WO2019080007A1 - 用于发送和接收同步信号的方法、装置、发射机和接收机 - Google Patents

用于发送和接收同步信号的方法、装置、发射机和接收机

Info

Publication number
WO2019080007A1
WO2019080007A1 PCT/CN2017/107667 CN2017107667W WO2019080007A1 WO 2019080007 A1 WO2019080007 A1 WO 2019080007A1 CN 2017107667 W CN2017107667 W CN 2017107667W WO 2019080007 A1 WO2019080007 A1 WO 2019080007A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
air interface
transmission period
sent
synchronization
Prior art date
Application number
PCT/CN2017/107667
Other languages
English (en)
French (fr)
Inventor
许宁
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2017/107667 priority Critical patent/WO2019080007A1/zh
Priority to CN201780001675.XA priority patent/CN108064435A/zh
Publication of WO2019080007A1 publication Critical patent/WO2019080007A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method, an apparatus, a transmitter, and a receiver for transmitting and receiving a synchronization signal.
  • LTE Long Term Evolution
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a terminal can send a synchronization signal to the communication peer according to the timing, that is, send a physical D2D synchronization signal (SideLink Synchronization Signal, referred to as SLSS), and the communication peer can receive the SLSS signal as a receiver to implement the time domain. Synchronization with the frequency domain.
  • the synchronization signals are transmitted on fixed air interface resources at fixed time intervals.
  • the synchronization signal For the LTE broadband system, the synchronization signal only occupies 10.8 MHz spectrum resources in the frequency domain, and the relative overhead is not large.
  • the base station may only The two terminals are allocated a small amount of spectrum resources, and the relative overhead of the synchronization signal is very large.
  • the synchronization signal All the bandwidth resources are occupied in the frequency domain, and the resource overhead reaches 15% of the downlink air interface time-frequency resources.
  • the air interface resources are tight, such as in the 5G system, the synchronization signal overhead will become one of the factors that restrict the system performance further.
  • embodiments of the present disclosure provide a method, an apparatus, a transmitter, and a receiver for transmitting and receiving a synchronization signal, where the transmitter dynamically adjusts a synchronization signal based on usage of air interface resources.
  • the transmission period is to reduce the overhead of the synchronization signal when the air interface resource is tight, and the air interface resource is tight Zhang's question.
  • a method for transmitting a synchronization signal, applied to a transmitter comprising:
  • a synchronization signal to be transmitted is transmitted based on the target transmission period.
  • the sending the synchronization signal to be sent based on the target sending period includes:
  • the synchronization signal to be transmitted can indicate the transmission time of the next synchronization signal sent by the user equipment.
  • determining a synchronization signal to be sent corresponding to the target transmission period includes:
  • the target transmission period is greater than the preset transmission period, selecting a synchronization signal from the extended synchronization signal as the synchronization signal to be transmitted;
  • the basic synchronization signal is used as a synchronization signal to be transmitted.
  • the extended synchronization signal is extended according to a preset extension manner for the primary synchronization sequence and/or the secondary synchronization sequence in the basic synchronization signal. get.
  • the preset extension mode is a method for generating the extended synchronization signal by selecting a sequence number different from a primary synchronization sequence number and/or a secondary synchronization sequence number in the basic synchronization signal; or
  • the preset extension mode is a manner of performing phase rotation or cyclic shift on the primary synchronization sequence and/or the secondary synchronization sequence in the basic synchronization signal to generate the extended synchronization signal.
  • the air interface status information includes any one of the following parameters or a combination of any two or more parameters:
  • Air interface resource utilization the amount of data to be sent on the air interface, and the number of receivers that have been connected to the air interface.
  • the determining, according to the air interface state information, a target sending period of the synchronization signal to be sent includes:
  • a target transmission period of the synchronization signal to be transmitted is determined based on the air interface state evaluation value.
  • a method for receiving a synchronization signal, applied to a receiver comprising:
  • the next synchronization signal is monitored at the occurrence position of the next synchronization signal.
  • determining the occurrence position of the next synchronization signal based on the synchronization signal includes:
  • An occurrence position of the next synchronization signal is determined based on the transmission period.
  • an apparatus for transmitting a synchronization signal, applied to a transmitter comprising:
  • a status obtaining module configured to acquire air interface status information
  • a period determining module configured to determine a target sending period of the synchronization signal to be sent based on the air interface state information
  • the first sending module is configured to send a synchronization signal to be sent based on the target sending period determined by the period determining module.
  • the first sending module includes:
  • a first determining submodule configured to determine a synchronization signal to be sent corresponding to the target sending period
  • a sending submodule configured to send the synchronization signal to be sent.
  • the synchronization signal to be transmitted can indicate the transmission time of the next synchronization signal sent by the user equipment.
  • the first determining submodule comprises:
  • the second determining submodule is configured to: if the target sending period is greater than the preset sending period, select a synchronization signal from the extended synchronization signal as the synchronization signal to be sent;
  • the third determining submodule is configured to use the basic synchronization signal as the synchronization signal to be sent if the target transmission period is a preset transmission period.
  • the extended synchronization signal is extended according to a preset extension manner for the primary synchronization sequence and/or the secondary synchronization sequence in the basic synchronization signal. get.
  • the preset extension mode is a method for generating the extended synchronization signal by selecting a sequence number different from a primary synchronization sequence number and/or a secondary synchronization sequence number in the basic synchronization signal; or
  • the preset extension mode is a manner of performing phase rotation or cyclic shift on the primary synchronization sequence and/or the secondary synchronization sequence in the basic synchronization signal to generate the extended synchronization signal.
  • the air interface status information includes any one of the following parameters or a combination of any two or more parameters:
  • Air interface resource utilization the amount of data to be sent on the air interface, and the number of receivers that have been connected to the air interface.
  • the period determining module includes:
  • a calculation submodule configured to calculate a parameter feature value corresponding to each parameter based on a parameter value of each parameter in the air interface state information
  • the weight summation sub-module is configured to perform a weight summation on the parameter feature values of each of the parameters calculated by the calculation sub-module, and obtain an air interface state evaluation value corresponding to the air interface state information;
  • a fourth determining submodule configured to determine a target sending period of the synchronization signal to be sent based on the air interface state evaluation value calculated by the weight summation submodule.
  • an apparatus for receiving a synchronization signal, applied to a receiver comprising:
  • a receiving module configured to receive a synchronization signal sent by the transmitter
  • a location determining module configured to determine an appearance position of a next synchronization signal based on the synchronization signal received by the receiving module
  • the monitoring module is configured to monitor the next synchronization signal at an occurrence position of the next synchronization signal determined by the location determining module.
  • the location determining module includes:
  • a fifth determining submodule configured to determine a transmission period of the synchronization signal based on the synchronization signal
  • a sixth determining submodule configured to determine an occurrence position of the next synchronization signal based on the transmission period.
  • a transmitter including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a synchronization signal to be transmitted is transmitted based on the target transmission period.
  • a receiver including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the next synchronization signal is monitored at the occurrence position of the next synchronization signal.
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the following steps:
  • a synchronization signal to be transmitted is transmitted based on the target transmission period.
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the following steps:
  • the next synchronization signal is monitored at the occurrence position of the next synchronization signal.
  • the transmitter may monitor the air interface state information, and determine a target transmission period of the synchronization signal to be transmitted based on the air interface state information, and send the to-be-sent synchronization signal according to the target transmission period. For example, if the air interface state information indicates that the air interface resource is tight, a longer transmission period may be selected, and the synchronization signal to be transmitted is sent based on the transmission period, thereby realizing the transmitter based on the usage of the air interface resource, and dynamically adjusting the transmission period of the synchronization signal. In order to reduce the overhead of the synchronization signal when the air interface resources are tight, and to alleviate the problem of tight air interface resources.
  • FIG. 1A is a flow chart showing a method for transmitting a synchronization signal, according to an exemplary embodiment.
  • FIG. 1B is a diagram showing a method for transmitting and receiving a synchronization signal according to an exemplary embodiment. Use the scene diagram one.
  • FIG. 1C is a second schematic diagram of an application scenario of a method for transmitting and receiving a synchronization signal according to an exemplary embodiment.
  • FIG. 2 is a flow chart showing another method for transmitting a synchronization signal, according to an exemplary embodiment.
  • FIG. 3 is a flow chart showing still another method for transmitting a synchronization signal, according to an exemplary embodiment.
  • FIG. 4 is a flow chart showing a method for receiving a synchronization signal, according to an exemplary embodiment.
  • FIG. 5 is a block diagram of an apparatus for transmitting a system message, according to an exemplary embodiment.
  • FIG. 6 is a block diagram of another apparatus for transmitting a system message, according to an exemplary embodiment.
  • FIG. 7 is a block diagram of an apparatus for receiving a system message, according to an exemplary embodiment.
  • FIG. 8 is a block diagram of another apparatus for receiving a system message, according to an exemplary embodiment.
  • FIG. 9 is a block diagram of an apparatus suitable for transmitting and receiving a synchronization signal, according to an exemplary embodiment.
  • FIG. 10 is a block diagram of an apparatus suitable for transmitting a synchronization signal, according to an exemplary embodiment.
  • FIG. 1A is a flowchart of a method for transmitting a synchronization signal according to an exemplary embodiment
  • FIG. 1B is a schematic diagram of an application scenario of a method for transmitting and receiving a synchronization signal according to an exemplary embodiment
  • 1C is a schematic diagram of an application scenario of a method for transmitting and receiving a synchronization signal according to an exemplary embodiment.
  • the method for transmitting a synchronization signal can be applied to a communication device, such as D2D (Device to Device).
  • D2D Device to Device
  • a terminal in a communication system or a base station in a cellular Internet of Things, as shown in FIG. 1A, the method for transmitting a synchronization signal includes the following steps 101-103:
  • step 101 air interface status information is obtained.
  • the air interface state information may be used to measure the usage information and the demand information of the air interface resource, and may include any one of the following parameters or a combination of any two or more parameters: air interface resource utilization, air interface to be sent data. The number of receivers that have been connected to the volume and air interface.
  • the air interface resource utilization can be calculated based on the available air interface resources of the transmitter and the used air interface resources.
  • the air interface resource available to one transmitter is a bandwidth resource of 200 kHz, and is currently used.
  • the air interface resource utilization rate is 100 kHz, and the air interface resource utilization rate is 50%; the amount of data to be sent of the air interface can be obtained by querying the amount of buffered data in the transmission buffer; the number of receivers that have been accessed on the air interface can also be understood as an air interface. The number of receivers on which the communication link has been established.
  • step 102 a target transmission period of the synchronization signal to be transmitted is determined based on the air interface status information.
  • each transmitter may be configured with X sets of synchronization signals, including X-1 preset extended no signals and one basic synchronization signal.
  • the method for determining a target transmission period of the synchronization signal to be transmitted based on the air interface state information may be selected according to the air interface state information, and the method for determining the target transmission period of the synchronization signal to be sent based on the air interface state information may be referred to in the embodiment shown in FIG. Said.
  • the synchronization signal to be transmitted is generated by a set of pre-agreed sequences.
  • a sequence having a constant amplitude and a zero autocorrelation property Zadoff-Chu, abbreviated as ZC
  • ZC Zero autocorrelation property
  • a set of synchronization signals, a synchronization signal may be obtained by selecting different ZC sequence numbers q. It can also be generated by other pseudo-random sequences, such as m sequences.
  • the synchronization signal may be composed of a primary synchronization sequence and a secondary synchronization sequence. It may be assumed that the communication system requires M primary synchronization sequences PSSi, N secondary synchronizations.
  • the sequence SSSj, M and N are non-negative integers.
  • the Narrowband Primary Synchronization Signal (NPSS) of the NB-IoT system has only one sequence, while the SPSS of the D2D has three sequences.
  • M primary synchronization sequences and/or N secondary synchronization sequences may be extended.
  • the M primary synchronization sequences are extended to obtain a synchronization signal used by the communication system in the present disclosure.
  • the M basic PSSs in the related art are extended to M*X PSSi_x, so that each transmitter can have X available primary synchronization sequences, for example, X can be 2, and two primary synchronization sequences respectively indicate two types.
  • Transmission period First, the synchronization signal is transmitted at each possible transmission position of the synchronization signal, that is, the actual transmission period of the synchronization signal is T; second, the synchronization signal may be transmitted at intervals of one synchronization signal, that is, the actual transmission period of the synchronization signal It is 2T.
  • another method of extending the synchronization signal is to perform a phase rotation or cyclic shift on each of the basic main synchronization signals when the main synchronization signal is another sequence such as a ZC sequence or a pseudo-random sequence.
  • the N secondary synchronization sequences may also be extended to N*X secondary synchronization sequences to form an X group synchronization signal.
  • the primary synchronization sequence and the secondary synchronization sequence may be extended at the same time, for example, the M primary synchronization sequences are extended to M*P primary synchronization signals, and the N secondary synchronization sequences are extended to N*Q secondary synchronizations.
  • the signal wherein the values of P and Q may be the same or different, and combining different primary synchronization sequences and different secondary synchronization sequences may result in more synchronization signals to characterize more transmission periods.
  • the primary synchronization sequence or the secondary synchronization sequence may also be separately extended to obtain a synchronization signal.
  • step 103 a synchronization signal to be transmitted is transmitted based on a target transmission period.
  • different transmission periods correspond to different synchronization signals to be transmitted, and the mapping relationship between the synchronization signal and the transmission period may be pre-agreed by the system and indicated to the transmitter and the receiver.
  • each synchronization signal to be sent can indicate the transmission time of the next synchronization signal sent by the user equipment, for example, if the target transmission period corresponding to a synchronization signal to be transmitted is 2T, after transmitting the synchronization signal to be transmitted The next synchronization signal is sent after the 2T time interval.
  • a base station 10 a user equipment (such as a smart phone, a tablet, etc.) 20 is included, wherein the base station 10 acts as a transmitter to monitor air interface status information in real time, and is based on The air interface state information determines the synchronization signal to be sent, and the synchronization signal to be transmitted is broadcast according to the target transmission period of the synchronization signal to be transmitted, and the user equipment 20 can determine the occurrence of the next synchronization signal based on the monitored synchronization signal after monitoring the synchronization signal.
  • the position accurately receives the synchronization signal, thereby adjusting the transmission period of the synchronization signal based on the air interface state information.
  • the user equipment 20 and the user equipment 30 are included, wherein a D2D connection is established between the user equipment 20 and the user equipment 30, at the user equipment 20 and the user equipment 30.
  • the user equipment 20 can monitor the air interface status information, and determine the synchronization signal to be sent based on the air interface status information, and send the synchronization signal to be sent to the user equipment 30 according to the target transmission period corresponding to the synchronization signal to be sent.
  • the position of the next synchronization signal can be determined based on the monitored synchronization signal, and the synchronization signal can be accurately received, thereby adjusting the transmission period of the synchronization signal based on the air interface state information.
  • the transmitter may monitor the air interface state information, and determine a target transmission period of the synchronization signal to be transmitted based on the air interface state information, and send the to-be-sent synchronization signal according to the target transmission period. For example, if the air interface status information indicates that the air interface resource is tight, a longer transmission may be selected. Cycle, and send a synchronization signal to be sent based on the transmission period, thereby realizing the use of the transmitter based on the air interface resource, dynamically adjusting the transmission period of the synchronization signal, so as to reduce the overhead of the synchronization signal when the air interface resource is tight, and alleviate the shortage of air interface resources The problem.
  • FIG. 2 is a flowchart of another method for transmitting a synchronization signal according to an exemplary embodiment.
  • This embodiment uses the foregoing method provided by an embodiment of the present disclosure to determine how to send a synchronization signal based on air interface status information. For an exemplary illustration, as shown in FIG. 2, the following steps are included:
  • step 201 based on the parameter values of each parameter in the air interface state information, the parameter feature values corresponding to each parameter are calculated.
  • the air interface state information may be used to measure the usage information and the demand information of the air interface resource, and may include any one of the following parameters or a combination of any two or more parameters: air interface resource utilization, air interface to be sent data. The number of receivers that have been connected to the volume and air interface.
  • the air interface status information may further include other usage information and requirement information used to measure the air interface resource, such as the remaining amount of the air interface resource.
  • the parameter feature value can be understood as a feature value determined by each parameter value to measure whether the air interface resource is tense.
  • the algorithm for determining the corresponding feature value based on the parameter value can be determined by a large amount of empirical data, and The algorithm of the base station and the algorithm of the terminal in the D2D communication may be different based on the type determination of the transmitter. For example, if the air interface resource utilization rate is 30%, the corresponding eigenvalue is 30 points. If the air interface resource utilization rate is 50%, the corresponding eigenvalue is 50 points. If the air interface to be sent exceeds 3 MB, the corresponding eigenvalue For 50 points, if the amount of data to be sent of the air interface is less than 1 MB, the corresponding feature value is 30 points, and so on.
  • step 202 the parameter feature values of each parameter are weighted and summed to obtain an air interface state evaluation value corresponding to the air interface state information.
  • the parameter feature values corresponding to each of the parameter values may be assigned different weight coefficients, and the weight coefficients may be determined by the communication system based on the experimental data of the mass.
  • step 203 a target transmission period of the synchronization signal to be transmitted is determined based on the air interface state evaluation value.
  • the air interface state evaluation value is compared with the preset state value, and the synchronization signal to be sent is determined based on the comparison result, and the number of preset state values is associated with the number of the transmission period, for example, if the setting If the number of preset state values is one, the air interface state evaluation value and the preset state value are compared. If the air interface state evaluation value is greater than the preset state value, the air interface resource is characterized.
  • the synchronization signal corresponding to the long transmission period is selected as the target transmission period; if three transmission periods are set, the number of preset state values may be two, respectively being the first state value and the second state value, by comparing Empty mouth The value of the state evaluation value and the first state value and the second state value.
  • the air interface resource is very tight, and the longest transmission period is selected as the target transmission period. If the value is smaller than the first state value and greater than the second value. The state value indicates that the air interface resource is somewhat tight, and the second-length transmission period is selected as the target transmission period. If it is smaller than the second state value, the air interface resource is not stressed, and the shortest transmission period is selected as the target transmission period.
  • the air interface state information is quantized to obtain the corresponding air interface state evaluation value, so that the synchronization period of the synchronization signal can be adjusted in combination with each parameter, so that more air interface resources are released when the air interface resources are tight, and the service is used. More terminals that transmit more business data.
  • FIG. 3 is a flowchart of still another method for transmitting a synchronization signal according to an exemplary embodiment.
  • This embodiment uses an example of the foregoing method provided by the embodiment of the present disclosure to exemplify how to send a synchronization signal. As shown in Figure 3, the following steps are included:
  • step 301 the air interface state information is obtained, and step 302 or 303 is performed.
  • a target transmission period of the synchronization signal to be transmitted is determined based on the air interface status information.
  • step 303 a synchronization signal to be transmitted corresponding to the target transmission period is determined.
  • a synchronization signal is selected from the extended synchronization signal as the synchronization signal to be transmitted; if the target transmission period is the preset transmission period, the basic synchronization signal is used as the to-be-sent Synchronization signal.
  • a synchronization signal may be selected from the extended synchronization signal as the synchronization signal to be transmitted based on the specific value of the air interface state evaluation value corresponding to the air interface state information.
  • another method of extending the synchronization signal is to perform a phase rotation or cyclic shift on each of the basic main synchronization signals when the main synchronization signal is another sequence such as a ZC sequence or a pseudo-random sequence.
  • the (X-1) extended sync signals are obtained, and each of the basic main synchronizing signals forms an X-group synchronizing signal with the (X-1) extended synchronizing signals obtained after the rotation or the shift.
  • step 304 a synchronization signal to be transmitted is transmitted.
  • a method for determining a synchronization signal to be sent is provided through steps 301 to 304.
  • the target transmission period is determined based on whether the air interface resource is tight, and the synchronization signal to be transmitted is selected based on the target transmission period, so that the transmitter is based on the air interface resource.
  • Usage dynamically adjust the transmission period of the synchronization signal so that the resources in the air interface are tight Zhang Shi reduces the overhead of the synchronization signal and alleviates the problem of tight air interface resources.
  • FIG. 4 is a flowchart of a method for receiving a synchronization signal, which may be applied to a user equipment, as shown in FIG. 4, for receiving synchronization, according to an exemplary embodiment.
  • the method of the signal includes the following steps 401-403:
  • step 401 a synchronization signal transmitted by the transmitter is received.
  • step 402 the occurrence position of the next synchronization signal is determined based on the synchronization signal.
  • the user equipment may acquire a transmission period corresponding to each synchronization signal based on a system agreement, thereby determining an appearance position of the next synchronization signal based on an appearance position and a transmission period of the currently received synchronization signal.
  • step 403 the next synchronization signal is monitored at the occurrence position of the next synchronization signal.
  • a base station 10 a user equipment (such as a smart phone, a tablet, etc.) 20 is included, wherein the user equipment 20 can be based on the monitored after monitoring the synchronization signal.
  • the obtained synchronization signal determines the transmission period, thereby determining the occurrence position of the next synchronization signal, and accurately receiving the synchronization signal, thereby realizing the adjustment of the transmission period of the synchronization signal based on the air interface state information.
  • the user equipment 20 and the user equipment 30 are included, wherein a D2D connection is established between the user equipment 20 and the user equipment 30, at the user equipment 20 and the user equipment 30.
  • the synchronization information cannot be obtained from the network, if the user equipment 30 monitors the synchronization signal, it can determine the transmission period based on the monitored synchronization signal, thereby determining the occurrence position of the next synchronization signal, and accurately receiving the synchronization signal.
  • the transmission period of the synchronization signal is adjusted based on the air interface state information.
  • the synchronization signal sent by the transmitter is determined, and the corresponding transmission period is determined, thereby determining the occurrence position of the next synchronization signal, so as to extend the synchronization signal based on the air interface resource in the transmitter.
  • the receiver can also accurately receive the synchronization signal during the transmission cycle.
  • FIG. 5 is a block diagram of an apparatus for transmitting a system message according to an exemplary embodiment. As shown in FIG. 5, the apparatus for transmitting a synchronization signal includes:
  • the state obtaining module 51 is configured to acquire air interface state information.
  • the period determining module 52 is configured to determine a target sending period of the synchronization signal to be sent based on the air interface state information acquired by the state acquiring module 51;
  • the first sending module 53 is configured to send the synchronization signal to be sent based on the target transmission period determined by the period determining module 52.
  • FIG. 6 is a block diagram of another apparatus for transmitting a system message, as shown in FIG. 6, on the basis of the embodiment shown in FIG. 5, according to an exemplary embodiment,
  • the first sending module 53 includes:
  • the first determining submodule 531 is configured to determine a synchronization signal to be sent corresponding to the target sending period
  • the transmitting sub-module 532 is configured to send a synchronization signal to be transmitted.
  • the synchronization signal to be transmitted can indicate the transmission time of the next synchronization signal sent by the user equipment.
  • the first determining submodule 531 includes:
  • the second determining sub-module 5311 is configured to select a synchronization signal from the extended synchronization signal as the synchronization signal to be sent if the target transmission period is greater than the preset transmission period;
  • the third determining sub-module 5312 is configured to use the basic synchronization signal as the synchronization signal to be transmitted if the target transmission period is the preset transmission period.
  • the extended synchronization signal is obtained by expanding the primary synchronization sequence and/or the secondary synchronization sequence in the basic synchronization signal according to a preset extension manner.
  • the preset extension mode is a method for generating an extended synchronization signal by selecting a sequence number different from the sequence number of the primary synchronization sequence and/or the secondary synchronization sequence in the basic synchronization signal; or
  • the preset extension mode is a method of phase-rotating or cyclically shifting the primary synchronization sequence and/or the secondary synchronization sequence in the basic synchronization signal to generate an extended synchronization signal.
  • the air interface status information includes any one of the following parameters or a combination of any two or more parameters:
  • Air interface resource utilization the amount of data to be sent on the air interface, and the number of receivers that have been connected to the air interface.
  • the period determining module 52 includes:
  • the calculation sub-module 521 is configured to calculate a parameter feature value corresponding to each parameter based on a parameter value of each parameter in the air interface state information
  • the weight summation sub-module 522 is configured to perform a weight summation on the parameter feature values of each parameter calculated by the calculation sub-module 521, and obtain an air interface state evaluation value corresponding to the air interface state information;
  • the fourth determining sub-module 523 is configured to determine the synchronization signal to be transmitted based on the air interface state evaluation value calculated by the weight summation sub-module 522.
  • FIG. 7 is a block diagram of an apparatus for receiving a system message according to an exemplary embodiment. As shown in FIG. 7, the apparatus for receiving a synchronization signal includes:
  • the receiving module 71 is configured to receive a synchronization signal sent by the transmitter;
  • the location determining module 72 is configured to determine an appearance position of the next synchronization signal based on the synchronization signal received by the receiving module 71;
  • the listening module 73 is configured to monitor the next synchronization signal at the occurrence position of the next synchronization signal determined by the position determining module 72.
  • FIG. 8 is a block diagram of another apparatus for receiving a system message according to an exemplary embodiment. As shown in FIG. 8, on the basis of the embodiment shown in FIG. 7 above, in an embodiment, the location determining module 72 includes:
  • the fifth determining submodule 721 is configured to determine a sending period of the synchronization signal based on the synchronization signal;
  • the sixth determining sub-module 722 is configured to determine an occurrence position of the next synchronization signal based on the transmission period.
  • a transmitter including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a synchronization signal to be transmitted is transmitted based on the target transmission period.
  • a receiver including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the next synchronization signal is monitored at the occurrence position of the next synchronization signal.
  • FIG. 9 is a block diagram of an apparatus suitable for transmitting and receiving a synchronization signal, according to an exemplary embodiment.
  • device 900 can be a user device such as a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • device 900 can include one or more of the following components: processing component 902, memory 904, power component 906, multimedia component 908, audio component 912, input/output (I/O) interface 912, sensor component 914, And a communication component 916.
  • Apparatus 900 can be used to transmit synchronization signals, such as in a D2D communication system, which can also be used to receive synchronization signals, such as in D2D communication systems and cellular networks.
  • Processing component 902 typically controls the overall operation of device 900, such as with display, telephone calls, data communications Letter, camera operation and operation associated with recording operations.
  • Processing component 902 can include one or more processors 920 to execute instructions to perform all or part of the steps described above.
  • processing component 902 can include one or more modules to facilitate interaction between component 902 and other components.
  • processing component 902 can include a multimedia module to facilitate interaction between multimedia component 908 and processing component 902.
  • Memory 904 is configured to store various types of data to support operation at device 900. Examples of such data include instructions for any application or method operating on device 900, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 904 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 906 provides power to various components of device 900.
  • Power component 906 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 900.
  • the multimedia component 908 includes a screen between the device 900 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 908 includes a front camera and/or a rear camera. When the device 900 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 912 is configured to output and/or input an audio signal.
  • the audio component 912 includes a microphone (MIC) that is configured to receive an external audio signal when the device 900 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 904 or transmitted via communication component 916.
  • audio component 912 also includes a speaker for outputting an audio signal.
  • the I/O interface 912 provides an interface between the processing component 902 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 914 includes one or more sensors for providing device 900 with various aspects of status assessment.
  • sensor component 914 can detect an open/closed state of device 900, relative positioning of components,
  • the component is a display and keypad of device 900, and sensor component 914 can also detect a change in position of one component of device 900 or device 900, the presence or absence of user contact with device 900, orientation or acceleration/deceleration of device 900, and device 900 temperature change.
  • Sensor assembly 914 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 914 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 916 is configured to facilitate wired or wireless communication between device 900 and other devices.
  • the device 900 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 916 receives a broadcast signal or broadcast associated information from an external broadcast management system via a broadcast channel.
  • communication component 916 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • a non-transitory computer readable storage medium comprising instructions, such as a memory 904 comprising instructions that, when executed, configurable by a processor 920 of apparatus 900 to perform the above-described A method of transmitting a synchronization signal, including:
  • the synchronization signal to be transmitted is transmitted based on the target transmission period.
  • a non-transitory computer readable storage medium comprising instructions, such as a memory 904 comprising instructions that, when executed, configurable by a processor 920 of apparatus 900 to perform the above-described
  • a method of receiving a synchronization signal including:
  • the next sync signal is monitored at the occurrence of the next sync signal.
  • FIG. 10 is a block diagram of an apparatus suitable for transmitting and receiving a synchronization signal, according to an exemplary embodiment.
  • Apparatus 1000 can be provided as a base station.
  • apparatus 1000 includes a processing component 1022
  • the wireless transmit/receive component 1024, the antenna component 1026, and a signal processing portion specific to the wireless interface, the processing component 1022 can further include one or more processors.
  • One of the processing components 1022 can be configured to perform the method described in the first aspect.
  • a base station a non-transitory computer readable storage medium comprising instructions stored on a storage medium, wherein the instructions are executed by the processor to implement the following for transmitting synchronization Signal method:
  • the synchronization signal to be transmitted is transmitted based on the target transmission period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Telephonic Communication Services (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种用于发送和接收同步信号的方法、装置、发射机和接收机。方法包括:获取空口状态信息;基于所述空口状态信息确定待发送同步信号的目标发送周期;基于所述目标发送周期发送待发送同步信号。本公开技术方案可以实现发射机基于空口资源的使用情况,动态调整同步信号的发送周期,以便在空口资源紧张时减小同步信号的开销,缓解空口资源紧张的问题。

Description

用于发送和接收同步信号的方法、装置、发射机和接收机 技术领域
本公开涉及通信技术领域,尤其涉及一种用于发送和接收同步信号的方法、装置、发射机和接收机。
背景技术
在无线通信系统中,发射机和接收机之间需要实现时域和频率同步后才能进行通信,发射机可周期性向接收及发送约定的同步信号,接收机可基于同步信号中的同步信息获取时域和频域上的同步。例如,长期演进(Long Term Evolution,简称为LTE)空口协议规定基站每隔5ms发送一次主同步信号(Primary Synchronization Signal,简称为PSS)和辅同步信号(Secondary Synchronization Signal,简称为SSS),用户设备作为接收机按照空口协议定义的固定时刻接收同步信号,以便获得与基站在时域和频域上的同步;再如,在终端间直接通信(Device to Device,简称为D2D)中,当终端无法从网络获取同步信息时,一个终端可根据定时向通信对端发送同步信号,也即发送物理D2D同步信号(SideLink Synchronization Signal,简称为SLSS),通信对端作为接收机可以接收SLSS信号实现时域和频域上的同步。
相关技术中,同步信号都是按固定的时间间隔,在固定的空口资源上发送。对于LTE宽带系统来说,同步信号在频域上只占用10.8MHz频谱资源,相对开销不大;而对于D2D通信来说,由于终端间通信的空口资源是在系统带宽内分配的,基站可能只给两个终端分配了少量的频谱资源,此时同步信号的相对开销就非常大;此外,对于基于蜂窝的窄带物联网(Narrow Band Internet of Things,简称为NB-IoT)系统来说,同步信号在频域上占用全部带宽资源,资源开销达到下行空口时频资源的15%,在空口资源紧张时,如在5G系统中,同步信号的开销将成为制约系统性能进一步提升的因素之一。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种用于发送和接收同步信号的方法、装置、发射机和接收机,用以发射机基于空口资源的使用情况,动态调整同步信号的发送周期,以便在空口资源紧张时减小同步信号的开销,缓解空口资源紧 张的问题。
根据本公开实施例的第一方面,提供一种用于发送同步信号的方法,应用在发射机上,所述方法包括:
获取空口状态信息;
基于所述空口状态信息确定待发送同步信号的目标发送周期;
基于所述目标发送周期发送待发送同步信号。
在一实施例中,所述基于所述目标发送周期发送待发送同步信号,包括:
确定所述目标发送周期对应的待发送同步信号;
发送所述待发送同步信号。
在一实施例中,所述待发送同步信号能够指示用户设备发送下一个同步信号的发送时间。
在一实施例中,确定所述目标发送周期对应的待发送同步信号,包括:
若所述目标发送周期大于预设发送周期,则从扩展同步信号中选择一个同步信号作为待发送同步信号;
若所述目标发送周期为预设发送周期,则将基本同步信号作为待发送同步信号。
在一实施例中,所述基本同步信号包括主同步序列和辅同步序列时,所述扩展同步信号为对所述基本同步信号中的主同步序列和/或辅同步序列按照预设扩展方式扩展得到。
在一实施例中,所述预设扩展方式为选择不同于所述基本同步信号中的主同步序列序号和/或辅同步序列序号的序列序号生成所述扩展同步信号的方式;或者,
所述预设扩展方式为对所述基本同步信号中的主同步序列和/或辅同步序列进行相位旋转或者循环移位生成所述扩展同步信号的方式。
在一实施例中,所述空口状态信息包括以下任一项参数或者任意两项以上参数的组合:
空口资源利用率、空口的待发送数据量、空口上已接入接收机的数量。
在一实施例中,所述基于所述空口状态信息确定待发送同步信号的目标发送周期,包括:
基于所述空口状态信息中每一项参数的参数值,计算每一项参数对应的参数特征值;
对每一项参数的参数特征值进行权重加和,得到所述空口状态信息对应的空口状态评估值;
基于所述空口状态评估值确定待发送同步信号的目标发送周期。
根据本公开实施例的第二方面,提供一种用于接收同步信号的方法,应用在接收机上,所述方法包括:
接收发射机发送的同步信号;
基于所述同步信号确定下一个同步信号的出现位置;
在所述下一个同步信号的出现位置监听所述下一个同步信号。
在一实施例中,所述基于所述同步信号确定下一个同步信号的出现位置,包括:
基于所述同步信号确定同步信号的发送周期;
基于所述发送周期确定所述下一个同步信号的出现位置。
根据本公开实施例的第三方面,提供一种用于发送同步信号的装置,应用在发射机上,所述装置包括:
状态获取模块,被配置为获取空口状态信息;
周期确定模块,被配置为基于所述空口状态信息确定待发送同步信号的目标发送周期;
第一发送模块,被配置为基于所述周期确定模块确定的所述目标发送周期发送待发送同步信号。
在一实施例中,所述第一发送模块包括:
第一确定子模块,被配置为确定所述目标发送周期对应的待发送同步信号;
发送子模块,被配置为发送所述待发送同步信号。
在一实施例中,所述待发送同步信号能够指示用户设备发送下一个同步信号的发送时间。
在一实施例中,所述第一确定子模块包括:
第二确定子模块,被配置为若所述目标发送周期大于预设发送周期,则从扩展同步信号中选择一个同步信号作为待发送同步信号;
第三确定子模块,被配置为若所述目标发送周期为预设发送周期,则将基本同步信号作为待发送同步信号。
在一实施例中,所述基本同步信号包括主同步序列和辅同步序列时,所述扩展同步信号为对所述基本同步信号中的主同步序列和/或辅同步序列按照预设扩展方式扩展得到。
在一实施例中,所述预设扩展方式为选择不同于所述基本同步信号中的主同步序列序号和/或辅同步序列序号的序列序号生成所述扩展同步信号的方式;或者,
所述预设扩展方式为对所述基本同步信号中的主同步序列和/或辅同步序列进行相位旋转或者循环移位生成所述扩展同步信号的方式。
在一实施例中,所述空口状态信息包括以下任一项参数或者任意两项以上参数的组合:
空口资源利用率、空口的待发送数据量、空口上已接入接收机的数量。
在一实施例中,所述周期确定模块包括:
计算子模块,被配置为基于所述空口状态信息中每一项参数的参数值,计算每一项参数对应的参数特征值;
权重加和子模块,被配置为对所述计算子模块计算得到的所述每一项参数的参数特征值进行权重加和,得到所述空口状态信息对应的空口状态评估值;
第四确定子模块,被配置为基于所述权重加和子模块计算得到的所述空口状态评估值确定待发送同步信号的目标发送周期。
根据本公开实施例的第四方面,提供一种用于接收同步信号的装置,应用在接收机上,所述装置包括:
接收模块,被配置为接收发射机发送的同步信号;
位置确定模块,被配置为基于所述接收模块接收到的所述同步信号确定下一个同步信号的出现位置;
监听模块,被配置为在所述位置确定模块确定的所述下一个同步信号的出现位置监听所述下一个同步信号。
在一实施例中,所述位置确定模块包括:
第五确定子模块,被配置为基于所述同步信号确定同步信号的发送周期;
第六确定子模块,被配置为基于所述发送周期确定所述下一个同步信号的出现位置。
根据本公开实施例的第五方面,提供一种发射机,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取空口状态信息;
基于所述空口状态信息确定待发送同步信号的目标发送周期;
基于所述目标发送周期发送待发送同步信号。
根据本公开实施例的第六方面,提供一种接收机,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收发射机发送的同步信号;
基于所述同步信号确定下一个同步信号的出现位置;
在所述下一个同步信号的出现位置监听所述下一个同步信号。
根据本公开实施例的第七方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,所述指令被处理器执行时实现以下步骤:
获取空口状态信息;
基于所述空口状态信息确定待发送同步信号的目标发送周期;
基于所述目标发送周期发送待发送同步信号。
根据本公开实施例的第八方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,所述指令被处理器执行时实现以下步骤:
接收发射机发送的同步信号;
基于所述同步信号确定下一个同步信号的出现位置;
在所述下一个同步信号的出现位置监听所述下一个同步信号。
本公开的实施例提供的技术方案可以包括以下有益效果:
发射机可监测空口状态信息,并且基于空口状态信息确定待发送同步信号的目标发送周期,并按照目标发送周期发送该待发送同步信号。例如,如果空口状态信息表征空口资源紧张,则可选择较长的发送周期,并基于该发送周期发送待发送同步信号,由此实现发射机基于空口资源的使用情况,动态调整同步信号的发送周期,以便在空口资源紧张时减小同步信号的开销,缓解空口资源紧张的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A是根据一示例性实施例示出的一种用于发送同步信号的方法的流程图。
图1B是根据一示例性实施例示出的一种用于发送和接收同步信号的方法的应 用场景示意图一。
图1C是根据一示例性实施例示出的一种用于发送和接收同步信号的方法的应用场景示意图二。
图2是根据一示例性实施例示出的另一种用于发送同步信号的方法的流程图。
图3是根据一示例性实施例示出的又一种用于发送同步信号的方法的流程图。
图4是根据一示例性实施例示出的一种用于接收同步信号的方法的流程图。
图5是根据一示例性实施例示出的一种用于发送系统消息的装置的框图。
图6是根据一示例性实施例示出的另一种用于发送系统消息的装置的框图。
图7是根据一示例性实施例示出的一种用于接收系统消息的装置的框图。
图8是根据一示例性实施例示出的另一种用于接收系统消息的装置的框图。
图9是根据一示例性实施例示出的一种适用于发送和接收同步信号的装置的框图。
图10是根据一示例性实施例示出的一种适用于发送同步信号的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1A是根据一示例性实施例示出的一种用于发送同步信号的方法的流程图,图1B是根据一示例性实施例示出的一种用于发送和接收同步信号的方法的应用场景示意图一,图1C是根据一示例性实施例示出的一种用于发送和接收同步信号的方法的应用场景示意图二;该用于发送同步信号的方法可以应用在通信设备,如D2D(Device to Device)通信系统中的一个终端或者蜂窝物联网中的基站,如图1A所示,该用于发送同步信号的方法包括以下步骤101-103:
在步骤101中,获取空口状态信息。
在一实施例中,空口状态信息可以理解为用于衡量空口资源的使用信息和需求信息,可以包括以下任一项参数或者任意两项以上参数的组合:空口资源利用率、空口的待发送数据量、空口上已接入接收机的数量。
在一实施例中,可基于发射机的可用空口资源与已用空口资源计算得到空口资源利用率,例如,一个发射机可用的空口资源为200kHz的带宽资源,而当前已使用 的空口资源为100kHz,则空口资源利用率为50%;可通过查询发送缓存器中的已缓存数据量得到空口的待发送数据量;空口上已接入的接收机的数量也可以理解为空口上已建立通信链路的接收机数量。
在步骤102中,基于空口状态信息确定待发送同步信号的目标发送周期。
在一实施例中,每一个发射机可以配置X组同步信号,包括X-1个预设扩展同不信号和一个基本同步信号。可基于空口状态信息从X组同步信号中选择一组同步信号作为待发送同步信号,基于空口状态信息确定待发送同步信号的目标发送周期的方法可参见图2所示实施例,这里先不详述。
在一实施例中,待发送同步信号由一组预先约定序列生成。例如,可以使用具有恒定幅度和零自相关特性(Zadoff-Chu,简称为ZC)的序列作为生成待发送同步信号的基本序列,通过选取不同的ZC序列序号q来得到一组同步信号,同步信号也可以通过其他伪随机序列、例如m序列生成。
在一实施例中,相关技术中,不同的通信系统需要不同的同步信号数量,同步信号可以由主同步序列和辅同步序列组成,可以假设通信系统需要M个主同步序列PSSi,N个辅同步序列SSSj,M和N为非负整数,例如,NB-IoT系统的窄带主同步信号(Narrowband Primary Synchronization Signal,简称为NPSS)只有1个序列,而D2D的SPSS则有3个序列。本公开中,可对M个主同步序列和/或N个辅同步序列进行扩展,这里以对M个主同步序列进行扩展得到本公开中通信系统所使用的同步信号为例进行说明。例如,将相关技术中的M个基本PSS扩展为M*X个PSSi_x,实现每一个发射机可以有X个可用的主同步序列,例如,X可以为2,两个主同步序列分别标示两种发送周期:一是在每个同步信号可能发送位置都发送同步信号,即同步信号的实际发送周期为T;二是间隔1个同步信号可能发送位置来发送同步信号,即同步信号的实际发送周期为2T。
在一实施例中,同步信号的一种扩展方法是,当M个基本主同步序列是由ZC序列生成时,选取(M*X-M)个不同于基本的M个PSS的ZC序列序号,生成M*(X-1)个扩展PSS序列。对于每个基本的主同步序列PSSi,0<i<=M,从新生成的M*(X-1)扩展PSS中选取(X-1)个扩展PSS作为扩展同步信号,再加上一个基本同步信号,即可组成一个X组同步信号。
在一实施例中,同步信号的另一种扩展的方法是,当主同步信号为ZC序列或伪随机序列等其他序列时,通过对每一个基本主同步信号进行一定相位的旋转或循环移位,得到(X-1)个扩展同步信号,每一个基本主同步信号与旋转或者移位后得到的 (X-1)个扩展同步信号形成一个X组同步信号。
在一实施例中,N个辅同步序列也可以扩展为N*X个辅同步序列,进而形成X组同步信号。
在一实施例中,可同时对主同步序列和辅同步序列进行扩展,如将M个主同步序列扩展为M*P个主同步信号,将N个辅同步序列扩展为N*Q个辅同步信号,其中,P和Q的值可以相同,也可以不相同,将不同的主同步序列和不同的辅同步序列进行组合可以得到更多的同步信号以表征更多的发送周期。
在一实施例中,也可单独对主同步序列或者辅同步序列进行扩展,得到同步信号。
在步骤103中,基于目标发送周期发送待发送同步信号。
在一实施例中,不同的发送周期对应不同的待发送同步信号,同步信号与发送周期之间的映射关系可以由系统预先约定,并指示给发射机和接收机。
在一实施例中,每一个待发送同步信号能够指示用户设备发送下一个同步信号的发送时间,例如,如果一个待发送同步信号对应的目标发送周期为2T,则在发送该待发送同步信号之后的2T时间间隔之后再发送下一个同步信号。
在一示例性实施例中,在图1B所示的场景中,包括基站10、用户设备(如智能手机、平板电脑等)20,其中,基站10作为发射机可以实时监测空口状态信息,并且基于空口状态信息确定待发送同步信号,按照待发送同步信号的目标发送周期广播待发送同步信号,用户设备20在监听到同步信号之后即可基于所监听到的同步信号确定出下一个同步信号的出现位置,准确接收同步信号,由此实现基于空口状态信息调整同步信号的发送周期。
在一示例性实施例中,在图1C所示的场景中,包括用户设备20、用户设备30,其中,用户设备20和用户设备30之间建立了D2D连接,在用户设备20和用户设备30无法从网络获取同步信息时,用户设备20可监测空口状态信息,并且基于空口状态信息确定待发送同步信号,按照待发送同步信号对应的目标发送周期向用户设备30发送待发送同步信号,用户设备30在监听到同步信号之后即可基于所监听到的同步信号确定出下一个同步信号的出现位置,准确接收同步信号,由此实现基于空口状态信息调整同步信号的发送周期。
本实施例中,通过上述步骤101-步骤103,发射机可监测空口状态信息,并且基于空口状态信息确定待发送同步信号的目标发送周期,并按照目标发送周期发送该待发送同步信号。例如,如果空口状态信息表征空口资源紧张,则可选择较长的发送 周期,并基于该发送周期发送待发送同步信号,由此实现发射机基于空口资源的使用情况,动态调整同步信号的发送周期,以便在空口资源紧张时减小同步信号的开销,缓解空口资源紧张的问题。
具体如何发送和接收同步信号的,请参考后续实施例。
下面以具体实施例来说明本公开实施例提供的技术方案。
图2是根据一示例性实施例示出的另一种用于发送同步信号的方法的流程图;本实施例利用本公开实施例提供的上述方法,以如何基于空口状态信息确定待发送同步信号为例进行示例性说明,如图2所示,包括如下步骤:
在步骤201中,基于空口状态信息中每一项参数的参数值,计算每一项参数对应的参数特征值。
在一实施例中,空口状态信息可以理解为用于衡量空口资源的使用信息和需求信息,可以包括以下任一项参数或者任意两项以上参数的组合:空口资源利用率、空口的待发送数据量、空口上已接入接收机的数量。在一实施例中,空口状态信息还可以包括其他的用来衡量空口资源的使用信息和需求信息,如空口资源的剩余量等。
在一实施例中,参数特征值可以理解为基于每一项参数值确定的用来衡量空口资源是否紧张的特征值,基于参数值确定对应的特征值的算法可以由海量的经验数据确定,可以基于发射机的类型确定,基站的算法和D2D通信中终端的算法可以不相同。例如,如果空口资源利用率为30%,对应的特征值为30分,如果空口资源利用率为50%,对应的特征值为50分,如果空口的待发送数据量超过3MB,对应的特征值为50分,如果空口的待发送数据量小于1MB,对应的特征值为30分,等等。
在步骤202中,对每一项参数的参数特征值进行权重加和,得到空口状态信息对应的空口状态评估值。
在一实施例中,可对上述每一项参数值对应的参数特征值分配不同的权重系数,权重系数可以由通信系统基于海量的实验数据确定。
在步骤203中,基于空口状态评估值确定待发送同步信号的目标发送周期。
在一实施例中,可以对空口状态评估值与预设状态值进行比较,基于比较结果确定待发送同步信号,预设状态值的个数与发送周期的个数存在关联关系,例如,如果设置了两种发送周期,则预设状态值的个数可以为一个,则比较空口状态评估值与预设状态值的大小,如果空口状态评估值大于预设状态值,则表征空口资源紧张,因此选择长的发送周期所对应的同步信号作为目标发送周期;如果设置了三种发送周期,则预设状态值的个数可以为两个,分别为第一状态值和第二状态值,通过比较空口状 态评估值与第一状态值和第二状态值的大小,如果大于第一状态值,则表征空口资源非常紧张,选择最长发送周期作为目标发送周期,如果小于第一状态值并且大于第二状态值,则表征空口资源有些紧张,选择次长的发送周期作为目标发送周期,如果小于第二状态值,则表征空口资源不紧张,选择最短的发送周期作为目标发送周期。
本实施例中,通过对空口状态信息进行量化得到对应的空口状态评估值,可以实现结合各项参数调整同步信号的发送周期,实现在空口资源紧张时释放出更多的空口资源,用于服务更多的终端,传输更多的业务数据。
图3是根据一示例性实施例示出的又一种用于发送同步信号的方法的流程图;本实施例利用本公开实施例提供的上述方法,以如何发送同步信号为例进行示例性说明,如图3所示,包括如下步骤:
在步骤301中,获取空口状态信息,执行步骤302或者303。
在步骤302中,基于空口状态信息确定待发送同步信号的目标发送周期。
在步骤303中,确定目标发送周期对应的待发送同步信号。
在一实施例中,若目标发送周期大于预设发送周期,则从扩展同步信号中选择一个同步信号作为待发送同步信号;若目标发送周期为预设发送周期,则将基本同步信号作为待发送同步信号。
在一实施例中,可以基于空口状态信息所对应的空口状态评估值的具体值,从扩展同步信号中选择一个同步信号作为待发送同步信号。
在一实施例中,同步信号的一种扩展方法是,当M个基本主同步序列是由ZC序列生成时,选取(M*X-M)个不同于基本的M个PSS的ZC序列序号,生成M*(X-1)个扩展PSS序列。对于每个基本的主同步序列PSSi,0<i<=M,从新生成的M*(X-1)扩展PSS中选取(X-1)个扩展PSS作为扩展同步信号,再加上一个基本同步信号,即可组成一个X组同步信号。
在一实施例中,同步信号的另一种扩展的方法是,当主同步信号为ZC序列或伪随机序列等其他序列时,通过对每一个基本主同步信号进行一定相位的旋转或循环移位,得到(X-1)个扩展同步信号,每一个基本主同步信号与旋转或者移位后得到的(X-1)个扩展同步信号形成一个X组同步信号。
在步骤304中,发送待发送同步信号。
本实施例中,通过步骤301-步骤304提供了一种确定待发送同步信号的方法,基于空口资源是否紧张确定目标发送周期,基于目标发送周期选择待发送同步信号,实现发射机基于空口资源的使用情况,动态调整同步信号的发送周期,以便在空口资源紧 张时减小同步信号的开销,缓解空口资源紧张的问题。
图4是根据一示例性实施例示出的一种用于接收同步信号的方法的流程图,该用于发送同步信号的方法可以应用在用户设备上,如图4所示,该用于接收同步信号的方法包括以下步骤401-403:
在步骤401中,接收发射机发送的同步信号。
在步骤402中,基于同步信号确定下一个同步信号的出现位置。
在一实施例中,用户设备可以基于系统约定,获取到每一个同步信号对应的发送周期,由此基于当前接收到的同步信号的出现位置、发送周期,确定出下一个同步信号的出现位置。
在步骤403中,在下一个同步信号的出现位置监听下一个同步信号。
在一示例性实施例中,在图1B所示的场景中,包括基站10、用户设备(如智能手机、平板电脑等)20,其中,用户设备20在监听到同步信号之后即可基于所监听到的同步信号确定出发送周期,进而确定出下一个同步信号的出现位置,准确接收同步信号,由此实现基于空口状态信息调整同步信号的发送周期。
在一示例性实施例中,在图1C所示的场景中,包括用户设备20、用户设备30,其中,用户设备20和用户设备30之间建立了D2D连接,在用户设备20和用户设备30无法从网络获取同步信息时,如果用户设备30在监听到同步信号之后即可基于所监听到的同步信号确定出发送周期,进而确定出下一个同步信号的出现位置,准确接收同步信号,由此实现基于空口状态信息调整同步信号的发送周期。
本实施例中,通过步骤401-403,实现了基于发射机发送的同步信号,确定出对应的发送周期,进而确定出下一个同步信号的出现位置,以便在发射机基于空口资源延长同步信号的发送周期时,接收机也可以准确地接收到同步信号。
图5是根据一示例性实施例示出的一种用于发送系统消息的装置的框图,如图5所示,用于发送同步信号的装置包括:
状态获取模块51,被配置为获取空口状态信息;
周期确定模块52,被配置为基于状态获取模块51获取的空口状态信息确定待发送同步信号的目标发送周期;
第一发送模块53,被配置为基于周期确定模块52确定的目标发送周期发送待发送同步信号。
图6是根据一示例性实施例示出的另一种用于发送系统消息的装置的框图,如图6所示,在上述图5所示实施例的基础上,
在一实施例中,第一发送模块53包括:
第一确定子模块531,被配置为确定目标发送周期对应的待发送同步信号;
发送子模块532,被配置为发送待发送同步信号。
在一实施例中,待发送同步信号能够指示用户设备发送下一个同步信号的发送时间。
在一实施例中,第一确定子模块531包括:
第二确定子模块5311,被配置为若目标发送周期大于预设发送周期,则从扩展同步信号中选择一个同步信号作为待发送同步信号;
第三确定子模块5312,被配置为若目标发送周期为预设发送周期,则将基本同步信号作为待发送同步信号。
在一实施例中,基本同步信号包括主同步序列和辅同步序列时,扩展同步信号为对基本同步信号中的主同步序列和/或辅同步序列按照预设扩展方式扩展得到。
在一实施例中,预设扩展方式为选择不同于基本同步信号中的主同步序列和/或辅同步序列的序列序号的序列序号生成扩展同步信号的方式;或者,
预设扩展方式为对基本同步信号中的主同步序列和/或辅同步序列进行相位旋转或者循环移位生成扩展同步信号的方式。
在一实施例中,空口状态信息包括以下任一项参数或者任一两项以上参数的组合:
空口资源利用率、空口的待发送数据量、空口上已接入接收机的数量。
在一实施例中,周期确定模块52包括:
计算子模块521,被配置为基于空口状态信息中每一项参数的参数值,计算每一项参数对应的参数特征值;
权重加和子模块522,被配置为对计算子模块521计算得到的每一项参数的参数特征值进行权重加和,得到空口状态信息对应的空口状态评估值;
第四确定子模块523,被配置为基于权重加和子模块522计算得到的空口状态评估值确定待发送同步信号。
图7是根据一示例性实施例示出的一种用于接收系统消息的装置的框图,如图7所示,用于接收同步信号的装置包括:
接收模块71,被配置为接收发射机发送的同步信号;
位置确定模块72,被配置为基于接收模块71接收到的同步信号确定下一个同步信号的出现位置;
监听模块73,被配置为在位置确定模块72确定的下一个同步信号的出现位置监听下一个同步信号。
图8是根据一示例性实施例示出的另一种用于接收系统消息的装置的框图如图8所示,在上述图7所示实施例的基础上,在一实施例中,位置确定模块72包括:
第五确定子模块721,被配置为基于同步信号确定同步信号的发送周期;
第六确定子模块722,被配置为基于发送周期确定下一个同步信号的出现位置。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
根据本公开实施例,还提供一种发射机,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取空口状态信息;
基于所述空口状态信息确定待发送同步信号的目标发送周期;
基于所述目标发送周期发送待发送同步信号。
根据本公开实施例,还提供一种接收机,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收发射机发送的同步信号;
基于所述同步信号确定下一个同步信号的出现位置;
在所述下一个同步信号的出现位置监听所述下一个同步信号。
图9是根据一示例性实施例示出的一种适用于发送和接收同步信号的装置的框图。例如,装置900可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等用户设备。
参照图9,装置900可以包括以下一个或多个组件:处理组件902,存储器904,电源组件906,多媒体组件908,音频组件912,输入/输出(I/O)的接口912,传感器组件914,以及通信组件916。
装置900可以用于发送同步信号,如在D2D通信系统中时,装置900还可以用于接收同步信号,如在D2D通信系统和蜂窝网络中。
处理组件902通常控制装置900的整体操作,诸如与显示,电话呼叫,数据通 信,相机操作和记录操作相关联的操作。处理元件902可以包括一个或多个处理器920来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件902可以包括一个或多个模块,便于处理组件902和其他组件之间的交互。例如,处理部件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在设备900的操作。这些数据的示例包括用于在装置900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件906为装置900的各种组件提供电力。电力组件906可以包括电源管理系统,一个或多个电源,及其他与为装置900生成、管理和分配电力相关联的组件。
多媒体组件908包括在装置900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当设备900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件912被配置为输出和/或输入音频信号。例如,音频组件912包括一个麦克风(MIC),当装置900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件912还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件914包括一个或多个传感器,用于为装置900提供各个方面的状态评估。例如,传感器组件914可以检测到设备900的打开/关闭状态,组件的相对定位, 例如组件为装置900的显示器和小键盘,传感器组件914还可以检测装置900或装置900一个组件的位置改变,用户与装置900接触的存在或不存在,装置900方位或加速/减速和装置900的温度变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于装置900和其他设备之间有线或无线方式的通信。装置900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信部件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令在被执行时可配置装置900的处理器920以执行上述用于发送同步信号的方法,包括:
获取空口状态信息;
基于空口状态信息确定待发送同步信号的目标发送周期;
基于目标发送周期发送待发送同步信号。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令在被执行时可配置装置900的处理器920以执行上述用于接收同步信号的方法,包括:
接收发射机发送的同步信号;
基于同步信号确定下一个同步信号的出现位置;
在下一个同步信号的出现位置监听下一个同步信号。
图10是根据一示例性实施例示出的一种适用于用于发送和接收同步信号的装置的框图。装置1000可以被提供为一基站。参照图10,装置1000包括处理组件1022、 无线发射/接收组件1024、天线组件1026、以及无线接口特有的信号处理部分,处理组件1022可进一步包括一个或多个处理器。
处理组件1022中的其中一个处理器可以被配置为执行第一方面所描述的方法。
在示例性实施例中,基站中还提供了一种包括指令的非临时性计算机可读存储介质,存储介质上存储有计算机指令,其特征在于,指令被处理器执行时实现以下用于发送同步信号的方法:
获取空口状态信息;
基于空口状态信息确定待发送同步信号的目标发送周期;
基于目标发送周期发送待发送同步信号。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本请求旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种用于发送同步信号的方法,其特征在于,应用在发射机上,所述方法包括:
    获取空口状态信息;
    基于所述空口状态信息确定待发送同步信号的目标发送周期;
    基于所述目标发送周期发送所述待发送同步信号。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述目标发送周期发送所述待发送同步信号,包括:
    确定所述目标发送周期对应的待发送同步信号;
    发送所述待发送同步信号。
  3. 根据权利要求2所述的方法,其特征在于,所述待发送同步信号能够指示用户设备发送下一个同步信号的发送时间。
  4. 根据权利要求2所述的方法,其特征在于,所述确定所述目标发送周期对应的待发送同步信号,包括:
    若所述目标发送周期大于预设发送周期,则从扩展同步信号中选择一个同步信号作为所述待发送同步信号;
    若所述目标发送周期为预设发送周期,则将基本同步信号作为所述待发送同步信号。
  5. 根据权利要求4所述的方法,其特征在于,所述基本同步信号包括主同步序列和辅同步序列时,所述扩展同步信号为对所述基本同步信号中的主同步序列和/或辅同步序列按照预设扩展方式扩展得到。
  6. 根据权利要求5所述的方法,其特征在于,所述预设扩展方式为选择不同于所述基本同步信号中的主同步序列序号和/或辅同步序列序号的序列序号生成所述扩展同步信号的方式;或者,
    所述预设扩展方式为对所述基本同步信号中的主同步序列和/或辅同步序列进行相位旋转或者循环移位生成所述扩展同步信号的方式。
  7. 根据权利要求1所述的方法,其特征在于,所述空口状态信息包括以下任一项参数或者任意两项以上参数的组合:
    空口资源利用率、空口的待发送数据量、空口上已接入接收机的数量。
  8. 根据权利要求1或7所述的方法,其特征在于,所述基于所述空口状态信息确定待发送同步信号的目标发送周期,包括:
    基于所述空口状态信息中每一项参数的参数值,计算每一项参数对应的参数特征 值;
    对每一项参数的参数特征值进行权重加和,得到所述空口状态信息对应的空口状态评估值;
    基于所述空口状态评估值确定待发送同步信号的目标发送周期。
  9. 一种用于接收同步信号的方法,其特征在于,应用在接收机上,所述方法包括:
    接收发射机发送的同步信号;
    基于所述同步信号确定下一个同步信号的出现位置;
    在所述下一个同步信号的出现位置监听所述下一个同步信号。
  10. 根据权利要求9所述的方法,其特征在于,所述基于所述同步信号确定下一个同步信号的出现位置,包括:
    基于所述同步信号确定同步信号的发送周期;
    基于所述发送周期确定所述下一个同步信号的出现位置。
  11. 一种用于发送同步信号的装置,其特征在于,应用在发射机上,所述装置包括:
    状态获取模块,被配置为获取空口状态信息;
    周期确定模块,被配置为基于所述空口状态信息确定待发送同步信号的目标发送周期;
    第一发送模块,被配置为基于所述周期确定模块确定的所述目标发送周期发送所述待发送同步信号。
  12. 根据权利要求11所述的装置,其特征在于,所述第一发送模块包括:
    第一确定子模块,被配置为确定所述目标发送周期对应的待发送同步信号;
    发送子模块,被配置为发送所述待发送同步信号。
  13. 根据权利要求12所述的装置,其特征在于,所述待发送同步信号能够指示用户设备发送下一个同步信号的发送时间。
  14. 根据权利要求12所述的装置,其特征在于,所述第一确定子模块包括:
    第二确定子模块,被配置为若所述目标发送周期大于预设发送周期,则从扩展同步信号中选择一个同步信号作为所述待发送同步信号;
    第三确定子模块,被配置为若所述目标发送周期为预设发送周期,则将基本同步信号作为所述待发送同步信号。
  15. 根据权利要求14所述的装置,其特征在于,所述基本同步信号包括主同步序列和辅同步序列时,所述扩展同步信号为对所述基本同步信号中的主同步序列和/或辅 同步序列按照预设扩展方式扩展得到。
  16. 根据权利要求15所述的装置,其特征在于,所述预设扩展方式为选择不同于所述基本同步信号中的主同步序列序号和/或辅同步序列序号的序列序号生成所述扩展同步信号的方式;或者,
    所述预设扩展方式为对所述基本同步信号中的主同步序列和/或辅同步序列进行相位旋转或者循环移位生成所述扩展同步信号的方式。
  17. 根据权利要求11所述的装置,其特征在于,所述空口状态信息包括以下任一项参数或者任意两项以上参数的组合:
    空口资源利用率、空口的待发送数据量、空口上已接入接收机的数量。
  18. 根据权利要求11或17所述的装置,其特征在于,所述周期确定模块包括:
    计算子模块,被配置为基于所述空口状态信息中每一项参数的参数值,计算每一项参数对应的参数特征值;
    权重加和子模块,被配置为对所述计算子模块计算得到的所述每一项参数的参数特征值进行权重加和,得到所述空口状态信息对应的空口状态评估值;
    第四确定子模块,被配置为基于所述权重加和子模块计算得到的所述空口状态评估值确定待发送同步信号的目标发送周期。
  19. 一种用于接收同步信号的装置,其特征在于,应用在接收机上,所述装置包括:
    接收模块,被配置为接收发射机发送的同步信号;
    位置确定模块,被配置为基于所述接收模块接收到的所述同步信号确定下一个同步信号的出现位置;
    监听模块,被配置为在所述位置确定模块确定的所述下一个同步信号的出现位置监听所述下一个同步信号。
  20. 根据权利要求19所述的装置,其特征在于,所述位置确定模块包括:
    第五确定子模块,被配置为基于所述同步信号确定同步信号的发送周期;
    第六确定子模块,被配置为基于所述发送周期确定所述下一个同步信号的出现位置。
  21. 一种发射机,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取空口状态信息;
    基于所述空口状态信息确定待发送同步信号的目标发送周期;
    基于所述目标发送周期发送所述待发送同步信号。
  22. 一种接收机,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收发射机发送的同步信号;
    基于所述同步信号确定下一个同步信号的出现位置;
    在所述下一个同步信号的出现位置监听所述下一个同步信号。
  23. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述指令被处理器执行时实现以下步骤:
    获取空口状态信息;
    基于所述空口状态信息确定待发送同步信号的目标发送周期;
    基于所述目标发送周期发送所述待发送同步信号。
  24. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述指令被处理器执行时实现以下步骤:
    接收发射机发送的同步信号;
    基于所述同步信号确定下一个同步信号的出现位置;
    在所述下一个同步信号的出现位置监听所述下一个同步信号。
PCT/CN2017/107667 2017-10-25 2017-10-25 用于发送和接收同步信号的方法、装置、发射机和接收机 WO2019080007A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/107667 WO2019080007A1 (zh) 2017-10-25 2017-10-25 用于发送和接收同步信号的方法、装置、发射机和接收机
CN201780001675.XA CN108064435A (zh) 2017-10-25 2017-10-25 用于发送和接收同步信号的方法、装置、发射机和接收机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/107667 WO2019080007A1 (zh) 2017-10-25 2017-10-25 用于发送和接收同步信号的方法、装置、发射机和接收机

Publications (1)

Publication Number Publication Date
WO2019080007A1 true WO2019080007A1 (zh) 2019-05-02

Family

ID=62142008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107667 WO2019080007A1 (zh) 2017-10-25 2017-10-25 用于发送和接收同步信号的方法、装置、发射机和接收机

Country Status (2)

Country Link
CN (1) CN108064435A (zh)
WO (1) WO2019080007A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615704B (zh) 2018-08-10 2022-03-08 华为技术有限公司 一种同步信号的传输方法和装置
CN111294084B (zh) * 2019-02-13 2022-04-26 展讯通信(上海)有限公司 Pss检测方法及装置、存储介质、终端
CN112765057B (zh) * 2020-12-30 2024-04-30 京信网络系统股份有限公司 数据传输方法、pcie系统、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219757A (zh) * 2014-05-13 2014-12-17 中兴通讯股份有限公司 同步信号发送时间确定方法、终端、基站及通信系统
CN105592404A (zh) * 2014-11-06 2016-05-18 中兴通讯股份有限公司 D2d通信的同步处理方法及装置
CN106538019A (zh) * 2016-11-04 2017-03-22 北京小米移动软件有限公司 信号接收方法及装置
CN106559206A (zh) * 2015-09-30 2017-04-05 中兴通讯股份有限公司 同步信号的传输方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3331292B1 (en) * 2015-08-27 2021-12-29 Huawei Technologies Co., Ltd. Method and device for indicating synchronous signal period

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219757A (zh) * 2014-05-13 2014-12-17 中兴通讯股份有限公司 同步信号发送时间确定方法、终端、基站及通信系统
CN105592404A (zh) * 2014-11-06 2016-05-18 中兴通讯股份有限公司 D2d通信的同步处理方法及装置
CN106559206A (zh) * 2015-09-30 2017-04-05 中兴通讯股份有限公司 同步信号的传输方法及装置
CN106538019A (zh) * 2016-11-04 2017-03-22 北京小米移动软件有限公司 信号接收方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI HISILICON: "Discussion and evaluation on NR-SS periodicity", 3GPP TSG RAN WG1 MEETING #89 RL-1706974, 19 May 2017 (2017-05-19), XP051272204 *
SONY: "NR synchronization signal burst set periodicity", 3GPP TSG RAN WG1 NR AD-HOC MEETING RL-1700666, 20 January 2017 (2017-01-20), XP051208190 *

Also Published As

Publication number Publication date
CN108064435A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
US11469962B2 (en) Method and apparatus for configuring information of indicating time-frequency position of SSB, and method and apparatus for determining time-frequency position of SSB
WO2019095223A1 (zh) 跳频配置方法及装置
KR102486803B1 (ko) 업 링크 전송 방법 및 장치
WO2019213907A1 (zh) 信息复用传输方法及装置、信息接收方法及装置
US11877280B2 (en) Buffer status report transmission and device
US11528744B2 (en) Methods, apparatuses and systems for transmitting data, and storage medium
WO2019024087A1 (zh) 获取剩余关键系统信息的公共控制资源集时频资源位置的方法
WO2019095140A1 (zh) 剩余关键系统信息的公共控制资源集合的周期信息指示方法
WO2018120906A1 (zh) 缓存状态报告bsr上报触发方法、装置和用户终端
WO2019104541A1 (zh) 资源配置方法、装置、用户设备及基站
WO2019100402A1 (zh) 信息指示方法及装置、基站和用户设备
WO2019047143A1 (zh) 寻呼消息接收方法及装置和寻呼配置方法及装置
WO2018086069A1 (zh) 用于发送和接收系统消息的方法、装置、用户设备及基站
WO2018195864A1 (zh) 一种业务复用传输方法、装置及计算机可读存储介质
WO2019080007A1 (zh) 用于发送和接收同步信号的方法、装置、发射机和接收机
WO2018227386A1 (zh) 测量小区信号质量的方法、装置、用户设备及基站
WO2019024084A1 (zh) 数据传输方法、装置以及计算机可读存储介质
WO2018201439A1 (zh) 随机接入方法及装置、用户设备和计算机可读存储介质
WO2019095201A1 (zh) 物理层资源映射方法、装置、用户设备及基站
US11812386B2 (en) Configuration adjustment methods, apparatuses, electronic device and computer readable storage medium
WO2019127248A1 (zh) 数据传输方法和装置
WO2019148456A1 (zh) 信息传输方法、装置、系统及存储介质
WO2019028756A1 (zh) 一种下行控制信息的配置方法及装置
WO2019056385A1 (zh) 随机接入方法及装置、用户设备和计算机可读存储介质
WO2018000322A1 (zh) 数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929719

Country of ref document: EP

Kind code of ref document: A1