WO2017056250A1 - 熱交換器及びそれを備えた冷凍サイクル装置 - Google Patents

熱交換器及びそれを備えた冷凍サイクル装置 Download PDF

Info

Publication number
WO2017056250A1
WO2017056250A1 PCT/JP2015/077788 JP2015077788W WO2017056250A1 WO 2017056250 A1 WO2017056250 A1 WO 2017056250A1 JP 2015077788 W JP2015077788 W JP 2015077788W WO 2017056250 A1 WO2017056250 A1 WO 2017056250A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat tube
heat exchange
heat exchanger
heat
exchange unit
Prior art date
Application number
PCT/JP2015/077788
Other languages
English (en)
French (fr)
Inventor
石橋 晃
裕樹 宇賀神
伊東 大輔
中村 伸
智嗣 上山
綾 河島
寿守務 吉村
松本 崇
良太 赤岩
洋次 尾中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/077788 priority Critical patent/WO2017056250A1/ja
Priority to US15/753,185 priority patent/US10480869B2/en
Priority to CN201580083475.4A priority patent/CN108139178B/zh
Priority to EP15905404.8A priority patent/EP3358287B1/en
Priority to JP2017542609A priority patent/JP6403898B2/ja
Publication of WO2017056250A1 publication Critical patent/WO2017056250A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/08Assemblies of conduits having different features

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle apparatus including the heat exchanger.
  • a conventional finless heat exchanger includes a flat heat transfer tube (heat exchange part) in which a plurality of refrigerant channels are formed, an inlet header to which one end of the heat transfer tube is connected, and other heat transfer tubes.
  • a flat heat transfer tube heat exchange part
  • inlet header to which one end of the heat transfer tube is connected
  • other heat transfer tubes There has been proposed one including an outlet-side header to which an end is connected (see, for example, Patent Document 1).
  • Patent Document 1 a plurality of flat heat transfer tubes are connected so as to be aligned in the longitudinal direction of the inlet side header and the outlet side header.
  • the present invention has been made to solve the above-described problems, and includes a heat exchanger that can improve heat exchange performance without reducing the pitch of the flat tubes of the heat exchange section, and the heat exchanger. Another object of the present invention is to provide a refrigeration cycle apparatus.
  • the heat exchanger according to the present invention includes a first flat tube and a second flat tube arranged in parallel to the first flat tube, and a fluid is provided between the first flat tube and the second flat tube.
  • a third flat tube of the second heat exchange part when viewed in a cross-section perpendicular to the longitudinal direction the third heat exchange part of the first heat exchange part.
  • the fourth flat tube of the second heat exchange part is arranged in a direction intersecting with the flat pipe of the first heat exchange part when viewed in a cross section orthogonal to the longitudinal direction. It is arranged in the direction that intersects
  • the heat exchange performance can be improved without reducing the pitch of the heat exchange portions.
  • FIG. 1 is an explanatory diagram showing a refrigerant circuit configuration and the like of a refrigeration cycle apparatus 200 including a heat exchanger 100 according to the present embodiment.
  • the configuration of the refrigeration cycle apparatus 200 will be described with reference to FIG.
  • the heat exchanger 100 according to the present embodiment is provided with an improvement that can improve the heat exchange performance without reducing the pitch of the flat tubes 1a of each heat exchange section 1A.
  • the refrigeration cycle apparatus 200 includes an outdoor unit 50 and an indoor unit 51.
  • the outdoor unit 50 and the indoor unit 51 are connected via a refrigerant pipe P.
  • the outdoor unit 50 includes a compressor 33 that compresses refrigerant, an outdoor fan 37 that blows air, an outdoor heat exchanger 100A that functions as an evaporator, an outdoor fan 37 that supplies air to the outdoor heat exchanger 100A,
  • the expansion device 35 is connected between an indoor heat exchanger 100B (described later) and an outdoor heat exchanger 100A.
  • the indoor unit 51 includes an indoor heat exchanger 100B that functions as a condenser (heat radiator), and an indoor fan 38 that supplies air to the indoor heat exchanger 100B. Note that the outdoor heat exchanger 100A and the indoor heat exchanger 100B are also referred to as the heat exchanger 100 in the following description.
  • the compressor 33 compresses and discharges the refrigerant.
  • the compressor 33 has a refrigerant discharge side connected to the indoor heat exchanger 100B and a refrigerant suction side connected to the outdoor heat exchanger 100A.
  • various types such as a scroll compressor and a rotary compressor can be adopted.
  • the heat exchanger 100 includes a flat tube in which a refrigerant channel through which a refrigerant flows is formed.
  • the heat exchanger 100 is not provided with fins that are connected to be orthogonal to the flat tube. That is, the heat exchanger 100 is a so-called finless heat exchanger.
  • One of the indoor heat exchangers 100 ⁇ / b> B is connected to the discharge side of the compressor 33, and the other is connected to the expansion device 35.
  • One of the outdoor heat exchangers 100 ⁇ / b> A is connected to the suction side of the compressor 33 and the other is connected to the expansion device 35.
  • the configuration of the heat exchanger 100 will be described with reference to FIG
  • the indoor fan 38 forcibly takes air into the indoor unit 51 and supplies air to the indoor heat exchanger 100B.
  • the indoor fan 38 is used to exchange heat between the taken-in air and the refrigerant passing through the indoor heat exchanger 100B.
  • the indoor fan 38 is attached to the indoor heat exchanger 100B.
  • the outdoor fan 37 forcibly takes air into the outdoor unit 50 and supplies air to the outdoor heat exchanger 100A.
  • the outdoor fan 37 is used to exchange heat between the taken-in air and the refrigerant passing through the indoor heat exchanger 100B.
  • the outdoor fan 37 is attached to the outdoor heat exchanger 100A.
  • the indoor fan 38 and the outdoor fan 37 can be composed of, for example, an electric motor to which a shaft is connected, a boss that is rotationally driven by the electric motor, and a plurality of blades that are connected to the outer peripheral portion of the boss.
  • the expansion device 35 is used to depressurize the refrigerant.
  • the expansion device 35 may be, for example, a capillary tube or an electronic expansion valve that can control the opening degree.
  • the gaseous refrigerant compressed and discharged by the compressor 33 flows into the indoor heat exchanger 100B.
  • the gaseous refrigerant that has flowed into the indoor heat exchanger 100B performs heat exchange with the air supplied from the indoor fan 38, condenses, and flows out of the indoor heat exchanger 100B.
  • the refrigerant that has flowed out of the indoor heat exchanger 100B flows into the expansion device 35, and is expanded and depressurized by the expansion device 35.
  • the decompressed refrigerant flows into the outdoor heat exchanger 100A, undergoes heat exchange with the outdoor air supplied from the outdoor fan 37, vaporizes, and flows out of the outdoor heat exchanger 100A.
  • the refrigerant flowing out of the outdoor heat exchanger 100A is sucked into the compressor 33.
  • FIG. 2 is an explanatory diagram of the heat exchanger 100 according to the present embodiment.
  • FIG. 2A is a front view of the heat exchanger 100
  • FIG. 2B is a side view of the heat exchanger 100.
  • FIG. 2C is a cross-sectional view taken along the line AA of the heat exchanging portion 1A shown in FIG.
  • FIG. 2C for the convenience of explanation, the scale of the width in the Y direction of the heat exchange section 1A shown in FIG.
  • FIG. 3 is an explanatory diagram of components and the like of the heat exchange unit 1A of the heat exchanger 100 according to the present embodiment.
  • FIG.3 (a) has shown the flat tube 1a which the heat exchange part 1A1 adjoins, and the flat tube 1a which the heat exchange part 1A2 corresponding to this flat tube 1a adjoins.
  • the heat exchanger 100 is a minimum component with the four flat tubes 1a.
  • FIG. 3A only two flat tubes 1a of the heat exchange section 1A1 are shown, and the remaining four flat tubes 1a are not shown.
  • FIG.3 (b) is one enlarged view of the heat exchange part 1A shown in FIG.2 (c). With reference to FIG.2 and FIG.3, the structure of the heat exchanger 100 is demonstrated.
  • the heat exchanger 100 includes the X direction, which is the direction in which the flat tubes 1a of each heat exchange unit are arranged, the Y direction, which is the direction through which air passes, and the Z direction, which is the longitudinal direction of the flat tubes 1a.
  • a description will be given as an example of what is orthogonal to the direction.
  • a case where the X direction and the Y direction are orthogonal to each other will be described as an example.
  • an example in which the heat exchanger 100 is mounted on the refrigeration cycle apparatus 200 so that the X direction and the Y direction are parallel to the horizontal plane and the Z direction is parallel to the gravity direction will be described. To do.
  • the heat exchanger 100 includes four flat tubes 1a as minimum components. That is, the heat exchanger 100 includes a heat exchanging unit 1A1 including two flat tubes 1a (corresponding to the first flat tube P1 and the second flat tube P2) arranged in parallel, and two parallel tubes arranged in parallel. And a heat exchange section 1A2 including a flat tube 1a (corresponding to the third flat tube P3 and the fourth flat tube P4).
  • the first flat tube P1 and the third flat tube P3 are connected, and the second flat tube P2 and the fourth flat tube P4 are connected.
  • the first flat tube P1 and the third flat tube P3 have a correspondence in the Y direction
  • the second flat tube P2 and the fourth flat tube P4 have a correspondence in the Y direction.
  • first flat tube P1 and the second flat tube P2 have a correspondence in the X direction
  • third flat tube P3 and the fourth flat tube P4 have a correspondence in the X direction. is doing.
  • first flat tube P1, the second flat tube P2, the third flat tube P3, and the fourth flat tube P4 have been described in order to describe the minimum components.
  • the first flat tube P1, the second flat tube P2, the third flat tube P3, the fourth flat tube P4, and the flat tubes 1a in FIG. 2 and the like correspond to each other.
  • the heat exchanger 100 includes a first header 4 in which a fluid flow path D1 in which a fluid flows is formed, and a second header 5 in which a fluid flow path D2 in which a fluid flows is formed and paired with the first header 4 And a plurality of heat exchanging portions 1A including a plurality of flat tubes 1a in which fluid flow paths F are formed.
  • the plurality of heat exchange units 1A refer to the heat exchange unit 1A1, the heat exchange unit 1A2, the heat exchange unit 1A3, and the heat exchange unit 1A4.
  • the heat exchanger 100 has a shape in which convex portions (mountains) and concave portions (valleys) are alternately formed when viewed in a cross section orthogonal to the fluid flow path F.
  • the part which becomes a convex part when it sees from one surface side becomes a recessed part when it sees from the other surface side.
  • the first header 4 is a long cylindrical member extending in the X direction, and a fluid flow path D1 through which a fluid flows is formed.
  • the first header 4 is connected to the lower end of each heat exchange unit 1A.
  • the first header 4 is an inflow side header into which the fluid supplied from the compressor 33 and the like flows.
  • the first header 4 is arranged in parallel in the horizontal direction, for example.
  • the second header 5 is a long cylindrical member extending in the X direction, and a fluid flow path D2 through which a fluid flows is formed.
  • the second header 5 is connected to the upper end of each heat exchange unit 1A.
  • the second header 5 is supplied with the fluid that has passed through the first header 4 and the heat exchange unit 1A, and is an outflow header.
  • the second header 5 is disposed in parallel with the horizontal direction, for example.
  • a plurality of flat tubes 1a are arranged in parallel, and fluid (air) passes between adjacent flat tubes 1a.
  • six flat tubes 1a are arranged so as to be aligned in the X direction.
  • the heat exchange unit 1 ⁇ / b> A has one end connected to the first header 4 and the other end connected to the second header 5.
  • the lower end of the heat exchanger 100 is connected to the first header 4 and the upper end is connected to the second header 5. ing.
  • the several heat exchange part 1A is arrange
  • the heat exchange unit 1A3 is arranged, and the heat exchange unit 1A4 is arranged downstream of the heat exchange unit 1A3 in the air flow direction.
  • each flat tube 1 a of the heat exchange unit 1 ⁇ / b> A has a plurality of fluid flow paths F through which fluid flows.
  • each flat tube 1a of one heat exchange part 1A and each flat tube 1a of the other heat exchange part 1B are arrange
  • One flat tube 1a described here and the other flat tube 1a refer to the flat tube 1a of the adjacent heat exchange section 1A.
  • the heat exchange unit 1A1 is one heat exchange unit 1A
  • the heat exchange unit 1A2 is the other heat exchange unit 1B.
  • Each flat tube 1a of the heat exchanging unit 1A2 adjacent to the heat exchanging unit 1A1 is arranged in a direction intersecting with each corresponding flat tube 1a of the heat exchanging unit 1A1.
  • the short direction of the flat tube 1a of the heat exchange unit 1A1 is parallel to the direction in which the plurality of fluid flow paths F are arranged, but the short direction of the flat tube 1a of the heat exchange unit 1A1 and the heat That is, the short direction of the flat tube 1a of the exchange part 1A2 intersects. Since they intersect, the short direction of the flat tube 1a of the heat exchange unit 1A1 and the short direction of the flat tube 1a of the heat exchange unit 1A2 are not parallel.
  • the configurations of the heat exchange unit 1A1 and the heat exchange unit 1A2 described above can be applied to the heat exchange unit 1A2 and the heat exchange unit 1A3, and to the heat exchange unit 1A3 and the heat exchange unit 1A4. That is, the adjacent heat exchange parts 1A have a relationship in which the flat tube 1a of one heat exchange part 1A and the flat tube 1a of the other heat exchange part 1A intersect.
  • the short direction of the flat tube 1a of the heat exchange unit 1A1 and the short direction of the flat tube 1a of the heat exchange unit 1A3 are parallel, and the short direction of the flat tube 1a of the heat exchange unit 1A2
  • the short direction of the flat tube 1a of the heat exchange part 1A4 is parallel.
  • Each heat exchange unit 1A is integrally configured by connecting adjacent flat tubes 1a.
  • the first flat tube P1 and the third flat tube P3 are connected (connected), and the second flat tube P2 and the fourth flat tube P4 are connected (connected). It means that there is.
  • FIG.2 (c) the downstream edge part of the flat tube 1a of the heat exchange part 1A1 of the heat exchanger 100 which concerns on this Embodiment, and the upstream edge part of the flat tube 1a of the heat exchange part 1A2 are shown. Connected (linked). Similarly, the downstream end of the flat tube 1a of the heat exchange unit 1A2 and the upstream end of the flat tube 1a of the heat exchange unit 1A3 are connected (connected), and the flat tube 1a of the heat exchange unit 1A3 is connected. The downstream end of the heat exchanger and the upstream end of the flat tube 1a of the heat exchange section 1A4 are connected (linked).
  • the bent portion of the heat exchanger 100 corresponds to a portion where the heat exchange portions 1A intersect. In other words, it corresponds to a portion to which each flat tube 1a of each adjacent heat exchange section 1A is connected. A portion where each heat exchange unit 1 ⁇ / b> A intersects is a top portion T of the heat exchanger 100.
  • the heat exchanger 100 includes a first flat tube P1 and a second flat tube P2 arranged in parallel to the first flat tube P1, and the first flat tube P1 and the second flat tube P1.
  • a second heat exchanging portion through which fluid passes between the flat tube P3 and the fourth flat tube P4, and the third flat tube P3 of the second heat exchanging portion has a cross section orthogonal to the longitudinal direction.
  • the fourth flat tube P4 of the second heat exchange section is seen in a cross-section orthogonal to the longitudinal direction, and is arranged in a direction intersecting the first flat tube P1 of the first heat exchange section. Is arranged in a direction crossing the second flat tube P2 of the first heat exchange section.
  • the 1st heat exchange part and the 2nd heat exchange part have pointed out adjacent heat exchange parts. That is, the first heat exchange unit and the second heat exchange unit refer to the heat exchange unit 1A1 and the heat exchange unit 1A2. Moreover, the 1st heat exchange part and the 2nd heat exchange part have pointed out the heat exchange part 1A2 and the heat exchange part 1A3.
  • the first heat exchange unit and the second heat exchange unit refer to the heat exchange unit 1A3 and the heat exchange unit 1A4.
  • the heat exchanger 100 according to the present embodiment includes the first heat exchange unit and the second heat exchange unit, thereby exchanging heat more than the heat exchanger including the heat exchange unit alone.
  • the heat exchange area between the fluid flowing through the part 1A and the air passing through the heat exchange part 1A can be increased.
  • the air flowing through the heat exchanger 100 meanders in the process of passing through the flat tube 1a of each heat exchange unit 1A, and is agitated in the process of passing through the heat exchange unit 1A, so that the heat transfer coefficient is improved. .
  • the pitch of the flat tubes 1a adjacent to the X direction of the heat exchange unit 1A is reduced.
  • the heat exchange performance can be improved without taking any other means.
  • FIG. 7 is a perspective view of a conventional heat exchanger.
  • the conventional heat exchanger 500 is configured to include only a single heat exchange section 1A.
  • heat exchange performance is improved by forming a plurality of fluid flow paths in the heat exchange section 1A
  • the pitch of the flat tubes 1a constituting the heat exchange section 1A is reduced in order to further improve the heat exchange performance.
  • There is a need If the pitch of the flat tubes 1a of the heat exchanging portion 1A is reduced, air becomes difficult to pass due to frost formation, and the assembly accuracy required in manufacturing increases and the manufacturing cost may increase. .
  • these disadvantages can be avoided.
  • the second header 5 on the fluid outflow side is disposed above the first header 4 on the fluid inflow side. Yes. And the heat exchange part 1A is arrange
  • the fluid is given priority from the flat tube 1a located on the side close to the fluid inlet of the first header 4.
  • the heat exchanger 100 according to the present embodiment is a finless heat exchanger in which a plurality of fins connected so as to be orthogonal to the heat exchange unit 1A (heat transfer tube) is not provided.
  • a heat exchanger provided with fins there are a contact thermal resistance between the heat transfer tube and the fin and a resistance due to heat conduction of the fin itself.
  • the heat exchanger 100 according to the present embodiment is a finless heat exchanger, the heat contact resistance between the heat transfer tube and the fin described above and the resistance due to the heat conduction of the fin itself are reduced. Exchange performance is improved.
  • the heat exchanger 100 when used as an evaporator, the condensed water flows down along the heat exchange part 1A arranged in parallel to the direction of gravity. Therefore, the heat exchanger 100 according to the present embodiment can improve drainage. Thus, since the heat exchanger 100 has improved drainage, it is possible to prevent ice from being stacked on the lower portion of the heat exchanger 100 even during defrost operation, for example.
  • the adjacent heat exchange parts 1A of the heat exchanger 100 according to the present embodiment are arranged so that the short direction of the flat tubes 1a intersects, the strength is improved accordingly.
  • the heat exchanger 100 since the second header 5 is disposed on the upper side of the heat exchange unit 1A, the heat exchanger 1A is subjected to its own weight. However, since the heat exchanger 100 according to the present embodiment is arranged so that the adjacent heat exchange portions 1A intersect each other, avoiding buckling or the like due to the weight of the second header. Can do.
  • the refrigeration cycle apparatus 200 on which the heat exchanger 100 according to the present embodiment is mounted is an air conditioner
  • the present invention is not limited thereto, and may be, for example, a refrigerator Good.
  • a refrigerant such as R410A, R32, HFO1234yf, etc. can be employed as the working fluid.
  • examples of air and refrigerant are shown as fluids. That is, the refrigerant is the first fluid and the air is the second fluid.
  • the first fluid and the second fluid are not limited to these, and other gases, liquids, gas-liquid mixed fluids, and the like may be used.
  • refrigerant and oil such as mineral oil, alkylbenzene oil, ester oil, ether oil, and fluorine oil are dissolved. Regardless, various types of refrigerating machine oil can be employed.
  • the refrigeration cycle apparatus 200 equipped with the heat exchanger 100 according to the present embodiment is not provided with a four-way valve and is a heating-only machine.
  • the four-way valve is provided to perform cooling and heating. The mode which can be switched may be sufficient.
  • FIG. 4 is a first modification of the heat exchanger 100 according to the present embodiment. As shown in FIG. 4, the flat tube 1a constituting each heat exchanging portion 1B is made different in the crossing angle between adjacent heat exchanging portions 1B in the upstream portion and the downstream portion in the air flow direction. The length in the short direction may be different.
  • the heat exchanger 100 includes a plurality of heat exchangers.
  • the heat exchanger 100 includes a heat exchanger 10B, a heat exchanger 20B, and a heat exchanger 30B.
  • the heat exchange body 20B is disposed downstream of the heat exchange body 10B in the air flow direction
  • the heat exchange body 30B is disposed downstream of the heat exchange body 20B in the air flow direction.
  • the heat exchanging body 10B is composed of a plurality of heat exchanging parts 1B, and in the first modification example, it is composed of a heat exchanging part 1B1 and a heat exchanging part 1B2.
  • the heat exchanging body 20B is composed of a plurality of heat exchanging parts 1B, and in the first modification example, it is composed of a heat exchanging part 1B3 and a heat exchanging part 1B4.
  • the heat exchanging body 30B includes a plurality of heat exchanging units 1B.
  • the heat exchanging unit 30B includes a heat exchanging unit 1B5 and a heat exchanging unit 1B6.
  • the heat exchange body 10B and the heat exchange body 20B correspond to the first heat exchange body and the second heat exchange body.
  • the heat exchange body 20B and the heat exchange body 30B correspond to the first heat exchange body and the second heat exchange body.
  • the heat exchanger 10B and the heat exchanger 30B also correspond to the first heat exchanger and the second heat exchanger.
  • the heat exchanger 100 which concerns on the modification 1 is provided with the six heat exchange parts 1B as an example.
  • the heat exchanger 100 according to the modified example 1 includes a plurality of top portions T corresponding to portions where the heat exchange portions 1B intersect when viewed in a cross section orthogonal to the fluid flow path F.
  • the heat exchanger 100 according to the modified example 1 has an air outflow side (downstream in the air flow direction) rather than the heat exchanging unit 1B located on the side into which the air to exchange heat with the fluid flows (upstream side in the air flow direction).
  • the heat exchanging part 1B located on the side) is configured such that the length of the flat tube 1a in the short direction is longer.
  • the angle formed by the flat tube 1a is different with respect to the Y direction.
  • the heat exchanging unit 1B1, the heat exchanging unit 1B2, the heat exchanging unit 1B3, and the heat exchanging unit 1B4 are located upstream of the heat exchanging unit 1B5 and the heat exchanging unit 1B6 in the air flow direction. Yes. Therefore, the heat exchange unit 1B1, the heat exchange unit 1B2, the heat exchange unit 1B3, and the heat exchange unit 1B4 are referred to as upstream heat exchange units, and the heat exchange unit 1B5 and the heat exchange unit 1B6 are referred to as downstream heat exchange units.
  • the upstream heat exchange part includes a heat exchange element 10B and a heat exchange element 20B, and the downstream heat exchange part includes a heat exchange element 10B.
  • the angle formed by the flat tube 1a of the upstream heat exchange section and the Y direction is larger than the angle formed by the flat tube 1a of the downstream heat exchange section and the Y direction.
  • an angle formed by the flat tube 1a and the Y direction is also simply referred to as an angle.
  • the angle ⁇ 1 formed between the flat tube 1a and the Y direction is larger than the angle ⁇ 2 formed between the flat tube 1a and the Y direction in the downstream heat exchange section, so that the number of the tops T is increased.
  • the contact area between the heat exchanger 1A and the frost is increased. This is because the portion that is particularly susceptible to frosting in the heat exchange section 1B is the upstream portion in the air flow direction.
  • the heated refrigerant is supplied to the heat exchanger 100 by reversing the direction of the refrigerant flowing through the refrigerant circuit.
  • frost attached to the upstream side of the heat exchange unit 1B in the air flow direction can be efficiently removed.
  • the airflow resistance is reduced because the angle ⁇ 2 formed by the flat tube 1a and the Y direction is smaller than the angle ⁇ 1 formed by the flat tube 1a of the upstream heat exchange section and the Y direction. The increase can be avoided.
  • the heat exchanger 100 according to the first modification can achieve both efficient removal of frost and avoidance of increase in ventilation resistance.
  • the width of the flat tube 1a adjacent to each heat exchange unit 1B of the upstream side heat exchange unit is the flatness of each heat exchange unit 1B of the downstream side heat exchange unit. It is larger than the width of the tube 1a.
  • the width W1 of the heat exchanging portion 1B1 located on the air inflow side is larger than the width W2 of the heat exchanging portion 1B1 located on the air outflow side.
  • the lengths of the first flat tube P1 and the second flat tube P2 in the short direction are the first heat exchange elements of the first heat exchange element.
  • the length of the third flat tube P3 and the fourth flat tube P4 in the short direction is longer than the flat tube P1 and the second flat tube P2, and the third flat tube P3 of the first heat exchanger and It is longer than the fourth flat tube P4.
  • each flat tube 1a of the heat exchange section 1B on the upstream side in the air flow direction and the Y direction is different from each flat tube 1a of the heat exchange section 1B on the downstream side in the air flow direction.
  • the angle is larger than the angle formed, and the number of top portions T is increased. For this reason, the heat exchanger 100 according to Modification 1 can achieve both efficient removal of frost and avoidance of increase in ventilation resistance.
  • the heat exchanger 1B on the upstream side in the air flow direction is wider than the heat exchanger 1B on the downstream side in the air flow direction. Since the (interval) is increased, the contact area between the heat exchange unit 1B and the frost is increased, and the frost can be efficiently removed.
  • FIG. 5 is a second modification of the heat exchanger 100 according to the present embodiment. As shown in FIG. 5, adjacent heat exchange parts 1C are not connected to each other, and each heat exchange part 1C is a separate body. That is, with regard to the minimum components of the heat exchanger 100, the first flat tube P1 and the third flat tube P3 are separate from each other, and the second flat tube P2 and the fourth flat tube P4 Is a separate body. Modification 2 will be described in detail below.
  • the heat exchanger 100 includes a plurality of heat exchangers.
  • the heat exchanger 100 includes a first heat exchange body 10C and a second heat exchange body 20C.
  • the second heat exchange body 20C is disposed downstream of the first heat exchange body 10C in the air flow direction.
  • 10C of 1st heat exchange bodies are comprised from the some heat exchange part 1C, and in this modification 2, it is comprised from the heat exchange part 1C1 and the heat exchange part 1C2.
  • the second heat exchanging body 20C is composed of a plurality of heat exchanging units 1C, and in the second modification, it is composed of a heat exchanging unit 1C3 and a heat exchanging unit 1C4.
  • the heat exchanger 100 according to Modification 2 includes a plurality (four) of separate heat exchange units 1C. Each heat exchange unit 1C is configured by seven flat tubes 1a arranged in parallel.
  • the heat exchanger 100 according to Modification 2 includes a heat exchange unit 1C1, a heat exchange unit 1C2 disposed on the downstream side in the air flow direction of the heat exchange unit 1C1, and a downstream side in the air flow direction of the heat exchange unit 1C2.
  • positioned in the downstream of the air flow direction of the heat exchange part 1C3 are provided. Adjacent heat exchange parts 1C are arranged with a preset interval. That is, a gap through which air passes is formed between the heat exchange units 1C.
  • the flat tubes 1a adjacent to each other in the Y direction are arranged with a preset interval. That is, a gap S1 is formed between the flat tube 1a of the heat exchange unit 1C1 and the flat tube 1a of the heat exchange unit 1C2.
  • a gap S2 is formed between the flat tube 1a of the heat exchange unit 1C2 and the flat tube 1a of the heat exchange unit 1C3.
  • a gap S3 is formed between the flat tube 1a of the heat exchange unit 1C3 and the flat tube 1a of the heat exchange unit 1C4.
  • the gap S1, the gap S2, and the gap S3 may be simply referred to as the gap S.
  • a gap S1 is formed between the flat tube 1a of the heat exchange unit 1C1 and the flat tube 1a of the heat exchange unit 1C2 as described below.
  • the flat tube 1a of the heat exchange unit 1C2 is shifted so that the upstream end in the air flow direction covers the downstream end of the flat tube 1a of the heat exchange unit 1C1.
  • the flat tube 1a of the heat exchange unit 1C2 has its upstream end in the air flow direction shifted in the X direction with reference to the position of the downstream end of the flat tube 1a of the heat exchange unit 1C1.
  • the heat exchanger 1C1 is shifted toward the flat tube 1a side.
  • the direction closer to the flat tube 1a side of the heat exchange part 1C1 is parallel to the Y direction.
  • a gap S1 is formed between the end of the flat tube 1a of the heat exchange unit 1C1 and the end of the flat tube 1a of the heat exchange unit 1C2.
  • the heat exchanger 100 is configured so that the gap S located on the downstream side in the air flow direction is larger than the gap S located on the upstream side in the air flow direction.
  • 1C is arranged. That is, in the second modification, the heat exchanger 100 includes the heat exchange unit 1C1, the heat exchange unit 1C2, and the heat exchange unit 1C3 such that the gap S2 is larger than the gap S1, and the gap is larger than the gap S2.
  • the heat exchange unit 1C2, the heat exchange unit 1C3, and the heat exchange unit 1C4 are arranged so that S3 is larger.
  • the heat exchanger 100 in addition to the effect which the heat exchanger 100 which concerns on this Embodiment has, it has the following effect.
  • the heat exchanger 100 according to the modified example 2 the heat exchanger includes a first heat exchanger 10C including the gap S1 and a gap S3 larger than the gap S1 of the first heat exchanger 10C.
  • the heat exchanger 10C includes the second heat exchanger 20C disposed on the downstream side in the fluid flow direction.
  • a gap S2 larger than the gap S1 and smaller than the gap S3 is formed between the first heat exchange body 10C and the second heat exchange body 20C.
  • the heat exchanger 100 when the heat exchanger 100 functions as a condenser, the air flowing into the flat tube 1a of the heat exchange unit 1C1 is heated by exchanging heat with the fluid flowing in the flat tube 1a, and further, Heat exchange is performed with a fluid flowing in the flat tube 1a of the heat exchanging portion 1C2. That is, heat exchange between the heated air and the fluid flowing through the flat tube 1a of the heat exchanging section 1C2 causes a decrease in heat exchange efficiency.
  • the heat exchanger 100 according to the modified example 2 since air that has not been heated from the gap S1 flows into the flat tube 1a of the heat exchange unit 1C2, such a decrease in heat exchange efficiency can be suppressed.
  • the gap S3 is formed in the downstream part of the air flow direction in the heat exchanger 100 according to the modified example 2, it is possible to suppress the ventilation resistance of the air passing through the heat exchanger 100.
  • a gap S1 is formed in an upstream portion of the heat exchanging portion 1C in the air flow direction.
  • the gap S1 is highly likely to be blocked by frost when the heat exchanger 100 functions as an evaporator and forms frost.
  • the gap S3 is less likely to close because it is larger than the gap S1. Therefore, even if the heat exchanger 100 functions as an evaporator, it is possible to suppress an increase in ventilation resistance.
  • each flat tube 1a is arranged such that a gap S such as the gap S1 is formed.
  • the heat exchange unit 1C3 and the heat exchange unit 1C4 will be described as an example.
  • the upstream end portion of the flat tube 1a of the heat exchange unit 1C4 in the air flow direction has two adjacent flat tubes 1a in the heat exchange unit 1C3. It is located between the downstream end portions in the air flow direction.
  • the flat tube 1a of the heat exchange part 1C4 has the upstream end in the air flow direction disposed at a position where the air flow speed is high, and accordingly, the air and the heat exchange part.
  • the efficiency of heat exchange with the fluid flowing through the 1C4 flat tube 1a is improved.
  • This also applies to the relationship between the flat tube 1a of the heat exchange unit 1C1 and the flat tube 1a of the heat exchange unit 1C2, and also to the relationship between the flat tube 1a of the heat exchange unit 1C2 and the flat tube 1a of the heat exchange unit 1C3.
  • the heat exchange efficiency of the heat exchanger 100 is improved. In this way, the heat exchanger 100 according to the modification 3 can improve the heat exchange efficiency.
  • FIG. 6 is a third modification of the heat exchanger 100 according to the present embodiment.
  • the third modification is a combination of the present embodiment and the second modification.
  • the heat exchanger 100 according to the modification 3 includes a plurality of heat exchangers.
  • the heat exchanger 100 includes a first heat exchange body 10D and a second heat exchange body 20D.
  • the second heat exchange body 20D is disposed downstream of the first heat exchange body 10D in the air flow direction.
  • the first heat exchanging body 10D is composed of a plurality of heat exchanging parts 1D, and in the third modification example, it is composed of a heat exchanging part 1D1 and a heat exchanging part 1D2.
  • the second heat exchanging body 20D is composed of a plurality of heat exchanging parts 1D, and in the third modification example, it is composed of a heat exchanging part 1D3 and a heat exchanging part 1D4.
  • the heat exchanger 100 includes a first heat exchange body 10D integrally formed by connecting the heat exchange unit 1D1 and the heat exchange unit 1D2, and the heat exchange unit 1D3 and the heat exchange unit 1D4.
  • the second heat exchange body 20D is provided.
  • the heat exchange unit 1D3 and the heat exchange unit 1D4 are separate bodies.
  • the first heat exchange body 10D is integrally configured by connecting flat tubes 1a adjacent to each other in the Y direction.
  • the clearance gap S is formed between the flat tubes 1a adjacent to a Y direction.
  • a gap S2 is formed between the first heat exchange body 10D and the second heat exchange body 20D.
  • a gap S3 larger than the gap S2 is formed between the flat tubes 1a of the second heat exchange body 20D. That is, the heat exchanging part 1D3 constituting a part of the second heat exchanging body 20D is arranged so that a gap S2 is formed between the heat exchanging part 1D2.
  • the heat exchanging part 1D4 constituting the other part of the second heat exchanging body 20D is arranged such that a gap S3 larger than the gap S2 is formed between the heat exchanging part 1D4 and the heat exchanging part 1D3.
  • the first heat exchanging body 10D is not limited to being configured by connecting two flat tubes 1a (two heat exchanging portions 1D), but includes three or more flat tubes 1a (three The above heat exchange part 1D) may be connected and comprised.
  • a gap S2 is formed between the first heat exchange element 10D and the second heat exchange element 20D, and between the heat exchange part 1D3 and the heat exchange part 1D4 of the second heat exchange element 20D.
  • a gap S3 larger than the gap S2 may be formed. Thereby, the ventilation resistance of the downstream of an air flow direction can be suppressed.
  • the heat exchange unit is arranged such that any of the adjacent heat exchange units intersect each other.
  • the present invention is not limited to this.
  • the heat exchanger 100 may include two heat exchange units that do not intersect each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

第1の扁平管及び第1の扁平管に平行に配置された第2の扁平管を含み、第1の扁平管と第2の扁平管との間を流体が通過する第1の熱交換部と、第3の扁平管及び第3の扁平管に平行に配置された第4の扁平管を含み、第3の扁平管と第4の扁平管との間を流体が通過する第2の熱交換部と、を備え、第2の熱交換部の第3の扁平管は、長手方向に直交する断面で見たときに、第1の熱交換部の第1の扁平管に交差する方向に配置され、第2の熱交換部の第4の扁平管は、長手方向に直交する断面で見たときに、第1の熱交換部の第2の扁平管に交差する方向に配置されている。

Description

熱交換器及びそれを備えた冷凍サイクル装置
 本発明は、熱交換器及びそれを備えた冷凍サイクル装置に関するものである。
 熱交換器の伝熱管内に形成される冷媒流路の径を小さくするとともに、径を小さくした分だけ冷媒流路の数を増大させることで、複数の冷媒流路の総表面積を増大させることができる。このように、冷媒流路の径を小さくすることができれば、熱交換器の熱交換性能を向上させることができるため、フィンを設けない熱交換器(フィンレス熱交換器)でも、一定以上の熱交換性能を備えさせることができる。なお、フィンレス熱交換器は、フィンがない分、熱交換器をコンパクトにすることができる。
 従来のフィンレス熱交換器には、複数の冷媒流路が形成されている扁平形状の伝熱管(熱交換部)と、この伝熱管の一端が接続された入口側ヘッダーと、この伝熱管の他端が接続された出口側ヘッダーとを備えているものが提案されている(たとえば、特許文献1参照)。特許文献1に記載の熱交換器は、扁平形状の伝熱管が、入口側ヘッダー及び出口側ヘッダーの長手方向に並ぶように複数接続されている。
特開2008-528943号公報
 フィンレス熱交換器の熱交換性能を向上させるにあたり、たとえば、隣同士の熱交換部のピッチを小さくし、その分伝熱管の本数を増加させる手段などがある。しかし、この手段では、隣同士の伝熱管の間に形成され、空気が通り抜ける隙間が小さくなるので、この隙間の詰まりが発生しやすくなる。隙間の詰まりが発生すると、空気が通過しにくくなり、熱交換性能の低下を招くことになる。
 たとえば、冬季などにおいて熱交換器が蒸発器として機能しているときに伝熱管の間に着霜が発生する場合があるが、伝熱管のピッチが小さくなると、霜によって隣同士の伝熱管の間の隙間が埋められやすくなる。
 本発明は、以上のような課題を解決するためになされたもので、熱交換部の扁平管のピッチを小さくしなくても、熱交換性能を向上させることができる熱交換器及びそれを備えた冷凍サイクル装置を提供することを目的としている。
 本発明に係る熱交換器は、第1の扁平管及び第1の扁平管に平行に配置された第2の扁平管を含み、第1の扁平管と第2の扁平管との間を流体が通過する第1の熱交換部と、第3の扁平管及び第3の扁平管に平行に配置された第4の扁平管を含み、第3の扁平管と第4の扁平管との間を流体が通過する第2の熱交換部と、を備え、第2の熱交換部の第3の扁平管は、長手方向に直交する断面で見たときに、第1の熱交換部の第1の扁平管に交差する方向に配置され、第2の熱交換部の第4の扁平管は、長手方向に直交する断面で見たときに、第1の熱交換部の第2の扁平管に交差する方向に配置されているものである。
 本発明に係る熱交換器によれば、上記構成を備えているため、熱交換部のピッチを小さくしなくても、熱交換性能を向上させることができる。
本発明の実施の形態に係る熱交換器100を備えた冷凍サイクル装置200の冷媒回路構成などを示す説明図である。 本発明の実施の形態に係る熱交換器100の説明図である。 本発明の実施の形態に係る熱交換器100の熱交換部1Aの構成要素などについての説明図である。 本発明の実施の形態に係る熱交換器100の変形例1である。 本発明の実施の形態に係る熱交換器100の変形例2である。 本発明の実施の形態に係る熱交換器100の変形例3である。 従来の熱交換器の斜視図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態.
 図1は、本実施の形態に係る熱交換器100を備えた冷凍サイクル装置200の冷媒回路構成などを示す説明図である。図1を参照して冷凍サイクル装置200の構成などについて説明する。
 本実施の形態に係る熱交換器100は、各熱交換部1Aの扁平管1aのピッチを小さくしなくても、熱交換性能を向上させることができる改良が加えられているものである。
[冷凍サイクル装置200の構成説明]
 冷凍サイクル装置200は、たとえば、空気調和装置の場合には、室外ユニット50と室内ユニット51とを備えている。そして、室外ユニット50と室内ユニット51とは、冷媒配管Pを介して接続されている。
 室外ユニット50は、冷媒を圧縮する圧縮機33と、空気を送風する室外ファン37と、蒸発器として機能する室外熱交換器100Aと、室外熱交換器100Aに空気を供給する室外ファン37と、後述の室内熱交換器100Bと室外熱交換器100Aとの間に接続された絞り装置35とを備えている。
 室内ユニット51は、凝縮器(放熱器)として機能する室内熱交換器100Bと、室内熱交換器100Bに空気を供給する室内ファン38とを備えている。なお、室外熱交換器100A及び室内熱交換器100Bは、以下の説明において、熱交換器100とも称する。
 圧縮機33は、冷媒を圧縮して吐出するものである。圧縮機33は、冷媒吐出側が室内熱交換器100Bに接続され、冷媒吸入側が室外熱交換器100Aに接続されている。圧縮機33は、スクロール圧縮機、ロータリー圧縮機などといった各種のタイプのものを採用することができる。
 熱交換器100は、冷媒が流れる冷媒流路が形成された扁平管を備えているものである。熱交換器100は、扁平管に直交するように接続されるフィンが設けられていない。すなわち、熱交換器100は、いわゆるフィンレス型熱交換器である。室内熱交換器100Bは一方が圧縮機33の吐出側に接続され、他方が絞り装置35に接続されている。室外熱交換器100Aは、一方が圧縮機33の吸入側に接続され、他方が絞り装置35に接続されている。熱交換器100の構成などは、後段の図2で説明する。
 室内ファン38は、室内ユニット51内に強制的に空気を取り込み、室内熱交換器100Bに空気を供給するものである。室内ファン38は、取り込んだ空気と室内熱交換器100Bを通過する冷媒とを熱交換させるのに利用される。室内ファン38は、室内熱交換器100Bに付設されている。
 室外ファン37は、室外ユニット50内に強制的に空気を取り込み、室外熱交換器100Aに空気を供給するものである。室外ファン37は、取り込んだ空気と室内熱交換器100Bを通過する冷媒とを熱交換させるのに利用される。室外ファン37は、室外熱交換器100Aに付設されている。室内ファン38及び室外ファン37は、たとえば、シャフトが接続された電動機、この電動機によって回転駆動するボスと、このボスの外周部に接続されて設けられた複数の羽根などから構成することができる。
 絞り装置35は、冷媒を減圧させるのに利用されるものである。絞り装置35は、たとえば、キャピラリーチューブでもよいし、開度を制御することができる電子式膨張弁であってもよい。
[冷凍サイクル装置200の動作説明]
 圧縮機33によって圧縮され吐出された気体冷媒は、室内熱交換器100Bへ流入する。この室内熱交換器100Bに流入した気体冷媒は、室内ファン38から供給される空気と熱交換を実施して凝縮し、室内熱交換器100Bから流出する。室内熱交換器100Bから流出した冷媒は、絞り装置35に流入し、この絞り装置35によって膨張され減圧される。減圧された冷媒は、室外熱交換器100Aに流入し、室外ファン37から供給される室外空気と熱交換が実施されて気化し、室外熱交換器100Aから流出する。この室外熱交換器100Aから流出した冷媒は、圧縮機33に吸引される。
[熱交換器100について]
 図2は、本実施の形態に係る熱交換器100の説明図である。
 図2(a)は熱交換器100の正面図であり、図2(b)は熱交換器100の側面図である。また、図2(c)は、図2(b)に示す熱交換部1AのA-A断面図である。図2(c)では、説明の便宜のために、図2(b)示す熱交換部1AのY方向の幅の縮尺を大きくしている。
 図3は、本実施の形態に係る熱交換器100の熱交換部1Aの構成要素などについての説明図である。
 図3(a)は熱交換部1A1の隣合う扁平管1a、及びこの扁平管1aに対応する熱交換部1A2の隣合う扁平管1aを示している。本実施の形態では、図3(a)に示すように、熱交換器100は、4つの扁平管1aが最小の構成要素である。なお、図3(a)では、熱交換部1A1のうちの2つの扁平管1aのみを示し、残りの4つの扁平管1aについては図示を省略している。熱交換部1A2についても同様に、残りの4つの扁平管1aについては図示を省略している。
 図3(b)は、図2(c)に示す熱交換部1Aの一つの拡大図である。図2及び図3を参照して熱交換器100の構成について説明する。
 なお、図2中におけるX方向は、扁平管1aが並ぶ方向に対応し、Y方向は、空気が通過する方向に対応し、Z方向は、扁平管1aの長手方向に対応している。また、本実施の形態において、熱交換器100は、各熱交換部の扁平管1aが並ぶ方向であるX方向及び空気が通過する方向であるY方向と、扁平管1aの長手方向であるZ方向とは直交しているもの一例として説明する。また、本実施の形態では、X方向とY方向とについても直交している場合を一例として説明する。さらに、本実施の形態では、X方向及びY方向が水平面に平行であり、Z方向が重力方向に平行になるように熱交換器100が冷凍サイクル装置200に搭載されている場合を一例として説明する。
 熱交換器100は、図3(a)に示すように、4つの扁平管1aが最小の構成要素となっている。すなわち、熱交換器100は、平行に配置された2つの扁平管1a(第1の扁平管P1及び第2の扁平管P2に対応)を含む熱交換部1A1と、平行に配置された2つの扁平管1a(第3の扁平管P3及び第4の扁平管P4に対応)を含む熱交換部1A2とを備えている。第1の扁平管P1と第3の扁平管P3とは接続されており、第2の扁平管P2と第4の扁平管P4とは接続されている。
 第1の扁平管P1と第3の扁平管P3とはY方向において対応関係を有し、第2の扁平管P2と第4の扁平管P4とはY方向において対応関係を有している。一方、第1の扁平管P1と第2の扁平管P2とはX方向において対応関係を有しており、第3の扁平管P3と第4の扁平管P4とはX方向において対応関係を有している。
 ここでは、最小の構成要素を説明するために第1の扁平管P1、第2の扁平管P2、第3の扁平管P3及び第4の扁平管P4について説明をした。この第1の扁平管P1、第2の扁平管P2、第3の扁平管P3及び第4の扁平管P4と、図2等における各扁平管1aとは対応する構成である。
 熱交換器100は、流体が流れる流体流路D1が形成された第1のヘッダー4と、流体が流れる流体流路D2が形成され、第1のヘッダー4と対をなす第2のヘッダー5と、流体流路Fが形成されている扁平管1aを複数含む複数の熱交換部1Aと、を備えているものである。本実施の形態において、複数の熱交換部1Aとは、熱交換部1A1、熱交換部1A2、熱交換部1A3、及び熱交換部1A4のことを指している。
 熱交換器100は、流体流路Fに直交する断面で見たときにおいて、凸部(山)と凹部(谷)が交互に形成された形状を備えている。なお、一方の表面側から見ると凸部となっている部分は、他方の表面側から見ると凹部となっている。
 第1のヘッダー4は、X方向に延びる長尺状の筒状部材であり、内部に流体が流れる流体流路D1が形成されている。第1のヘッダー4には、各熱交換部1Aの下端が接続されている。図2に示すように、第1のヘッダー4は、圧縮機33などから供給されてきた流体が流入する流入側ヘッダーである。第1のヘッダー4は、たとえば、水平方向に平行に配置される。
 第2のヘッダー5は、X方向に延びる長尺状の筒状部材であり、内部に流体が流れる流体流路D2が形成されている。第2のヘッダー5には、各熱交換部1Aの上端が接続されている。図2に示すように、第2のヘッダー5は、第1のヘッダー4及び熱交換部1Aを経てきた流体が供給されるものであり、流出側ヘッダーである。第2のヘッダー5は、たとえば、水平方向に平行に配置される。
 熱交換部1Aは、複数の扁平管1aが並列に配置され、隣合う扁平管1aの間を流体(空気)が通過するものである。ここで、熱交換部1Aは、X方向に並ぶように6つの扁平管1aが配置されている。熱交換部1Aは、一端が第1のヘッダー4に接続され、他端が第2のヘッダー5に接続されているものである。本実施の形態では、熱交換器100が室外ユニット50内に縦置きにされているため、熱交換器100の下端が第1のヘッダー4に接続され、上端が第2のヘッダー5に接続されている。熱交換器100では、図2(a)及び図2(c)に示すように、複数の熱交換部1AがY方向に並ぶように配置されている。すなわち、熱交換部1A1が最も空気流れ方向の上流側に配置され、熱交換部1A1の空気流れ方向の下流側に熱交換部1A2が配置され、熱交換部1A2の空気流れ方向の下流側に熱交換部1A3が配置され、熱交換部1A3の空気流れ方向の下流側に熱交換部1A4が配置されている。
 熱交換部1Aの各扁平管1aは、図3に示すように、流体が流れる流体流路Fが複数形成されている。そして、一方の熱交換部1Aの各扁平管1aと他方の熱交換部1Bの各扁平管1aとは交差する方向に配置されている。ここで述べた一方の各扁平管1a及び他方の各扁平管1aとは、隣接する熱交換部1Aの扁平管1aを指している。たとえば、熱交換部1A1が一方の熱交換部1Aであり、熱交換部1A2が他方の熱交換部1Bである。
 次に、扁平管1aが交差することについて説明する。熱交換部1A1に対して隣合う熱交換部1A2の各扁平管1aは、熱交換部1A1の対応する各扁平管1aに交差する方向に配置されている。具体的には、熱交換部1A1の扁平管1aの短手方向は、複数の流体流路Fの並ぶ方向に平行であるが、この熱交換部1A1の扁平管1aの短手方向と、熱交換部1A2の扁平管1aの短手方向とが交差しているということである。交差しているので、熱交換部1A1の扁平管1aの短手方向と熱交換部1A2の扁平管1aの短手方向とは平行とはなっていない。
 上述した熱交換部1A1及び熱交換部1A2の構成は、熱交換部1A2及び熱交換部1A3にも、熱交換部1A3及び熱交換部1A4にも言うことができる。つまり、隣接する熱交換部1A同士は、一方の熱交換部1Aの扁平管1aと他方の熱交換部1Aの扁平管1aが交差する関係にある。
 本実施の形態において、熱交換部1A1の扁平管1aの短手方向と熱交換部1A3の扁平管1aの短手方向とが平行であり、熱交換部1A2の扁平管1aの短手方向と熱交換部1A4の扁平管1aの短手方向とが平行である。
 各熱交換部1Aは、隣同士の扁平管1aが連結して一体的に構成されている。
 図3(a)においては、第1の扁平管P1と第3の扁平管P3とが接続(連結)され、第2の扁平管P2と第4の扁平管P4とが接続(連結)されているということになる。
 図2(c)においては、本実施の形態に係る熱交換器100の熱交換部1A1の扁平管1aの下流側の端部と熱交換部1A2の扁平管1aの上流側の端部とは接続(連結)されている。同様に、熱交換部1A2の扁平管1aの下流側の端部と熱交換部1A3の扁平管1aの上流側の端部とは接続(連結)されており、熱交換部1A3の扁平管1aの下流側の端部と熱交換部1A4の扁平管1aの上流側の端部とは接続(連結)されている。
 熱交換器100を流体流路Fに直交する断面でみたとき、熱交換器100の折れ曲がる部分は、各熱交換部1Aが交差する部分に対応している。言い換えると、隣接する各熱交換部1Aの各扁平管1aが接続されている部分に対応している。各熱交換部1Aが交差する部分が、熱交換器100の頂部Tである。図2(c)に示すように、熱交換器100には、4つの熱交換部1Aを備えており、各熱交換部1Aが6つの扁平管1aを備えている。このため、熱交換器100は、4×6=24つの頂部Tを含むものである。
[本実施の形態に係る熱交換器100の有する効果]
 本実施の形態に係る熱交換器100は、第1の扁平管P1及び第1の扁平管P1に平行に配置された第2の扁平管P2を含み、第1の扁平管P1と第2の扁平管P2との間を流体が通過する第1の熱交換部と、第3の扁平管P3及び第3の扁平管P3に平行に配置された第4の扁平管P4を含み、第3の扁平管P3と第4の扁平管P4との間を流体が通過する第2の熱交換部と、を備え、第2の熱交換部の第3の扁平管P3は、長手方向に直交する断面で見たときに、第1の熱交換部の第1の扁平管P1に交差する方向に配置され、第2の熱交換部の第4の扁平管P4は、長手方向に直交する断面で見たときに、第1の熱交換部の第2の扁平管P2に交差する方向に配置されている。
 ここで、第1の熱交換部及び第2の熱交換部は、隣接する熱交換部同士を指している。すなわち、第1の熱交換部及び第2の熱交換部は、熱交換部1A1及び熱交換部1A2を指している。また、第1の熱交換部及び第2の熱交換部は、熱交換部1A2及び熱交換部1A3を指している。さらに、第1の熱交換部及び第2の熱交換部は、熱交換部1A3及び熱交換部1A4を指している。
 このように、本実施の形態に係る熱交換器100は、第1の熱交換部及び第2の熱交換部を備えることで、熱交換部単体を備えている熱交換器よりも、熱交換部1Aを流れる流体と熱交換部1Aを通過する空気との熱交換面積を増大させることができる。
 また、熱交換器100を流れる空気は、各熱交換部1Aの扁平管1aを通過する過程で蛇行することになり、熱交換部1Aを通過する過程で撹拌されるため熱伝達率が向上する。
 このように、本実施の形態に係る熱交換器100は、熱交換面積の増大及び熱伝達率が向上しているため、熱交換部1AのX方向に隣合う扁平管1aのピッチを小さくする等の手段をとらなくても、熱交換性能を向上させることができる。
 図7は、従来の熱交換器の斜視図である。図7に示すように従来の熱交換器500では、単体の熱交換部1Aしか備えていない構成である。熱交換部1Aに複数の流体流路を形成することで熱交換性能の向上を図っているが、更に熱交換性能を向上させるには熱交換部1Aを構成する扁平管1aのピッチを小さくする必要がある。熱交換部1Aの扁平管1aのピッチを小さくしていくと、着霜により空気が通過しにくくなり、また、製造上において要求される組み立て精度も高くなり、製造コストが増大する可能性もある。本実施の形態に係る熱交換器100では、これらのようなデメリットを回避することができる。
 また、本実施の形態に係る熱交換器100が搭載された冷凍サイクル装置200は、流体の流入側の第1のヘッダー4の上側に、流体の流出側の第2のヘッダー5が配置されている。そして、熱交換部1Aは、重力方向に平行に配置されている。このため、熱交換器100に供給される流体は、下側から上側に移動することになり、各熱交換部1Aへの流体の分配が均一化されやすく、熱交換性能が向上している。たとえば、第1のヘッダー4を流体の流入側とし、第2のヘッダー5を流体の流出側とすると、流体は、第1のヘッダー4の流体流入口に近い側に位置する扁平管1aから優先的に流れ落ちていき、遠い側に位置する扁平管1aには流体が流れて来にくくなる。これによって、各熱交換部1Aへの流体の分配が不均一になって、熱交換性能が落ちる可能性がある。本実施の形態に係る熱交換器100が搭載された冷凍サイクル装置200では、このようなデメリットを回避し、熱交換性能が向上している。
 本実施の形態に係る熱交換器100は、熱交換部1A(伝熱管)に直交するように接続される複数のフィンが設けられていないフィンレス熱交換器である。フィンが設けられている熱交換器では、伝熱管とフィンとの間の接触熱抵抗と、フィン自体の熱伝導による抵抗とが存在している。しかし、本実施の形態に係る熱交換器100は、フィンレス熱交換器であるため、上述した伝熱管とフィンとの間の接触熱抵抗、及び、フィン自体の熱伝導による抵抗がない分、熱交換性能が向上している。
 また、熱交換器100が蒸発器として用いられる場合には、凝縮水は重力方向に平行に配されている熱交換部1Aに沿って流れ落ちることになる。したがって、本実施の形態に係る熱交換器100は、排水性を向上させることができるものとなっている。このように熱交換器100は、排水性が向上しているため、たとえばデフロスト運転時も熱交換器100の下部に氷が積層することを抑制することができる。
 本実施の形態に係る熱交換器100の隣合う熱交換部1A同士は、扁平管1aの短手方向が交差するように配置されているため、その分強度が向上している。熱交換器100は、熱交換部1Aの上側に第2のヘッダー5が配置されているため、熱交換部1Aには第2のヘッダー5の自重がかかっている。しかし、本実施の形態に係る熱交換器100は、隣合う熱交換部1A同士が交差するように配置されているため、第2のヘッダーの重みで座屈などしてしまうことを回避することができる。
 なお、本実施の形態に係る熱交換器100が搭載された冷凍サイクル装置200が空気調和装置である場合を一例として説明するが、それに限定されるものではなく、たとえば、冷蔵庫などであってもよい。
 また、本実施の形態に係る熱交換器100が搭載された冷凍サイクル装置200では、動作流体として、たとえばR410A、R32、HFO1234yfなどの冷媒を採用することができる。
 また、本実施の形態に係る熱交換器100が搭載された冷凍サイクル装置200では、流体として冷媒を採用している場合を一例として説明したが、それに限定されるものではなく、たとえば、水、ブラインなどの流体を採用していてもよい。
 また、本実施の形態に係る熱交換器100が搭載された冷凍サイクル装置200では、流体として、空気と冷媒の例を示した。つまり、冷媒が第1の流体であり、空気が第2の流体である。第1の流体及び第2の流体はこれらに限定されるものではなく、その他の気体、液体、気液混合流体などを用いてもよい。
 また、本実施の形態に係る熱交換器100が搭載された冷凍サイクル装置200では、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が溶けるか否かにかかわらず、各種の冷凍機油を採用することができる。
 また、本実施の形態に係る熱交換器100が搭載された冷凍サイクル装置200は、四方弁が設けられておらず、暖房専用機となっていたが、四方弁を設けて冷房と暖房とを切り替えることができる態様であってもよい。
 本実施の形態では、室外熱交換器100A及び室内熱交換器100Bの両方に、熱交換器100を採用する場合を例に説明したが、それに限定されるものではなく、いずれか片方であっても同様の効果を得ることができる。すなわち、本実施の形態に係る熱交換器100が搭載された冷凍サイクル装置200は、熱交換器100が搭載されているので、エネルギ効率が向上している。なお、エネルギ効率は、次式で構成されるものである。
 暖房エネルギ効率=室内熱交換器100B(凝縮器)能力/全入力
 冷房エネルギ効率=室内熱交換器100B(蒸発器)能力/全入力
[変形例1]
 図4は、本実施の形態に係る熱交換器100の変形例1である。図4に示すように、空気の流れ方向の上流側の部分と下流側の部分とで、隣接する熱交換部1B同士の交差角度を異ならせるとともに、各熱交換部1Bを構成する扁平管1aの短手方向の長さを異ならせてもよい。
 変形例1に係る熱交換器100は、複数の熱交換体を備えている。本変形例1では、熱交換器100は、熱交換体10Bと、熱交換体20Bと、熱交換体30Bとを備えている。熱交換体10Bの空気流れ方向の下流側に熱交換体20Bが配置され、熱交換体20Bの空気流れ方向の下流側に熱交換体30Bが配置されている。
 熱交換体10Bは、複数の熱交換部1Bから構成され、本変形例1では、熱交換部1B1及び熱交換部1B2から構成されている。
 熱交換体20Bは、複数の熱交換部1Bから構成され、本変形例1では、熱交換部1B3及び熱交換部1B4から構成されている。
 熱交換体30Bは、複数の熱交換部1Bから構成され、本変形例1では、熱交換部1B5及び熱交換部1B6から構成されている。
 なお、熱交換体10B及び熱交換体20Bが第1の熱交換体及び第2の熱交換体に対応する。同様に、熱交換体20B及び熱交換体30Bが第1の熱交換体及び第2の熱交換体に対応する。更に、熱交換体10B及び熱交換体30Bについても、第1の熱交換体及び第2の熱交換体に対応する。
 変形例1に係る熱交換器100は、一例として、6つの熱交換部1Bを備えているものである。変形例1に係る熱交換器100は、流体流路Fに直交する断面で見たときにおいて、各熱交換部1Bが交差する部分に対応する複数の頂部Tを含む。変形例1に係る熱交換器100は、6つの熱交換部1Bを備えており、各熱交換部1Bが4つの扁平管1aを備えている。このため、変形例1に係る熱交換器100は、6×4=24つの頂部Tを含むものである。
 変形例1に係る熱交換器100は、流体と熱交換する空気が流入する側(空気流れ方向の上流側)に位置する熱交換部1Bよりも、空気が流出する側(空気流れ方向の下流側)に位置する熱交換部1Bの方が、扁平管1aの短手方向の長さが長くなるように構成されている。
 また、変形例1に係る熱交換器100では、図4に示すようにY方向を基準としたときに扁平管1aのなす角度が異なっている。具体的には、熱交換部1B1、熱交換部1B2、熱交換部1B3及び熱交換部1B4の方が、熱交換部1B5及び熱交換部1B6よりも空気の流れ方向の上流側に位置している。そこで、熱交換部1B1、熱交換部1B2、熱交換部1B3及び熱交換部1B4を上流側熱交換部と称し、熱交換部1B5及び熱交換部1B6を下流側熱交換部と称する。上流側熱交換部は、熱交換体10B及び熱交換体20Bを含み、下流側熱交換部は、熱交換体10Bを含む。
 変形例1では、上流側熱交換部の扁平管1aとY方向とのなす角度の方が、下流側熱交換部の扁平管1aとY方向とのなす角度よりも、大きくなっている。以下では、扁平管1aとY方向とがなす角度を単に角度とも称する。
 上流側熱交換部は、扁平管1aとY方向とのなす角度θ1が、下流側熱交換部の扁平管1aとY方向とのなす角度θ2よりも大きくなっている分、頂部Tの数を増え、熱交換部1Aと霜との接触面積を増大させている。これは、熱交換部1Bの中で特に着霜しやすい部分は、空気流れ方向の上流側の部分であるためである。
 暖房運転を実施して熱交換器100を蒸発器として機能させ、熱交換器100に着霜した場合において、冷媒回路を流れる冷媒の向きを逆にして加熱された冷媒を熱交換器100に供給するデフロスト運転を実施すると、熱交換部1Bの空気流れ方向の上流側に付着した霜を効率的に除去することができる。
 また、下流側熱交換部は、扁平管1aとY方向とのなす角度θ2が、上流側熱交換部の扁平管1aとY方向とのなす角度θ1よりも小さくなっている分、通風抵抗が増大してしまうことを回避することができる。すなわち、熱交換部1Bの数を増やし、熱交換器100の頂部Tの数を増大させると、熱交換面積を増大させることができるが、通風抵抗が増大する。そこで、変形例1に係る熱交換器100では、空気流れ方向の下流側の部分については、角度を小さく抑え、通風抵抗の増大を回避している。
 このように、変形例1に係る熱交換器100は、霜の効率的な除去と通風抵抗の増大の回避とを両立することができるようになっている。
 変形例1に係る熱交換器100の熱交換部1Bは、上流側熱交換部の各熱交換部1Bの隣合う扁平管1aの幅が、下流側熱交換部の各熱交換部1Bの扁平管1aの幅よりも大きくなっている。図4に示すように、たとえば、空気の流入する側に位置する熱交換部1B1の幅W1の方が、空気の流出する側に位置する熱交換部1B1の幅W2よりも大きくなっている。これにより、変形例1に係る熱交換器100は、特に霜が発生しやすい空気流れ方向の上流側の部分における、熱交換部1Bと霜との接触面積を増大させ、効率的に霜を除去することができるようになっている。
[変形例1の効果]
 変形例1では、本実施の形態に係る熱交換器100の有する効果に加えて次の効果を有する。変形例1に係る熱交換器100の第2の熱交換体は、第1の扁平管P1及び第2の扁平管P2の短手方向の長さが、第1の熱交換体の第1の扁平管P1及び第2の扁平管P2よりも長く、第3の扁平管P3及び第4の扁平管P4の短手方向の長さが、第1の熱交換体の第3の扁平管P3及び第4の扁平管P4よりも長い。
 更に、空気流れ方向の上流側の熱交換部1Bの各扁平管1aとY方向とのなす角度の方が、空気流れ方向の下流側の熱交換部1Bの各扁平管1aとY方向とのなす角度よりも大きくなっており、頂部Tの数が増大する構成となっている。
 このため、変形例1に係る熱交換器100は、霜の効率的な除去と通風抵抗の増大の回避とを両立することができるようになっている。
 また、変形例1に係る熱交換器100は、空気流れ方向の上流側の熱交換部1Bの方が、空気流れ方向の下流側の熱交換部1Bよりも、隣合う各扁平管1aの幅(間隔)が大きくなっているため、熱交換部1Bと霜との接触面積を増大させ、効率的に霜を除去することができるようになっている。
[変形例2]
 図5は、本実施の形態に係る熱交換器100の変形例2である。図5に示すように、隣合う熱交換部1C同士は連結されておらず、各熱交換部1Cは別体となっている。すなわち、熱交換器100の最小の構成要素について言えば、第1の扁平管P1と第3の扁平管P3とは別体であるとともに、第2の扁平管P2と第4の扁平管P4とが別体であるということである。以下に変形例2について詳しく説明する。
 変形例2に係る熱交換器100は、複数の熱交換体を備えている。本変形例2では、熱交換器100は、第1の熱交換体10Cと第2の熱交換体20Cとを備えている。第1の熱交換体10Cの空気流れ方向の下流側に第2の熱交換体20Cが配置されている。
 第1の熱交換体10Cは、複数の熱交換部1Cから構成され、本変形例2では、熱交換部1C1及び熱交換部1C2から構成されている。
 第2の熱交換体20Cは、複数の熱交換部1Cから構成され、本変形例2では、熱交換部1C3及び熱交換部1C4から構成されている。
 変形例2に係る熱交換器100は、複数(4つ)の別体の熱交換部1Cを備えているものである。各熱交換部1Cは、7つの扁平管1aが並列に配置されて構成されている。変形例2に係る熱交換器100は、熱交換部1C1と、熱交換部1C1の空気流れ方向の下流側に配置された熱交換部1C2と、熱交換部1C2の空気流れ方向の下流側に配置された熱交換部1C3と、熱交換部1C3の空気流れ方向の下流側に配置された熱交換部1C4とを備えている。
 隣り合う熱交換部1C同士は、予め設定された間隔をもって配置されている。すなわち、熱交換部1C同士には、空気が通過する隙間が形成されているということである。具体的には、Y方向に隣合う扁平管1a同士は、予め設定された間隔をもって配置されている。すなわち、熱交換部1C1の扁平管1aと熱交換部1C2の扁平管1aとの間には、隙間S1が形成されている。熱交換部1C2の扁平管1aと熱交換部1C3の扁平管1aとの間には、隙間S2が形成されている。熱交換部1C3の扁平管1aと熱交換部1C4の扁平管1aとの間には、隙間S3が形成されている。
 以下の説明において、隙間S1、隙間S2及び隙間S3を単に隙間Sと称することもある。
 たとえば、熱交換部1C1の扁平管1aと熱交換部1C2の扁平管1aとの間には、次に説明するようにして隙間S1が形成されている。熱交換部1C2の扁平管1aは、空気流れ方向の上流側の端部が、熱交換部1C1の扁平管1aの下流側の端部にかぶさるようにずれている。より詳細には、熱交換部1C2の扁平管1aは、空気流れ方向の上流側の端部が、熱交換部1C1の扁平管1aの下流側の端部の位置を基準として、X方向にずらされるとともに、熱交換部1C1の扁平管1a側に寄る方にずらされている。ここで、熱交換部1C1の扁平管1a側に寄る方とは、Y方向に平行である。これによって、熱交換部1C1の扁平管1aの端部と熱交換部1C2の扁平管1aの端部との間に隙間S1が形成されている。
 ここで、変形例2に係る熱交換器100は、空気流れ方向の上流側に位置する隙間Sよりも空気流れ方向の下流側に位置する隙間Sの方が大きくなるように、各熱交換部1Cが配置されている。すなわち、本変形例2では、熱交換器100は、隙間S1よりも隙間S2の方が大きくなるように熱交換部1C1、熱交換部1C2及び熱交換部1C3が配置され、隙間S2よりも隙間S3の方が大きくなるように熱交換部1C2、熱交換部1C3及び熱交換部1C4が配置されている。
 なお、本変形例2では、隙間S1<隙間S2<隙間S3の関係にある場合を一例に説明したが、それに限定されるものではない。空気が流入する側の間隔の方が、空気が流出する側の間隔よりも大きければよいので、たとえば、隙間S1=隙間S2<隙間S3の関係であってもよい。
[変形例2の効果]
 変形例2では、本実施の形態に係る熱交換器100の有する効果に加えて次の効果を有する。変形例2に係る熱交換器100は、熱交換体は、隙間S1を含む第1の熱交換体10Cと、第1の熱交換体10Cの隙間S1よりも大きい隙間S3を含み、第1の熱交換体10Cの流体の流れ方向の下流側に配置された第2の熱交換体20Cとを含むものである。そして、第1の熱交換体10Cと第2の熱交換体20Cとの間には、隙間S1よりも大きく、隙間S3よりも小さい隙間S2が形成されている。これにより、熱交換器100内に取り込まれる空気の流入部分を増加させることができ、熱交換効率を向上させることができる。
 たとえば、熱交換器100が凝縮器として機能している場合においては、熱交換部1C1の扁平管1aに流入した空気は扁平管1a内を流れる流体と熱交換して加熱され、さらに、後段の熱交換部1C2の扁平管1a内を流れる流体などと熱交換することになる。つまり、加熱された空気と熱交換部1C2の扁平管1aを流れる流体とが熱交換することになるため、熱交換効率が低下する要因となる。しかし、変形例2に係る熱交換器100では、隙間S1から加熱されていない空気が熱交換部1C2の扁平管1aに流れ込むので、このような熱交換効率の低下を抑制することができる。
 変形例2に係る熱交換器100は、空気流れ方向の下流側の部分に隙間S3が形成されているため、熱交換器100を通過する空気の通風抵抗を抑制することができる。
 熱交換部1Cのうちの空気流れ方向の上流側の部分には、隙間S1が形成されている。この隙間S1は、熱交換器100を蒸発器として機能させて着霜している場合においては、霜によって閉塞する可能性が高い。しかし、隙間S3については、隙間S1よりも大きい分、閉塞しにくい。したがって、熱交換器100を蒸発器として機能させていても、通風抵抗が増大することを抑制することができる。
 熱交換部1Cを通過する空気の流れの速度は、熱交換部1Cに沿う空気の速度Q1よりも、隣同士の熱交換部1Cの中間部の速度Q2の方が大きい。本変形例2では、隙間S1などの隙間Sが形成されるように各扁平管1aが配置されている。
 たとえば、熱交換部1C3及び熱交換部1C4を例に説明すると、熱交換部1C4の扁平管1aの空気流れ方向の上流側の端部が、熱交換部1C3における2つの隣合う扁平管1aの空気流れ方向の下流側の端部の間に位置することになる。
 このように、熱交換部1C4の扁平管1aは、空気流れ方向の上流側の端部が、空気の流れの速度が大きい位置に配置されることになるので、その分、空気と熱交換部1C4の扁平管1aを流れる流体との熱交換効率が向上する。このことは、熱交換部1C1の扁平管1aと熱交換部1C2の扁平管1aとの関係においても、熱交換部1C2の扁平管1aと熱交換部1C3の扁平管1aとの関係においてもいうことができ、同様に、熱交換器100の熱交換効率が向上する。このようにして、変形例3に係る熱交換器100は、熱交換効率を向上させることができる。
[変形例3]
 図6は、本実施の形態に係る熱交換器100の変形例3である。変形例3では、本実施の形態の態様と変形例2の態様とを組み合わせた態様である。
 変形例3に係る熱交換器100は、複数の熱交換体を備えている。本変形例3では、熱交換器100は、第1の熱交換体10Dと第2の熱交換体20Dとを備えている。第1の熱交換体10Dの空気流れ方向の下流側に第2の熱交換体20Dが配置されている。
 第1の熱交換体10Dは、複数の熱交換部1Dから構成され、本変形例3では、熱交換部1D1及び熱交換部1D2から構成されている。
 第2の熱交換体20Dは、複数の熱交換部1Dから構成され、本変形例3では、熱交換部1D3及び熱交換部1D4から構成されている。
 変形例3に係る熱交換器100は、熱交換部1D1及び熱交換部1D2が連結して一体的に構成された第1の熱交換体10Dと、熱交換部1D3及び熱交換部1D4を含む第2の熱交換体20Dとを備えているものである。ここで、熱交換部1D3と熱交換部1D4とは別体である。第1の熱交換体10Dは、Y方向に隣合う扁平管1aが連結して一体的に構成されている。
 第2の熱交換体20Dは、Y方向に隣合う扁平管1aの間に隙間Sが形成されている。具体的には、第1の熱交換体10Dと第2の熱交換体20Dとの間には、隙間S2が形成されている。また、第2の熱交換体20Dの扁平管1aの間には、隙間S2よりも大きい隙間S3が形成されている。すなわち、第2の熱交換体20Dの一部を構成する熱交換部1D3は、熱交換部1D2との間に隙間S2が形成されるように配置されている。また、第2の熱交換体20Dの他部を構成する熱交換部1D4は、熱交換部1D3との間に、隙間S2よりも大きい隙間S3が形成されるように配置されている。
 なお、第1の熱交換体10Dは、2つの扁平管1a(2つの熱交換部1D)が連結されて構成されることに限定されるものではなく、3つ以上の扁平管1a(3つ以上の熱交換部1D)が連結されて構成されるものであってもよい。
[変形例3の効果]
 変形例3に係る熱交換器100は、第1の扁平管P1と第3の扁平管P3とが連結するとともに、第3の扁平管P3と第4の扁平管P4とが連結している第1の熱交換体10Dと、第1の扁平管P1と第3の扁平管P3とが別体となっているとともに、第3の扁平管P3と第4の扁平管P4とが別体となっており、第1の熱交換体10Dの流体の流れ方向の下流側に配置された第2の熱交換体20Dとを含むものである。これにより、本実施の形態に係る熱交換器100の有する効果及び変形例2に係る熱交換器100の有する効果を有する。
 ここで、第1の熱交換体10Dと第2の熱交換体20Dとの間には隙間S2が形成され、第2の熱交換体20Dの熱交換部1D3と熱交換部1D4との間には隙間S2よりも大きい隙間S3が形成されていてもよい。これにより、空気流れ方向の下流側の通風抵抗を抑制することができる。
 上述した本実施の形態に係る熱交換器100、変形例1~変形例3に係る熱交換器100では、隣合う熱交換部のいずれもが交差するように熱交換部が配置されている態様について説明したが、それに限定されるものではない。熱交換器100は、たとえば、交差していない2つの熱交換部を含む態様であってもよい。
 1A 熱交換部、1A1 熱交換部、1A2 熱交換部、1A3 熱交換部、1A4 熱交換部、1B 熱交換部、1B1 熱交換部、1B2 熱交換部、1B3 熱交換部、1B4 熱交換部、1B5 熱交換部、1B6 熱交換部、1C 熱交換部、1C1 熱交換部、1C2 熱交換部、1C3 熱交換部、1C4 熱交換部、1D 熱交換部、1D1 熱交換部、1D2 熱交換部、1D3 熱交換部、1D4 熱交換部、1a 扁平管、4 第1のヘッダー、5 第2のヘッダー、10B 熱交換体、10C 第1の熱交換体、10D 第1の熱交換体、20B 熱交換体、20C 第2の熱交換体、20D 第2の熱交換体、30B 熱交換体、33 圧縮機、35 絞り装置、37 室外ファン、38 室内ファン、50 室外ユニット、51 室内ユニット、100 熱交換器、100A 室外熱交換器、100B 室内熱交換器、200 冷凍サイクル装置、500 熱交換器、D1 流体流路、D2 流体流路、F 流体流路、P 冷媒配管、P1 第1の扁平管、P2 第2の扁平管、P3 第3の扁平管、P4 第4の扁平管、Q1 速度、Q2 速度、S1 隙間、S2 隙間、S3 隙間、T 頂部、θ1 角度、θ2 角度。

Claims (9)

  1.  第1の扁平管及び前記第1の扁平管に平行に配置された第2の扁平管を含み、前記第1の扁平管と前記第2の扁平管との間を流体が通過する第1の熱交換部と、
     第3の扁平管及び前記第3の扁平管に平行に配置された第4の扁平管を含み、前記第3の扁平管と前記第4の扁平管との間を流体が通過する第2の熱交換部と、
     を備え、
     前記第2の熱交換部の前記第3の扁平管は、
     長手方向に直交する断面で見たときに、
     前記第1の熱交換部の前記第1の扁平管に交差する方向に配置され、
     前記第2の熱交換部の前記第4の扁平管は、
     長手方向に直交する断面で見たときに、
     前記第1の熱交換部の前記第2の扁平管に交差する方向に配置されている
     熱交換器。
  2.  前記第1の扁平管と前記第3の扁平管とが連結するとともに、前記第2の扁平管と前記第4の扁平管とが連結している
     請求項1に記載の熱交換器。
  3.  前記第1の扁平管と前記第3の扁平管とは別体であるとともに、前記第2の扁平管と前記第4の扁平管とは別体である
     請求項1に記載の熱交換器。
  4.  前記第1の熱交換部及び前記第2の熱交換部は、
     前記第1の扁平管と前記第3の扁平管との間、及び、前記第2の扁平管と前記第4の扁平管との間に隙間が形成されるように配置されている
     請求項3に記載の熱交換器。
  5.  前記第1の熱交換部及び前記第2の熱交換部を含む熱交換体を複数備え、
     前記熱交換体は、
     前記隙間を含む第1の熱交換体と、
     前記第1の熱交換体の前記隙間よりも大きい前記隙間を含み、前記第1の熱交換体の前記流体の流れ方向の下流側に配置された第2の熱交換体とを含む
     請求項4に記載の熱交換器。
  6.  前記第1の熱交換部及び前記第2の熱交換部を含む熱交換体を複数備え、
     前記熱交換体は、
     前記第1の扁平管と前記第3の扁平管とが連結するとともに、前記第3の扁平管と前記第4の扁平管とが連結している第1の熱交換体と、
     前記第1の扁平管と前記第3の扁平管とが別体となっているとともに、前記第3の扁平管と前記第4の扁平管とが別体となっており、前記第1の熱交換体の前記流体の流れ方向の下流側に配置された第2の熱交換体とを含む
     請求項1~5のいずれか一項に記載の熱交換器。
  7.  前記第1の熱交換部及び前記第2の熱交換部を含む熱交換体を複数備え、
     前記熱交換体は、
     第1の熱交換体と、
     前記第1の熱交換体の前記流体の流れ方向の下流側に配置された第2の熱交換体とを含み、
     前記第2の熱交換体は、
     前記第1の扁平管及び前記第2の扁平管の短手方向の長さが、前記第1の熱交換体の前記第1の扁平管及び前記第2の扁平管よりも長く、
     前記第1の扁平管及び前記第2の扁平管と前記流体の流れ方向とのなす角度が、前記第1の熱交換体の前記第1の扁平管及び前記第2の扁平管と前記流体の流れ方向とのなす角度よりも大きく、
     前記第3の扁平管及び前記第4の扁平管の短手方向の長さが、前記第1の熱交換体の前記第3の扁平管及び前記第4の扁平管よりも長く、
     前記第3の扁平管及び前記第4の扁平管と前記流体の流れ方向とのなす角度が、前記第1の熱交換体の前記第3の扁平管及び前記第4の扁平管と前記流体の流れ方向とのなす角度よりも大きい
     請求項1~6のいずれか一項に記載の熱交換器。
  8.  前記第1の扁平管、前記第2の扁平管、前記第3の扁平管及び前記第4の扁平管に、フィンが設けられていない
     請求項1~7のいずれか一項に記載の熱交換器。
  9.  請求項1~8のいずれか一項に記載の熱交換器を備え、
     熱交換部が、重力方向に平行になるように配置されている
     冷凍サイクル装置。
PCT/JP2015/077788 2015-09-30 2015-09-30 熱交換器及びそれを備えた冷凍サイクル装置 WO2017056250A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/077788 WO2017056250A1 (ja) 2015-09-30 2015-09-30 熱交換器及びそれを備えた冷凍サイクル装置
US15/753,185 US10480869B2 (en) 2015-09-30 2015-09-30 Heat exchanger and refrigeration cycle apparatus including the same
CN201580083475.4A CN108139178B (zh) 2015-09-30 2015-09-30 热交换器及具备热交换器的制冷循环装置
EP15905404.8A EP3358287B1 (en) 2015-09-30 2015-09-30 Heat exchanger and refrigeration cycle device provided with same
JP2017542609A JP6403898B2 (ja) 2015-09-30 2015-09-30 熱交換器及びそれを備えた冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077788 WO2017056250A1 (ja) 2015-09-30 2015-09-30 熱交換器及びそれを備えた冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2017056250A1 true WO2017056250A1 (ja) 2017-04-06

Family

ID=58423015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077788 WO2017056250A1 (ja) 2015-09-30 2015-09-30 熱交換器及びそれを備えた冷凍サイクル装置

Country Status (5)

Country Link
US (1) US10480869B2 (ja)
EP (1) EP3358287B1 (ja)
JP (1) JP6403898B2 (ja)
CN (1) CN108139178B (ja)
WO (1) WO2017056250A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012548A1 (ja) * 2018-07-10 2020-01-16 三菱電機株式会社 熱交換器、熱交換器ユニット及び冷凍サイクル装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6615316B2 (ja) * 2016-03-16 2019-12-04 三菱電機株式会社 フィンレス型の熱交換器、そのフィンレス型の熱交換器を備えた空気調和機の室外機、及びそのフィンレス型の熱交換器を備えた空気調和機の室内機
CN107806777B (zh) * 2016-09-09 2020-12-04 丹佛斯微通道换热器(嘉兴)有限公司 无翅片换热器
US11629897B2 (en) * 2017-04-14 2023-04-18 Mitsubishi Electric Corporation Distributor, heat exchanger, and refrigeration cycle apparatus
EP3842698A4 (en) * 2018-08-23 2021-11-03 Mitsubishi Electric Corporation HEAT EXCHANGER AND COOLING CYCLE DEVICE ASSEMBLY

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284123A (ja) * 2005-04-01 2006-10-19 Calsonic Kansei Corp 熱交換器
JP2007187381A (ja) * 2006-01-12 2007-07-26 Denso Corp 熱交換器

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE374429B (ja) * 1972-09-13 1975-03-03 Saab Scania Ab
JPS62166476U (ja) * 1986-04-02 1987-10-22
US4836276A (en) * 1987-03-09 1989-06-06 Nippondenso Co., Ltd. Heat exchanger for engine oil
JPH0492174U (ja) * 1990-12-05 1992-08-11
JPH0599454A (ja) 1991-10-11 1993-04-20 Hitachi Ltd 空気調和機
US6364008B1 (en) * 1999-01-22 2002-04-02 E. I. Du Pont De Nemours And Company Heat exchanger with tube plates
JP2001201077A (ja) 2000-01-20 2001-07-27 Fujitsu General Ltd 空気調和機
WO2002016834A2 (en) * 2000-08-21 2002-02-28 Engineered Dynamics Corporation Heat exchanger assembly and a method for efficiently transferring heat
KR20020032815A (ko) * 2000-10-27 2002-05-04 구자홍 냉장고의 열교환기
JP3812487B2 (ja) * 2002-04-16 2006-08-23 株式会社デンソー 熱交換器
JP2004092942A (ja) * 2002-08-29 2004-03-25 Denso Corp 熱交換器
JP4166591B2 (ja) * 2003-02-13 2008-10-15 カルソニックカンセイ株式会社 熱交換器
DE102004001786A1 (de) * 2004-01-12 2005-08-04 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere für überkritischen Kältekreislauf
US6988538B2 (en) * 2004-01-22 2006-01-24 Hussmann Corporation Microchannel condenser assembly
EP1844288B1 (en) 2005-02-02 2011-10-19 Carrier Corporation Heat exchanger with fluid expansion in header
JP4952196B2 (ja) * 2005-12-07 2012-06-13 パナソニック株式会社 熱交換器
CN101657689B (zh) * 2007-02-27 2012-09-05 开利公司 改进冷凝物排放的多通道扁平管蒸发器
DE102007023361A1 (de) * 2007-05-18 2008-11-20 Modine Manufacturing Co., Racine Wärmetauscherkern, Herstellungsverfahren, Walzenstraße
US20110094257A1 (en) * 2008-03-20 2011-04-28 Carrier Corporation Micro-channel heat exchanger suitable for bending
US20100006276A1 (en) * 2008-07-11 2010-01-14 Johnson Controls Technology Company Multichannel Heat Exchanger
US20100116481A1 (en) * 2008-11-12 2010-05-13 Evans Timothy V Heat Exchanger
GB0921279D0 (en) * 2009-12-04 2010-01-20 Universal Heat Transfer Ltd Heat exchanger
CN102829576B (zh) * 2012-08-01 2014-01-22 浙江盾安热工科技有限公司 一种微通道换热器
CN203100483U (zh) * 2013-01-07 2013-07-31 广东美的电器股份有限公司 换热器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284123A (ja) * 2005-04-01 2006-10-19 Calsonic Kansei Corp 熱交換器
JP2007187381A (ja) * 2006-01-12 2007-07-26 Denso Corp 熱交換器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012548A1 (ja) * 2018-07-10 2020-01-16 三菱電機株式会社 熱交換器、熱交換器ユニット及び冷凍サイクル装置

Also Published As

Publication number Publication date
EP3358287A4 (en) 2018-09-26
US10480869B2 (en) 2019-11-19
US20180238637A1 (en) 2018-08-23
EP3358287B1 (en) 2019-08-28
JP6403898B2 (ja) 2018-10-10
CN108139178A (zh) 2018-06-08
EP3358287A1 (en) 2018-08-08
CN108139178B (zh) 2019-12-06
JPWO2017056250A1 (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6403898B2 (ja) 熱交換器及びそれを備えた冷凍サイクル装置
US8205470B2 (en) Indoor unit for air conditioner
US8439104B2 (en) Multichannel heat exchanger with improved flow distribution
JP5195733B2 (ja) 熱交換器及びこれを備えた冷凍サイクル装置
JP6847229B2 (ja) 熱交換器、及び冷凍サイクル装置
WO2011005986A2 (en) Multichannel heat exchanger with differing fin spacing
JPWO2018225252A1 (ja) 熱交換器及び冷凍サイクル装置
CN116134282B (zh) 热交换器
CN115605714A (zh) 热交换器、具备热交换器的室外机以及具备室外机的空调装置
JP6425829B2 (ja) 熱交換器及び冷凍サイクル装置
CN112567192A (zh) 热交换器、热交换器单元及制冷循环装置
EP3524915B1 (en) Refrigeration cycle apparatus
JP6563115B2 (ja) 熱交換器及び冷凍サイクル装置
CN107076525B (zh) 热交换器
WO2017130975A1 (ja) 熱交換器
WO2020178966A1 (ja) ガスヘッダ、熱交換器及び冷凍サイクル装置
US11248856B2 (en) Refrigeration apparatus
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
CN113646597A (zh) 冷冻循环装置
JP7569757B2 (ja) 熱交換器
JP7050538B2 (ja) 熱交換器および空気調和機
CN118829842A (zh) 热交换器以及具备该热交换器的制冷循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542609

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15753185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015905404

Country of ref document: EP