WO2017054457A1 - 一种权值获取方法及装置 - Google Patents

一种权值获取方法及装置 Download PDF

Info

Publication number
WO2017054457A1
WO2017054457A1 PCT/CN2016/081604 CN2016081604W WO2017054457A1 WO 2017054457 A1 WO2017054457 A1 WO 2017054457A1 CN 2016081604 W CN2016081604 W CN 2016081604W WO 2017054457 A1 WO2017054457 A1 WO 2017054457A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel quality
weight
base station
data
information
Prior art date
Application number
PCT/CN2016/081604
Other languages
English (en)
French (fr)
Inventor
费佩燕
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2018515942A priority Critical patent/JP6553292B2/ja
Publication of WO2017054457A1 publication Critical patent/WO2017054457A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/0663Feedback reduction using vector or matrix manipulations

Definitions

  • This application relates to, but is not limited to, multi-user MIMO technology.
  • LTE Long Term Evolution
  • MIMO Multiple-Input Multiple-Output
  • the multi-input multi-output wireless transmission technology is a tool for solving the throughput problem. Through full exploitation, the utilization of space resources can be improved and the spectrum efficiency can be improved to achieve the purpose of enhancing customer experience and increasing system capacity. Multi-input and multi-output wireless transmission technology can fully exploit space resources and improve spectrum utilization. It is also the key to its 3GPP research on next-generation mobile communication standards.
  • Multi-user MIMO technology can achieve better system and capacity through multi-user spatial multiplexing.
  • multi-user MIMO has received extensive attention in both theory and industry.
  • the multi-user MIMO downlink transmission technology needs to acquire channel state information of each user at the base station to ensure the efficiency of data transmission.
  • the instantaneous channel state information is generally obtained by the user side through channel estimation, and is fed back to the base station through a feedback link with limited rate.
  • the feedback delay is greater than the coherence time of the channel, the channel state information obtained by the base station at a certain transmission moment may be completely unrelated to the actual channel state information at that moment.
  • the traditional multi-user transmission scheme cannot be effectively implemented.
  • the traditional transmission scheme is still implemented in this case, the system performance will be degraded. That is to say, in this case, since the channel state information fed back by the UE is relatively delayed, the performance of the system is degraded.
  • This paper provides a weight acquisition method and device that can improve system performance and enhance user experience.
  • An embodiment of the present invention provides a weight obtaining method, including:
  • the base station acquires channel quality information
  • the base station determines that the channel quality meets the preset channel quality threshold according to the obtained channel quality information, the base station adjusts the weight information sent by the data.
  • the channel quality information includes one or more of the following: a rank indication RI of the channel, a precoding matrix indication PMI, and a channel quality indicator CQI.
  • the channel quality meets a preset channel quality threshold, including: the obtained RI is less than or equal to N, and the obtained CQI is smaller than the first channel quality threshold M; wherein N is less than or equal to the sounding reference signal SRS Number of antenna ports;
  • the weight information sent by the adjustment data includes: the base station triggers the aperiodic SRS to be sent, and uses the weight of the recently issued aperiodic SRS calculation data.
  • the time interval sent by the aperiodic SRS is triggered by the base station according to the channel condition.
  • the channel quality meets a preset channel quality threshold, including: the obtained RI is less than or equal to N, and the obtained CQI is smaller than the second channel quality threshold M1; wherein, N is less than or equal to the number of SRS uplink antenna ports ;
  • the weight information sent by the adjustment data includes: the base station performs radio resource connection RRC reconfiguration, switches from a closed loop transmission mode to an open loop transmission mode, initiates a periodic SRS, and uses a periodic SRS to calculate data. The weight of the issued.
  • the channel quality meets a preset channel quality threshold, including: the obtained RI is greater than N, the obtained CQI is greater than or equal to a third channel quality threshold M2, and the high layer transmission mode is on. Ring transmission mode configuration; where N is less than or equal to the number of SRS uplink antenna ports;
  • the weight information sent by the adjustment data includes: the base station performs the transmission mode reconfiguration and is configured as a closed loop transmission mode, and the base station uses the obtained PMI as the data delivery right in the closed loop transmission mode. value.
  • the channel quality information meets a preset channel quality threshold, including: the obtained RI is greater than the N; wherein N is less than or equal to the number of antenna ports; at this time, the base station uses the obtained PMI as the The weight issued by the data.
  • the method further includes: performing weighting processing on the sent data by using the weight.
  • the base station After the acquiring the channel quality information, the base station further includes: maintaining the current weight acquisition mode when the obtained channel quality does not meet the preset channel quality threshold.
  • An embodiment of the present invention further provides a weight obtaining apparatus, including an acquiring module and a processing module, where
  • the acquiring module is configured to: acquire channel quality information
  • the processing module is configured to adjust the weight information sent by the data when the channel quality meets the preset channel quality threshold according to the obtained channel quality information.
  • the processing module determines that the channel quality meets the preset channel quality threshold according to the obtained channel quality information
  • the processing module adjusts the weight information sent by the data, including one or more of the following processes:
  • the RI in the obtained channel quality information is less than or equal to N, and the CQI in the obtained channel quality information is smaller than the first channel quality threshold M, triggering the aperiodic SRS to be sent, and adopting the recently issued non- The weight issued by the periodic SRS calculation data;
  • the transmission mode is heavy.
  • the PMI in the obtained channel quality information is used as the weight issued by the data;
  • the PMI in the obtained channel quality information is used as the weight issued by the data
  • N is less than or equal to the number of SRS uplink antenna ports.
  • the processing module After the processing module triggers the aperiodic SRS to be sent, the time interval sent by the aperiodic SRS is triggered by the processing module according to the channel condition.
  • the processing module is further configured to: maintain the current weight acquisition mode when the obtained channel quality does not meet a preset channel quality threshold.
  • the processing module is further configured to: perform weighting processing on the delivered data by using the weight.
  • the weight obtaining device is disposed in the base station or is an independent entity.
  • the foregoing solution breaks the dependence of the base station on the information reported by the terminal, so that the base station fully utilizes its own resource advantages, and combines the SRS resource and the terminal reporting information, according to the channel quality condition, that is, the RI reported by the terminal, and combines
  • the CQI intelligently selects the weighting weight when the data is sent, so that the weight of the base station side is better matched to the channel, which improves the spectrum efficiency of the system, thereby improving the system performance and ensuring the user experience.
  • FIG. 1 is a flowchart of a method for acquiring a weight according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a weight obtaining apparatus according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for obtaining a weight according to an embodiment of the present invention. As shown in FIG. 1 , the method includes:
  • Step 100 The base station acquires channel quality information.
  • the channel quality information of the UE is reported by the base station, and the specific implementation is not described here.
  • the channel quality information may include a channel indication (RI, Rank Indication), a precoding matrix indicator (PMI), and a channel quality indicator (CQI).
  • RI channel indication
  • PMI precoding matrix indicator
  • CQI channel quality indicator
  • Step 101 The base station adjusts the weight information sent by the data when the channel quality determines that the channel quality meets the preset channel quality threshold according to the obtained channel quality information.
  • the channel quality threshold can be set according to the actual application scenario. When the channel condition is good, the channel quality threshold can be higher. When the channel condition is poor, the channel quality threshold can be lower.
  • the specific implementation of this step includes:
  • the channel quality in this step satisfies the preset channel quality threshold, including: if the RI reported by the UE is less than or equal to N, and the CQI is smaller than the first channel quality threshold M, where N is less than or equal to the sounding reference signal (SRS, Sounding Reference) Signal) The number of antenna ports sent. at this time,
  • the weight information sent by the adjustment data in this step includes: the base station triggers the aperiodic SRS to be sent,
  • the weight of the data is calculated by using the most recent aperiodic SRS. In this way, the weighted data can be weighted by the calculated weights.
  • the time interval of the aperiodic SRS is triggered by the base station according to the channel condition. For example, the base station can trigger the number of times of negative acknowledgement (NACK) reporting within a specified time T. If the NACK is reported within the specified time T If the trigger threshold N1 is greater than the preset threshold, the aperiodic SRS is triggered.
  • the size of the T is related to the response sensitivity. The higher the sensitivity is, the smaller the value of the specified time T is.
  • N1 is related to the block error rate required by the system. The lower the block error rate, the lower the value of N1. It should be noted that, here is merely an example of how to trigger the aperiodic SRS to be sent, but it is not used to limit the manner in which the present invention triggers the aperiodic SRS to be sent, and how to calculate the weight of the data according to the SRS is no longer Narration.
  • the channel quality in this step satisfies the preset channel quality threshold, including: if the RI reported by the UE is less than or equal to N, and the CQI is smaller than the second channel quality threshold M1; wherein N is less than or equal to the number of SRS uplink antenna ports. at this time,
  • the weight information sent by the adjustment data in this step includes: the base station performs radio resource connection (RRC) reconfiguration, switches from the closed loop transmission mode to the open loop transmission mode, initiates the periodic SRS, and uses the periodic SRS to calculate the data. The weight of the issued. In this way, the weighted data can be weighted by the calculated weights.
  • RRC radio resource connection
  • the channel quality in this step meets the preset channel quality threshold, including: if the RI reported by the UE is greater than N, the CQI is greater than or equal to the third channel quality threshold M2, and the high layer transmission mode is an open loop transmission mode configuration; wherein, N is less than Or equal to the number of SRS uplink antenna ports. at this time,
  • the weight information sent by the adjustment data in this step includes: the base station retransmits the transmission mode by using the high layer signaling, and is configured as a closed loop transmission mode.
  • the base station uses the PMI reported by the UE as the adjusted data. Weight. In this way, the weighted data can be weighted by the calculated weights.
  • the channel quality threshold includes: when the RI reported by the UE is greater than N, where N is less than or equal to the number of SRS uplink antenna ports; at this time, the weight information sent by the adjustment data in this step includes: The reported PMI is used as a weight issued by the data, and the issued data is weighted.
  • the modulation and coding strategy (MCS) is improved, that is, the spectrum efficiency of the system is improved, thereby improving the system. performance.
  • the current weight acquisition mode is maintained.
  • first channel quality threshold M, the second channel quality threshold M1, and the third channel quality threshold M2 may be the same, may be partially the same, or may be different, and those skilled in the art clearly understand that the specific value depends on the value. In the actual application scenario.
  • the base station acquiring channel quality information may be obtained by performing aperiodic channel state indication (CSI) reporting.
  • CSI channel state indication
  • the technical solution provided by the embodiment of the present invention breaks the dependence of the base station on the information reported by the terminal, so that the base station fully utilizes its own resource advantages, and combines the SRS resource with the terminal reporting information according to the channel quality status: that is, the RI reported by the terminal, and
  • the CQI is used to intelligently select the weighted weight when the data is sent, so that the weight of the base station is better matched to the channel, which improves the spectrum efficiency of the system, thereby improving the system performance and ensuring the user experience.
  • the base station Processing data includes:
  • the base station configures the UE to periodically report channel quality information, including RI, PMI, CQI, and PTI.
  • the base station determines that if the RI reported by the UE is 1, and the CQI is smaller than the first channel quality threshold M, the base station triggers the aperiodic SRS to be sent, and uses the recently reported aperiodic SRS to calculate the number. According to the issued weight.
  • the aperiodic SRS is triggered when the number of times of reporting the NACK is greater than the preset triggering threshold N1 in the specified time T, wherein the value of N1 depends on the error required by the system. Block rate. The lower the block error rate required by the system, the smaller the value of N1 is;
  • the base station performs weighting processing on the delivered data by using the PMI reported by the UE as a weight.
  • the open-close transmission mode switching may not be initiated.
  • the current weight acquisition mode is maintained.
  • the base station Processing data includes:
  • the base station configures the UE to periodically report channel quality information, including RI, PMI, CQI, and PTI.
  • the base station determines that if the RI reported by the UE is less than or equal to 2, and the CQI is smaller than the first channel quality threshold M, the base station triggers the aperiodic SRS to be sent, and uses the recently issued aperiodic SRS to calculate the right to send the data. value.
  • the time interval sent by the aperiodic SRS may be triggered by the base station according to the channel condition;
  • the base station performs weighting processing on the delivered data by using the PMI reported by the UE.
  • the current weight acquisition mode is maintained.
  • the base station processing data includes:
  • the base station configures the UE to periodically report channel quality information, including RI, PMI, CQI, and PTI.
  • the base station determines that if the RI reported by the UE is 1, and the CQI is smaller than the second channel quality threshold, The value of M1, the base station performs RRC reconfiguration, switches from the closed loop transmission mode to the open loop transmission mode, initiates the periodic SRS, and uses the periodic SRS to calculate the weight of the data delivery;
  • the base station If the RI is greater than 1, the CQI is greater than or equal to the third channel quality threshold M2, and the high-layer transmission mode is the open-loop transmission mode configuration, the base station performs the transmission mode reconfiguration and is configured as the closed-loop transmission mode. In the closed-loop transmission mode, the base station adopts the UE.
  • the reported PMI performs weighting on the delivered data;
  • the base station performs weighting processing on the delivered data by using the PMI reported by the UE.
  • the current weight acquisition mode is maintained.
  • the data processed by the base station includes:
  • the base station configures the UE to periodically report channel quality information, including RI, PMI, CQI, and PTI.
  • the base station determines that if the RI reported by the UE is less than or equal to 2, and the CQI is smaller than the second channel quality threshold M1, the base station performs RRC reconfiguration, switches from the closed loop transmission mode to the open loop transmission mode, and initiates the periodic SRS to be sent, and The periodic SRS is used to calculate the weight issued by the data;
  • the upper layer of the base station performs transmission mode reconfiguration, configured as a closed loop transmission mode, and in the closed loop transmission mode, The base station performs weighting processing on the sent data by using the PMI reported by the UE;
  • the base station performs weighting processing on the delivered data by using the PMI reported by the UE.
  • the current weight acquisition mode is maintained.
  • the N in the above embodiment is less than or equal to the number of SRS uplink antenna ports.
  • the base station can obtain channel quality information through aperiodic CSI reporting.
  • the above method is that the base station combines the open-closed transmission mode according to the obtained channel information, and is intelligent.
  • the weight information of the adaptive channel is given to match the channel and improve the throughput of the system.
  • FIG. 2 is a schematic structural diagram of a weight obtaining apparatus according to an embodiment of the present invention. As shown in FIG. 2, at least an acquiring module and a processing module are included, where
  • the acquiring module is configured to: acquire channel quality information
  • the processing module is configured to adjust the weight information sent by the data when the channel quality meets the preset channel quality threshold according to the obtained channel quality information.
  • the processing module when determining that the channel quality meets the preset channel quality threshold according to the obtained channel quality information, adjusts the weight information sent by the data, including one or more of the following processes:
  • the aperiodic SRS is triggered to be sent, and the recently issued aperiodic SRS is used to calculate The weight issued by the data;
  • the RI in the obtained channel quality information is less than or equal to N, and the obtained channel quality information is smaller than the second channel quality threshold M1, perform RRC reconfiguration, switch from the closed loop transmission mode to the open loop transmission mode, and start the periodic SRS. Is issued, and uses the periodic SRS to calculate the weight issued by the data;
  • the transmission mode reconfiguration is performed.
  • the PMI in the obtained channel quality information is used as the weight issued by the adjusted data
  • the PMI in the obtained channel quality information is used as the weight issued by the data.
  • N is less than or equal to the number of SRS uplink antenna ports
  • the time interval sent by the aperiodic SRS is triggered by the processing module according to the channel condition.
  • processing module is further configured to: maintain the current weight acquisition mode when the obtained channel quality does not meet the preset channel quality threshold.
  • the processing module is further configured to perform weighting processing on the delivered data by using the weight.
  • the weight obtaining apparatus may be set in the base station or may be an independent entity.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the base station periodically acquires the channel quality information, and determines, according to the obtained channel quality information, that the channel quality meets the preset channel quality threshold, and adjusts the weight information sent by the data. Breaking through the dependence of the base station on the information reported by the terminal, the base station fully utilizes its own resource advantages, and combines the SRS resource with the terminal reporting information. According to the channel quality status: the RI reported by the terminal, and the CQI is used to intelligently select the data. The weighted weights at the time of delivery make the base station side better match the channel, which improves the spectrum efficiency of the system, thereby improving system performance and ensuring user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种权值获取方法及装置,包括基站获取信道质量信息;基站根据获得的信道质量信息判断出信道质量满足预先设置的信道质量阈值时,调整数据下发的权值信息。本发明提供的技术方案突破了基站对终端上报信息的依赖,让基站充分发挥了自身资源优势,将SRS资源和终端上报信息结合起来,根据信道质量状况即终端上报的RI,并结合CQI来智能的选择出了数据下发时的加权权值,使得基站侧的权值更好的匹配信道,提升了系统的频谱效率,从而提高了系统性能,同时也保证了用户体验。

Description

一种权值获取方法及装置 技术领域
本申请涉及但不限于多用户MIMO技术。
背景技术
长期演进(LTE,Long Term Evolution)系统现在发展迅速,LTE网络已经在很多地方实现了商用,随着商用步伐的不断加大、商用用户数的迅速增加,LTE系统在保证用户体验的前提下,需要容纳更多的用户,这就需要采用增强多输入多输出(MIMO,Multiple-Input Multiple-Output)技术,以满足用户对于无线系统的要求。
作为LTE系统的关键技术之一,多输入多输出无线传输技术是解决吞吐量问题的利器。可以通过充分挖掘,将空间资源利用率提升,提高频谱效率,以达到增强客户体验和提升系统容量的目的。多输入多输出无线传输技术可以充分挖掘空间资源,提高频谱利用率,也是它能成为新一代移动通信标准3GPP研究的关键所在。
多用户MIMO技术通过多用户空间复用,可以获得更好的系统和容量。近年来,多用户MIMO在理论界和工业界都得到广泛的重视。多用户MIMO下行传输技术需要在基站端获取各用户的信道状态信息,以确保数据传输的效率。在实际应用中,瞬时信道状态信息一般在用户侧通过信道估计的方式获取,并通过速率有限的反馈链路反馈给基站。当反馈时延大于信道的相干时间时,基站在某一传输时刻所获得的信道状态信息,与该时刻实际的信道状态信息会出现完全不相关的情况。如果基站采用的瞬时信道状态信息完全过时,传统的多用户传输方案就不能有效实施,如果这种情况下,依然实施传统的传输方案,系统性能会下降。也就是说,这种情况下,由于UE反馈的信道状态信息相对滞后,导致了系统性能的下降。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种权值获取方法及装置,能够提高系统性能,增强用户体验。
本发明实施例提供了一种权值获取方法,包括:
基站获取信道质量信息;
基站根据获得的信道质量信息判断出信道质量满足预先设置的信道质量阈值时,调整数据下发的权值信息。
可选地,所述信道质量信息包括以下一种或多种:信道的秩指示RI、预编码矩阵指示PMI,以及信道质量指示CQI。
可选地,
所述信道质量满足预先设置的信道质量阈值,包括:获得的所述RI小于或等于N,且获得的所述CQI小于第一信道质量阈值M;其中,N小于或等于探测参考信号SRS上发天线端口数;
此时,所述调整数据下发的权值信息,包括:所述基站触发非周期SRS上发,并采用最近上发的非周期SRS计算数据下发的权值。
可选地,所述基站触发非周期SRS上发后,非周期SRS上发的时间间隔由所述基站根据信道状况触发。
可选地,
所述信道质量满足预先设置的信道质量阈值,包括:获得的所述RI小于或等于N,且获得的所述CQI小于第二信道质量阈值M1;其中,N小于或等于SRS上发天线端口数;
此时,所述调整数据下发的权值信息,包括:所述基站进行无线资源连接RRC重配,从闭环传输模式切换到开环传输模式,启动周期SRS上发,并采用周期SRS计算数据下发的权值。
可选地,
所述信道质量满足预先设置的信道质量阈值,包括:获得的所述RI大于N,获得的所述CQI大于或等于第三信道质量阈值M2,且高层传输模式为开 环传输模式配置;其中,N小于或等于SRS上发天线端口数;
此时,所述调整数据下发的权值信息,包括:所述基站高层进行传输模式重配,配置为闭环传输模式,闭环传输模式下,基站采用获得的所述PMI作为数据下发的权值。
可选地,
所述信道质量信息满足预先设置的信道质量阈值,包括:获得的所述RI大于所述N;其中,N小于或等于天线端口数;此时,所述基站采用获得的所述PMI作为所述数据下发的权值。
可选地,
所述基站调整数据下发的权值信息之后,还包括:利用所述权值对下发数据进行加权处理。
可选地,
所述基站获取信道质量信息后,还包括:当所述获得的信道质量不满足预先设置的信道质量阈值时,保持当前的权值获取方式。
本发明实施例还提供了一种权值获取装置,包括获取模块和处理模块,其中,
所述获取模块,配置为:获取信道质量信息;
所述处理模块,配置为:根据获得的信道质量信息判断出信道质量满足预先设置的信道质量阈值时,调整数据下发的权值信息。
可选地,
所述处理模块根据获得的信道质量信息判断出信道质量满足预先设置的信道质量阈值时,调整数据下发的权值信息,包括以下处理中的一种或多种:
当所述获得的信道质量信息中的RI小于或等于N,且所述获得的信道质量信息中的CQI小于第一信道质量阈值M时,触发非周期SRS上发,并采用最近上发的非周期SRS计算数据下发的权值;
当所述获得的信道质量信息中的RI小于或等于N,且所述获得的信道质 量信息中的CQI小于第二信道质量阈值M1时,进行RRC重配,从闭环传输模式切换到开环传输模式,启动周期SRS上发,并采用周期SRS计算数据下发的权值;
当所述获得的信道质量信息中的RI大于N,所述获得的信道质量信息中的CQI大于或等于第三信道质量阈值M2,且高层传输模式为开环传输模式配置时,进行传输模式重配,在重配后的闭环传输模式下,采用获得的信道质量信息中的PMI作为数据下发的权值;
当所述获得的信道质量信息中的RI大于N时,采用获得的信道质量信息中的PMI作为数据下发的权值;
其中,N小于或等于SRS上发天线端口数。
可选地,
所述处理模块触发非周期SRS上发后,非周期SRS上发的时间间隔由所述处理模块根据信道状况触发。
可选地,
所述处理模块还设置为:当所述获得的信道质量不满足预先设置的信道质量阈值时,保持当前的权值获取方式。
可选地,
所述处理模块还设置为:利用所述权值对下发数据进行加权处理。
可选地,
所述权值获取装置设置在基站中,或者为独立实体。
与现有技术相比,上述方案突破了基站对终端上报信息的依赖,让基站充分发挥了自身资源优势,将SRS资源和终端上报信息结合起来,根据信道质量状况即终端上报的RI,并结合CQI来智能的选择出了数据下发时的加权权值,使得基站侧的权值更好的匹配信道,提升了系统的频谱效率,从而提高了系统性能,同时也保证了用户体验。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例权值获取方法的流程图;
图2为本发明实施例权值获取装置的组成结构示意图。
本发明的较佳实施方式
下面结合附图对本发明的实施方式进行描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
图1为本发明实施例权值获取方法的流程图,如图1所示,包括:
步骤100:基站获取信道质量信息。
本步骤可以通过基站配置UE周期上报信道质量信息,具体实现这里不再赘述。
其中,信道质量信息可以包含信道的秩指示(RI,Rank Indication)、预编码矩阵指示(PMI,Precoding Matrix Indicator),以及信道质量指示(CQI,Channel Quality Indicator)。
步骤101:基站根据获得的信道质量信息判断出信道质量满足预先设置的信道质量阈值时,调整数据下发的权值信息。
本步骤中,信道质量阈值可以根据实际应用场景进行设定,在信道条件好时,信道质量阈值可以取高些,在信道条件差时,信道质量阈值可以取低些。
本步骤的具体实现包括:
在系统配置UE只可上发非周期SRS时:
本步骤中的信道质量满足预先设置的信道质量阈值,包括:如果UE上报的RI小于或等于N,且CQI小于第一信道质量阈值M,其中,N小于或等于探测参考信号(SRS,Sounding Reference Signal)上发的天线端口数。此时,
本步骤中的调整数据下发的权值信息,包括:基站触发非周期SRS上发, 并采用最近一次上发的非周期SRS来计算数据下发的权值。这样,即可利用计算的权值对下发数据进行加权处理。其中,非周期SRS上发的时间间隔,由基站根据信道状况智能触发,比如,基站可以根据指定时间T内否定应答(NACK)的上报次数来触发,如果在指定时间T内,NACK的上报次数大于预先设定的触发阈值N1,那么,触发上述非周期SRS上发;其中,T的大小关系到响应灵敏度,要求的灵敏度越高,指定时间T的取值越小;其中,本领域技术人员容易理解,N1的确定与系统要求的误块率有关,误块率越低,则N1的取值越低。需要说明的是,这里仅仅是举例说明如何触发非周期SRS上发,但并不用于限定本发明触发非周期SRS上发的方式,而且,如何根据SRS来计算数据下发的权值这里不再赘述。
或者,
在系统配置UE只可上发周期SRS时:
本步骤中的信道质量满足预先设置的信道质量阈值,包括:如果UE上报的RI小于或等于N,且CQI小于第二信道质量阈值M1;其中,N小于或等于SRS上发天线端口数。此时,
本步骤中的调整数据下发的权值信息,包括:基站进行无线资源连接(RRC)重配,从闭环传输模式切换到开环传输模式,启动周期SRS上发,并采用周期SRS来计算数据下发的权值。这样,即可利用计算的权值对下发数据进行加权处理。
或者,
本步骤中的信道质量满足预先设置的信道质量阈值,包括:如果UE上报的RI大于N,CQI大于或等于第三信道质量阈值M2,且高层传输模式为开环传输模式配置;其中,N小于或等于SRS上发天线端口数。此时,
本步骤中的调整数据下发的权值信息,包括:基站通过高层信令进行传输模式重配,配置为闭环传输模式,闭环传输模式下,基站采用UE上报的PMI作为调整后的数据下发的权值。这样,即可利用计算的权值对下发数据进行加权处理。
本步骤中,当基站根据获得的信道质量信息判断出信道质量满足预先设 置的信道质量阈值,包括:UE上报的RI大于N时,其中,N小于或等于SRS上发天线端口数;此时,本步骤中的调整数据下发的权值信息,包括:基站采用UE上报的PMI作为数据下发的权值,对下发数据进行加权处理。
通过本步骤上述在信道质量满足预先设置的信道质量阈值的处理,在RI小于或等于N时,提升了调制与编码策略(MCS),也就是说,提升了系统的频谱效率,从而提高了系统性能。
当信道质量不满足预先设置的信道质量阈值时,即除上述满足预先设置的信道质量阈值的其他情况,也即权值变更条件不满足时,保持当前的权值获取方式。
需要说明的是,上述第一信道质量阈值M、第二信道质量阈值M1,以及第三信道质量阈值M2可以相同,也可以部分相同,也可以不同,本领域技术人员清楚,其具体取值取决于实际应用场景。
需要说明的是,在开环传输下,基站获取信道质量信息可以通过进行非周期信道状态指示(CSI)上报来获得。
本发明实施例提供的技术方案,突破了基站对终端上报信息的依赖,让基站充分发挥了自身资源优势,将SRS资源和终端上报信息结合起来,根据信道质量状况:即终端上报的RI,并结合CQI来智能的选择出了数据下发时的加权权值,使得基站侧的权值更好的匹配信道,提升了系统的频谱效率,从而提高了系统性能,同时也保证了用户体验。
下面结合具体实施例对本发明方法进行详细描述。
在第一实施例中,假设UE支持SRS单天线端口非周期上报,并且本实施例中,假设N=1,第一信道质量阈值M=7;那么,按照本实施例提供的技术方案,基站处理数据包括:
首先,基站配置UE周期上报信道质量信息,包含RI、PMI、CQI,以及PTI等。
然后,基站判断:如果UE上报的RI为1,且CQI小于第一信道质量阈值M,则基站触发非周期SRS上发,并采用最近上报的非周期SRS来计算数 据下发的权值。其中,在第一实施例中,假设在指定时间T内,NACK的上报次数大于预先设定的触发阈值N1时,触发上述非周期SRS上发,其中,N1的取值取决于系统要求的误块率。系统要求的误块率越低,N1的取值越小;
如果RI大于1,则基站采用UE上报的PMI作为权值对下发数据进行加权处理。第一实施例的实现方式,可以不启动开闭环传输模式切换。
当信道质量不满足预先设置的信道质量阈值即权值变更条件不满足时,保持当前的权值获取方式。
在第二实施例中,假设UE支持SRS 2天线端口非周期上报,并且本实施例中,假设N=2,第一信道质量阈值M=7;那么,按照本实施例提供的技术方案,基站处理数据包括:
首先,基站配置UE周期上报信道质量信息,包含RI、PMI、CQI,以及PTI等。
然后,基站判断:如果UE上报的RI小于或等于2,且CQI小于第一信道质量阈值M,则基站触发非周期SRS上发,并采用最近上发的非周期SRS来计算数据下发的权值。非周期SRS上发的时间间隔可以由基站根据信道状况智能触发;
如果RI大于2,则基站采用UE上报的PMI对下发数据进行加权处理。
当信道质量不满足预先设置的信道质量阈值即权值变更条件不满足时,保持当前的权值获取方式。
在第三实施例中,假设UE支持SRS单天线周期上报,并且本实施例中,假设N=1,第二信道质量阈值M1=8,第三信道质量阈值M2=11;那么,按照本实施例提供的技术方案,基站处理数据包括:
首先,基站配置UE周期上报信道质量信息,包含RI、PMI、CQI,以及PTI等。
然后,基站判断:如果UE上报的RI为1,且CQI小于第二信道质量阈 值M1,则基站进行RRC重配,从闭环传输模式切换到开环传输模式,启动周期SRS上发,并采用周期SRS来计算数据下发的权值;
如果RI大于1,CQI大于或等于第三信道质量阈值M2,且高层传输模式为开环传输模式配置,则基站高层进行传输模式重配,配置为闭环传输模式,闭环传输模式下,基站采用UE上报的PMI,对下发数据进行加权处理;
如果RI大于1,则基站采用UE上报的PMI对下发数据进行加权处理。
当信道质量不满足预先设置的信道质量阈值即权值变更条件不满足时,保持当前的权值获取方式。
在第四实施例中,假设UE支持SRS 2端口天线周期上发,并且本实施例中,假设N=2,第二信道质量阈值M1=8,第三信道质量阈值M2=11;那么,按照本实施例提供的技术方案,基站处理数据包括:
首先,基站配置UE周期上报信道质量信息,包含RI、PMI、CQI,以及PTI等。
然后,基站判断:如果UE上报的RI小于或等于2,且CQI小于第二信道质量阈值M1,则基站进行RRC重配,从闭环传输模式切换到开环传输模式,启动周期SRS上发,并采用周期SRS来计算数据下发的权值;
如果RI大于2,CQI大于或等于第三信道质量阈值M2,且高层传输模式为开环传输式配置,则基站的高层进行传输模式重配,配置为闭环传输模式,并在闭环传输模式下,基站采用UE上报的PMI对下发数据进行加权处理;
如果RI大于2,则基站采用UE上报的PMI对下发数据进行加权处理。
当信道质量不满足预先设置的信道质量阈值即权值变更条件不满足时,保持当前的权值获取方式。
上述实施例中的N小于或等于SRS上发天线端口数。
上述实施例中。在开环传输下,基站可通过非周期CSI上报来获得信道质量信息。
以上方法是基站根据获得的信道信息,将开闭环传输方式结合,智能的 给出适应信道的权值信息,以匹配信道,提升系统的吞吐量。
图2为本发明实施例权值获取装置的组成结构示意图,如图2所示,至少包括获取模块和处理模块,其中,
所述获取模块,配置为:获取信道质量信息;
所述处理模块,配置为:根据获得的信道质量信息判断出信道质量满足预先设置的信道质量阈值时,调整数据下发的权值信息。
可选地,所述处理模块根据获得的信道质量信息判断出信道质量满足预先设置的信道质量阈值时,调整数据下发的权值信息,包括以下处理中的一种或多种:
当获得的信道质量信息中的RI小于或等于N,且获得的信道质量信息中的CQI小于第一信道质量阈值M时,触发非周期SRS上发,并采用最近上发的非周期SRS来计算数据下发的权值;
当获得的信道质量信息中的RI小于或等于N,且获得的信道质量信息中的小于第二信道质量阈值M1时,进行RRC重配,从闭环传输模式切换到开环传输模式,启动周期SRS上发,并采用周期SRS来计算数据下发的权值;
当获得的信道质量信息中的RI大于N,获得的信道质量信息中的CQI大于或等于第三信道质量阈值M2,且高层传输模式为开环传输模式配置时,进行传输模式重配,在重配后的闭环传输模式下,采用获得的信道质量信息中的PMI作为调整后的数据下发的权值;
当获得的信道质量信息中的RI大于N时,采用获得的信道质量信息中的PMI作为数据下发的权值。
其中,N小于或等于SRS上发天线端口数;
可选地,所述处理模块触发非周期SRS上发后,非周期SRS上发的时间间隔由所述处理模块根据信道状况触发。
可选地,所述处理模块还设置为:当获得的信道质量不满足预先设置的信道质量阈值时,保持当前的权值获取方式。
可选地,所述处理模块还设置为:利用所述权值对下发数据进行加权处理。
可选地,所述权值获取装置可以设置在基站中,也可以为独立实体。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
通过本发明实施例的方案,基站周期性获取信道质量信息;根据获得的信道质量信息判断出信道质量满足预先设置的信道质量阈值时,调整数据下发的权值信息。突破了基站对终端上报信息的依赖,让基站充分发挥了自身资源优势,将SRS资源和终端上报信息结合起来,根据信道质量状况:即终端上报的RI,并结合CQI来智能的选择出了数据下发时的加权权值,使得基站侧的权值更好的匹配信道,提升了系统的频谱效率,从而提高了系统性能,同时也保证了用户体验。

Claims (15)

  1. 一种权值获取方法,其中,包括:
    基站获取信道质量信息;
    基站根据获得的信道质量信息判断出信道质量满足预先设置的信道质量阈值时,调整数据下发的权值信息。
  2. 根据权利要求1所述的权值获取方法,其中,所述信道质量信息包括以下一种或多种:信道的秩指示RI、预编码矩阵指示PMI,以及信道质量指示CQI。
  3. 根据权利要求2所述的权值获取方法,其中:
    所述信道质量满足预先设置的信道质量阈值,包括:获得的所述RI小于或等于N,且获得的所述CQI小于第一信道质量阈值M;其中,N小于或等于探测参考信号SRS上发天线端口数;
    此时,所述调整数据下发的权值信息,包括:所述基站触发非周期SRS上发,并采用最近上发的非周期SRS计算数据下发的权值。
  4. 根据权利要求3所述的权值获取方法,其中,所述基站触发非周期SRS上发后,非周期SRS上发的时间间隔由所述基站根据信道状况触发。
  5. 根据权利要求2所述的权值获取方法,其中:
    所述信道质量满足预先设置的信道质量阈值,包括:获得的所述RI小于或等于N,且获得的所述CQI小于第二信道质量阈值M1;其中,N小于或等于SRS上发天线端口数;
    此时,所述调整数据下发的权值信息,包括:所述基站进行无线资源连接RRC重配,从闭环传输模式切换到开环传输模式,启动周期SRS上发,并采用周期SRS计算数据下发的权值。
  6. 根据权利要求2所述的权值获取方法,其中:
    所述信道质量满足预先设置的信道质量阈值,包括:获得的所述RI大于N,获得的所述CQI大于或等于第三信道质量阈值M2,且高层传输模式为开环传输模式配置;其中,N小于或等于SRS上发天线端口数;
    此时,所述调整数据下发的权值信息,包括:所述基站高层进行传输模式重配,配置为闭环传输模式,闭环传输模式下,基站采用获得的所述PMI作为数据下发的权值。
  7. 根据权利要求2所述的权值获取方法,其中,所述信道质量信息满足预先设置的信道质量阈值,包括:获得的所述RI大于所述N;其中,N小于或等于天线端口数;
    此时,所述基站采用获得的所述PMI作为所述数据下发的权值。
  8. 根据权利要求3~7中任一项所述的权值获取方法,其中,所述基站调整数据下发的权值信息之后,还包括:利用所述权值对下发数据进行加权处理。
  9. 根据权利要求1~7中任一项所述的权值获取装置,其中,所述基站获取信道质量信息后,还包括:当所述获得的信道质量不满足预先设置的信道质量阈值时,保持当前的权值获取方式。
  10. 一种权值获取装置,包括获取模块和处理模块,其中,
    所述获取模块,配置为:获取信道质量信息;
    所述处理模块,配置为:根据获得的信道质量信息判断出信道质量满足预先设置的信道质量阈值时,调整数据下发的权值信息。
  11. 根据权利要求10所述的权值获取装置,其中,所述处理模块根据获得的信道质量信息判断出信道质量满足预先设置的信道质量阈值时,调整数据下发的权值信息,包括以下处理中的一种或多种:
    当所述获得的信道质量信息中的RI小于或等于N,且所述获得的信道质量信息中的CQI小于第一信道质量阈值M时,触发非周期SRS上发,并采用最近上发的非周期SRS计算数据下发的权值;
    当所述获得的信道质量信息中的RI小于或等于N,且所述获得的信道质量信息中的CQI小于第二信道质量阈值M1时,进行RRC重配,从闭环传输模式切换到开环传输模式,启动周期SRS上发,并采用周期SRS计算数据下发的权值;
    当所述获得的信道质量信息中的RI大于N,所述获得的信道质量信息中 的CQI大于或等于第三信道质量阈值M2,且高层传输模式为开环传输模式配置时,进行传输模式重配,在重配后的闭环传输模式下,采用获得的信道质量信息中的PMI作为数据下发的权值;
    当所述获得的信道质量信息中的RI大于N时,采用获得的信道质量信息中的PMI作为数据下发的权值;
    其中,N小于或等于SRS上发天线端口数。
  12. 根据权利要求11所述的权值获取方法,其中,所述处理模块触发非周期SRS上发后,非周期SRS上发的时间间隔由所述处理模块根据信道状况触发。
  13. 根据权利要求10或11或12所述的权值获取装置,其中,所述处理模块还设置为:当所述获得的信道质量不满足预先设置的信道质量阈值时,保持当前的权值获取方式。
  14. 根据权利要求11所述的权值获取装置,其中,所述处理模块还设置为:利用所述权值对下发数据进行加权处理。
  15. 根据权利要求10所述的权值获取装置,其中,所述权值获取装置设置在基站中,或者为独立实体。
PCT/CN2016/081604 2015-09-28 2016-05-10 一种权值获取方法及装置 WO2017054457A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018515942A JP6553292B2 (ja) 2015-09-28 2016-05-10 重み値取得方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510629380.X 2015-09-28
CN201510629380.XA CN106559123B (zh) 2015-09-28 2015-09-28 一种权值获取方法及装置

Publications (1)

Publication Number Publication Date
WO2017054457A1 true WO2017054457A1 (zh) 2017-04-06

Family

ID=58415825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081604 WO2017054457A1 (zh) 2015-09-28 2016-05-10 一种权值获取方法及装置

Country Status (3)

Country Link
JP (1) JP6553292B2 (zh)
CN (1) CN106559123B (zh)
WO (1) WO2017054457A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615200B (zh) * 2020-04-10 2023-04-28 洛阳理工学院 混合Hybrid NOMA网络的无人机辅助通信资源分配方法
CN113645001B (zh) * 2021-08-11 2022-06-21 北京邮电大学 一种针对高速移动场景下时变信道的srs周期配置方法
CN113993173B (zh) * 2021-10-25 2023-08-29 京信网络系统股份有限公司 动态载波切换方法、装置、基站和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232690A (zh) * 2007-01-23 2008-07-30 华为技术有限公司 时分双工系统中综合应用双向信道质量指示的方法及系统
CN101945441A (zh) * 2010-09-15 2011-01-12 华为技术有限公司 一种多小区ue的调度方法、装置和系统
US20110292823A1 (en) * 2010-05-27 2011-12-01 Qualcomm Incorporated Sounding reference signal (srs) in heterogeneous network (hetnet) with time division multiplexing (tdm) partitioning
CN104253674A (zh) * 2013-06-27 2014-12-31 华为技术有限公司 反馈csi的方法、调度ue的方法、ue及基站

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103357B2 (ja) * 2008-11-04 2012-12-19 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置及び無線基地局装置
JP5001314B2 (ja) * 2009-02-27 2012-08-15 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置及び変調・符号化方式選択方法
JP2010206403A (ja) * 2009-03-02 2010-09-16 Toshiba Corp 基地局、端末および無線通信システム
JP5777092B2 (ja) * 2011-06-10 2015-09-09 ソフトバンク株式会社 無線通信装置、無線伝送システム及び無線伝送方法
CN102546111A (zh) * 2012-01-09 2012-07-04 大唐移动通信设备有限公司 一种cqi确定方法及装置
CN103905101B (zh) * 2012-12-27 2019-02-12 中兴通讯股份有限公司 Lte系统中下行预编码粒度的确定方法及基站
JP6211177B2 (ja) * 2013-06-04 2017-10-11 華為技術有限公司Huawei Technologies Co.,Ltd. データ送信の方法および装置、ならびにユーザ機器
US9544122B2 (en) * 2013-11-18 2017-01-10 Qualcomm Incorporated Techniques for outer loop management in a multiple output system
CN103701512B (zh) * 2013-12-16 2017-01-25 北京北方烽火科技有限公司 一种确定下行波束赋形权向量的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232690A (zh) * 2007-01-23 2008-07-30 华为技术有限公司 时分双工系统中综合应用双向信道质量指示的方法及系统
US20110292823A1 (en) * 2010-05-27 2011-12-01 Qualcomm Incorporated Sounding reference signal (srs) in heterogeneous network (hetnet) with time division multiplexing (tdm) partitioning
CN101945441A (zh) * 2010-09-15 2011-01-12 华为技术有限公司 一种多小区ue的调度方法、装置和系统
CN104253674A (zh) * 2013-06-27 2014-12-31 华为技术有限公司 反馈csi的方法、调度ue的方法、ue及基站

Also Published As

Publication number Publication date
JP2018534840A (ja) 2018-11-22
CN106559123A (zh) 2017-04-05
JP6553292B2 (ja) 2019-07-31
CN106559123B (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
US11452111B2 (en) Multi-antenna transmission protocols for high doppler conditions
EP3221979B1 (en) Signaling adapted csi-rs periodicities in active antenna systems
JP2020523885A (ja) 無線通信システムの基準信号のチャネル状態情報
TWI472178B (zh) 用於長期演進(lte)頻道狀態資訊估計的方法及裝置
JP6110366B2 (ja) 開ループ空間処理
CN105009494B (zh) 一种信道状态信息的反馈方法及装置
KR101978771B1 (ko) 무선 통신 시스템에서 스트림 별 채널 이득 피드백을 통한 다중 스트림 mu-cqi 추정 방법 및 장치
US11855729B2 (en) Uneven frequency-domain basis allocation for type II CSI enhancements
US20210084519A1 (en) Facilitation of multiple input multiple output communication for 5g or other next generation network
JP2014514875A5 (zh)
WO2013055093A1 (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
US20170244519A1 (en) PMI Selection
WO2012100745A1 (zh) 多输入多输出模式切换方法和终端设备
KR20240025502A (ko) 무선 통신 시스템에서 채널 상태 정보를 전송 및 수신하기 위한 방법 및 장치
WO2017054457A1 (zh) 一种权值获取方法及装置
WO2016082869A1 (en) Method and device for efficient precoder search
US20230328568A1 (en) Quantization scheme for channel state information reports
EP3753140A1 (en) Link adaptation correction for low latency mu-mimo
Abdulhasan et al. A channel quality indicator (CQI) prediction scheme using feed forward neural network (FF-NN) technique for MU-MIMO LTE system
Konstantinov et al. Analysis of the transmission modes and downlink control information in the LTE-advanced/5G network
WO2017157123A1 (zh) 一种预编码处理方法、用户设备及基站
WO2023155092A1 (en) Systems and methods utilizing doppler frequency values for wireless communication
WO2023131395A1 (en) Beamforming control for downlink limited access node

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018515942

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850082

Country of ref document: EP

Kind code of ref document: A1