WO2018188094A1 - 一种发现信号的传输方法、基站及用户设备 - Google Patents
一种发现信号的传输方法、基站及用户设备 Download PDFInfo
- Publication number
- WO2018188094A1 WO2018188094A1 PCT/CN2017/080667 CN2017080667W WO2018188094A1 WO 2018188094 A1 WO2018188094 A1 WO 2018188094A1 CN 2017080667 W CN2017080667 W CN 2017080667W WO 2018188094 A1 WO2018188094 A1 WO 2018188094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- synchronization signal
- subframe
- primary synchronization
- configuration parameter
- time domain
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
Definitions
- the present application relates to the field of communications, and in particular, to a method for transmitting a discovery signal, a base station, and a user.
- a base station can schedule a plurality of user equipments (UEs) in one scheduling unit (eg, TTI).
- UEs user equipments
- a base station can only send a discovery signal (DRS) to a plurality of UEs through one subframe, the signal includes a primary synchronization signal (PSS), and an MF primary synchronization signal (MF-primary synchronization signal, MF- PSS), secondary synchronization signal (SSS), MF-secondary synchronization signal (MF-SSS) and MF physical broadcast channel (MF-PBCH).
- DRS discovery signal
- MF-primary synchronization signal MF-primary synchronization signal
- SSS secondary synchronization signal
- MF-SSS MF-secondary synchronization signal
- MF-PBCH MF physical broadcast channel
- the UE receives the DRS and obtains the PSS, the MF-PSS, the SSS, and the MF-SSS to obtain information such as a physical cell ID (PCI), a system bandwidth, and the like, and completes synchronization with the base station clock and frequency.
- the frame structure of the DRS is as shown in FIG. 1.
- the DRS occupies one subframe, and the PSS, SSS, MF-PSS, and MF-SSS respectively occupy one symbol.
- the MF-PBCH occupies 6 orthogonal frequency division multiplexing (OFDM) symbols.
- the user equipment When the MF system is deployed in a scenario such as a port, a dock, or an automated production stream, the user equipment generally has a high mobility. During the movement of the user equipment, the wireless signal transmitted by the base station is easily separated by the user equipment and the base station. The object is occluded, resulting in poor quality of the wireless signal, and the user equipment may not receive it normally. On the other hand, due to the large number of user equipments, it is easy to block the wireless signal during the movement process, and the user equipment may also The data sent by the base station cannot be received normally. At this time, there is a high demand for the signal quality delivered by the base station, and the base station needs to provide better wireless coverage capability to cope with the scenario where the wireless signal quality is poor.
- the DRS is transmitted in one subframe.
- the DRS may not be received normally. Therefore, the UE cannot obtain the synchronization signal and the MF-PBCH information, so that it cannot synchronize with the base station clock and frequency, and cannot obtain system information, and thus cannot access the core network through the base station.
- the embodiment of the present invention provides a method for transmitting a discovery signal, a base station, and a user equipment.
- the base station sends a discovery signal to the UE through multiple consecutive subframes in the time domain, so that the UE can also receive the discovery sent by the base station in the weak coverage area.
- the signal obtains the synchronization signal in the discovery signal, and synchronizes with the base station clock and frequency according to the obtained synchronization signal, and accesses the core network through the base station.
- a method for transmitting a discovery signal including:
- the base station determines a physical cell identifier (PCI) of the physical cell where the UE is located. Since the PCI is equal to the first configuration parameter multiplied by 3 and the second configuration parameter, the base station can determine the first configuration according to the PCI of the physical cell. Parameters and second configuration parameters. Further, the base station may further determine, according to the first configuration parameter, the first primary synchronization signal, the second primary synchronization signal, and the first a three-master synchronization signal; the first secondary synchronization signal, the second secondary synchronization signal, and the third secondary synchronization signal may be determined according to the first configuration parameter and the second configuration parameter. Subsequently, the base station transmits a discovery signal to the UE through at least two consecutive subframes. The discovery signal includes the first primary synchronization signal, the second primary synchronization signal, the third primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the third secondary synchronization signal.
- PCI physical cell identifier
- the base station sends the discovery signal to the UE through multiple consecutive subframes, and the discovery signal is enhanced in the time domain, which improves the limitation of the discovery signal transmission duration on the UE receiving effect.
- the UE can still receive the discovery signal sent by the base station in a weak coverage area, such as a weak coverage area such as a factory floor or a port, and perform clock synchronization and frequency synchronization with the base station according to the synchronization signal, and smoothly access the base station.
- the base station communicates with the core network.
- the base station may further determine, according to the system bandwidth, the system frame number, and the subframe number of the start subframe of the discovery signal, the first physical broadcast channel;
- the first physical broadcast channel determines a second physical broadcast channel.
- the discovery signal also includes a first physical broadcast channel and a second physical broadcast channel. It should be noted that the first subframe of the discovery signal is the first subframe of at least two consecutive subframes of the transmission discovery signal.
- the discovery signal sent by the base station includes the first physical broadcast channel and the second physical broadcast channel, and the physical broadcast channel is also enhanced in the time domain, because the physical broadcast channel is used to indicate the system bandwidth and the system.
- the information such as the frame number enables the UE to detect the physical broadcast channel and obtain information such as system bandwidth and system frame number in a scenario with weak coverage.
- the determining, by the base station, the second physical broadcast channel according to the first physical broadcast channel includes: The first primary system information block carried by the broadcast channel is determined as the second primary system information block carried by the second physical broadcast channel.
- the information carried by the second physical broadcast channel and the first physical broadcast channel are the same, and when the UE is in a scene with weak coverage, even if the first physical broadcast channel is not detected, the second transmission can still be performed by the base station.
- the second physical broadcast channel obtains information such as system bandwidth and system frame number, so that the performance of the discovery signal is enhanced, and the UE's reception of the discovery signal is no longer limited by a short transmission duration, and can also be detected in a weak coverage scenario.
- the base station is connected to the base station according to the discovery signal, and communicates with the core network through the base station.
- the base station determines, according to the first configuration parameter, the first primary synchronization signal, the second primary synchronization signal, and the first Before the three primary synchronization signals, the method further includes: the base station determining a primary synchronization signal table, the primary synchronization signal table including at least one first configuration parameter, and three mutual interfaces corresponding to each of the at least one first configuration parameter Not the same primary sync signal.
- the primary synchronization signal table includes a first primary synchronization signal table, a second primary synchronization signal table, and a third primary synchronization signal table
- the first primary synchronization signal table includes at least one first configuration parameter and the at least one first configuration a first primary synchronization signal corresponding to each of the first configuration parameters
- the second primary synchronization signal table including at least one first configuration parameter and a second corresponding to each of the at least one first configuration parameter a primary synchronization signal
- the third primary synchronization signal table including at least one first configuration parameter and a third primary synchronization signal corresponding to each of the at least one first configuration parameter.
- the base station can record the correspondence between the first configuration parameter and the root serial number of the primary synchronization signal in the foregoing two manners, so that the base station can obtain the root of the first primary synchronization signal after determining the first configuration parameter according to the PCI.
- the serial number, the root serial number of the second primary synchronization signal, and the root serial number of the third primary synchronization signal, and further, the first primary synchronization signal, the second primary synchronization signal, and the third primary synchronization signal may be determined according to the root serial number.
- the base station determines, according to the first configuration parameter, the first primary synchronization signal, the second primary synchronization signal, and the first
- the three primary synchronization signals specifically include: using the first configuration parameter as an index, determining, according to the primary synchronization signal table, three mutually different primary synchronization signals corresponding to the first configuration parameter, and the three mutual correspondences corresponding to the first configuration parameter
- the different main synchronizing signals are respectively determined as the first main synchronizing signal, the second main synchronizing signal, and the third main synchronizing signal.
- the base station determines, according to the first configuration parameter, the first primary synchronization signal, the second primary synchronization signal, and the first
- the third primary synchronization signal specifically includes: using the first configuration parameter as an index, determining, according to the first primary synchronization signal table, that the first primary synchronization signal corresponding to the first configuration parameter is the first primary synchronization signal; using the first configuration parameter as an index Determining, according to the second primary synchronization signal table, the second primary synchronization signal corresponding to the first configuration parameter as the second primary synchronization signal; determining, by the first configuration parameter, the first configuration according to the third primary synchronization signal table
- the third primary synchronization signal corresponding to the parameter is a third primary synchronization signal.
- the determining, by the base station, the first secondary synchronization signal and the second secondary synchronization signal according to the second configuration parameter The base station determines the first secondary synchronization signal and the second secondary synchronization signal according to the first configuration parameter, the second configuration parameter, and the subframe number of the start subframe of the discovery signal; the first secondary synchronization signal is the same as the second secondary synchronization signal.
- the base station determines two index numbers according to the first configuration parameter and the second configuration parameter, and further obtains a synchronization sequence according to the two index numbers, and uses the synchronization sequence as the first secondary synchronization signal or the second secondary synchronization signal. That is, the first secondary synchronization signal may be the same as the second secondary synchronization signal.
- the base station may determine the first secondary synchronization signal and the second secondary synchronization signal after determining the first configuration parameter and the second configuration parameter.
- determining, by the second configuration parameter, the third secondary synchronization signal specifically includes:
- the base station determines a code sequence according to a subframe offset of the start subframe of the discovery signal with respect to subframe 0 or subframe 5 of the system frame, and obtains a third secondary synchronization signal according to the code sequence processing base sequence.
- the base sequence is the first secondary synchronization signal or the second secondary synchronization signal, or the base sequence may be a synchronization sequence determined according to the second configuration parameter.
- the third secondary synchronization signal subsequently transmitted by the base station can be used to obtain clock synchronization and frequency synchronization with the base station.
- this makes the performance of the discovery signal enhanced, UE pairs
- the reception of the discovery signal is no longer limited by the shorter transmission duration.
- the discovery signal can also be detected in the weak coverage scenario, and the base station is connected to the core network according to the discovery signal.
- the method before the determining, by the base station, the PCID of the physical cell where the UE is located, the method further includes: the base station generates five mutual Different mask sequences; the length of the mask sequence is M, M is the number of orthogonal frequency division multiplexing OFDM symbols occupied by the third secondary synchronization signal, and the five mask sequences correspond to five mutually different subframe offsets. Shift; M is an integer greater than or equal to 1.
- the starting subframe of the discovery signal is either in the first half of the system frame (subframe 0 to subframe 4), or in the latter half of the system frame (subframe 5 to subframe 9), and the starting subframe is in the system frame.
- the subframe offset relative to subframe 0 of the system frame may be one of five possible values of 0, 1, 2, 3, 4; likewise, the starting subframe is in the first half of the system frame.
- the subframe offset of the subframe 5 relative to the system frame may also be one of five possible values of 0, 1, 2, 3, and 4.
- different mask sequences correspond to different subframe offsets, and five different subframe offsets may be indicated by five different mask sequences.
- the base station offsets the subframe according to the starting subframe from the subframe 0 or the subframe 5 Determining the code sequence, and processing the base sequence according to the code sequence to obtain the third secondary synchronization signal specifically includes:
- the jth OFDM symbol is the jth OFDM symbol among the M OFDM symbols occupied by the third secondary synchronization signal, and j is an integer greater than or equal to 1 and less than or equal to M.
- the third secondary synchronization signal occupies 9 OFDM symbols in at least two consecutive subframes of the transmission discovery signal, then the length of the mask sequence is 9, and the base station utilizes the first element in the mask sequence to base sequence Performing a masking operation, obtaining a synchronization sequence carried on the first OFDM symbol occupied by the third secondary synchronization signal. Similarly, the base station performs a mask operation on the base sequence by using the second element in the mask sequence.
- the synchronization sequence carried on the second OFDM symbol occupied by the third secondary synchronization signal, and so on, may all map the third secondary synchronization signal to the corresponding OFDM symbol.
- the UE can map the actual subframe number of the start subframe of the discovery signal according to the mask sequence, and the UE can actually according to the actual start subframe.
- the subframe number correctly receives the downlink signal (including the second physical broadcast channel).
- the base station is configured to offset the subframe according to the starting subframe from the subframe 0 or the subframe 5 Determining the code sequence, and processing the base sequence according to the code sequence to obtain the third secondary synchronization signal specifically includes:
- the base station determines a scrambling code sequence of length N according to the subframe offset m 2 of the starting subframe relative to the subframe 0 or the subframe 5, and the i-th element s(i) in the scrambling sequence is satisfied.
- Obtaining a third secondary synchronization signal by performing an scrambling operation on the i-th element in the base sequence according to the i-th element of the scrambling code sequence; wherein N is the length of the third secondary synchronization signal; N is an integer greater than or equal to 1; An integer greater than or equal to 1, and less than or equal to N; n s is the slot number of the first slot of the starting subframe.
- different mask sequences correspond to different subframe offsets, and five different subframe offsets may be indicated by five different scrambling code sequences.
- the UE can map the actual subframe number of the start subframe of the discovery signal according to the mask sequence, and the UE can actually according to the actual start subframe. The subframe number correctly receives the downlink signal.
- the at least two consecutive subframes that send the discovery signal include a first time domain interval, and a second The time domain interval and the third time domain interval, the first time domain interval, the second time domain interval, and the third time domain interval do not overlap each other, the first time domain interval is located before the second time domain interval, and the second time domain interval Located before the third time domain interval.
- the first time domain interval is used by the base station to send the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the first physical broadcast channel;
- the second time domain interval is used for sending by the base station.
- the third primary synchronization signal and the third secondary synchronization signal; the third time domain interval is used by the base station to send the second physical broadcast channel.
- the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the first physical broadcast channel are both transmitted before the third primary synchronization signal and the third secondary synchronization signal,
- the three primary synchronization signals and the third secondary synchronization signals are transmitted prior to the second physical broadcast channel.
- the synchronization sequence is first enhanced, which is beneficial for the UE to complete all synchronization sequence detection before demodulating the physical broadcast channel, and because the base station can indicate the actual subframe number of the start subframe of the discovery signal by using the third secondary synchronization signal, the UE
- the actual subframe number where the physical broadcast channel is located may be determined according to the actual subframe number of the start subframe of the discovery signal before demodulating the physical broadcast channel, so that the base station may perform cell specific according to the actual subframe number where the physical broadcast channel is located.
- the signal specific reference signal (CRS) is scrambled, and does not affect the normal scheduling of the subframe where the physical broadcast channel is located.
- the at least two consecutive subframes include a first subframe, a second subframe, and a third
- the subframe, the fourth subframe, and the fifth subframe, and the first subframe, the second subframe, the third subframe, the fourth subframe, and the fifth subframe each include 14 OFDM symbols.
- the first time domain interval includes: all the OFDM symbols except the first two OFDM symbols and the last two OFDM symbols in the first subframe;
- the second time domain interval includes: the 13th OFDM symbol of the first subframe, the first The 14th symbol of the subframe and all the OFDM symbols except the first two OFDM symbols in the second subframe;
- the third time domain interval includes: all OFDM symbols except the first two OFDM symbols in the third subframe, All OFDM symbols except the first two OFDM symbols in the 4 subframes and all OFDM symbols except the first two OFDM symbols in the fifth subframe.
- the base station is allowed to transmit the discovery signal through 5 consecutive subframes, wherein the first frame includes the existing DRS shown in FIG. 1, so that the discovery signal transmitted by the base station can be compatible with the MF1.0 version of the UE.
- the enhanced synchronization sequence ie, the third secondary synchronization signal and the third primary synchronization signal
- the physical broadcast channel is transmitted through the remaining three subframes, which also enhances the physical broadcast channel in the time domain.
- the third OFDM symbol of the first subframe is used to send the second secondary synchronization signal
- the 4th OFDM symbol of the 1st subframe is used to transmit the second primary synchronization signal
- the 6th OFDM symbol of the 1st subframe is used to transmit the first secondary synchronization signal
- the 7th OFDM symbol of the 1st subframe is used for Transmitting, by the first primary synchronization signal, an OFDM symbol other than the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, and the second secondary synchronization signal in the first time domain interval for transmitting the first physical broadcast channel.
- the 14th symbol of the 1st subframe, the 5th OFDM symbol of the 2nd subframe, the 8th OFDM symbol of the 2nd subframe, the 11th OFDM symbol of the 2nd subframe, and the 14th OFDM symbol of the 2nd subframe OFDM symbols are used to transmit a third primary synchronization signal; all OFDM symbols except the OFDM symbol transmitting the third primary synchronization signal in the second time domain interval are used to transmit the third secondary synchronization signal; all of the third time domain interval is included
- the OFDM symbol is used by the base station to transmit a second physical broadcast channel.
- the at least two subframes include a first subframe, a second subframe, and a third subframe.
- the fourth subframe, the fifth subframe, and the first subframe, the second subframe, the third subframe, the fourth subframe, and the fifth subframe each include 14 OFDM symbols.
- the first time domain interval includes all OFDM symbols except the first two OFDM symbols and the last two OFDM symbols in the first subframe.
- the second time domain interval includes: a 13th OFDM symbol of the 1st subframe, a 14th symbol of the 1st subframe, and all OFDM symbols except the first three OFDM symbols in the 2nd subframe.
- the third time domain interval includes: all OFDM symbols except the first three OFDM symbols in the third subframe, all OFDM symbols except the first two OFDM symbols in the fourth subframe, and the first two in the fifth subframe All OFDM symbols outside the OFDM symbol.
- the third OFDM symbol of the first subframe is used to send the second secondary synchronization signal
- the 4th OFDM symbol of the 1st subframe is used to transmit the second primary synchronization signal
- the 6th OFDM symbol of the 1st subframe is used to transmit the first secondary synchronization signal
- the 7th OFDM symbol of the 1st subframe is used for Transmitting, by the first primary synchronization signal, an OFDM symbol other than the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, and the second secondary synchronization signal in the first time domain interval for transmitting the first physical broadcast Channel
- the 14th OFDM symbol is used to transmit
- a method for transmitting a discovery signal including: receiving, by a UE, a discovery signal sent by a base station through at least two consecutive subframes, where the discovery signal includes a first primary synchronization signal, a second primary synchronization signal, and a third primary a synchronization signal, a first secondary synchronization signal, a second secondary synchronization signal, and a third secondary synchronization signal.
- the UE decodes the discovery signal to obtain a first primary synchronization signal, a second primary synchronization signal, a third primary synchronization signal, a first secondary synchronization signal, a second secondary synchronization signal, and a third secondary synchronization signal; further, the UE is according to the first The primary synchronization signal, the second primary synchronization signal, the third primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the third secondary synchronization signal determine the first configuration parameter and the second The configuration parameter is based on the first configuration parameter and the second configuration parameter, and the physical cell identifier of the physical cell where the UE is located is PCI. Of course, the UE can also access the foregoing physical cell according to the determined PCI.
- the base station sends the discovery signal to the UE through multiple consecutive subframes, and the discovery signal is enhanced in the time domain, which improves the limitation of the discovery signal transmission duration on the UE receiving effect.
- the UE can still receive the discovery signal sent by the base station in a weak coverage area, such as a weak coverage area such as a factory floor or a port, and perform clock synchronization and frequency synchronization with the base station according to the synchronization signal, and smoothly access the base station.
- the base station communicates with the core network.
- the UE decoding the discovery signal, obtaining the first primary synchronization signal, the second primary synchronization signal, and the third primary synchronization signal specifically includes: the primary synchronization signal of the UE
- the first primary synchronization signal, the second primary synchronization signal, and the third primary synchronization signal corresponding to any one of the first configuration parameters in the table are matched with the discovery signal, and the matching degree is higher than the first preset threshold, then the first configuration is performed.
- the parameter is determined as a first configuration parameter;
- the primary synchronization signal table includes a first primary synchronization signal table, a second primary synchronization signal table, and a third primary synchronization signal table, wherein the first primary synchronization signal table includes at least one first configuration parameter and a first primary synchronization signal corresponding to each of the at least one first configuration parameter, the second primary synchronization signal table including at least one first configuration parameter and each of the at least one first configuration parameter first Configuring a second primary synchronization signal corresponding to the parameter, the third primary synchronization signal table includes at least one first configuration parameter and the at least one first configuration parameter Each of the first configuration parameters corresponds to a third primary synchronization signal.
- the primary synchronization signal table includes at least one first configuration parameter, and three mutually different primary synchronization signals corresponding to each of the at least one first configuration parameter.
- the UE pre-stores the primary synchronization signal table, determines combinations that may occur in the first primary synchronization signal, the second primary synchronization signal, and the second primary synchronization signal, and matches each combination with the discovery signal, and the matching degree is matched.
- the first configuration parameter corresponding to the combination is determined to be a first configuration parameter obtained by detecting a discovery signal sent by the base station.
- the method further includes: The subframe number of the start subframe, the first configuration parameter, and the Q second configuration parameters in the second configuration parameter set determine 2*Q base sequences; and each of the Q second configuration parameters corresponds to the second configuration parameter
- the base sequence is different; five code sequences are obtained, and five code sequences correspond to five mutually different subframe offsets; respectively, 2*Q base sequences are processed according to five code sequences to obtain 10*Q secondary synchronization signals.
- the UE decodes the discovery signal, obtains the first secondary synchronization signal, the second secondary synchronization signal, and the third
- the secondary synchronization signal specifically includes: using one of the 2*Q base sequences as the first secondary synchronization signal synchronization signal and the second secondary synchronization sequence, and using one of the 10*Q secondary synchronization signals as the first synchronization signal.
- the third secondary synchronization signal is matched with the discovery signal, and the matching degree is higher than the second preset threshold, and the second configuration parameter corresponding to the base sequence is determined as the second configuration parameter.
- the UE may detect the second configuration parameter in combination with the first configuration parameter, and further determine the PCI according to the first configuration parameter and the second configuration parameter.
- the at least two consecutive subframes include a first time domain interval, a second time domain interval, and a The third time domain interval, the first time domain interval, the second time domain interval, and the third time domain interval do not overlap each other, the first time domain interval is located before the second time domain interval, and the second time domain interval is located in the third time domain region Before the interval.
- the first time domain interval is used by the base station to send the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the first physical broadcast channel;
- the second time domain interval is used for sending by the base station.
- the third primary synchronization signal and the third secondary synchronization signal; the third time domain interval is used by the base station to send the second physical broadcast channel.
- the method further includes: detecting, receiving, and receiving the cell-specific reference signal CRS in the third time domain interval Second physical broadcast channel.
- a base station including:
- a determining unit configured to determine a physical cell identifier PCI of the physical cell where the UE is located, determining a first configuration parameter and a second configuration parameter according to the PCI; the determining unit is further configured to: determine, according to the first configuration parameter, the first primary synchronization signal, and the second The primary synchronization signal and the third primary synchronization signal determine the first secondary synchronization signal, the second secondary synchronization signal, and the third secondary synchronization signal according to the first configuration parameter and the second configuration parameter; and the sending unit is configured to pass at least two consecutive sub-segments
- the frame transmits a discovery signal to the UE;
- the discovery signal includes a first primary synchronization signal, a second primary synchronization signal, a third primary synchronization signal, a first secondary synchronization signal, a second secondary synchronization signal, and a third secondary synchronization signal.
- the base station sends the discovery signal to the UE through multiple consecutive subframes, and the discovery signal is enhanced in the time domain, which improves the limitation of the discovery signal transmission duration on the UE receiving effect.
- the UE can still receive the discovery signal sent by the base station in a weak coverage area, such as a weak coverage area such as a factory floor or a port, and perform clock synchronization and frequency synchronization with the base station according to the synchronization signal, and smoothly access the base station.
- the base station communicates with the core network.
- the determining is further configured to determine, according to the system bandwidth, the system frame number, and the subframe number of the start subframe of the discovery signal, the first physical broadcast channel; Determining a second physical broadcast channel according to the first physical broadcast channel;
- the discovery signal further includes a first physical broadcast channel and a second physical broadcast channel.
- the determining unit is specifically configured to: use the first primary system information block carried by the first physical broadcast channel Determining a second primary system information block carried as a second physical broadcast channel.
- the determining unit is further configured to: determine, by the determining unit, the first primary synchronization signal according to the first configuration parameter And determining, before the second primary synchronization signal and the third primary synchronization signal, the primary synchronization signal table, the primary synchronization signal table including at least one first configuration parameter, and corresponding to each of the at least one first configuration parameter Three main synchronizing signals different from each other; or, the main synchronizing signal table includes a first main synchronizing signal table, a second main synchronizing signal table, and a third main synchronizing signal a table, wherein the first primary synchronization signal table includes at least one first configuration parameter and a first primary synchronization signal corresponding to each of the at least one first configuration parameter, the second primary synchronization signal table including at least one a first configuration parameter and a second primary synchronization signal corresponding to each of the at least one first configuration parameter, the third primary synchron
- the determining unit is specifically configured to use the first configuration parameter as an index, according to the primary synchronization signal table, Determining three mutually different primary synchronization signals corresponding to the first configuration parameter, and determining three mutually different primary synchronization signals corresponding to the first configuration parameter as the first primary synchronization signal and the second primary synchronization signal, respectively The third primary synchronization signal.
- the determining unit is specifically configured to use the first configuration parameter as an index, according to the first primary synchronization signal a table, determining that the first primary synchronization signal corresponding to the first configuration parameter is a first primary synchronization signal; determining, by using the first configuration parameter, a second primary synchronization corresponding to the first configuration parameter according to the second primary synchronization signal table The signal is a second primary synchronization signal; and the third primary synchronization signal corresponding to the first configuration parameter is determined to be the third primary synchronization signal according to the third primary synchronization signal table.
- the determining unit is specifically configured to: the base station according to the first configuration parameter, the second configuration parameter, and the discovery signal
- the subframe number of the starting subframe determines the first secondary synchronization signal or the second secondary synchronization signal; the first secondary synchronization signal is the same as the second secondary synchronization signal.
- the determining unit is specifically configured to: according to the starting subframe, the subframe 0 or the subframe 5
- the sub-frame offset determines a code sequence
- the third sub-synchronization signal is obtained according to the code sequence processing base sequence
- the base sequence is the first sub-synchronization signal or the second sub-synchronization signal, or the base sequence is determined according to the second configuration parameter.
- the determining unit is further configured to determine, before determining the PCID of the physical cell where the UE is located, Different mask sequences; the length of the mask sequence is M, M is the number of orthogonal frequency division multiplexing OFDM symbols occupied by the third secondary synchronization signal, and each of the five mask sequences corresponds to each One subframe offset; M is an integer greater than or equal to 1.
- the determining unit is specifically configured to determine the starting subframe relative to the subframe 0 or the subframe 5 The target mask sequence corresponding to the subframe offset; the base sequence is masked according to the jth element in the target mask sequence to obtain the third secondary synchronization signal carried on the jth OFDM symbol; the jth OFDM The symbol is the jth OFDM symbol among the M OFDM symbols occupied by the third secondary synchronization signal, and j is an integer greater than or equal to 1 and less than or equal to M.
- the determining unit is specifically configured to use, according to the starting subframe, the subframe 0 or the subframe 5 Subframe offset m 2 , determining a scrambling code sequence of length N, the i-th element s(i) in the scrambling code sequence is satisfied Obtaining a third secondary synchronization signal by performing an scrambling operation on the i-th element in the base sequence according to the i-th element of the scrambling code sequence; wherein N is the length of the third secondary synchronization signal; N is an integer greater than or equal to 1; An integer greater than or equal to 1, and less than or equal to N; n s is the slot number of the first slot of the starting subframe.
- the at least two consecutive subframes include a first time domain interval, a second time domain interval, and The third time domain interval, the first time domain interval, the second time domain interval, and the third time domain interval do not overlap each other, the first time domain interval is located before the second time domain interval, and the second time domain interval is located at the third time Before the domain interval; wherein, the first time domain interval is used by the base station to send the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the first physical broadcast channel; and the second time domain interval The base station sends a third primary synchronization signal and a third secondary synchronization signal; and the third time domain interval is used by the base station to send the second physical broadcast channel.
- the at least two consecutive subframes include a first subframe, a second subframe, and a third a subframe, a fourth subframe, and a fifth subframe, and the first subframe, the second subframe, the third subframe, the fourth subframe, and the fifth subframe each include 14 OFDM symbols;
- the first time domain interval The method includes: all the OFDM symbols except the first two OFDM symbols and the last two OFDM symbols in the first subframe;
- the second time domain interval includes: the 13th OFDM symbol of the 1st subframe, and the 14th subframe of the 1st subframe And all the OFDM symbols except the first two OFDM symbols in the second subframe;
- the third time domain interval includes: all the OFDM symbols except the first two OFDM symbols in the third subframe, and the fourth subframe All OFDM symbols except the first two OFDM symbols and all OFDM symbols except the first two OFDM symbols in the fifth subframe.
- the third OFDM symbol of the first subframe is used to send the second secondary synchronization signal
- the 4th OFDM symbol of the 1st subframe is used to transmit the second primary synchronization signal
- the 6th OFDM symbol of the 1st subframe is used to transmit the first secondary synchronization signal
- the 7th OFDM symbol of the 1st subframe is used for Transmitting, by the first primary synchronization signal, an OFDM symbol other than the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, and the second secondary synchronization signal in the first time domain interval for transmitting the first physical broadcast Channel
- the 14th OFDM symbol is used to transmit a third
- the at least two subframes include a first subframe, a second subframe, and a third subframe.
- a frame, a fourth subframe, and a fifth subframe, and the first subframe, the second subframe, the third subframe, the fourth subframe, and the fifth subframe each include 14 OFDM symbols;
- the first time domain interval includes : in the first sub-frame The first two OFDM symbols and all the OFDM symbols except the last two OFDM symbols;
- the second time domain interval includes: the 13th OFDM symbol of the 1st subframe, the 14th symbol of the 1st subframe, and the 2nd subframe All OFDM symbols except the first three OFDM symbols;
- the third time domain interval includes all OFDM symbols except the first three OFDM symbols in the third subframe, and all but the first two OFDM symbols in the fourth subframe OFDM symbol and all OFDM symbols except the first two OFDM symbols in the 5th subframe.
- the third OFDM symbol of the first subframe is used to send the second secondary synchronization signal
- the 4th OFDM symbol of the 1st subframe is used to transmit the second primary synchronization signal
- the 6th OFDM symbol of the 1st subframe is used to transmit the first secondary synchronization signal
- the 7th OFDM symbol of the 1st subframe is used for Transmitting, by the first primary synchronization signal, an OFDM symbol other than the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, and the second secondary synchronization signal in the first time domain interval for transmitting the first physical broadcast Channel
- the 14th OFDM symbol is used to transmit a third
- a UE including:
- a receiving unit configured to receive a discovery signal sent by the base station on at least two consecutive subframes; the discovery signal includes a first primary synchronization signal, a second primary synchronization signal, a third primary synchronization signal, a first secondary synchronization signal, and a second auxiliary a synchronization signal and a third secondary synchronization signal; a decoding unit, configured to decode the discovery signal, obtain a first primary synchronization signal, a second primary synchronization signal, a third primary synchronization signal, a first secondary synchronization signal, a second secondary synchronization signal, and a first a third auxiliary synchronization signal; determining unit, configured to determine the first configuration according to the first primary synchronization signal, the second primary synchronization signal, the third primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the third secondary synchronization signal And a second configuration parameter, and determining, according to the first configuration parameter and the second configuration parameter, a physical cell identifier PCI
- the determining unit is specifically configured to: use the first primary synchronization signal and the second primary synchronization corresponding to any one of the first configuration parameters in the primary synchronization signal table And the third main synchronization signal is matched with the discovery signal, and the matching degree is higher than the first preset threshold, the first configuration parameter is determined as the first configuration parameter;
- the primary synchronization signal table includes the first primary synchronization signal table, a second primary synchronization signal table and a third primary synchronization signal table, wherein the first primary synchronization signal table includes at least one first configuration parameter and a first primary synchronization corresponding to each of the at least one first configuration parameter a second primary synchronization signal table including at least one first configuration parameter and a second primary synchronization signal corresponding to each of the at least one first configuration parameter, the third primary synchronization signal table including at least one first a configuration parameter and a third primary synchronization signal corresponding to each of the at least one first configuration parameter;
- the primary synchronization signal table includes at least one first configuration parameter to And three mutually different primary synchronization signals corresponding to each of the at least one first configuration parameter.
- the determining unit is further configured to: after determining the first configuration parameter, according to the child of the starting subframe The frame number, the first configuration parameter, and the Q second configuration parameters in the second configuration parameter set determine 2*Q base sequences; the base sequence corresponding to each of the Q second configuration parameters is different; a code sequence, five code sequences corresponding to five mutually different subframe offsets; respectively processing 2*Q base sequences according to five code sequences to obtain 10*Q secondary synchronization signals.
- the decoding unit is specifically configured to: use one of the 2*Q base sequences as the first a secondary synchronization signal synchronization signal, a second secondary synchronization sequence, and one of the 10*Q secondary synchronization signals is matched as a third secondary synchronization signal with the discovery signal, and the matching degree is higher than the second preset threshold. Then, the second configuration parameter corresponding to the base sequence is determined as the second configuration parameter.
- the at least two consecutive subframes include a first time domain interval, a second time domain interval, and a The third time domain interval, the first time domain interval, the second time domain interval, and the third time domain interval do not overlap each other, the first time domain interval is located before the second time domain interval, and the second time domain interval is located in the third time domain region Before the interval; wherein, the first time domain interval is used by the base station to send the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the first physical broadcast channel; And transmitting, by the base station, a third primary synchronization signal and a third secondary synchronization signal; and the third time domain interval is used by the base station to send the second physical broadcast channel.
- the detecting unit is further included.
- the detecting unit is further configured to: detect the cell-specific reference signal CRS in the third time domain interval; and the receiving unit is further configured to: after the detecting unit detects the CRS in the third time domain interval, receive the second physical broadcast channel.
- the base station sends the discovery signal to the UE through multiple consecutive subframes, and the discovery signal is enhanced in the time domain, which improves the limitation of the discovery signal transmission duration on the UE receiving effect.
- the UE can still receive the discovery signal sent by the base station in a weak coverage area, such as a weak coverage area such as a factory floor or a port, and perform clock synchronization and frequency synchronization with the base station according to the synchronization signal, and smoothly access the base station.
- the base station communicates with the core network.
- a fifth aspect of the embodiments of the present application provides a base station, where the base station may include: at least one processor, a memory, a communication interface, and a communication bus;
- At least one processor is coupled to the memory and the communication interface via a communication bus, the memory is configured to store the computer execution instructions, and when the server is running, the processor executes the memory stored computer execution instructions to enable the base station to perform the first aspect or the first aspect A method of transmitting a discovery signal of any of the implementations.
- a sixth aspect of the embodiments of the present application provides a UE, where the UE may include: at least one processor, a memory, and a transceiver;
- At least one processor is connected to the memory and the communication interface via a communication bus, and the memory
- the processor executes the memory stored computer to execute instructions to enable the UE to perform the transmission method of the discovery signal of any of the possible implementations of the second aspect or the second aspect.
- a seventh aspect of the embodiments of the present application discloses a computer storage medium for storing computer software instructions for use by the base station, the computer software instructions comprising a program for performing the transmission method of the discovery signal.
- another computer storage medium for storing computer software instructions used by the UE, the computer software instructions including a program involved in a method for transmitting the discovery signal.
- 1 is a schematic diagram of a frame structure of a conventional DRS
- 3 is another architectural diagram of an existing MF communication system
- FIG. 4 is a schematic diagram showing a frame structure of a conventional system frame
- FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
- FIG. 6 is a schematic structural diagram of a frame of a discovery signal according to an embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of another frame of a discovery signal according to an embodiment of the present disclosure.
- FIG. 8 is a schematic structural diagram of another frame of a discovery signal according to an embodiment of the present disclosure.
- FIG. 9 is a schematic structural diagram of another frame of a discovery signal according to an embodiment of the present disclosure.
- FIG. 10 is a schematic structural diagram of another frame of a discovery signal according to an embodiment of the present disclosure.
- FIG. 11 is a schematic flowchart diagram of a method for sending a discovery signal according to an embodiment of the present disclosure
- FIG. 12 is a schematic diagram of another composition of a base station according to an embodiment of the present invention.
- FIG. 13 is a schematic diagram of another composition of a base station according to an embodiment of the present invention.
- FIG. 14 is a schematic structural diagram of a UE according to an embodiment of the present invention.
- FIG. 15 is a schematic diagram of another composition of a UE according to an embodiment of the present invention.
- FIG. 16 is a schematic diagram of another composition of a UE according to an embodiment of the present invention.
- the base station transmits a DRS to all UEs.
- the UE communicates with the core network through the base station.
- the UE may be a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, a personal digital assistant (PDA), and the like.
- UMPC ultra-mobile personal computer
- PDA personal digital assistant
- the UE included in the MF communication system of the present invention is a mobile phone.
- the base station may combine the formula according to the PCI (Physical Cell Identifier) of the physical cell where the UE is located. Determine two parameters: with Further, the base station can be based on Determine PSS and MF-PSS, according to with Determining the SSS and the MF-SSS, the DRS transmitted by the base station to the UE includes the above PSS, MF-PSS, SSS, and MF-SSS.
- PCI Physical Cell Identifier
- the UE may receive the DRS sent by the base station, determine the clock, the PCI, and the like according to the PSS, the MF-PSS, the SSS, and the MF-SSS, and synchronize with the base station clock and synchronize the frequency according to the information, and access the physical cell served by the base station, thereby passing
- the base station communicates with the core network.
- the base station must complete the transmission of the DRS in one subframe, and the OFDM symbols occupied by each of the PSS, MF-PSS, SSS, and MF-SSS refer to FIG. Due to the short transmission duration, when the UE is in a weak coverage scenario with poor signal quality, as shown in FIG. 3, there is an obstruction between the base station and the UE, and the signal fading is severe, and the UE may not receive the DRS normally. In this way, the UE cannot obtain the synchronization signals of PSS, MF-PSS, SSS, and MF-SSS, and thus cannot perform frequency synchronization and clock synchronization with the base station.
- the principle of the embodiment of the present invention is that the base station sends the DRS to the UE by using multiple consecutive subframes in the time domain to implement the enhancement of the DRS in the time domain, so that the UE can also receive the DRS sent by the base station in the weak coverage area, thereby obtaining the DRS.
- the synchronization signal in the DRS is synchronized with the base station clock and frequency according to the obtained synchronization signal.
- the UE can also receive the DRS through the base station accessing the core network, and complete the network access process.
- System frame a wireless transmission frame.
- the length of the system frame can be 10 milliseconds, and one system frame is composed of 20 time slots, each time slot is 0.5 milliseconds.
- the slot is 1 subframe, that is, the system frame includes 10 subframes, and each subframe has a length of 1 millisecond.
- a subframe is a normal cyclic prefix (CP)
- each subframe contains 14 OFDM symbols
- an extended CP when an extended CP is used, each subframe contains 12 OFDM symbols.
- Subframe offset It can be called Sf-offset, and sf-offset is used to indicate the offset of one subframe relative to the first half system frame or the second half system frame.
- the first half of the system frame is the subframe 0 to the subframe 4 of the system frame
- the second half of the system frame is the subframe 5 to the subframe 9 of the system.
- the subframe offset of the signal is the offset of the first subframe of the signal.
- the subframe offset has five different cases of 0, 1, 2, 3, and 4.
- FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention, where the base station may be a base station in the communication system shown in FIG. 2. As shown in FIG. 5, the base station may include at least one processor 11, a memory 12, a communication interface 13, and a communication bus 14.
- the processor 11 is a control center of the base station, and may be a processor or a collective name of a plurality of processing elements.
- the processor 11 is a central processing unit (CPU), may be an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
- CPU central processing unit
- ASIC Application Specific Integrated Circuit
- DSPs digital signal processors
- FPGAs Field Programmable Gate Arrays
- the processor 11 can perform various functions of the base station by running or executing a software program stored in the memory 12 and calling data stored in the memory 12.
- processor 11 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
- the base station can include multiple processors, such as processor 11 and processor 15 shown in FIG.
- processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
- a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
- the memory 12 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
- the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
- the memory 12 can be stand-alone and connected to the processor 11 via a communication bus 14.
- the memory 12 can also be integrated with the processor 11.
- the memory 12 is used to store a software program that executes the solution of the present invention, and is controlled by the processor 11.
- the communication interface 13 uses a device such as any transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), Wireless Local Area Networks (WLAN), etc. .
- the communication interface 13 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
- the communication bus 14 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
- ISA Industry Standard Architecture
- PCI Peripheral Component
- EISA Extended Industry Standard Architecture
- the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 5, but it does not mean that there is only one bus or one type of bus.
- the device structure shown in FIG. 5 does not constitute a limitation to a base station, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
- the processor 11 of the base station determines the PCI of the physical cell where the UE is located, and determines the first configuration parameter and the second configuration parameter according to the PCI. Further, the processor 11 may determine the first primary synchronization signal, the second primary synchronization signal, and the third primary synchronization signal according to the first configuration parameter, and determine the first secondary synchronization signal according to the first configuration parameter and the second configuration parameter. And a second secondary synchronization signal and a third secondary synchronization signal. Further, the processor 11 transmits a discovery signal to the user equipment through at least two consecutive subframes.
- the discovery signal sent by the base station includes the first primary synchronization signal, the second primary synchronization signal, the third primary synchronization signal, the first secondary synchronization signal, and the second secondary synchronization signal. And the third secondary synchronization signal.
- the base station sends the discovery signal to the UE through multiple consecutive subframes, and the discovery signal is enhanced in the time domain, which improves the limitation of the discovery signal transmission duration on the UE reception effect.
- the UE can still receive the discovery signal sent by the base station in a weak coverage area, such as a weak coverage area such as a factory floor or a port.
- the clock synchronization and frequency synchronization are performed with the base station, and the base station is smoothly accessed, and the base station communicates with the core network.
- the frame structure of the at least two consecutive subframes occupied by the discovery signal in the time domain is as shown in FIG. 6 .
- the at least two consecutive subframes include a first time domain interval, a second time domain interval, and a third time domain interval. Further, the first time domain interval, the second time domain interval, and the third time domain interval do not overlap each other. In the time domain, the first time domain interval is before the second time domain interval, and the second time domain interval is before the third time domain interval.
- the first time domain interval is used by the base station to send the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the a first physical broadcast channel;
- the second time domain interval is used by the base station to send the third primary synchronization signal and the third secondary synchronization signal;
- the third time domain interval is used by the base station to send Said second physical broadcast channel.
- the third primary synchronization signal and the third secondary synchronization signal are also synchronization sequences, and the UE may perform frequency synchronization, clock synchronization, and the like with the base station by detecting the third primary synchronization signal and the third secondary synchronization signal sent by the base station.
- the base station first sends an enhanced synchronization signal, that is, the third primary synchronization signal and the third secondary synchronization signal, and then sends an enhanced physical broadcast channel, which helps the UE to demodulate the physical broadcast channel. Synchronization signal detection is completed before, and information such as timing, PCI, subframe number, and frequency correction is obtained.
- the processor 11 of the base station determines in advance the following rules: (1) determining a primary synchronization signal table, by which the correspondence between the first configuration parameter and the first primary synchronization signal, the second primary synchronization signal, and the third primary synchronization signal is recorded. And different Corresponding to different first primary synchronization signals, second primary synchronization signals and third primary synchronization signals.
- the first primary synchronization signal may be a PSS
- the second primary synchronization signal may be an MF-PSS
- the third primary synchronization signal may be an MF-ePSS
- the first configuration parameter may be
- the primary synchronization signal table may be pre-generated by the base station, or may be stored in the local device after the network device is configured in advance to the base station, and is not limited herein.
- the code sequence can be a mask sequence or a scrambling sequence.
- the primary synchronization signal table includes at least one first configuration parameter, and three mutually different primarys corresponding to each of the at least one first configuration parameter
- Synchronization signal Table 1 below is one possible implementation of the above-described main synchronizing signal table.
- the Root Index is the root sequence number of the synchronization signal.
- a plurality of synchronization signals ie, synchronization sequences
- the root sequences of the different synchronization signals are different, and one synchronization signal only has one root sequence number, and one root sequence number corresponds to only one synchronization signal. Therefore, the base station can uniquely determine a synchronization signal based on the root sequence number.
- the PSS Root Index in Table 1 is the root sequence number of the first primary synchronization signal
- the MF-PSS Root Index is the root sequence of the second primary synchronization signal
- the MF-ePSS Root Index is the root serial number of the third synchronization signal.
- the root sequence numbers of the first primary synchronization signal, the second primary synchronization signal, and the third primary synchronization signal are not limited to the possibilities shown in Table 1.
- the root serial number of the first primary synchronization signal, the second primary synchronization signal, and the third primary synchronization signal corresponding to one value may be different from each other.
- the primary synchronization signal table includes a first primary synchronization signal table, a second primary synchronization signal table, and a third primary synchronization signal table.
- the first primary synchronization signal table includes at least one first configuration parameter and a first primary synchronization signal corresponding to each of the at least one first configuration parameter
- the second primary synchronization signal The table includes at least one first configuration parameter and a second primary synchronization signal corresponding to each of the at least one first configuration parameter
- the third primary synchronization signal table including at least one first configuration parameter and a third primary synchronization signal corresponding to each of the at least one first configuration parameter.
- Table 2 below is a possible implementation of the first primary synchronization signal table.
- Table 3 below is a possible implementation of the second primary synchronization signal table.
- Table 4 below is a third primary synchronization signal table. Possible implementation.
- the third primary synchronization signal is different from the first and second primary synchronization signals, so that the compatibility of supporting the MF1.0 can be ensured, that is, the UE that can only receive the existing DRS can only
- the first configuration parameter is solved by using the first primary synchronization signal and the second primary synchronization signal, and the UE that receives the enhanced DRS (that is, the discovery signal sent by the base station by the at least two consecutive base stations in the embodiment of the present invention) can pass the first The primary synchronization signal, the second primary synchronization signal, and the third primary synchronization signal resolve the first configuration parameter.
- the code sequence is a sequence of masks.
- the processor 11 of the base station Five OCC sequences (ie, the above mask sequence) are defined for five different subframe offsets of 0, 1, 2, 3, and 4. Among them, different OCC sequences correspond to different subframe offsets.
- the length of the OCC sequence is determined according to the number of OFDM symbols occupied by the third synchronization signal. For example, the third secondary synchronization signal occupies 9 OFDM symbols, and the length of the OCC sequence is 9.
- the “sequence length” in the embodiment of the present invention refers to the number of elements included in the sequence, such as: the sequence length is 9, that is, the sequence contains 9 elements.
- the base station may generate a mapping relationship between the OCC sequence and the subframe offset (sf-offset) in the mapping relationship table shown in Table 5.
- subframe offsets corresponding to the five different mask sequences in Table 5 are also different, and the mask sequence corresponding to each subframe offset is unique.
- one subframe offset may also correspond to multiple mask sequences, and the UE may determine one subframe offset as long as one of the multiple mask sequences is solved.
- the subframe offsets corresponding to the OCC sequence 0 and the OCC sequence 1 are both 0, and the UE may determine the subframe offset 0 regardless of whether the OCC sequence 0 or the OCC sequence 1 is solved.
- a mask sequence cannot correspond to multiple subframe offsets, and it is not possible to determine, after the UE resolves the mask sequence, which of the plurality of subframe offsets is indicated by the sequence.
- the code sequence is a scrambling code sequence and the length of the scrambling code sequence is the same as the length of the third secondary synchronization signal described above.
- the i-th element s(i) in the scrambling code sequence satisfies among them, Where n s is the slot number of the first slot of the starting subframe, and m 2 is actually the subframe offset of the starting subframe of the discovery signal with respect to subframe 0 or subframe 5.
- the first subframe of the at least two consecutive subframes of the discovery signal that is, the first subframe of the 10 subframes included in the system frame
- the subframe 5 is the first subframe of the 10 subframes included in the system frame
- the subframe 5 is the first subframe of the 10 subframes included in the system frame. It is the sixth subframe among the 10 subframes included in the system frame.
- the processor 11 may query the primary synchronization signal table according to the first configuration parameter to determine the first primary synchronization signal, the second primary synchronization signal, and the third primary synchronization signal.
- first configuration parameter The processor 11 For indexing, look up Table 1, determine In the entry corresponding to 0, the root sequence number of the first primary synchronization signal is 25, the root serial number of the second primary synchronization signal is 40, and the root serial number of the third primary synchronization signal is 5.
- the primary synchronization signal having the root sequence number 25 can be determined as the first primary synchronization signal, the primary synchronization signal having the root serial number 40 is determined as the second primary synchronization signal, and the primary synchronization signal having the root serial number 5 is determined as the first Three main synchronization signals.
- the first configuration parameter The processor 11 For the index, look up Table 2, Table 3, and Table 4. In Table 2, determine The root sequence number of the first primary synchronization signal corresponding to 1 is 29; in Table 3, it is determined Taking the root serial number of the corresponding second primary synchronization signal of 1 is 44; in Table 3, determining The root sequence number of the third primary synchronization signal corresponding to 1 is 10. Further, the primary synchronization signal having the root sequence number 29 can be determined as the first primary synchronization signal, the primary synchronization signal having the root serial number 44 is determined as the second primary synchronization signal, and the primary synchronization signal having the root serial number 10 is determined as the first Three main synchronization signals.
- the determining, by the processor 11, the first secondary synchronization signal, the second secondary synchronization signal, and the third secondary synchronization signal according to the first configuration parameter and the second configuration parameter may be:
- the base station obtains two index numbers m 0 and m 1 according to the second configuration parameter, and determines according to m 0 and m 1 as well as And generating c 0 (n) and c 1 (n) according to the first configuration parameter. Further combining the subframe number of the subframe in which the first secondary synchronization signal or the second secondary synchronization signal is located, generating the first secondary synchronization signal and the second secondary synchronization signal according to the following formula (1); wherein, the first secondary synchronization signal and the second The secondary sync signal is the same.
- the value range of n is [0, 30], that is to say, the first secondary synchronization signal or the second secondary synchronization signal determined by the above steps is a sequence of length 62.
- n is taken 1
- two elements in the sequence, d 0 and d 1 can be determined.
- the base station may further determine a code sequence according to the subframe offset of the start subframe of the discovery signal with respect to the subframe 0 or the subframe 5, and obtain a third secondary synchronization signal according to the code sequence processing base sequence.
- the base sequence is the first secondary synchronization signal or the second secondary synchronization signal.
- the base sequence may also be a synchronization signal different from the first secondary synchronization signal or the second secondary synchronization signal determined according to the second configuration parameter.
- the base station generates t base sequences in advance, where t represents that the second configuration parameter has t possible values, and each second configuration parameter is different in the corresponding base sequence in the t base sequences.
- the processing of the base sequence may include the following two situations:
- the jth OFDM symbol is the jth OFDM symbol of the M OFDM symbols occupied by the third secondary synchronization signal, and the j is an integer greater than or equal to 1 and less than or equal to M.
- the start subframe of the discovery signal has a subframe offset of 1 with respect to subframe 0, and the subframe offset 1 is used as an index lookup table 5, and the sequence is determined:
- the length of the sequence is 9, that is, the third secondary synchronization signal occupies 9 OFDM symbols; and the base sequence is masked according to the sequence.
- the base sequence is masked according to the first element 1 in the sequence, that is, each element in the base sequence is multiplied by element 1 to obtain a third secondary synchronization signal occupying the first OFDM symbol in 9 OFDM symbols.
- the third secondary synchronization signal carried on; according to the second element in the sequence Encapsulate the base sequence, using elements Multiplying each element in the base sequence, obtaining a third secondary synchronization signal that occupies a third secondary synchronization signal carried on a second one of the nine OFDM symbols.
- the third secondary synchronization signal is obtained to occupy a third secondary synchronization signal carried on each of the 9 OFDM symbols, and the third secondary synchronization signal carried on each of the 9 OFDM symbols may be different.
- the base sequence is the first secondary synchronization signal or the second secondary synchronization signal
- the third secondary synchronization signal may be expressed as the following formula (2), that is, the first secondary synchronization signal or the second secondary synchronization
- Each element of the signal is multiplied by a corresponding scrambling code sequence to obtain a third secondary synchronization signal.
- n has a value range of [0, 30], that is, the third secondary synchronization signal is a sequence of length 62. Is the above scrambling code sequence.
- the base station may determine the subframe number where the second physical broadcast channel is located according to the actual subframe number of the start subframe of the discovery signal, so as to add the subframe where the second physical broadcast channel is located, that is, the subframe where the downlink signal is located. Disturb. If the UE does not obtain the subframe offset after demodulating the third secondary synchronization signal, that is, the actual subframe number of the start subframe of the discovery signal is not obtained, the downlink signal can only be descrambled according to subframe 0 or subframe 5. . That is, the base station can only scramble the subframe in which the second physical broadcast channel is located according to subframe 0 or subframe 5.
- the base station scrambles or masks the base sequence, and different scrambling code sequences or mask sequences correspond to different subframe offsets.
- the UE may decode the third secondary synchronization signal to obtain a scrambling code sequence or a mask sequence, thereby mapping the subframe offset according to the scrambling code sequence or the mask sequence, where the subframe is
- the frame offset refers to the offset of the start subframe of the discovery signal with respect to subframe 0 or subframe 5 of the system subframe.
- the UE maps the subframe offset according to the scrambling code sequence or the mask sequence before demodulating the second physical broadcast channel, thereby being able to Determining, according to the obtained subframe offset, an actual subframe number of the start subframe of the discovery signal, and downlink signals according to the subframe number (that is, all downlink signals carried by the subframe occupied by the third time domain interval shown in FIG. 6) Perform descrambling.
- the UE After the UE detects the SSS/MF-SSS (ie, the first secondary synchronization signal or the second secondary synchronization signal) successfully, two corresponding index numbers m 0 and m 1 are obtained, and the second configuration can be obtained according to the two index numbers. parameter. After determining the second configuration parameter, the UE can determine the PCI by combining the first configuration parameter, and then the UE can normally demodulate the downlink signal.
- SSS/MF-SSS ie, the first secondary synchronization signal or the second secondary synchronization signal
- the foregoing base station may send a discovery signal to the UE by using 5 ms, that is, the at least two consecutive subframes include 5 consecutive subframes.
- the first subframe, the second subframe, and the first subframe may be Five consecutive subframes of 3 subframes, 4th subframe, and 5th subframe.
- the first subframe, the second subframe, the third subframe, the fourth subframe, and the fifth subframe may each include 14 OFDM symbols.
- the first time domain interval includes all OFDM symbols except the first two OFDM symbols and the last two OFDM symbols in the first subframe.
- the second time domain interval includes: a thirteenth OFDM symbol of the first subframe, a 14th symbol of the first subframe, and all but the first two OFDM symbols in the second subframe OFDM symbol.
- the third time domain interval includes: all OFDM symbols except the first two OFDM symbols in the third subframe, all OFDM symbols except the first two OFDM symbols in the fourth subframe, and the foregoing All OFDM symbols except the first two OFDM symbols in the 5 subframes.
- the first time domain interval includes: all OFDM symbols except the first two OFDM symbols and the last two OFDM symbols in the first subframe; and the second time domain interval includes : a thirteenth OFDM symbol of the first subframe, a fourteenth symbol of the first subframe, and all OFDM symbols except the first three OFDM symbols in the second subframe; the third time The domain interval includes: all OFDM symbols except the first three OFDM symbols in the third subframe, all OFDM symbols except the first two OFDM symbols in the fourth subframe, and the fifth subframe except All OFDM symbols outside the first two OFDM symbols.
- the base station can transmit the respective signals with reference to the timing diagram shown in FIG. Specifically, the third OFDM symbol of the first subframe (that is, the OFDM symbol 2 of the first subframe shown in FIG. 9) is used to send the second secondary synchronization signal MF-SSS, the first sub-sub The fourth OFDM symbol of the frame (ie, the OFDM symbol 3 of the first subframe shown in FIG. 9) is used to transmit the second primary synchronization signal MF-PSS, the sixth OFDM symbol of the first subframe ( That is, the OFDM symbol 5) of the first subframe shown in FIG.
- the OFDM symbol 9 is used to transmit the first secondary synchronization signal SSS, and the seventh OFDM symbol of the first subframe (that is, the first subframe shown in FIG. 9)
- the OFDM symbol 6) is used to transmit the first primary synchronization signal PSS.
- the broadcast channel PBCH That is, the OFDM symbols 4, 7, 8, 9, 10, and 11 of the first subframe are used to transmit the PBCH, and the OFDM symbols 0 and 1 of the first subframe are used to transmit the PDCCH.
- the 14th symbol of the first subframe (OFDM symbol 13 of the first subframe), the 5th OFDM symbol of the second subframe (OFDM symbol 4 of the second subframe), The eighth OFDM symbol of the second subframe (OFDM symbol 7 of the second subframe), the eleventh OFDM symbol of the second subframe (the OFDM symbol of the second subframe), and the second sub-portion
- the 14th OFDM symbol of the frame (the OFDM symbol 13 of the 2nd subframe) is used to transmit the third primary synchronization signal MF-ePSS;
- the thirteenth symbol of the first subframe, the third, fourth, sixth, seventh, ninth, tenth, twelfth, and thirteenth of the second subframe The OFDM symbol is used to transmit the third secondary synchronization signal MF-eSSS.
- All OFDM symbols included in the third time domain interval are used by the base station to send the second physical broadcast channel MF-ePBCH.
- all of the at least two consecutive subframes except the OFDM symbols occupied by the SSS, PSS, MF-SSS, MF-PSS, PBCH, MF-ePSS, MF-eSSS, and MF-ePBC are transmitted.
- the OFDM symbols are used to transmit a physical downlink control channel (PDCCH).
- PDCH physical downlink control channel
- the base station may transmit the respective signals with reference to the timing diagram shown in FIG. Specifically, the third OFDM symbol of the first subframe is used to send the second secondary synchronization signal MF-SSS, and the fourth OFDM symbol of the first subframe is used to send the second primary synchronization a signal MF-PSS, a sixth OFDM symbol of the first subframe is used to send the first secondary synchronization signal SSS, and a seventh OFDM symbol of the first subframe is used to send the first primary synchronization Signal PSS.
- the OFDM symbol except the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, and the second secondary synchronization signal are transmitted in the first time domain interval. And configured to send the first physical broadcast channel PBCH.
- the 14th symbol of the first subframe, the fifth OFDM symbol of the second subframe, the eighth OFDM symbol of the second subframe, and the second subframe 11 OFDM symbols and the 14th OFDM symbol of the second subframe are used to transmit the third primary synchronization signal MF-ePSS;
- All OFDM symbols except the OFDM symbol for transmitting the third primary synchronization signal in the second time domain interval are used to transmit the third secondary synchronization signal, that is, the 13th symbol and the location of the first subframe.
- the fourth, sixth, seventh, ninth, tenth, twelfth, and thirteenth OFDM symbols of the second subframe are used to transmit the third secondary synchronization signal MF-eSSS.
- All OFDM symbols included in the third time domain interval are used by the base station to send the second physical broadcast channel MF-ePBCH;
- all of the at least two consecutive subframes except the OFDM symbols occupied by the SSS, PSS, MF-SSS, MF-PSS, PBCH, MF-ePSS, MF-eSSS, and MF-ePBC are transmitted.
- the OFDM symbols are used to transmit the PDCCH.
- An embodiment of the present invention further provides a method for transmitting a discovery signal. As shown in FIG. 11, the method includes the following steps:
- the base station determines a PCI of a physical cell where the scheduled UE is located, and determines a first configuration parameter and a second configuration parameter according to the PCI.
- the base station can determine the first configuration parameter according to the PCI. And the second configuration parameter
- 504 possible PCIs are specified in the standard or protocol, and the 504 possible PCIs are divided into 168 groups in a group of three.
- the It is 0, 1, or 2.
- Said I any integer from 0 to 167, and the base station can be based on one and a Configure a PCI.
- the PCI of group 0 includes 0, 1, 2; the PCI of group 1 includes 3, 4, 5... then That is, the first one in the 0th group (counting from 0) is also the PCI.
- the base station determines, according to the first configuration parameter, a first primary synchronization signal, a second primary synchronization signal, and a third primary synchronization signal.
- the first secondary synchronization signal and the second secondary synchronization signal are determined according to the first configuration parameter and the second configuration parameter.
- the third secondary synchronization signal is determined according to the first configuration parameter and the second configuration parameter.
- the base station uses the first configuration parameter as an index, and determines a first primary synchronization signal, a second primary synchronization signal, and a third primary synchronization signal corresponding to the first configuration parameter according to the foregoing Table 1. That is, the first configuration parameter is used as an index to look up the above table 1.
- the base station uses the first configuration parameter as an index, and determines a first primary synchronization signal according to the foregoing table 2.
- the base station uses the first configuration parameter as an index, and determines a second primary synchronization signal according to the foregoing table 3.
- the first configuration parameter is an index, and the third primary synchronization signal is determined according to Table 4 above.
- the base station determines the first secondary synchronization signal and the second secondary synchronization signal according to the first configuration parameter and the second configuration parameter in combination with the above formula (1).
- the first secondary synchronization signal and the second secondary synchronization signal are the same.
- the base station according to the discovery signal (including the first primary synchronization signal, the second primary synchronization signal, the third primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the third secondary synchronization signal) relative to the system frame
- the subframe offset of subframe 0 or subframe 5 determines a code sequence, which may be a mask sequence or a scrambling sequence.
- the base station may use the subframe offset as the index lookup table 5 to determine a mask sequence corresponding to the subframe offset, or substitute the subframe offset m 2 into The i-th element in the scrambling code sequence is calculated.
- N is the length of the third secondary synchronization signal, that is, the number of elements included in the sequence of the third secondary synchronization signal.
- the base station can determine a scrambling code sequence of length N according to the above formula.
- the base station performs masking on the first secondary synchronization signal or the second secondary synchronization signal according to the mask sequence to obtain a third secondary synchronization signal, or scrambles the first secondary synchronization signal or the second secondary synchronization signal according to the scrambling code sequence.
- a third secondary synchronization signal is obtained.
- the base station may also pre-generate a set of sequences before step 101, where the set of sequences includes t different sequences, wherein the second configuration parameter corresponding to each sequence is different, and the second configuration parameter shares a possible value in t. .
- the base station may uniquely determine a sequence as the base sequence in the t sequences according to the second configuration parameter, and may further perform masking on the base sequence according to the mask sequence to obtain a third secondary synchronization signal, or according to the foregoing interference.
- the code sequence scrambles the base sequence to obtain a third secondary synchronization signal.
- the base station sends a discovery signal to the UE by using at least two consecutive subframes, where the signal includes the first primary synchronization signal, the second primary synchronization signal, the third primary synchronization signal, the first secondary synchronization signal, and the second secondary synchronization signal, and The third secondary synchronization signal.
- the discovery signal further includes a first physical broadcast channel and a second physical broadcast channel.
- the at least two consecutive subframes include a first time domain interval, a second time domain interval, and a third time domain interval, the first time domain interval, the second time domain interval, and the third time domain interval Do not overlap each other, the first time domain interval is before the second time domain interval, and the second time domain interval is before the third time domain interval.
- the first time domain interval is used by the base station to send the first primary synchronization signal, the second primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the first a physical broadcast channel;
- the second time domain interval is used by the base station to send the third primary synchronization signal and the third secondary synchronization signal;
- the third time domain interval is used by the base station to send the second physical broadcast channel.
- the UE receives the discovery signal sent by the base station on at least two consecutive subframes.
- the UE decodes the discovery signal to obtain a first primary synchronization signal, a second primary synchronization signal, a third primary synchronization signal, a first secondary synchronization signal, a second secondary synchronization signal, and a third secondary synchronization signal, and according to the synchronization.
- the signal determines a first configuration parameter and a second configuration parameter.
- the UE determines, in advance, the first primary synchronization signal, the second primary synchronization signal, the third primary synchronization signal, the first secondary synchronization signal, the second secondary synchronization signal, and the third secondary synchronization signal.
- Use one of the groups to try to match the received sequence.
- the first primary synchronization signal, the second primary synchronization signal, and the third primary synchronization in the group are used.
- the first primary synchronization signal, the second primary synchronization signal, the third primary synchronization signal, and the first auxiliary The synchronization signal, the second secondary synchronization signal, and the third secondary synchronization signal.
- the UE before the step 104, receives the primary synchronization signal table sent by the base station, where the primary synchronization signal table (refer to the foregoing Table 1) includes at least one first configuration parameter, and the at least one first Three different primary synchronization signals corresponding to each of the first configuration parameters in the configuration parameters.
- the primary synchronization signal table (refer to the foregoing Table 1) includes at least one first configuration parameter, and the at least one first Three different primary synchronization signals corresponding to each of the first configuration parameters in the configuration parameters.
- the primary synchronization signal table includes a first primary synchronization signal table (refer to the above Table 2), a second main synchronizing signal table (refer to Table 3 above) and a third main synchronizing signal table (refer to Table 4 above), wherein the first main synchronizing signal table includes at least one first configuration parameter and a first primary synchronization signal corresponding to each of the at least one first configuration parameter, the second primary synchronization signal table including at least one first configuration parameter and the at least one first configuration parameter a second primary synchronization signal corresponding to each of the first configuration parameters, the third primary synchronization signal table including at least one first configuration parameter and a first corresponding to each of the at least one first configuration parameter Three main synchronization signals.
- the first main synchronizing signal table includes at least one first configuration parameter and a first primary synchronization signal corresponding to each of the at least one first configuration parameter
- the second primary synchronization signal table including at least one first configuration parameter and the at least one first configuration parameter a second primary synchronization signal corresponding to each
- the UE may try to match the discovery signal according to the primary synchronization signal in the received primary synchronization signal table. Specifically, the UE may use the first primary synchronization signal corresponding to any one of the first configuration parameters in the primary synchronization signal table.
- the second primary synchronization signal and the third primary synchronization signal are matched with the discovery signal, and the matching degree is higher than the first preset threshold, and the first configuration parameter is determined as the first configuration parameter.
- the UE matches the synchronization sequence of the root sequence number 25, the synchronization sequence of the root sequence number 40, and the synchronization sequence of the root sequence number 5 with the discovery signal.
- the matching degree of the synchronization sequence of the root sequence number 25 and the discovery signal is A, the root sequence.
- the matching degree of the synchronization sequence of the number 40 and the discovery signal is B, and the matching degree of the synchronization sequence of the root serial number 5 and the discovery signal is C, when xA+yB+zC is greater than a preset threshold (ie, the first embodiment of the present invention A predetermined threshold) determines 0 as the first configuration parameter.
- a preset threshold ie, the first embodiment of the present invention A predetermined threshold
- the UE matches three mutually different primary synchronization signals corresponding to any one of the first configuration parameters in the primary synchronization signal table with the discovery signal, and the matching degree is higher than the first preset threshold,
- the first configuration parameter is determined as the first configuration parameter.
- the UE matches the synchronization sequence of the root sequence number 29, the synchronization sequence of the root sequence number 44, and the synchronization sequence of the root sequence number 10 with the discovery signal.
- the synchronization sequence of the root sequence number 29 and the discovery signal is D
- the root sequence is
- the matching degree of the synchronization sequence of the number 44 and the discovery signal is E
- the matching degree of the synchronization sequence of the root serial number 10 and the discovery signal is F, when xD+yE+zF is greater than a preset threshold (ie, the first embodiment of the present invention A predetermined threshold) determines 1 as the first configuration parameter.
- the UE may further determine, according to the first configuration parameter, multiple possibilities of the secondary synchronization signal, specifically: determining, according to the first configuration parameter and the Q second configuration parameters in the second configuration parameter set, 2*Q base sequences; The base sequence corresponding to each of the Q second configuration parameters is different.
- the determined five scrambling code sequences may also be that the UE receives the five mask sequences shown in Table 5 sent by the base station.
- the UE processes the 2*Q base sequences according to the five code sequences to obtain 10*Q secondary synchronization signals. Then, the UE uses one of the 2*Q base sequences as the first secondary synchronization signal synchronization signal, the second secondary synchronization sequence, and one of the 10*Q secondary synchronization signals a secondary synchronization signal as the third secondary synchronization signal and the discovery signal If the matching degree is higher than the second preset threshold, the second configuration parameter corresponding to the base sequence is determined as the second configuration parameter.
- the first configuration parameter and the second configuration parameter determined according to the foregoing process may determine two index numbers m 0 and m 1 according to two The index number can determine 2 synchronization sequences, so one first configuration parameter and 168 second configuration parameters can determine 168*2 different synchronization sequences.
- the synchronization sequence can be used as the first secondary synchronization signal or the second secondary synchronization signal. Therefore, the first secondary synchronization signal or the second secondary synchronization signal has 168*2 possibilities.
- each of the 168 first secondary synchronization signals (or the second secondary synchronization signals) is processed according to the five mask sequences shown in Table 5 to obtain 5*168*2 possible third secondary synchronizations. signal.
- the UE may select one sequence 1 as the first secondary synchronization signal among the 168*2 types of synchronization sequences, and the sequence 1 also serves as the second secondary synchronization signal, and selects among 5*168*2 possible third secondary synchronization signals.
- a sequence 2 the sequence 1, the sequence 2 and the discovery signal are matched, and the matching degree is higher than the second preset threshold, and the second configuration parameter corresponding to the sequence 1 is Determining a second configuration parameter obtained by the UE decoding the discovery signal transmitted by the base station.
- the UE may further determine, according to the matched base sequence, a range of subframe numbers of the start subframe of the discovery signal (ie, whether the starting subframe is in the range of subframe 0 to frame 4 or in the range of subframe 5 to subframe 9). Inside). The UE may also look up the table 5 according to the matched mask sequence, and may determine the subframe offset of the start subframe of the discovery signal relative to the subframe 0 or the subframe 5 of the system frame. Alternatively, the UE substitutes the i-th element in the matched scrambling code sequence into the formula Medium, determining m 2 is the subframe offset of the starting subframe.
- the UE may determine the subframe number of the start subframe of the discovery signal according to the subframe number range of the start subframe and the subframe offset.
- the matched base sequence is a base sequence included in a combination case where the UE matches the discovery signal with a higher degree than the second preset threshold when attempting to decode the discovery signal.
- the matched mask sequence is also the sequence of masks included in the combined case.
- the matched scrambling code sequence has a similar meaning and will not be described here.
- a set of sequences is used to try to match the received sequence, that is, the UE selects three corresponding primary synchronization signals according to each possible first configuration parameter.
- the sliding correlation calculation is performed using the time domain sequence of the three primary synchronization signals and the received time domain data, and the correlation peak is recorded. If the correlation peak is greater than the first preset threshold, determining that the first configuration parameter corresponding to the correlation peak is the first configuration parameter determined by the decoding discovery signal.
- the "correlation peak” herein may be the "matching degree" described in the embodiment of the present invention.
- the UE may also obtain a correlation peak for each of the first configuration parameters after traversing all possible parameters of the first configuration parameter. If the maximum value of the obtained multiple correlation peaks is greater than the first preset threshold, determining that the first configuration parameter corresponding to the maximum correlation peak is the first configuration parameter determined by the decoding discovery signal.
- the UE also selects three secondary synchronization signals according to the first configuration parameter determined by the above steps and a second configuration parameter, and uses the time domain sequence of the three secondary synchronization signals to perform sliding correlation calculation with the received time domain data. And record the relevant peaks.
- the sliding correlation calculation is performed using the time domain sequence of the three primary synchronization signals and the received time domain data, and the correlation peak is recorded. If the correlation peak is greater than The second preset threshold determines that the second configuration parameter corresponding to the correlation peak is the second configuration parameter determined by the decoding discovery signal.
- the specific matching method is not specifically limited.
- the UE knows in advance the frame structure of the discovery signal sent by the base station (such as the frame structure shown in any one of FIG. 6 to FIG. 10). Therefore, the UE may determine the third time according to the subframe number of the start subframe of the discovery signal. The subframe number where the domain interval is located, performing CRS detection on the third time domain interval, and receiving the second physical broadcast channel sent by the base station in the third time domain interval.
- the UE may set the first configuration parameter And the second configuration parameter Substitute Calculate the PCI of the physical cell, that is, in the formula
- the UE communicates with the core network through the base station according to the determined PCI access base station.
- the generation of the cell specific reference signal (CRS) and the resource location of the downlink subframe are related to the PCI, and the UE can normally demodulate the downlink signal after the UE knows the PCI.
- CRS cell specific reference signal
- the base station sends a discovery signal to the UE through multiple consecutive subframes in the time domain.
- the UE can also receive the discovery signal sent by the base station in the weak coverage area. And obtaining a synchronization signal in the discovery signal, and synchronizing with the base station clock and frequency according to the obtained synchronization signal, and accessing the core network through the base station.
- the base station scrambles or masks the base sequence, and different scrambling code sequences (or mask sequences) correspond to different subframe offsets.
- the UE may decode the third secondary synchronization signal to obtain a scrambling code sequence or a mask sequence, thereby mapping the subframe offset according to the scrambling code sequence or the mask sequence, according to the subframe.
- the offset determines the actual subframe number of the start subframe of the discovery signal, so that the UE can decode the downlink signal according to the actual subframe number to ensure normal reception of the downlink signal.
- each network element such as a base station and a UE, in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
- the present application can be implemented in a combination of hardware or hardware and computer software in combination with the algorithmic steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
- the embodiments of the present application may divide the functional modules of the base station and the UE according to the foregoing method.
- each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
- the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
- FIG. 12 is a schematic diagram showing a possible configuration of a base station involved in the foregoing embodiment.
- the base station may include: a determining unit 201 and a sending unit. 202.
- the determining unit 201 is configured to support the base station to perform step 101 and step 102 in the method for transmitting the discovery signal shown in FIG.
- the transmitting unit 202 is configured to support the base station to perform step 103 in the method for transmitting the discovery signal shown in FIG.
- the base station provided by the embodiment of the present application is configured to perform the foregoing transmission method of the discovery signal, so that the same effect as the transmission method of the discovery signal described above can be achieved.
- FIG. 13 shows another possible composition diagram of the base station involved in the above embodiment.
- the base station includes a processing module 301 and a communication module 302.
- the processing module 301 is configured to control and manage the actions of the server.
- the processing module 301 is configured to support the base station to perform steps 101, 102 in FIG. 11, and/or other processes for the techniques described herein.
- Communication module 302 is used to support communication between the base station and other network entities, such as with the UE shown in FIG.
- the base station may further include a storage module 303 for storing program code and data of the server.
- the processing module 301 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
- the communication module 302 can be a transceiver, a transceiver circuit, a communication interface, or the like.
- the storage module 83 can be a memory.
- the base station involved in the embodiment of the present application may be the base station shown in FIG. 5.
- FIG. 14 is a schematic diagram showing a possible composition of the UE involved in the foregoing embodiment.
- the UE may include: a receiving unit 401, and decoding. Unit 402, determining unit 403.
- the receiving unit 401 is configured to support the UE in step 104 in the method for transmitting the discovery signal shown in FIG.
- the decoding unit 402 is configured to support the step of the UE performing the decoding of the discovery signal in step 105 in the transmission method of the discovery signal shown in FIG.
- the determining unit 403 is configured to support the step of “determining the first configuration parameter and the second configuration parameter” in the step 105 of the transmission method of the discovery signal shown in FIG. 11 and the step 106 in the method shown in FIG. 11 .
- the UE provided by the embodiment of the present application is configured to perform the foregoing transmission method of the discovery signal, so that the same effect as the transmission method of the discovery signal described above can be achieved.
- FIG. 15 shows another possible composition diagram of the UE involved in the above embodiment.
- the UE includes: a processing module 501 and a communication module 502.
- the processing module 501 is configured to perform control management on the action of the UE.
- Communication module 502 is used to support communication between the UE and other network entities, such as with the base station shown in FIG.
- the UE may further include a storage module 503 for storing program codes and data of the UE.
- the processing module 501 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
- the communication module 502 can be a transceiver, a transceiver circuit, a communication interface, or the like.
- the storage module 503 can be a memory.
- the processing module 501 is a processor
- the communication module 502 is a transceiver
- the storage module 503 is a memory
- the UE involved in the embodiment of the present application may be the UE shown in FIG. 16.
- the UE includes: a processor 601, a memory 602, and a transceiver 603.
- the disclosed system, apparatus, and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the modules or units is only a logical function division.
- there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or processor to perform all or part of the steps of the methods described in various embodiments of the present application.
- the foregoing storage medium includes: a flash memory, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk, and the like, which can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供一种发现信号的传输方法、基站及用户设备,涉及通信领域。该方法包括:基站确定用户设备UE所处物理小区的物理小区标识PCI,根据PCI确定第一配置参数以及第二配置参数;基站根据第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号,根据第一配置参数和第二配置参数确定第一辅同步信号、第二辅同步信号以及第三辅同步信号;基站通过至少两个连续子帧向UE发送发现信号;发现信号包括第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号。
Description
本申请涉及通信领域,尤其涉及一种发现信号的传输方法、基站及用户
设备。
MF(MulteFire)系统中,基站可以在一个调度单位(如:TTI)内调度多个用户设备(user equipment,UE)。通常,基站只能通过一个子帧向多个UE发送发现信号(discovery signal,DRS),该信号包括主同步信号(primary synchronization signal,PSS),MF主同步信号(MF-primary synchronization signal,MF-PSS),辅同步信号(secondary synchronization signal,SSS),MF辅同步信号(MF-secondary synchronization signal,MF-SSS)以及MF物理广播信道(physical broadcast channel,MF-PBCH)。UE接收DRS解析获得PSS、MF-PSS,SSS,MF-SSS,以便获得物理小区标识(phsical cell ID,PCI),系统带宽等信息,并完成与基站时钟、频率同步。DRS的帧结构如图1所示,DRS占用一个子帧,其中,PSS、SSS、MF-PSS以及MF-SSS分别占用1个符号。另外,MF-PBCH占用6个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
当MF系统部署于港口、码头、自动化生产流等场景时,由于用户设备普遍具有较高的移动性,在用户设备的移动过程中,基站发送的无线信号容易被用户设备和基站之间各种物体遮挡,从而导致无线信号质量较差,用户设备可能无法正常接收;另一方面,由于用户设备数量较大,在移动过程中,也容易发生互相遮挡无线信号的情况,也会导致用户设备可能无法正常接收基站发送的数据。此时,对基站下发的信号质量有较高需求,需要基站提供更好的无线覆盖能力来应对无线信号质量较差的场景。
现有MF系统中DRS在一个子帧内完成传输,当UE处于信号质量较差的弱覆盖场景,会出现不能正常接收DRS的情况。因此,UE无法获得同步信号和MF-PBCH信息,从而不能与基站时钟、频率同步,无法获得系统信息,从而也就不能通过基站接入核心网。
发明内容
本发明的实施例提供一种发现信号的传输方法、基站及用户设备,基站在时域上通过多个连续子帧向UE发送发现信号,使得UE在弱覆盖区域也能接收到基站发送的发现信号,进而获得发现信号中的同步信号,根据获得的同步信号与基站时钟、频率同步,通过基站接入核心网。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,公开了一种发现信号的传输方法,包括:
基站确定UE所处物理小区的物理小区标识(Physical Cell Identifier,PCI),由于PCI等于第一配置参数乘以3再加上第二配置参数,因此基站可以根据物理小区的PCI可以确定第一配置参数以及第二配置参数。进一步,基站还可以根据第一配置参数确定第一主同步信号、第二主同步信号以及第
三主同步信号;可以根据第一配置参数和第二配置参数确定第一辅同步信号、第二辅同步信号以及第三辅同步信号。随后,基站通过至少两个连续子帧向UE发送发现信号。其中,该发现信号包括上述第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号。
本发明实施例提供的方法中,基站通过多个连续子帧向UE发送发现信号,在时域上增强了发现信号,改善了发现信号传输时长对UE接收效果的限制。使得UE在覆盖较弱的场景下,如:工厂车间、港口等弱覆盖区域,仍可以接收到基站发送的发现信号,根据其中的同步信号与基站进行时钟同步、频率同步,顺利接入基站,通过基站与核心网进行通信。
结合第一方面,在第一方面的第一种可能的实现方式中,基站还可以根据系统带宽、系统帧号以及上述发现信号的起始子帧的子帧号确定第一物理广播信道;根据第一物理广播信道确定第二物理广播信道。如此,发现信号还包括第一物理广播信道以及第二物理广播信道。需要说明的是,发现信号的起始子帧即传输发现信号的至少两个连续子帧中的第一个子帧。
本发明实施例提供的方法中,基站发送的发现信号包括了第一物理广播信道以及第二物理广播信道,同样在时域上增强了物理广播信道,由于物理广播信道用于指示系统带宽、系统帧号等信息,使得UE在覆盖较弱的场景下,仍可以检测到物理广播信道,获取系统带宽、系统帧号等信息。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第二种可能的实现方式中,基站根据第一物理广播信道确定第二物理广播信道具体包括:将第一物理广播信道承载的第一主系统信息块确定为第二物理广播信道承载的第二主系统信息块。
也就是说,第二物理广播信道与第一物理广播信道承载的信息是相同的,UE处于覆盖较弱的场景时,即使没有检测到第一物理广播信道,但是仍可以通过基站后续传输的第二物理广播信道获得系统带宽、系统帧号等信息,这样使得发现信号的性能得到增强,UE对发现信号的接收不再受限于较短的传输时长,在覆盖较弱的场景下也能检测到发现信号,根据发现信号接入基站,通过基站与核心网进行通信。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第三种可能的实现方式中,基站根据第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号之前,方法还包括:基站确定主同步信号表,主同步信号表包括至少一个第一配置参数,以及与至少一个第一配置参数中的每一个第一配置参数对应的三个互不相同的主同步信号。或,主同步信号表包括第一主同步信号表、第二主同步信号表以及第三主同步信号表,其中,第一主同步信号表包括至少一个第一配置参数以及与至少一个第一配置参数中的每一个第一配置参数对应的第一主同步信号,第二主同步信号表包括至少一个第一配置参数以及与至少一个第一配置参数中的每一个第一配置参数对应的第二主同步信号,第三主同步信号表包括至少一个第一配置参数以及
与至少一个第一配置参数中的每一个第一配置参数对应的第三主同步信号。
具体实现中,基站可以通过上两种方式记录第一配置参数与主同步信号的根序列号对应关系,以便基站在根据PCI确定第一配置参数后,可以查表获得第一主同步信号的根序列号、第二主同步信号的根序列号以及第三主同步信号的根序列号,进而可以根据根序列号确定第一主同步信号、第二主同步信号以及第三主同步信号。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第四种可能的实现方式中,基站根据第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号具体包括:以第一配置参数为索引,根据主同步信号表,确定与第一配置参数对应的三个互不相同的主同步信号,将与第一配置参数对应的三个互不相同的主同步信号分别确定为第一主同步信号、第二主同步信号、第三主同步信号。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第五种可能的实现方式中,基站根据第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号具体包括:以第一配置参数为索引,根据第一主同步信号表,确定与第一配置参数对应的第一主同步信号为第一主同步信号;以第一配置参数为索引,根据第二主同步信号表,确定与第一配置参数对应的第二主同步信号为第二主同步信号;以第一配置参数为索引,根据第三主同步信号表,确定与第一配置参数对应的第三主同步信号为第三主同步信号。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第六种可能的实现方式中,基站根据第二配置参数确定第一辅同步信号、第二辅同步信号具体包括:基站根据第一配置参数、第二配置参数以及发现信号的起始子帧的子帧号确定第一辅同步信号以及第二辅同步信号;第一辅同步信号与第二辅同步信号相同。具体实现中,基站根据第一配置参数、第二配置参数确定两个索引号,进一步可以根据这两个索引号获得一个同步序列,将这个同步序列作为第一辅同步信号或第二辅同步信号,即第一辅同步信号可以与第二辅同步信号相同。
如此,基站可以在确定第一配置参数、第二配置参数之后确定第一辅同步信号、第二辅同步信号。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第七种可能的实现方式中,根据第二配置参数确定第三辅同步信号具体包括:
基站根据发现信号的起始子帧相对于系统帧的子帧0或子帧5的子帧偏移确定代码序列,根据代码序列处理基序列获得第三辅同步信号。这里的,基序列为上述第一辅同步信号或第二辅同步信号,或,基序列也可以是根据第二配置参数确定的同步序列。
如此,当UE处于覆盖较弱的场景时,即使没有检测到第一辅同步信号或第二辅同步信号,但是仍可以通过基站后续传输的第三辅同步信号获得与基站进行时钟同步、频率同步等,这样使得发现信号的性能得到增强,UE对
发现信号的接收不再受限于较短的传输时长,在覆盖较弱的场景下也能检测到发现信号,根据发现信号接入基站,通过基站与核心网进行通信。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第八种可能的实现方式中,基站确定UE所处物理小区的PCID之前,方法还包括:基站生成五个互不相同的掩码序列;掩码序列的长度为M,M为第三辅同步信号所占正交频分复用OFDM符号的数量,五个掩码序列对应五个互不相同的子帧偏移;M为大于等于1的整数。
发现信号的起始子帧要么在系统帧的前半部分(子帧0到子帧4),要么在系统帧的后半部分(子帧5到子帧9),起始子帧在系统帧的前半部分,相对于系统帧的子帧0的子帧偏移可以是0、1、2、3、4这五种可能取值中的一种;同样,起始子帧在系统帧的前半部分,相对于系统帧的子帧5的子帧偏移也可以是0、1、2、3、4这五种可能取值中的一种。本发明实施例提供的方法中,不同的掩码序列对应不同的子帧偏移,可以通过5个不同的掩码序列指示5个不同的子帧偏移。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第九种可能的实现方式中,基站根据起始子帧相对于子帧0或子帧5的子帧偏移确定代码序列,根据代码序列处理基序列获得第三辅同步信号具体包括:
确定起始子帧相对于子帧0或者子帧5的子帧偏移对应的目标掩码序列;根据目标掩码序列中的第j个元素对基序列进行加掩操作,获得第j个OFDM符号上承载的第三辅同步信号;第j个OFDM符号是第三辅同步信号所占的M个OFDM符号中的第j个OFDM符号,j为大于等于1小于等于M的整数。示例的,第三辅同步信号占用传输发现信号的至少两个连续子帧中的9个OFDM符号,那么掩码序列的长度为9,并且基站利用掩码序列中的第一个元素对基序列进行加掩操作,就获得了第三辅同步信号占用的第一个OFDM符号上承载的同步序列,相似的,基站利用掩码序列中的第二个元素对基序列进行加掩操作,就获得了第三辅同步信号占用的第二个OFDM符号上承载的同步序列,以此类推,可以将第三辅同步信号全部映射到相应的OFDM符号上。
如此,使得UE在接收发现信号时,检测发现信号获得掩码序列后,可以根据该掩码序列映射出发现信号的起始子帧的实际子帧号,UE就可以根据起始子帧的实际子帧号正确接收下行信号(包括第二物理广播信道)。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第十种可能的实现方式中,基站根据起始子帧相对于子帧0或子帧5的子帧偏移确定代码序列,根据代码序列处理基序列获得第三辅同步信号具体包括:
基站根据起始子帧相对于子帧0或者子帧5的子帧偏移m2,确定长度为N的扰码序列,扰码序列中的第i个元素s(i)满足根据扰码序列的第i个元素对基序列中的第i个因子进行加扰操作获得第三辅同步信号;其中,N为第三辅同步信号的长度;N为大于等于1的整数;i为大于等于1,且小于等于N的整数;ns为起始子帧的第一个时隙的
时隙号。
本发明实施例提供的方法中,不同的掩码序列对应不同的子帧偏移,可以通过5个不同的扰码序列指示5个不同的子帧偏移。如此,使得UE在接收发现信号时,检测发现信号获得掩码序列后,可以根据该掩码序列映射出发现信号的起始子帧的实际子帧号,UE就可以根据起始子帧的实际子帧号正确接收下行信号。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第十一种可能的实现方式中,发送发现信号的至少两个连续子帧包括第一时域区间、第二时域区间以及第三时域区间,第一时域区间、第二时域区间以及第三时域区间互不重叠,第一时域区间位于第二时域区间之前,且第二时域区间位于第三时域区间之前。其中,第一时域区间用于基站发送第一主同步信号、第二主同步信号、第一辅同步信号、第二辅同步信号以及第一物理广播信道;第二时域区间用于基站发送第三主同步信号以及第三辅同步信号;第三时域区间用于基站发送第二物理广播信道。
也就是说,第一主同步信号、第二主同步信号、第一辅同步信号、第二辅同步信号以及第一物理广播信道均先于第三主同步信号以及第三辅同步信号发送,第三主同步信号以及第三辅同步信号先于第二物理广播信道发送。这样,先增强同步序列,有利于UE在解调物理广播信道之前完成全部的同步序列检测,又由于基站可以通过第三辅同步信号指示发现信号的起始子帧的实际子帧号,因此UE可以在解调物理广播信道之前根据发现信号的起始子帧的实际子帧号确定物理广播信道所在的实际子帧号,这样基站也就可以按照物理广播信道所在的实际子帧号进行小区特定参考信号(cell specific reference signal,CRS)加扰,不影响物理广播信道所在子帧的正常调度。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第十二种可能的实现方式中,至少两个连续子帧包括第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧,且第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧均包括14个OFDM符号。第一时域区间包括:第1子帧中除前两个OFDM符号以及后两个OFDM符号外的所有OFDM符号;第二时域区间包括:第1子帧的第13个OFDM符号、第1子帧的第14个符号以及第2子帧中除前两个OFDM符号外的所有OFDM符号;第三时域区间包括:第3子帧中除前两个OFDM符号外的所有OFDM符号、第4子帧中除前两个OFDM符号外的所有OFDM符号以及第5子帧中除前两个OFDM符号外的所有OFDM符号。
在一些实施例中,允许基站通过5个连续子帧发送发现信号,其中,第一个帧包含图1所示现有的DRS,使得基站发送的发现信号可以兼容MF1.0版本的UE。另外,通过第一子帧的后两个OFDM符号以及第二个子帧发送增强的同步序列(即第三辅同步信号和第三主同步信号),使得同步信号在时域上得到增强。通过剩余的三个子帧发送物理广播信道,也使得物理广播信道在时域上得到了增强。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第十三种可能的实现方式中,第1子帧的第3个OFDM符号用于发送第二辅同步信号,第1子帧的第4个OFDM符号用于发送第二主同步信号,第1子帧的第6个OFDM符号用于发送第一辅同步信号,第1子帧的第7个OFDM符号用于发送第一主同步信号,第一时域区间中除前发送第一主同步信号、第二主同步信号、第一辅同步信号以及第二辅同步信号外的OFDM符号用于发送第一物理广播信道。第1子帧的第14个符号、第2子帧的第5个OFDM符号、第2子帧的第8个OFDM符号、第2子帧的第11个OFDM符号以及第2子帧的第14个OFDM符号用于发送第三主同步信号;第二时域区间中除发送第三主同步信号的OFDM符号外的所有OFDM符号用于发送第三辅同步信号;第三时域区间包括的所有OFDM符号用于基站发送第二物理广播信道。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第十四种可能的实现方式中,至少两个子帧包括第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧,且第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧均包括14个OFDM符号。第一时域区间包括:第1子帧中除前两个OFDM符号以及后两个OFDM符号外的所有OFDM符号。第二时域区间包括:第1子帧的第13个OFDM符号、第1子帧的第14个符号以及第2子帧中除前三个OFDM符号外的所有OFDM符号。第三时域区间包括:第3子帧中除前三个OFDM符号外的所有OFDM符号、第4子帧中除前两个OFDM符号外的所有OFDM符号以及第5子帧中除前两个OFDM符号外的所有OFDM符号。
结合第一方面以及以上第一方面的任意一种实现方式,在第一方面的第十五种可能的实现方式中,第1子帧的第3个OFDM符号用于发送第二辅同步信号,第1子帧的第4个OFDM符号用于发送第二主同步信号,第1子帧的第6个OFDM符号用于发送第一辅同步信号,第1子帧的第7个OFDM符号用于发送第一主同步信号,第一时域区间中除前发送第一主同步信号、第二主同步信号、第一辅同步信号以及第二辅同步信号外的OFDM符号用于发送第一物理广播信道;第1子帧的第14个符号、第2子帧的第5个OFDM符号、第2子帧的第8个OFDM符号、第2子帧的第11个OFDM符号以及第2子帧的第14个OFDM符号用于发送第三主同步信号;第二时域区间中除发送第三主同步信号的OFDM符号外的所有OFDM符号用于发送第三辅同步信号;第三时域区间包括的所有OFDM符号用于基站发送第二物理广播信道。
第二方面,公开了一种发现信号的传输方法,包括:UE接收基站通过至少两个连续子帧发送的发现信号,该发现信号包括第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号。随后,UE解码发现信号,获得第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号;进一步,UE根据第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号确定第一配置参数和第二
配置参数,根据第一配置参数和第二配置参数UE所处物理小区的物理小区标识PCI。当然,UE还可以根据确定的PCI接入上述物理小区。
本发明实施例提供的方法中,基站通过多个连续子帧向UE发送发现信号,在时域上增强了发现信号,改善了发现信号传输时长对UE接收效果的限制。使得UE在覆盖较弱的场景下,如:工厂车间、港口等弱覆盖区域,仍可以接收到基站发送的发现信号,根据其中的同步信号与基站进行时钟同步、频率同步,顺利接入基站,通过基站与核心网进行通信。
结合第二方面,在第二方面的第一种可能的实现方式中,UE解码发现信号,获得第一主同步信号、第二主同步信号、第三主同步信号具体包括:UE将主同步信号表中的任意一个第一配置参数对应的第一主同步信号、第二主同步信号以及第三主同步信号与发现信号进行匹配,匹配度高于第一预设门限,则将该第一配置参数确定为第一配置参数;主同步信号表包括第一主同步信号表、第二主同步信号表以及第三主同步信号表,其中,第一主同步信号表包括至少一个第一配置参数以及与至少一个第一配置参数中的每一个第一配置参数对应的第一主同步信号,第二主同步信号表包括至少一个第一配置参数以及与至少一个第一配置参数中的每一个第一配置参数对应的第二主同步信号,第三主同步信号表包括至少一个第一配置参数以及与至少一个第一配置参数中的每一个第一配置参数对应的第三主同步信号。或,将主同步信号表中的任意一个第一配置参数对应的三个互不相同的主同步信号与发现信号进行匹配,匹配度高于第一预设门限,则将该第一配置参数确定为第一配置参数;主同步信号表包括至少一个第一配置参数,以及与至少一个第一配置参数中的每一个第一配置参数对应的三个互不相同的主同步信号。
具体实现中,UE预先存储了主同步信号表,确定了第一主同步信号、第二主同步信号以及第二主同步信号可能出现的组合,将每一种组合与发现信号进行匹配,匹配度高于预设门限则确定该组合对应的第一配置参数为检测基站发送的发现信号所获得的第一配置参数。
结合第二方面以及以上第二方面任意一种的实现方式,在第二方面的第二种可能的实现方式中,UE将该第一配置参数确定为第一配置参数之后,方法还包括:根据起始子帧的子帧号、第一配置参数与第二配置参数集合中Q个第二配置参数确定2*Q个基序列;Q个第二配置参数中每一个第二配置参数所对应的基序列不同;获取五个代码序列,五个代码序列对应五个互不相同的子帧偏移;根据五个代码序列分别对2*Q个基序列进行处理获得10*Q个辅同步信号。
结合第二方面以及以上第二方面任意一种的实现方式,在第二方面的第三种可能的实现方式中,UE解码发现信号,获得第一辅同步信号、第二辅同步信号以及第三辅同步信号具体包括:将2*Q个基序列中的一个基序列作为第一辅同步信号同步信号、第二辅同步序列,且将10*Q个辅同步信号中的一个辅同步信号作为第三辅同步信号与发现信号进行匹配,匹配度高于第二预设门限,则将该基序列对应的第二配置参数确定为第二配置参数。
可见,UE在检测出第一配置参数之后,可以结合第一配置参数检测出第二配置参数,进而可以根据第一配置参数、第二配置参数确定PCI。
结合第二方面以及以上第二方面任意一种的实现方式,在第二方面的第四种可能的实现方式中,至少两个连续子帧包括第一时域区间、第二时域区间以及第三时域区间,第一时域区间、第二时域区间以及第三时域区间互不重叠,第一时域区间位于第二时域区间之前,且第二时域区间位于第三时域区间之前。其中,第一时域区间用于基站发送第一主同步信号、第二主同步信号、第一辅同步信号、第二辅同步信号以及第一物理广播信道;第二时域区间用于基站发送第三主同步信号以及第三辅同步信号;第三时域区间用于基站发送第二物理广播信道。
结合第二方面以及以上第二方面任意一种的实现方式,在第二方面的第五种可能的实现方式中,方法还包括:对第三时域区间的小区特定参考信号CRS进行检测,接收第二物理广播信道。
第三方面,公开了一种基站,包括:
确定单元,用于确定UE所处物理小区的物理小区标识PCI,根据PCI确定第一配置参数以及第二配置参数;确定单元还用于,根据第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号,根据第一配置参数和第二配置参数确定第一辅同步信号、第二辅同步信号以及第三辅同步信号;发送单元,用于通过至少两个连续子帧向UE发送发现信号;发现信号包括第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号。
本发明实施例提供的方法中,基站通过多个连续子帧向UE发送发现信号,在时域上增强了发现信号,改善了发现信号传输时长对UE接收效果的限制。使得UE在覆盖较弱的场景下,如:工厂车间、港口等弱覆盖区域,仍可以接收到基站发送的发现信号,根据其中的同步信号与基站进行时钟同步、频率同步,顺利接入基站,通过基站与核心网进行通信。
结合第三方面,在第三方面的第一种可能的实现方式中,确定还用于,根据系统带宽、系统帧号以及发现信号的起始子帧的子帧号确定第一物理广播信道;根据第一物理广播信道确定第二物理广播信道;
则,发现信号还包括第一物理广播信道以及第二物理广播信道。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第二种可能的实现方式中,确定单元具体用于,将第一物理广播信道承载的第一主系统信息块确定为第二物理广播信道承载的第二主系统信息块。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第三种可能的实现方式中,确定单元还用于,在确定单元根据第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号之前,确定主同步信号表,主同步信号表包括至少一个第一配置参数,以及与至少一个第一配置参数中的每一个第一配置参数对应的三个互不相同的主同步信号;或,主同步信号表包括第一主同步信号表、第二主同步信号表以及第三主同步信号
表,其中,第一主同步信号表包括至少一个第一配置参数以及与至少一个第一配置参数中的每一个第一配置参数对应的第一主同步信号,第二主同步信号表包括至少一个第一配置参数以及与至少一个第一配置参数中的每一个第一配置参数对应的第二主同步信号,第三主同步信号表包括至少一个第一配置参数以及与至少一个第一配置参数中的每一个第一配置参数对应的第三主同步信号。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第四种可能的实现方式中,确定单元具体用于,以第一配置参数为索引,根据主同步信号表,确定与第一配置参数对应的三个互不相同的主同步信号,将与第一配置参数对应的三个互不相同的主同步信号分别确定为第一主同步信号、第二主同步信号、第三主同步信号。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第五种可能的实现方式中,确定单元具体用于,以第一配置参数为索引,根据第一主同步信号表,确定与第一配置参数对应的第一主同步信号为第一主同步信号;以第一配置参数为索引,根据第二主同步信号表,确定与第一配置参数对应的第二主同步信号为第二主同步信号;以第一配置参数为索引,根据第三主同步信号表,确定与第一配置参数对应的第三主同步信号为第三主同步信号。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第六种可能的实现方式中,确定单元具体用于,基站根据第一配置参数、第二配置参数以及发现信号的起始子帧的子帧号确定第一辅同步信号或第二辅同步信号;第一辅同步信号与第二辅同步信号相同。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第七种可能的实现方式中,确定单元具体用于,根据起始子帧相对于子帧0或子帧5的子帧偏移确定代码序列,根据代码序列处理基序列获得第三辅同步信号;基序列为第一辅同步信号或第二辅同步信号,或,基序列是根据第二配置参数确定的。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第八种可能的实现方式中,确定单元还用于,在确定UE所处物理小区的PCID之前,确定五个互不相同的掩码序列;掩码序列的长度为M,M为第三辅同步信号所占正交频分复用OFDM符号的数量,五个掩码序列中的每个掩码序列分别对应一个子帧偏移;M为大于等于1的整数。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第九种可能的实现方式中,确定单元具体用于,确定起始子帧相对于子帧0或者子帧5的子帧偏移对应的目标掩码序列;根据目标掩码序列中的第j个元素对基序列进行加掩操作,获得第j个OFDM符号上承载的第三辅同步信号;第j个OFDM符号是第三辅同步信号所占的M个OFDM符号中的第j个OFDM符号,j为大于等于1小于等于M的整数。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第
十种可能的实现方式中,确定单元具体用于,根据起始子帧相对于子帧0或者子帧5的子帧偏移m2,确定长度为N的扰码序列,扰码序列中的第i个元素s(i)满足根据扰码序列的第i个元素对基序列中的第i个因子进行加扰操作获得第三辅同步信号;其中,N为第三辅同步信号的长度;N为大于等于1的整数;i为大于等于1,且小于等于N的整数;ns为起始子帧的第一个时隙的时隙号。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第十一种可能的实现方式中,至少两个连续子帧包括第一时域区间、第二时域区间以及第三时域区间,第一时域区间、第二时域区间以及第三时域区间互不重叠,第一时域区间位于第二时域区间之前,且第二时域区间位于第三时域区间之前;其中,第一时域区间用于基站发送第一主同步信号、第二主同步信号、第一辅同步信号、第二辅同步信号以及第一物理广播信道;第二时域区间用于基站发送第三主同步信号以及第三辅同步信号;第三时域区间用于基站发送第二物理广播信道。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第十二种可能的实现方式中,至少两个连续子帧包括第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧,且第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧均包括14个OFDM符号;第一时域区间包括:第1子帧中除前两个OFDM符号以及后两个OFDM符号外的所有OFDM符号;第二时域区间包括:第1子帧的第13个OFDM符号、第1子帧的第14个符号以及第2子帧中除前两个OFDM符号外的所有OFDM符号;第三时域区间包括:第3子帧中除前两个OFDM符号外的所有OFDM符号、第4子帧中除前两个OFDM符号外的所有OFDM符号以及第5子帧中除前两个OFDM符号外的所有OFDM符号。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第十三种可能的实现方式中,第1子帧的第3个OFDM符号用于发送第二辅同步信号,第1子帧的第4个OFDM符号用于发送第二主同步信号,第1子帧的第6个OFDM符号用于发送第一辅同步信号,第1子帧的第7个OFDM符号用于发送第一主同步信号,第一时域区间中除前发送第一主同步信号、第二主同步信号、第一辅同步信号以及第二辅同步信号外的OFDM符号用于发送第一物理广播信道;第1子帧的第14个符号、第2子帧的第5个OFDM符号、第2子帧的第8个OFDM符号、第2子帧的第11个OFDM符号以及第2子帧的第14个OFDM符号用于发送第三主同步信号;第二时域区间中除发送第三主同步信号的OFDM符号外的所有OFDM符号用于发送第三辅同步信号;第三时域区间包括的所有OFDM符号用于基站发送第二物理广播信道。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第十四种可能的实现方式中,上述至少两个子帧包括第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧,且第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧均包括14个OFDM符号;第一时域区间包括:第1子帧中除
前两个OFDM符号以及后两个OFDM符号外的所有OFDM符号;第二时域区间包括:第1子帧的第13个OFDM符号、第1子帧的第14个符号以及第2子帧中除前三个OFDM符号外的所有OFDM符号;第三时域区间包括:第3子帧中除前三个OFDM符号外的所有OFDM符号、第4子帧中除前两个OFDM符号外的所有OFDM符号以及第5子帧中除前两个OFDM符号外的所有OFDM符号。
结合第三方面以及以上第三方面任意一种的实现方式,在第三方面的第十四种可能的实现方式中,第1子帧的第3个OFDM符号用于发送第二辅同步信号,第1子帧的第4个OFDM符号用于发送第二主同步信号,第1子帧的第6个OFDM符号用于发送第一辅同步信号,第1子帧的第7个OFDM符号用于发送第一主同步信号,第一时域区间中除前发送第一主同步信号、第二主同步信号、第一辅同步信号以及第二辅同步信号外的OFDM符号用于发送第一物理广播信道;第1子帧的第14个符号、第2子帧的第5个OFDM符号、第2子帧的第8个OFDM符号、第2子帧的第11个OFDM符号以及第2子帧的第14个OFDM符号用于发送第三主同步信号;第二时域区间中除发送第三主同步信号的OFDM符号外的所有OFDM符号用于发送第三辅同步信号;第三时域区间包括的所有OFDM符号用于基站发送第二物理广播信道。
第四方面,公开了一种UE,包括:
接收单元,用于在至少两个连续子帧上接收基站发送的发现信号;发现信号包括第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号;解码单元,用于解码发现信号,获得第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号;确定单元,用于根据第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号确定第一配置参数和第二配置参数,并根据第一配置参数和第二配置参数确定UE所处物理小区的物理小区标识PCI。
结合第四方面,在第四方面的第一种可能的实现方式中,确定单元具体用于,将主同步信号表中的任意一个第一配置参数对应的第一主同步信号、第二主同步信号以及第三主同步信号与发现信号进行匹配,匹配度高于第一预设门限,则将该第一配置参数确定为第一配置参数;主同步信号表包括第一主同步信号表、第二主同步信号表以及第三主同步信号表,其中,第一主同步信号表包括至少一个第一配置参数以及与至少一个第一配置参数中的每一个第一配置参数对应的第一主同步信号,第二主同步信号表包括至少一个第一配置参数以及与至少一个第一配置参数中的每一个第一配置参数对应的第二主同步信号,第三主同步信号表包括至少一个第一配置参数以及与至少一个第一配置参数中的每一个第一配置参数对应的第三主同步信号;
或,将主同步信号表中的任意一个第一配置参数对应的三个互不相同的主同步信号与发现信号进行匹配,匹配度高于第一预设门限,则将该第一配置参数确定为第一配置参数;主同步信号表包括至少一个第一配置参数,以
及与至少一个第一配置参数中的每一个第一配置参数对应的三个互不相同的主同步信号。
结合第四方面以及以上第四方面的任一种实现方式,在第四方面的第二种可能的实现方式中,确定单元还用于,确定第一配置参数之后,根据起始子帧的子帧号、第一配置参数与第二配置参数集合中Q个第二配置参数确定2*Q个基序列;Q个第二配置参数中每一个第二配置参数所对应的基序列不同;获取五个代码序列,五个代码序列对应五个互不相同的子帧偏移;根据五个代码序列分别对2*Q个基序列进行处理获得10*Q个辅同步信号。
结合第四方面以及以上第四方面的任一种实现方式,在第四方面的第三种可能的实现方式中,解码单元具体用于,将2*Q个基序列中的一个基序列作为第一辅同步信号同步信号、第二辅同步序列,且将10*Q个辅同步信号中的一个辅同步信号作为第三辅同步信号与发现信号进行匹配,匹配度高于第二预设门限,则将该基序列对应的第二配置参数确定为第二配置参数。
结合第四方面以及以上第四方面的任一种实现方式,在第四方面的第四种可能的实现方式中,至少两个连续子帧包括第一时域区间、第二时域区间以及第三时域区间,第一时域区间、第二时域区间以及第三时域区间互不重叠,第一时域区间位于第二时域区间之前,且第二时域区间位于第三时域区间之前;其中,第一时域区间用于基站发送第一主同步信号、第二主同步信号、第一辅同步信号、第二辅同步信号以及第一物理广播信道;第二时域区间用于基站发送第三主同步信号以及第三辅同步信号;第三时域区间用于基站发送第二物理广播信道。
结合第四方面以及以上第四方面的任一种实现方式,在第四方面的第五种可能的实现方式中,还包括检测单元。检测单元还用于,对第三时域区间的小区特定参考信号CRS进行检测;接收单元还用于,在检测单元对第三时域区间的CRS进行检测之后,接收第二物理广播信道。
本发明实施例提供的方法中,基站通过多个连续子帧向UE发送发现信号,在时域上增强了发现信号,改善了发现信号传输时长对UE接收效果的限制。使得UE在覆盖较弱的场景下,如:工厂车间、港口等弱覆盖区域,仍可以接收到基站发送的发现信号,根据其中的同步信号与基站进行时钟同步、频率同步,顺利接入基站,通过基站与核心网进行通信。
本申请实施例的第五方面,提供一种基站,该基站可以包括:至少一个处理器,存储器、通信接口、通信总线;
至少一个处理器与存储器、通信接口通过通信总线连接,存储器用于存储计算机执行指令,当服务器运行时,处理器执行存储器存储的计算机执行指令,以使基站执行第一方面或第一方面的可能的实现方式中任一的发现信号的传输方法。
本申请实施例的第六方面,提供一种UE,该UE可以包括:至少一个处理器、存储器、收发器;
其中,至少一个处理器与存储器、通信接口通过通信总线连接,存储器
用于存储计算机执行指令,当服务器运行时,处理器执行存储器存储的计算机执行指令,以使UE执行第二方面或第二方面的可能的实现方式中任一的发现信号的传输方法。
本申请实施例的第七方面,公开了一种计算机存储介质,用于存储上述基站所用的计算机软件指令,该计算机软件指令包含用于执行上述发现信号的传输方法所涉及的程序。
本申请实施例的第八方面,公开了另一种计算机存储介质,用于存储上述UE所用的计算机软件指令,该计算机软件指令包含用于执行上述发现信号的传输方法所涉及的程序。
图1为现有的DRS的帧结构示意图;
图2为现有的MF通信系统的架构图;
图3为现有的MF通信系统的另一架构图;
图4为现有的系统帧的帧结构示意图;
图5为本发明实施例提供的基站的组成示意图;
图6为本发明实施例提供的发现信号的帧结构示意图;
图7为本发明实施例提供的发现信号的另一帧结构示意图;
图8为本发明实施例提供的发现信号的另一帧结构示意图;
图9为本发明实施例提供的发现信号的另一帧结构示意图;
图10为本发明实施例提供的发现信号的另一帧结构示意图;
图11为本发明实施例提供的发送发现信号的方法的流程示意图;
图12本发明实施例提供的基站的另一组成示意图;
图13本发明实施例提供的基站的另一组成示意图
图14本发明实施例提供的UE的组成示意图;
图15本发明实施例提供的UE的另一组成示意图;
图16本发明实施例提供的UE的另一组成示意图。
如图2所示,MF通信系统中,基站向所有UE发送DRS。UE通过基站与核心网进行通信。其中的UE可以是手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等等。作为一种实施例,如图2中所示,本发明的MF通信系统中包括的UE为手机。
具体地,基站可以根据该UE所在物理小区的PCI(Physical Cell Identifier,即物理小区标识),结合公式确定两个参数:和进一步,基站可以根据确定PSS以及MF-PSS,根据和确定SSS以及MF-SSS,基站向UE发送的DRS包括上述PSS、MF-PSS、SSS以及MF-SSS。UE可以接收基站发送的DRS,根据其中的PSS、MF-PSS、SSS以及MF-SSS确定时钟、PCI等信息,根据这些信息与基站时钟同步、频率同步,接入基站服务的物理小区,从而通过基站与核心网进行通信。
通常,基站必须在在一个子帧内完成DRS的传输,PSS、MF-PSS、SSS以及MF-SSS各自所占的OFDM符号参考图1。受限于较短的传输时长,当UE处于信号质量较差的弱覆盖场景,如图3所示,基站与UE之间存在遮挡物,信号衰落严重,会出现UE不能正常接收DRS的情况。如此,UE无法获得PSS、MF-PSS、SSS以及MF-SSS这些同步信号,也就无法与基站进行频率同步、时钟同步。
本发明实施例的原理在于:基站通过时域上的多个连续子帧向UE发送DRS,实现DRS在时域上的增强,使得UE在弱覆盖区域也能接收到基站发送的DRS,进而获得DRS中的同步信号,根据获得的同步信号与基站时钟、频率同步。扩大MF小区的覆盖范围,使得无线信号质量较差时,通过基站接入核心网实现UE也能够接收DRS,完成入网流程。
为方便理解,对本发明涉及的术语做以解释说明:
系统帧:即一个无线传输帧,具体的,如图4所示,系统帧的时间长度可以为10毫秒,1个系统帧由20个时隙组成,每个时隙为0.5毫秒,两个时隙为1个子帧,也即是,系统帧包括10个子帧,每个子帧的长度为1毫秒。子帧是普通循环前缀(cyclic prefix,CP)时,每个子帧包含14个OFDM符号,采用扩展CP时,每个子帧包含12个OFDM符号。
子帧偏移:可以称为Sf-offset,sf-offset用来指示一个子帧相对前半个系统帧或者后半个系统帧的偏移量。参考图4,前半个系统帧即所示系统帧的子帧0~子帧4,后半个系统帧即所示系统的子帧5~子帧9。对于占用多个子帧的信号,该信号的子帧偏移为该信号的第一个子帧的偏移量。通常,子帧偏移有0、1、2、3、4这五种不同的情况。以普通CP为例,当发现信号的第一个子帧的子帧号是3,偏移量就是3mod5=3;如果发现信号第一个子帧的子帧号是7,那么偏移量sf-offset就是7mod5=2。其中,“mod”代表取余运算。
在具体的实现中,图5为本发明实施例提供的一种基站的组成示意图,该基站可以是图2所示通信系统中的基站。如图5所示,基站可以包括至少一个处理器11,存储器12、通信接口13、通信总线14。
下面结合图5对基站的各个构成部件进行具体的介绍:
处理器11是基站的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器11是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器11可以通过运行或执行存储在存储器12内的软件程序,以及调用存储在存储器12内的数据,执行基站的各种功能。
在具体的实现中,作为一种实施例,处理器11可以包括一个或多个CPU,例如图5中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,基站可以包括多个处理器,例如图5中所示的处理器11和处理器15。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器12可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器12可以是独立存在,通过通信总线14与处理器11相连接。存储器12也可以和处理器11集成在一起。
其中,所述存储器12用于存储执行本发明方案的软件程序,并由处理器11来控制执行。
通信接口13,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。通信接口13可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线14,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图5中示出的设备结构并不构成对基站的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在本发明实施例中,基站的处理器11确定UE所处物理小区的PCI,根据所述PCI确定第一配置参数以及第二配置参数。进而,处理器11可以根据所述第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号,根据所述第一配置参数和第二配置参数确定第一辅同步信号、第二辅同步信号以及第三辅同步信号。进一步,处理器11通过至少两个连续子帧向用户设备发送发现信号。需要说明的是,基站发送的发现信号包括所述第一主同步信号、所述第二主同步信号、所述第三主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第三辅同步信号。
基站通过多个连续子帧向UE发送发现信号,在时域上增强了发现信号,改善了发现信号传输时长对UE接收效果的限制。使得UE在覆盖较弱的场景下,如:工厂车间、港口等弱覆盖区域,仍可以接收到基站发送的发现信号,
根据其中的同步信号与基站进行时钟同步、频率同步,顺利接入基站,通过基站与核心网进行通信。
具体实现中,上述发现信号所占的至少两个连续子帧在时域上的帧结构如图6所示。参考图6,所述至少两个连续子帧包括第一时域区间、第二时域区间以及第三时域区间。进一步,所述第一时域区间、所述第二时域区间以及所述第三时域区间互不重叠。在时域上,所述第一时域区间位于所述第二时域区间之前,且所述第二时域区间位于所述第三时域区间之前。
具体实现中,所述第一时域区间用于所述基站发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第一物理广播信道;所述第二时域区间用于所述基站发送所述第三主同步信号以及所述第三辅同步信号;所述第三时域区间用于所述基站发送所述第二物理广播信道。需要说明的是,第三主同步信号、第三辅同步信号也是同步序列,UE可以通过检测基站发送的第三主同步信号、第三辅同步信号与基站进行频率同步、时钟同步等。
在本发明实施例中,基站先发送增强的同步信号,即所述第三主同步信号和所述第三辅同步信号,后发送增强的物理广播信道,有助于UE在解调物理广播信道之前完成同步信号检测,获得定时、PCI、子帧号、频率纠偏等信息。
基站的处理器11预先确定以下规则:(1)确定主同步信号表,通过该表记录第一配置参数与第一主同步信号、第二主同步信号以及第三主同步信号之间的对应关系,并且不同的对应有不同的第一主同步信号、第二主同步信号以及第三主同步信号。需要说明的是,本发明实施例中的第一主同步信号可以是PSS,第二主同步信号可以是MF-PSS,第三主同步信号可以是MF-ePSS,第一配置参数可以是
需要说明的是,主同步信号表可以是基站预先生成的,也可以是其他网络设备预先向基站配置后基站存储在本地的,在此不做限定。
(2)确定一组代码序列,不同的代码序列对应的子帧偏移不同。代码序列可以是掩码序列或扰码序列。
在一些实施例中,主同步信号表包括至少一个第一配置参数,以及与所述至少一个第一配置参数中的每一个第一配置参数对应的三个互不相同的主
同步信号。以下表1是上述主同步信号表的一种可能的实现方式。
表1
参考表1,Root Index是同步信号的根序列号。协议或标准中定义了多个同步信号(即同步序列),不同的同步信号对应的根序列号不同,并且一个同步信号只对应有一个根序列号,一个根序列号也只对应一个同步信号。因此基站根据根序列号可以唯一确定一个同步信号。另外,表1中的PSS Root Index是第一主同步信号的根序列号,MF-PSS Root Index是第二主同步信号的根序列,MF-ePSS Root Index是第三同步信号的根序列号。当然,第一主同步信号、第二主同步信号、第三主同步信号的根序列号并不局限于表1所示出的几种可能,在具体实现中,的一种取值对应的第一主同步信号、第二主同步信号、第三主同步信号的根序列号互不相同即可。
在一些实施例中,所述主同步信号表包括第一主同步信号表、第二主同步信号表以及第三主同步信号表。其中,所述第一主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第一主同步信号,所述第二主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第二主同步信号,所述第三主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第三主同步信号。以下表2是上述第一主同步信号表的一种可能的实现方式,以下表3是第二主同步信号表的一种可能的实现方式,以下表4是第三主同步信号表的一种可能的实现方式。
表2
表3
表4
本发明实施例中,第三主同步信号与第一、第二主同步信号均不相同,这样,不仅能够保证对支持MF1.0的兼容性,即使得只能够接收现有DRS的UE只能通过第一主同步信号和第二主同步信号解出第一配置参数,还能够使得接收增强DRS(即本发明实施例中基站通过至少两个连续基站发送的发现信号)的UE可以通过第一主同步信号、第二主同步信号和第三主同步信号解出第一配置参数。
在一些实施例中,代码序列为掩码序列。具体实现中,基站的处理器11
针对0、1、2、3、4这5个不同的子帧偏移定义5个OCC序列(即上述掩码序列)。其中,不同的OCC序列对应不同的子帧偏移。另外,OCC序列长度根据上述第三同步信号所占的OFDM符号数来定,示例的,所述第三辅同步信号占9个OFDM符号,OCC序列的长度就为9。需要说明的是,本发明实施例中的“序列长度”,指的是序列包含的元素的数量,如:序列长度为9,即该序列包含9个元素。进一步,基站可以生成表5所示的映射关系表记录OCC序列与子帧偏移(sf-offset)之间的对应关系。
表5
需要说明的是,表5中5个不同的掩码序列对应的子帧偏移也不相同,并且每个子帧偏移对应的掩码序列都是唯一的。当然,一个子帧偏移也可以对应多个掩码序列,UE只要解出这多个掩码序列中的一个即可确定一个子帧偏移。示例的,OCC序列0、OCC序列1对应的子帧偏移均为0,UE不论解出OCC序列0还是OCC序列1,都可以确定出子帧偏移0。但是,一个掩码序列不能对应多个子帧偏移,避免UE解出掩码序列后不能确定该序列指示的是多个子帧偏移中的具体哪一个。
在一些实施例中,代码序列为扰码序列,且扰码序列的长度与上述第三辅同步信号的长度相同。具体地,扰码序列中的第i个元素s(i)满足其中,其中ns为所述起始子帧的第一个时隙的时隙号,m2实际上是上述发现信号的起始子帧相对于子帧0或子帧5的子帧偏移。所谓发现信号的起始子帧即发送所述发现信号的至少两个连续子帧中的第一个子帧,子帧0是系统帧包括的10个子帧中的第1个子帧,子帧5是系统帧包括的10个子帧中的第6个子帧。
具体实现中,处理器11可以根据第一配置参数查询主同步信号表,确定第一主同步信号、第二主同步信号以及第三主同步信号。示例的,第一配置参数处理器11以为索引,查找表1,确定取0对应的表项中,第一主同步信号的根序列号为25,第二主同步信号的根序列号为40,第三主同步信号的根序列号为5。进而可以将根序列号为25的主同步信号确定为第一主同步信号,将根序列号为40的主同步信号确定为第二主同步信号,
根序列号为5的主同步信号确定为第三主同步信号。
或者,第一配置参数处理器11以为索引,查找表2、表3以及表4。在表2中,确定取1对应的第一主同步信号的根序列号为29;在表3中,确定取1对应的第二主同步信号的根序列号为44;在表3中,确定取1对应的第三主同步信号的根序列号为10。进而可以将根序列号为29的主同步信号确定为第一主同步信号,将根序列号为44的主同步信号确定为第二主同步信号,根序列号为10的主同步信号确定为第三主同步信号。
另外,处理器11根据第一配置参数以及第二配置参数确定第一辅同步信号、第二辅同步信号以及第三辅同步信号具体可以是:
首先,基站根据第二配置参数获得两个索引号m0和m1,根据m0和m1确定以及并根据第一配置参数生成c0(n)和c1(n)。进一步结合第一辅同步信号或第二辅同步信号所在子帧的子帧号,按照以下公式(1)生成第一辅同步信号和第二辅同步信号;其中,第一辅同步信号和第二辅同步信号相同。
其中,n的取值范围是[0,30],也就是说经以上步骤确定出的第一辅同步信号或第二辅同步信号是长度为62的序列。示例的,当n取1时,可以确定出序列中的两个元素,d0和d1。
进一步,基站还可以根据所述发现信号的起始子帧相对于子帧0或子帧5的子帧偏移确定出一个代码序列,根据所述代码序列处理基序列获得第三辅同步信号。其中,所述基序列为上述第一辅同步信号或上述第二辅同步信号。在一些实施例中,所述基序列也可以是根据第二配置参数确定的不同于第一辅同步信号或第二辅同步信号的同步信号。具体地,基站预先生成t个基序列,其中,t代表第二配置参数有t种可能的取值,且每一个第二配置参数在t个基序列中对应的基序列不同。
具体实现中,对基序列的处理可以包括以下两种情况:
第一、根据所述发现信号的起始子帧相对于子帧0或子帧5的子帧偏移查找上述表5,确定与子帧偏移对应的目标掩码序列。根据所述目标掩码序列中的第j个元素对所述基序列进行加掩操作,获得第j个OFDM符号上承载的所述第三辅同步信号。
其中,所述第j个OFDM符号是所述第三辅同步信号所占的M个OFDM符号中的第j个OFDM符号,所述j为大于等于1小于等于M的整数。示例的,所述发现信号的起始子帧相对于子帧0的子帧偏移为1,以子帧偏移1
为索引查找表5,确定序列:这里,序列的长度为9,即第三辅同步信号占9个OFDM符号;再根据该序列对基序列加掩。示例的,根据序列中的第一个元素1对基序列进行加掩,即用元素1乘基序列中的每一个元素,获得第三辅同步信号占9个OFDM符号中的第一个OFDM符号上承载的第三辅同步信号;根据序列中的第二个元素对基序列进行加掩,即用元素乘基序列中的每一个元素,获得第三辅同步信号占9个OFDM符号中的第二个OFDM符号上承载的第三辅同步信号。以此类推,获得第三辅同步信号占9个OFDM符号中每一个OFDM符号上承载的第三辅同步信号,这9个OFDM符号中每一个OFDM符号上承载的第三辅同步信号可以不同。
第二、将所述发现信号的起始子帧相对于子帧0或子帧5的子帧偏移代入公式确定扰码序列中的每一个元素。再根据各元素对基序列中相应的元素加扰,获得第三辅同步信号。第三辅同步信号所占9个OFDM符号中每一个OFDM符号上承载的第三辅同步信号相同。
示例的,基序列为第一辅同步信号或第二辅同步信号,参考公式(1),第三辅同步信号可以表示为以下公式(2),即对第一辅同步信号或第二辅同步信号的每一个元素乘相应的扰码序列获得第三辅同步信号。
通常,基站可以按照发现信号起始子帧的实际子帧号确定第二物理广播信道所在的子帧号,从而对第二物理广播信道所在的子帧(即上述下行信号所在的子帧)加扰。如果UE解调完第三辅同步信号之后没有获得子帧偏移,也就是没有获得发现信号起始子帧的实际子帧号,只能按照子帧0或者子帧5对下行信号进行解扰。也就是说,基站只能按照子帧0或者子帧5对第二物理广播信道所在的子帧进行加扰。一些在网的UE会按照实际子帧号进行解扰,那么这些UE就可能会无法正常接收相应子帧。本发明实施例中,基站对基序列进行加扰或加掩,不同的扰码序列或掩码序列对应不同的子帧偏移。UE收到基站发送的第三辅同步信号后,可以对第三辅同步信号解码获得扰码序列或掩码序列,从而根据扰码序列或掩码序列映射出子帧偏移,这里的子
帧偏移指的是发现信号的起始子帧相对于系统子帧的子帧0或子帧5的偏移。又由于第三辅同步信号先于第二物理广播信道发送(参考图6),使得UE在解调出第二物理广播信道之前根据扰码序列或掩码序列映射出子帧偏移,从而能够根据得到的子帧偏移确定出发现信号起始子帧的实际子帧号,根据该子帧号对下行信号(即图6所示第三时域区间所占子帧承载的所有下行信号)进行解扰。
另外,UE检测SSS/MF-SSS(即第一辅同步信号或第二辅同步信号)成功后会获得两个相应的索引号m0和m1,根据这两个索引号可以得到第二配置参数。UE确定出第二配置参数后,联合第一配置参数就能确定PCI,之后UE才能正常解调下行信号。
在一些实施例中,上述基站可以通过5ms向UE发送发现信号,也就是说上述至少两个连续子帧包括5个连续子帧,示例的,可以是第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧这五个连续子帧。另外,所述第1子帧、所述第2子帧、所述第3子帧、所述第4子帧以及所述第5子帧可以均包括14个OFDM符号。
进一步,如图7所示,所述第一时域区间包括:所述第1子帧中除前两个OFDM符号以及后两个OFDM符号外的所有OFDM符号。所述第二时域区间包括:所述第1子帧的第13个OFDM符号、所述第1子帧的第14个符号以及所述第2子帧中除前两个OFDM符号外的所有OFDM符号。所述第三时域区间包括:所述第3子帧中除前两个OFDM符号外的所有OFDM符号、所述第4子帧中除前两个OFDM符号外的所有OFDM符号以及所述第5子帧中除前两个OFDM符号外的所有OFDM符号。
或者,如图8所示,所述第一时域区间包括:所述第1子帧中除前两个OFDM符号以及后两个OFDM符号外的所有OFDM符号;所述第二时域区间包括:所述第1子帧的第13个OFDM符号、所述第1子帧的第14个符号以及所述第2子帧中除前三个OFDM符号外的所有OFDM符号;所述第三时域区间包括:所述第3子帧中除前三个OFDM符号外的所有OFDM符号、所述第4子帧中除前两个OFDM符号外的所有OFDM符号以及所述第5子帧中除前两个OFDM符号外的所有OFDM符号。
在一些实施例中,参考图7所示的各个时域区间的时序关系,基站可以参考图9所示的时序示意图发送各个信号。具体地,所述第1子帧的第3个OFDM符号(即图9所示的第1子帧的OFDM符号2)用于发送所述第二辅同步信号MF-SSS,所述第1子帧的第4个OFDM符号(即图9所示的第1子帧的OFDM符号3)用于发送所述第二主同步信号MF-PSS,所述第1子帧的第6个OFDM符号(即图9所示的第1子帧的OFDM符号5)用于发送所述第一辅同步信号SSS,所述第1子帧的第7个OFDM符号(即图9所示的第1子帧的OFDM符号6)用于发送所述第一主同步信号PSS。所述第一时域区间中除前发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号以及所述第二辅同步信号外的所述OFDM符号用于发送所述第一物
理广播信道PBCH。即,第1子帧的OFDM符号4、7、8、9、10、11用于发送PBCH,另外,第1子帧的OFDM符号0、1用于发送PDCCH。
参考图9,所述第1子帧的第14个符号(第1子帧的OFDM符号13)、所述第2子帧的第5个OFDM符号(第2子帧的OFDM符号4)、所述第2子帧的第8个OFDM符号(第2子帧的OFDM符号7)、所述第2子帧的第11个OFDM符号(第2子帧的OFDM符号10)以及所述第2子帧的第14个OFDM符号(第2子帧的OFDM符号13)用于发送所述第三主同步信号MF-ePSS;
所述第1子帧的第13个符号、所述第2子帧的第3个、第4个、第6个、第7个、第9个、第10个、第12个以及第13个OFDM符号用于发送所述第三辅同步信号MF-eSSS。
所述第三时域区间包括的所有OFDM符号用于所述基站发送所述第二物理广播信道MF-ePBCH。
另外,参考图9,上述至少两个连续子帧中除发送SSS、PSS、MF-SSS、MF-PSS、PBCH、MF-ePSS、MF-eSSS以及MF-ePBC所占用的OFDM符号外的所有10个OFDM符号用于发送物理下行控制信道(physical downlink control channel,PDCCH)。
在一些实施例中,参考图8所示的各个时域区间的时序关系,基站可以参考图10所示的时序示意图发送各个信号。具体地,所述第1子帧的第3个OFDM符号用于发送所述第二辅同步信号MF-SSS,所述第1子帧的第4个OFDM符号用于发送所述第二主同步信号MF-PSS,所述第1子帧的第6个OFDM符号用于发送所述第一辅同步信号SSS,所述第1子帧的第7个OFDM符号用于发送所述第一主同步信号PSS。另外,所述第一时域区间中除前发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号以及所述第二辅同步信号外的所述OFDM符号用于发送所述第一物理广播信道PBCH。
参考图10,所述第1子帧的第14个符号、所述第2子帧的第5个OFDM符号、所述第2子帧的第8个OFDM符号、所述第2子帧的第11个OFDM符号以及所述第2子帧的第14个OFDM符号用于发送所述第三主同步信号MF-ePSS;
所述第二时域区间中除发送所述第三主同步信号的OFDM符号外的所有OFDM符号用于发送所述第三辅同步信号,即所述第1子帧的第13个符号、所述第2子帧的第4个、第6个、第7个、第9个、第10个、第12个以及第13个OFDM符号用于发送所述第三辅同步信号MF-eSSS。
所述第三时域区间包括的所有OFDM符号用于所述基站发送所述第二物理广播信道MF-ePBCH;
另外,参考图10,上述至少两个连续子帧中除发送SSS、PSS、MF-SSS、MF-PSS、PBCH、MF-ePSS、MF-eSSS以及MF-ePBC所占用的OFDM符号外的所有14个OFDM符号用于发送PDCCH。
本发明实施例还提供一种发现信号的传输方法,如图11所示,所述方法包括以下步骤:
101、基站确定调度的UE的所处物理小区的PCI,根据PCI确定第一配置参数和第二配置参数。
102、基站根据第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号;根据第一配置参数和第二配置参数确定第一辅同步信号、第二辅同步信号以及第三辅同步信号。
具体实现中,基站以所述第一配置参数为索引,根据上述表1确定与第一配置参数对应的第一主同步信号、第二主同步信号以及第三主同步信号。也就是以第一配置参数为索引查找上述表1。
或,基站以所述第一配置参数为索引,根据上述表2确定第一主同步信号,基站以所述第一配置参数为索引,根据上述表3确定第二主同步信号,基站以所述第一配置参数为索引,根据上述表4确定第三主同步信号。
另外,基站根据第一配置参数和第二配置参数,结合上述公式(1)确定第一辅同步信号、第二辅同步信号。其中,第一辅同步信号、第二辅同步信号相同。
进一步,基站根据发现信号(包括上述第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号)相对于系统帧的子帧0或子帧5的子帧偏移确定一个代码序列,这个代码序列可以是掩码序列或扰码序列。示例的,基站可以以该子帧偏移为索引查找表5确定与该子帧偏移对应的一个掩码序列,或,将子帧偏移m2,代入中计算出扰码序列中的第i个元素。其中,i为大于等于1小于等于N的整数,N为第三辅同步信号的长度,即第三辅同步信号的序列中包括的元素的数目。如此,基站可以根据上述公式确定出一个长度为N的扰码序列。
随后,基站根据掩码序列对第一辅同步信号或第二辅同步信号进行加掩获得第三辅同步信号,或,根据扰码序列对第一辅同步信号或第二辅同步信号进行加扰获得第三辅同步信号。
当然,基站也可以在步骤101之前,预先生成一组序列,这组序列包括t个不同的序列,其中每一个序列对应的第二配置参数不同,且第二配置参数共有t中可能的取值。在此,基站可以根据第二配置参数在这t个序列中唯一确定一个序列作为基序列,进而可以根据上述掩码序列对该基序列进行加掩获得第三辅同步信号,或,根据上述扰码序列对该基序列进行加扰获得第三辅同步信号。
103、基站通过至少两个连续子帧向UE发送发现信号,该信号包括上述第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号。
具体实现中,所述发现信号还包括第一物理广播信道和第二物理广播信道。所述至少两个连续子帧包括第一时域区间、第二时域区间以及第三时域区间,所述第一时域区间、所述第二时域区间以及所述第三时域区间互不重叠,所述第一时域区间位于所述第二时域区间之前,且所述第二时域区间位于所述第三时域区间之前。
其中,所述第一时域区间用于所述基站发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第一物理广播信道;
所述第二时域区间用于所述基站发送所述第三主同步信号以及所述第三辅同步信号;
所述第三时域区间用于所述基站发送所述第二物理广播信道。
104、UE在至少两个连续子帧上接收基站发送的发现信号。
105、UE解码该发现信号获得其中的第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号,并根据这些同步信号确定第一配置参数和第二配置参数。
需要说明的是,UE在步骤104之前,预先确定了第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号可能出现的可能,并且确定了多个同步信号组,每种组合都包括一个第一主同步信号、一个第二主同步信号、一个第三主同步信号、一个第一辅同步信号、一个第二辅同步信号以及一个第三辅同步信号。用其中一组去跟接收到的序列尝试匹配,如果匹配成功了(即匹配度高于预设门限),就将该组中的第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号认为是基站发送的发现信号中包括的第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号。
具体实现中,UE在步骤104之前,UE接收所述基站发送的主同步信号表,所述主同步信号表(参考上述表1)包括至少一个第一配置参数,以及与所述至少一个第一配置参数中的每一个第一配置参数对应的三个互不相同的主同步信号。
在一些实施例中,所述主同步信号表包括第一主同步信号表(参考上述
表2)、第二主同步信号表(参考上述表3)以及第三主同步信号表(参考上述表4),其中,所述第一主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第一主同步信号,所述第二主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第二主同步信号,所述第三主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第三主同步信号。
首先UE可以根据接收到的主同步信号表中的主同步信号尝试与发现信号匹配,具体地:UE将所述主同步信号表中的任意一个第一配置参数对应的第一主同步信号、第二主同步信号以及第三主同步信号与所述发现信号进行匹配,匹配度高于第一预设门限,则将该第一配置参数确定为所述第一配置参数。
示例的,以表2、表3以及表4为例,取第一配置参数UE将根序列号25的同步序列、根序列号40的同步序列以及根序列号5的同步序列一起与发现信号进行匹配,根序列号25的同步序列与发现信号的匹配度为A,根序列号40的同步序列与发现信号的匹配度为B,根序列号5的同步序列与发现信号的匹配度为C,当xA+yB+zC大于预设门限(即本发明实施例所述的第一预设门限),则确定0为所述第一配置参数。其中,x、y、z为加权系数。
或,UE将所述主同步信号表中的任意一个第一配置参数对应的三个互不相同的主同步信号与所述发现信号进行匹配,匹配度高于所述第一预设门限,则将该第一配置参数确定为所述第一配置参数。
示例的,以表1为例,取第一配置参数UE将根序列号29的同步序列、根序列号44的同步序列以及根序列号10的同步序列一起与发现信号进行匹配,根序列号29的同步序列与发现信号的匹配度为D,根序列号44的同步序列与发现信号的匹配度为E,根序列号10的同步序列与发现信号的匹配度为F,当xD+yE+zF大于预设门限(即本发明实施例所述的第一预设门限),则确定1为所述第一配置参数。
进一步,UE还可以根据第一配置参数确定辅同步信号的多种可能,具体包括:根据所述第一配置参数与第二配置参数集合中Q个第二配置参数确定2*Q个基序列;所述Q个第二配置参数中每一个第二配置参数所对应的基序列不同。获取五个代码序列,所述五个代码序列对应所述五个互不相同的子帧偏移;这里的代码序列可以是UE将子帧偏移m2(可以是0、1、2、3、4)代入确定的5个扰码序列,也可以是UE接收到基站发送的表5所示的5个掩码序列。
接着,UE根据所述五个代码序列分别对所述2*Q个基序列进行处理获得10*Q个辅同步信号。随后,UE将所述2*Q个基序列中的一个基序列作为所述第一辅同步信号同步信号、所述第二辅同步序列,且将所述10*Q个辅同步信号中的一个辅同步信号作为所述第三辅同步信号与所述发现信号进行匹
配,匹配度高于第二预设门限,则将该基序列对应的第二配置参数确定为所述第二配置参数。
示例的,以第二配置参数集合中有168个第二配置参数为例,根据上述过程确定的第一配置参数和一个第二配置参数可以确定两个索引号m0和m1,根据两个索引号可以确定2个同步序列,因此,一个第一配置参数和168个第二配置参数可以确定出168*2个不同的同步序列。该同步序列可以作为第一辅同步信号或第二辅同步信号,因此,第一辅同步信号或第二辅同步信号均有168*2种可能。
另外,根据表5个所示的5个掩码序列对168个第一辅同步信号(或第二辅同步信号)中的每一个进行处理,获得5*168*2种可能的第三辅同步信号。
UE可以在168*2种同步序列中选择一个序列1作为第一辅同步信号,同时,序列1也作为第二辅同步信号,并在5*168*2种可能的第三辅同步信号中选择一个序列2,将序列1、序列2与发现信号进行匹配,匹配度高于第二预设门限,则将序列1对应的第二配置参数确定为UE解码基站发送的发现信号所获得的第二配置参数。
另外,UE还可以根据匹配到的基序列,确定发现信号起始子帧的子帧号范围(即起始子帧在子帧0到帧4范围内,还是在子帧5到子帧9范围内)。UE还可以根据匹配到的掩码序列查找表5,就可以确定发现信号的起始子帧相对于系统帧的子帧0或子帧5的子帧偏移。或者,UE将匹配到的扰码序列中的第i个元素代入公式中,确定m2即所述起始子帧的子帧偏移。进一步,UE可以根据所述起始子帧的子帧号范围和子帧偏移,确定发现信号起始子帧的子帧号。这里所谓匹配到的基序列,即UE在尝试解码发现信号时,与发现信号匹配度高于第二预设门限的一个组合情况中包括的基序列。类似的,匹配到的掩码序列也是该组合情况中包括的掩码序列。匹配到的扰码序列也是类似的含义,在此不做赘述。
需要说明的是,以解码主同步信号为例,用一组序列去跟接收到的序列尝试匹配,即UE根据每一种可能的第一配置参数,选择对应的三个主同步信号。利用三个主同步信号的时域序列与接收到的时域数据做滑动相关计算,并记录相关峰值。如果该相关峰值大于第一预设门限,则确定该相关峰值对应的第一配置参数为解码发现信号确定的第一配置参数。这里的“相关峰值”即可以为本发明实施例所述的“匹配度”。在一些实施例中,UE还可以遍历第一配置参数所有可能之后,获得每一个第一配置参数的相关峰值。如果获取到的多个相关峰值中的最大值大于第一预设门限,则确定该最大相关峰值对应的第一配置参数为解码发现信号确定的第一配置参数。
同样,UE也是根据上述步骤确定的第一配置参数和一个第二配置参数选择对应的三个辅同步信号,利用三个辅同步信号的时域序列与接收到的时域数据做滑动相关计算,并记录相关峰值。利用三个主同步信号的时域序列与接收到的时域数据做滑动相关计算,并记录相关峰值。如果该相关峰值大于
第二预设门限,则确定该相关峰值对应的第二配置参数为解码发现信号确定的第二配置参数。这里,具体的匹配方式不做具体限定。
另外,UE预先获知了基站发送的发现信号的帧结构(如图6~10任意一个所示的帧结构),因此,UE可以根据发现信号起始子帧的子帧号确定所述第三时域区间所在的子帧号,对第三时域区间进行CRS检测,并接收基站在第三时域区间发送的第二物理广播信道。
106、UE根据确定出的PCI接入基站,通过基站与核心网进行通信。
通常,下行子帧的小区特定参考信号(cell specific reference signal,CRS)的生成和资源位置是与PCI相关的,UE知道PCI之后UE才能正常解调下行信号。
本发明的实施例的发现信号的传输方法,基站在时域上通过多个连续子帧向UE发送发现信号,相比现有技术,使得UE在弱覆盖区域也能接收到基站发送的发现信号,进而获得发现信号中的同步信号,根据获得的同步信号与基站时钟、频率同步,通过基站接入核心网。另外,基站对基序列进行加扰或加掩,并且不同的扰码序列(或掩码序列)对应不同的子帧偏移。UE收到基站发送的第三辅同步信号后,可以对第三辅同步信号解码获得扰码序列或掩码序列,从而根据扰码序列或掩码序列映射出子帧偏移,根据该子帧偏移确定发现信号起始子帧的实际子帧号,使得UE能够根据所述实际子帧号解码下行信号,保证下行信号的正常接收。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站、UE为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对基站、UE进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图12示出了上述实施例中涉及的基站的一种可能的组成示意图,如图12所示,该基站可以包括:确定单元201、发送单元202。
其中,确定单元201,用于支持基站执行图11所示的发现信号的传输方法中的步骤101和步骤102。
发送单元202,用于支持基站执行图11所示的发现信号的传输方法中的步骤103。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的基站,用于执行上述发现信号的传输方法,因此可以达到与上述发现信号的传输方法相同的效果。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的基站的另一种可能的组成示意图。如图13所示,该基站包括:处理模块301和通信模块302。
处理模块301用于对服务器的动作进行控制管理,例如,处理模块301用于支持基站执行图11中的步骤101、102、和/或用于本文所描述的技术的其它过程。通信模块302用于支持基站与其他网络实体的通信,例如与图3示出的UE之间的通信。基站还可以包括存储模块303,用于存储服务器的程序代码和数据。
其中,处理模块301可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块302可以是收发器、收发电路或通信接口等。存储模块83可以是存储器。
当处理模块301为处理器,通信模块302为通信接口,存储模块303为存储器时,本申请实施例所涉及的基站可以为图5所示的基站。
在采用对应各个功能划分各个功能模块的情况下,图14示出了上述和实施例中涉及的UE的一种可能的组成示意图,如图14所示,该UE可以包括:接收单元401、解码单元402、确定单元403。
其中,接收单元401,用于支持UE执行图11所示的发现信号的传输方法中的步骤104中。
解码单元402,用于支持UE执行图11所示的发现信号的传输方法中的步骤105中解码发现信号的步骤。
确定单元403,用于支持UE执行图11所示的发现信号的传输方法中的步骤105中“确定第一配置参数以及第二配置参数”的步骤以及图11所示方法中的步骤106。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的UE,用于执行上述发现信号的传输方法,因此可以达到与上述发现信号的传输方法相同的效果。
在采用集成的单元的情况下,图15示出了上述实施例中所涉及的UE的另一种可能的组成示意图。如图15所示,该UE包括:处理模块501和通信模块502。
处理模块501用于对UE的动作进行控制管理。通信模块502用于支持UE与其他网络实体的通信,例如与图3中示出的基站之间的通信。UE还可以包括存储模块503,用于存储UE的程序代码和数据。
其中,处理模块501可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块502可以是收发器、收发电路或通信接口等。存储模块503可以是存储器。
当处理模块501为处理器,通信模块502为收发器,存储模块503为存储器时,
本申请实施例所涉及的UE可以为图16所示的UE。如图16所示,所述UE包括:处理器601、存储器602、收发器603。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (44)
- 一种发现信号的传输方法,其特征在于,包括:基站确定用户设备UE所处物理小区的物理小区标识PCI,根据所述PCI确定第一配置参数以及第二配置参数;所述基站根据所述第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号,根据所述第一配置参数和第二配置参数确定第一辅同步信号、第二辅同步信号以及第三辅同步信号;所述基站通过至少两个连续子帧向所述UE发送发现信号;所述发现信号包括所述第一主同步信号、所述第二主同步信号、所述第三主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第三辅同步信号。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述基站根据系统带宽、系统帧号以及所述发现信号的起始子帧的子帧号确定第一物理广播信道;根据所述第一物理广播信道确定第二物理广播信道;所述发现信号还包括所述第一物理广播信道以及所述第二物理广播信道。
- 根据权利要求2所述的方法,其特征在于,所述根据第一物理广播信道确定第二物理广播信道具体包括:将所述第一物理广播信道承载的第一主系统信息块确定为第二物理广播信道承载的第二主系统信息块。
- 根据权利要求1所述的方法,其特征在于,所述基站根据所述第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号之前,所述方法还包括:所述基站确定主同步信号表;所述主同步信号表包括至少一个第一配置参数,以及与所述至少一个第一配置参数中的每一个第一配置参数对应的三个互不相同的主同步信号;或,所述主同步信号表包括第一主同步信号表、第二主同步信号表以及第三主同步信号表,其中,所述第一主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第一主同步信号,所述第二主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第二主同步信号,所述第三主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第三主同步信号。
- 根据权利要求4所述的方法,其特征在于,所述基站根据所述第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号具体包括:以所述第一配置参数为索引,根据所述主同步信号表,确定与所述第一配置参数对应的三个互不相同的主同步信号,将所述与所述第一配置参数对应的三个互不相同的主同步信号分别确定为所述第一主同步信号、所述第二主同步信号、所述第三主同步信号。
- 根据权利要求4所述的方法,其特征在于,所述基站根据所述第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号具体包括:以所述第一配置参数为索引,根据所述第一主同步信号表,确定与所述第一配置参数对应的第一主同步信号为所述第一主同步信号;以所述第一配置参数为索引,根据所述第二主同步信号表,确定与所述第一配置参数对应的第二主同步信号为所述第二主同步信号;以所述第一配置参数为索引,根据所述第三主同步信号表,确定与所述第一配置参数对应的第三主同步信号为所述第三主同步信号。
- 根据权利要求1所述的方法,其特征在于,所述根据所述第二配置参数确定所述第一辅同步信号、所述第二辅同步信号具体包括:所述基站根据所述第一配置参数、第二配置参数以及所述发现信号的起始子帧的子帧号确定所述第一辅同步信号或所述第二辅同步信号;所述第一辅同步信号与所述第二辅同步信号相同。
- 根据权利要求1所述的方法,其特征在于,所述根据第二配置参数确定所述第三辅同步信号具体包括:所述基站根据所述起始子帧相对于子帧0或子帧5的子帧偏移确定代码序列,根据所述代码序列处理基序列获得所述第三辅同步信号;所述基序列为所述第一辅同步信号或所述第二辅同步信号,或,所述基序列是根据所述第二配置参数确定的。
- 根据权利要求8所述的方法,其特征在于,所述基站确定UE所处物理小区的PCID之前,所述方法还包括:所述基站确定五个互不相同的掩码序列;所述掩码序列的长度为M,所述M为所述第三辅同步信号所占正交频分复用OFDM符号的数量,所述五个掩码序列中的每个掩码序列分别对应一个子帧偏移;所述M为大于等于1的整数。
- 根据权利要求9所述的方法,所述基站根据所述起始子帧相对于子帧0或子帧5的子帧偏移确定代码序列,根据所述代码序列处理基序列获得所述第三辅同步信号具体包括:确定所述起始子帧相对于子帧0或者子帧5的子帧偏移对应的目标掩码序列;根据所述目标掩码序列中的第j个元素对所述基序列进行加掩操作,获得第j个OFDM符号上承载的所述第三辅同步信号;所述第j个OFDM符号是所述第三辅同步信号所占的M个OFDM符号中的第j个OFDM符号,所述j为大于等于1小于等于M的整数。
- 根据权利要求2-11任一项所述的方法,其特征在于,所述至少两个连续子帧包括第一时域区间、第二时域区间以及第三时域区间,所述第一时域区间、所述第二时域区间以及所述第三时域区间互不重叠,所述第一时域区间位于所述第二时域区间之前,且所述第二时域区间位于所述第三时域区间之前;其中,所述第一时域区间用于所述基站发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第一物理广播信道;所述第二时域区间用于所述基站发送所述第三主同步信号以及所述第三辅同步信号;所述第三时域区间用于所述基站发送所述第二物理广播信道。
- 根据权利要求12所述的方法,其特征在于,所述至少两个连续子帧包括第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧,且所述第1子帧、所述第2子帧、所述第3子帧、所述第4子帧以及所述第5子帧均包括14个OFDM符号;所述第一时域区间包括:所述第1子帧中除前两个OFDM符号以及后两个OFDM符号外的所有OFDM符号;所述第二时域区间包括:所述第1子帧的第13个OFDM符号、所述第1子帧的第14个符号以及所述第2子帧中除前两个OFDM符号外的所有OFDM符号;所述第三时域区间包括:所述第3子帧中除前两个OFDM符号外的所有OFDM符号、所述第4子帧中除前两个OFDM符号外的所有OFDM符号以及所述第5子帧中除前两个OFDM符号外的所有OFDM符号。
- 根据权利要求13所述的方法,其特征在于,所述第1子帧的第3个OFDM符号用于发送所述第二辅同步信号,所述第1子帧的第4个OFDM符号用于发送所述第二主同步信号,所述第1子帧的第6个OFDM符号用于发送所述第一辅同步信号,所述第1子帧的第7个OFDM符号用于发送所述第一主同步信号,所述第一时域区间中除前发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号以及所述第二辅同步信号外的所述OFDM符号用于发送所述第一物理广播信道;所述第1子帧的第14个符号、所述第2子帧的第5个OFDM符号、所述第2子帧的第8个OFDM符号、所述第2子帧的第11个OFDM符号以及所述第2子帧的第14个OFDM符号用于发送所述第三主同步信号;所述第二时域区间中除发送所述第三主同步信号的OFDM符号外的所有OFDM符号用于发送所述第三辅同步信号;所述第三时域区间包括的所有OFDM符号用于所述基站发送所述第二物理广播信道。
- 根据权利要求12所述的方法,其特征在于,所述至少两个子帧包括第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧,且所述第1子帧、所述第2子帧、所述第3子帧、所述第4子帧以及所述第5子帧均包括14个OFDM符号;所述第一时域区间包括:所述第1子帧中除前两个OFDM符号以及后两个OFDM符号外的所有OFDM符号;所述第二时域区间包括:所述第1子帧的第13个OFDM符号、所述第1子帧的第14个符号以及所述第2子帧中除前三个OFDM符号外的所有OFDM符号;所述第三时域区间包括:所述第3子帧中除前三个OFDM符号外的所有OFDM符号、所述第4子帧中除前两个OFDM符号外的所有OFDM符号以及所述第5子帧中除前两个OFDM符号外的所有OFDM符号。
- 根据权利要求15所述的方法,其特征在于,所述第1子帧的第3个OFDM符号用于发送所述第二辅同步信号,所述第1子帧的第4个OFDM符号用于发送所述第二主同步信号,所述第1子帧的第6个OFDM符号用于发送所述第一辅同步信号,所述第1子帧的第7个OFDM符号用于发送所述第一主同步信号,所述第一时域区间中除前发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号以及所述第二辅同步信号外的所述OFDM符号用于发送所述第一物理广播信道;所述第1子帧的第14个符号、所述第2子帧的第5个OFDM符号、所述第2子帧的第8个OFDM符号、所述第2子帧的第11个OFDM符号以及所述第2子帧的第14个OFDM符号用于发送所述第三主同步信号;所述第二时域区间中除发送所述第三主同步信号的OFDM符号外的所有OFDM符号用于发送所述第三辅同步信号;所述第三时域区间包括的所有OFDM符号用于所述基站发送所述第二物理广播信道。
- 一种发现信号的传输方法,其特征在于,包括:用户设备UE在至少两个连续子帧上接收基站发送的发现信号;所述发现信号包括第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号;所述UE解码所述发现信号,获得所述第一主同步信号、所述第二主同步信号、所述第三主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第三辅同步信号;所述UE根据所述第一主同步信号、所述第二主同步信号、所述第三主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第三辅同步信号确定第一配置参数和第二配置参数,并根据所述第一配置参数和第二配置参数确定所述UE所处物理小区的物理小区标识PCI。
- 根据权利要求17所述的方法,其特征在于,所述UE解码所述发现信号,获得所述第一主同步信号、所述第二主同步信号、所述第三主同步信号具 体包括:所述UE将主同步信号表中的任意一个第一配置参数对应的第一主同步信号、第二主同步信号以及第三主同步信号与所述发现信号进行匹配,匹配度高于第一预设门限,则将该第一配置参数确定为所述第一配置参数;所述主同步信号表包括第一主同步信号表、第二主同步信号表以及第三主同步信号表,其中,所述第一主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第一主同步信号,所述第二主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第二主同步信号,所述第三主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第三主同步信号;或,将主同步信号表中的任意一个第一配置参数对应的三个互不相同的主同步信号与所述发现信号进行匹配,匹配度高于所述第一预设门限,则将该第一配置参数确定为所述第一配置参数;所述主同步信号表包括至少一个第一配置参数,以及与所述至少一个第一配置参数中的每一个第一配置参数对应的三个互不相同的主同步信号。
- 根据权利要求18所述的方法,其特征在于,所述UE将该第一配置参数确定为所述第一配置参数之后,所述方法还包括:根据所述起始子帧的子帧号、第一配置参数与第二配置参数集合中Q个第二配置参数确定2*Q个基序列;所述Q个第二配置参数中每一个第二配置参数所对应的基序列不同;获取五个代码序列,所述五个代码序列对应所述五个互不相同的子帧偏移;根据所述五个代码序列分别对所述2*Q个基序列进行处理获得10*Q个辅同步信号。
- 根据权利要求19所述的方法,其特征在于,所述UE解码所述发现信号,获得所述第一辅同步信号、所述第二辅同步信号以及所述第三辅同步信号具体包括:将所述2*Q个基序列中的一个基序列作为所述第一辅同步信号同步信号、所述第二辅同步序列,且将所述10*Q个辅同步信号中的一个辅同步信号作为所述第三辅同步信号与所述发现信号进行匹配,匹配度高于第二预设门限,则将该基序列对应的第二配置参数确定为所述第二配置参数。
- 根据权利要求17-20任一项所述的方法,其特征在于,所述至少两个连续子帧包括第一时域区间、第二时域区间以及第三时域区间,所述第一时域区间、所述第二时域区间以及所述第三时域区间互不重叠,所述第一时域区间位于所述第二时域区间之前,且所述第二时域区间位于所述第三时域区间之前;其中,所述第一时域区间用于所述基站发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第一物理 广播信道;所述第二时域区间用于所述基站发送所述第三主同步信号以及所述第三辅同步信号;所述第三时域区间用于所述基站发送所述第二物理广播信道。
- 根据权利要求21所述的方法,其特征在于,所述方法还包括:对所述第三时域区间的小区特定参考信号CRS进行检测,接收所述第二物理广播信道。
- 一种基站,其特征在于,包括:确定单元,用于确定用户设备UE所处物理小区的物理小区标识PCI,根据所述PCI确定第一配置参数以及第二配置参数;所述确定单元还用于,根据所述第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号,根据所述第一配置参数和第二配置参数确定第一辅同步信号、第二辅同步信号以及第三辅同步信号;发送单元,用于通过至少两个连续子帧向所述UE发送发现信号;所述发现信号包括所述第一主同步信号、所述第二主同步信号、所述第三主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第三辅同步信号。
- 根据权利要求23所述的基站,其特征在于,所述确定还用于,根据系统带宽、系统帧号以及所述发现信号的起始子帧的子帧号确定第一物理广播信道;根据所述第一物理广播信道确定第二物理广播信道;则,所述发现信号还包括所述第一物理广播信道以及所述第二物理广播信道。
- 根据权利要求24所述的基站,其特征在于,所述确定单元具体用于,将所述第一物理广播信道承载的第一主系统信息块确定为第二物理广播信道承载的第二主系统信息块。
- 根据权利要求23所述的基站,其特征在于,所述确定单元还用于,在所述确定单元根据所述第一配置参数确定第一主同步信号、第二主同步信号以及第三主同步信号之前,确定主同步信号表,所述主同步信号表包括至少一个第一配置参数,以及与所述至少一个第一配置参数中的每一个第一配置参数对应的三个互不相同的主同步信号;或,所述主同步信号表包括第一主同步信号表、第二主同步信号表以及第三主同步信号表,其中,所述第一主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第一主同步信号,所述第二主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第二主同步信号,所述第三主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第三主同步信号。
- 根据权利要求26所述的基站,其特征在于,所述确定单元具体用于,以所述第一配置参数为索引,根据所述主同步信号表,确定与所述第一配置参数对应的三个互不相同的主同步信号,将所述与所述第一配置参数对应的三个 互不相同的主同步信号分别确定为所述第一主同步信号、所述第二主同步信号、所述第三主同步信号。
- 根据权利要求26所述的基站,其特征在于,所述确定单元具体用于,以所述第一配置参数为索引,根据所述第一主同步信号表,确定与所述第一配置参数对应的第一主同步信号为所述第一主同步信号;以所述第一配置参数为索引,根据所述第二主同步信号表,确定与所述第一配置参数对应的第二主同步信号为所述第二主同步信号;以所述第一配置参数为索引,根据所述第三主同步信号表,确定与所述第一配置参数对应的第三主同步信号为所述第三主同步信号。
- 根据权利要求23所述的基站,其特征在于,所述确定单元具体用于,所述基站根据所述第一配置参数、第二配置参数以及所述发现信号的起始子帧的子帧号确定所述第一辅同步信号或所述第二辅同步信号;所述第一辅同步信号与所述第二辅同步信号相同。
- 根据权利要求23所述的基站,其特征在于,所述确定单元具体用于,根据所述起始子帧相对于子帧0或子帧5的子帧偏移确定代码序列,根据所述代码序列处理基序列获得所述第三辅同步信号;所述基序列为所述第一辅同步信号或所述第二辅同步信号,或,所述基序列是根据所述第二配置参数确定的。
- 根据权利要求30所述的基站,其特征在于,所述确定单元还用于,在确定所述UE所处物理小区的PCID之前,确定五个互不相同的掩码序列;所述掩码序列的长度为M,所述M为所述第三辅同步信号所占正交频分复用OFDM符号的数量,所述五个掩码序列中的每个掩码序列分别对应一个子帧偏移;所述M为大于等于1的整数。
- 根据权利要求31所述的基站,其特征在于,所述确定单元具体用于,确定所述起始子帧相对于子帧0或者子帧5的子帧偏移对应的目标掩码序列;根据所述目标掩码序列中的第j个元素对所述基序列进行加掩操作,获得第j个OFDM符号上承载的所述第三辅同步信号;所述第j个OFDM符号是所述第三辅同步信号所占的M个OFDM符号中的第j个OFDM符号,所述j为大于等于1小于等于M的整数。
- 根据权利要求24-33任一项所述的基站,其特征在于,所述至少两个连续子帧包括第一时域区间、第二时域区间以及第三时域区间,所述第一时域 区间、所述第二时域区间以及所述第三时域区间互不重叠,所述第一时域区间位于所述第二时域区间之前,且所述第二时域区间位于所述第三时域区间之前;其中,所述第一时域区间用于所述基站发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第一物理广播信道;所述第二时域区间用于所述基站发送所述第三主同步信号以及所述第三辅同步信号;所述第三时域区间用于所述基站发送所述第二物理广播信道。
- 根据权利要求34所述的基站,其特征在于,所述至少两个连续子帧包括第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧,且所述第1子帧、所述第2子帧、所述第3子帧、所述第4子帧以及所述第5子帧均包括14个OFDM符号;所述第一时域区间包括:所述第1子帧中除前两个OFDM符号以及后两个OFDM符号外的所有OFDM符号;所述第二时域区间包括:所述第1子帧的第13个OFDM符号、所述第1子帧的第14个符号以及所述第2子帧中除前两个OFDM符号外的所有OFDM符号;所述第三时域区间包括:所述第3子帧中除前两个OFDM符号外的所有OFDM符号、所述第4子帧中除前两个OFDM符号外的所有OFDM符号以及所述第5子帧中除前两个OFDM符号外的所有OFDM符号。
- 根据权利要求35所述的基站,其特征在于,所述第1子帧的第3个OFDM符号用于发送所述第二辅同步信号,所述第1子帧的第4个OFDM符号用于发送所述第二主同步信号,所述第1子帧的第6个OFDM符号用于发送所述第一辅同步信号,所述第1子帧的第7个OFDM符号用于发送所述第一主同步信号,所述第一时域区间中除前发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号以及所述第二辅同步信号外的所述OFDM符号用于发送所述第一物理广播信道;所述第1子帧的第14个符号、所述第2子帧的第5个OFDM符号、所述第2子帧的第8个OFDM符号、所述第2子帧的第11个OFDM符号以及所述第2子帧的第14个OFDM符号用于发送所述第三主同步信号;所述第二时域区间中除发送所述第三主同步信号的OFDM符号外的所有OFDM符号用于发送所述第三辅同步信号;所述第三时域区间包括的所有OFDM符号用于所述基站发送所述第二物理广播信道。
- 根据权利要求34所述的基站,其特征在于,所述至少两个子帧包括第1子帧、第2子帧、第3子帧、第4子帧以及第5子帧,且所述第1子帧、所述第2子帧、所述第3子帧、所述第4子帧以及所述第5子帧均包括14个OFDM符号;所述第一时域区间包括:所述第1子帧中除前两个OFDM符号以及后两个OFDM符号外的所有OFDM符号;所述第二时域区间包括:所述第1子帧的第13个OFDM符号、所述第1子帧的第14个符号以及所述第2子帧中除前三个OFDM符号外的所有OFDM符号;所述第三时域区间包括:所述第3子帧中除前三个OFDM符号外的所有OFDM符号、所述第4子帧中除前两个OFDM符号外的所有OFDM符号以及所述第5子帧中除前两个OFDM符号外的所有OFDM符号。
- 根据权利要求37所述的基站,其特征在于,所述第1子帧的第3个OFDM符号用于发送所述第二辅同步信号,所述第1子帧的第4个OFDM符号用于发送所述第二主同步信号,所述第1子帧的第6个OFDM符号用于发送所述第一辅同步信号,所述第1子帧的第7个OFDM符号用于发送所述第一主同步信号,所述第一时域区间中除前发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号以及所述第二辅同步信号外的所述OFDM符号用于发送所述第一物理广播信道;所述第1子帧的第14个符号、所述第2子帧的第5个OFDM符号、所述第2子帧的第8个OFDM符号、所述第2子帧的第11个OFDM符号以及所述第2子帧的第14个OFDM符号用于发送所述第三主同步信号;所述第二时域区间中除发送所述第三主同步信号的OFDM符号外的所有OFDM符号用于发送所述第三辅同步信号;所述第三时域区间包括的所有OFDM符号用于所述基站发送所述第二物理广播信道。
- 一种用户设备UE,其特征在于,包括:接收单元,用于在至少两个连续子帧上接收基站发送的发现信号;所述发现信号包括第一主同步信号、第二主同步信号、第三主同步信号、第一辅同步信号、第二辅同步信号以及第三辅同步信号;解码单元,用于解码所述发现信号,获得所述第一主同步信号、所述第二主同步信号、所述第三主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第三辅同步信号;确定单元,用于根据所述第一主同步信号、所述第二主同步信号、所述第三主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第三辅同步信号确定第一配置参数和第二配置参数,并根据所述第一配置参数和第二配置参数确定所述UE所处物理小区的物理小区标识PCI。
- 根据权利要求39所述的UE,其特征在于,所述确定单元具体用于,将主同步信号表中的任意一个第一配置参数对应的第一主同步信号、第二主同步信号以及第三主同步信号与所述发现信号进行匹配,匹配度高于第一预设门限,则将该第一配置参数确定为所述第一配置参数;所述主同步信号表包括第一主同步信号表、第二主同步信号表以及第三主同步信号表,其中,所述第一主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置 参数中的每一个第一配置参数对应的第一主同步信号,所述第二主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第二主同步信号,所述第三主同步信号表包括至少一个第一配置参数以及与所述至少一个第一配置参数中的每一个第一配置参数对应的第三主同步信号;或,将主同步信号表中的任意一个第一配置参数对应的三个互不相同的主同步信号与所述发现信号进行匹配,匹配度高于所述第一预设门限,则将该第一配置参数确定为所述第一配置参数;所述主同步信号表包括至少一个第一配置参数,以及与所述至少一个第一配置参数中的每一个第一配置参数对应的三个互不相同的主同步信号。
- 根据权利要求40所述的UE,其特征在于,所述确定单元还用于,确定所述第一配置参数之后,根据所述起始子帧的子帧号、第一配置参数与第二配置参数集合中Q个第二配置参数确定2*Q个基序列;所述Q个第二配置参数中每一个第二配置参数所对应的基序列不同;获取五个代码序列,所述五个代码序列对应所述五个互不相同的子帧偏移;根据所述五个代码序列分别对所述2*Q个基序列进行处理获得10*Q个辅同步信号。
- 根据权利要求41所述的UE,其特征在于,所述解码单元具体用于,将所述2*Q个基序列中的一个基序列作为所述第一辅同步信号同步信号、所述第二辅同步序列,且将所述10*Q个辅同步信号中的一个辅同步信号作为所述第三辅同步信号与所述发现信号进行匹配,匹配度高于第二预设门限,则将该基序列对应的第二配置参数确定为所述第二配置参数。
- 根据权利要求39-42任一项所述的UE,其特征在于,所述至少两个连续子帧包括第一时域区间、第二时域区间以及第三时域区间,所述第一时域区间、所述第二时域区间以及所述第三时域区间互不重叠,所述第一时域区间位于所述第二时域区间之前,且所述第二时域区间位于所述第三时域区间之前;其中,所述第一时域区间用于所述基站发送所述第一主同步信号、所述第二主同步信号、所述第一辅同步信号、所述第二辅同步信号以及所述第一物理广播信道;所述第二时域区间用于所述基站发送所述第三主同步信号以及所述第三辅同步信号;所述第三时域区间用于所述基站发送所述第二物理广播信道。
- 根据权利要求43所述的UE,其特征在于,还包括检测单元,所述检测单元还用于,对所述第三时域区间的小区特定参考信号CRS进行检测;所述接收单元还用于,在所述检测单元对所述第三时域区间的CRS进行检测之后,接收所述第二物理广播信道。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780089502.8A CN110495217B (zh) | 2017-04-14 | 2017-04-14 | 一种发现信号的传输方法、基站及用户设备 |
PCT/CN2017/080667 WO2018188094A1 (zh) | 2017-04-14 | 2017-04-14 | 一种发现信号的传输方法、基站及用户设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/080667 WO2018188094A1 (zh) | 2017-04-14 | 2017-04-14 | 一种发现信号的传输方法、基站及用户设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018188094A1 true WO2018188094A1 (zh) | 2018-10-18 |
Family
ID=63793028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/080667 WO2018188094A1 (zh) | 2017-04-14 | 2017-04-14 | 一种发现信号的传输方法、基站及用户设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110495217B (zh) |
WO (1) | WO2018188094A1 (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105580297A (zh) * | 2013-09-27 | 2016-05-11 | 三星电子株式会社 | 用于先进lte的发现信号的方法和装置 |
US20160212649A1 (en) * | 2015-01-16 | 2016-07-21 | Qualcomm Incorporated | Uplink control information transmission using pusch in enhanced carrier aggregation |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130016630A1 (en) * | 2011-07-12 | 2013-01-17 | Qualcomm Incorporated | Beacons for user equipment relays |
JP6037588B2 (ja) * | 2012-12-04 | 2016-12-07 | ノキア ソリューションズ アンド ネットワークス オサケユキチュア | 物理セル識別子割り当てのためのアルゴリズム |
WO2014119847A1 (ko) * | 2013-02-01 | 2014-08-07 | 엘지전자 주식회사 | Mbsfn 서브프레임 송신 및 수신 방법 및 장치 |
EP2952026B1 (en) * | 2013-02-01 | 2018-04-18 | Telefonaktiebolaget LM Ericsson (publ) | Method and arrangement for pci assignement |
CN103326971B (zh) * | 2013-05-21 | 2016-04-27 | 北京北方烽火科技有限公司 | 一种基于lte系统的小区搜索方法及其装置 |
EP3065467B1 (en) * | 2013-12-06 | 2020-01-22 | Huawei Device Co., Ltd. | Discovery signal transmission method, user device, and base station |
CN103686742B (zh) * | 2013-12-25 | 2017-02-01 | 广东省电信规划设计院有限公司 | Pci规划方法及装置 |
US10057828B2 (en) * | 2014-06-02 | 2018-08-21 | Intel IP Corporation | Communication systems and methods |
CN105409301B (zh) * | 2014-07-04 | 2019-07-19 | 华为技术有限公司 | Lte同步方法和相关设备及系统 |
CN106559206B (zh) * | 2015-09-30 | 2019-04-23 | 中兴通讯股份有限公司 | 同步信号的传输方法及装置 |
-
2017
- 2017-04-14 CN CN201780089502.8A patent/CN110495217B/zh active Active
- 2017-04-14 WO PCT/CN2017/080667 patent/WO2018188094A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105580297A (zh) * | 2013-09-27 | 2016-05-11 | 三星电子株式会社 | 用于先进lte的发现信号的方法和装置 |
US20160212649A1 (en) * | 2015-01-16 | 2016-07-21 | Qualcomm Incorporated | Uplink control information transmission using pusch in enhanced carrier aggregation |
Non-Patent Citations (1)
Title |
---|
ERICSSON: "NR Synchronization Signals for Idle and Connected Mode Mobility", RL-1611914, 18 November 2016 (2016-11-18), XP051175880 * |
Also Published As
Publication number | Publication date |
---|---|
CN110495217B (zh) | 2021-10-01 |
CN110495217A (zh) | 2019-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6928662B2 (ja) | 参照信号送信方法及び送信機器 | |
CN112913300B (zh) | 用于控制资源集和下行链路带宽部分的空间准共址指示 | |
CA3066855C (en) | Reference signal transmission method and transmission apparatus | |
JP6525104B2 (ja) | 複数種類の伝送時間間隔をサポートするランダムアクセス方法、装置及び通信システム | |
TWI696372B (zh) | 干擾測量方法及裝置 | |
WO2015109866A1 (zh) | 信息传输的方法、用户设备及基站 | |
JP7467529B2 (ja) | 放送信号送信方法、放送信号受信方法、ネットワークデバイス、および端末デバイス | |
CN108988978A (zh) | 扰码序列生成方法及装置 | |
WO2014113961A1 (zh) | 用于传输参考信号的方法、基站和用户设备 | |
KR20170089897A (ko) | 정보 처리 방법, 기지국, 및 단말기 | |
BR112020011219A2 (pt) | determinação de versão de redundância com base em tempo para sinalização livre de concessão | |
CN106664691B (zh) | 一种公共信息的传输方法及装置 | |
JP7174859B2 (ja) | ランダムアクセス方法、装置、及びシステム | |
WO2016180122A1 (zh) | 一种利用非授权载波发送信号的方法和装置 | |
CN108347323B (zh) | 一种rs生成、接收方法及终端、基站 | |
WO2022062822A1 (en) | Network assisted initial access for holographic mimo | |
WO2019096238A1 (zh) | 一种通信方法和设备 | |
US11743929B2 (en) | Method to mitigate timing resolution limitation due to SSB with smaller SCS | |
WO2022067825A1 (zh) | 通信方法及装置 | |
WO2017054134A1 (zh) | 一种确定频率资源的方法和装置 | |
GB2554383A (en) | Methods and apparatus for assisting direct communication between mobile devices | |
WO2018188094A1 (zh) | 一种发现信号的传输方法、基站及用户设备 | |
TWI785560B (zh) | 隨機存取過程中之第二訊息區分 | |
WO2018028343A1 (zh) | 传输信号的方法和装置 | |
CN104521316B (zh) | 数据的处理方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17905350 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17905350 Country of ref document: EP Kind code of ref document: A1 |