WO2017054667A1 - 同步信号的传输方法及装置 - Google Patents

同步信号的传输方法及装置 Download PDF

Info

Publication number
WO2017054667A1
WO2017054667A1 PCT/CN2016/099636 CN2016099636W WO2017054667A1 WO 2017054667 A1 WO2017054667 A1 WO 2017054667A1 CN 2016099636 W CN2016099636 W CN 2016099636W WO 2017054667 A1 WO2017054667 A1 WO 2017054667A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
sequence
ofdm symbol
ofdm
symbols
Prior art date
Application number
PCT/CN2016/099636
Other languages
English (en)
French (fr)
Inventor
张雯
夏树强
戴博
刘锟
石靖
陈宪明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020187009748A priority Critical patent/KR20180063115A/ko
Priority to US15/756,028 priority patent/US10666484B2/en
Priority to EP16850291.2A priority patent/EP3358774B1/en
Priority to JP2018516165A priority patent/JP6586520B2/ja
Publication of WO2017054667A1 publication Critical patent/WO2017054667A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/08Speed or phase control by synchronisation signals the synchronisation signals recurring cyclically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for transmitting a synchronization signal.
  • Machine Type Communication User Equipment (User Equipment, Terminal Equipment for short), also known as Machine to Machine (M2M) user communication equipment
  • MTC Machine Type Communication
  • M2M Machine to Machine
  • C-IOT 3rd Generation Partnership Project
  • NB-LTE Narrowband LTE
  • the system bandwidth of the system is 200 kHz, which is the same as the channel bandwidth of the Global System for Mobile Communication (GSM) system. This is because the NB-LTE system reuses the GSM spectrum and reduces the mutual interference between the adjacent and GSM channels.
  • GSM Global System for Mobile Communication
  • the transmission bandwidth and the downlink subcarrier spacing of the NB-LTE are 180 kHz and 15 kHz, respectively, and the bandwidth and the sub-band of the Physical Resource Block (PRB) of the Long-Term Evolution (LTE) system, respectively.
  • the carrier spacing is the same.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the embodiment of the invention provides a method and a device for transmitting a synchronization signal, so as to at least solve the problem that the synchronization signal design is unreasonable in the narrowband system of the LTE in the related art.
  • a method for transmitting a synchronization signal including:
  • the base station repeatedly sends a synchronization signal to the terminal period
  • the synchronization signal is transmitted at a time corresponding to a plurality of orthogonal frequency division multiplexing (OFDM) symbols on one or more subframes, and the synchronization signal is a primary synchronization signal PSS or a secondary synchronization signal SSS.
  • OFDM orthogonal frequency division multiplexing
  • the multiple OFDM symbols include consecutive multiple OFDM symbols in the one subframe, or
  • the multiple OFDM symbols are symbols in a preset set, and the set includes a third OFDM symbol and a fourth OFDM symbol of each slot. And the last two OFDM symbol.
  • the PSS is located in consecutive k1 radio frames, and is sent in a period of T1 radio frames, where T1 ⁇ k1, and the SSS is sent in a period of T2 radio frames, or
  • the PSS is sent in a period of T3 radio frames, and the SSS is located in consecutive k2 radio frames, and is sent in a period of T4 radio frames, T4 ⁇ k2, or
  • the PSS and the SSS are located on consecutive k3 radio frames, and are sent in a period of T5 radio frames, T5 ⁇ k3;
  • k1, k2, k3, T1, T2, T3, T4, and T5 are all positive integers.
  • the synchronization signal includes M OFDM symbols, and the subcarrier spacing of the mth OFDM symbol is 15/A m KHz, where 1 ⁇ m ⁇ M, m, M, and A m are both Is a positive integer.
  • the OFDM symbol corresponds to 2 consecutive OFDM symbols
  • the 2 consecutive OFDM symbols comprise one of the following:
  • the subcarrier spacing is 3.75 KHz, and the OFDM symbol corresponds to 4 consecutive OFDM symbols.
  • the reference signal is not sent on the OFDM symbol corresponding to the synchronization signal, or
  • the reference signal is transmitted only on the first q OFDM symbols, and q is a positive integer.
  • the synchronization signal includes a plurality of sequences, the multiple sequences being generated according to cell identity and/or timing information.
  • the synchronization signal includes a plurality of sequences, including, in one repetition period,
  • Each OFDM symbol included in the synchronization signal corresponds to one sequence in one repetition period
  • the plurality of OFDM symbols included in the synchronization signal correspond to one sequence, wherein each of the OFDM symbols corresponds to a subsequence of the sequence;
  • Each of the plurality of subframes corresponds to one sequence on a plurality of subframes within one repetition period.
  • each OFDM symbol included in the synchronization signal corresponds to one sequence in one repetition period.
  • each OFDM symbol included in the synchronization signal corresponds to a ZC sequence of length 11; wherein a carrier corresponding to the synchronization signal includes 12 subcarriers.
  • each of the OFDM symbols or the plurality of OFDM symbols included in the synchronization signal corresponds to one
  • the sequence is determined by the OFDM symbol corresponding to the sequence.
  • the sending, by the synchronization signal, the time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on the one or more subframes includes:
  • the synchronization signal is transmitted at times corresponding to m of the OFDM symbols, where m ⁇ ⁇ 5, 6, 7, 8, 10, 12 ⁇ .
  • the time corresponding to the multiple OFDM symbols includes two parts, and each part of the two parts corresponds to one sequence, and the two parts include:
  • the two parts are divided into two parts in chronological order, or
  • the two parts are respectively the time corresponding to the OFDM symbol of the odd index and the time corresponding to the OFDM symbol of the even index; wherein the index is an index after the OFDM symbol corresponding to the synchronization signal is renumbered from 0 in chronological order. .
  • the value of the SSS sequence, s(k 0 ) is the CRS symbol value corresponding to subcarrier #k 0 .
  • a method for transmitting a synchronization signal including:
  • the terminal period repeatedly receives the synchronization signal sent by the base station
  • the synchronization signal is received at a time corresponding to a plurality of orthogonal frequency division multiplexing (OFDM) symbols on one or more subframes during a repetition period, the synchronization signal being a primary synchronization signal PSS or a secondary synchronization signal SSS.
  • OFDM orthogonal frequency division multiplexing
  • the multiple OFDM symbols include consecutive multiple OFDM symbols in the one subframe, or
  • the multiple OFDM symbols are symbols in a preset set, and the set includes a third OFDM symbol and a fourth OFDM symbol of each slot. And the last two OFDM symbols.
  • the PSS is located in consecutive k1 radio frames, and is received in a period of T1 radio frames, where T1 ⁇ k1, and the SSS is received in a period of T2 radio frames, or
  • the PSS is received in a period of T3 radio frames, and the SSS is located in consecutive k2 radio frames, and is received in a period of T4 radio frames, T4 ⁇ k2, or
  • the PSS and the SSS are located on consecutive k3 radio frames, and are received in a period of T5 radio frames, T5 ⁇ k3;
  • k1, k2, k3, T1, T2, T3, T4, and T5 are all positive integers.
  • the synchronization signal includes M OFDM symbols, and the subcarrier spacing of the mth OFDM symbol is 15/A m KHz, where 1 ⁇ m ⁇ M, m, M, and A m are both Is a positive integer.
  • the OFDM symbol corresponds to 2 consecutive OFDM symbols
  • the 2 consecutive OFDM symbol symbols include one of the following:
  • the subcarrier spacing is 3.75 KHz, and the OFDM symbol corresponds to 4 consecutive OFDM symbols.
  • the OFDM symbol corresponding to the synchronization signal does not receive a reference signal
  • the reference signal is received only on the first q OFDM symbols, and q is a positive integer.
  • the synchronization signal includes a plurality of sequences, the multiple sequences being generated according to cell identity and/or timing information.
  • the synchronization signal includes a plurality of sequences, including, in one repetition period,
  • Each OFDM symbol included in the synchronization signal corresponds to one sequence in one repetition period
  • the plurality of OFDM symbols included in the synchronization signal correspond to one sequence, wherein each of the OFDM symbols corresponds to a subsequence of the sequence;
  • Each of the plurality of subframes corresponds to one sequence on a plurality of subframes within one repetition period.
  • the sequence is determined by an OFDM symbol corresponding to the sequence.
  • receiving, by the synchronization signal, the time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on the one or more subframes includes:
  • the synchronization signal is received at times corresponding to m of the OFDM symbols, where m ⁇ ⁇ 5, 6, 7, 8, 10, 12 ⁇ .
  • the time corresponding to the multiple OFDM symbols includes two parts, and each part of the two parts corresponds to one sequence, and the two parts include:
  • the two parts are divided into two parts in chronological order, or
  • the two parts are respectively the time corresponding to the OFDM symbol of the odd index and the time corresponding to the OFDM symbol of the even index; wherein the index is an index after the OFDM symbol corresponding to the synchronization signal is renumbered from 0 in chronological order. .
  • the value of the corresponding PSS or SSS sequence, s(k 0 ) is the CRS symbol value corresponding to subcarrier #k 0 .
  • the location of the synchronization signal is determined by at least one of:
  • the frequency domain position corresponding to the synchronization signal is either a PRB index or a frequency offset.
  • the synchronization signal when the cell identifier is X, the synchronization signal is located on the last N subcarriers of the physical resource block where the synchronization signal is located, and when the cell identifier is Y, the synchronization signal is located. On the first N subcarriers of the physical resource block where the synchronization signal is located, where N is a positive integer.
  • the cell identifier X satisfies mod(X, 3) equal to 0, the cell identifier Y satisfies mod(Y, 3) is not equal to 0; or the cell identifier Y satisfies mod(Y, 3) is equal to 2, the cell identifier X satisfies mod (X, 3) is not equal to 2; the cell identifier X satisfies mod (X, 6) is equal to 0, and the cell identifier Y satisfies mod (Y, 6) is not equal to 0; The cell identifier Y satisfies mod(Y, 6) equal to 5, and the cell identifier X satisfies mod(X, 6) and is not equal to 5.
  • the root index of the ZC sequence is grouped, and the manner of the grouping includes at least one of the following:
  • sequences of the second group and the third group are interchangeable.
  • the first set of ZC sequences are mapped onto a first OFDM symbol
  • the second set of ZC sequences are mapped onto a second OFDM symbol
  • the third set of ZC sequences are mapped onto a third OFDM symbol
  • the first OFDM symbol includes symbols numbered ⁇ 5, 6, 9, 10, 12, 13 ⁇ in the subframe
  • the second OFDM symbol includes the number ⁇ 3, 4 ⁇ in the subframe
  • the The three OFDM symbols include symbols numbered ⁇ 7, 8 ⁇ in the subframe, wherein the symbol number in the subframe starts from zero.
  • the synchronization signal uses the same ZC sequence used on the last OFDM symbol in the subframe as the ZC sequence used on the last OFDM symbol in the subframe; or, the first OFDM with the second slot
  • the symbol uses the same ZC sequence; or, the same as the ZC sequence used by the last OFDM symbol in the first slot; or,
  • the step signal uses the same ZC sequence for the first OFDM symbol in the subframe.
  • the synchronization index includes an OFDM symbol
  • the root index of the sequence corresponding to the chronological order is one of the following:
  • the root index of the sequence corresponding to the OFDM symbol in the chronological order is one of the following:
  • a synchronization signal transmission apparatus is further provided on the base station side, including:
  • a sending module configured to repeatedly send a synchronization signal to the terminal period
  • the synchronization signal is transmitted at a time corresponding to a plurality of orthogonal frequency division multiplexing (OFDM) symbols on one or more subframes, and the synchronization signal is a primary synchronization signal PSS or a secondary synchronization signal SSS.
  • OFDM orthogonal frequency division multiplexing
  • a synchronization signal transmission apparatus is further provided on the terminal side, including:
  • a receiving module configured to repeatedly receive a synchronization signal sent by the base station
  • the synchronization signal is received at a time corresponding to a plurality of orthogonal frequency division multiplexing (OFDM) symbols on one or more subframes during a repetition period, the synchronization signal being a primary synchronization signal PSS or a secondary synchronization signal SSS.
  • OFDM orthogonal frequency division multiplexing
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the base station repeatedly sends a synchronization signal to the terminal period
  • the synchronization signal is transmitted at a time corresponding to a plurality of orthogonal frequency division multiplexing (OFDM) symbols on one or more subframes, and the synchronization signal is a primary synchronization signal PSS or a secondary synchronization signal SSS.
  • OFDM orthogonal frequency division multiplexing
  • the storage medium is further arranged to store program code for performing the following steps:
  • the synchronization signal is transmitted at times corresponding to m of the OFDM symbols, where m ⁇ ⁇ 5, 6, 7, 8, 10, 12 ⁇ .
  • the storage medium is further arranged to store program code for performing the following steps:
  • the time corresponding to the multiple OFDM symbols includes two parts, and each part of the two parts corresponds to one sequence, and the two parts include:
  • the two parts are divided into two parts in chronological order, or
  • the two parts are respectively the time corresponding to the OFDM symbol of the odd index and the time corresponding to the OFDM symbol of the even index; wherein the index is an index after the OFDM symbol corresponding to the synchronization signal is renumbered from 0 in chronological order. .
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the terminal period repeatedly receives the synchronization signal sent by the base station
  • the synchronization signal is received at a time corresponding to a plurality of orthogonal frequency division multiplexing (OFDM) symbols on one or more subframes during a repetition period, the synchronization signal being a primary synchronization signal PSS or a secondary synchronization signal SSS.
  • OFDM orthogonal frequency division multiplexing
  • the storage medium is further arranged to store program code for performing the following steps:
  • the PSS is located in consecutive k1 radio frames, and is received in a period of T1 radio frames, where T1 ⁇ k1, and the SSS is received in a period of T2 radio frames, or
  • the PSS is received in a period of T3 radio frames, and the SSS is located in consecutive k2 radio frames, and is received in a period of T4 radio frames, T4 ⁇ k2, or
  • the PSS and the SSS are located on consecutive k3 radio frames, and are received in a period of T5 radio frames, T5 ⁇ k3;
  • k1, k2, k3, T1, T2, T3, T4, and T5 are all positive integers.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the OFDM symbol corresponding to the synchronization signal does not receive a reference signal
  • the reference signal is received only on the first q OFDM symbols, and q is a positive integer.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the synchronization signal includes a plurality of sequences that are generated based on cell identification and/or timing information during a repetition period.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Each OFDM symbol included in the synchronization signal corresponds to one sequence in one repetition period
  • the plurality of OFDM symbols included in the synchronization signal correspond to one sequence, wherein each of the OFDM symbols corresponds to a subsequence of the sequence;
  • Each of the plurality of subframes corresponds to one sequence on a plurality of subframes within one repetition period.
  • the base station repeatedly transmits the synchronization signal to the terminal period; in a repetition period, the synchronization signal is sent at a time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on one or more subframes, where
  • the synchronization signal is the primary synchronization signal PSS or the secondary synchronization signal SSS, or the terminal periodically repeats the synchronization signal sent by the base station, which solves the problem that the synchronization signal design is unreasonable in the narrowband system of LTE, and realizes the synchronization signal of the narrowband system.
  • Reasonable transmission is the problem that the synchronization signal design is unreasonable in the narrowband system of LTE, and realizes the synchronization signal of the narrowband system.
  • FIG. 1 is a flow chart 1 of a method for transmitting a synchronization signal according to an embodiment of the present invention
  • FIG. 2 is a second flowchart of a method for transmitting a synchronization signal according to an embodiment of the present invention
  • FIG. 3 is a block diagram 1 of a structure of a synchronization signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram 2 of a structure of a synchronization signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of reference symbols continuously occupied by PSS/SSS in accordance with a preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of reference symbols for discontinuous occupancy of PSS/SSS in accordance with a preferred embodiment of the present invention.
  • FIG. 7 is a schematic diagram of REs corresponding to ZC sequences in accordance with a preferred embodiment of the present invention.
  • FIG. 1 is a flowchart 1 of a method for transmitting a synchronization signal according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 the base station acquires a synchronization signal
  • Step S104 The base station repeatedly sends a synchronization signal to the terminal period.
  • the synchronization signal is sent at a time corresponding to multiple orthogonal frequency division multiplexing (OFDM) symbols of the one or more subframes, and the synchronization signal is The primary synchronization signal PSS or the secondary synchronization signal SSS.
  • OFDM orthogonal frequency division multiplexing
  • the base station repeatedly transmits the synchronization signal to the terminal period; in one repetition period, the synchronization signal is transmitted at a time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on one or more subframes, the synchronization signal It is the primary synchronization signal PSS or the secondary synchronization signal SSS, which solves the problem that the synchronization signal design is unreasonable in the narrowband system of LTE, and realizes the reasonable transmission of the synchronization signal of the narrowband system.
  • step S102 is optional, and the solution in this embodiment may include only step S104.
  • the multiple OFDM symbols include consecutive multiple OFDM symbols in the one subframe, or
  • the multiple OFDM symbols are symbols in a preset set, and the set includes a third OFDM symbol, a fourth OFDM symbol, and a last two of each slot. OFDM symbol.
  • the PSS is located in consecutive k1 radio frames, and is sent in a period of T1 radio frames, T1 ⁇ k1, and the SSS is sent in a period of T2 radio frames, or
  • the PSS is sent in a period of T3 radio frames, and the SSS is located in consecutive k2 radio frames, and is transmitted in a period of T4 radio frames, T4 ⁇ k2, or
  • the PSS and the SSS are located on consecutive k3 radio frames, and are transmitted in a period of T5 radio frames, T5 ⁇ k3;
  • k1, k2, k3, T1, T2, T3, T4, and T5 are all positive integers.
  • the synchronization signal includes M OFDM symbols in one repetition period, and the subcarrier spacing of the mth OFDM symbol is 15/A m KHz, where 1 ⁇ m ⁇ M, m, M, and A m Both are positive integers.
  • the subcarrier spacing is 7.5 KHz
  • the OFDM symbol corresponds to 2 consecutive OFDM symbols
  • the 2 consecutive OFDM symbols include one of the following:
  • the subcarrier spacing is 3.75 KHz, and the OFDM symbol corresponds to 4 consecutive OFDM symbols.
  • the reference signal is not sent on the OFDM symbol corresponding to the synchronization signal, or
  • the reference signal is transmitted only on the first q OFDM symbols, and q is a positive integer.
  • the synchronization signal includes a plurality of sequences that are generated based on cell identification and/or timing information during a repetition period.
  • the synchronization signal includes a plurality of sequences including, in one repetition period,
  • Each OFDM symbol included in the synchronization signal corresponds to one sequence in one repetition period
  • the plurality of OFDM symbols included in the synchronization signal correspond to a sequence, where the OFDM symbol corresponds to a subsequence of the sequence;
  • Each of the plurality of subframes corresponds to one sequence on a plurality of subframes within one repetition period.
  • the sequence is determined by the OFDM symbol corresponding to the sequence.
  • the synchronizing signal is transmitted at a time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on the one or more subframes, including:
  • the synchronization signal is transmitted at times corresponding to m OFDM symbols, where m ⁇ ⁇ 5, 6, 7, 8, 10, 12 ⁇ .
  • the time corresponding to the multiple OFDM symbols includes two parts, and each part of the two parts corresponds to one sequence, and the two parts include:
  • the two parts are divided into two parts in chronological order, or,
  • the two parts are the time corresponding to the OFDM symbol of the odd index and the time corresponding to the OFDM symbol of the even index; wherein the index is an index after the OFDM symbol corresponding to the synchronization signal is renumbered from 0 in chronological order.
  • the value of s(k 0 ) is the CRS symbol value corresponding to subcarrier #k 0 .
  • FIG. 2 is a second flowchart of a method for transmitting a synchronization signal according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 The terminal periodically repeats receiving the synchronization signal sent by the base station, and the synchronization signal is received at a time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on one or more subframes in a repetition period, the synchronization signal Is a primary synchronization signal PSS or a secondary synchronization signal SSS;
  • step S204 the terminal determines the synchronization signal.
  • the terminal periodically repeats receiving the synchronization signal sent by the base station, and the synchronization signal is received at a time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on one or more subframes in a repetition period, the synchronization
  • the signal is the primary synchronization signal PSS or the secondary synchronization signal SSS, which solves the problem that the synchronization signal design is unreasonable in the narrowband system of LTE, and realizes the reasonable transmission of the synchronization signal of the narrowband system.
  • step S204 is optional, and the solution in this embodiment may include only step S202.
  • the multiple OFDM symbols include consecutive multiple OFDM symbols in the one subframe, or
  • the plurality of OFDM symbols are symbols in a preset set, and the set includes a third OFDM symbol, a fourth OFDM symbol, and a last two of each slot. OFDM symbol.
  • the PSS is located in consecutive k1 radio frames, and is received in a period of T1 radio frames, where T1 ⁇ k1, and the SSS is received in a period of T2 radio frames, or
  • the PSS is received in a period of T3 radio frames, and the SSS is located in consecutive k2 radio frames, and is received in a period of T4 radio frames, T4 ⁇ k2, or
  • the PSS and the SSS are located on consecutive k3 radio frames, and are received in a period of T5 radio frames, T5 ⁇ k3;
  • k1, k2, k3, T1, T2, T3, T4, and T5 are all positive integers.
  • the synchronization signal includes M OFDM symbols in one repetition period, and the subcarrier spacing of the mth OFDM symbol is 15/A m KHz, where 1 ⁇ m ⁇ M, m, M, and A m Both are positive integers.
  • the subcarrier spacing is 7.5 KHz
  • the OFDM symbol corresponds to 2 consecutive OFDM symbols
  • the 2 consecutive OFDM symbols include one of the following:
  • the subcarrier spacing is 3.75 KHz, and the OFDM symbol corresponds to 4 consecutive OFDM symbols.
  • the OFDM symbol corresponding to the synchronization signal does not receive the reference signal
  • the reference signal is received only on the first q OFDM symbols, and q is a positive integer.
  • the synchronization signal includes a plurality of sequences that are generated based on cell identification and/or timing information during a repetition period.
  • the synchronization signal includes a plurality of sequences including, in one repetition period,
  • Each OFDM symbol included in the synchronization signal corresponds to one sequence in one repetition period
  • the plurality of OFDM symbols included in the synchronization signal correspond to a sequence, where the OFDM symbol corresponds to a subsequence of the sequence;
  • Each of the plurality of subframes corresponds to one sequence on a plurality of subframes within one repetition period.
  • each OFDM symbol included in the synchronization signal corresponds to one sequence in one repetition period.
  • each OFDM symbol included in the synchronization signal corresponds to a ZC sequence of length 11; wherein the carrier corresponding to the synchronization signal includes 12 subcarriers.
  • the sequence is determined by the OFDM symbol corresponding to the sequence.
  • the receiving, by the synchronization signal, the time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on the one or more subframes includes:
  • the synchronization signal is received at times corresponding to m OFDM symbols, where m ⁇ ⁇ 5, 6, 7, 8, 10, 12 ⁇ .
  • the time corresponding to the multiple OFDM symbols includes two parts, and each part of the two parts corresponds to one sequence, and the two parts include:
  • the two parts are divided into two parts in chronological order, or,
  • the two parts are the time corresponding to the OFDM symbol of the odd index and the time corresponding to the OFDM symbol of the even index; wherein the index is an index after the OFDM symbol corresponding to the synchronization signal is renumbered from 0 in chronological order.
  • the value of the PSS or SSS sequence, s(k 0 ) is the CRS symbol value corresponding to subcarrier #k 0 .
  • the location of the synchronization signal is determined by at least one of:
  • the frequency domain position corresponding to the synchronization signal is either a PRB index or a frequency offset.
  • the synchronization signal when the cell identifier is X, the synchronization signal is located on the last N subcarriers of the physical resource block where the synchronization signal is located, and when the cell identifier is Y, the synchronization The signal is located on the first N subcarriers of the physical resource block in which the synchronization signal is located, where N is a positive integer.
  • the cell identifier X satisfies mod(X, 3) equal to 0, the cell identifier Y satisfies mod(Y, 3) is not equal to 0; or the cell identifier Y satisfies mod (Y, 3) Is equal to 2, the cell identifier X satisfies mod(X, 3) not equal to 2;
  • the cell identifier X satisfies mod(X,6) equal to 0, the cell identifier Y satisfies mod(Y,6) is not equal to 0; or the cell identifier Y satisfies mod(Y,6) equal to 5,
  • the cell identifier X satisfies mod(X, 6) not equal to 5.
  • the root index of the ZC sequence is grouped, and the manner of the grouping includes at least one of the following:
  • sequences of the second group and the third group are interchangeable.
  • the first group of ZC sequences are mapped onto a first OFDM symbol
  • the second group of ZC sequences are mapped to a second OFDM symbol
  • the third group of ZC sequences are mapped to a third OFDM symbol.
  • the first OFDM symbol includes a symbol numbered ⁇ 5, 6, 9, 10, 12, 13 ⁇ in a subframe
  • the second OFDM symbol includes a number ⁇ 3, 4 ⁇ in the subframe.
  • the third OFDM symbol includes symbols numbered ⁇ 7, 8 ⁇ in the subframe, wherein the symbol number in the subframe starts from 0.
  • the synchronization signal uses the same ZC sequence used on the last OFDM symbol in the subframe as the ZC sequence used on the last OFDM symbol in the subframe; or, with the second slot first
  • the OFDM symbols use the same ZC sequence; or, the same as the ZC sequence used by the last OFDM symbol of the first slot; or the same ZC sequence used by the first OFDM symbol of the synchronization signal in the subframe.
  • the root index of the sequence corresponding to the OFDM symbol included in the chronological order is one of the following:
  • the root index of the sequence corresponding to the OFDM symbol included in the chronological order is one of the following:
  • a synchronization signal transmission device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a block diagram of a structure of a synchronization signal transmission apparatus according to an embodiment of the present invention. It is located on the base station side. As shown in FIG. 3, the apparatus includes:
  • the obtaining module 32 is configured to acquire a synchronization signal
  • the sending module 34 is configured to repeatedly send the synchronization signal to the terminal period, and the synchronization signal is sent at a time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on one or more subframes in a repetition period, the synchronization
  • the signal is a primary synchronization signal PSS or a secondary synchronization signal SSS.
  • the obtaining module 32 is configured to acquire a synchronization signal
  • the transmitting module 34 is configured to repeatedly transmit the synchronization signal to the terminal period, and the plurality of orthogonal frequency divisions of the synchronization signal in one or more subframes in one repetition period
  • the signal is transmitted at a time corresponding to the technical OFDM symbol
  • the synchronization signal is a primary synchronization signal PSS or a secondary synchronization signal SSS, which solves the problem that the synchronization signal design is unreasonable in the narrowband system of LTE, and realizes the reasonable transmission of the synchronization signal of the narrowband system.
  • the transmission mode of the synchronization signal of the apparatus is the same as that of the above embodiment.
  • the obtaining module 32 is optional.
  • the solution in this embodiment may include only the sending module 34.
  • FIG. 4 is a block diagram 2 of a structure of a synchronization signal transmission apparatus according to an embodiment of the present invention, which is located on a terminal side, as shown in FIG. 4, the apparatus includes:
  • the receiving module 42 is configured to periodically receive the synchronization signal sent by the base station, and the synchronization signal is received at a time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on one or more subframes in a repetition period, where
  • the synchronization signal is a primary synchronization signal PSS or a secondary synchronization signal SSS;
  • a determination module 44 is arranged to determine the synchronization signal.
  • the receiving module 42 is configured to periodically receive the synchronization signal sent by the base station, and the synchronization signal is in a time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on one or more subframes in one repetition period.
  • the synchronization signal is a primary synchronization signal PSS or a secondary synchronization signal SSS, which solves the narrowband system in LTE, and the synchronization signal The problem of unreasonable design of the number realizes the reasonable transmission of the synchronization signal of the narrowband system.
  • the transmission mode of the synchronization signal of the apparatus is the same as that of the above embodiment.
  • the determining module 44 is optional, and the solution in this embodiment may include only the receiving module 42.
  • the preferred embodiment provides a method of transmitting a synchronization signal, which is a primary synchronization signal PSS or a secondary synchronization signal SSS.
  • the synchronization signal is repeatedly transmitted periodically, such as a repetition period of 20 ms or 40 ms or 60 ms or 80 ms.
  • the repetition period of PSS and SSS may be the same or different.
  • the transmission period of the PSS is 80 ms, which is sent in one or more subframes
  • the transmission period of the SSS is 20 ms, which is transmitted in one or more subframes.
  • a timing of 80 ms can be obtained by receiving the PSS.
  • the period of the transmission may also be non-uniform.
  • the PSS is located in consecutive k1 radio frames, and is transmitted in a period of T1 radio frames, T1 ⁇ k1, and the SSS is sent in a period of T2 radio frames.
  • T1>k1 the PSS can be considered to be transmitted in an uneven period.
  • the PSS is sent in a period of T3 radio frames, where the SSS is located in consecutive k2 radio frames, and is transmitted in a period of T4 radio frames, T4 ⁇ k2, or the PSS and the SSS are located in consecutive k3 radios.
  • T5 ⁇ k3 is transmitted in a period of T5 radio frames, wherein k1, k2, k3, T1, T2, T3, T4, and T5 are all positive integers.
  • PSS or SSS is sent in the first 40ms of 80ms, and it is sent every 10ms in the first 40ms, and PSS or SSS is not sent after 40ms.
  • the UE can obtain the timing of 80 ms according to the large period, thereby saving the indication bit number of the system frame number in the MIB.
  • the resources occupied by the PSS/SSS in one repetition period are as follows.
  • the PSS/SSS can occupy one subframe or multiple subframes in one repetition period.
  • the PSS/SSS can be sent in consecutive or discontinuous subframes if the transmitted subframe is a Multicast/Multicast Single Frequency Network (MBSFN) subframe and has many physical The broadcast channel (Physical Multicast Channel, PMCH for short) is sent, and the PSS/SSS information is destroyed. Or the transmit subframe of the PSS/SSS may be selected on the subframes 0, 4, 5, and 9 to avoid the influence of the MBSFN subframe.
  • MBSFN Multicast/Multicast Single Frequency Network
  • the PSS/SSS may be located in subframes 4 and 5 of one radio frame, or in subframe 9 of one radio frame and subframe 0 of the next radio frame.
  • the PSS/SSS occupies multiple OFDM symbols in time, where the OFDM symbol is a symbol defined in the existing LTE, for example, for a normal CP, a 1 ms subframe is divided into two 0.5 ms.
  • the time slot and the index of the time slot are 0 and 1, respectively, and may also be referred to as a first time slot and a second time slot.
  • Each time slot contains 7 symbols, and the indexes are 0 to 6, respectively, which may also be referred to as a first symbol, a second symbol, ..., a seventh symbol; for an extended CP, a 1 ms subframe is also divided into Two 0.5ms time slots, the index of which is 0 and 1, respectively, may also be referred to as the first time slot and the second time slot.
  • Each time slot contains 6 symbols, and the indexes are 0 to 5, which may also be referred to as a first symbol, a second symbol, ..., The sixth symbol.
  • this OFDM symbol is referred to as a reference symbol.
  • the PSS/SSS can occupy consecutive reference symbols or can occupy reference symbols without CRS transmission.
  • 5 is a schematic diagram of reference symbols continuously occupied by PSS/SSS according to a preferred embodiment of the present invention
  • FIG. 6 is a schematic diagram of reference symbols of discontinuous occupancy of PSS/SSS according to a preferred embodiment of the present invention, as shown in FIGS. 5 and 6. Shown, two examples of reference symbols occupied by PSS/SSS are given, Figure 5 is continuous occupancy, and Figure 6 is non-continuous occupancy.
  • the reference symbols used to transmit the synchronization signal are symbols in the following set: the third, fourth reference symbols and the last two reference symbols of each time slot. Since the third symbol of the slot whose index is even is generally used for the transmission of the PDCCH, it is preferable that the third symbol of the slot whose index is even is not included.
  • the fourth symbol of each slot is a CRS, and therefore, preferably, the fourth symbol of each slot is not included.
  • the number of reference symbols used to transmit the synchronization signal is one of 5, 6, and 7.
  • the number of reference symbols used to transmit the synchronization signal may also be one of 8, 10, 12.
  • the synchronization signal can be transmitted on an MBSFN subframe. Alternatively, it can be sent in a subframe of a standalone scene.
  • the reference signal should be marked with the PSS/SSS symbol.
  • the reference signal includes CRS, CSI-RS, PRS, DMRS, and the like.
  • the number of symbols occupied by the PSS and the SSS may be the same or different.
  • the number of subframes occupied by the PSS and the SSS may be the same or different. For example, the PSS occupies one subframe, and the SSS occupies two subframes.
  • the CRS is not sent on the reference symbol where the synchronization signal is located.
  • the index is 0 to 13
  • the synchronization signal occupies the reference symbols #5 to 13, so that the CRS is not transmitted on the reference symbols #5 to 13.
  • the reference signal is transmitted only on the first q reference symbols, and q is a preset positive integer.
  • q 1 or 2.
  • the signal form of PSS/SSS includes:
  • the subcarrier spacing of the PSS/SSS transmission may be less than 15 kHz, that is, different from the existing LTE subcarrier spacing.
  • the subcarrier spacing of the M OFDM symbols may be the same or different.
  • the PSS/SSS includes a total of 2 OFDM symbols, the first OFDM symbol subcarrier spacing is 15 kHz, and is transmitted on the reference symbol #4 of the first slot, and the second OFDM symbol subcarrier spacing is 7.5 kHz.
  • the first time slot is transmitted on reference symbols #5, 6.
  • the subcarrier spacing is 15 kHz, and the OFDM symbol corresponds to one reference symbol.
  • the subcarrier spacing is 7.5 KHz
  • the OFDM symbol corresponds to 2 consecutive reference symbols, that is, an OFDM symbol with a subcarrier spacing of 7.5 KHz is transmitted over the duration of two consecutive reference symbols.
  • the two reference symbols are one of: the third and fourth symbols of each time slot, or the last two symbols of each time slot. If the third symbol of the slot with an even index is considered for transmission of the PDCCH, the third and fourth symbols of the slot with an even index should not be included.
  • there is a CRS on the fourth symbol of each slot so the OFDM symbol only corresponds to the last two symbols of each slot.
  • the OFDM symbol corresponds to 4 consecutive reference symbols.
  • the OFDM symbol is transmitted on an MBSFN subframe.
  • the synchronization signal includes a plurality of sequences that are generated based on cell identification and/or timing information.
  • a specific generation method will be given in the following embodiments.
  • each OFDM symbol included in the PSS/SSS corresponds to a complete sequence, for example, within one repetition period, the PSS/SSS includes 4 OFDM symbols, and each symbol corresponds to a complete sequence, or
  • the synchronization signal comprises a plurality of OFDM symbols corresponding to a complete sequence, wherein the each OFDM symbol corresponds to a subsequence of the complete sequence, for example, within one repetition period, the PSS/SSS includes 8 OFDM Symbol, 4 symbols correspond to a complete sequence, the complete sequence is divided into 4 segments, each segment corresponds to a symbol, or,
  • each subframe corresponds to a sequence.
  • the mapping relationship between resources and sequences occupied by PSS/SSS in a repetition period includes:
  • the time corresponding to the reference symbol is divided into two parts, and each part corresponds to a complete sequence.
  • the two parts may be divided into two parts according to chronological order. For example, when the synchronization signal is transmitted at a time corresponding to 5 reference symbols, a part includes the time corresponding to the first 3 reference symbols, and a part includes the remaining 2 reference symbols. time. Alternatively, the reference symbol of the slot whose index is even is part, and the reference symbol of the slot whose index is odd is another part. For the case where the synchronization signal is transmitted at a time corresponding to 5 or 7 reference symbols, each sequence may occupy a part of the frequency domain on the middle reference symbol.
  • the two parts are respectively the time corresponding to the reference symbol of the odd index and the time corresponding to the reference symbol of the even index.
  • the index is an index obtained by re-numbering the reference symbols corresponding to the synchronization signal from 0 in chronological order. For example, when the synchronization signal is transmitted at the time corresponding to the six reference symbols, the index is 0-5, respectively, then the reference symbols #0, 2, 4 are part, and the remaining symbols are another part.
  • the reference symbol of the CRS is a part, and the remaining reference symbols are another part. That is, a portion including the first, second, and third-to-last symbols of each time slot is one or more of a portion, and the other portion includes one or more of the remaining reference symbols.
  • This embodiment provides a transmission method of PSS.
  • the PSS may occupy one subframe, or multiple subframes.
  • the PSS may be located in subframes 4 and 5 of one radio frame, or in subframe 9 of one radio frame and the sub-frame of the next radio frame.
  • the PSS is located on a plurality of reference symbols, and the multiple reference symbols may be located on one subframe or on multiple subframes.
  • the PSS occupies n(n>1) reference symbols in one subframe in one repetition period; or, the PSS occupies multiple subframes in one repetition period, and each subframe occupies one or more reference symbols, and each subframe
  • the number of reference symbols occupied on the same may be the same or different.
  • the reference symbols available for the PSS in one subframe are reference symbols 3 on the slot with an even index.
  • the reference symbols available for the PSS in one subframe are the reference symbols 2, 4, 5 on the slot with an even index and the odd index. Reference symbols 2, 3, 5, 6 on the gap. Synchronization performance can be improved because there is no interference from CRS. Or the PSS can also be located on the reference symbol where the CRS is located. At the location where the CRS is sent, the PSS symbol is removed and the CRS is sent.
  • the eNB may configure the subframe in which the PSS is transmitted as an MBSFN subframe, so that the interference of the CRS on the synchronization channel may be reduced.
  • the PSS in one repetition period, includes M OFDM symbols, and the subcarrier spacing of the mth (1 ⁇ m ⁇ M) OFDM symbols is 15/A m KHz, where A m is a positive integer
  • a m 1, 2, 3, 4, 5, 6.
  • Each/multiple OFDM symbols correspond to one sequence, and the sequence may be a ZC sequence, or an m sequence, or an M sequence, or a wash sequence, this embodiment No restrictions.
  • each subcarrier may have a width of 7.5 kHz, then a total of 24 subcarriers, then a ZC sequence of 23, or a ZC sequence of 24, or a ZC sequence of 25 may be used according to a preset rule.
  • a sequence of lengths of 24 obtained by one symbol is not limited to these values in practical applications.
  • the ZC sequence is generated in the frequency domain, the symbol corresponding to the DC position is deleted, for example, the sequence length is 11, and the most middle symbol is destroyed.
  • the OFDM symbol corresponding sequences of the PSS may be the same or different.
  • the PSS contains a sequence and a conjugate of the sequence.
  • the sequence on the first 4 symbols is s
  • the sequences on the last 4 symbols are conjugates of s.
  • the first 4 symbols correspond to a long sequence, such as a length of 47, and the last 4 symbols are also 47 in length, corresponding to the conjugate of the long sequence.
  • the transmission sequence of the PSS can be the same, that is, the PSS is only used for timing, and no other information is transmitted. Or PSS can carry some information.
  • the PSS can be used to indicate partial cell identification information, such as among them, For the community identity, The value ranges from 0 to 167. The value ranges from 0 to 2.
  • the three ZC sequences are ZC1, ZC2 and ZC3, respectively.
  • the ZCi is sent on the n symbols of the transmitting PSS.
  • the root sequences of the three different ZC sequences may be different, or the root sequences may be identical or partially identical, but the cyclic shifts corresponding to the same root sequence are different.
  • sequences on every 3 symbols is the same, and there are 3 sequences, which are ZC1, ZC2, and ZC3, respectively.
  • the order of the sequences on the 9 symbols is ZC1 (first 3 symbols), ZC2 (3 symbols in the middle), and ZC3 (last 3 symbols);
  • the order of the sequences on the 9 symbols is ZC2 (first 3 symbols), ZC3 (3 symbols in the middle), and ZC1 (last 3 symbols);
  • the order of the sequences on the nine symbols is ZC3 (first 3 symbols), ZC1 (3 symbols in the middle), and ZC2 (last 3 symbols).
  • This embodiment provides a transmission method of an SSS.
  • the SSS is repeatedly sent.
  • the repetition period of the SSS is preset, for example, 20ms or 40ms or 60ms. In practical applications, it is not limited to these periodic values.
  • the SSS may be located on multiple reference symbols, such as reference symbols that do not include a CRS, for example, for a normal CP, except for the first three possible reference symbols that may be used for the PDCCH, one subframe may be used.
  • the reference symbols of the SSS are reference symbols 3, 5, 6 on the even-numbered time slots and reference symbols 2, 3, 5, 6 on the odd-numbered time slots.
  • the reference symbols available for the SSS in one subframe are the reference symbols 2, 4, 5 on the slot with an even index and the odd index. Reference symbols 2, 3, 5, 6 on the gap. Synchronization performance can be improved because there is no interference from CRS.
  • the SSS may also be located on the reference symbol where the CRS is located. At the location where the CRS is sent, the SSS reference symbol is discarded and the CRS is sent.
  • the PSS on each OFDM symbol is a sequence, and the sequence may be a ZC sequence, or an m sequence, or an M sequence, or a wash sequence, this embodiment No restrictions.
  • the subcarrier spacing of the PSS is the same as that of the existing LTE, that is, the subcarrier spacing is 15 kHz, which is not limited to such subcarrier spacing in practical applications.
  • each symbol transmits a sequence, which may be a ZC sequence or an m sequence, preferably a ZC sequence.
  • a sequence which may be a ZC sequence or an m sequence, preferably a ZC sequence.
  • multiple OFDM symbols may also correspond to one sequence, which is not limited in the present invention.
  • the SSS is sent on six reference symbols in one subframe, corresponding to six ZC sequences, or sent on 12 reference symbols in two consecutive subframes, corresponding to 12 ZC sequences, and the actual application is not limited to this. value.
  • Different cell identification information and timing information are indicated by M ZC sequences.
  • the timing information is exemplified.
  • the ZC sequence is sent in a period of 20 ms, and the timing information can be used to indicate location information of the current 20 ms in 80 ms, for example, by using 2 bits, so that the UE can receive the SSS. Get a timing of 80ms.
  • the value of the cell identifier in the LTE range is 0 to 503. If all the SSS indications usually require 9 bits to indicate, and the timing 2 bits information is added, the SSS needs to indicate 11 bits of information.
  • the M OFDM symbols correspond to M sequences without loss of generality, assuming that it is 6 ZC sequences, as follows:
  • N zc 11 is the length of the ZC sequence
  • u i ⁇ 1,2,...,N zc -1 ⁇ is the root sequence index of the ZC sequence on the ith symbol.
  • Cell identification and/or timing information can therefore be indicated by a combination of (u 1 , u 2 , ..., u 6 ).
  • the combination of (u 1 , u 2 , . . . , u 6 ) is sufficient to indicate 11 bit information.
  • the set of u i may also be a subset of the set ⁇ 1, 2, ..., N zc -1 ⁇ .
  • the SSS is only used to indicate cell identification information.
  • the SSS includes six ZC sequences, and there are three root sequence indexes in the set of u i , which are renumbered as indexes 0, 1, and 2, then the six ZC sequences can be It is used to indicate the 6-th power state of 3, that is, 729 states, and thus is sufficient for indicating the cell identity. Then the cell identity satisfies the following formula:
  • w i is the index of the root sequence of the ZC sequence on the i+1th symbol, and the value is 0, 1, 2.
  • a root sequence and a cyclic shift joint indication may be used, for example, (u 1 , CS 1 , u 2 , CS 2 , . . . , u 6 , CS 6 ) jointly indicate cell identification and timing information.
  • CS 1 , CS 2 ... CS 6 are cyclic shift values of the ZC sequence on the i-th symbol of the six symbols, respectively.
  • the SSS is a sequence, such as occupying multiple reference symbols.
  • the long sequence is transmitted on multiple reference symbols after being segmented in the time domain, and the subcarrier spacing is 15 kHz. Information is indicated by a long sequence design on these two sub-frames. The details will be described below.
  • each subframe occupies 6 reference symbols, a total of 72 REs, and the SSS is a ZC sequence of 71, as follows
  • the cell identity satisfies the following formula:
  • w i is an index of the root sequence of the ZC sequence on the i+1th subframe of the two subframes, and the values are 0, 1, 2, ... 69.
  • the root sequence and the cyclic shift joint indication may also be used, for example, using (u 1 , CS 1 , u 2 , CS 2 ) to jointly indicate the cell identity and timing information.
  • CS 1 and CS 2 are cyclic shift values of the ZC sequence on the i-th subframe of the two subframes, respectively.
  • the SSS may include one or more sequences, where each sequence may be generated by a plurality of sub-sequences, with different mapping positions of the plurality of sub-sequences to indicate information.
  • each sequence of the SSS is generated, for example, by two sequences, which are s 0 (n) and s 1 (n), respectively.
  • n f is the radio frame index
  • the sequence transmitted is as shown in equation (1)
  • the sequence transmitted at the radio frame 4n+2 is as in equation (2).
  • a timing of 40 ms can be obtained.
  • s 0 (n) and s 1 (n) may be generated according to a cell identifier, such as a cell identifier and a root sequence of the ZC sequence and a cyclic shift one-to-one correspondence.
  • the PSS/SSS symbol is removed.
  • the power of the PSS/SSS transmission sequence is the same as the CRS.
  • This embodiment provides a method for transmitting a synchronization signal.
  • the synchronization signal is composed of multiple OFDM sequences, and each OFDM symbol corresponds to one sequence.
  • the OFDM symbol occupied by the synchronization signal is an OFDM symbol in an existing LTE system, that is, a symbol having a subcarrier width of 15 kHz.
  • sequence length Assuming a sequence length of 11, there are a total of 10 available sequences. In practical applications, the sequence length is not limited. Assuming that the available sequence is a ZC sequence, as shown below,
  • N is the sequence length, where the value is 11, and u is the root sequence index, which is an integer from 1 to 10.
  • the root index has poor performance against the frequency offset on both sides, and the anti-frequency offset performance in the middle is better, that is, the anti-frequency offset performance ranks the root sequence index as:
  • i is less than Positive integers, the two root sequences in parentheses perform similarly.
  • the sequence of anti-frequency preferences is placed on symbols without CRS.
  • a sequence of anti-frequency preferences is placed on two physically adjacent symbols without CRS. For example, the last two symbols of a time slot in an LTE subframe. Not limited to this example.
  • a conventional CP is used, and there are 14 symbols in one subframe, which are sequentially numbered 0, 1, 2, 3, ..., 13. in chronological order.
  • the index of the symbol with CRS is 0, 1, 4, 7, 8. 11, the rest are symbols without CRS. It is assumed that the synchronization signal occupies the last 11 symbols. In actual applications, the number of symbols and the position are not limited.
  • the sequence with better frequency offset performance is placed, that is, the root sequence index placed on each of the symbols #5, 6, 9, 10, 12, 13 is 5, 6
  • the symbol and the root sequence index are in one-to-one correspondence, and the correspondence relationship is not limited.
  • the sequence of the root sequence index of 5 is transmitted on symbol #5, and the root sequence index of symbol #6 is 6
  • the sequence, the sequence of the transmission root sequence index of 4 on symbol #9, the sequence of the root sequence index of 7 on symbol #10, the sequence of the root sequence index of 3 on symbol #12, and the root sequence index of symbol #13 A sequence of 8.
  • An example is the 11 symbols, that is, the root sequence indexes corresponding to the symbols #3 to 13 are sequentially 2, 9, 3, 8, 1, 10, 4, 7, 5, 6, and 5.
  • Table 1 gives a few Examples of the root sequence index are not limited to the following examples in practice.
  • root sequence index on the 11 symbols is one of the following in chronological order:
  • adjacent symbols correspond to a pair of conjugate sequences, ie Where i is less than Positive integer.
  • i is less than Positive integer.
  • Table 1 the symbols #3 and 4 in Table 1 above correspond to 2 and 9, respectively, and the order may be adjusted in practical applications, corresponding to 9 and 2, or may also correspond to other conjugate sequences, such as 5 and 6.
  • adjacent symbols without CRS correspond to a pair of conjugate sequences.
  • the 11 symbols correspond to 10 different root sequences, and the sequence on one symbol is the same as the sequence on other symbols, and is referred to as a repeated sequence in the present invention.
  • the sequence on the third last symbol is identical to the sequence on the other symbols.
  • the repeating sequence is one of the best sequences against frequency offset performance, such as one of the.
  • the repeating sequence is the sequence on the last symbol, or the sequence on the first symbol, or the sequence on the first symbol on the second time slot, or the second time slot A sequence on three symbols.
  • the synchronization signal occupies the last 9 OFDM symbols, and has the symbol of CRS.
  • the index is 0, 1, 3, 6, 7, 9, and the rest are symbols without CRS.
  • the sequence with better frequency offset performance is placed, that is, the root sequence index placed on each of the symbols #4, 5, 10, 11 is 5, 6, 4, 7 one of the.
  • One symbol in the sequence and the root sequence index are in one-to-one correspondence, and the correspondence relationship is not limited.
  • the sequence of the transmission root sequence index of 5 on symbol #4 and the sequence of the root sequence index of 6 on symbol #5 are transmitted on symbol #10.
  • the root sequence indexes corresponding to the nine symbols are 1, 5, 6, 2, 9, 3, 8, 4, and 7, respectively.
  • Table 2 some examples are given, and the practical examples are not limited to the following examples.
  • root sequence index on the nine symbols is one of the following in chronological order:
  • the nine symbols correspond to nine different root sequences, and the corresponding root sequences are different on each symbol, corresponding to the nine root sequences with the best frequency offset, and the nine different root sequences are Except for the 9 root sequences whose index is 1, or 9 root sequences except the index 9.
  • the sequence pair of anti-frequency preferences is placed on the symbol with the CRS.
  • the root sequence indexes corresponding to the 11 symbols are 4, 7, 1, 10, 5, 6, 2, 9, 8, 3, 8, respectively, and the extended CPs 6, 1, 10, 4, 7, 3, 8, 2, 9.
  • sequences are grouped and the sequences to be protected are placed on symbols without CRS.
  • the sequence to be protected may be a sequence that is strong against frequency, or may be a sequence that is weak against frequency.
  • the symbol without the CRS in which the sequence to be protected is located may be arbitrarily selected.
  • the root index of the ZC sequence is grouped, and the specific grouping manner includes at least one of the following:
  • the third group
  • the third group
  • the first set of ZC sequences are mapped onto a first OFDM symbol
  • the second set of ZC sequences are mapped onto a second OFDM symbol
  • the third set of ZC sequences are mapped onto a third OFDM symbol
  • the An OFDM symbol includes a symbol with an index number of ⁇ 5, 6, 9, 10, 12, 13 ⁇ in a subframe
  • the second OFDM symbol includes a number ⁇ 3, 4 ⁇ in the subframe
  • the third OFDM symbol Includes symbols with indices ⁇ 7, 8 ⁇ in the sub-frame.
  • the last 11 symbols of one subframe are used to transmit the synchronization signal.
  • the root sequence index of the sequence corresponding to the 11 symbols may be sequentially cyclic, that is, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, x.
  • x can be any one of any of 1 to 10.
  • the root index x of the sequence on the last symbol can be 1 or 5 or 6.
  • sequence on the symbol may be end-to-tail conjugated, such as 1, 2, 3, 4, 5, x, 6, 7, 8, 9, 10.
  • x can be any one of any of 1 to 10.
  • x can be 1 or 5 or 6.
  • the sequence on the adjacent symbol is conjugate, and the repeated sequence is on the most middle symbol, such as 1, 10, 2, 9, 3, x, 8, 4, 7. , 5, 6.
  • x is a repeating sequence, on the symbol in the middle of a pair of conjugated sequences.
  • the sequence x on the last symbol can be 1 or 5 or 6.
  • the sequence on the symbol corresponds to a pair of conjugate sequences, for example, the root sequence index corresponding to the first five symbols is The root sequence index corresponding to the last 6 symbols is
  • the synchronization signal is composed of multiple OFDM sequences, and each OFDM symbol corresponds to one sequence.
  • the OFDM symbol occupied by the synchronization signal is an OFDM symbol in an existing LTE system, that is, a symbol having a subcarrier width of 15 kHz.
  • the PSS and/or the SSS are transmitted on 11 subcarriers
  • the downlink carrier includes 12 subcarriers
  • the downlink carrier may be a carrier used by the NB-IoT system to transmit downlink information, and the actual application is not limited to NB-IoT. system.
  • This embodiment gives the location of the 11 subcarriers in the downlink carrier.
  • the 11 subcarriers are the lowest frequency 11 subcarriers of the 12 subcarriers, or the highest frequency 11 subcarriers of the 12 subcarriers.
  • the location of the 11 subcarriers is determined by a cell identifier, and the probability of collision between the synchronization signal and the CRS is reduced.
  • the 11 subcarriers are the 11 most frequent subcarriers of the 12 carrier waves.
  • the cell identity modulo 3 is 2
  • the 11 subcarriers are the lowest of the 12 subcarriers.
  • 11 subcarriers are the lowest frequency 11 subcarriers of the 12 subcarriers, or the 11 most subcarriers of the 12 subcarriers.
  • the number of REs occupied by the CRS is at most 3.
  • FIG. 7 is a schematic diagram of an RE corresponding to a ZC sequence in accordance with a preferred embodiment of the present invention, as shown in FIG. 7, an example is given.
  • the "mod" identifier is modulo
  • the RE of the dotted portion is an RE with a CRS
  • the Nid is a cell identifier.
  • the RE corresponding to the ZC sequence is as shown in FIG.
  • the 11 subcarriers are 11 subcarriers with the highest frequency among the 12 carrier waves.
  • the 11 subcarriers are the lowest of the 12 subcarriers.
  • 11 subcarriers are the lowest frequency 11 subcarriers of the 12 subcarriers, or the 11 most subcarriers of the 12 subcarriers.
  • the location of the 11 subcarriers is determined by a location of the 12 subcarriers and/or a frequency offset of a center frequency of the 12 subcarriers and an integer multiple of a nearest 100 kHz.
  • the position of the 11 subcarriers is determined by the PRB index corresponding to the 12 subcarriers or the frequency offset of the center frequency of the PRB and the nearest multiple of 100 kHz.
  • the position of 11 subcarriers in the odd bandwidth is given in Table 3. As shown in Table 3, when the system bandwidth is 5 MHz, if the synchronization signal is transmitted on PRB #17 or 22, the PSS has the lowest frequency in the PRB.
  • the 11 subcarriers are transmitted; if the synchronization signal is transmitted on PRB #2 or 7, the PSS is transmitted on the 11 most frequent subcarriers in the PRB.
  • the rest of the system has similar bandwidth.
  • the receiving PSS may have no fixed frequency offset. For the guard band, it is similar.
  • the 11 subcarriers are the highest frequency 11 subcarriers of the 12 subcarriers, when the center of the 12 subcarriers The frequency point is greater than an integer multiple of the nearest 100 kHz, and the 11 subcarriers are the lowest frequency 11 subcarriers among the 12 subcarriers.
  • the eNB transmits the 11 long sequence on 11 consecutive subcarriers.
  • the sequence value on a certain subcarrier may be destroyed. For example, if the most intermediate sequence value is destroyed, the middlemost subcarriers do not transmit signals among the 11 consecutive subcarriers, and the other 10 subcarriers transmit corresponding signals.
  • the sequence value In practice, it is not limited to knocking out the most intermediate sequence values.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the storage medium may be configured to store program code for performing the method steps of the above embodiment:
  • the storage medium is further arranged to store program code for performing the method steps of the above-described embodiments:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs the method steps of the foregoing embodiments according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the base station repeatedly transmits the synchronization signal to the terminal period; in a repetition period, the synchronization signal is sent at a time corresponding to the OFDM symbols of the multiple orthogonal frequency division multiplexing technologies on one or more subframes, where
  • the synchronization signal is the primary synchronization signal PSS or the secondary synchronization signal SSS, or the terminal periodically repeats the synchronization signal sent by the base station, which solves the problem that the synchronization signal design is unreasonable in the narrowband system of LTE, and realizes the synchronization signal of the narrowband system.
  • Reasonable transmission is the problem that the synchronization signal design is unreasonable in the narrowband system of LTE, and realizes the synchronization signal of the narrowband system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明提供了一种同步信号的传输方法及装置,其中,该方法包括:基站向终端周期重复发送同步信号;在一个重复周期内,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,该同步信号是主同步信号PSS或者辅同步信号SSS,或者,终端周期重复接收基站发送的该同步信号,解决了在LTE的窄带系统,同步信号设计不合理的问题,实现了该窄带系统同步信号的合理传输。

Description

同步信号的传输方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种同步信号的传输方法及装置。
背景技术
机器类型通信(Machine Type Communication,简称为MTC)用户终端(User Equipment,简称用户设备或终端),又称机器到机器(Machine to Machine,简称M2M)用户通信设备,是目前物联网的主要应用形式。在第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)技术报告TR45.820V200中公开了几种适用于蜂窝级物联网(Cellular Internet of Things,简称为C-IOT)的技术,其中,窄带LTE(Narrowband LTE,简称为NB-LTE)技术最为引人注目。该系统的系统带宽为200kHz,与全球移动通信(Global system for Mobile Communication,简称为GSM)系统的信道带宽相同,这为NB-LTE系统重用GSM频谱并降低邻近与GSM信道的相互干扰带来了极大便利。NB-LTE的发射带宽与下行链路子载波间隔分别为180kHz和15kHz,分别与长期演进(Long-Term Evolution,简称为LTE)系统一个物理资源块(Physical Resource Block,简称为PRB)的带宽和子载波间隔相同。对于这种窄带系统,现有LTE中的占用6个PRB的主同步信号(Primary Synchronization Signal,简称为PSS)和辅同步信号(Secondary Synchronization Signal,简称为SSS),的设计不再适用,需要重新设计PSS/SSS。
针对相关技术中,在LTE的窄带系统,同步信号设计不合理的问题,目前还没有有效的解决方案。
发明内容
本发明实施例提供了一种同步信号的传输方法及装置,以至少解决相关技术中在LTE的窄带系统,同步信号设计不合理的问题。
根据本发明实施例的一个方面,提供了一种同步信号的传输方法,包括:
基站向终端周期重复发送同步信号;
在一个重复周期内,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,所述同步信号是主同步信号PSS或者辅同步信号SSS。
可选地,对于所述一个子帧或者多个子帧中的一个子帧,所述多个OFDM符号包括所述一个子帧中的连续多个OFDM符号,或者,
所述同步信号在所述一个或者多个子帧上发送时,所述多个OFDM符号为预设集合中的符号,所述集合包括每个时隙的第三个OFDM符号、第四个OFDM符号和最后两个OFDM 符号。
可选地,所述PSS位于连续的k1个无线帧,以T1个无线帧为周期发送,T1≥k1,所述SSS以T2个无线帧为周期发送,或者,
所述PSS以T3个无线帧为周期发送,所述SSS位于连续的k2个无线帧,以T4个无线帧为周期发送,T4≥k2,或者,
所述PSS和所述SSS位于连续的k3个无线帧上,以T5个无线帧为周期发送,T5≥k3;
其中,k1、k2、k3、T1、T2、T3、T4、T5均为正整数。
可选地,在一个重复周期内,所述同步信号包含M个OFDM符号,第m个OFDM符号的子载波间隔为15/AmKHz,其中1≤m≤M,m,M和Am均为正整数。
可选地,当Am=2时,子载波间隔为7.5KHz,所述OFDM符号对应2个连续的OFDM符号,所述2个连续的OFDM符号包括以下之一:
一个时隙的第三个OFDM符号和第四个OFDM符号,或者一个时隙的最后两个OFDM符号;
当Am=4时,子载波间隔为3.75KHz,所述OFDM符号对应4个连续的OFDM符号。
可选地,对于独立运营standalone场景,在所述同步信号所在的所述一个或者多个子帧上,所述同步信号对应的所述OFDM符号上,不发送参考信号,或者,
对于standalone场景,在所述同步信号所在的所述一个或者多个子帧上,参考信号仅在前q个所述OFDM符号上发送,q为正整数。
可选地,在一个重复周期内,所述同步信号包含多个序列,所述多个序列根据小区标识和/或定时信息生成。
可选地,在一个重复周期内,所述同步信号包含多个序列包括,
在一个重复周期内,所述同步信号包含的每个OFDM符号对应一个序列;或者,
在一个重复周期内,所述同步信号包含的多个OFDM符号对应一个序列,其中所述每个OFDM符号对应所述序列的子序列;或者,
在一个重复周期内的多个子帧上,所述多个子帧中的每个子帧对应一个序列。
可选地,在一个重复周期内,所述同步信号包含的每个OFDM符号对应一个序列。
可选地,所述同步信号包含的每个OFDM符号对应一个长度为11的ZC序列;其中,所述同步信号对应的载波包含12个子载波。
可选地,在所述同步信号包含的所述每个OFDM符号或者所述多个OFDM符号对应一个 序列的情况下,所述序列由所述序列对应的OFDM符号确定。
可选地,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送包括:
所述同步信号在m个所述OFDM符号对应的时间上发送,其中m∈{5,6,7,8,10,12}。
可选地,所述多个OFDM符号对应的时间包含两部分,所述两部分的每一部分对应一个序列,所述两部分包括:
所述两部分是按照时间顺序划分为两部分的,或者,
所述两部分分别为奇数索引的OFDM符号对应的时间和偶数索引的OFDM符号对应的时间;其中,所述索引是将所述同步信号对应的OFDM符号按照时间顺序重新从0开始编号后的索引。
可选地,在所述同步信号对应的所述OFDM符号上,对于不发送小区专用参考信号CRS的子载波,所述同步信号为:y(k)=x(k)·c,其中c=s(k0)/x(k0),其中,k0为所述符号上的预设资源块RE上的CRS的子载波索引,x(k0)为子载波#k0对应的PSS或者SSS序列的值,s(k0)为子载波#k0对应的CRS符号值。
根据本发明的另一个方面,还提供了一种同步信号的传输方法,包括:
终端周期重复接收基站发送的同步信号;
在一个重复周期内,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收,所述同步信号是主同步信号PSS或者辅同步信号SSS。
可选地,对于所述一个子帧或者多个子帧中的一个子帧,所述多个OFDM符号包括所述一个子帧中的连续多个OFDM符号,或者,
所述同步信号在所述一个或者多个子帧上接收时,所述多个OFDM符号为预设集合中的符号,所述集合包括每个时隙的第三个OFDM符号、第四个OFDM符号和最后两个OFDM符号。
可选地,所述PSS位于连续的k1个无线帧,以T1个无线帧为周期接收,T1≥k1,所述SSS以T2个无线帧为周期接收,或者,
所述PSS以T3个无线帧为周期接收,所述SSS位于连续的k2个无线帧,以T4个无线帧为周期接收,T4≥k2,或者,
所述PSS和所述SSS位于连续的k3个无线帧上,以T5个无线帧为周期接收,T5≥k3;
其中,k1、k2、k3、T1、T2、T3、T4、T5均为正整数。
可选地,在一个重复周期内,所述同步信号包含M个OFDM符号,第m个OFDM符号的子载波间隔为15/AmKHz,其中1≤m≤M,m,M和Am均为正整数。
可选地,当Am=2时,子载波间隔为7.5KHz,所述OFDM符号对应2个连续的OFDM符号,所述2个连续的OFDM符号符号包括以下之一:
一个时隙的第三个OFDM符号和第四个OFDM符号,或者一个时隙的最后两个OFDM符号;
当Am=4时,子载波间隔为3.75KHz,所述OFDM符号对应4个连续的OFDM符号。
可选地,对于独立运营standalone场景,在所述同步信号所在的所述一个或者多个子帧上,所述同步信号对应的所述OFDM符号上,不接收参考信号,或者,
对于standalone场景,在所述同步信号所在的所述一个或者多个子帧上,参考信号仅在前q个所述OFDM符号上接收,q为正整数。
可选地,在一个重复周期内,所述同步信号包含多个序列,所述多个序列根据小区标识和/或定时信息生成。
可选地,在一个重复周期内,所述同步信号包含多个序列包括,
在一个重复周期内,所述同步信号包含的每个OFDM符号对应一个序列;或者,
在一个重复周期内,所述同步信号包含的多个OFDM符号对应一个序列,其中所述每个OFDM符号对应所述序列的子序列;或者,
在一个重复周期内的多个子帧上,所述多个子帧中的每个子帧对应一个序列。
可选地,在所述同步信号包含的所述每个OFDM符号或者所述多个OFDM符号对应一个序列的情况下,所述序列由所述序列对应的OFDM符号确定。
可选地,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收包括:
所述同步信号在m个所述OFDM符号对应的时间上接收,其中m∈{5,6,7,8,10,12}。
可选地,所述多个OFDM符号对应的时间包含两部分,所述两部分的每一部分对应一个序列,所述两部分包括:
所述两部分是按照时间顺序划分为两部分的,或者,
所述两部分分别为奇数索引的OFDM符号对应的时间和偶数索引的OFDM符号对应的时间;其中,所述索引是将所述同步信号对应的OFDM符号按照时间顺序重新从0开始编号后的索引。
可选地,在所述同步信号对应的所述OFDM符号上,对于不接收小区专用参考信号CRS的子载波,所述同步信号为:y(k)=x(k)·c,其中c=s(k0)/x(k0),其中,k0为所述符号上的预设资源块RE上的小区专用参考信号CRS的子载波索引,x(k0)为子载波#k0对应的PSS或者SSS序列的值,s(k0)为子载波#k0对应的CRS符号值。
可选地,所述同步信号的位置由以下至少之一确定:
小区标识;
所述同步信号对应的频域位置或者是PRB索引或者是频偏。
可选地,当所述小区标识为X的时候,所述同步信号位于所述同步信号所在的物理资源块的后N个子载波上,当所述小区标识为Y的时候,所述同步信号位于所述同步信号所在的物理资源块的前N个子载波上,其中,N为正整数。
可选地,所述小区标识X满足mod(X,3)等于0,所述小区标识Y满足mod(Y,3)不等于0;或者,所述小区标识Y满足mod(Y,3)等于2,所述小区标识X满足mod(X,3)不等于2;所述小区标识X满足mod(X,6)等于0,所述小区标识Y满足mod(Y,6)不等于0;或者,所述小区标识Y满足mod(Y,6)等于5,所述小区标识X满足mod(X,6)不等于5。
可选地,所述同步信号包含的每个OFDM符号对应一个序列时,所述序列为长度11的ZC序列为:
Figure PCTCN2016099636-appb-000001
0≤n≤N-1,且相邻的OFDM符号上使用的根索引不同,其中,n表示序列值的索引,u表示ZC序列的根索引,N为ZC序列的长度,N=11。
可选地,对所述ZC序列的根索引进行分组,所述分组的方式包括以下至少之一:
方式1:第一组包括u={5,6,4,7,3,8}的ZC序列,第二组包括u={2,9}的ZC序列,第三组包括u={1,10}的ZC序列;
方式2:第一组包括u={1,10,2,9,3,8}的ZC序列,第二组包括u={4,7}的ZC序列,第三组包括u={5,6}的ZC序列;
其中,所述第二组和所述第三组的序列可以互换。
可选地,所述第一组ZC序列映射到第一OFDM符号上,所述第二组ZC序列映射到第二OFDM符号上,所述第三组ZC序列映射到第三OFDM符号上,其中,所述第一OFDM符号包括子帧中编号为{5,6,9,10,12,13}的符号,所述第二OFDM符号包括子帧中编号为{3,4},所述第三OFDM符号包括子帧中编号为{7,8}的符号,其中,所述子帧中符号编号从0开始。
可选地,所述同步信号在子帧中倒数第三个OFDM符号上使用的ZC序列与子帧中最后一个OFDM符号上使用的ZC序列相同;或者,与第二个时隙第一个OFDM符号使用的ZC序列相同;或者,与第一个时隙最后一个OFDM符号使用的ZC序列相同;或者,与所述同 步信号在子帧中的第一个OFDM符号使用的ZC序列相同。
可选地,当循环前缀为常规循环前缀时,所述同步信号包含的OFDM符号按照时间顺序对应的序列的根索引依次为以下之一:
{1,2,3,4,5,6,7,8,9,10,1};
{1,2,3,4,5,1,6,7,8,9,10};
{1,10,2,9,3,5,8,4,7,5,6};
{1,10,2,9,3,8,4,7,6,5,6};
{2,9,5,6,1,10,4,7,3,8,3};
{2,9,3,8,1,10,4,7,5,6,5}。
可选地,当循环前缀为扩展循环前缀时,所述同步信号包含的OFDM符号按照时间顺序对应的序列的根索引依次为以下之一:
{1,2,3,4,5,6,7,8,9};
{1,2,3,4,5,7,8,9,10};
{1,10,2,9,3,4,7,5,6};
{1,10,2,9,3,8,4,7,6};
{1,5,6,2,9,3,8,4,7};
{1,4,7,2,9,3,8,5,6}。
根据本发明实施例的另一个方面,还提供了一种同步信号的传输装置,位于基站侧,包括:
发送模块,设置为向终端周期重复发送同步信号;
在一个重复周期内,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,所述同步信号是主同步信号PSS或者辅同步信号SSS。
根据本发明实施例的另一个方面,还提供了一种同步信号的传输装置,位于终端侧,包括:
接收模块,设置为周期重复接收基站发送的同步信号;
在一个重复周期内,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收,所述同步信号是主同步信号PSS或者辅同步信号SSS。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
基站向终端周期重复发送同步信号;
在一个重复周期内,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,所述同步信号是主同步信号PSS或者辅同步信号SSS。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
所述同步信号在m个所述OFDM符号对应的时间上发送,其中m∈{5,6,7,8,10,12}。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
所述多个OFDM符号对应的时间包含两部分,所述两部分的每一部分对应一个序列,所述两部分包括:
所述两部分是按照时间顺序划分为两部分的,或者,
所述两部分分别为奇数索引的OFDM符号对应的时间和偶数索引的OFDM符号对应的时间;其中,所述索引是将所述同步信号对应的OFDM符号按照时间顺序重新从0开始编号后的索引。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
终端周期重复接收基站发送的同步信号;
在一个重复周期内,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收,所述同步信号是主同步信号PSS或者辅同步信号SSS。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
所述PSS位于连续的k1个无线帧,以T1个无线帧为周期接收,T1≥k1,所述SSS以T2个无线帧为周期接收,或者,
所述PSS以T3个无线帧为周期接收,所述SSS位于连续的k2个无线帧,以T4个无线帧为周期接收,T4≥k2,或者,
所述PSS和所述SSS位于连续的k3个无线帧上,以T5个无线帧为周期接收,T5≥k3;
其中,k1、k2、k3、T1、T2、T3、T4、T5均为正整数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
对于独立运营standalone场景,在所述同步信号所在的所述一个或者多个子帧上,所述同步信号对应的所述OFDM符号上,不接收参考信号,或者,
对于standalone场景,在所述同步信号所在的所述一个或者多个子帧上,参考信号仅在前q个所述OFDM符号上接收,q为正整数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
在一个重复周期内,所述同步信号包含多个序列,所述多个序列根据小区标识和/或定时信息生成。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
在一个重复周期内,所述同步信号包含的每个OFDM符号对应一个序列;或者,
在一个重复周期内,所述同步信号包含的多个OFDM符号对应一个序列,其中所述每个OFDM符号对应所述序列的子序列;或者,
在一个重复周期内的多个子帧上,所述多个子帧中的每个子帧对应一个序列。
通过本发明实施例,基站向终端周期重复发送同步信号;在一个重复周期内,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,该同步信号是主同步信号PSS或者辅同步信号SSS,或者,终端周期重复接收基站发送的该同步信号,解决了在LTE的窄带系统,同步信号设计不合理的问题,实现了该窄带系统同步信号的合理传输。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种同步信号的传输方法的流程图一;
图2是根据本发明实施例的一种同步信号的传输方法的流程图二;
图3是根据本发明实施例的一种同步信号的传输装置的结构框图一;
图4是根据本发明实施例的一种同步信号的传输装置的结构框图二;
图5是根据本发明优选实施例的PSS/SSS连续占用的参考符号的示意图;
图6是根据本发明优选实施例的PSS/SSS非连续占用的参考符号的示意图;
图7是根据本发明优选实施例的ZC序列对应的RE的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种同步信号的传输方法,图1是根据本发明实施例的一种同步信号的传输方法的流程图一,如图1所示,该流程包括如下步骤:
步骤S102,基站获取同步信号;
步骤S104,基站向终端周期重复发送同步信号;在一个重复周期内,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,该同步信号是主同步信号PSS或者辅同步信号SSS。
通过上述步骤,基站向终端周期重复发送同步信号;在一个重复周期内,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,该同步信号是主同步信号PSS或者辅同步信号SSS,解决了在LTE的窄带系统,同步信号设计不合理的问题,实现了该窄带系统同步信号的合理传输。
在本实施例中,步骤S102是可选的,本实施例方案可以只包括步骤S104。
在本实施例中,对于该一个子帧或者多个子帧中的一个子帧,该多个OFDM符号包括该一个子帧中的连续多个OFDM符号,或者,
该同步信号在该一个或者多个子帧上发送时,该多个OFDM符号为预设集合中的符号,该集合包括每个时隙的第三个OFDM符号、第四个OFDM符号和最后两个OFDM符号。
在本实施例中,该PSS位于连续的k1个无线帧,以T1个无线帧为周期发送,T1≥k1,该SSS以T2个无线帧为周期发送,或者,
该PSS以T3个无线帧为周期发送,该SSS位于连续的k2个无线帧,以T4个无线帧为周期发送,T4≥k2,或者,
该PSS和该SSS位于连续的k3个无线帧上,以T5个无线帧为周期发送,T5≥k3;
其中,k1、k2、k3、T1、T2、T3、T4、T5均为正整数。
在本实施例中,在一个重复周期内,该同步信号包含M个OFDM符号,第m个OFDM符号的子载波间隔为15/AmKHz,其中1≤m≤M,m,M和Am均为正整数。
在本实施例中,当Am=2时,子载波间隔为7.5KHz,该OFDM符号对应2个连续的OFDM符号,该2个连续的OFDM符号包括以下之一:
一个时隙的第三个OFDM符号和第四个OFDM符号,或者一个时隙的最后两个OFDM符号;
当Am=4时,子载波间隔为3.75KHz,该OFDM符号对应4个连续的OFDM符号。
可选地,对于独立运营standalone场景,在该同步信号所在的所述一个或者多个子帧上,该同步信号对应的该OFDM符号上,不发送参考信号,或者,
对于standalone场景,在该同步信号所在的所述一个或者多个子帧上,参考信号仅在前q个该OFDM符号上发送,q为正整数。
在本实施例中,在一个重复周期内,该同步信号包含多个序列,该多个序列根据小区标识和/或定时信息生成。
在本实施例中,在一个重复周期内,该同步信号包含多个序列包括,
在一个重复周期内,该同步信号包含的每个OFDM符号对应一个序列;或者,
在一个重复周期内,该同步信号包含的多个OFDM符号对应一个序列,其中该每个OFDM符号对应该序列的子序列;或者,
在一个重复周期内的多个子帧上,该多个子帧中的每个子帧对应一个序列。
在本实施例中,在该同步信号包含的该每个OFDM符号或者该多个OFDM符号对应一个序列的情况下,该序列由该序列对应的OFDM符号确定。
在本实施例中,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送包括:
该同步信号在m个该OFDM符号对应的时间上发送,其中m∈{5,6,7,8,10,12}。
在本实施例中,该多个OFDM符号对应的时间包含两部分,该两部分的每一部分对应一个序列,该两部分包括:
该两部分是按照时间顺序划分为两部分的,或者,
该两部分分别为奇数索引的OFDM符号对应的时间和偶数索引的OFDM符号对应的时间;其中,该索引是将该同步信号对应的OFDM符号按照时间顺序重新从0开始编号后的索引。
在本实施例中,在该同步信号对应的该OFDM符号上,对于不发送小区专用参考信号CRS的子载波,该同步信号为:y(k)=x(k)·c,其中c=s(k0)/x(k0),其中,k0为该符号上的预设资源块RE上的CRS的子载波索引,x(k0)为子载波#k0对应的PSS或者SSS序列的值,s(k0)为子载波#k0对应的CRS符号值。
在本实施例中还提供了一种同步信号的传输方法,图2是根据本发明实施例的一种同步信号的传输方法的流程图二,如图2所示,该流程包括如下步骤:
步骤S202,终端周期重复接收基站发送的同步信号,在一个重复周期内,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收,该同步信号是主同步信号PSS或者辅同步信号SSS;
步骤S204,终端确定该同步信号。
通过上述步骤,终端周期重复接收基站发送的同步信号,在一个重复周期内,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收,该同步信号是主同步信号PSS或者辅同步信号SSS,解决了在LTE的窄带系统,同步信号设计不合理的问题,实现了该窄带系统同步信号的合理传输。
在本实施例中,步骤S204是可选的,本实施例方案可以只包括步骤S202。
在本实施例中,对于该一个子帧或者多个子帧中的一个子帧,该多个OFDM符号包括该一个子帧中的连续多个OFDM符号,或者,
该同步信号在该一个或者多个子帧上接收时,该多个OFDM符号为预设集合中的符号,该集合包括每个时隙的第三个OFDM符号、第四个OFDM符号和最后两个OFDM符号。
在本实施例中,该PSS位于连续的k1个无线帧,以T1个无线帧为周期接收,T1≥k1,该SSS以T2个无线帧为周期接收,或者,
该PSS以T3个无线帧为周期接收,该SSS位于连续的k2个无线帧,以T4个无线帧为周期接收,T4≥k2,或者,
该PSS和该SSS位于连续的k3个无线帧上,以T5个无线帧为周期接收,T5≥k3;
其中,k1、k2、k3、T1、T2、T3、T4、T5均为正整数。
在本实施例中,在一个重复周期内,该同步信号包含M个OFDM符号,第m个OFDM符号的子载波间隔为15/AmKHz,其中1≤m≤M,m,M和Am均为正整数。
在本实施例中,当Am=2时,子载波间隔为7.5KHz,该OFDM符号对应2个连续的OFDM符号,该2个连续的OFDM符号包括以下之一:
一个时隙的第三个OFDM符号和第四个OFDM符号,或者一个时隙的最后两个OFDM符号;
当Am=4时,子载波间隔为3.75KHz,该OFDM符号对应4个连续的OFDM符号。
可选地,对于独立运营standalone场景,在该同步信号所在的所述一个或者多个子帧上,该同步信号对应的该OFDM符号上,不接收参考信号,或者,
对于standalone场景,在该同步信号所在的所述一个或者多个子帧上,参考信号仅在前q个该OFDM符号上接收,q为正整数。
在本实施例中,在一个重复周期内,该同步信号包含多个序列,该多个序列根据小区标识和/或定时信息生成。
在本实施例中,在一个重复周期内,该同步信号包含多个序列包括,
在一个重复周期内,该同步信号包含的每个OFDM符号对应一个序列;或者,
在一个重复周期内,该同步信号包含的多个OFDM符号对应一个序列,其中该每个OFDM符号对应该序列的子序列;或者,
在一个重复周期内的多个子帧上,该多个子帧中的每个子帧对应一个序列。
在本实施例中,在一个重复周期内,该同步信号包含的每个OFDM符号对应一个序列。
在本实施例中,同步信号包含的每个OFDM符号对应一个长度为11的ZC序列;其中,该同步信号对应的载波包含12个子载波。
在本实施例中,在该同步信号包含的该每个OFDM符号或者该多个OFDM符号对应一个序列的情况下,该序列由该序列对应的OFDM符号确定。
在本实施例中,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收包括:
该同步信号在m个该OFDM符号对应的时间上接收,其中m∈{5,6,7,8,10,12}。
在本实施例中,该多个OFDM符号对应的时间包含两部分,该两部分的每一部分对应一个序列,该两部分包括:
该两部分是按照时间顺序划分为两部分的,或者,
该两部分分别为奇数索引的OFDM符号对应的时间和偶数索引的OFDM符号对应的时间;其中,该索引是将该同步信号对应的OFDM符号按照时间顺序重新从0开始编号后的索引。
在本实施例中,在该同步信号对应的该OFDM符号上,对于不接收小区专用参考信号CRS的子载波,该同步信号为:y(k)=x(k)·c,其中c=s(k0)/x(k0),其中,k0为该符号上的预设资源块RE上的小区专用参考信号CRS的子载波索引,x(k0)为子载波#k0对应的PSS或者SSS序列的值,s(k0)为子载波#k0对应的CRS符号值。
在本实施例中,所述同步信号的位置由以下至少之一确定:
小区标识;
所述同步信号对应的频域位置或者是PRB索引或者是频偏。
在本实施例中,当所述小区标识为X的时候,所述同步信号位于所述同步信号所在的物理资源块的后N个子载波上,当所述小区标识为Y的时候,所述同步信号位于所述同步信号所在的物理资源块的前N个子载波上,其中,N为正整数。
在本实施例中,所述小区标识X满足mod(X,3)等于0,所述小区标识Y满足mod(Y,3)不等于0;或者,所述小区标识Y满足mod(Y,3)等于2,所述小区标识X满足mod(X,3)不等于2; 所述小区标识X满足mod(X,6)等于0,所述小区标识Y满足mod(Y,6)不等于0;或者,所述小区标识Y满足mod(Y,6)等于5,所述小区标识X满足mod(X,6)不等于5。
在本实施例中,所述同步信号包含的每个OFDM符号对应一个序列时,所述序列为长度11的ZC序列为:
Figure PCTCN2016099636-appb-000002
0≤n≤N-1,且相邻的OFDM符号上使用的根索引不同,其中,n表示序列值的索引,u表示ZC序列的根索引,N为ZC序列的长度,N=11。
在本实施例中,对所述ZC序列的根索引进行分组,所述分组的方式包括以下至少之一:
方式1:第一组包括u={5,6,4,7,3,8}的ZC序列,第二组包括u={2,9}的ZC序列,第三组包括u={1,10}的ZC序列;
方式2:第一组包括u={1,10,2,9,3,8}的ZC序列,第二组包括u={4,7}的ZC序列,第三组包括u={5,6}的ZC序列;
其中,所述第二组和所述第三组的序列可以互换。
在本实施例中,所述第一组ZC序列映射到第一OFDM符号上,所述第二组ZC序列映射到第二OFDM符号上,所述第三组ZC序列映射到第三OFDM符号上,其中,所述第一OFDM符号包括子帧中编号为{5,6,9,10,12,13}的符号,所述第二OFDM符号包括子帧中编号为{3,4},所述第三OFDM符号包括子帧中编号为{7,8}的符号,其中,所述子帧中符号编号从0开始。
在本实施例中,所述同步信号在子帧中倒数第三个OFDM符号上使用的ZC序列与子帧中最后一个OFDM符号上使用的ZC序列相同;或者,与第二个时隙第一个OFDM符号使用的ZC序列相同;或者,与第一个时隙最后一个OFDM符号使用的ZC序列相同;或者,与所述同步信号在子帧中的第一个OFDM符号使用的ZC序列相同。
在本实施例中,当循环前缀为常规循环前缀时,所述同步信号包含的OFDM符号按照时间顺序对应的序列的根索引依次为以下之一:
{1,2,3,4,5,6,7,8,9,10,1};
{1,2,3,4,5,1,6,7,8,9,10};
{1,10,2,9,3,5,8,4,7,5,6};
{1,10,2,9,3,8,4,7,6,5,6};
{2,9,5,6,1,10,4,7,3,8,3};
{2,9,3,8,1,10,4,7,5,6,5}。
在本实施例中,当循环前缀为扩展循环前缀时,所述同步信号包含的OFDM符号按照时间顺序对应的序列的根索引依次为以下之一:
{1,2,3,4,5,6,7,8,9};
{1,2,3,4,5,7,8,9,10};
{1,10,2,9,3,4,7,5,6};
{1,10,2,9,3,8,4,7,6};
{1,5,6,2,9,3,8,4,7};
{1,4,7,2,9,3,8,5,6}。
在本实施例中还提供了一种同步信号的传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的一种同步信号的传输装置的结构框图一,位于基站侧,如图3所示,该装置包括:
获取模块32,设置为获取同步信号;
发送模块34,设置为向终端周期重复发送同步信号,在一个重复周期内,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,该同步信号是主同步信号PSS或者辅同步信号SSS。
通过上述装置,获取模块32设置为获取同步信号,发送模块34设置为向终端周期重复发送同步信号,在一个重复周期内,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,该同步信号是主同步信号PSS或者辅同步信号SSS,解决了在LTE的窄带系统,同步信号设计不合理的问题,实现了该窄带系统同步信号的合理传输。
该装置的同步信号的传输方式和上述实施例的传输方式相同。
在本实施例中,获取模块32是可选的,本实施例方案可以只包括发送模块34。
图4是根据本发明实施例的一种同步信号的传输装置的结构框图二,位于终端侧,如图4所示,该装置包括:
接收模块42,设置为周期重复接收基站发送的同步信号,在一个重复周期内,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收,该同步信号是主同步信号PSS或者辅同步信号SSS;
确定模块44,设置为确定该同步信号。
通过上述装置,接收模块42设置为周期重复接收基站发送的同步信号,在一个重复周期内,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收,该同步信号是主同步信号PSS或者辅同步信号SSS,解决了在LTE的窄带系统,同步信 号设计不合理的问题,实现了该窄带系统同步信号的合理传输。
该装置的同步信号的传输方式和上述实施例的传输方式相同。
在本实施例中,确定模块44是可选的,本实施例方案可以只包括接收模块42。
下面结合优选实施例和实施方式对本发明进行详细说明。
优选实施例一:
本优选实施例给出一种同步信号的传输方法,该同步信号是主同步信号PSS或者辅同步信号SSS。
该同步信号是周期重复发送的,比如重复周期是20ms或者40ms或者60ms或者80ms。PSS和SSS的重复周期可以相同,也可以不同。比如PSS的发送周期是80ms,在一个或者多个子帧上发送,SSS的发送周期是20ms,在一个或者多个子帧上发送。通过接收PSS可以得到80ms的定时。
发送的周期也可以是不均匀的,比如PSS位于连续的k1个无线帧,以T1个无线帧为周期发送,T1≥k1,SSS以T2个无线帧为周期发送。这里当T1>k1时,PSS可以认为是不均匀周期发送的。或者,PSS以T3个无线帧为周期发送,所述SSS位于连续的k2个无线帧,以T4个无线帧为周期发送,T4≥k2,或者所述PSS和所述SSS位于连续的k3个无线帧上,以T5个无线帧为周期发送,T5≥k3,其中,k1、k2、k3、T1、T2、T3、T4、T5均为正整数。比如有一个发送的大周期80ms,PSS或者SSS在80ms的前40ms发送,在前40ms内,每10ms发送一次,后40ms不发送PSS或者SSS。UE可以根据大的周期获得80ms的定时,进而可以节省MIB中的系统帧号的指示bit数。
在一个重复周期内,PSS/SSS占用的资源如下述。
在一个重复周期内,PSS/SSS可以占用一个子帧,或者多个子帧。PSS/SSS可以在连续的或者不连续的子帧中发送,如果该发送的子帧为多播/组播单频网络(Multimedia Broadcast multicast service Single Frequency Network,简称为MBSFN)子帧且有物理多播信道(Physical Multicast Channel,简称为PMCH)在发送,则打掉该PSS/SSS的信息。或者PSS/SSS的发送子帧可以在子帧0、4、5、9上选择,避免MBSFN子帧的影响。
优选地,PSS/SSS可以位于一个无线帧的子帧4和5,或者位于一个无线帧的子帧9和下一个无线帧的子帧0。
在一个重复周期内,PSS/SSS在时间上占用多个OFDM符号,这里的OFDM符号为现有LTE中定义的符号,例如,对于正常CP下,一个1ms的子帧分为两个0.5ms的时隙,时隙的索引分别为0和1,也可以称为第一个时隙、第二个时隙。每个时隙包含7个符号,索引分别为0~6,也可以称为第一个符号、第二个符号、……、第七个符号;对于扩展CP,一个1ms的子帧也分为两个0.5ms的时隙,时隙的索引分别为0和1,也可以称为第一个时隙、第二个时隙。每个时隙包含6个符号,索引分别为0~5,也可以称为第一个符号、第二个符号、……、 第六个符号。为了避免和发送PSS/SSS的OFDM符号混淆,在本发明的实施例中,将这个OFDM符号称为参考符号。
PSS/SSS可以占用连续的参考符号,或者可以占用没有CRS传输的参考符号。图5是根据本发明优选实施例的PSS/SSS连续占用的参考符号的示意图,图6是根据本发明优选实施例的PSS/SSS非连续占用的参考符号的示意图,如图5和图6所示,给出了两个PSS/SSS占用的参考符号的例子,图5为连续占用,图6为非连续占用。
优选地,用于传输该同步信号的参考符号为以下集合中的符号:每个时隙的第三、四个参考符号和最后两个参考符号。由于索引为偶数的时隙的第三个符号通常用于PDCCH的传输,因此,优选地,不包含索引为偶数的时隙的第三个符号。另外,对于扩展CP,每个时隙的第四个符号是CRS,因此,优选地,不包含每个时隙的第四个符号。
优选地,用于传输该同步信号的参考符号数量为5、6、7中的一个。
或者,用于传输该同步信号的参考符号数量也可以为8、10、12中的一个。优选地,该同步信号可以在MBSFN子帧上发送。或者,可以在standalone场景的子帧中发送。
可选地,PSS/SSS如果占用了参考信号所在的时频资源,参考信号应打掉PSS/SSS的符号。该参考信号包括CRS、CSI-RS、PRS、DMRS等。
PSS和SSS占用的符号数可以相同也可以不同,PSS和SSS占用的子帧数可以相同也可以不同,比如PSS占用一个子帧,SSS占用两个子帧。
可选地,对于standalone场景,即不是和LTE的legacy UE共用频带的场景,在PSS所在的子帧上,在该同步信号所在的参考符号上,不发送CRS。比如对于正常CP的场景,一共有14个参考符号,索引分别为0~13,同步信号占用参考符号#5~13,那么在参考符号#5~13上,不发送CRS。或者,对于standalone场景,在该同步信号所在的子帧上,参考信号仅在前q个参考符号上传输,q为预设的正整数。优选地,q=1或者2。
以上给出了PSS/SSS在哪些参考符号上传输。下面给出在这些参考符号上,PSS/SSS的传输形式。
在一个重复周期内,PSS/SSS的信号形式包括:
在一个重复周期内,PSS/SSS包含M个OFDM符号,该第m(1≤m≤M)个OFDM符号的子载波间隔为15/AmKHz,其中Am为正整数,比如Am=1、2、3、4、5、6.这里,PSS/SSS传输的子载波间隔可以小于15KHz,即和现有LTE的子载波间隔不同。
该M个OFDM符号的子载波间隔可以相同,也可以不同。比如PSS/SSS一共包含2个OFDM符号,第一个OFDM符号子载波间隔为15KHz,在第一个时隙的参考符号#4上传输,第二个OFDM符号子载波间隔为7.5KHz.,在第一个时隙的参考符号#5、6上传输。
当Am=1时,子载波间隔为15KHz,该OFDM符号对应一个参考符号。
当Am=2时,子载波间隔为7.5KHz,该OFDM符号对应2个连续的参考符号,即在两个连续的参考符号的时长上传输一个子载波间隔为7.5KHz的OFDM符号。优选地,该2个参考符号为以下之一:每个时隙的第三和第四个符号,或者每个时隙的最后两个符号。如果考虑到索引为偶数的时隙的第三个符号通常用于PDCCH的传输,应不包含索引为偶数的时隙的第三和第四个符号。另外,对于扩展CP,每个时隙的第四个符号上有CRS,因此该OFDM符号只对应每个时隙的最后两个符号。
当Am=4时,子载波间隔为3.75KHz,该OFDM符号对应4个连续的参考符号。优选地,该OFDM符号在MBSFN子帧上传输。
在一个重复周期内,该同步信号包含多个序列,该多个序列根据小区标识和/或定时信息生成。后面的实施例中会给出具体的生成方法。
该OFDM符号和序列的对应方式有以下几种:
a),在一个重复周期内,PSS/SSS包含的每个OFDM符号对应一个完整序列,比如一个重复周期内,PSS/SSS包含4个OFDM符号,每个符号都对应一个完整序列,或者,
b),在一个重复周期内,该同步信号包含的多个OFDM符号对应一个完整序列,其中该每个OFDM符号对应该完整序列的子序列,例如一个重复周期内,PSS/SSS包含8个OFDM符号,4个符号对应一个完整序列,该完整序列分割成4段,每一段对应到一个符号上,或者,
c),在一个重复周期内的多个子帧上,每个子帧对应一个序列。
在一个重复周期内,PSS/SSS占用的资源和序列的映射关系包括:
该同步信号在5或者6或者7个参考符号对应的时间上传输时,该参考符号对应的时间分为两部分,每一部分对应一个完整序列。
该两部分可以是按照时间顺序划分为两部分的,比如该同步信号在5个参考符号对应的时间上传输时,一部分包括前3个参考符号对应的时间,一部分包括剩余2个参考符号对应的时间。或者,索引为偶数的时隙的参考符号为一部分,索引为奇数的时隙的参考符号为另一部分。对于该同步信号在5或者7个参考符号对应的时间上传输的情况,在中间的一个参考符号上,每个序列可以占用部分频域。
或者,该两部分分别为奇数索引的参考符号对应的时间和偶数索引的参考符号对应的时间。该所索引是将该同步信号对应的参考符号按照时间顺序重新从0开始编号后的索引。比如该同步信号在6个参考符号对应的时间上传输时,索引分别为0~5,那么参考符号#0、2、4为一部分,其余符号为另一部分。
或者,该两部分中,CRS所在的参考符号为一部分,剩余的参考符号为另一部分。即一部分包括每个时隙的第一、第二、倒数第三个符号为一部分中的一个或者多个,另一部分包括剩余的参考符号的一个或者多个。
优选实施例二:
本实施例给出一种PSS的传输方法。
在一个重复周期内,PSS可以占用一个子帧,或者多个子帧,优选地,PSS可以位于一个无线帧的子帧4和5,或者位于一个无线帧的子帧9和下一个无线帧的子帧0。
在一个重复周期内,PSS位于多个参考符号上,该多个参考符号可以位于一个子帧上,也可以位于多个子帧上。比如一个重复周期内PSS占用1个子帧上的n(n>1)个参考符号;或者,在一个重复周期内PSS占用多个子帧,每个子帧上占用一个或者多个参考符号,每个子帧上占用的参考符号数可以相同,也可以不同。比如为不包含CRS的参考符号,例如对于正常CP,除了前三个可能用于PDCCH的参考符号之外,一个子帧中可用于PSS的参考符号为索引为偶数的时隙上的参考符号3、5、6和索引为奇数的时隙上的参考符号2、3、5、6。对于扩展CP,除了前三个可能用于PDCCH的参考符号之外,一个子帧中可用于PSS的参考符号为索引为偶数的时隙上的参考符号2、4、5和索引为奇数的时隙上的参考符号2、3、5、6。由于没有CRS的干扰,同步性能可以提高。或者PSS也可以位于CRS所在的参考符号上,在发送CRS的位置,会打掉PSS的符号,发送CRS。
可选地,eNB可以将发送PSS的子帧配置为MBSFN子帧,这样可以减少CRS对同步信道的干扰。
根据实施例一中该,在一个重复周期内,PSS包含M个OFDM符号,该第m(1≤m≤M)个OFDM符号的子载波间隔为15/AmKHz,其中Am为正整数,比如Am=1、2、3、4、5、6.每个/多个OFDM符号对应一个序列,该序列可以是ZC序列、或者m序列、或者M序列、或者wash序列,本实施例不做限制。
假设该PSS的带宽为180KHz,每个子载波的宽度为15KHz,那么一共有12个子载波,那么可以采用长为11的ZC序列,或者长为12的ZC序列,或者为长为13的ZC序列按照预设的规则打掉一个符号得到的长为12的序列,实际应用中不限于这几种值。或者每个子载波的宽度可以为7.5KHz,那么一共有24个子载波,那么可以采用长为23的ZC序列,或者长为24的ZC序列,或者为长为25的ZC序列按照预设的规则打掉一个符号得到的长为24的序列,实际应用中不限于这几种值。优选地,当该ZC序列是在频域产生时,打掉DC位置对应的符号,比如序列长度为11,那么打掉最中间的一个符号。
该PSS的OFDM符号对应序列可以相同也可以不同。
可选地,该PSS中包含一个序列和该序列的共轭。
举例,假设PSS在一个子帧中占用8个符号,那么前4个符号上的序列均为s,后4个符号上的序列均为s的共轭。
或者,前4个符号对应一个长序列,比如为长度为47,后4个符号长度也为47,对应该长序列的共轭。
对于所有的小区,PSS的发送序列可以是相同的,也就是说,该PSS只用于定时,而没有传输其他信息。或者PSS可以携带一些信息。
PSS可以用来指示部分小区标识信息,比如
Figure PCTCN2016099636-appb-000003
其中,
Figure PCTCN2016099636-appb-000004
为小区标识,
Figure PCTCN2016099636-appb-000005
的取值范围是0~167,
Figure PCTCN2016099636-appb-000006
的取值范围0~2。
比如,采用3个不同的ZC序列来表示
Figure PCTCN2016099636-appb-000007
该3个ZC序列分别为ZC1、ZC2和ZC3。对于
Figure PCTCN2016099636-appb-000008
发送PSS的n个符号上都发送的是ZCi。该3个不同的ZC序列的根序列可以不同,或者根序列可以相同或者部分相同,但相同根序列对应的循环移位不同。
或者,可以采用几个序列的不同排序来表示
Figure PCTCN2016099636-appb-000009
比如假设PSS在9个符号上发送,在9个符号中,每3个符号上的序列相同,一共有3个序列,分别为ZC1、ZC2和ZC3。比如,如果
Figure PCTCN2016099636-appb-000010
该9个符号上的序列的顺序为ZC1(前3个符号)、ZC2(中间3个符号)和ZC3(最后3个符号);如果
Figure PCTCN2016099636-appb-000011
该9个符号上的序列的顺序为ZC2(前3个符号)、ZC3(中间3个符号)和ZC1(最后3个符号);如果
Figure PCTCN2016099636-appb-000012
该9个符号上的序列的顺序为ZC3(前3个符号)、ZC1(中间3个符号)和ZC2(最后3个符号)。
优选实施例三
本实施例给出一种SSS的传输方法。
SSS是重复发送的,SSS的重复周期是预设的,比如是20ms或者40ms或者60ms,实际应用中,不限于这几种周期数值。
在一个重复周期内,SSS在可以位于多个参考符号上,比如为不包含CRS的参考符号,例如对于正常CP,除了前三个可能用于PDCCH的参考符号之外,一个子帧中可用于SSS的参考符号为索引为偶数的时隙上的参考符号3、5、6和索引为奇数的时隙上的参考符号2、3、5、6。对于扩展CP,除了前三个可能用于PDCCH的参考符号之外,一个子帧中可用于SSS的参考符号为索引为偶数的时隙上的参考符号2、4、5和索引为奇数的时隙上的参考符号2、3、5、6。由于没有CRS的干扰,同步性能可以提高。或者SSS也可以位于CRS所在的参考符号上,在发送CRS的位置,会打掉SSS的参考符号,发送CRS。
根据实施例一中该,在一个重复周期内,SSS包含M个OFDM符号,该第m(1≤m≤M)个OFDM符号的子载波间隔为15/AmKHz,其中Am为正整数,比如Am=1、2、3、4、5、6.每个OFDM符号上的PSS为一个序列,该序列可以是ZC序列、或者m序列、或者M序列、或者wash序列,本实施例不做限制。
不失一般性,本实施例中假设PSS的子载波间隔和现有LTE相同,即子载波间隔为15KHz,实际应用中不限于这种子载波间隔。
假设SSS在M个OFDM符号中发送,不失一般性,假设每个符号发送一个序列,这个序列可以是ZC序列,也可以是m序列,优选地,选择ZC序列。实际应用中,多个OFDM符号也可以对应一个序列,本发明不做限制。
比如SSS在一个子帧中的6个参考符号上发送,对应6个ZC序列,或者在两个连续子帧中的12个参考符号上发送,对应12个ZC序列,实际应用中不限于这个取值。通过M个ZC序列来指示不同小区标识信息和定时信息。这里对该定时信息进行举例说明,比如该ZC序列是以周期20ms来发送的,那么该定时信息可以用于指示当前的20ms在80ms内的位置信息,比如用2bit表示,这样UE通过接收SSS可以得到80ms的定时。
小区标识在LTE中的取值范围为0~503,如果全部通过SSS指示通常需要9bit来指示,加上定时的2bit信息,那么SSS一共需要指示11bit信息。
下面给出几种ZC序列携带信息的方法。
1,根据多个符号上的序列的组合来携带信息;
该M个OFDM符号对应M个序列,不失一般性,假设其为6个ZC序列,如下所示:
Figure PCTCN2016099636-appb-000013
其中Nzc=11是ZC序列的长度,ui∈{1,2,...,Nzc-1}是是第i个符号上的ZC序列的根序列索引。
因此可以通过(u1,u2,...,u6)的组合来指示小区标识和/或定时信息。
假设小区标识对于长度为11的ZC序列,存在10个ZC根序列,因此,(u1,u2,...,u6)的组合足以指示11bit信息。可选地,ui的集合也可以是集合{1,2,...,Nzc-1}的子集。
下面举个例子来说明如何进行指示。比如该SSS只被用来指示小区标识信息,该SSS包含6个ZC序列,ui的集合中有3个根序列索引,重新编号为索引0、1、2,那么该6个ZC序列可以被用来指示3的6次方种状态,即729种状态,因此对于指示小区标识是足够的。那么小区标识满足下式:
Figure PCTCN2016099636-appb-000014
其中,wi为第i+1个符号上的ZC序列的根序列的索引,取值为0、1、2.
或者,也可以采用根序列和循环移位联合指示,比如采用(u1,CS1,u2,CS2,......,,u6,CS6)联合指示小区标识和定时信息。其中CS1、CS2……CS6分别为6个符号中的第i个符号上的ZC序列的循环移位值。
2,使用2个子帧上的两个长序列来指示;
在两个子帧上传输SSS,优选地,选择两个连续子帧,比如子帧#4和子帧#5,或者子帧9 和下一个无线帧的子帧#0。在每个子帧上,SSS为一个序列,比如占用多个参考符号,该长序列在时域经过分段后分别在多个参考符号上传输,子载波间隔为15KHz。通过这两个子帧上的长序列设计来指示信息。下面进行具体说明。
比如每个子帧上占用6个参考符号,一共有72个RE,SSS为一个长为71的ZC序列,如下
Figure PCTCN2016099636-appb-000015
该ZC序列是从时域产生的,其中Nzc=71是ZC序列的长度,ui∈{1,2,...,Nzc-1}是两个子帧中的第i个子帧上的ZC序列的根序列索引。
下面举个例子来说明如何进行指示。比如该SSS只被用来指示小区标识信息和2bit定时信息,一共11bit信息,两个子帧对应两个序列,ui的集合中有70个根序列索引,重新编号为索引0、1、2……69,那么该2个ZC序列可以被用来指示70的平方种状态,即4900种状态,因此用于指示11bit信息是足够的(211=4096)。那么小区标识满足下式:
Figure PCTCN2016099636-appb-000016
其中,wi为两个子帧中的第i+1个子帧上的ZC序列的根序列的索引,取值为0、1、2……69.
或者,也可以采用根序列和循环移位联合指示,比如采用(u1,CS1,u2,CS2)联合指示小区标识和定时信息。其中CS1和CS2分别为两个子帧中的第i个子帧上的ZC序列的循环移位值。另外,还可以通过发送子帧变化来指示信息。比如SSS每40ms发送一次,在nf mod 8=0的无线帧,SSS在子帧#4上发送序列A,在子帧#5上发送序列B;在nf mod 8=1的无线帧,SSS在子帧#4上发送序列B,在子帧#5上发送序列A。采用这样的方法,可以得到80ms的定时。
3,利用映射位置不同来携带信息;
在一个重复周期上,SSS可以包括一个或者多个序列,其中每个序列可以由多个子序列生成,利用多个子序列的映射位置不同来指示信息。比如
下面举个例子来说明,该SSS的每个序列比如由两个序列生成,设这两个序列分别为s0(n)和s1(n)。
如果(nf/2)mod 2=0,则
(1)d(2n)=s0(n),d(2n+1)=s1(n)
如果(nf/2)mod 2=1,则
(2)d(2n+1)=s0(n),d(2n)=s1(n)
其中nf为无线帧索引,比如在无线帧4n处,则发送的序列如(1)式,在无线帧4n+2处发送的的序列如(2)式。采用这样的方法可以得到40ms的定时。s0(n)和s1(n)可以根据小区标识生成,比如小区标识和ZC序列的根序列和循环移位一一对应。
优选实施例四:
本实施例中在CRS所在的参考符号上的PSS/SSS的发送方法。
当PSS/SSS位于CRS所在的参考符号上时,CRS所在的RE位置,打掉PSS/SSS的符号。
不失一般性,设在某个有CRS发送的参考符号上,PSS/SSS序列为x(0),x(1),x(2)......x(K-1),K=12,其中0、1、……K-1表示子载波的索引,对于不传输CRS的RE,eNB发送的PSS/SSS为:y(k)=x(k)·c,其中c=s(k0)/x(k0),其中k0为该符号上的预设RE上的CRS的子载波索引,x(k0)为子载波#k0对应的PSS/SSS序列的值,s(k0)为子载波#k0对应的CRS符号值。
采用该方式,可以保证在子载波#k0上发送CRS的位置的PSS/SSS符号值仍然有效,并能保证和子载波#k0上的CRS符号值相同的其他位置的PSS/SSS符号值也有效。
优选地,PSS/SSS发送序列的功率与CRS相同。
实施例五
本实施例给出一种同步信号的发送方法。
在本实施例中,所述同步信号由多个OFDM序列组成,每个OFDM符号对应一个序列。所述同步信号占用的OFDM符号即为现有LTE系统中的OFDM符号,即子载波宽度为15kHz的符号。
假设序列长度是11,一共有10条可用序列。实际应用中,序列长度不限。假设所述可用序列为ZC序列,如下所示,
Figure PCTCN2016099636-appb-000017
其中N为序列长度,这里值为11,u为根序列索引,取值为1~10的整数。根据ZC序列对抗频偏的性能,根索引靠两边的对抗频偏性能比较差,靠中间的对抗频偏性能较好,即抗频偏性能的好坏将根序列索引进行排序为:
Figure PCTCN2016099636-appb-000018
Figure PCTCN2016099636-appb-000019
其中i为小于
Figure PCTCN2016099636-appb-000020
的正整数,括号内的两个根序列性能类似。对于N=11,有(5,6)>(4,7)>(3,8)>(2,9)>(1,10)。
可选地,把抗频偏好的序列放在没有CRS的符号上。优选地,把一对抗频偏好的序列放在物理上相邻的两个没有CRS的符号上。比如LTE子帧中的一个时隙的最后两个符号。不限于该举例。
假设采用常规CP,一个子帧中的符号有14个,按照时间顺序编号依次为0、1、2、3、……、13.有CRS的符号的索引为0、1、4、7、8、11,其余为没有CRS的符号。假设同步信号占用最后面的11个符号,实际应用中,符号数和位置不限。那么在没有CRS的相邻符号对上,放置频偏性能较好的序列,即在符号#5、6、9、10、12、13中的每个符号上放置的根序列索引为5、6、4、7、3、8中的一个,符号和根序列索引一一对应,对应关系不限,比如符号#5上传输根序列索引为5的序列,符号#6上传输根序列索引为6的序列,符号#9上传输根序列索引为4的序列,符号#10上传输根序列索引为7的序列,符号#12上传输根序列索引为3的序列,符号#13上传输根序列索引为8的序列.有CRS的符号上映射其他的序列。一个例子是所述11个符号,即符号#3~13对应的根序列索引依次为2、9、3、8、1、10、4、7、5、6、5.表1给出了几种根序列索引的例子,实际中不限于下述举例。
表1
符号索引 0 1 2 3 4 5 6 7 8 9 10 11 12 13
是否有CRS(Y/N) Y Y N N Y N N Y Y N N Y N N
根序列索引(例子1)       2 9 3 8 1 10 4 7 5 6 5
根序列索引(例子2)       2 9 5 6 1 10 4 7 3 8 3
下面再给出一些例子,所述11个符号上的根序列索引按照时间顺序为以下中的一个:
{1,2,3,4,5,6,7,8,9,10,1};
{1,2,3,4,5,1,6,7,8,9,10};
{1,10,2,9,3,5,8,4,7,5,6};
{1,10,2,9,3,8,4,7,6,5,6};
{2,9,5,6,1,10,4,7,3,8,3};
{2,9,3,8,1,10,4,7,5,6,5};
可选地,相邻符号对应一对共轭序列,即
Figure PCTCN2016099636-appb-000021
其中i为小于
Figure PCTCN2016099636-appb-000022
的正 整数。如表1所示。比如上述表1的符号#3和4分别对应2和9,实际应用中也可以调整顺序,对应9和2,或者也可以对应其他的共轭序列,比如5和6。
优选地,相邻的没有CRS的符号对应一对共轭序列。
可选地,所述11个符号共对应10个不同的根序列,有一个符号上的序列与其他符号上的序列相同,本发明中称之为重复序列。优选地,倒数第三个符号上的序列与其他符号上的序列相同。优选地,所述重复序列为对抗频偏性能最好的序列之一,比如
Figure PCTCN2016099636-appb-000023
中的一个。或者所述重复序列为最后一个符号上的序列,或者为第一个符号上的序列,或者为第二个时隙上的第一个符号上的序列,或者为第二个时隙上的第三个符号上的序列。
假设采用扩展CP,一个子帧中的符号有12个,按照时间顺序编号依次为0、1、2、3……、11.假设同步信号占用最后面的9个OFDM符号,有CRS的符号的索引为0、1、3、6、7、9,其余为没有CRS的符号。那么在没有CRS的相邻符号对上,放置频偏性能较好的序列,即在符号#4、5、10、11中的每个符号上放置的根序列索引为5、6、4、7中的一个。序列中的一个符号和根序列索引一一对应,对应关系不限,比如符号#4上传输根序列索引为5的序列,符号#5上传输根序列索引为6的序列,符号#10上传输根序列索引为7的序列,符号#11上传输根序列索引为4的序列。比如,所述9个符号对应的根序列索引分别为1、5、6、2、9、3、8、4、7。如表2所示,给出了一些例子,实际应用中不限于下述举例。
表2
符号索引 0 1 2 3 4 5 6 7 8 9 10 11
是否有CRS(Y/N) Y Y N Y N N Y Y N Y N N
根序列索引(例子1)       1 5 6 2 9 3 8 4 7
根序列索引(例子2)       10 5 6 2 9 3 8 4 7
根序列索引(例子3)       6 5 6 2 9 3 8 4 7
下面再给出一些例子,所述9个符号上的根序列索引按照时间顺序为以下中的一个:
{1,2,3,4,5,6,7,8,9};
{1,2,3,4,5,7,8,9,10};
{1,10,2,9,3,4,7,5,6};
{1,10,2,9,3,8,4,7,6};
{1,5,6,2,9,3,8,4,7};
{1,4,7,2,9,3,8,5,6};
可选地,所述9个符号共对应9个不同的根序列,每个符号上对应的根序列都不同,对应抗频偏最好的9个根序列,所述9个不同的根序列为除了索引为1的9个根序列,或者为除了索引为9的9个根序列。
可选地,把抗频偏好的序列对放在有CRS的符号上。对于常规CP,所述11个符号对应的根序列索引分别为4、7、1、10、5、6、2、9、8、3、8,扩展CP 6、1、10、4、7、3、8、2、9。
可选地,将序列分组,将需要保护的序列放置在没有CRS的符号上。所述需要保护的序列可以是对抗频偏强的序列,或者也可以是对抗频偏弱的序列。所述需要保护的序列所在的没有CRS的符号可以任意选择。
可选地,对ZC序列的根索引进行分组,具体分组方式包括以下至少之一:
方式1:第一组包括u={5,6,4,7,3,8}的ZC序列,第二组包括u={2,9}的ZC序列,第三组
包括u={1,10}的ZC序列;
方式2:第一组包括u={1,10,2,9,3,8}的ZC序列,第二组包括u={4,7}的ZC序列,第三组
包括u={5,6}的ZC序列;
其中第二和第三组的序列可以互换。
所述第一组ZC序列映射到第一OFDM符号上,所述第二组ZC序列映射到第二OFDM符号上,所述第三组ZC序列映射到第三OFDM符号上,其中,所述第一OFDM符号包括子帧中索引号为{5,6,9,10,12,13}的符号,所述第二OFDM符号包括子帧中编号为{3,4},所述第三OFDM符号包括子帧中索引为{7,8}的符号。
实施例六
与实施例五类似,在常规CP下,一个子帧的最后11个符号用于传输同步信号。所述11个符号对应的序列的根序列索引可以为顺序循环的,即1、2、3、4、5、6、7、8、9、10、x。x可以为任意1到10中的任意一个。优选地,最后一个符号上的序列的根索引x可以为1或者5或者6。
可选地,所述符号上的序列可以是首尾共轭的,如1、2、3、4、5、x、6、7、8、9、10。x可以为任意1到10中的任意一个。优选地,x可以为1或者5或者6。
可选地,所述符号上的序列中,相邻符号上的序列是共轭的,重复序列在最中间的符号上,如1、10、2、9、3、x、8、4、7、5、6。其中x是重复序列,在一对共轭序列中间的符号上。优选地,最后一个符号上的序列x可以为1或者5或者6。
可选地,所述符号上的序列对应一对共轭序列,比如前5个符号对应的根序列索引为
Figure PCTCN2016099636-appb-000024
后6个符号对应的根序列索引为
Figure PCTCN2016099636-appb-000025
实施例七
在本实施例中,所述同步信号由多个OFDM序列组成,每个OFDM符号对应一个序列。所述同步信号占用的OFDM符号即为现有LTE系统中的OFDM符号,即子载波宽度为15kHz的符号。
本实施例中,PSS和/或SSS在11个子载波上传输,下行载波包含12个子载波,所述下行载波可以为NB-IoT系统用于传输下行信息的载波,实际应用中不限于NB-IoT系统。本实施例给出所述11个子载波在所述下行载波中的位置。
可选地,所述11个子载波为12个子载波中的频率最低的11个子载波,或者为12个子载波中频率最高的11个子载波。
可选地,所述11个子载波的位置由小区标识确定,减少同步信号与CRS的冲突概率。比如,当小区标识模3为0时,所述11个子载波为12个载波波中频率最高的11个子载波,当小区标识模3为2时,所述11个子载波为12个子载波中频率最低的11个子载波。当所述11个子载波中当小区标识模3为1时,所述11个子载波为12个子载波中的频率最低的11个子载波,或者为12个子载波中频率最高的11个子载波。这样,在同步信号所在的符号上,CRS占用的RE数最多为3.
图7是根据本发明优选实施例的ZC序列对应的RE的示意图,如图7所示,给出了一个例子。其中“mod”标识取模,点状部分的RE为有CRS的RE,Nid为小区标识。ZC序列对应的RE如图7所示。
或者,当小区标识模6为0时,所述11个子载波为12个载波波中频率最高的11个子载波,当小区表示模6为2时,所述11个子载波为12个子载波中频率最低的11个子载波。当所述11个子载波中当小区标识模6为其他值时,所述11个子载波为12个子载波中的频率最低的11个子载波,或者为12个子载波中频率最高的11个子载波。
可选地,所述11个子载波的位置由所述12个子载波的位置和/或所述12个子载波的中心频点与最近的100kHz的整数倍的频偏确定。比如对于带内(in band)模式,所述11个子载波的位置由所述12个子载波对应的PRB索引或者所述PRB的中心频点与最近的100kHz的整数倍的频偏确定。表3中给出了在奇数带宽下11个子载波的位置,如表3所示,当系统带宽为5MHz时,如果同步信号在PRB#17或者22上发送,则PSS在该PRB中的频率最低的11个子载波上发送;如果同步信号在PRB#2或者7上发送,则PSS在该PRB中的频率最高的11个子载波上发送。其余系统带宽类似。按照所述的方式,接收PSS可以没有固定频偏。对于guard band,也类似。
表3
Figure PCTCN2016099636-appb-000026
Figure PCTCN2016099636-appb-000027
如表4所示,给出了偶数带宽下11个子载波的位置。
表4
Figure PCTCN2016099636-appb-000028
可选地,当所述12个子载波的中心频点小于最近的100kHz的整数倍,所述11个子载波为所述12个子载波中的频率最高的11个子载波,当所述12个子载波的中心频点大于最近的100kHz的整数倍,所述11个子载波为所述12个子载波中的频率最低的11个子载波。
可选地,eNB在连续11个子载波上发送所述11长的序列。或者,可以将某个子载波上的序列值打掉,比如,将最中间的序列值打掉,则在连续的11个子载波中,最中间的子载波不发送信号,其他10个子载波上发送对应的序列值。实际应用中不限于打掉最中间的序列值。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行上述实施例的方法步骤的程序代码:
可选地,存储介质还被设置为存储用于执行上述实施例的方法步骤的程序代码:
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明实施例,基站向终端周期重复发送同步信号;在一个重复周期内,该同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,该同步信号是主同步信号PSS或者辅同步信号SSS,或者,终端周期重复接收基站发送的该同步信号,解决了在LTE的窄带系统,同步信号设计不合理的问题,实现了该窄带系统同步信号的合理传输。

Claims (37)

  1. 一种同步信号的传输方法,包括:
    基站向终端周期重复发送同步信号;
    在一个重复周期内,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,所述同步信号是主同步信号PSS或者辅同步信号SSS。
  2. 根据权利要求1所述的方法,其中,包括:
    对于所述一个或者多个子帧中的一个子帧,所述多个OFDM符号包括所述一个子帧中的连续多个OFDM符号,或者,
    所述同步信号在所述一个或者多个子帧上发送时,所述多个OFDM符号为预设集合中的符号,所述集合包括每个时隙的第三个OFDM符号、第四个OFDM符号和最后两个OFDM符号。
  3. 根据权利要求1或权利要求2所述的方法,其中,还包括,
    所述PSS位于连续的k1个无线帧,以T1个无线帧为周期发送,T1≥k1,所述SSS以T2个无线帧为周期发送,或者,
    所述PSS以T3个无线帧为周期发送,所述SSS位于连续的k2个无线帧,以T4个无线帧为周期发送,T4≥k2,或者,
    所述PSS和所述SSS位于连续的k3个无线帧上,以T5个无线帧为周期发送,T5≥k3;
    其中,k1、k2、k3、T1、T2、T3、T4、T5均为正整数。
  4. 根据权利要求1所述的方法,其中,还包括,
    在一个重复周期内,所述同步信号包含M个OFDM符号,第m个OFDM符号的子载波间隔为15/AmKHz,其中1≤m≤M,m,M和Am均为正整数。
  5. 根据权利要求4所述的方法,其中,还包括,
    当Am=2时,子载波间隔为7.5KHz,所述OFDM符号对应2个连续的OFDM符号,所述2个连续的OFDM符号包括以下之一:
    一个时隙的第三个OFDM符号和第四个OFDM符号,或者一个时隙的最后两个OFDM符号;
    当Am=4时,子载波间隔为3.75KHz,所述OFDM符号对应4个连续的OFDM符号。
  6. 根据权利要求1所述的方法,其中,还包括,
    对于独立运营standalone场景,在所述同步信号所在的所述一个或者多个子帧上,所述同步信号对应的所述OFDM符号上,不发送参考信号,或者,
    对于standalone场景,在所述同步信号所在的所述一个或者多个子帧上,参考信号仅在前q个所述OFDM符号上发送,q为正整数。
  7. 根据权利要求1所述的方法,其中,还包括,
    在一个重复周期内,所述同步信号包含多个序列,所述多个序列根据小区标识和/或定时信息生成。
  8. 根据权利要求7所述的方法,其中,在一个重复周期内,所述同步信号包含多个序列包括,
    在一个重复周期内,所述同步信号包含的每个OFDM符号对应一个序列;或者,
    在一个重复周期内,所述同步信号包含的多个OFDM符号对应一个序列,其中所述每个OFDM符号对应所述序列的子序列;或者,
    在一个重复周期内的多个子帧上,所述多个子帧中的每个子帧对应一个序列。
  9. 根据权利要求1所述的方法,其中,
    在一个重复周期内,所述同步信号包含的每个OFDM符号对应一个序列。
  10. 根据权利要求9所述的方法,其特征在于,
    所述同步信号包含的每个OFDM符号对应一个长度为11的ZC序列;
    其中,所述同步信号对应的载波包含12个子载波。
  11. 根据权利要求9所述的方法,其中,包括:
    在所述同步信号包含的所述每个OFDM符号或者所述多个OFDM符号对应一个序列的情况下,所述序列由所述序列对应的OFDM符号确定。
  12. 根据权利要求1或权利要求2所述的方法,其中,所述同步信号在一个或者多个子帧上的多个OFDM符号对应的时间上发送包括:
    所述同步信号在m个所述OFDM符号对应的时间上发送,其中m∈{5,6,7,8,10,12}。
  13. 根据权利要求1所述的方法,其中,包括:
    所述多个OFDM符号对应的时间包含两部分,所述两部分的每一部分对应一个序列,所述两部分包括:
    所述两部分是按照时间顺序划分为两部分的,或者,
    所述两部分分别为奇数索引的OFDM符号对应的时间和偶数索引的OFDM符号对应的时间;其中,所述索引是将所述同步信号对应的OFDM符号按照时间顺序重新从0开始编号后的索引。
  14. 根据权利要求1所述的方法,其中,包括:
    在所述同步信号对应的所述OFDM符号上,对于不发送小区专用参考信号CRS的子载波,所述同步信号为:y(k)=x(k)·c,其中c=s(k0)/x(k0),其中,k0为所述符号上的预设资源块RE上的CRS的子载波索引,x(k0)为子载波#k0对应的PSS或者SSS序列的值,s(k0)为子载波#k0对应的CRS符号值。
  15. 一种同步信号的传输方法,包括:
    终端周期重复接收基站发送的同步信号;
    在一个重复周期内,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收,所述同步信号是主同步信号PSS或者辅同步信号SSS。
  16. 根据权利要求15所述的方法,其中,包括:
    对于所述一个或者多个子帧中的一个子帧,所述多个OFDM符号包括所述一个子帧中的连续多个OFDM符号,或者,
    所述同步信号在所述一个或者多个子帧上接收时,所述多个OFDM符号为预设集合中的符号,所述集合包括每个时隙的第三个OFDM符号、第四个OFDM符号和最后两个OFDM符号。
  17. 根据权利要求15或权利要求16所述的方法,其中,还包括,
    所述PSS位于连续的k1个无线帧,以T1个无线帧为周期接收,T1≥k1,所述SSS以T2个无线帧为周期接收,或者,
    所述PSS以T3个无线帧为周期接收,所述SSS位于连续的k2个无线帧,以T4个无线帧为周期接收,T4≥k2,或者,
    所述PSS和所述SSS位于连续的k3个无线帧上,以T5个无线帧为周期接收,T5≥k3;
    其中,k1、k2、k3、T1、T2、T3、T4、T5均为正整数。
  18. 根据权利要求15所述的方法,其中,还包括,
    在一个重复周期内,所述同步信号包含M个OFDM符号,第m个OFDM符号的子载波间隔为15/AmKHz,其中1≤m≤M,m,M和Am均为正整数。
  19. 根据权利要求18所述的方法,其中,还包括,
    当Am=2时,子载波间隔为7.5KHz,所述OFDM符号对应2个连续的OFDM符号,所述2个连续的OFDM符号包括以下之一:
    一个时隙的第三个OFDM符号和第四个OFDM符号,或者一个时隙的最后两个OFDM符号;
    当Am=4时,子载波间隔为3.75KHz,所述OFDM符号对应4个连续的OFDM符号。
  20. 根据权利要求15所述的方法,其中,还包括,
    对于独立运营standalone场景,在所述同步信号所在的所述一个或者多个子帧上,所述同步信号对应的所述OFDM符号上,不接收参考信号,或者,
    对于standalone场景,在所述同步信号所在的所述一个或者多个子帧上,参考信号仅在前q个所述OFDM符号上接收,q为正整数。
  21. 根据权利要求15所述的方法,其中,还包括,
    在一个重复周期内,所述同步信号包含多个序列,所述多个序列根据小区标识和/或定时信息生成。
  22. 根据权利要求21所述的方法,其中,在一个重复周期内,所述同步信号包含多个序列包括,
    在一个重复周期内,所述同步信号包含的每个OFDM符号对应一个序列;或者,
    在一个重复周期内,所述同步信号包含的多个OFDM符号对应一个序列,其中所述每个OFDM符号对应所述序列的子序列;或者,
    在一个重复周期内的多个子帧上,所述多个子帧中的每个子帧对应一个序列。
  23. 根据权利要求22所述的方法,其中,包括:
    在所述同步信号包含的所述每个OFDM符号或者所述多个OFDM符号对应一个序列的情况下,所述序列由所述序列对应的OFDM符号确定。
  24. 根据权利要求15或权利要求16所述的方法,其中,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收包括:
    所述同步信号在m个所述OFDM符号对应的时间上接收,其中m∈{5,6,7,8,10,12}。
  25. 根据权利要求15所述的方法,其中,包括:
    所述多个OFDM符号对应的时间包含两部分,所述两部分的每一部分对应一个序列,所述两部分包括:
    所述两部分是按照时间顺序划分为两部分的,或者,
    所述两部分分别为奇数索引的OFDM符号对应的时间和偶数索引的OFDM符号对应的时间;其中,所述索引是将所述同步信号对应的OFDM符号按照时间顺序重新从0开始编号后的索引。
  26. 根据权利要求15所述的方法,其中,包括:
    在所述同步信号对应的所述OFDM符号上,对于不接收小区专用参考信号CRS的子载波,所述同步信号为:y(k)=x(k)·c,其中c=s(k0)/x(k0),其中,k0为所述符号上的预设资源块RE上的小区专用参考信号CRS的子载波索引,x(k0)为子载波#k0对应的PSS或者SSS序列的值,s(k0)为子载波#k0对应的CRS符号值。
  27. 根据权利要求15所述的方法,其中,包括
    所述同步信号的位置由以下至少之一确定:
    小区标识;
    所述同步信号对应的频域位置或者是PRB索引或者是频偏。
  28. 根据权利要求27所述的方法,其中,包括:
    当所述小区标识为X的时候,所述同步信号位于所述同步信号所在的物理资源块的后N个子载波上,当所述小区标识为Y的时候,所述同步信号位于所述同步信号所在的物理资源块的前N个子载波上,其中,N为正整数。
  29. 根据权利要求28所述的方法,其中,包括:
    所述小区标识X满足mod(X,3)等于0,所述小区标识Y满足mod(Y,3)不等于0;或者,所述小区标识Y满足mod(Y,3)等于2,所述小区标识X满足mod(X,3)不等于2;所述小区标识X满足mod(X,6)等于0,所述小区标识Y满足mod(Y,6)不等于0;或者,所述小区标识Y满足mod(Y,6)等于5,所述小区标识X满足mod(X,6)不等于5。
  30. 根据权利要求15所述的方法,其中,包括:
    所述同步信号包含的每个OFDM符号对应一个序列时,所述序列为长度11的ZC序列为:
    Figure PCTCN2016099636-appb-100001
    0≤n≤N-1,且相邻的OFDM符号上使用的根索引不同,其中,n表示序列值的索引,u表示ZC序列的根索引,N为ZC序列的长度,N=11。
  31. 根据权利要求30所述的方法,其中,包括:
    对所述ZC序列的根索引进行分组,所述分组的方式包括以下至少之一:
    方式1:第一组包括u={5,6,4,7,3,8}的ZC序列,第二组包括u={2,9}的ZC序列,第三组包括u={1,10}的ZC序列;
    方式2:第一组包括u={1,10,2,9,3,8}的ZC序列,第二组包括u={4,7}的ZC序列,第三组包括u={5,6}的ZC序列;
    其中,所述第二组和所述第三组的序列可以互换。
  32. 根据权利要求31所述的方法,其中,包括:
    所述第一组ZC序列映射到第一OFDM符号上,所述第二组ZC序列映射到第二OFDM符号上,所述第三组ZC序列映射到第三OFDM符号上,其中,所述第一OFDM符号包括子帧中编号为{5,6,9,10,12,13}的符号,所述第二OFDM符号包括子帧中编号为{3,4},所述第三OFDM符号包括子帧中编号为{7,8}的符号,其中,所述子帧中符号编号从0开始。
  33. 根据权利要求30所述的方法,其中,包括:
    所述同步信号在子帧中倒数第三个OFDM符号上使用的ZC序列与子帧中最后一个OFDM符号上使用的ZC序列相同;或者,与第二个时隙第一个OFDM符号使用的ZC序列相同;或者,与第一个时隙最后一个OFDM符号使用的ZC序列相同;或者,与所述同步信号在子帧中的第一个OFDM符号使用的ZC序列相同。
  34. 根据权利要求29所述的方法,其中,包括:
    当循环前缀为常规循环前缀时,所述同步信号包含的OFDM符号按照时间顺序对应的序列的根索引依次为以下之一:
    {1,2,3,4,5,6,7,8,9,10,1};
    {1,2,3,4,5,1,6,7,8,9,10};
    {1,10,2,9,3,5,8,4,7,5,6};
    {1,10,2,9,3,8,4,7,6,5,6};
    {2,9,5,6,1,10,4,7,3,8,3};
    {2,9,3,8,1,10,4,7,5,6,5}。
  35. 根据权利要求30所述的方法,其中,包括:
    当循环前缀为扩展循环前缀时,所述同步信号包含的OFDM符号按照时间顺序对应的序列的根索引依次为以下之一:
    {1,2,3,4,5,6,7,8,9};
    {1,2,3,4,5,7,8,9,10};
    {1,10,2,9,3,4,7,5,6};
    {1,10,2,9,3,8,4,7,6};
    {1,5,6,2,9,3,8,4,7};
    {1,4,7,2,9,3,8,5,6}。
  36. 一种同步信号的传输装置,位于基站侧,包括:
    发送模块,设置为向终端周期重复发送同步信号;
    在一个重复周期内,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上发送,所述同步信号是主同步信号PSS或者辅同步信号SSS。
  37. 一种同步信号的传输装置,位于终端侧,包括:
    接收模块,设置为周期重复接收基站发送的同步信号;
    在一个重复周期内,所述同步信号在一个或者多个子帧上的多个正交频分复用技术OFDM符号对应的时间上接收,所述同步信号是主同步信号PSS或者辅同步信号SSS。
PCT/CN2016/099636 2015-09-30 2016-09-21 同步信号的传输方法及装置 WO2017054667A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187009748A KR20180063115A (ko) 2015-09-30 2016-09-21 동기 신호의 전송을 위한 방법 및 디바이스
US15/756,028 US10666484B2 (en) 2015-09-30 2016-09-21 Method and apparatus for transmission of synchronization signal
EP16850291.2A EP3358774B1 (en) 2015-09-30 2016-09-21 Method and device for transmitting synchronization signal
JP2018516165A JP6586520B2 (ja) 2015-09-30 2016-09-21 同期信号を伝送するための方法およびデバイス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510638928.7 2015-09-30
CN201510638928 2015-09-30
CN201610094692.X 2016-02-19
CN201610094692.XA CN106559206B (zh) 2015-09-30 2016-02-19 同步信号的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2017054667A1 true WO2017054667A1 (zh) 2017-04-06

Family

ID=58418270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099636 WO2017054667A1 (zh) 2015-09-30 2016-09-21 同步信号的传输方法及装置

Country Status (6)

Country Link
US (1) US10666484B2 (zh)
EP (1) EP3358774B1 (zh)
JP (1) JP6586520B2 (zh)
KR (1) KR20180063115A (zh)
CN (1) CN106559206B (zh)
WO (1) WO2017054667A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11539497B2 (en) 2017-08-11 2022-12-27 Huawei Technologies Co., Ltd. Physical resource block PRB grid indication method and device

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6513877B2 (ja) * 2015-07-24 2019-05-15 インテル コーポレイション 狭帯域lte配置のための同期信号及びチャネル構造
CN107689837B (zh) * 2016-08-05 2019-04-05 北京信威通信技术股份有限公司 一种同步的方法及装置
CN109565410B (zh) 2016-08-08 2021-09-03 Lg 电子株式会社 Nprs发送方法及其设备
US10912046B2 (en) * 2016-09-29 2021-02-02 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication method, and integrated circuit
CN108289070B (zh) 2017-01-09 2020-12-11 电信科学技术研究院 一种同步序列的发送方法、同步检测方法及装置
WO2018127222A1 (zh) * 2017-01-09 2018-07-12 电信科学技术研究院 一种同步序列的发送方法、同步检测方法及装置
US10499416B2 (en) * 2017-01-10 2019-12-03 Qualcomm Incorporated Downlink channel rate matching of synchronization signal block transmissions in a new radio wireless communication system
WO2018188094A1 (zh) * 2017-04-14 2018-10-18 华为技术有限公司 一种发现信号的传输方法、基站及用户设备
US11799603B2 (en) * 2017-05-02 2023-10-24 Ntt Docomo, Inc. Base station apparatus
CN112713985B (zh) 2017-05-05 2022-03-08 华为技术有限公司 传输信号的方法和装置
CN108811076B (zh) * 2017-05-05 2020-12-08 华为技术有限公司 下行同步方法和设备
CN109152028B (zh) * 2017-06-16 2022-02-22 中兴通讯股份有限公司 定时信息的发送、确定方法、装置、存储介质及处理器
CN109150446B (zh) * 2017-06-16 2021-07-27 展讯通信(上海)有限公司 时间索引指示方法、基站、存储介质及电子设备
CN109104227A (zh) * 2017-06-20 2018-12-28 索尼公司 用于无线通信系统的电子设备、方法和存储介质
CN109392081B (zh) 2017-08-11 2021-10-19 华为技术有限公司 通信方法、装置和系统
CN114143885A (zh) 2017-08-11 2022-03-04 中兴通讯股份有限公司 资源位置的指示、接收方法及装置
US20190059012A1 (en) * 2017-08-21 2019-02-21 Qualcomm Incorporated Multiplexing channel state information reference signals and synchronization signals in new radio
CN109495413B (zh) * 2017-09-11 2022-04-01 中国移动通信有限公司研究院 同步信号块的传输、小区质量的测量方法、基站及终端
CN107682133B (zh) * 2017-09-20 2020-08-14 宇龙计算机通信科技(深圳)有限公司 一种发现参考信号的生成方法、装置及网络侧设备
WO2019080007A1 (zh) * 2017-10-25 2019-05-02 北京小米移动软件有限公司 用于发送和接收同步信号的方法、装置、发射机和接收机
CN109818896A (zh) * 2017-11-20 2019-05-28 富士通株式会社 同步信号的传输方法、装置及通信系统
WO2019148334A1 (zh) * 2018-01-30 2019-08-08 华为技术有限公司 功率测量方法及设备
BR112020022886A2 (pt) * 2018-05-11 2021-02-23 Huawei Technologies Co., Ltd. método de envio de sinal, método de recebimento de sinal, e dispositivo
CN111526578B (zh) * 2019-02-03 2021-06-22 华为技术有限公司 一种传输同步信号的方法及终端设备
US20230111433A1 (en) * 2019-02-08 2023-04-13 Tactual Labs Co. Non-uniform electrode spacing with a bend sensor
KR102656612B1 (ko) 2019-08-16 2024-04-12 삼성전자주식회사 무선 통신 시스템에서 이동 통신 사업자 간 주파수 자원을 공유하여 단말과 통신하는 방법 및 장치
CN112564868B (zh) * 2019-09-26 2023-04-07 大唐移动通信设备有限公司 一种信号的发送、接收方法及终端
WO2022141007A1 (zh) * 2020-12-29 2022-07-07 海能达通信股份有限公司 信号的传输方法、装置、基站、终端及计算机存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527595A (zh) * 2008-03-07 2009-09-09 中兴通讯股份有限公司 一种时分双工系统的帧结构及同步信号的发送方法
CN101682498A (zh) * 2007-05-17 2010-03-24 Lg电子株式会社 在无线通信系统中发送同步信号的方法
CN103391265A (zh) * 2012-05-11 2013-11-13 中兴通讯股份有限公司 一种基站及新载波中主辅同步信号的传输方法
US20150016239A1 (en) * 2012-03-09 2015-01-15 Lg Electronics Inc. Method and apparatus for setting reference signal

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417089B1 (ko) * 2008-01-03 2014-07-09 엘지전자 주식회사 무선통신 시스템에서 동기 신호 획득방법
US8681730B2 (en) * 2009-07-09 2014-03-25 Broadcom Corporation Method and system for using sign based synchronization sequences in a correlation process to reduce correlation complexity in an OFDM system
WO2012027880A1 (en) * 2010-08-30 2012-03-08 Motorola Mobility, Inc. Methods and apparatus for carrier frequency offset estimation and carrier frequency offset correction
CN103733560B (zh) * 2011-08-12 2017-08-11 交互数字专利控股公司 用于无线系统中灵活的带宽操作的下行链路资源分配
US20130229953A1 (en) * 2011-08-16 2013-09-05 Samsung Electronics Co., Ltd. Apparatus and method for indicating synchronization signals in a wireless network
CN103888962B (zh) * 2012-12-21 2017-11-17 华为技术有限公司 获取带宽信息的方法和装置
US9414399B2 (en) * 2013-02-07 2016-08-09 Commscope Technologies Llc Radio access networks
US9936470B2 (en) * 2013-02-07 2018-04-03 Commscope Technologies Llc Radio access networks
KR20160130429A (ko) * 2014-03-04 2016-11-11 엘지전자 주식회사 탐색 신호를 수신하기 위하여 제어 정보를 수신하는 방법 및 장치
CA3167284A1 (en) * 2014-06-09 2015-12-17 Airvana Lp Radio access networks
US20160014718A1 (en) * 2014-07-14 2016-01-14 Sierra Wireless, Inc. Quick paging method and apparatus in lte
JP6513877B2 (ja) 2015-07-24 2019-05-15 インテル コーポレイション 狭帯域lte配置のための同期信号及びチャネル構造
WO2017044144A1 (en) * 2015-09-11 2017-03-16 Intel IP Corporation Reference signals for initial acquisition in 5g systems
US10256955B2 (en) * 2015-09-29 2019-04-09 Qualcomm Incorporated Synchronization signals for narrowband operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682498A (zh) * 2007-05-17 2010-03-24 Lg电子株式会社 在无线通信系统中发送同步信号的方法
CN101527595A (zh) * 2008-03-07 2009-09-09 中兴通讯股份有限公司 一种时分双工系统的帧结构及同步信号的发送方法
US20150016239A1 (en) * 2012-03-09 2015-01-15 Lg Electronics Inc. Method and apparatus for setting reference signal
CN103391265A (zh) * 2012-05-11 2013-11-13 中兴通讯股份有限公司 一种基站及新载波中主辅同步信号的传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358774A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11539497B2 (en) 2017-08-11 2022-12-27 Huawei Technologies Co., Ltd. Physical resource block PRB grid indication method and device
US11924143B2 (en) 2017-08-11 2024-03-05 Huawei Technologies Co., Ltd. Physical resource block PRB grid indication method and device

Also Published As

Publication number Publication date
EP3358774A4 (en) 2019-06-12
EP3358774A1 (en) 2018-08-08
US20180248735A1 (en) 2018-08-30
US10666484B2 (en) 2020-05-26
CN106559206B (zh) 2019-04-23
CN106559206A (zh) 2017-04-05
JP2018536323A (ja) 2018-12-06
JP6586520B2 (ja) 2019-10-02
EP3358774B1 (en) 2022-01-12
KR20180063115A (ko) 2018-06-11

Similar Documents

Publication Publication Date Title
WO2017054667A1 (zh) 同步信号的传输方法及装置
US10306573B2 (en) System and method for transmitting a synchronization signal
US9860860B2 (en) Synchronization signals for device-to-device communcations
US10958391B2 (en) Tone plans for wireless communication networks
CN112737759B (zh) 信息发送、接收方法及设备
WO2018113739A1 (zh) 资源配置方法、信息发送方法、基站及终端
KR20180102630A (ko) 랜덤 액세스 방법 및 장치
KR20160018244A (ko) D2d 통신을 위한 d2d 데이터 자원을 결정하는 방법 및 장치
WO2016119502A1 (zh) 通信处理方法、装置及用户设备
JP6740367B2 (ja) システム情報の伝送方法、基地局及び端末
JP2019530287A (ja) 情報送信方法、端末、及びネットワークデバイス
WO2016019553A1 (zh) 物理下行数据信道传输方法、基站及用户设备
JP7228619B2 (ja) 信号伝送方法、ネットワーク設備及び端末設備
WO2017133676A1 (zh) 参考信号的发送、接收方法、装置及传输系统
JP6824232B2 (ja) データを伝送するための方法およびデバイス
JP5389919B2 (ja) フェムトセル識別のためのシステムおよび方法
JP6824394B2 (ja) 送信装置および受信装置
WO2017121413A1 (zh) 资源的使用方法及装置
CN111294869B (zh) 资源分配方法及装置、存储介质、用户设备
US20190007932A1 (en) Data transmission method and apparatus
WO2017028071A1 (zh) 下行控制信息的接收、发送方法及装置
CN106533498B (zh) 传输信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850291

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15756028

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018516165

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009748

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016850291

Country of ref document: EP