a fabric of the same standard as that of Example 1 was obtained.

実施例8
遠赤外線放射性微粒子として1.0質量%のマイカ、発熱性微粒子として1.0質量%のカーボン、及びポリエチレンテレフタレートを主体成分とするポリエステル樹脂(極限粘度0.65)98.0質量%を含む樹脂組成物を用意した。そして、この樹脂組成物を用いて実施例1同じ条件で紡糸、仮撚加工を行い、その後、得られた仮撚糸を用いて、実施例1のものと同規格の織物を得た。
Example 8
Resin containing 1.0% by weight mica as far-infrared radiation fine particles, 1.0% by weight carbon as heat-generating fine particles, and 98.0% by weight polyester resin (extreme viscosity 0.65) comprising polyethylene terephthalate as main components A composition was prepared. Then, using this resin composition, spinning and false twisting were performed under the same conditions as in Example 1, and then, using the obtained false twisted yarn, a fabric of the same standard as that of Example 1 was obtained.

実施例9、10
実施例9及び10においては、機能性繊維として実施例5と同じ組成のものを使用した。経緯糸の一部を通常の56dtex/24fのポリエステルマルチフィラメント糸に置き換えることで、生機中に占める機能性繊維の含有量(混率)を40質量%(実施例9)、20質量%(実施例10)にそれぞれ変更したこと以外、実施例1の場合と同じ条件で製織・後加工を行い、実施例1のものと同規格の織物を得た。
Examples 9, 10
In Examples 9 and 10, functional fibers having the same composition as in Example 5 were used. By replacing a part of the warp and weft with normal 56 dtex / 24 f polyester multifilament yarn, the content (mixing ratio) of functional fibers in the raw machine is 40 mass% (Example 9), 20 mass% (Example) Weaving and post-processing were performed under the same conditions as in Example 1 except that each was changed to 10) to obtain a fabric of the same standard as that in Example 1.

実施例11、12
実施例11及び12においては、機能性繊維として実施例5と同じ組成のものを使用した。織物の経緯密度を70×58/2.54cm(CF:909、実施例11)、150×138/2.54cm(CF:2045、実施例12)にそれぞれ変更したこと以外、実施例1の場合と同じ条件で製織・後加工を行い、2種の織物を得た。
Examples 11 and 12
In Examples 11 and 12, functional fibers having the same composition as in Example 5 were used. In the case of Example 1, except that the weft density of the woven fabric was changed to 70 × 58 / 2.54 cm (CF: 909, Example 11) and 150 × 138 / 2.54 cm (CF: 2045, Example 12), respectively. Weaving and post-processing were performed under the same conditions to obtain two types of woven fabric.

実施例13、14
実施例13及び14においては、機能性繊維として実施例5と同じ組成のものを使用し、経緯糸の一部を通常の56dtex/24fのポリエステルマルチフィラメント糸に置き換えることで、生機中に占める機能性繊維の含有量(混率)を40質量%とした。また、織物の経緯密度を70×58/2.54cm(CF:909、実施例13)、150×138/2.54cm(CF:2045、実施例14)にそれぞれ変更し、実施例1の場合と同じ条件で製織・後加工を行い、2種の織物を得た。
Examples 13 and 14
In Examples 13 and 14, a functional fiber having the same composition as in Example 5 is used, and a part of the warp and weft is replaced with a normal 56 dtex / 24f polyester multifilament yarn, thereby occupying the function in the living machine. The content (mixing ratio) of the conductive fiber was 40% by mass. In the case of Example 1, the weft density of the fabric was changed to 70 × 58 / 2.54 cm (CF: 909, Example 13) and 150 × 138 / 2.54 cm (CF: 2045, Example 14), respectively. Weaving and post-processing were performed under the same conditions to obtain two types of woven fabric.

比較例1
鞘部材料に、発熱性微粒子として1.0質量%のカーボン、及びポリエチレンテレフタレートを主体成分とするポリエステル樹脂(極限粘度0.65)99.0質量%を含む樹脂組成物を用いたこと以外は実施例5と同様の組成の樹脂組成物を使用し、実施例1の場合と同様の方法により仮撚糸を得、その後、得られた仮撚糸を用いて、実施例1のものと同規格の織物を得た。
Comparative Example 1
Except for using a resin composition containing 99.0% by mass of carbon resin of 1.0% by mass as exothermic fine particles and a polyester resin (intrinsic viscosity 0.65) having polyethylene terephthalate as a main component as the sheath material. Using a resin composition having the same composition as in Example 5, a false twisted yarn was obtained by the same method as in Example 1, and then using the obtained false twisted yarn, the same standard as that of Example 1 was obtained. A woven fabric was obtained.

比較例2
鞘部材料に、遠赤外線放射性微粒子として1.0質量%のマイカ、及びポリエチレンテレフタレートを主体成分とするポリエステル樹脂(極限粘度0.65)99.0質量%を含む樹脂組成物を用いたこと以外は実施例5と同様の組成の樹脂組成物を使用し、実施例1の場合と同様に行って仮撚糸を得、その後、得られた仮撚糸を用いて、実施例1のものと同規格の織物を得た。
Comparative Example 2
Other than using a resin composition containing 1.0% by weight of mica as far-infrared radioactive fine particles and 99.0% by weight of a polyester resin (intrinsic viscosity 0.65) as a main component, as the sheath material. Uses a resin composition having the same composition as in Example 5 and obtains a false twisted yarn in the same manner as in Example 1, and then uses the obtained false twisted yarn to determine the same standard as in Example 1. Fabric was obtained.

比較例3
鞘部のマイカまたはカーボンの含有量を下表1に記載の量に変更した以外は実施例5と同様の組成の樹脂組成物を使用し、実施例1と同様の方法により仮撚糸を得て、更に実施例1のものと同規格の織物を得た。
Comparative Example 3
Using a resin composition having the same composition as in Example 5 except that the content of mica or carbon in the sheath was changed to the amount shown in Table 1 below, a false twisted yarn was obtained in the same manner as in Example 1. Furthermore, a fabric of the same standard as that of Example 1 was obtained.

評価結果
以上の実施例及び比較例で調製した繊維の組成、及び各評価結果を下表1に示す。
The composition of the fibers prepared in the evaluation results above Examples and Comparative Examples, and the results of evaluation are shown in Table 1 below.

Figure 2017125293
Figure 2017125293

以上の結果より、本発明の機能性繊維を含む布帛は、発熱と遠赤外線放射の両方の作用を同時に実現することができ、保温効果に優れていることが示された(実施例1〜14)。また、本発明の機能性繊維が芯鞘構造を有する場合、例えば実施例1及び2と実施例5の結果を比較すると明らかなように、遠赤外線放射性がより高められており、鞘部に発熱性微粒子と遠赤外線放射性微粒子の両方を含有することによってより保温性の高い布帛が得られることが示された。更に、布帛中の本発明の機能性繊維の混率が20質量%又は40質量%のように混率が比較的低い場合であっても、良好な発熱特性及び遠赤外線放射特性を有し、十分な保温性を有していることが示された(実施例9、10、13、14)。また、カバーファクターを変えた実施例11〜14の結果より、高密度であればより保温性が高まるが(実施例12及び14)、低密度の布帛であっても十分な保温性が得られることが示された(実施例11及び13)。   From the above results, it was shown that the fabric containing the functional fiber of the present invention can simultaneously realize both functions of heat generation and far-infrared radiation, and has an excellent heat retaining effect (Examples 1 to 14). ). Further, when the functional fiber of the present invention has a core-sheath structure, for example, when the results of Examples 1 and 2 and Example 5 are compared, the far-infrared radiation is further enhanced, and the sheath part generates heat. It has been shown that a fabric having higher heat retention can be obtained by containing both the fine particles and the far-infrared radiation fine particles. Furthermore, even when the mixing ratio of the functional fibers of the present invention in the fabric is relatively low, such as 20% by mass or 40% by mass, it has good heat generation characteristics and far infrared radiation characteristics, and is sufficient. It was shown to have heat retention (Examples 9, 10, 13, 14). Further, from the results of Examples 11 to 14 in which the cover factor is changed, the heat retention is further increased if the density is high (Examples 12 and 14), but sufficient heat retention can be obtained even with a low-density fabric. (Examples 11 and 13).

また、本発明の機能性繊維は、紡糸操業性が良好であり、且つガイド摩耗が抑制されていた(実施例1〜14)。また、本発明の機能性繊維が芯鞘構造を有する場合には、紡糸操業性及びガイド摩耗性の抑制効果が更に良好であり(実施例1〜7、9〜14)、製造上も問題のないことが示された。   Further, the functional fiber of the present invention had good spinning operability and suppressed guide wear (Examples 1 to 14). Further, when the functional fiber of the present invention has a core-sheath structure, the spinning operability and the guide wear resistance are more effectively suppressed (Examples 1 to 7, 9 to 14), and the production is problematic. Not shown.

これに対して、発熱性微粒子又は遠赤外線放射性微粒子のいずれかを含む布帛(比較例1及び2)は、優れた遠赤外線放射性及び発熱特性の両方を同時に実現することはできないことが示された。また、発熱性微粒子及び遠赤外線放射性微粒子をそれぞれ3.0質量%ずつ含有する機能性繊維(比較例3)は、発熱特性及び遠赤外線放射性能に優れるものの、紡糸操業性及びガイド摩耗性の点で問題があり、製造上問題となることが示された。   On the other hand, it was shown that the fabric (Comparative Examples 1 and 2) containing either exothermic fine particles or far-infrared radiation fine particles cannot simultaneously realize both excellent far-infrared radiation and exothermic properties. . In addition, the functional fiber (Comparative Example 3) containing 3.0% by mass of exothermic fine particles and far infrared radiation fine particles is excellent in heat generation characteristics and far infrared radiation performance. It was shown that there was a problem and that it would be a manufacturing problem.

また、本発明の機能性繊維において、発熱性微粒子が発する熱が遠赤外線微粒子の温度上昇にも利用されることによって遠赤外線放射効果がどの程度向上したかについても検証した。具体的には、試験片として実施例5及び6の布帛(表面温度がそれぞれ46.1℃、47.4℃)を使用し、「(3)遠赤外線放射性」を測定する際の測定温度を、40℃に代えてそれぞれ46.1℃、47.4℃とした。その結果、遠赤外線放射性が、実施例5の織物については19.9となり、実施例6の織物については21.3となった。即ち、本発明の機能性繊維によれば、発熱性微粒子が発する熱を保温効果の向上そのものに利用できるだけでなく、その熱を遠赤外線放射性微粒子の温度上昇にも利用でき、遠赤外線放射性微粒子からは温度上昇に応じてより多くの遠赤外線が発せられることが示された。   Moreover, in the functional fiber of this invention, it verified also how much the far-infrared radiation effect improved by using the heat | fever which exothermic microparticles | fine-particles generate | occur | produce also for the temperature rise of a far-infrared microparticle. Specifically, the fabrics of Examples 5 and 6 (surface temperatures of 46.1 ° C. and 47.4 ° C., respectively) were used as test pieces, and the measurement temperature when measuring “(3) far-infrared radiation” was measured. And 46.1 ° C and 47.4 ° C, respectively. As a result, the far-infrared radiation was 19.9 for the fabric of Example 5 and 21.3 for the fabric of Example 6. That is, according to the functional fiber of the present invention, not only can the heat generated by the exothermic fine particles be used to improve the heat retention effect itself, but also the heat can be used to increase the temperature of the far infrared radioactive fine particles. It was shown that more far infrared rays are emitted as the temperature rises.

Claims (9)

発熱性微粒子及び遠赤外線放射性微粒子を含有することを特徴とする、機能性繊維。   A functional fiber comprising exothermic fine particles and far-infrared radioactive fine particles. 前記遠赤外線放射性微粒子が、マイカ、酸化錫、及びタルクからなる群より選択される少なくとも1種である、請求項1に記載の機能性繊維。   The functional fiber according to claim 1, wherein the far-infrared radioactive fine particles are at least one selected from the group consisting of mica, tin oxide, and talc. 前記発熱性微粒子が、カーボン、酸化ジルコニウム、及び炭化ジルコニウムからなる群より選択される少なくとも1種である、請求項1又は2に記載の機能性繊維。   The functional fiber according to claim 1 or 2, wherein the exothermic fine particles are at least one selected from the group consisting of carbon, zirconium oxide, and zirconium carbide. 芯鞘構造を有し、遠赤外線放射性微粒子が鞘部に含まれ、発熱性微粒子が芯部又は鞘部に含まれている、請求項1〜3のいずれかの機能性繊維。   The functional fiber according to any one of claims 1 to 3, which has a core-sheath structure, far infrared radiation fine particles are contained in a sheath portion, and exothermic fine particles are contained in the core portion or the sheath portion. 遠赤外線放射性微粒子及び発熱性微粒子が鞘部に含まれ、遠赤外線放射性微粒子の含有量が鞘部100質量部に対して0.1〜2.5質量部であり、発熱性微粒子の含有量が鞘部100質量部に対して0.1〜2.5質量部である、請求項4に記載の機能性繊維。   The far-infrared radioactive fine particles and the exothermic fine particles are contained in the sheath, the content of the far-infrared radioactive fine particles is 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the sheath, and the content of the exothermic fine particles is The functional fiber of Claim 4 which is 0.1-2.5 mass parts with respect to 100 mass parts of sheath parts. 芯鞘の重量比(芯/鞘)が95/5〜15/85である、請求項4又は5に記載の機能性繊維。   The functional fiber according to claim 4 or 5, wherein a weight ratio of the core sheath (core / sheath) is 95/5 to 15/85. 請求項1〜6のいずれかに記載の繊維を含む糸条。   A yarn comprising the fiber according to any one of claims 1 to 6. 請求項7に記載の糸条を含む布帛。   A fabric comprising the yarn according to claim 7. カバーファクターが850〜3500である、請求項8に記載の布帛。   The fabric according to claim 8, wherein the cover factor is 850 to 3500.
JP2017041236A 2017-03-06 2017-03-06 Functional fiber Pending JP2017125293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017041236A JP2017125293A (en) 2017-03-06 2017-03-06 Functional fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017041236A JP2017125293A (en) 2017-03-06 2017-03-06 Functional fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013068814A Division JP6106487B2 (en) 2013-03-28 2013-03-28 Functional fiber

Publications (2)

Publication Number Publication Date
JP2017125293A true JP2017125293A (en) 2017-07-20
JP2017125293A5 JP2017125293A5 (en) 2017-08-31

Family

ID=59363991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017041236A Pending JP2017125293A (en) 2017-03-06 2017-03-06 Functional fiber

Country Status (1)

Country Link
JP (1) JP2017125293A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102474U (en) * 1989-02-02 1990-08-15
JPH03174071A (en) * 1989-11-30 1991-07-29 Teijin Ltd Low-abrasion and far infrared ray-radiating conjugated fiber
JPH0551819A (en) * 1991-08-09 1993-03-02 Teijin Ltd Low abrasive far infrared ray-emitting conjugate fiber
JPH05321028A (en) * 1992-05-15 1993-12-07 Teijin Ltd Far-infrared radiating conjugate fiber having excellent abrasion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102474U (en) * 1989-02-02 1990-08-15
JPH03174071A (en) * 1989-11-30 1991-07-29 Teijin Ltd Low-abrasion and far infrared ray-radiating conjugated fiber
JPH0551819A (en) * 1991-08-09 1993-03-02 Teijin Ltd Low abrasive far infrared ray-emitting conjugate fiber
JPH05321028A (en) * 1992-05-15 1993-12-07 Teijin Ltd Far-infrared radiating conjugate fiber having excellent abrasion resistance

Similar Documents

Publication Publication Date Title
JP6106487B2 (en) Functional fiber
JP6360319B2 (en) Long / short composite spun yarn and fabric using the same
JP5667981B2 (en) Core-sheath composite fiber, false twisted yarn comprising the same core-sheath composite fiber, method for producing the same, and woven or knitted fabric composed of these fibers
JP6523462B2 (en) Heat storage and heat retention fleece and method for producing the same
JP2005009024A (en) Boride fine particle-containing fiber and fiber product using the same
JP4228856B2 (en) Thermoplastic fibers, fabrics and textile products
JP2015101815A (en) Functional fiber, and heat retaining woven fabric to be constituted of the fiber
JP6498873B2 (en) Functional fiber yarn and woven or knitted fabric using the same
JP6360318B2 (en) Composite-bound spun yarn and fabric using the same
JP6388471B2 (en) Thermal insulation fabric
JP6751558B2 (en) Double-sided knitted fabric
JP2015105444A (en) Functional composite yarn
JP6487171B2 (en) Functional fiber yarn
JP2015218413A (en) Far infrared radiation multifilament yarn
JP2017125293A (en) Functional fiber
JP2016056464A (en) Functional fiber
JP2016113714A (en) False-twisted hollow multifilament yarn, and woven or knitted fabric
JPH0768647B2 (en) Radiation blocking fibers or their products
JP6211885B2 (en) Thermal insulation fabric
JP2015124453A (en) Spun yarn and heat-retaining cloth including the spun yarn
JP2016027212A (en) Functional fiber
JP6259318B2 (en) Method for producing false twisted yarn for black formal clothing
JP6211878B2 (en) Thermal insulation fabric
JP2015110847A (en) Heat insulating fabric
JP2006152459A (en) Hollow nylon fiber, method for producing the same, modified cross-section nylon fiber and knit fabric produced by using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170720

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327