WO2017056325A1 - 排水処理システム及び排水処理方法 - Google Patents

排水処理システム及び排水処理方法 Download PDF

Info

Publication number
WO2017056325A1
WO2017056325A1 PCT/JP2015/078117 JP2015078117W WO2017056325A1 WO 2017056325 A1 WO2017056325 A1 WO 2017056325A1 JP 2015078117 W JP2015078117 W JP 2015078117W WO 2017056325 A1 WO2017056325 A1 WO 2017056325A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
ozone
storage tank
treatment
tank
Prior art date
Application number
PCT/JP2015/078117
Other languages
English (en)
French (fr)
Inventor
守良 設樂
高橋 学
佑介 中畑
Original Assignee
株式会社ヒューエンス
ヒュ-エンス グローバル ピーティーイー. エルティーディー.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヒューエンス, ヒュ-エンス グローバル ピーティーイー. エルティーディー. filed Critical 株式会社ヒューエンス
Priority to AU2015410935A priority Critical patent/AU2015410935A1/en
Priority to CA3000607A priority patent/CA3000607A1/en
Priority to JP2017510704A priority patent/JP6198029B2/ja
Priority to EP15905478.2A priority patent/EP3357872A4/en
Priority to US15/765,229 priority patent/US20180282187A1/en
Priority to PCT/JP2015/078117 priority patent/WO2017056325A1/ja
Publication of WO2017056325A1 publication Critical patent/WO2017056325A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/121Multistep treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/21Dissolved organic carbon [DOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a wastewater treatment system having an ozone treatment device and a wastewater treatment method.
  • Patent Document 1 describes a wastewater treatment system including a biological treatment tank that performs biological treatment with aerobic microorganisms and a precipitation tank that separates wastewater after biological treatment into a precipitate and a supernatant. .
  • the wastewater is mixed with activated sludge and aeration air to be aerobically biologically treated.
  • the sedimentation tank the biologically treated waste water and activated sludge flow from the biological treatment tank, the activated sludge is settled and separated, and the supernatant liquid is discharged as treated water.
  • the present invention has been made to solve such a problem, and a wastewater treatment system and a wastewater treatment method capable of suppressing the generation of waste such as excess sludge and reducing the waste disposal cost.
  • the purpose is to provide.
  • the wastewater treatment system according to the present invention is stored in a wastewater storage tank that stores wastewater containing organic matter, an ozone treatment device that reduces the organic matter contained in the wastewater by ozone treatment, and the wastewater storage tank.
  • the aerobic microorganisms are brought into contact with the drainage recirculation mechanism that feeds the wastewater to the ozone treatment device and circulates the ozone-treated wastewater to the wastewater storage tank, and the wastewater that contains the ozone-treated wastewater and is sent from the wastewater storage tank.
  • a biological treatment tank that reduces organic matter contained in the waste water.
  • the drainage recirculation mechanism is provided between the wastewater storage tank and the ozone treatment apparatus, and is supplied with ozone treatment for feeding the wastewater stored in the wastewater storage tank to the ozone treatment apparatus.
  • An ozone treatment recirculation pipe provided between the water pipe, the waste water storage tank and the ozone treatment device for circulating the ozone treated waste water to the waste water storage tank, and the waste water stored in the waste water storage tank to the ozone treatment device. It is preferable to provide an ozone treatment water pump for feeding water.
  • the suspended matter or solid matter contained in the wastewater is separated, and the wastewater from which the suspended matter or solid matter is separated, It is preferable to further have a separation device for feeding water from the waste water storage tank to the biological treatment tank.
  • the wastewater treatment system further includes a froth recirculation pipe for circulating the suspended matter separated in the separation device to the wastewater storage tank.
  • the separation device is preferably a pressurized flotation device or a coagulation sedimentation device.
  • the ozone treatment device includes a nozzle for ejecting ozone gas, and a swirling jet that stirs ozone gas and drainage by generating a swirling phenomenon of the jet by the ozone gas ejected from the nozzle. It is preferable that it is a type
  • the ozone treatment device is preferably an ejector-type ozone mixing device or an ozone diffuser.
  • the drainage storage tank includes a measuring instrument that measures the amount of organic matter in the wastewater stored in the wastewater storage tank, and the amount of organic matter in the wastewater stored in the wastewater storage tank is equal to or greater than a predetermined threshold value. If the amount of organic matter in the waste water is less than a predetermined threshold, the control device for sending the waste water stored in the waste water storage tank to the biological treatment tank. It is preferable to have.
  • the wastewater treatment system further includes a sedimentation tank that separates the wastewater into a precipitate and a supernatant, and the sedimentation tank recirculates the sediment that has settled in the sedimentation tank to the wastewater storage tank. It is preferable to provide.
  • the wastewater treatment method includes a step of storing wastewater containing organic matter in a wastewater storage tank, a step of causing the drainage recirculation mechanism to send the wastewater stored in the wastewater storage tank to the ozone treatment device, and an ozone treatment device. , The step of reducing the molecular weight of organic matter contained in the wastewater by ozone treatment of the discharged wastewater, the step of circulating the wastewater recirculation mechanism to the wastewater storage tank, the biological treatment tank A step of bringing aerobic microorganisms into contact with the wastewater containing the treated wastewater and fed from the wastewater storage tank to reduce organic matter contained in the wastewater.
  • the wastewater treatment system and wastewater treatment method according to the present invention can suppress the generation of waste such as excess sludge and reduce waste disposal costs.
  • the wastewater treatment system and the wastewater treatment method according to the present invention can improve the purification effect of biological treatment, and can sufficiently remove substances that cause pollution from wastewater.
  • FIG. 3 is a flowchart illustrating an example of wastewater treatment by the wastewater treatment system 1.
  • 1 is a schematic diagram for explaining an outline of a wastewater treatment system 10.
  • FIG. 1 is a schematic diagram for demonstrating an example of the waste_water
  • 1 is a schematic diagram for explaining an outline of a wastewater treatment system 100.
  • FIG. 3 is a flowchart illustrating an example of wastewater treatment by the wastewater treatment system 100.
  • Drawing 1 is a mimetic diagram for explaining an outline of waste water treatment system 1 of a 1st embodiment.
  • the wastewater treatment system 1 of the first embodiment has a function of removing substances that cause pollution from wastewater discharged from wastewater generation sources such as factories or homes, and includes at least a wastewater storage tank 2 and an ozone treatment device 3.
  • the biological treatment tank 4 and the sedimentation tank 5 are provided.
  • the substance causing the contamination is, for example, an organic substance.
  • the organic substance may be simply referred to as an organic substance.
  • the waste water storage tank 2 is, for example, a flow rate adjusting tank, stores the waste water flowing in from the waste water generation source, and has a function of sending water to the ozone treatment apparatus 3 and the biological treatment tank 4 for performing post-treatment, and the ozone treatment apparatus 3. It has a function to store the drained water circulated from
  • drain which flows in from a waste_water
  • the drainage storage tank 2 includes an ozone treatment water pump 21 and a biological treatment water pump 22.
  • the ozone treatment water pump 21 feeds the waste water stored in the waste water storage tank 2 to the ozone treatment device 3.
  • the biological treatment water pump 22 feeds the wastewater stored in the wastewater storage tank 2 to the biological treatment tank 4 when a predetermined time has elapsed since the wastewater stored in the wastewater storage tank 2 was supplied to the ozone treatment device 3. To do.
  • the ozone treatment device 3 mixes the wastewater sent from the wastewater storage tank 2 with ozone gas, performs ozone treatment, and circulates the wastewater after ozone treatment to the wastewater storage tank 2.
  • the ozone treatment device 3 blows out ozone gas into the wastewater sent into the ozone treatment device 3, thereby causing organic substances contained in the wastewater to react with the ozone gas and decompose.
  • the low-degradability polymer contained in the wastewater is reduced in molecular weight by reacting with ozone gas, which increases the amount of aerobic microorganisms that can be adsorbed to pollutants in the subsequent biological treatment, and the pollutant removal efficiency. Will increase.
  • the ozone treatment device 3 performs a so-called swirling jet ozone treatment using, for example, a stirring device described in Japanese Patent No. 4195782.
  • a device that performs a swirling jet ozone treatment may be referred to as a swirling jet ozone processing device.
  • a known ozone mixer or the like may be used as the ozone treatment device 3.
  • the ozone treatment device 3 is not limited to the swirling jet type ozone treatment device and the ozone mixer described above, and any device may be used as long as the waste water and ozone are mixed.
  • the biological treatment tank 4 biologically treats the wastewater sent from the wastewater storage tank 2 with activated sludge.
  • the activated sludge is a mud aggregate of aerobic microorganisms that oxidatively decompose organic substances contained in wastewater, and the aerobic microorganisms are bacteria, protozoa, metazoan bacteria, and the like.
  • aerobic microorganisms are fed from the wastewater storage tank 2 and adsorbed to pollutants in the wastewater containing organic matter, and by consuming oxygen, the organic matter is oxidatively decomposed or absorbed and separated. Purify wastewater.
  • the waste water purified by the biological treatment tank 4 flows into the sedimentation tank 5.
  • the wastewater sent from the wastewater storage tank 2 may be biologically treated by a biofilm method.
  • a biofilm filter medium to which aerobic microorganisms are attached is placed in the biological treatment tank 4, and the aerobic microorganisms attached to the biofilm filter medium come into contact with pollutants including organic matter in the waste water.
  • the organic matter is oxidatively decomposed or absorbed and separated, and the waste water containing the organic matter is purified.
  • the biological treatment in the biological treatment tank 4 is not limited to the activated sludge method and the biofilm method described above, but may be a method of contacting aerobic microorganisms with organic matter in the wastewater, such as a sprinkling filter bed method and a rotating plate contact method. Any method may be used.
  • the waste water flowing from the biological treatment tank 4 settles and separates into a sediment and a supernatant liquid.
  • Precipitates are activated sludge and pollutants in the waste water flowing from the biological treatment tank 4 and settle due to the difference in specific gravity with water.
  • the supernatant liquid separated and settled was treated as wastewater from the precipitation tank 5, a sewage treatment facility such as an industrial park, a community plant such as an apartment house, a sewer , Discharged into rivers or sea areas.
  • the wastewater treatment system 1 can reduce the organic molecules contained in the wastewater by the ozone treatment device 3 before biologically treating the wastewater flowing in from the wastewater generation source in the biological treatment tank 4, purification of biological treatment The effect can be improved. Therefore, the wastewater treatment system 1 can sufficiently remove substances that cause sludge from the wastewater. Moreover, since the wastewater treatment system 1 can reduce the amount of sludge discarded, the amount of industrial waste treated can be reduced, and the waste disposal cost can be reduced.
  • FIG. 2 is a schematic diagram for explaining an example of waste water treatment by the waste water storage tank 2 and the ozone treatment device 3.
  • the drainage storage tank 2 stores the wastewater flowing in from the drainage source through the storage tank inflow pipe 60 in the drainage storage tank 2.
  • the ozone treatment water pump 21 feeds the waste water stored in the waste water storage tank 2 to the ozone treatment device 3 through the ozone treatment water supply pipe 61.
  • the ozone treatment device 3 performs ozone treatment by mixing the waste water sent from the waste water storage tank 2 with ozone gas.
  • ozone gas supplied into the ozone treatment device 3 is generated by an ozone generator (not shown).
  • the ozone generator for example, compresses air with an air compressor, generates concentrated oxygen gas from the compressed air by a PSA (Pressure Swing Adsorption) method, and further applies high voltage using a discharge unit or the like from the concentrated oxygen gas. Ozone gas is generated.
  • the ozone treatment device 3 includes a cylindrical container 31 that stores wastewater to be treated, and an ozone gas ejection nozzle 32 that is disposed so as to protrude upward from the bottom surface of the cylindrical container 31. .
  • the inner diameter of the cylindrical container 31 is D
  • the depth from the drainage liquid surface to the tip of the ozone ejection port 33 of the ozone ejection nozzle 32 is H1.
  • the waste water stored in the waste water storage tank 2 is appropriately supplied through the ozone treatment water supply pipe 61 so that the height of the liquid level in the cylindrical container 31 is kept constant.
  • the ratio (H1 / D) of the depth H1 of the ozone outlet 33 to the inner diameter D of the cylindrical container 31 is in the range of about 0.3 to about 1.0.
  • is the density of drainage and ⁇ is the surface tension of the drainage.
  • drain above the ozone jet nozzle 33 turns in the arrow A direction, the waste water below the ozone jet nozzle 33 will rotate in the arrow B direction of a reverse direction by the angular momentum conservation law.
  • the swirling phenomenon of the jet flow occurs by ejecting ozone gas.
  • the waste water in the cylindrical container 31 is agitated without using a mechanical drive source such as a propeller.
  • the ozone treatment device 3 is thus more efficient than the method of simply injecting ozone gas from the bottom surface of the cylindrical container 31 by stirring the waste water in the cylindrical container 31 and dispersing the ozone gas as fine bubbles in the waste water. It reacts with ozone and waste water. Then, due to the strong oxidizing power of ozone, high molecular organic substances such as oil in the wastewater are reduced in molecular weight.
  • the ejection and ejection time of ozone gas from the ozone generator are controlled by an ozone control unit (not shown) so that the amount of organic matter in the wastewater is equal to or less than a predetermined threshold.
  • the amount of organic substances is TOC (Total Organic Carbon) and COD.
  • the swirling jet type ozone treatment in which the ozone gas is ejected to generate a swirling jet and the ozone gas and the waste water react with each other, the amount of aerobic microorganisms that can be adsorbed to the pollutant in the biological treatment in the subsequent stage is large. Thus, it becomes possible to increase the removal efficiency of pollutants.
  • the swirling jet type ozone treatment has various advantages such as low sludge generation and excellent deodorizing and decoloring effects in addition to the effect of reducing the molecular weight of high molecular organic substances such as oil. .
  • the swirl jet ozone treatment has been described as a treatment for reacting ozone gas and wastewater.
  • the ozone gas is dissolved in the wastewater by an ejector-type ozone mixing device or an ozone diffuser. May be.
  • an ejector-type ozone mixing device inhales ozone gas using the vacuum action caused by the negative pressure generated when the wastewater is ejected as a contracted flow, and ejects ozone gas as bubbles into the wastewater, thereby generating ozone gas and wastewater. Is a device for mixing.
  • the drainage storage tank 2 and the ozone treatment device 3 are connected via an overflow pipe 62. That is, when the water level of drainage in the ozone treatment apparatus 3 (in the cylindrical container 31) rises to the height (H2) or more of the lower end position of the connection port of the overflow pipe 62 in the cylindrical container 31, it is equal to or higher than the connection position.
  • the waste water flows back to the waste water storage tank 2. Therefore, the ozone treatment water pump 21 feeds the waste water in the waste water storage tank 2 through the ozone treatment water supply pipe 61 to the ozone treatment device 3, and the ozone treatment device 3 performs ozone treatment on the sent waste water.
  • the wastewater after the ozone treatment flows back to the wastewater storage tank 2 through the overflow pipe 62, the wastewater in the wastewater storage tank 2 and the wastewater after the ozone treatment are mixed, and the mixed wastewater in the wastewater storage tank 2 is treated with ozone. Water is sent to the device 3.
  • the waste water from the waste water storage tank 2 and the waste water from the ozone treatment device 3 are circulated by the ozone treatment water pump 21, the ozone treatment water feed pipe 61, and the overflow pipe 62. Then, after the drainage circulates for a predetermined time, the wastewater in the drainage storage tank 2 is fed by the biological treatment water pump 22 through the storage tank outflow pipe 63.
  • the overflow pipe 62 is an example of an ozone treatment circulation pipe, and the ozone treatment water pump 21, the ozone treatment water supply pipe 61, and the overflow pipe 62 are examples of the drainage circulation mechanism 7.
  • ozone treatment water supply pump 21 between the waste water storage tank 2 and the ozone treatment apparatus 3, or in the ozone treatment apparatus 3 instead of in the waste water storage tank 2.
  • an ozone treatment recirculation pump (not shown) is provided in the waste water storage tank 2, between the waste water storage tank 2 and the ozone treatment apparatus 3, or in the ozone treatment apparatus 3. It may be.
  • an ozone treatment recirculation pump is connected to the overflow pipe 62.
  • the biological treatment water pump 22 may be provided outside the drainage storage tank 2.
  • the ozone treatment water pump 21 and the biological treatment water pump 22 may be a single discharge pump.
  • a valve is provided in each of the ozone treatment water supply pipe 61 and the storage tank outflow pipe 63.
  • the valve of the ozone treatment water supply pipe 61 is opened and the valve of the storage tank outflow pipe 63 is closed.
  • the reservoir tank outflow pipe 63 is opened and the ozone treatment water supply pipe 61 is closed.
  • a three-way valve may be provided between one discharge pump and the ozone treatment water supply pipe 61 and the storage tank outflow pipe 63.
  • the wastewater sent from the wastewater storage tank 2 is efficiently reacted with ozone by the ozone treatment device 3, and the wastewater after the ozone treatment flows back to the wastewater storage tank 2 and is sent to the ozone treatment device 3. Is repeated.
  • the ozone treatment device 3 that performs ozone treatment exclusively, compared with a method of simply injecting ozone gas into the wastewater in the wastewater storage tank 2, high-molecular organic substances such as oil in the wastewater are high. Low molecular weight with efficiency.
  • FIG. 3 is a schematic diagram for explaining an example of waste water treatment by the biological treatment tank 4.
  • the biological treatment tank 4 has activated sludge and an air pipe 42.
  • the air pipe 42 is connected to a blower 41 that supplies air.
  • the wastewater in the wastewater storage tank 2 is fed through the storage tank outflow pipe 63.
  • drain storage tank 2 contains the organic substance by which the molecular weight was reduced by ozone treatment.
  • the air pipe 42 has a plurality of small-diameter air outlets 43 for ejecting the air supplied from the blower 41 into the waste water containing organic matter.
  • air is ejected into the biological treatment tank 4 from the air outlet 43 of the air pipe 42, aerobic microorganisms contained in the activated sludge are aerated, and pollutants contained in the wastewater containing organic matter are biodegraded (oxidative decomposition). Or waste water containing organic matter is purified. Then, the waste water purified by the biological treatment tank 4 flows into the sedimentation tank 5 through the sedimentation tank inflow pipe 64.
  • the air pipe 42 Since the air pipe 42 is disposed at the bottom of the biological treatment tank 4, the efficiency of adsorbing the aerobic microorganisms to the pollutant is obtained by stirring the waste water and activated sludge by the air ejected from the air ejection port 43. improves.
  • FIG. 4 is a schematic diagram for explaining an example of waste water treatment by the settling tank 5.
  • the sedimentation tank 5 includes a sediment discharge pump 51 and a sediment circulation pipe 66.
  • the wastewater that has flowed from the biological treatment tank 4 through the sedimentation tank inflow pipe 64 is settled and separated into a precipitate and a supernatant.
  • the sediment discharge pump 51 discharges the sediment settled in the sedimentation tank 5 to the outside of the sedimentation tank 5 through the sediment circulation pipe 66 after a predetermined time has passed since the wastewater was introduced from the biological treatment tank 4.
  • the sediment discharge pump 51 is installed at a position below a predetermined height from the bottom surface of the sedimentation tank 5 in order to discharge the sediment.
  • the supernatant liquid settled and separated is discharged from the settling tank 5 through the treated drainage discharge pipe 65 as treated wastewater to a sewage treatment facility such as an industrial park, a community plant such as an apartment house, a sewer, a river or a sea area.
  • the sediment discharge pump 51 may be provided outside the sedimentation tank 5. Moreover, you may provide the discharge port for discharging
  • FIG. 5 is a flowchart showing an example of wastewater treatment by the wastewater treatment system 1.
  • wastewater discharged from a wastewater generation source such as a factory or home flows into the wastewater storage tank 2 (step S101).
  • step S102 the drained wastewater is stored in the drainage storage tank 2 (step S102).
  • step S103 it is determined whether or not the wastewater stored in the wastewater storage tank 2 is sent to the biological treatment tank 4 (step S103). For example, when a predetermined time has elapsed since the wastewater stored in the wastewater storage tank 2 is supplied to the ozone treatment device 3, it is determined that the wastewater stored in the wastewater storage tank 2 is supplied to the biological treatment tank 4. The In addition, when the organic substance amount measuring device which measures the amount of organic substances is provided in the waste water storage tank 2 and it is determined that the organic substance quantity has become a predetermined threshold value or less, the waste water stored in the waste water storage tank 2 is the biological treatment tank. 4 may be sent to water.
  • a control device that determines whether or not the wastewater stored in the wastewater storage tank 2 is sent to the biological treatment tank 4 and controls the operations of the ozone treatment water supply pump 21 and the biological treatment water supply pump 22 is provided. It may be provided, or an administrator of the wastewater treatment system 1 may perform the determination and operation control of the pump.
  • step S103-Yes when it is determined that the wastewater stored in the wastewater storage tank 2 is sent to the biological treatment tank 4 (step S103-Yes), the process proceeds to step S106. If it is determined that the wastewater stored in the wastewater storage tank 2 is not sent to the biological treatment tank 4 (No at Step S103), the wastewater stored in the wastewater storage tank 2 is sent to the ozone treatment device 3. (Step S104).
  • the ozone treatment device 3 performs ozone treatment by mixing the wastewater sent from the wastewater storage tank 2 with ozone gas (step S105).
  • the waste water after the ozone treatment is circulated to the waste water storage tank 2, and the process is returned to step S102.
  • Step S106 the wastewater stored in the wastewater storage tank 2 is sent to the biological treatment tank 4.
  • the biological treatment tank 4 biologically treats the wastewater sent from the wastewater storage tank 2 with activated sludge. (Step S107).
  • the waste water flowing from the biological treatment tank 4 is settled and separated into a precipitate and a supernatant (step S109). Then, after a predetermined time has passed since the wastewater was introduced from the biological treatment tank 4, the supernatant liquid separated and settled was treated as wastewater from the precipitation tank 5, a sewage treatment facility such as an industrial park, a community plant such as an apartment house, a sewer Then, it is discharged into a river or sea area, and the series of steps is completed.
  • the waste water storage tank 2 and the ozone treatment apparatus 3 might be connected via the overflow pipe 62
  • the ozone treatment apparatus 3 and the biological treatment tank 4 were connected via the overflow pipe (not shown). You may do it.
  • the wastewater treatment system 1 of the first embodiment is configured so that the organic matter contained in the wastewater is reduced in molecular weight by the ozone treatment device 3 before biologically treating the wastewater in the biological treatment tank 4.
  • the purification effect of the biological treatment in the treatment tank 4 can be improved.
  • FIG. 6 is a schematic diagram for explaining the outline of the waste water treatment system 10 of the second embodiment.
  • the waste water treatment system 10 according to the second embodiment includes a measuring tank 8 and a separation device 9 in addition to the waste water storage tank 2, the ozone treatment apparatus 3, the biological treatment tank 4, and the sedimentation tank 5 shown in FIG. Prepare.
  • the drainage storage tank 2 includes an ozone treatment water pump 21 and a separation device discharge pump 23.
  • the ozone treatment water pump 21 feeds the waste water stored in the waste water storage tank 2 to the ozone treatment device 3.
  • the separation device discharge pump 23 feeds the wastewater stored in the wastewater storage tank 2 to the separation device 9 via the measuring tank 8.
  • the measuring tank 8 has a function of adjusting the flow rate of the wastewater sent from the drainage storage tank 2.
  • the inside of the measuring tank 8 is partitioned into a plurality of rooms.
  • the flow rate adjusting pump controls the flow rate capability of the flow rate adjusting pump by controlling the rotational speed of the pump motor by inverter driving.
  • the separation device 9 is a pressurized flotation device, a coagulation sedimentation device, or the like and has a function of separating floating substances such as floating substances and solid substances contained in the waste water from the waste water. Then, the waste water from which the suspended substances are separated by the separation device 9 flows into the biological treatment tank 4. Thus, since the wastewater treatment system 10 includes the separation device 9, the separation device 9 removes suspended solids from the wastewater, so that the purification effect of the biological treatment of wastewater in the biological treatment tank 4 at the subsequent stage is improved.
  • FIG. 7 is a schematic diagram for explaining an example of waste water treatment by the separation device 9.
  • the separation device 9 shown in FIG. 7 is an example of a pressure levitation device.
  • a part of the waste water flowing in from the measuring tank 8 is pumped to a pressure tank (not shown) by a pressure pump (not shown) to generate pressurized waste water in which air is dissolved in the tank.
  • a pressure pump not shown
  • pressurized wastewater is discharged from the pressurized wastewater discharge port 91 to the floating tank 92, ultrafine bubbles are generated by the discharge of the pressurized wastewater.
  • the generated ultrafine bubbles adhere to the oil and floating substances contained in the drainage and float on the upper surface of the floating tank 92.
  • the ultrafine bubbles that have floated up, the oil, and the suspended matter are scraped off by the skimmer 93 and collected in the floss collecting unit 94.
  • the waste water from which the oil and floating substances have been separated and removed by the separation device 9 flows out into the biological treatment tank 4 through the biological treatment tank inflow pipe 95.
  • oil and floating substances contained in the wastewater may be levitated by a pressurized levitation tank to separate floating substances such as suspended solids and solid matter contained in the wastewater from the wastewater.
  • the amount of the hardly decomposable polymer is reduced. Therefore, in the biological treatment tank 4 in the subsequent stage, the amount of aerobic microorganisms that can be adsorbed by the low-molecular contaminants that can be biologically processed increases, and the contaminant removal efficiency increases. Moreover, since the organic substance contained in the wastewater is reduced in molecular weight by the ozone treatment device 3, the amount of suspended matter floating in the separation device 9 is increased, and the removal efficiency of suspended matter is improved.
  • the oil and floating substances collected in the froth collecting section 94 are circulated to the drainage storage tank 2 through the froth circulation pipe (not shown) by a froth circulation pump (not shown) or the like, and drained again. .
  • the amount of waste such as oil and suspended solids can be reduced, so that the amount of industrial waste processed can be reduced and the waste disposal cost can be reduced.
  • FIG. 8 is a schematic diagram for explaining the outline of the wastewater treatment system 100 of the third embodiment.
  • FIG. 8 the same components as those in the waste water treatment system 1 shown in FIG.
  • FIG. 9 is a flowchart illustrating an example of wastewater treatment by the wastewater treatment system 100.
  • the sedimentation tank 5 includes a sediment discharge pump 51 and a sediment reflux pipe 66, and also includes a supernatant liquid reflux pump 52 and a supernatant liquid discharge pipe 67.
  • the sediment discharge pump 51 circulates the sediment settled in the sedimentation tank 5 to the drainage storage tank 2 through the sediment circulation pipe 66 (S201), and again drains it. Thereby, it becomes possible to reduce the disposal cost of waste by reducing the amount of disposal of activated sludge and pollutants.
  • the supernatant liquid recirculation pump 52 discharges the supernatant liquid in the sedimentation tank 5 to the drainage storage tank 2 through the supernatant liquid discharge pipe 67 (S202).
  • the supernatant liquid recirculation pump 52 is installed at a position higher than a predetermined height from the bottom surface of the settling tank 5 in order to discharge the supernatant liquid.
  • an organic substance amount measuring device 53 for measuring the organic substance amount of the supernatant liquid is installed at the same height as the position where the supernatant liquid reflux pump 52 is installed.
  • the amount of organic substances is TOC and COD.
  • the supernatant liquid discharged by the supernatant liquid circulation pump 52 is stored in a storage section in the drainage branching device 54.
  • the drainage control unit of the drainage branching device 54 determines whether or not the organic matter amount of the supernatant measured by the organic matter amount measuring instrument 53 is equal to or greater than the first threshold (step S203).
  • the drainage control unit of the drainage branching device 54 discharges the supernatant liquid to the drainage storage tank 2 through the first supernatant liquid circulation pipe 68 when the amount of the organic matter in the supernatant liquid is equal to or larger than the first threshold (step S203—Yes). Step S204).
  • the drainage control unit of the drainage branching device 54 determines whether or not the amount of organic matter in the supernatant liquid is greater than or equal to the second threshold value. Determination is made (step S205).
  • the drainage control unit of the drainage branching device 54 discharges the supernatant liquid to the biological treatment tank 4 through the second supernatant liquid circulation pipe 69 when the amount of the organic matter in the supernatant liquid is equal to or greater than the second threshold (step S205—Yes). Step S206). Note that the second threshold value is smaller than the first threshold value.
  • the drainage control unit of the drainage branching device 54 stops the discharge by the supernatant liquid recirculation pump 52 when the organic matter amount of the supernatant measured by the organic matter amount measuring device 53 is less than the second threshold (No in step S205). Then, the supernatant liquid is discharged from the settling tank 5 as treated wastewater to a sewage treatment facility such as an industrial park, a community plant such as an apartment house, a sewer, a river or a sea area, and the series of steps is completed.
  • a sewage treatment facility such as an industrial park, a community plant such as an apartment house, a sewer, a river or a sea area
  • a supernatant liquid recirculation pump 52 may be provided outside the precipitation tank 5. Moreover, you may provide the discharge port for discharging
  • FIG. 1 A supernatant liquid recirculation pump 52 may be provided outside the precipitation tank 5. Moreover, you may provide the discharge port for discharging
  • a second organic substance measuring instrument 531 (not shown) is provided on the bottom surface of the sedimentation tank 5, and a second drainage branching device 541 (not shown) is provided. May be provided.
  • the second drainage control unit of the second drainage branching device 541 is configured to remove the sediment from the first sediment circulation pipe 681 when the amount of organic matter in the sediment settled in the sedimentation tank 5 is equal to or greater than the third threshold. It discharges to the drainage storage tank 2 through (not shown).
  • drain branching apparatus 541 determines whether the organic matter content of a sediment is more than a 4th threshold value, when the organic matter content of a sediment is less than a 3rd threshold value. .
  • the second drainage control unit of the second drainage branching device 541 uses the biological treatment tank 4 to pass the sediment through the second sediment circulation pipe 691 (not shown) when the amount of organic matter in the sediment is equal to or greater than the fourth threshold. To discharge. Note that the fourth threshold value is smaller than the third threshold value.
  • the second drainage control unit of the second drainage branching apparatus 541 stops the discharge by the sediment discharge pump 51 when the organic matter amount of the precipitate measured by the second organic matter amount measuring instrument 531 is less than the fourth threshold value. . Thereby, since the amount of deposits of sludge substances etc. can be reduced, the amount of industrial waste treated can be reduced, and the waste disposal cost can be reduced.
  • the BOD of the waste water before the ozone treatment is 690 mg / L, whereas the BOL of the waste water after the ozone treatment is reduced to 470 mg / L.
  • the normal hexane extract substance content of the waste water before ozone treatment is 140 mg / L, whereas the normal hexane extract substance content of the waste water after ozone treatment is reduced to 50 mg / L.
  • the wastewater treatment systems 1, 10, and 100 can reduce the molecular weight of organic matter in the wastewater by the ozone treatment device before the wastewater flows into the biological treatment tank, the biological treatment purification effect. Can be improved. Therefore, the wastewater treatment systems 1, 10, and 100 can sufficiently remove substances that cause sludge from the wastewater.
  • the wastewater treatment systems 1, 10, 100 do not include the sedimentation tank 5, but treat the wastewater purified by the biological treatment tank 4 as treated wastewater, treat sewage treatment facilities such as industrial parks, community plants such as apartment houses, It may be discharged into sewers, rivers or sea areas.
  • the wastewater treatment systems 1, 10, and 100 may not be provided with the sedimentation tank 5, but may solid-liquid separate the wastewater in the biological treatment tank 4 by membrane separation activated sludge method (Membrane Bioreactor, MBR).
  • MBR membrane separation activated sludge method
  • a submerged membrane separation module is provided in the biological treatment tank 4, and treated water in the membrane separation module is discharged out of the membrane separation module by a suction pump.
  • the membrane separation module includes a membrane element for solid-liquid separation of the wastewater in the biological treatment tank 4 into treated water and activated sludge, and the membrane element is constituted by, for example, a hollow fiber membrane, a flat membrane, or a monolith membrane Is done.
  • the activated sludge amount (Mixed liquorMsuspended solid, MLSS) of the wastewater in the biological treatment tank 4 may be measured, and if the MLSS is a predetermined threshold value or more, the wastewater may be recirculated to the wastewater storage tank 2.
  • the biological treatment tank 4 removes the treated water in the membrane separation module from the wastewater treatment systems 1, 10, 100 (sewage treatment facilities such as industrial parks, community plants such as housing complexes, sewers, rivers, sea areas, etc.)
  • a return pump for supplying the wastewater in the biological treatment tank 4 to the drainage storage tank 2 is provided.
  • an MLSS measuring device is provided, and the waste water treatment systems 1, 10, and 100 are provided with a control device (not shown) that continuously monitors the MLSS measured by the MLSS measuring device. .
  • the control device controls the return pump so that the drainage is fed to the drainage storage tank 2, and when the measured MLSS is less than the predetermined threshold, the drainage is drained.
  • the suction pump is controlled so as to be discharged out of the treatment system 1, 10, 100 (sewage treatment facilities such as industrial parks, community plants such as apartment buildings, sewers, rivers or sea areas).
  • wastewater such as excess sludge is suppressed by circulating the wastewater to the wastewater storage tank 2 and performing wastewater treatment again. It becomes possible to reduce the disposal cost.
  • the administrator of the wastewater treatment system 1, 10, 100 may monitor the MLSS measured by the MLSS measuring instrument and control the suction pump and the return pump. Further, even when a biological treatment other than the membrane separation activated sludge method is adopted, if the MLSS of the wastewater in the biological treatment tank 4 is equal to or greater than a predetermined threshold, the wastewater in the biological treatment tank 4 is recirculated to the wastewater storage tank 2. You may do it.
  • the wastewater treatment systems 1, 10, 100 may be provided with two biological treatment tanks 400, 410.
  • the biological treatment tanks 400 and 410 have the same function as the biological treatment tank 4 described above.
  • the drainage storage tank 2 sends the wastewater to either the ozone treatment device 3 or the first biological treatment tank 400.
  • the first biological treatment tank 400 supplies wastewater to the ozone treatment apparatus 3, and the ozone treatment apparatus 3 circulates the wastewater to either the wastewater storage tank 2 or the first biological treatment tank 400.
  • the first biological treatment tank 400 supplies the wastewater to the second biological treatment tank 410, and the second biological treatment tank 410 sends the wastewater to the precipitation tank 5.
  • the organic substance amount measuring device which measures the amount of organic substances in the first biological treatment tank 400
  • the biological treatment tank for feeding the waste water in the first biological treatment tank 400 to the second biological treatment tank 410.
  • a pump may be provided, and when it is determined that the amount of organic substances has become a predetermined threshold value or less, the wastewater stored in the first biological treatment tank 400 may be sent to the second biological treatment tank 410.
  • a controller is provided that determines whether or not the wastewater stored in the first biological treatment tank 400 is sent to the second biological treatment tank 410 and controls the operation of the inter-biological treatment tank pump.
  • an administrator of the wastewater treatment system 1, 10, 100 may perform the determination and control of the operation of the biological treatment tank pump.
  • two or more second biological treatment tanks 410 may be provided in series. For example, when two second biological treatment tanks 410 are provided, the wastewater stored in the first biological treatment tank 400 is sent to the first tank of the second biological treatment tank 410, The wastewater stored in the first tank of the second biological treatment tank 410 is sent to the second tank of the second biological treatment tank 410 and stored in the second tank of the second biological treatment tank 410. The discharged waste water is sent to the settling tank 5.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Sludge (AREA)

Abstract

 本発明は、余剰汚泥等の廃棄物の発生を抑制し、廃棄物の廃棄コストを低減させることを可能とする排水処理システム及び排水処理方法を提供することを目的とする。 本発明に係る排水処理システムは、有機物を含む排水を貯留する排水貯留槽と、排水をオゾン処理することにより排水に含まれる有機物を低分子化するオゾン処理装置と、排水貯留槽に貯留された排水をオゾン処理装置に送水するとともに、オゾン処理された排水を排水貯留槽に環流させる排水環流機構と、オゾン処理された排水を含み且つ排水貯留槽から送水された排水に、好気性微生物を接触させて、排水に含まれる有機物を減少させる生物処理槽と、を備える。

Description

排水処理システム及び排水処理方法
 本発明は、オゾン処理装置を有する排水処理システム及び排水処理方法に関する。
 工場排水、生活排水、及び下水等の排水が河川又は海域に放流される際には、排水中の生物化学的酸素要求量(Biochemical Oxygen Demand, BOD)、化学的酸素要求量(Chemical Oxygen Demand, COD)及び浮遊物質量(Suspended Solid, SS)等が所定の排水基準以下となるように、排水処理システムによって汚濁原因となる物質が排水から除去される必要がある。従来から、排水から汚濁原因となる物質を除去する排水処理システムとして、凝集沈殿処理及びイオン交換処理等の物理化学処理、活性汚泥及び生物膜を用いた好気性処理等の生物処理を採用したものが知られている。
 例えば、特許文献1には、好気性微生物による生物処理を行う生物処理槽と、生物処理後の排水を沈殿物と上澄み液に分離する沈殿槽とで構成される排水処理システムが記載されている。この排水処理システムの生物処理槽では、排水が、活性汚泥及びばっ気エアと混合されて好気的に生物処理される。そして、沈殿槽では、生物処理された排水と活性汚泥とが生物処理槽から流入し、活性汚泥が沈降分離され、上澄み液が処理水として排出される。
特開2005-131594号公報
 しかしながら、従来の生物処理を採用した排水処理システムでは、固液分離による汚濁物及び活性汚泥等の余剰汚泥が大量に発生し、発生した廃棄物を廃棄するコストが高額になるという問題が生じていた。
 本発明は、このような課題を解決すべくなされたものであり、余剰汚泥等の廃棄物の発生を抑制し、廃棄物の廃棄コストを低減させることを可能とする排水処理システム及び排水処理方法を提供することを目的とする。
 本発明に係る排水処理システムは、有機物を含む排水を貯留する排水貯留槽と、排水をオゾン処理することにより排水に含まれる有機物を低分子化するオゾン処理装置と、排水貯留槽に貯留された排水をオゾン処理装置に送水するとともに、オゾン処理された排水を排水貯留槽に環流させる排水環流機構と、オゾン処理された排水を含み且つ排水貯留槽から送水された排水に、好気性微生物を接触させて、排水に含まれる有機物を減少させる生物処理槽と、を備える。
 また、本発明に係る排水処理システムにおいて、排水環流機構は、排水貯留槽とオゾン処理装置との間に備えられ、排水貯留槽に貯留された排水をオゾン処理装置に送水させるためのオゾン処理送水管と、排水貯留槽とオゾン処理装置との間に備えられ、オゾン処理された排水を排水貯留槽に環流させるためのオゾン処理環流管と、排水貯留槽に貯留された排水をオゾン処理装置に送水するオゾン処理送水ポンプと、を備えることが好ましい。
 また、本発明に係る排水処理システムにおいて、排水貯留槽と生物処理槽との間に備えられ、排水に含まれる浮遊物又は固形物を分離し、浮遊物又は固形物が分離された排水を、排水貯留槽から生物処理槽に送水する分離装置を更に有することが好ましい。
 また、本発明に係る排水処理システムにおいて、分離装置において分離された浮遊物質を排水貯留槽に環流するフロス環流管を更に備えることが好ましい。
 また、本発明に係る排水処理システムにおいて、分離装置は、加圧浮上装置又は凝集沈殿装置であることが好ましい。
 また、本発明に係る排水処理システムにおいて、オゾン処理装置は、オゾンガスを噴出させるノズルが配置され、ノズルから噴出させたオゾンガスによって噴流の旋回現象を発生させることによりオゾンガスと排水とを撹拌させる旋回噴流式オゾン処理装置であることが好ましい。
 また、本発明に係る排水処理システムにおいて、オゾン処理装置は、エジェクター方式のオゾン混合装置又はオゾン用散気装置であることが好ましい。
 また、本発明に係る排水処理システムにおいて、排水貯留槽は、排水貯留槽に貯留された排水の有機物量を測定する計測器と、排水貯留槽に貯留された排水の有機物量が所定の閾値以上である場合、排水貯留槽に貯留された排水をオゾン処理装置に送水させ、排水の有機物量が所定の閾値未満である場合、排水貯留槽に貯留された排水を生物処理槽に送水させる制御装置とを有することが好ましい。
 また、本発明に係る排水処理システムにおいて、排水を沈殿物と上澄み液に分離させる沈殿槽を更に備え、沈殿槽は、沈殿槽内に沈降した沈殿物を排水貯留槽に環流させる沈殿物排出ポンプを備えることが好ましい。
 本発明に係る排水処理方法は、有機物を含む排水を排水貯留槽に貯留するステップと、排水環流機構が、排水貯留槽に貯留された排水をオゾン処理装置に送水させるステップと、オゾン処理装置が、送水された排水をオゾン処理することにより排水に含まれる有機物を低分子化するステップと、排水環流機構が、オゾン処理された排水を排水貯留槽に環流させるステップと、生物処理槽が、オゾン処理された排水を含み且つ排水貯留槽から送水された排水に、好気性微生物を接触させて、排水に含まれる有機物を減少させるステップと、を有する。
 本発明に係る排水処理システム及び排水処理方法は、余剰汚泥等の廃棄物の発生を抑制し、廃棄物の廃棄コストを低減させることが可能となる。また、本発明に係る排水処理システム及び排水処理方法は、生物処理の浄化効果を向上させ、排水から汚濁原因となる物質を十分に除去することが可能となる。
排水処理システム1の概要を説明するための模式図である。 排水貯留槽2及びオゾン処理装置3による排水処理の一例を説明するための模式図である。 生物処理槽4による排水処理の一例を説明するための模式図である。 沈殿槽5による排水処理の一例を説明するための模式図である。 排水処理システム1による排水処理の一例を示すフローチャートである。 排水処理システム10の概要を説明するための模式図である。 分離装置9による排水処理の一例を説明するための模式図である。 排水処理システム100の概要を説明するための模式図である。 排水処理システム100による排水処理の一例を示すフローチャートである。
 以下、図面を参照しつつ、本発明の様々な実施形態について説明する。ただし、本発明の技術的範囲はそれらの実施形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
 (第1の実施形態)
 図1は、第1の実施形態の排水処理システム1の概要を説明するための模式図である。第1の実施形態の排水処理システム1は、工場又は家庭等の排水の発生源から排出された排水から汚濁原因となる物質を除去する機能を有し、少なくとも排水貯留槽2、オゾン処理装置3、生物処理槽4、及び沈殿槽5を備える。汚濁原因となる物質は、例えば、有機性物質である。以下、有機性物質を、単に有機物と称する場合がある。
 排水貯留槽2は、例えば、流量調整槽であり、排水発生源から流入した排水を貯留し、後処理を行うオゾン処理装置3及び生物処理槽4に送水する機能を有するとともに、オゾン処理装置3から環流した排水を貯留する機能を有する。なお、排水発生源から流入する排水は、最初に原水槽(図示せず)に貯留され、次に原水槽から排水貯留槽2に送水されるようにしてもよい。
 また、排水貯留槽2は、オゾン処理送水ポンプ21及び生物処理送水ポンプ22を備える。オゾン処理送水ポンプ21は、排水貯留槽2に貯留された排水を、オゾン処理装置3に送水する。生物処理送水ポンプ22は、排水貯留槽2に貯留された排水が、オゾン処理装置3に送水されてから所定時間が経過した場合、排水貯留槽2に貯留された排水を生物処理槽4に送水する。
 オゾン処理装置3は、排水貯留槽2から送水された排水をオゾンガスと混合させ、オゾン処理を行うとともに、オゾン処理後の排水を排水貯留槽2に環流する。オゾン処理装置3は、オゾン処理装置3内に送水された排水にオゾンガスを噴出することで、排水に含まれる有機物をオゾンガスと反応させて分解する。特に、排水に含まれる難分解性の高分子がオゾンガスと反応することにより低分子化されるため、後段の生物処理において好気性微生物が汚濁物質に吸着できる量が多くなり、汚濁物質の除去効率が増加する。また、有機物とオゾンガスとが反応することにより、排水中の溶存酸素量が増大するため、後段の生物処理における活性汚泥の働きを良くすることができる。オゾン処理装置3は、例えば、特許4195782号公報に記載されている攪拌装置を使用して、いわゆる旋回噴流式オゾン処理を行う。以下、旋回噴流式オゾン処理を行う装置を、旋回噴流式オゾン処理装置と称する場合がある。また、オゾン処理装置3として、公知のオゾンミキサー等が用いられてもよい。なお、オゾン処理装置3として、上述した旋回噴流式オゾン処理装置及びオゾンミキサーに限らず、排水とオゾンを混合させるものであれば、どのような装置が用いられてもよい。
 生物処理槽4は、排水貯留槽2から送水された排水を活性汚泥によって生物処理する。活性汚泥は、排水に含まれる有機物を酸化分解する好気性微生物の泥状の集合体であり、好気性微生物は、細菌類(バクテリア)、原生動物、及び後生動物細菌等である。生物処理槽4では、好気性微生物が、排水貯留槽2から送水され且つ有機物を含む排水中の汚濁物質に吸着し、酸素を消費することにより、有機物を酸化分解又は吸収分離し、有機物を含む排水を浄化する。生物処理槽4によって浄化された排水は、沈殿槽5に流入する。また、生物処理槽4において、排水貯留槽2から送水された排水は生物膜法によって生物処理されてもよい。生物膜法では、好気性微生物が付着された生物膜ろ材が、生物処理槽4内に設置され、生物膜ろ材に付着された好気性微生物が排水中の有機物を含む汚濁物質に接触することで、有機物が酸化分解又は吸収分離され、有機物を含む排水が浄化される。なお、生物処理槽4における生物処理では、上述した活性汚泥法及び生物膜法に限らず、散水ろ床法、及び回転板接触法等の好気性微生物を排水中の有機物に接触させる方法であれば、どのような方法が用いられてもよい。
 沈殿槽5において、生物処理槽4から流入した排水が沈殿物と上澄み液に沈降分離する。沈殿物は、生物処理槽4から流入した排水中の活性汚泥や汚濁物であり、水との比重の差により沈降する。そして、生物処理槽4から排水を流入させてから所定時間経過後に、沈降分離した上澄み液が、沈殿槽5から処理済排水として、工業団地等の汚水処理施設、集合住宅等のコミュニティプラント、下水道、河川又は海域等に放流される。
 以上、排水処理システム1は、排水発生源から流入した排水を生物処理槽4において生物処理する前にオゾン処理装置3によって排水に含まれる有機物を低分子化することができるため、生物処理の浄化効果を向上させることが可能となる。したがって、排水処理システム1は、排水から汚泥原因となる物質を十分に除去させることが可能となる。また、排水処理システム1は、汚泥の廃棄量を減少させることができるため、産業廃棄物処理量が減り、廃棄物の廃棄コストを低減させることが可能となる。
 図2は、排水貯留槽2及びオゾン処理装置3による排水処理の一例を説明するための模式図である。
 排水貯留槽2は、排水発生源から貯留槽流入管60を通して流入した排水を排水貯留槽2内に貯留する。オゾン処理送水ポンプ21は、排水貯留槽2に貯留された排水を、オゾン処理送水管61を通してオゾン処理装置3に送水する。
 オゾン処理装置3は、排水貯留槽2から送水された排水をオゾンガスと混合させ、オゾン処理を行う。まず、図示しないオゾン発生装置によって、オゾン処理装置3内に供給するオゾンガスが発生する。オゾン発生装置は、例えば、エアコンプレッサにより空気を圧縮し、PSA(Pressure Swing Adsorption)方式により圧縮空気から濃縮酸素ガスを生成し、さらに放電ユニットなどを用いて高電圧をかけることにより濃縮酸素ガスからオゾンガスを発生させる。
 図2に示すように、オゾン処理装置3は、処理対象の排水を貯留する円筒形容器31と、円筒形容器31の底面から上向きに突出するように配置されたオゾンガスのオゾン噴出ノズル32と有する。円筒形容器31の内径をDとし、排水の液面からオゾン噴出ノズル32のオゾン噴出口33の先端までの深さをH1とする。円筒形容器31内の液面の高さが一定に保たれるように、排水貯留槽2に貯留される排水がオゾン処理送水管61を通って適宜送水される。
 特許4195782号公報に記載されているように、円筒形容器31の内径Dに対するオゾン噴出口33の深さH1の比(H1/D)が、約0.3~約1.0の範囲内にあり、流量が一定の条件を満たす気体をオゾン噴出口33から噴出させると、図2に示すように、円筒形容器31内の排水が例えば矢印Aの方向に旋回する。ここで、一定の条件とは、噴出させる気体の流量Qが、ρQ2/(σD3)=10-5を満たす流量以上であり、且つ気泡が液面を吹き抜けない流量以下というものである。ただし、ρは排水の密度、σは排水の表面張力である。そして、オゾン噴出口33の上方の排水が矢印A方向に旋回すると、角運動量保存則により、オゾン噴出口33の下方の排水は、逆向きの矢印B方向に旋回する。
 このように、オゾン処理装置3では、オゾンガスを噴出させることで、噴流の旋回現象が生じる。それに伴い、オゾン処理装置3では、プロペラなどの機械的な駆動源を用いなくても、円筒形容器31内の排水が攪拌される。オゾン処理装置3では、こうして円筒形容器31内の排水を攪拌し、オゾンガスを微細な気泡として排水中に分散させることにより、円筒形容器31の底面からオゾンガスを単純に注入する方法に比べて効率的にオゾンと排水を反応させる。すると、オゾンの強力な酸化力により、排水中の油分等の高分子有機物が低分子化される。なお、オゾン発生装置からのオゾンガスの噴出及び噴出時間は、排水中の有機物量が所定の閾値以下となるように、図示しないオゾン制御部により制御される。有機物量は、TOC(Total Organic Carbon)及びCOD等である。
 このように、オゾンガスを噴出させることで旋回噴流を生じさせて、オゾンガスと排水とを反応させる旋回噴流式オゾン処理によれば、後段の生物処理において好気性微生物が汚濁物質に吸着できる量が多くなり、汚濁物質の除去効率を増加させることが可能になる。
 また、旋回噴流式オゾン処理には、油分等の高分子有機物を低分子化する効果に加えて、汚泥の発生が少ないことや、優れた脱臭・脱色効果があることなど、様々な利点がある。
 なお、排水処理システム1において、オゾンガスと排水とを反応させる処理として旋回噴流式オゾン処理について説明したが、エジェクター方式のオゾン混合装置又はオゾン用散気装置等によって、オゾンガスを排水に溶解させるようにしてもよい。例えば、エジェクター方式のオゾン混合装置は、排水を縮流として噴出させる際に生じる負圧による真空作用を利用してオゾンガスを吸入し、排水中にオゾンガスを気泡として噴出することにより、オゾンガスと排水とを混合する装置である。
 図2に示すとおり、排水貯留槽2とオゾン処理装置3とは、オーバーフロー管62を介して接続されている。すなわち、オゾン処理装置3内(円筒形容器31内)の排水の水位が、円筒形容器31におけるオーバーフロー管62の接続口の下端位置の高さ(H2)以上に上昇した場合、当該接続位置以上の排水が、排水貯留槽2に環流する。したがって、オゾン処理送水ポンプ21によって、排水貯留槽2内の排水がオゾン処理送水管61を通ってオゾン処理装置3に送水されるとともに、オゾン処理装置3が、送水された排水をオゾン処理し、オゾン処理後の排水が、オーバーフロー管62を通って排水貯留槽2に環流し、排水貯留槽2内の排水とオゾン処理後の排水が混合し、排水貯留槽2内の混合した排水がオゾン処理装置3に送水される。
 このように、オゾン処理送水ポンプ21、オゾン処理送水管61及びオーバーフロー管62によって、排水貯留槽2の排水及びオゾン処理装置3の排水が循環する。そして、所定時間、排水が循環した後に、排水貯留槽2内の排水が生物処理送水ポンプ22によって貯留槽流出管63を通って送水される。オーバーフロー管62は、オゾン処理環流管の一例であり、オゾン処理送水ポンプ21、オゾン処理送水管61、及びオーバーフロー管62は、排水環流機構7の一例である。
 なお、オゾン処理送水ポンプ21を、排水貯留槽2内ではなく、排水貯留槽2とオゾン処理装置3との間、又は、オゾン処理装置3内に備えるようにしてもよい。また、オゾン処理送水ポンプ21の代わりに、オゾン処理環流ポンプ(図示せず)を、排水貯留槽2内、排水貯留槽2とオゾン処理装置3との間、又は、オゾン処理装置3に備えるようにしてもよい。この場合、オーバーフロー管62にオゾン処理環流ポンプが接続される。また、オゾン処理送水ポンプ21とオゾン処理環流ポンプとを同時に用いてもよい。
 また、生物処理送水ポンプ22を、排水貯留槽2外に設けてもよい。また、オゾン処理送水ポンプ21及び生物処理送水ポンプ22を、1台の排出ポンプとしてもよい。この場合、オゾン処理送水管61及び貯留槽流出管63のそれぞれに弁を設ける。排水をオゾン処理装置3に送水する際には、オゾン処理送水管61の弁を開けるとともに貯留槽流出管63の弁を閉じる。排水を生物処理槽4に送水する際には、貯留槽流出管63の弁を開けるとともにオゾン処理送水管61の弁を閉じる。なお、1台の排出ポンプとオゾン処理送水管61及び貯留槽流出管63との間に三方弁を設けてもよい。
 以上のとおり、排水貯留槽2から送水された排水がオゾン処理装置3によって効率的にオゾンと反応され、オゾン処理後の排水が、排水貯留槽2に環流するとともにオゾン処理装置3に送水されることが繰り返される。このように、オゾン処理を専用に行うオゾン処理装置3が用いられることにより、排水貯留槽2内の排水にオゾンガスを単純に注入する方法に比べて、排水中の油分等の高分子有機物が高効率で低分子化される。
 図3は、生物処理槽4による排水処理の一例を説明するための模式図である。
 生物処理槽4は、活性汚泥を有するとともに空気配管42を備える。空気配管42は、空気を供給するブロワ41と接続する。生物処理槽4内には、排水貯留槽2内の排水が貯留槽流出管63を通って送水される。なお、排水貯留槽2内の排水は、オゾン処理によって低分子化された有機物を含む。
 空気配管42は、ブロワ41から送気されてくる空気を、有機物を含む排水中に噴出するための小径の空気噴出口43を複数有する。空気配管42の空気噴出口43から空気が生物処理槽4内に噴出されると、活性汚泥に含まれる好気性微生物がばっ気され、有機物を含む排水に含まれる汚濁物質が生物分解(酸化分解又は吸収分離)され、有機物を含む排水が浄化される。そして、生物処理槽4によって浄化された排水は、沈殿槽流入管64を通って沈殿槽5に流入する。なお、空気配管42は、生物処理槽4の底部に配置されるため、空気噴出口43から噴出された空気によって、排水と活性汚泥とが撹拌され、好気性微生物が汚濁物質に吸着する効率が向上する。
 図4は、沈殿槽5による排水処理の一例を説明するための模式図である。
 沈殿槽5は、沈殿物排出ポンプ51及び沈殿物環流管66を備える。沈殿槽5では、沈殿槽流入管64を通って生物処理槽4から流入した排水が沈殿物と上澄み液に沈降分離する。次に、生物処理槽4から排水を流入させてから所定時間経過後に、沈殿物排出ポンプ51は、沈殿槽5内の沈降した沈殿物を沈殿物環流管66を通して沈殿槽5外に排出する。なお、沈殿物排出ポンプ51は、沈殿物を排出するために、沈殿槽5の底面から所定の高さ以下の位置に設置される。そして、沈降分離した上澄み液が、沈殿槽5から処理済排水排出管65を通って処理済排水として、工業団地等の汚水処理施設、集合住宅等のコミュニティプラント、下水道、河川又は海域等に放流される。なお、沈殿物排出ポンプ51を沈殿槽5外に設けてもよい。また、沈殿物排出ポンプ51を設けずに、沈殿槽5の底面から所定の高さ以下の位置に、沈殿物を排出するための排出口を設けてもよい。
 図5は、排水処理システム1による排水処理の一例を示すフローチャートである。
 まず、工場又は家庭等の排水発生源から排出された排水が排水貯留槽2に流入する(ステップS101)。
 次に、流入した排水が排水貯留槽2に貯留される(ステップS102)。
 次に、排水貯留槽2に貯留されている排水を生物処理槽4に送水するか否かが判定される(ステップS103)。例えば、排水貯留槽2に貯留されている排水が、オゾン処理装置3に送水されてから所定時間が経過した場合、排水貯留槽2に貯留されている排水を生物処理槽4に送水すると判定される。なお、排水貯留槽2内に、有機物量を測定する有機物量測定器を設け、有機物量が所定の閾値以下になったと判定された場合、排水貯留槽2に貯留されている排水が生物処理槽4に送水されるようにしてもよい。この場合、排水貯留槽2に貯留されている排水が生物処理槽4に送水されるか否かの判定を行うとともに、オゾン処理送水ポンプ21及び生物処理送水ポンプ22の動作を制御する制御装置を設けてもよいし、排水処理システム1の管理者が当該判定及びポンプの動作制御を行ってもよい。
 次に、排水貯留槽2に貯留されている排水を生物処理槽4に送水すると判定された場合(ステップS103-Yes)、ステップS106に処理を進める。また、排水貯留槽2に貯留されている排水を生物処理槽4に送水しないと判定された場合(ステップS103-No)、排水貯留槽2に貯留されている排水がオゾン処理装置3に送水される(ステップS104)。
 次に、オゾン処理装置3は、排水貯留槽2から送水された排水をオゾンガスと混合させ、オゾン処理を行う(ステップS105)。次に、オゾン処理後の排水を排水貯留槽2に環流させて、ステップS102に処理を戻す。
 次に、排水貯留槽2に貯留されている排水が生物処理槽4に送水される。(ステップS106)。
 次に、生物処理槽4は、排水貯留槽2から送水された排水を活性汚泥によって生物処理する。(ステップS107)。
 次に、排水貯留槽2に貯留されている排水が沈殿槽5に流入する。(ステップS108)。
 次に、沈殿槽5において、生物処理槽4から流入した排水が沈殿物と上澄み液に沈降分離する(ステップS109)。そして、生物処理槽4から排水を流入させてから所定時間経過後に、沈降分離した上澄み液が、沈殿槽5から処理済排水として、工業団地等の汚水処理施設、集合住宅等のコミュニティプラント、下水道、河川又は海域等に放流されて、一連のステップを終了する。
 なお、排水貯留槽2とオゾン処理装置3とを、オーバーフロー管62を介して接続するように構成したが、オゾン処理装置3と生物処理槽4とをオーバーフロー管(図示せず)を介して接続するようしてもよい。
 以上、説明したように、第1の実施形態の排水処理システム1は、生物処理槽4において排水を生物処理する前にオゾン処理装置3によって排水に含まれる有機物が低分子化されるため、生物処理槽4における生物処理の浄化効果を向上させることができる。
 (第2の実施形態)
 図6は、第2の実施形態の排水処理システム10の概要を説明するための模式図である。図6において、図1に示す排水処理システム1と同じ構成については同じ符号を付し、その説明を省略する。第2の実施形態の排水処理システム10は、図1に示した排水貯留槽2、オゾン処理装置3、生物処理槽4、及び沈殿槽5に加えて、更に、計量槽8及び分離装置9を備える。
 排水貯留槽2は、オゾン処理送水ポンプ21及び分離装置排出ポンプ23を備える。オゾン処理送水ポンプ21は、排水貯留槽2に貯留された排水を、オゾン処理装置3に送水する。分離装置排出ポンプ23は、排水貯留槽2に貯留された排水を、計量槽8を経由して分離装置9に送水する。
 計量槽8は、排水貯留槽2から送水された排水を流量調整する機能を有する。計量槽8の内部に1又は複数の堰板81が設けられることにより、計量槽8の内部が複数の部屋に区画される。計量槽8の内部の各部屋において、排水の水面が堰板81の高さ以上になると次の部屋へ排水が流入することにより、排水が流量調整されて分離装置9に流入する。なお、計量槽8に代えて、インバータ制御方式の流量調整ポンプを備えてもよい。流量調整ポンプは、ポンプの電動機の回転速度をインバータ駆動によって制御することにより、流量調整ポンプの流量能力を制御する。
 分離装置9は、加圧浮上装置又は凝集沈殿装置等であり、排水に含まれる浮遊物及び固形物等の浮遊物質を排水から分離する機能を有する。そして、分離装置9によって浮遊物質が分離された排水が、生物処理槽4に流入する。このように、排水処理システム10が分離装置9を備えることにより、分離装置9が排水から浮遊物質を除去するため、後段の生物処理槽4における排水の生物処理の浄化効果が向上する。
 図7は、分離装置9による排水処理の一例を説明するための模式図である。
 図7に示す分離装置9は、加圧浮上装置の一例である。計量槽8から流入された排水の一部を加圧ポンプ(図示せず)により加圧タンク(図示せず)に圧送し、タンク内で空気を溶解させた加圧排水を生成する。次に、加圧排水が加圧排水吐出口91から浮上槽92に吐出されると、加圧排水の吐出によって超微細気泡が発生する。
 次に、発生した超微細気泡が排水に含まれる油分及び浮遊物質に付着して、浮上槽92の上面に浮上する。浮上した超微細気泡並びに油分及び浮遊物質はスキマー93により掻き取られ、フロス収集部94に収集される。また、分離装置9によって油分及び浮遊物質が分離及び除去された排水は、生物処理槽流入管95を通って生物処理槽4に流出する。なお、加圧浮上装置に替えて、加圧浮上槽により排水に含まれる油分及び浮遊物質を浮上させて、排水に含まれる浮遊物及び固形物等の浮遊物質を排水から分離してもよい。
 以上で説明したとおり、分離装置9によって、排水から油分及び浮遊物質が除去されるため、難分解性の高分子の量が減少される。そのため、後段の工程の生物処理槽4において、生物処理可能な低分子の汚濁物質に好気性微生物が吸着できる量が多くなり、汚濁物質の除去効率が増加する。また、オゾン処理装置3によって排水に含まれる有機物が低分子化されているため、分離装置9において浮上する浮遊物質量が増大し、浮遊物質の除去効率が向上する。
 また、フロス収集部94に収集された油分及び浮遊物質は、フロス環流ポンプ(図示せず)等によってフロス環流管(図示せず)を通って排水貯留槽2に環流され、再び排水処理される。これにより、油分及び浮遊物質等の廃棄量を減少させることができるため、産業廃棄物処理量が減り、廃棄物の廃棄コストを低減させることが可能となる。
 (第3の実施形態)
 図8は、第3の実施形態の排水処理システム100の概要を説明するための模式図である。図8において、図1に示す排水処理システム1と同じ構成については同じ符号を付し、その説明を省略する。図9は、排水処理システム100による排水処理の一例を示すフローチャートである。
 沈殿槽5は、沈殿物排出ポンプ51及び沈殿物環流管66を備えるとともに、上澄み液環流ポンプ52及び上澄み液排出管67を備える。
 沈殿物排出ポンプ51は、沈殿槽5内に沈降した沈殿物を、沈殿物環流管66を通して排水貯留槽2に環流させ(S201)、再び排水処理させる。これにより、活性汚泥や汚濁物等の廃棄量が減少することにより、廃棄物の廃棄コストを低減させることが可能となる。
 上澄み液環流ポンプ52は、沈殿槽5内の上澄み液を上澄み液排出管67を通して排水貯留槽2に排出する(S202)。なお、上澄み液環流ポンプ52は、上澄み液を排出するため、沈殿槽5の底面から所定の高さ以上の位置に設置される。また、上澄み液環流ポンプ52が設置された位置と同じ高さの位置に、上澄み液の有機物量を測定する有機物量計測器53が設置される。有機物量は、TOC及びCOD等である。
 上澄み液環流ポンプ52によって排出された上澄み液は、排水分岐装置54内の貯留部に貯留される。次に、排水分岐装置54の排水制御部は、有機物量計測器53によって測定された上澄み液の有機物量が第1の閾値以上であるか否かを判定する(ステップS203)。排水分岐装置54の排水制御部は、上澄み液の有機物量が第1の閾値以上である場合(ステップS203-Yes)、上澄み液を第1上澄み液環流管68を通して排水貯留槽2に排出する(ステップS204)。また、排水分岐装置54の排水制御部は、上澄み液の有機物量が第1の閾値未満である場合(ステップS203-No)、上澄み液の有機物量が第2の閾値以上であるか否かを判定する(ステップS205)。排水分岐装置54の排水制御部は、上澄み液の有機物量が第2の閾値以上である場合(ステップS205-Yes)、上澄み液を第2上澄み液環流管69を通して生物処理槽4に排出する(ステップS206)。なお、第2の閾値は、第1の閾値よりも小さい値である。排水分岐装置54の排水制御部は、有機物量計測器53によって測定された上澄み液の有機物量が第2の閾値未満である場合(ステップS205-No)、上澄み液環流ポンプ52による排出を停止して、上澄み液が、沈殿槽5から処理済排水として、工業団地等の汚水処理施設、集合住宅等のコミュニティプラント、下水道、河川又は海域等に放流されて、一連のステップを終了する。
 これにより、上澄み液の有機物量が第1の閾値以上の場合、排水(上澄み液)を排水貯留槽2に戻し、第1の閾値未満の場合、生物処理槽4に戻すように制御するため、排水処理の効率が向上する。
 なお、上澄み液環流ポンプ52を沈殿槽5外に設けてもよい。また、上澄み液環流ポンプ52を設けずに、沈殿槽5の底面から所定の高さ以上の位置に、上澄み液を排出するための排出口を設けてもよい。
 また、有機物量計測器53の他に、第2有機物量計測器531(図示せず)を、沈殿槽5の底面に設け、第2排水分岐装置541(図示せず)を沈殿物環流管66に設けてもよい。この場合、第2排水分岐装置541の第2排水制御部は、沈殿槽5内に沈降した沈殿物の有機物量が第3の閾値以上である場合、沈殿物を、第1沈殿物環流管681(図示せず)を通して排水貯留槽2に排出する。また、第2排水分岐装置541の第2排水制御部は、沈殿物の有機物量が第3の閾値未満である場合、沈殿物の有機物量が第4の閾値以上であるか否かを判定する。第2排水分岐装置541の第2排水制御部は、沈殿物の有機物量が第4の閾値以上である場合、沈殿物を、第2沈殿物環流管691(図示せず)を通して生物処理槽4に排出する。なお、第4の閾値は、第3の閾値よりも小さい値である。第2排水分岐装置541の第2排水制御部は、第2有機物量計測器531によって測定された沈殿物の有機物量が第4の閾値未満である場合、沈殿物排出ポンプ51による排出を停止する。これにより、汚泥物質等の沈殿物の廃棄量を減少させることができるため、産業廃棄物処理量が減り、廃棄物の廃棄コストを低減させることが可能となる。
 排水処理システム1のオゾン処理装置3に流入した排水に対して、オゾン処理前とオゾン処理後との排水のBOD(mg/L)及びノルマルヘキサン抽出物質含有量(mg/L)を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 オゾン処理前の排水のBODは、690mg/Lであるのに対し、オゾン処理後の排水のBOLは、470mg/Lまで減少している。また、オゾン処理前の排水のノルマルヘキサン抽出物質含有量は、140mg/Lであるのに対し、オゾン処理後の排水のノルマルヘキサン抽出物質含有量は、50mg/Lまで減少している。
 以上説明してきたように、排水処理システム1,10,100は、排水を生物処理槽に流入させる前にオゾン処理装置によって排水中の有機物を低分子化することができるため、生物処理の浄化効果を向上させることが可能となる。したがって、排水処理システム1,10,100は、排水から汚泥原因となる物質を十分に除去させることが可能となる。
 なお、本発明は、第1乃至第3の実施形態に限定されるものではない。例えば、排水処理システム1,10,100は、沈殿槽5を備えずに、生物処理槽4によって浄化された排水を処理済排水として、工業団地等の汚水処理施設、集合住宅等のコミュニティプラント、下水道、河川又は海域等に放流してもよい。
 また、排水処理システム1,10,100は、沈殿槽5を備えずに、膜分離活性汚泥法(Membrane Bioreactor, MBR)によって生物処理槽4内の排水を固液分離してもよい。膜分離活性汚泥法では、生物処理槽4内に浸漬型の膜分離モジュールが備えられ、膜分離モジュール内の処理水が吸引ポンプによって膜分離モジュール外に排出される。膜分離モジュールは、生物処理槽4内の排水を処理水と活性汚泥とに固液分離するための膜エレメントを備え、膜エレメントは、例えば、中空糸膜、平膜、又はモノリス膜等で構成される。これにより、排水処理システム1,10,100の設備規模が小型になり、排水処理システム1,10,100の設置コストを低減させることが可能となる。
 また、生物処理槽4内の排水の活性汚泥量(Mixed liquor suspended solid, MLSS)を計測して、MLSSが所定の閾値以上の場合は、当該排水を排水貯留槽2に環流させてもよい。この場合、生物処理槽4は、膜分離モジュール内の処理水を、排水処理システム1,10,100外(工業団地等の汚水処理施設、集合住宅等のコミュニティプラント、下水道、河川又は海域等)に排出する吸引ポンプの他に、生物処理槽4内の排水を排水貯留槽2に送水するための返送ポンプを備える。生物処理槽4内には、MLSS測定器が備えられ、排水処理システム1,10,100は、当該MLSS計測器によって計測されたMLSSを継時的に監視する制御装置(図示せず)を備える。制御装置は、計測されたMLSSが所定の閾値以上の場合は、排水を排水貯留槽2に送水するように返送ポンプを制御し、計測されたMLSSが所定の閾値未満の場合は、排水を排水処理システム1,10,100外(工業団地等の汚水処理施設、集合住宅等のコミュニティプラント、下水道、河川又は海域等)に排出するように吸引ポンプを制御する。これにより、生物処理槽4内の排水中に余剰汚泥が多い場合、排水を排水貯留槽2に環流させて再び排水処理を行うことにより、余剰汚泥等の廃棄物の発生が抑制され、廃棄物の廃棄コストを低減させることが可能となる。なお、排水処理システム1,10,100の管理者が、MLSS計測器によって計測されたMLSSの監視並びに吸引ポンプ及び返送ポンプの制御を行ってもよい。また、膜分離活性汚泥法以外の生物処理を採用した場合においても、生物処理槽4内の排水のMLSSが所定の閾値以上ならば、生物処理槽4内の排水を排水貯留槽2に環流させるようにしてもよい。
 また、排水処理システム1,10,100は、2槽の生物処理槽400,410を設けてもよい。なお、生物処理槽400,410は、上述の生物処理槽4と同等の機能を有する。この場合、排水貯留槽2は、排水を、オゾン処理装置3及び第1の生物処理槽400のいずれか一方に送水する。また、第1の生物処理槽400は、オゾン処理装置3に排水を送水するとともに、オゾン処理装置3は、排水を、排水貯留槽2及び第1の生物処理槽400の何れか一方に環流する。さらに、第1の生物処理槽400は、排水を第2の生物処理槽410に送水し、第2の生物処理槽410は、排水を沈殿槽5に送水する。なお、第1の生物処理槽400内に、有機物量を測定する有機物量測定器と、第1の生物処理槽400内の排水を第2の生物処理槽410に送水するための生物処理槽間ポンプを設け、有機物量が所定の閾値以下になったと判定された場合、第1の生物処理槽400に貯留されている排水が第2の生物処理槽410に送水されるようにしてもよい。この場合、第1の生物処理槽400に貯留されている排水を第2の生物処理槽410に送水するか否かの判定を行うとともに、生物処理槽間ポンプの動作を制御する制御装置を設けてもよいし、排水処理システム1,10,100の管理者が当該判定及び生物処理槽間ポンプの動作の制御を行ってもよい。また、第2の生物処理槽410を、更に2槽以上直列に設けてもよい。例えば、第2の生物処理槽410が2槽設けられた場合、第1の生物処理槽400に貯留されている排水は第2の生物処理槽410の第1槽に送水されるようにし、第2の生物処理槽410の第1槽に貯留されている排水は第2の生物処理槽410の第2槽に送水されるようにし、第2の生物処理槽410の第2槽に貯留されている排水が沈殿槽5に送水されるようにする。
 当業者は、本発明の精神及び範囲から外れることなく、様々な変更、置換、及び修正をこれに加えることが可能であることを理解されたい。
 1,10,100  排水処理システム
 2  排水貯留槽
 21  オゾン処理送水ポンプ
 22  生物処理送水ポンプ
 23  分離装置排出ポンプ
 3  オゾン処理装置
 31  円筒形容器
 32  オゾン噴出ノズル
 33  オゾン噴出口
 4  生物処理槽
 41  ブロワ
 42  空気配管
 43  空気噴出口
 5  沈殿槽
 51  沈殿物排出ポンプ
 52  上澄み液環流ポンプ
 53  有機物量計測器
 54  排水分岐装置
 60  貯留槽流入管
 61  オゾン処理送水管
 62  オーバーフロー管
 63  貯留槽流出管
 64  沈殿槽流入管
 65  処理済排水排出管
 66  沈殿物環流管
 67  上澄み液排出管
 68  第1上澄み液環流管
 69  第2上澄み液環流管
 7  排水環流機構
 8  計量槽
 81  堰板
 9  分離装置
 91  加圧排水吐出口
 92  浮上槽
 93  スキマー
 94  フロス収集部
 95  生物処理槽流入管

Claims (10)

  1.  有機物を含む排水を貯留する排水貯留槽と、
     排水をオゾン処理することにより排水に含まれる有機物を低分子化するオゾン処理装置と、
     前記排水貯留槽に貯留された排水を前記オゾン処理装置に送水するとともに、前記オゾン処理された排水を前記排水貯留槽に環流させる排水環流機構と、
     前記オゾン処理された排水を含み且つ前記排水貯留槽から送水された排水に、好気性微生物を接触させて、排水に含まれる有機物を減少させる生物処理槽と、
     を備えることを特徴とする排水処理システム。
  2.  前記排水環流機構は、
      前記排水貯留槽と前記オゾン処理装置との間に備えられ、前記排水貯留槽に貯留された排水を前記オゾン処理装置に送水させるためのオゾン処理送水管と、
      前記排水貯留槽と前記オゾン処理装置との間に備えられ、前記オゾン処理された排水を前記排水貯留槽に環流させるためのオゾン処理環流管と、
      前記排水貯留槽に貯留された排水を前記オゾン処理装置に送水するオゾン処理送水ポンプと、を備える、請求項1に記載の排水処理システム。
  3.  前記排水貯留槽と前記生物処理槽との間に備えられ、排水に含まれる浮遊物又は固形物を分離し、浮遊物又は固形物が分離された排水を、前記排水貯留槽から前記生物処理槽に送水する分離装置を更に有する、請求項1又は2に記載の排水処理システム。
  4.  前記分離装置において分離された浮遊物質を前記排水貯留槽に環流するフロス環流管を更に備える、請求項3に記載の排水処理システム。
  5.  前記分離装置は、加圧浮上装置又は凝集沈殿装置である、請求項3又は4に記載の排水処理システム。
  6.  前記オゾン処理装置は、オゾンガスを噴出させるノズルが配置され、前記ノズルから噴出させたオゾンガスによって噴流の旋回現象を発生させることによりオゾンガスと排水とを撹拌させる旋回噴流式オゾン処理装置である、請求項1~5の何れか1項に記載の排水処理システム。
  7.  前記オゾン処理装置は、エジェクター方式のオゾン混合装置又はオゾン用散気装置である、請求項1~5の何れか1項に記載の排水処理システム。
  8.  前記排水貯留槽は、
      前記排水貯留槽に貯留された排水の有機物量を測定する計測器と、
      前記排水貯留槽に貯留された排水の有機物量が所定の閾値以上である場合、前記排水貯留槽に貯留された排水を前記オゾン処理装置に送水させ、排水の有機物量が所定の閾値未満である場合、前記排水貯留槽に貯留された排水を前記生物処理槽に送水させる制御装置とを有する、請求項1~7の何れか1項に記載の排水処理システム。
  9.  排水を沈殿物と上澄み液に分離させる沈殿槽を更に備え、
     前記沈殿槽は、沈殿槽内に沈降した沈殿物を排水貯留槽に環流させる沈殿物排出ポンプを備える、請求項1~8の何れか1項に記載の排水処理システム。
  10.  有機物を含む排水を排水貯留槽に貯留するステップと、
     排水環流機構が、前記排水貯留槽に貯留された排水をオゾン処理装置に送水させるステップと、
     前記オゾン処理装置が、前記送水された排水をオゾン処理することにより排水に含まれる有機物を低分子化するステップと、
     前記排水環流機構が、前記オゾン処理された排水を前記排水貯留槽に環流させるステップと、
     生物処理槽が、前記オゾン処理された排水を含み且つ前記排水貯留槽から送水された排水に、好気性微生物を接触させて、排水に含まれる有機物を減少させるステップと、
     を有することを特徴とする排水処理方法。
PCT/JP2015/078117 2015-10-02 2015-10-02 排水処理システム及び排水処理方法 WO2017056325A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2015410935A AU2015410935A1 (en) 2015-10-02 2015-10-02 Wastewater treatment system and wastewater treatment method
CA3000607A CA3000607A1 (en) 2015-10-02 2015-10-02 Wastewater treatment system and wastewater treatment method
JP2017510704A JP6198029B2 (ja) 2015-10-02 2015-10-02 排水処理システム及び排水処理方法
EP15905478.2A EP3357872A4 (en) 2015-10-02 2015-10-02 Wastewater treatment system and wastewater treatment method
US15/765,229 US20180282187A1 (en) 2015-10-02 2015-10-02 Wastewater treatment system and wastewater treatment method
PCT/JP2015/078117 WO2017056325A1 (ja) 2015-10-02 2015-10-02 排水処理システム及び排水処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078117 WO2017056325A1 (ja) 2015-10-02 2015-10-02 排水処理システム及び排水処理方法

Publications (1)

Publication Number Publication Date
WO2017056325A1 true WO2017056325A1 (ja) 2017-04-06

Family

ID=58422950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078117 WO2017056325A1 (ja) 2015-10-02 2015-10-02 排水処理システム及び排水処理方法

Country Status (6)

Country Link
US (1) US20180282187A1 (ja)
EP (1) EP3357872A4 (ja)
JP (1) JP6198029B2 (ja)
AU (1) AU2015410935A1 (ja)
CA (1) CA3000607A1 (ja)
WO (1) WO2017056325A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109019981A (zh) * 2018-09-07 2018-12-18 安徽金思源生物科技有限公司 一种家庭污水净化循环利用装置
WO2019093283A1 (ja) * 2017-11-07 2019-05-16 王子ホールディングス株式会社 混合装置、水処理装置および水処理方法
JP2019107583A (ja) * 2017-12-15 2019-07-04 王子ホールディングス株式会社 混合装置
JP2019107582A (ja) * 2017-12-15 2019-07-04 王子ホールディングス株式会社 混合装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106007256A (zh) * 2016-07-28 2016-10-12 黄霞 微气泡臭氧催化氧化-无曝气生化耦合工艺系统及其应用
CN107128997A (zh) * 2017-05-24 2017-09-05 哈尔滨工业大学 脱硫废水侧向流网帘式沉淀分离装置及方法
CA3133969A1 (en) * 2019-03-26 2020-10-01 Evocra Pty Limited Sewage treatment method
WO2021176481A1 (en) * 2020-03-05 2021-09-10 Lobo, Nerrisa Dominica Rosemary System and method for remediation of a contaminated water body
CN112233831A (zh) * 2020-09-02 2021-01-15 上海康建防护屏蔽有限公司 放射性污、废水衰变处理系统及其处理方法
CN113845240A (zh) * 2021-10-29 2021-12-28 深圳市福田区环境技术研究所有限公司 一种移动式一体化含油废水处理系统
CN116813155B (zh) * 2023-08-31 2023-12-22 金科环境股份有限公司 一种硅片切割液废水的处理系统及方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189981A (ja) * 1998-12-25 2000-07-11 Koden Eng Kk オゾンによる有機性、難分解性排水の処理方法及びシステム
JP2006088116A (ja) * 2004-09-27 2006-04-06 Yoshiyuki Sawada 排水処理方法および装置
JP2010075872A (ja) * 2008-09-26 2010-04-08 Sawatec Kk 排水処理方法および装置
JP2011212562A (ja) * 2010-03-31 2011-10-27 Sumitomo Precision Prod Co Ltd 有機排水の処理方法
JP2013220387A (ja) * 2012-04-17 2013-10-28 Toyota Motor Corp 排水処理方法及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1915240A (en) * 1932-11-28 1933-06-20 Alfred R Putnam Sewage purification
US4053399A (en) * 1975-04-30 1977-10-11 Grumman Aerospace Corporation Method and system for waste treatment
JP4195782B2 (ja) * 2001-08-09 2008-12-10 学 井口 攪拌装置および融雪装置
JP4175037B2 (ja) * 2002-06-18 2008-11-05 凸版印刷株式会社 有機性排水処理装置
RU2253629C2 (ru) * 2002-12-03 2005-06-10 Субратов Алексей Алексеевич Способ анаэробно-аэробной очистки небольших количеств сточных вод предприятий пищевой промышленности
JP4238988B2 (ja) * 2003-10-31 2009-03-18 日立プラント建設サービス株式会社 余剰汚泥処理方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189981A (ja) * 1998-12-25 2000-07-11 Koden Eng Kk オゾンによる有機性、難分解性排水の処理方法及びシステム
JP2006088116A (ja) * 2004-09-27 2006-04-06 Yoshiyuki Sawada 排水処理方法および装置
JP2010075872A (ja) * 2008-09-26 2010-04-08 Sawatec Kk 排水処理方法および装置
JP2011212562A (ja) * 2010-03-31 2011-10-27 Sumitomo Precision Prod Co Ltd 有機排水の処理方法
JP2013220387A (ja) * 2012-04-17 2013-10-28 Toyota Motor Corp 排水処理方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3357872A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093283A1 (ja) * 2017-11-07 2019-05-16 王子ホールディングス株式会社 混合装置、水処理装置および水処理方法
JP2019107583A (ja) * 2017-12-15 2019-07-04 王子ホールディングス株式会社 混合装置
JP2019107582A (ja) * 2017-12-15 2019-07-04 王子ホールディングス株式会社 混合装置
CN109019981A (zh) * 2018-09-07 2018-12-18 安徽金思源生物科技有限公司 一种家庭污水净化循环利用装置

Also Published As

Publication number Publication date
EP3357872A4 (en) 2019-04-10
JPWO2017056325A1 (ja) 2017-10-05
EP3357872A1 (en) 2018-08-08
US20180282187A1 (en) 2018-10-04
JP6198029B2 (ja) 2017-09-20
CA3000607A1 (en) 2017-04-06
AU2015410935A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6198029B2 (ja) 排水処理システム及び排水処理方法
US5178755A (en) UV-enhanced ozone wastewater treatment system
RU2181344C2 (ru) Установка и способ биологической очистки нечистот и сточных вод
WO2016115008A2 (en) Eductor-based membrane bioreactor
WO2018066443A1 (ja) 汚排水浄化システム
CN114426382B (zh) 一种船舶油污废水的臭氧氧化处理工艺
KR101751250B1 (ko) 배오존을 이용한 부상분리와 무포기 오존 반응기를 이용한 수 처리장치
JP2010046602A (ja) 含油廃水処理方法
KR100801981B1 (ko) 와류식 고효율 가압고액분리장치
KR101678202B1 (ko) 폐기물 매립장용 침출수 처리 시스템
JP5250284B2 (ja) 水処理装置および水処理方法
JP4844825B2 (ja) サテライト処理場の汚水処理装置
KR101192174B1 (ko) 하폐수고도처리장치
JP2006205155A (ja) 嫌気槽とそれを含んだ排水処理システム
KR100948807B1 (ko) 응집 부상장치를 이용한 하·폐수 고도처리장치
JP4271991B2 (ja) オゾン水処理装置
KR200390937Y1 (ko) 오폐수 처리장치
KR20060114493A (ko) 오폐수 처리장치
CN109320009A (zh) 一种工业染色废水处理方法
CN212151997U (zh) 一种含油废水处理回用装置
KR100992829B1 (ko) 고효율 인처리 시스템
KR102153994B1 (ko) 순환식 상부 집중포기 체적변화형 산기식 수처리 장치
CN108911242B (zh) 一种超级纳米气泡循环臭氧污水处理方法及装置
KR100544367B1 (ko) 수처리장치
KR20010074162A (ko) 침전 및 생물막여과조를 이용한 오수처리장치 및 그 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017510704

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3000607

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15765229

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015905478

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015410935

Country of ref document: AU

Date of ref document: 20151002

Kind code of ref document: A