WO2017052308A2 - Organic compound to be used in organic device, and method for manufacturing organic device by using same - Google Patents

Organic compound to be used in organic device, and method for manufacturing organic device by using same Download PDF

Info

Publication number
WO2017052308A2
WO2017052308A2 PCT/KR2016/010717 KR2016010717W WO2017052308A2 WO 2017052308 A2 WO2017052308 A2 WO 2017052308A2 KR 2016010717 W KR2016010717 W KR 2016010717W WO 2017052308 A2 WO2017052308 A2 WO 2017052308A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
formula
organic
pyrimidine ring
Prior art date
Application number
PCT/KR2016/010717
Other languages
French (fr)
Korean (ko)
Other versions
WO2017052308A3 (en
Inventor
이성구
서민혜
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150136847A external-priority patent/KR101789672B1/en
Priority claimed from KR1020160045725A external-priority patent/KR101859123B1/en
Priority claimed from KR1020160120760A external-priority patent/KR101888562B1/en
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2017052308A2 publication Critical patent/WO2017052308A2/en
Publication of WO2017052308A3 publication Critical patent/WO2017052308A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a compound for an organic device that can be applied to the hole blocking layer, the electron transport layer, the light emitting layer of the organic device, more specifically, hydrogen bonding, by combining at least two or more functional groups containing a pyrimidine ring
  • the present invention relates to a compound for an organic device, a method for manufacturing an organic thin film including the same, and an organic device, wherein the organic thin film may be formed through a solution process.
  • the organic photoelectric device which is attracting attention as a next-generation display device, forms an organic light emitting layer between a cathode and a cathode coated with a transparent cathode material such as ITO, and when a predetermined voltage is applied to the electrode, It is a device using the principle that the injected electrons are combined in the organic light emitting layer to emit light.
  • the organic photoelectric device is manufactured in a multi-layered structure including a charge blocking layer according to the characteristics of the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer and the light emitting layer in addition to the organic light emitting layer in order to achieve a level of industrially applicable performance. .
  • each layer constituting the organic device is generally formed by a vacuum deposition process.
  • the vacuum deposition method is a principle of forming a thin film by heating a sample in a high vacuum atmosphere of 10-4 Torr or less to heat and subliming the sample to a solid on a relatively low temperature substrate.
  • the vacuum deposition method can be applied only to monomolecular compounds having a high molecular weight and not crystallized by heat as the sublimation process of the compound is essential, and requires expensive vacuum deposition equipment and it is difficult to manufacture devices in large areas. Can be.
  • Republic of Korea Patent No. 10-0865661 name of the invention: “a polymer compound having a phenylcarbazole group and a polymer electroluminescent device using the same” hereinafter referred to as the prior art 1) to prepare a polymer compound having a phenylcarbazole group
  • a technique of forming a light emitting layer of an organic photoelectric device by spin coating a solution containing the same has been disclosed.
  • the polymer material When the polymer material is applied as in the prior art 1, it is possible to form a thin film through a low-cost solution process and can not be crystallized by heat, thereby exhibiting excellent thin film properties. Difficult to remove completely, the efficiency of the device is lower than the single-molecule organic material, there is a problem in that the organic thin film produced by applying this as the molecular weight distribution is present locally different physical properties.
  • Prior art 1 proposes a polymer compound containing a phenylcarbazole group as a compound for an organic device capable of a low-cost solution process, but the polymer compound has a low charge transfer ability compared to a monomolecular compound and is difficult to purify the compound with high purity. There is a problem in that it is limited in improving the efficiency of the device.
  • the technical problem to be achieved by the present invention is to provide a technique for a low molecular compound for an organic device capable of forming a thin film through a solution process due to its high solubility in organic solvents and excellent thin film properties.
  • the present invention has another object to contribute to the large area and low cost of the organic device by providing a technique for such a novel compound.
  • the technical problem to be achieved by the present invention is to improve the performance of the organic device when manufacturing the organic device having a multi-layer structure through a solution process, and to improve the solubility and thin film formation characteristics of the solvent organic to ensure sufficient stability It is intended to provide a device compound.
  • At least one functional group including a pyrimidine ring the functional group including the pyrimidine ring can be applied to the electron transport layer or hole blocking layer, characterized in that hydrogen bonds are possible
  • the functional group including the pyrimidine ring can be applied to the electron transport layer or hole blocking layer, characterized in that hydrogen bonds are possible
  • At least one functional group containing a pyrimidine ring at the terminal of the carbazole-based compound comprising carbazole, the functional group including the pyrimidine ring is capable of hydrogen bonding It provides a compound for an organic light emitting organic device characterized in that.
  • At least one functional group including a pyrimidine ring at the terminal of the compound having a hole transport property to form an organic thin film by hydrogen bonding between the functional group comprising the pyrimidine ring It provides a compound for an organic device, characterized in that.
  • another embodiment of the present invention provides a method of manufacturing an organic thin film. i) dissolving a compound for an organic device having two or more functional groups including a pyrimidine ring in a soluble second solvent to prepare a solution, ii) preparing a substrate, iii) the upper portion of the substrate Applying a solution, and iv) heat-treating the substrate to which the solution is applied at a temperature of 70 ° C. to 170 ° C. to form an organic thin film by hydrogen bonding in the working period including the pyrimidine ring. It provides a method for producing a thin film.
  • the solution process by improving the solubility of the compound by introducing at least two functional groups containing a pyrimidine ring capable of hydrogen bonding to the compound for the hole blocking layer, electron transport layer, light emitting layer of the conventional organic device.
  • a second effect that the solution containing the compound can form an organic thin film having excellent thermal stability by hydrogen bonding of the working period including the pyrimidine ring at a temperature of 70 °C to 170 °C,
  • Forming the organic thin film through a low-cost solution process has a fourth effect that can contribute to lowering the cost and mass production of the organic device.
  • the organic light emitting compound according to the present invention may be improved in solubility in various solvents by providing a functional group including a pyrimidine ring capable of hydrogen bonding.
  • the low molecular organic light-emitting compound is generally used to form an organic thin film mainly through the deposition process due to the problem of poor solubility, it is possible to provide properties suitable for various solution processes by the improved solubility according to the present invention.
  • 1 is a chemical formula of a compound for an organic device according to an embodiment of the present invention and a hydrogen bond structural formula thereof.
  • FIG. 2 is a cross-sectional view and an energy level diagram showing a stacked structure of an organic light emitting diode according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a 1 HNMR spectrum of the compound for organic devices (uracil-B3PyPB) according to an embodiment of the present invention.
  • FIG. 4 is a view showing UV-vis absorption spectrum and PL spectrum of the compound for organic devices (uracil-B3PyPB) according to an embodiment of the present invention.
  • FIG. 5 is a graph showing an electro-optical characteristic analysis result of the organic light emitting device manufactured according to an embodiment of the present invention and the organic light emitting device according to the prior art.
  • FIG. 6 is a schematic cross-sectional view of an organic light emitting diode according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the UV-vis spectrum and PL spectrum of the organic light emitting compound (MCP-pym) and the organic light emitting compound (MCP) according to the prior art according to an embodiment of the present invention.
  • FIG 8 is a graph showing the EL spectrum and the PL spectrum of the blue phosphorescent dopant (Fir6) of the organic light emitting device according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the current efficiency according to the change in the current density of the organic light emitting device manufactured according to an embodiment of the present invention.
  • FIG 10 is a view showing a hydrogen bonding structure of the compound for organic devices (uracil-TPA) according to an embodiment of the present invention.
  • FIG. 11 is a view showing a hydrogen bond structure of the compound for organic devices (uracil-TPD) according to an embodiment of the present invention.
  • V-I voltage-current
  • FIG. 13 is a graph showing changes in luminous efficiency with respect to current densities of Example 5 and Comparative Example 3.
  • FIG. 13 is a graph showing changes in luminous efficiency with respect to current densities of Example 5 and Comparative Example 3.
  • V-I voltage-current
  • FIG. 15 is a graph showing changes in luminous efficiency with respect to current densities of Example 6 and Comparative Example 3.
  • FIG. 15 is a graph showing changes in luminous efficiency with respect to current densities of Example 6 and Comparative Example 3.
  • V-I voltage-current
  • FIG. 17 is a graph showing changes in luminous efficiency with respect to current densities of Example 7, Example 8 and Comparative Example 4.
  • FIG. 17 is a graph showing changes in luminous efficiency with respect to current densities of Example 7, Example 8 and Comparative Example 4.
  • FIG. 18 is a schematic cross-sectional view of an organic light emitting diode according to an embodiment of the present invention.
  • the "functional group including a pyrimidine ring” refers to a group of atoms derived from a compound including a pyrimidine ring in which four carbon atoms and two nitrogen atoms form a ring structure, and hydrogen atoms constituting a pyrimidine ring. Or it shall include all substituted or unsubstituted atomic groups.
  • the “purine-based functional group” refers to an atomic group derived from purine, which is an aromatic ring compound having a structure in which a pyrimidine ring and an imidazole ring share one carbon-carbon bond, and are hydrogen atoms constituting a purine molecule or It is assumed to include all substituted or unsubstituted atomic groups.
  • substituted or unsubstituted is a hydrogen atom of the compound selected from deuterium, halogen, linear or branched alkyl group, aryl group, heterocyclic group, cyano group, amino group, carboxyl group, hydroxy group, halogenated alkyl group It means that it is substituted with one or more functional groups, or have no functional groups.
  • pyridine means a heterocyclic compound containing one nitrogen atom.
  • the present invention relates to a compound for an organic device applied to a hole blocking layer (HBL) or an electron transport layer (ETL) of an organic device
  • the functional group including the pyrimidine ring of the present invention includes an atomic group capable of hydrogen bonding, as described above, when the compound for an organic device includes at least two or more functional groups, hydrogen of the functional period under a predetermined temperature condition It is characterized by forming an organic thin film by bonding.
  • uracil-B3PyPB a compound for an organic device having two functional groups including a pyrimidine ring according to an embodiment of the present invention.
  • Compound uracil-B3PyPB contains a pyrimidine ring containing two hydrogen atoms of B3PyPB (1,3-bis [3,5-di (pyridin-3-yl) phenyl] benzene), which is a material of a conventional hole blocking layer or electron transport layer. It can be prepared by substituting each functional group.
  • Figure 1 (b) is a view showing the hydrogen bond structural formula of the compound uracil-B3PyPB.
  • the compound uracil-B3PyPB has a functional group including a hydrogen group capable of hydrogen bonding at both ends thereof to form a network structure with hydrogen bonds in the working period under a predetermined temperature condition, thereby forming an organic thin film through a solution process. Formation may be possible.
  • the functional group containing the pyrimidine ring of the present invention may be one or more selected from pyrimidine-based functional groups and purine-based functional groups.
  • the pyrimidine-based functional group may be characterized in that it is derived from a pyrimidine-based compound represented by Formula 1a or 1b.
  • R1 to R6 may be the same as or different from each other, and each independently hydrogen, deuterium, halogen, linear or branched alkyl group, aryl group, heterocyclic group, cyano group, amino group, carboxyl group, hydroxy group, halogenated alkyl group, Selected from alkoxy groups)
  • the functional group derived from the pyrimidine-based compound represented by Formula 1a or Formula 1b may be selected from a plurality of substance groups represented by the following formulas, but is not limited thereto.
  • the purine-based functional group in one embodiment of the present invention may be characterized in that it is derived from one selected from the purine-based compound represented by the formula (2a) to 2f.
  • R7 to R21 may be the same as or different from each other, and each independently hydrogen, deuterium, halogen, straight or branched chain alkyl group, aryl group, heterocyclic group, cyano group, amino group, carboxyl group, hydroxy group, halogenated alkyl group, Selected from alkoxy groups)
  • the functional group derived from the purine-based compound represented by Formulas 2a to 2f may be selected from a plurality of substance groups represented by the following Formulas, but is not limited thereto.
  • the compound for an organic device of the present invention is a compound containing an electron-withdrawing group capable of stabilizing an anion radical or a part of atoms or atomic groups of a metal complex compound capable of accommodating electrons. It may be prepared by replacing at least one or more functional groups.
  • the compound for an organic device includes at least one hydrogen atom of at least one compound selected from metal complex compounds represented by the following [Formula 3-1] to [Formula 3-3] as a functional group including the pyrimidine ring. It may be prepared by substitution above.
  • the metal complex compound to which the functional group including the pyrimidine ring can be bound is not limited to the following [Formula 3-1], [Formula 3-2] and [Formula 3-3], It is noted that derivatives may also be possible.
  • M is one metal element selected from Al or Ga
  • the compound for an organic device is a pyrimidine compound of one kind of atoms or atomic groups selected from the hole blocking layer and / or the electron transport layer compound of the organic device represented by the following [Formula 4-1] to [Formula 4-16] It may be prepared by replacing at least one or more functional groups containing a ring.
  • the compound for an organic device of the present invention may be selected from any one of oxadizole group, azole group, and benzimidizole group.
  • the compound may be a compound represented by the following formula.
  • the compound for an organic device of the present invention includes a pyridine which is a group having electron-specificity, and part of one compound selected from the compounds represented by the following [Formula 4-1] to [Formula 4-16] It may be prepared by replacing at least one atom or atom group with a functional group including a pyrimidine ring.
  • the present invention can be achieved by substituting some of the atoms or the atomic groups of the derivatives derived from the following [Formula 4-1] to [Formula 4-16] with a functional group including the pyrimidine ring.
  • the compound for an organic device of the present invention includes a pyrimidine ring as part of a compound having an electron-withdrawing group other than the compound containing a pyridine structure represented by the above [Formula 4-1] to [Formula 4-16]
  • the electron withdrawing group may be prepared by substituting a functional group, and specifically, the electron withdrawing group may be silole, oxadiazole, triazole, imidazole, or perfluorinated oligo-p-phenyl. Perreninated oligo-p-phenylene, phenanthroline, triazine and the like.
  • the compound having an electron withdrawing group in addition to the above [Formula 4-1] to [Formula 4-27] may be selected from a plurality of substance groups represented by the following formula, and a portion of the selected compound or atom group It is noted that the present invention can be achieved by substitution with a functional group containing a midine ring.
  • the compound for an organic device according to the present invention is from the group consisting of the compounds represented by the above [Formula 3-1] to [Formula 3-3] and the formula [Formula 4-1] to [Formula 4-16] It may be prepared by substituting at least two or more of the atoms or atomic groups of the selected one compound with a functional group including the pyrimidine ring, the compound for an organic device having two or more functional groups as described above The hydrogen bond can form an easily stable organic thin film.
  • the compound for an organic device according to the present invention has a feature of controlling the hardness of the organic thin film formed according to the number of functional groups containing a pyrimidine ring.
  • the compound for an organic device according to the present invention includes an atomic group capable of hydrogen bonding to a functional group including a pyrimidine ring provided in the compound to form an organic thin film by hydrogen bonding between these atomic groups. Through the formation of a more dense network structure can exhibit the characteristic of increasing the hardness of the thin film.
  • the organic thin film is i) dissolving a compound for an organic device having two or more functional groups including a pyrimidine ring in a first solvent to prepare a solution, ii) preparing a substrate, iii 1) applying the solution to one surface of the substrate, iv) heat-treating the substrate to which the solution is applied for a predetermined time to form an organic thin film.
  • the compound for an organic device having two or more functional groups including a pyrimidine ring in step i) of the present invention may be soluble in the first solvent at room temperature, and in one embodiment of the present invention, the first solvent Is 1,2,3-trichlorobenzene (1,2,3-Trichlorobenzene), 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene), 1,3,5-trichlorobenzene (1 , 3,5-Trichlorobenzen), chloroform, chloroform, tetrahydrofuran and one or two or more mixed solvents selected from ethanol, but is not limited thereto.
  • the first solvent Is 1,2,3-trichlorobenzene (1,2,3-Trichlorobenzene), 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene), 1,3,5-trichlorobenzene (1 , 3,5-Trichlorobenzen), chloroform, chloroform, tetra
  • the substrate in step ii) of the present invention is not limited, and may be any substrate as long as the substrate is not melted by the solution and is not deformed in the heat treatment step described later.
  • Step iii) of the present invention is a step of applying a solution to one side of the substrate.
  • Application of the solution may be any known solution coating and coating method such as spin coating, inkjet printing, casting method, dip coating, spray coating without limitation.
  • Step iv) of the present invention is a step of forming an organic thin film by inducing hydrogen bonding by heat-treating the substrate to which the solution is applied for a predetermined time.
  • the functional group including the pyrimidine ring may include an atomic group capable of hydrogen bonding to form an organic thin film through hydrogen bonding therebetween, and the heat treatment may be preferably performed at a temperature in the range of 70 to 170 ° C. Can be. If the heat treatment temperature is less than 70 °C heat energy for hydrogen bonding may not be enough to form an organic thin film, if it exceeds 170 °C excessive heat may be applied to inhibit the stability of the substrate and the compound It is specified that the temperature is limited, but not necessarily limited thereto.
  • the compound for an organic device according to the present invention can be applied to the hole blocking layer and / or the electron transport layer of the organic light emitting device including the electron pulling characteristics or a group that can accept the electron well, the compound for an organic device according to the present invention It will be described with respect to the organic light emitting device manufactured to include.
  • the organic light emitting device of the present invention may include an anode, a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer and a cathode, wherein the hole blocking layer and / or the electron transport layer in one embodiment of the present invention Therefore, the organic thin film may be formed from a solution containing a compound for an organic device having at least two functional groups including a pyrimidine ring.
  • the hole blocking layer may be formed including a compound represented by the following formula.
  • the Pym 1 to Pym 7 may be the same as or different from each other, at least two or more of Pym 1 to Pym 7 is a functional group containing the pyrimidine ring, the remainder is hydrogen, Pym 8 to Pym in the formula (6) 10 may be the same as or different from each other, at least two or more of Pym 8 to Pym 10 may be a functional group including the pyrimidine ring, and the remainder is hydrogen)
  • the hole blocking layer prepares a solution containing the compound represented by the above formula, and is applied on top of the light emitting layer to induce hydrogen bonding of the compound represented by the above formula under a predetermined temperature condition. Can be formed.
  • the predetermined temperature conditions are the same as the heat treatment conditions described above in the method for manufacturing the organic thin film.
  • anode, the hole injection layer, the hole transport layer, the light emitting layer, and the cathode constituting the organic light emitting device may be formed of a material known in the art using a known method (deposition, solution process, etc.). However, for the smooth operation of the device using known materials, the device must be made in consideration of the energy level of the compounds constituting each layer.
  • 2 is a cross-sectional view of an organic light emitting device according to an embodiment of the present invention manufactured in consideration of energy levels of compounds constituting each layer, and a diagram illustrating energy levels of compounds constituting each layer.
  • the organic light emitting device is a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), a hole blocking layer ( HBL), the electron transport layer (ETL), and the electron injection layer (EIL) can be prepared by sequentially forming.
  • a hole injection layer, an electron transport layer, or an electron injection layer may use a known organic material
  • the hole blocking layer may use uracil-B3PyPB, which is a compound for an organic device, according to an embodiment of the present invention.
  • the functional group containing the pyrimidine ring of the present invention is not only a hole blocking material, but also specifies that at least two or more bonded to the hole transport layer or the light emitting layer material may enable the formation of an organic thin film through hydrogen bonding.
  • the hole transport layer illustrated in FIG. 2A includes uracil-TCTA prepared by combining a derivative of uracil, which is a kind of a functional group containing a pyrimidine ring, to TCTA, a known hole transport material.
  • the light emitting layer may include a uracil-CzTP and a dopant prepared by binding the derivative of uracil to CzTP, which is a known host material.
  • the compound for an organic device and the organic thin film prepared by using the same according to the present invention are not limited to an organic light emitting device, and are not applicable to various organic devices such as an organic photosensitive member, an organic transistor, an organic solar cell, and an organic image sensor. It can be obvious.
  • UV spectra and PL (photoluminescence) spectra were analyzed to determine the optical properties of the compound uracil-B3PyPB prepared according to Example 1.
  • UV spectra and PL spectra were measured by dissolving uracil-B3PyPB in chloroform, the results of which are shown in FIG. 4.
  • the compound uracil-B3PyPB prepared according to an embodiment of the present invention is compared with the compound B3PyPB (UV absorption peak 250 nm, PL peak 357 nm) for an organic device having no functional group (uracil), Although shifted toward longer wavelengths, it was found to have almost the same optical characteristics. Therefore, the compound uracil-B3PyPB prepared according to an embodiment of the present invention may be determined to have solubility and thin film formation property in a solvent as well as the inherent optical properties of B3PyPB as having a functional group.
  • the energy levels of the compounds according to Examples 1 and 2 were measured using CV (cyclic voltammetry) to find out whether the prepared compounds have suitable energy levels for the hole blocking layer and / or the electron transport layer of the organic device.
  • CV cyclic voltammetry
  • ferrocene having an E 1/2 (half wave potential) of 0.35 V was used as a reference material.
  • the HOMO level value of the compound uracil-B3PyPB was found to be 6.37 eV.
  • the LUMO value of the compound uracil-B3PyPB was calculated from the optical bandgap energy known from the UV-vis absorption spectrum and the HOMO value calculated above, and the LUMO value was found to be 3.37 eV.
  • This value is similar to the energy level of the compound used in the hole blocking layer of the conventional organic light emitting device means that the compound prepared according to an embodiment of the present invention can be applied to the hole blocking layer of the organic light emitting device.
  • Figure 2 (b) is a view showing the energy level of the compound for an organic device prepared according to Example 1 and the compound for a conventional organic device.
  • the compound uracil-B3PyPB prepared according to one embodiment of the present invention can be used as a hole blocking layer.
  • the energy level of uracil-TAZ calculated by the same method was confirmed that the HOMO 5.72eV, LUMO 1.74eV, it can be applied to the organic light emitting device.
  • ITO glass substrate was used as the anode, and the ITO substrate was immersed in acetone for 30 minutes, ultrasonically cleaned and dried, and then immersed in isopropyl alcohol and distilled water in the same manner to remove impurities.
  • PEDOT: PSS (PH4083, Celvios) was coated on the surface coated with ITO by spin coating, and dried at a temperature of 120 ° C. for 30 minutes to form a hole injection layer.
  • Uracil-TCTA was prepared by combining three functional groups containing a pyrimidine ring according to the present invention to TCTA (Tris (4-carbazoyl-9-ylphenyl) amine), which is known as a compound for a hole transport layer, at different positions.
  • TCTA Tris (4-carbazoyl-9-ylphenyl) amine
  • the prepared uracil-TCTA was dissolved in trichlorobenzene at a concentration of 20wt% to prepare a solution, which was coated on top of the hole injection layer by spin coating, followed by heat treatment at a temperature of 100 ° C. for 30 minutes. To form a hole transport layer.
  • CzTP (6,6-bis [(3,5-diphenyl) phenyl] -9-phenyl-carbazole), which is known as a host material of the conventional light emitting layer
  • four functional groups containing a pyrimidine ring according to the present invention are respectively placed at different positions.
  • Uracil-CzTP was prepared by binding. After dissolving the prepared uracil-CzTP in chlorobenzene, the light emitting layer solution prepared by adding 8 wt% of Ir (mppy) 3, which is a green phosphorescent dopant, was applied by spin coating to the upper portion of the hole transport layer. Heat treatment for minutes to form a light emitting layer.
  • uracil-B3PyPB prepared according to one embodiment of the present invention was dissolved in trichlorobenzene at a concentration of 20 wt% to prepare a solution, and then coated on top of the light emitting layer by spin coating. Heat treatment at temperature for 30 minutes to form a hole blocking layer.
  • Alq3 Tris (8-hydroxy-quinolinato) aluminium
  • LiF and Al were sequentially vacuum deposited on the electron transport layer under the same conditions as above to form a cathode.
  • the organic light emitting device is composed of ITO / PH4083 / uracil-TCTA (40nm) / uracil-CzTP + Ir (mppy) 3 (8wt%) (30nm) / uracil-B3PyPB (10nm) / Alq3 (30nm) / LiF / Al. Made of structure.
  • the structural formulas of the urail-TCTA and uracil-CzTP are as follows, and the preparation thereof was performed in a reaction similar to those of Examples 1 and 2.
  • TAPC (Di- [4- (N, N-ditolyl-amino) -phenyl] cyclohexan) as hole transport material and CBP (4,4'-Bis (carbazol-9-yl) biphenyl) as host material as light emitting layer material %
  • the dopant Ir (mppy) 3 8wt%, TPBi (2,2 ', 2 "-(1,3,5-benzinetriyl) -tris (1-phenyl-1-H- Benzimidazole)) using an organic light emitting device was manufactured under the same conditions as in Example 2, except that by vacuum deposition under the same conditions as above to form a hole transport layer, a light emitting layer, a hole blocking layer.
  • the organic light emitting device was manufactured in the structure of ITO / PH4083 / TATC (30nm) / CBP + Ir (mppy) 3 (8wt%) (30nm) / TPBi (10nm) / Alq3 (30nm) / LiF / Al.
  • FIG. 5 (a) is a graph showing the voltage-current curve of each organic light emitting device manufactured according to Example 3 and Comparative Example 1,
  • Figure 5 (b) is a graph showing the luminous efficiency according to the current density. .
  • the organic light emitting device manufactured by applying the compound for an organic device according to an embodiment of the present invention has a stable multilayer thin film without the phenomenon that the lower layer is dissolved even though the hole transport layer, the light emitting layer, and the hole blocking layer are formed through a solution process.
  • a solution process e.g., a solution process for a solution process for a solution process.
  • the organic light emitting diode of Comparative Example 1 manufactured by forming a multilayer organic thin film by a solution process and vacuum depositing all layers except the hole transport layer of the organic light emitting diode of Example 3 It can be seen that the optical characteristics are almost the same. Therefore, when the organic light emitting device is manufactured by applying the compound for an organic device according to the present invention, the multilayer thin film can be manufactured by a solution process, thereby greatly reducing the device manufacturing cost and contributing to the large area and mass production of the device.
  • the multilayer thin film can be manufactured by a solution process, thereby greatly reducing the device manufacturing cost and contributing to the large area and mass production of the device.
  • the multilayer thin film can be manufactured by a solution process, thereby greatly reducing the device manufacturing cost and contributing to the large area and mass production of the device.
  • carbazole means a compound in which two benzene rings are bonded to both sides of a heterocycle including nitrogen, and includes both substituted or unsubstituted structures thereof.
  • carbazole compound in the present invention means a compound comprising a substituted or unsubstituted carbazole.
  • the pyrimidine ring means a heterocyclic ring composed of four carbon atoms and two nitrogen atoms, and includes all substituted or unsubstituted pyrimidine rings.
  • a purine-based functional group means a compound including a substituted or unsubstituted purine molecule
  • a purine molecule means an aromatic ring compound having a structure in which a pyrimidine ring and an imidazole ring share one carbon-carbon bond. do.
  • the organic light emitting compound according to the present invention may have at least one functional group including a pyrimidine ring at the terminal of the carbazole compound, and the functional group including the pyrimidine ring may be characterized in that hydrogen bonding is possible.
  • the carbazole compound is selected from carbazole compounds represented by the following Formulas 5a to 5f, and may include at least one functional group including a pyrimidine ring in the benzene ring of the carbazole compound.
  • the organic light emitting compound according to the present invention has excellent hole transporting properties, and has a triplet bandgap, thereby providing a functional group including a pyrimidine ring capable of hydrogen bonding to a carbazole compound applied as a phosphorescent host material. Not only properties but also solubility in various solvents can be secured to enable a solution process.
  • the organic light emitting compound may be preferably, but is not limited to a functional group such as an alkyl group, except for a functional group containing a pyrimidine ring to the carbazole compound. However, when it is not provided with a functional group such as an alkyl group, it may be preferable because the synthesis of the compound is simpler and the formation of the organic thin film is easy.
  • the functional group including the pyrimidine ring may be selected from pyrimidine-based functional groups and purine-based functional groups.
  • the pyrimidine-based functional group is formed from a compound represented by the following Chemical Formula 7a or 7b. It can be a functional group.
  • R 6 to R 11 in Formulas 7a and 7b may be the same as or different from each other, and each independently H, D, F, Cl, Br, I, an amino group, linear alkyl having 1 to 12 carbon atoms, and having 1 to 10 carbon atoms.
  • the pyrimidine-based functional group formed from the compound represented by Formula 7a may be selected from a plurality of substance groups represented by the following Formulas, but is not limited thereto.
  • the pyrimidine-based functional group formed from the compound represented by the formula (7b) may be selected from a plurality of groups represented by the following formula, but is not limited thereto.
  • the purine-based functional group in one embodiment of the present invention may be formed from a compound selected from the formula 8c to 8h.
  • R 12 to R 25 may be the same as or different from each other, and each independently H, D, F, Cl, Br, I, an amino group, linear alkyl having 1 to 12 carbon atoms, and having 1 to 10 carbon atoms.
  • the purine-based functional group may be selected from a plurality of substance groups represented by the following formula, but is not limited thereto.
  • the organic light emitting compound according to the present invention may be preferably provided with at least two or more functional groups containing a pyrimidine ring.
  • the organic light emitting compound according to the present invention can improve the solubility by providing a functional group containing a pyrimidine ring at the end of the carbazole compound having a low solubility in a solvent solution is difficult, furthermore, a functional group comprising a pyrimidine ring
  • An organic light emitting compound having two or more can form an organic thin film by hydrogen bonding between the functional group containing a pyrimidine ring.
  • the functional group including the pyrimidine ring according to the present invention includes a bond capable of hydrogen bonding such as an amide group and a carbonyl group in the compound. Therefore, when two or more functional groups including a pyrimidine ring are provided in the compound for an organic device, the organic thin film may be formed by inducing the above-described hydrogen bonding functional period.
  • the organic light emitting compound having two or more functional groups including a pyrimidine ring may be a compound represented by the following Chemical Formula 6, but is not limited thereto.
  • R 1 to R 5 may be the same as or different from each other, at least two or more of R 1 to R 5 are functional groups including a pyrimidine ring, and the rest are hydrogen.
  • the organic light emitting compound according to the present invention may be characterized in that the hardness of the thin film can be adjusted according to the number of functional groups including a pyrimidine ring provided at the terminal.
  • the organic light emitting compound according to the present invention forms a network structure through hydrogen bonding between functional groups including a pyrimidine ring provided at the terminal, and when the number of functional groups including a pyrimidine ring provided in the organic light emitting compound is increased, hydrogen By bonding, a thinner film having a more dense structure can be formed.
  • the organic thin film layer is a first step of preparing a solution by dissolving the organic light emitting compound in a solvent, a second step of preparing a substrate for coating the solution, comprising an organic light emitting compound on one side of the substrate
  • the third step of applying a solution it may be prepared including a step of forming a thin film by heat treatment the substrate to which the solution is applied for a predetermined time.
  • the organic light emitting compound according to the present invention may be characterized by having improved solubility by having a functional group including a pyrimidine ring, and being soluble in the solvent of the first step at room temperature.
  • the solvent is one, two or more selected from 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,3,5-Trichlorobenzen, chloroform, chloroform, Tetrahydrofuran and ethanol. It may be a mixed solvent including, but is not limited thereto.
  • a trichlorobenzene solvent the organic light emitting compound according to the present invention is more uniformly dissolved at room temperature, and there is an advantage that an organic thin film of high purity can be formed because it does not cause side reactions upon heating.
  • the method may further include adding a light emitting dopant between the first step and the second step.
  • the organic light emitting compound according to the present invention can be applied as a host material for the light emitting layer as it comprises a carbazole compound having a hole transporting property and phosphorescence properties as described above. Therefore, a light emitting layer solution may be prepared by further adding a light emitting dopant in a predetermined ratio to the solution of the first step.
  • the light emitting dopant may be added in an amount of 1 to 10 wt% with respect to 100 parts by weight of the total solution, and more preferably in a ratio of 5 to 10 wt%. This will be described in detail in the method of manufacturing an organic light emitting device to be described later.
  • the solution in the third step of the present invention is selected from the group consisting of spin coating, gravure offset printing, reverse offset printing, screen printing, roll-to-roll printing, slot die coating, dip coating, spray coating, doctor blade coating, inkjet coating It may be applied to one side of the substrate in any one way, but is not limited thereto.
  • the step of heat-treating the substrate to which the solution is applied may be carried out at a temperature of 70 to 170 °C
  • the organic light emitting compound according to the present invention comprises a pyrimidine ring at a predetermined temperature conditions It can be cured by hydrogen bonding in the working period to form a thin film.
  • the temperature is less than 70 °C
  • the heat treatment temperature exceeds 170 °C it is limited to the above temperature because it is not possible to ensure the stability of the substrate and the compound due to excessive heat, but is not limited thereto.
  • FIG. 6 is a cross-sectional view of an organic light emitting device manufactured according to an exemplary embodiment of the present invention.
  • the organic light emitting device comprises the steps of i) preparing a positive electrode substrate, ii) forming a hole injection layer on top of the positive electrode substrate, iii) forming a hole transport layer on top of the hole injection layer, iv) forming a light emitting layer on top of the hole transport layer, v) forming a hole blocking layer on top of the light emitting layer, vi) forming an electron transport layer on top of the hole blocking layer, vi) electrons on top of the electron transport layer Forming an injection layer and vii) forming a cathode on top of the electron injection layer.
  • the manufacturing method of the organic light emitting diode according to the present invention will be described in detail in the manner described in detail for each manufacturing step.
  • the anode substrate may be used without limitation as long as it is a substrate coated with a cathode material known in the art.
  • the anode substrate may be a substrate coated with a transparent electrode material such as indium tin oxide (ITO), fluorine tin oxide (FTO), or indium zinc oxide (IZO), but is not limited thereto. no.
  • the next step is to form a hole injection layer (HIL) on the anode substrate.
  • the hole injection layer is formed to include a compound that facilitates the hole injection by lowering the injection energy barrier of the hole injected from the anode, such as 4,4 ', 4 "-Tris (N, N-diphenyl-amino ) triphenylamine (NATA), 4,4 ', 4 "-Tris (N-3-methylphenyl-N-phenyl-amino) triphenylamine (m-MTDATA) and poly (3,4-ethylenedioxythiophene): poly (styrene Sulfonic acid) (PEDOT: PSS) and the like are known, and any material for a known hole injection layer may be used without limitation.
  • the hole injection layer may be formed by spin coating a PEDOT: PSS solution.
  • the next step is to form a hole transport layer (HTL) on top of the hole injection layer
  • the hole transport layer is formed by including a compound that serves to transport to the light emitting layer without losing holes injected from the anode Can be.
  • the hole transport layer is NPB (N, N'-bis (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine), ⁇ -NPD (N, N '-Bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine (TPD), bis (N- (1-naphthyl-N-phenyl) benzidine), CBP (4,4- N, N'-dicarbazole-biphenyl), but is not limited thereto.
  • the hole injection layer is generally formed by vacuum depositing the above-described compound for hole injection layer.
  • the hole transport layer may be formed using a hole transport material having properties suitable for a solution process.
  • the hole transport material may be a compound having two or more functional groups including a pyrimidine ring in the terminal benzene ring of a known triphenylamine compound, and specifically, The compound represented by the following formula may be provided with two or more functional groups containing a pyrimidine ring to provide the same effect as the organic light emitting compound according to the present invention to form a hole transport layer through a solution process To be able.
  • R 1 to R 4 may be the same as or different from each other, at least two or more of R 1 to R 4 is a functional group including a pyrimidine ring, the remainder is hydrogen.
  • the next step is to form an Emitting Material Layer (EML) on top of the hole transport layer.
  • EML Emitting Material Layer
  • the light emitting layer may be formed by including a light emitting compound alone, or may be formed by mixing a light emitting dopant with a host material having charge transport characteristics. In the case of forming the light emitting layer by including the light emitting compound alone, the light emitting property is very excellent, but the charge transporting ability is low, so that it is difficult to manufacture a high efficiency organic light emitting device. It may be desirable to form a light emitting layer.
  • the present invention is characterized by using a carbazole compound having at least two functional groups containing a pyrimidine ring as a host material.
  • Carbazole-based compounds are generally known to be suitable as host materials because of their excellent charge transport properties, thermal stability, and high triplet energy.
  • the carbazole compound according to the present invention may have a functional group including a pyrimidine ring capable of hydrogen bonding at the terminal thereof to improve solubility, thereby enabling a solution process, and hydrogen of a working period including a pyrimidine ring. It is advantageous to form a thin film easily through bonding.
  • the luminescent dopant may be selected from a phosphorescent emission or a fluorescence emitting compound.
  • the phosphorescent emission is tripletd through the intersystem crossing. It may be preferable to use a compound having phosphorescence properties as a light emitting dopant because it has a longer life and higher efficiency than fluorescent light emission as a mechanism for light emission after the non-light emission transition to excitons, and the triplet excitons light up while transitioning to the ground state.
  • their triplet energy level should be considered.
  • the energy transfer from the host to the dopant is more stable, thereby improving the efficiency of the device. This is because if the triplet energy of the host is lower than the triplet energy of the dopant, energy loss occurs due to the endothermic energy transition, which causes a decrease in luminous efficiency of the device. On the other hand, when the triplet energy level of the host is higher than the triplet energy of the dopant, light emission due to the exothermic energy transfer may appear, thereby realizing high light emission efficiency.
  • a suitable dopant for the host material according to the present invention may be a blue phosphorescent dopant, specifically (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium ( Dopants selected from III) (FirPic) or Bis (2,4-difluorophenylpyridinato) -tetrakis (1-pyrazolyl) borate iridium (III) (Fir6) may be used, but are not limited thereto.
  • the light emitting layer is mixed with an organic light emitting compound having two or more functional groups including a pyrimidine ring as a host material and a solvent to prepare a mixed solution, the light emitting dopant based on 100 parts by weight of the mixed solution It may be formed by coating a solution prepared by adding 1 to 10wt%.
  • the next step is to form a hole blocking layer (HBL) on top of the light emitting layer.
  • the hole blocking layer serves to suppress the movement of holes that do not combine with electrons in the light emitting layer, and in one embodiment of the present invention, the hole blocking layer is Balq, 2,2 ', 2 "-(1,3,5- It may be formed by depositing a material such as benzinetriyl) -tris (1-phenyl-1-H-benzimidazole) (TPBi), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • TPBi 1-phenyl-1-H-benzimidazole
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • the next step is to form an Electron Transport Layer (ETL) on top of the hole blocking layer.
  • ETL Electron Transport Layer
  • the electron transport layer may improve the coupling probability of holes and electrons in the light emitting layer by serving to transport electrons injected from the cathode to the light emitting layer.
  • the electron transport layer is Alq3 (Tris (8-hydroxy-quinolinato) aluminium), Balq (Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminium), BeBq2 (Bis (10- It may be formed by depositing one or more materials selected from the group consisting of hydroxybenzo [h] quinolinato) beryllium).
  • the next step is to form an Electron Injection Layer (EIL) on top of the electron transport layer.
  • the electron injection layer serves to facilitate the injection of electrons from the cathode by lowering the potential barrier during electron injection.
  • the electron injection layer is LiF, 8-Hydroxyquinolinolato-lithium (Liq), 1, It may be formed by depositing one or more materials selected from the group consisting of 3,5-tri [(3-pyridyl) -phen-3-yl] benzene (TmPyPB).
  • the next step is to form a cathode on top of the electron injection layer.
  • the negative electrode material may be formed by depositing a material having a small work function value such as lithium (Li), magnesium (Mg), calcium (Ca), aluminum (Al), Al: Li, Ba: Li, or Ca: Li. .
  • an organic light emitting device When manufacturing an organic light emitting device, it should be designed to maximize the efficiency of the device in consideration of the energy level of the compounds constituting each layer.
  • preferred embodiments and experimental examples of an organic light emitting device manufactured by using an organic light emitting compound having a functional group including a pyrimidine ring according to an embodiment of the present invention are described, but are not limited thereto.
  • the organic light emitting compound having a functional group including a pyrimidine ring according to the present invention and the organic thin film layer prepared by using the same may be applied to various organic devices other than the organic light emitting device, specifically, an organic transistor (TFT), organic It can be applied without limitation, such as photosensitive member (OPC), photodiode, organic laser and organic image sensor.
  • TFT organic transistor
  • OPC photosensitive member
  • photodiode organic laser and organic image sensor.
  • An ITO glass substrate was used as the cathode substrate, and the ITO substrate was ultrasonically washed and dried for 30 minutes with acetone, isopropyl alcohol, and distilled water to remove impurities.
  • PEDOT: PSS (PH4083, Celvios) was coated on the surface coated with ITO by spin coating, and then dried at a temperature of 120 ° C. for 30 minutes to form a hole injection layer.
  • TPD-pym was dissolved in trichlorobenzene to prepare a 30 wt% solution, which was then coated by spin coating and dried at 100 ° C. to form a hole transport layer.
  • a light emitting layer solution prepared by adding Fir6, a blue phosphorescent dopant, at 9wt% was applied by spin coating on the hole transport layer, and then at 100 ° C. It dried and the light emitting layer was formed.
  • TPBi was vacuum-deposited on the top of the light emitting layer under conditions of a vacuum degree of 1 ⁇ 10 ⁇ 7 Pa and a deposition rate of 2 nm / s to form a hole blocking layer.
  • Alq3 Tris- (8-hydroxyquinoline) aluminum
  • LiF is deposited on the electron transport layer to form an electron injection layer
  • Al is vacuumed thereon. Evaporation to form a cathode.
  • the organic light emitting device was manufactured in the structure of ITO / PH4083 / TPD-pym / MCP-pym + Fir6 (9wt%) / TPBi / Alq3 / LiF / Al.
  • NPB N, N'-bis (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine
  • a device was manufactured under the same conditions as in Example 4, except that the solution for the light emitting layer prepared by adding the material MCP and the dopant Fir6 at 9wt% was vacuum deposited to form the light emitting layer.
  • UV spectra and PL (photoluminescence) spectra were measured to evaluate the optical properties of the compound MCP-pym prepared according to Example 4.
  • UV spectra were measured by dissolving MCP-pym in chloroform
  • PL spectra were measured by dissolving MCP-pym in chloroform. The results are shown in FIG.
  • the compound MCP-pym prepared by combining a functional group containing a pyrimidine ring to MCP has an optical characteristic almost similar to the MCP according to the prior art. Therefore, the organic light emitting compound according to the present invention can be judged to affect only the solubility and thin film formation properties without inhibiting the optical properties of the MCP.
  • Example 4 In order to evaluate the electro-optical characteristics of the organic light emitting device manufactured according to Example 4, the current density, current efficiency, and EL (electroluminescence) intensity of the organic light emitting device were measured. 8 shows the EL spectrum of the organic light emitting diode manufactured according to Example 4 and the PL spectrum of Fir6, which is a blue phosphorescent dopant, and according to the current density change of the organic light emitting diode according to Example 4 and Comparative Example 2 in FIG. A graph of the current efficiency change is shown.
  • the organic light emitting diode according to the exemplary embodiment of the present invention exhibits a maximum peak at around 460 nm and exhibits blue emission spectrum characteristics.
  • the emission spectrum characteristics of the organic light emitting diode according to the present invention almost overlap the emission spectrum of FiR6, which is a blue phosphorescent dopant shown in FIG.
  • the organic light emitting device according to an embodiment of the present invention can be seen that the maximum current efficiency is 14cd / A, which is about 2.5 times improved compared to the device of Comparative Example 2 manufactured through the deposition process Value. Therefore, when the organic light emitting compound according to the present invention is applied to an organic light emitting device, it is possible to enable a solution process, it can be seen that the organic light emitting device having a stable multilayer structure without dissolving adjacent layers through the solution process.
  • the pyrimidine ring in the present invention means a heterocyclic ring composed of four carbon atoms and two nitrogen atoms, and includes all substituted or unsubstituted pyrimidine rings.
  • a purine-based functional group means a compound including a substituted or unsubstituted purine molecule, and a purine molecule means an aromatic ring compound having a structure in which a pyrimidine ring and an imidazole ring share one carbon-carbon bond. do.
  • substituted or unsubstituted deuterium Halogen group; Alkyl groups; Aryl group; Hetiaryl group; Fluorenyl group; It means substituted with one or more functional groups selected from the group consisting of cyano groups, or having no functional groups.
  • the compound for an organic device according to the present invention includes at least one functional group including a pyrimidine ring at the terminal of the compound having hole transport properties, and the functional group including the pyrimidine ring is capable of hydrogen bonding. Can be.
  • the compound having a hole transport property may be selected from compounds represented by the following formula (9) or formula (10), and has at least one functional group including a pyrimidine ring at the terminal of the compound And, the functional group containing a pyrimidine ring can be characterized in that capable of hydrogen bonding.
  • Ar1, Ar2 and Ar3 may be the same as or different from each other, and each independently a substituted or unsubstituted phenyl group or naphthyl group.
  • n 2 or 3
  • Ar4 and Ar5 may be the same as or different from each other, and each independently represent a substituted or unsubstituted phenyl group, naphthyl group, phenanthrenyl group,
  • L is a direct bond
  • Ar6 is selected from the group consisting of a substituted or unsubstituted phenylene group, biphenylene group, naphthyleneyl group, fluorenyl group, cyclohexyl group, spirobifluorenyl group, triphenylamine group and diphenylmethylene group.
  • the compound having the hole transport property represented by Formula 9 or Formula 10 may be selected from a plurality of substance groups represented by the following Formulas, but is not limited thereto, and pyrimidine capable of hydrogen bonding to the benzene ring of the compound At least one functional group including a ring may be provided.
  • the compound having a hole transport property is at least one compound selected from a silicon compound, a phosphine oxide compound, and an arylamine compound, a functional group containing the pyrimidine ring at the terminal of the compound At least one may be provided.
  • the silicon-based compound may be selected from a plurality of material groups represented by the following chemical formulas, but is not limited thereto.
  • the phosphine oxide-based compound may be a plurality of substance groups represented by the following formulas.
  • the sulfide-based compound may be a compound represented by the following formula.
  • the arylamine-based compound may be a plurality of substance groups represented by the following formula.
  • the compound having the hole transport characteristics may be a hydrocarbon compound.
  • the hydrocarbon compound may be a plurality of substance groups represented by the following formulas.
  • the functional group including the pyrimidine ring may be a pyrimidine-based functional group and a purine-based functional group.
  • the pyrimidine-based functional group may be formed from a compound represented by the following Formulas 11a and 11b.
  • R 1 to R 6 may be the same as or different from each other, and each independently H, D, F, Cl, Br, I, an amino group, linear alkyl having 1 to 12 carbon atoms, and having 1 to 10 carbon atoms.
  • the pyrimidine-based functional group formed from the compound represented by Formula 11a may be selected from a plurality of substance groups represented by the following Formulas, but is not limited thereto.
  • a pyrimidine-based functional group formed from the compound represented by Formula 11b may be selected from a plurality of substance groups represented by the following Formulas, but is not limited thereto.
  • a purine-based functional group may be formed from a compound represented by the following Chemical Formulas 11c to 11h, but is not limited thereto.
  • the purine-based functional group may be selected from a plurality of substance groups represented by the following formulae, but is not limited thereto.
  • the compound for an organic device may be preferably provided with at least two or more functional groups including a pyrimidine ring.
  • the compound for an organic device according to the present invention may be improved in solubility by having a functional group including a pyrimidine ring at the terminal of the low molecular weight compound having a low solubility in a solvent, which makes it difficult to process the solution.
  • a stable organic thin film can be formed by hydrogen bonding of a functional period including a pyrimidine ring.
  • the functional group including the pyrimidine ring according to the present invention includes a bond capable of hydrogen bonding such as an amide group and a carbonyl group in the compound. Therefore, when two or more functional groups including a pyrimidine ring are provided in the compound for an organic device, the organic thin film may be formed by inducing the above-described hydrogen bonding functional period.
  • FIGS. 10 and 11 Structural formulas showing hydrogen bonding structures between compounds for an organic device according to an exemplary embodiment of the present invention are described in FIGS. 10 and 11. With reference to this will be described the hydrogen bonding properties of the compound according to an embodiment of the present invention.
  • Compound for an organic device according to an embodiment of the present invention can form a three-dimensional bond between the compound, as shown in Figure 10 and 11, and finally formed by adjusting the number of functional groups containing a pyrimidine ring
  • the hardness of the thin film can be controlled. More specifically, it is possible to provide a plurality of binding sites for binding functional groups through chemical reactions at the ends of the compounds having hole transporting properties according to the present invention, and to control the number of functional groups bound to the compounds having hole transporting properties. have.
  • the hardness of the thin film increases as a thin film having a more dense structure is formed by hydrogen bonding in the functional period including the pyrimidine ring.
  • the compound for an organic device having two or more functional groups including a pyrimidine ring may be a compound represented by the following Formula 9a.
  • Pym1 to Pym3 may be the same as or different from each other, and at least two or more of Pym1 to Pym3 are functional groups including a pyrimidine ring, and the rest are hydrogen.
  • the compound for an organic device having two or more functional groups containing a pyrimidine ring may be a compound represented by the following formula (10a).
  • Pym 4 to Pym 9 may be the same as or different from each other, at least two or more of Pym 4 to Pym 9 are functional groups including a pyrimidine ring, and the rest are hydrogen.
  • the first solvent may be a mixed solvent including one or two or more selected from dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetonitrile (ACN), and hexamethylphosphoamide (HMPA). It should be noted that this is not limiting. However, it may be preferable to use a polar aprotic solvent that can lower the activation energy to improve the reaction efficiency, more preferably the first solvent may be a high boiling point and chemically stable DMSO.
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • ACN acetonitrile
  • HMPA hexamethylphosphoamide
  • the hole transport compound may be a compound represented by the following Formula 12a.
  • the compound containing the pyrimidine ring is added to the solution of the second step and reacted for a predetermined time to prepare a compound for an organic device represented by the formula (13a).
  • the compound containing a pyrimidine ring may be a compound represented by the following Chemical Formula 13a.
  • n means an integer of 0 to 10, and when n is 0, it means that “-COOH” is directly bonded to the pyrimidine ring.
  • the compound including the added pyrimidine ring may be bonded to the terminal of the hole transport compound under a catalyst to form a compound for an organic device represented by Formula 9a.
  • the third step may be carried out at a temperature of 20 to 70 °C for 4 to 15 hours, in this case, when the reaction temperature is less than 20 °C, the reaction efficiency is low, the reaction time is long, the final yield of the obtained compound If the reaction temperature exceeds 60 ° C, hydrogen bonding between the compounds proceeds, which is not preferable because the viscosity may be excessively increased.
  • one embodiment of the present invention may further comprise the step of removing the unreacted material and the solvent by washing several times with an organic solvent after the third step is completed, to improve the purity.
  • the compound for an organic device is a step of starting a reaction by mixing a potassium phosphate (potassium phosphate) and a third solvent as a catalyst and stirred for a predetermined time, represented by the formula 12b to the third solvent
  • a potassium phosphate potassium phosphate
  • a third solvent as a catalyst
  • the pyrimidine-based compound is dissolved in the first solvent, it is added to the solution of the second step, and reacted for a predetermined time
  • the main step is to prepare a compound for an organic device having a pyrimidine-based functional group, and further comprising the step of washing and purifying the product.
  • RX 1 to RX 6 may be the same as or different from each other, and at least two or more of RX 1 to RX 6 are alkyl halide groups.
  • alkyl halide group in the present invention may be represented by the general formula -CnH2n X, where X means a halogen such as F, Br, I, Cl, etc.) Pyrimidine ring by heterogeneous decomposition of CX bond under catalyst A binding site for introducing a functional group including a compound may be formed to prepare a compound for an organic device.
  • the compound containing a pyrimidine ring may be a compound represented by the following Chemical Formula 13b.
  • n is an integer of 2 to 10.
  • the third step of the present invention may be preferably carried out for 2 to 80 hours at a temperature of 20 to 60 °C.
  • the reaction temperature is less than 20 ° C, the reaction time may be long and the yield may decrease due to the decrease in the reaction rate, and when the reaction temperature is 60 ° C or higher, it may be difficult to secure the stability of the reactants.
  • the method of forming an organic thin film layer dissolving a compound for an organic device having two or more functional groups including a pyrimidine ring in a second solvent to prepare a solution, preparing a substrate Step, the step of applying the solution on top of the substrate, the step of heat-treating the substrate to which the solution is applied for a predetermined time to form a thin film, and having two or more functional groups containing a pyrimidine ring
  • the compound for an organic device may be characterized by being soluble in a second solvent at room temperature.
  • the fourth solvent is 1,2,3-trichlorobenzene (1,2,3-Trichlorobenzene), 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene), 1,3,5- Trichlorobenzene (1,3,5-Trichlorobenzen), chloroform (chloroform), tetrahydrofuran (Tetrahydrofuran) and may be a mixed solvent containing one or two or more selected from ethanol, but is not limited thereto. Specify it.
  • the substrate for applying the solution may be selected from glass and plastic substrates such as polyimide (PI), polyethylene terephthalate (PET), polyethylenetaphthalate (PEN), polycarbonate (PC), and the like.
  • PI polyimide
  • PET polyethylene terephthalate
  • PEN polyethylenetaphthalate
  • PC polycarbonate
  • any material may not be deformed under the above temperature conditions, and a glass substrate coated with a transparent electrode material such as an ITO substrate, an FTO substrate, and an AZO substrate may be used. State that
  • the method of applying the solution to the substrate is selected from the group consisting of spin coating, gravure offset printing, reverse offset printing, screen printing, roll-to-roll printing, slot die coating, immersion coating, spray coating, doctor blade coating, inkjet coating It can be done in either way.
  • the step of heat-treating the substrate to which the solution is applied for a predetermined time is carried out at a temperature of 70 to 170 °C, characterized in that the thin film is formed by the hydrogen bond of the working period provided in the compound for an organic device.
  • the organic light emitting compound according to the present invention may be cured by hydrogen bonding in a working period including a pyrimidine ring at a predetermined temperature condition to form a thin film.
  • the temperature is less than 70 °C, it may be difficult to form a thermally stable organic thin film because the curing temperature is not sufficient, there may be a problem that the process time is long.
  • the heat treatment temperature exceeds 170 °C it is limited to the above temperature because it is not possible to ensure the stability of the substrate and the compound due to excessive heat, but is not limited thereto.
  • the compound for an organic device and the organic thin film layer prepared by using the same according to the present invention may be applied to various organic devices including an organic photoconductor, an organic transistor, an organic solar cell, an organic light emitting device, and an organic image sensor.
  • organic devices including an organic photoconductor, an organic transistor, an organic solar cell, an organic light emitting device, and an organic image sensor.
  • a method for manufacturing an organic light emitting diode according to an embodiment of the present invention will be described in detail, but the application field of the organic compound according to the present invention is not limited thereto.
  • FIG. 18 is a schematic view showing a cross-sectional view of an organic light emitting device according to an embodiment of the present invention.
  • the method of manufacturing an organic light emitting diode includes a first step of preparing a substrate, a second step of forming an anode on the top of the substrate, a third step of forming a hole injection layer on the top of the anode, A fourth step of forming a hole transport layer on top of the hole injection layer, a fifth step of forming a light emitting layer on top of the hole transport layer, a sixth step of forming a hole blocking layer on top of the light emitting layer, and an electron transport layer formed on the hole blocking layer
  • the seventh step is performed, including the eighth step of forming a cathode on the upper portion of the electron transport layer, the hole injection layer is characterized in that formed by the method for producing an organic thin film according to the present invention.
  • the first step of preparing the substrate and the second step of forming the anode may be any substrate and anode material commonly used in the manufacture of the organic light emitting device.
  • the substrate is glass
  • the positive electrode material may be indium tin oxide (ITO), but is not limited thereto.
  • the hole injection layer (HIL) provided on the upper portion of the anode is formed to include a compound that facilitates the hole injection by lowering the injection energy barrier of the hole injected from the anode, such as 4 , 4 ', 4 "-Tris (N, N-diphenyl-amino) triphenylamine (NATA), 4,4', 4" -Tris (N-3-methylphenyl-N-phenyl-amino) triphenylamine (m-MTDATA)
  • poly (3,4-ethylenedioxythiophene): poly (styrenesulphonic acid) (PEDOT: PSS) and the like are known, and any material for a known hole injection layer may be used without limitation.
  • the hole injection layer may be formed by spin coating a PEDOT: PSS solution.
  • a hole transport layer serves to transport the hole injected from the anode to the light emitting layer without losing the hole, and may be formed including the compound for an organic device according to an embodiment of the present invention.
  • the hole transport layer may be formed by applying a coating solution prepared by using a compound for an organic device having two or more functional groups including a pyrimidine ring and heating to a temperature of 70 to 170 °C.
  • an emitting material layer is a layer that emits light through recombination of holes injected from the anode and electrons injected from the cathode, and emits red, blue, and green light according to binding energy in the emitting layer.
  • the white light emitting layer may be formed by forming a plurality of light emitting layers.
  • the light emitting layer may be formed by including a compound having luminescence or phosphorescence properties alone, or may be formed by doping a compound having fluorescence or phosphorescence properties to a host material having hole or electron transporting properties.
  • a light emitting layer In the case of a single compound, it may be desirable to form a light emitting layer by adding a dopant to a host material because the light emitting property is very excellent, but the hole or electron transport ability is difficult to produce a high efficiency organic photoelectric device.
  • the host material and dopant can be used without limitation as long as it is a known compound.
  • Known host materials include fluorescent conjugated polymers such as poly (p-phenylenevinylene), polypropylene (p-phenylene), polypropylene (PT), polythiophene (PT), polyfluorene (PF), poly (9.9-dioctylfluorene) (PFO), and Carbazole-based compounds such as CBP (4,4-N, N'-dicarbazole-biphenyl) or MCP (N, N'-dicarbazolyl-3,5-benzene) and the like.
  • fluorescent conjugated polymers such as poly (p-phenylenevinylene), polypropylene (p-phenylene), polypropylene (PT), polythiophene (PT), polyfluorene (PF), poly (9.9-dioctylfluorene) (PFO), and Carbazole-based compounds such as CBP (4,4-N, N'-dicarbazole-biphenyl) or MCP (N, N'-dicarba
  • Green phosphorescent dopant including Tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3), Bis (2-phenylpyridine) (acetylacetonate) iridium (III) (Ir (ppy) 2 (acac)) (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III) (FirPic), Bis (2,4-difluorophenylpyridinato) -tetrakis (1-pyrazolyl) borate iridium (III) ( Blue phosphorescent dopants including Fir6), Tris (1-phenylisoquinoline) iridium (III) (Ir (piq) 3), Tris (2-phenylquinoline) iridium (III) (Ir (2-phq) 3), and the like. It may be, but not limited to, a red phosphorescent do
  • the hole blocking layer plays a role of suppressing the movement of holes that do not combine with electrons in the light emitting layer
  • the hole blocking layer is Balq, 2,2 ', 2 "-(1,3,5-benzinetriyl) -tris (1-phenyl-1-H-benzimidazole) (TPBi), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), etc. It can be formed by depositing a material of.
  • the electron transport layer serves to transport the electrons injected from the cathode to the light emitting layer, thereby improving the coupling probability of holes and electrons in the light emitting layer.
  • the electron transport layer is Alq3 (Tris (8-hydroxy-quinolinato) aluminium), Balq (Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminium), BeBq2 (Bis (10- It may be formed by depositing one or more materials selected from the group consisting of hydroxybenzo [h] quinolinato) beryllium).
  • the electron injection layer serves to facilitate the injection of electrons from the cathode by lowering the potential barrier during electron injection.
  • the electron injection layer is LiF, 8 -Hydroxyquinolinolato-lithium (Liq), 1,3,5-tri [(3-pyridyl) -phen-3-yl] benzene (TmPyPB) may be formed by depositing one or more materials selected from the group consisting of.
  • the next step is to form a cathode on top of the electron injection layer.
  • the negative electrode material may be formed by depositing a material having a small work function value such as lithium (Li), magnesium (Mg), calcium (Ca), aluminum (Al), Al: Li, Ba: Li, or Ca: Li. have.
  • a solution prepared by dissolving 1 g of N, N-bis (4-aminophenyl) benzene-1,4-diamine in 50 ml of DMSO was slowly added to a round bottom flask and stirred for 30 minutes.
  • a solution prepared by dissolving 1.85 g of orotic acid in 100 ml of DMSO was slowly added to a round bottom flask and stirred at 40 ° C. for 12 hours.
  • a glass substrate provided with ITO having a thickness of 20 nm and a sheet resistance of 15 ⁇ s / ⁇ was used as the anode.
  • the ITO substrate was ultrasonically washed and dried for 30 minutes with acetone, isopropyl alcohol, and distilled water to remove impurities.
  • uracil-TPA was dissolved in trichlorobenzene to prepare a 20 wt% solution, the solution was coated on the top of the anode by spin coating, and then cured at a temperature of 100 ° C. for 30 minutes. An injection layer was formed.
  • NPB N, N'-bis (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine
  • the hole transport layer was formed by vacuum deposition under conditions of a vacuum degree of 1 ⁇ 10 ⁇ 7 Pa and a deposition rate of 2 nm / s.
  • a hole blocking layer was formed by vacuum depositing TPBi (tris (N-arylbenzimidazole) under the same deposition conditions on the light emitting layer, and on the top thereof, Alq3 (Tris- (8-hydroxyquinoline) aluminum), An organic light emitting device was manufactured by vacuum deposition of LiF and Al as cathodes.
  • TPBi tris (N-arylbenzimidazole)
  • Alq3 Tris- (8-hydroxyquinoline) aluminum
  • the organic light emitting device has the structure of ITO / uracil-TPA (30nm) / NPB (30nm) / CBP + Ir (PPy) 3 (7wt%) (30nm) / TPBi (10nm) / Alq3 (30nm) / LiF / Al was prepared.
  • An organic light-emitting device was manufactured under the same conditions as in Example 5, except that uracil-TPD was dissolved in trichlorobenzene as a hole injection material to prepare a 30 wt% solution and formed on top of the positive electrode.
  • the organic light emitting device has the structure of ITO / uracil-TPD (35nm) / NPB (30nm) / CBP + Ir (PPy) 3 (7wt%) (30nm) / TPBi (10nm) / Alq3 (30nm) / LiF / Al was prepared.
  • Example 5 The same ITO substrate as in Example 5 was prepared and ultrasonically washed and dried with acetone, isopropyl alcohol and distilled water for 30 minutes to remove impurities.
  • a hole injection material PEDOT: PSS (PH4083, Celvios) was coated on the surface coated with ITO by spin coating, and dried at a temperature of 120 ° C. for 30 minutes to form a hole injection layer.
  • NPB NPB
  • a hole transport material was deposited on the hole injection layer under the same conditions as in Example 5 to form a hole transport layer, and a light emitting layer was formed on the same material as in Example 5 and under the same conditions.
  • Example 5 Except for the use of BCP (bathocuproine) as the hole blocking layer, a hole blocking layer, an electron transport layer and a cathode were formed under the same conditions as in Example 5 to prepare an organic light emitting device.
  • BCP bathoproine
  • the organic light emitting device was manufactured in the structure of ITO / PEDOT: PSS / NPB (30nm) / CBP + Ir (PPy) 3 (7wt%) (30nm) / BCP (10nm) / Alq3 (30nm) / LiF / Al. .
  • the current flowing through the unit device was measured by using a current-voltmeter while changing the voltage of the organic light emitting diode from 0 V to 14 V.
  • the luminous efficiency according to the change of the current density was measured by using a luminance meter while changing the current density from 0 mA / Cm2 to 500 mA / Cm2. The results are shown in FIGS. 12 to 15.
  • FIG. 12 is a voltage-current (V-I) curve of Example 4 and Comparative Example 3.
  • V-I voltage-current
  • Example 14 is a voltage-current (V-I) curve of Example 6 and Comparative Example 3.
  • V-I voltage-current
  • Example 6 As in the result of Example 5, the organic light emitting device according to Example 6 was found to have a higher power than the organic light emitting device according to Comparative Example 3. However, in Example 6, it was found that the power difference between Comparative Example 3 and the comparative example 3 is smaller than the power difference between Example 5 and Comparative Example 3, through which the uracil-TPD than the uracil-TPA hole layer of the organic light emitting device It can be seen that more effective material.
  • 15 is a graph showing changes in luminous efficiency with respect to current densities of Example 6 and Comparative Example 3. FIG. Referring to this, the luminous efficiency of the organic light emitting device according to Example 6 shows a larger reduction ratio as the current density increases, but it can be seen that the initial luminous efficiency is almost similar to that of the organic light emitting device according to the comparison 3. .
  • PEDOT: PSS PH4083, Celvios
  • a compound represented by the formula (uracil-TPD) was dissolved in trichlorobenzene to prepare a 30 wt% solution, and the solution was coated on the top of the hole injection layer by spin coating, followed by a temperature of 100 ° C. Curing for 30 minutes to form a hole transport layer having a thickness of 25mm.
  • alkyl-MCP alkyl-substituted-1,3-Bis (N-carbazolyl) benzene
  • a blue phosphorescent dopant FIr6 was mixed at 7wt% to prepare a light emitting layer solution.
  • the light emitting layer solution was spin-coated on top of the hole transport layer to form a light emitting layer.
  • TPBi, Alq3, LiF and Al were deposited under the same conditions and methods as in Example 5 to fabricate the device.
  • the organic light emitting device was manufactured in the structure of ITO / PEDOT: PSS / uracil-TPD (25nm) / alkyl-MCP + FIr6 (7wt%) (30nm) / TPBi (10nm) / Alq3 (30nm) / LiF / Al. .
  • the alkyl-MCP is a compound represented by the following formula.
  • An organic light emitting diode was manufactured according to the same conditions and methods as in Example 3, except that a light transport layer having a thickness of 20 mm was formed on the hole injection layer and 9 wt% of a blue phosphorescent dopant was mixed to prepare a light emitting layer solution. Finally, the organic light emitting device was manufactured in the structure of ITO / PEDOT: PSS / uracil-TPD (20nm) / alkyl-MCP + FIr6 (9wt%) (30nm) / TPBi (10nm) / Alq3 (30nm) / LiF / Al. .
  • Example 7 Except for depositing NPB in the same manner as in Example 1 to form a hole transport layer and the light emitting layer solution prepared by dissolving MCP and FIr6 (7wt%) in chlorobenzene is deposited on top of the hole transport layer to form a light emitting layer An organic light emitting diode was manufactured under the same condition as in Example 7. Finally, the organic light emitting device was manufactured in the structure of ITO / PEDOT: PSS / alkyl-MCP + FIr 6 (9 wt%) (30 nm) / TPBi (10 nm) / Alq 3 (30 nm) / LiF / Al.
  • Example 7 and Example 8 even though the hole injection layer, the hole transport layer and the light emitting layer were all coated by the spin coating method, that is, the solution process, it was confirmed that a stable multilayer thin film was formed without dissolving the lower layer portion.
  • the current and the current according to the change of the voltage of the organic light emitting device according to Examples 7, 8 and Comparative Example 4 The luminous efficiency was measured according to the change of density.
  • Example 7 and Example 8 analyzed the performance change of the organic light emitting device according to the thickness by varying the thickness of the hole transport layer. Measurements were performed under the same conditions and methods as described above, and the results are shown in FIGS. 16 and 17.
  • V-I voltage-current
  • Example 17 is a graph showing changes in luminous efficiency with respect to current densities of Example 7, Example 8 and Comparative Example 4.
  • FIG. Referring to this, it can be seen that the organic light emitting diode according to Example 7 and Example 8 is higher than the luminous efficiency of the organic light emitting diode according to Comparative Example 4.
  • Example 7 coated with the uracil-TPD in a thickness of 25nm it can be seen that the initial luminous efficiency is improved by about 2 times compared to Comparative Example 4.
  • the compound for an organic device according to the present invention has a property of excellent solubility in a solution by having a pyrimidine-based functional group at the terminal of a skeleton containing triphenylamine, and a solution prepared therefrom. It was confirmed that the formation of a stable organic thin film at a relatively low temperature (100 °C) compared to the prior art, it is possible to manufacture a multi-layered organic device without dissolving the lower layer. In addition, when the compound having the pyrimidine-based functional group is used as a hole layer, in particular a hole transport layer, it was confirmed that the luminous efficiency is greatly improved compared to the device manufactured through the conventional deposition process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

One embodiment of the present invention provides a compound for an organic device, the compound comprising a functional group comprising a pyrimidine ring, and/or a functional group comprising a pyrimidine ring, which is included at a terminal of a carbazole-based compound comprising carbazole, wherein an organic thin film is formed by a hydrogen bond between the functional groups.

Description

유기소자에 사용되는 유기화합물 및 이를 이용한 유기소자의 제조방법Organic Compounds Used in Organic Devices and Manufacturing Method of Organic Devices Using The Same
본 발명은 유기소자의 정공차단층, 전자수송층, 발광층에 적용될 수 있는 유기소자용 화합물에 관한 것으로, 더욱 상세하게는 수소결합이 가능하고, 피리미딘 고리를 포함하는 작용기를 적어도 2개 이상 결합시켜 용액공정을 통한 유기박막의 형성이 가능한 것을 특징으로 하는 유기소자용 화합물 및 이를 포함하는 유기박막의 제조방법 및 유기소자에 관한 것이다.The present invention relates to a compound for an organic device that can be applied to the hole blocking layer, the electron transport layer, the light emitting layer of the organic device, more specifically, hydrogen bonding, by combining at least two or more functional groups containing a pyrimidine ring The present invention relates to a compound for an organic device, a method for manufacturing an organic thin film including the same, and an organic device, wherein the organic thin film may be formed through a solution process.
차세대 디스플레이 디바이스로 주목 받고 있는 유기광전소자(organic photoelectric device)는 ITO와 같은 투명양극재가 코팅된 기판과 음극 사이에 유기발광층을 형성하여, 전극에 소정의 전압을 가하면 양극으로부터 주입된 정공과 음극으로부터 주입된 전자가 유기발광층에서 결합하여 빛을 방출하는 원리를 이용한 소자이다. 유기광전소자는 산업적으로 적용 가능한 수준의 성능을 구현하기 위하여 유기발광층을 이외에 정공주입층, 정공수송층, 전자수송층, 전자주입층 및 발광층의 특성에 따라 전하차단층을 더 포함하여 다층 구조로 제작된다. The organic photoelectric device, which is attracting attention as a next-generation display device, forms an organic light emitting layer between a cathode and a cathode coated with a transparent cathode material such as ITO, and when a predetermined voltage is applied to the electrode, It is a device using the principle that the injected electrons are combined in the organic light emitting layer to emit light. The organic photoelectric device is manufactured in a multi-layered structure including a charge blocking layer according to the characteristics of the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer and the light emitting layer in addition to the organic light emitting layer in order to achieve a level of industrially applicable performance. .
종래기술에서 유기소자를 구성하는 각 층들은 일반적으로 진공증착공정에 의해 형성된다. 진공증착법은 10-4 Torr 이하의 고진공 분위기에서 시료에 열을 가하여 승화시키고, 승화된 시료는 상대적으로 낮은 온도의 기판에서 고체로 성장하는 방식으로 박막을 형성시키는 원리이다. 그러나, 진공증착법은 화합물의 승화과정이 필수적으로 요구됨에 따라 분자량이 높고 열에 의해 결정화되지 않는 단분자화합물의 경우에만 적용될 수 있으며, 고가의 진공증착장비를 필요로하며 대면적으로 소자를 제조하기에는 곤란할 수 있다. In the prior art, each layer constituting the organic device is generally formed by a vacuum deposition process. The vacuum deposition method is a principle of forming a thin film by heating a sample in a high vacuum atmosphere of 10-4 Torr or less to heat and subliming the sample to a solid on a relatively low temperature substrate. However, the vacuum deposition method can be applied only to monomolecular compounds having a high molecular weight and not crystallized by heat as the sublimation process of the compound is essential, and requires expensive vacuum deposition equipment and it is difficult to manufacture devices in large areas. Can be.
이러한 문제점을 해소하기 위하여 저가의 용액공정을 통해 유기박막을 형성하고자 하는 연구가 꾸준히 진행되어 왔다. 기존의 증착법에 적용되는 유기소자용 단분자화합물은 용매에 대한 용해성이 낮은 편이기 때문에 용해성이 높으면서도 자체적인 박막형성 특성을 가지고 있는 고분자재료를 용매에 용해시켜 제조된 용액을 도포하여 경화시키는 방법으로 이루어진다. 이때, 상기 용액이 하층부를 용해시키지 않도록 적절한 용매를 선택해야 할 필요가 있으며, 경우에 따라서는 별도의 불용화 처리가 요구될 수 있다. In order to solve this problem, researches on forming an organic thin film through a low-cost solution process have been continuously conducted. Since the monomolecular compound for organic devices applied to the conventional deposition method has low solubility in a solvent, a method of curing by applying a solution prepared by dissolving a polymer material having high solubility and having its own thin film formation property in a solvent. Is done. In this case, it is necessary to select an appropriate solvent so that the solution does not dissolve the lower layer portion, and in some cases, a separate insolubilization treatment may be required.
이와 관련하여 대한민국 등록특허 제10-0865661호(발명의 명칭: “페닐카바졸기를 갖는 고분자화합물 및 이를 이용한 고분자전계발광소자” 이하 종래기술 1이라고 한다.)는 페닐카바졸기를 갖는 고분자 화합물을 제조하고, 이를 포함하는 용액을 스핀코팅하여 유기광전소자의 발광층을 형성하는 기술에 관하여 개시한 바 있다. In this regard, Republic of Korea Patent No. 10-0865661 (name of the invention: “a polymer compound having a phenylcarbazole group and a polymer electroluminescent device using the same” hereinafter referred to as the prior art 1) to prepare a polymer compound having a phenylcarbazole group In addition, a technique of forming a light emitting layer of an organic photoelectric device by spin coating a solution containing the same has been disclosed.
종래기술 1과 같이 고분자재료를 적용하는 경우, 저가의 용액공정을 통해 박막형성이 가능하고 열에 의해 결정화되지 않아 우수한 박막특성 나타낼 수 있으나, 높은 분자량으로 인해 재료 합성 시 사용된 촉매나 부반응물 등을 완벽하게 제거하기에 곤란하여 단분자 유기재료에 비해 소자의 효율이 낮으며, 분자량 분포가 존재함에 따라 이를 적용하여 제조된 유기박막은 국부적으로 물성이 상이하다는 문제점이 있었다.When the polymer material is applied as in the prior art 1, it is possible to form a thin film through a low-cost solution process and can not be crystallized by heat, thereby exhibiting excellent thin film properties. Difficult to remove completely, the efficiency of the device is lower than the single-molecule organic material, there is a problem in that the organic thin film produced by applying this as the molecular weight distribution is present locally different physical properties.
종래기술 1은 저가의 용액공정이 가능한 유기소자용 화합물로 페닐카바졸기를 포함하는 고분자화합물을 제안하고 있으나, 고분자화합물은 단분자 화합물 대비 전하전달 능력이 떨어지고 화합물을 고순도로 정제하기가 곤란하여 유기소자의 효율을 향상시키는데 있어서 제한된다는 문제점이 있었다. Prior art 1 proposes a polymer compound containing a phenylcarbazole group as a compound for an organic device capable of a low-cost solution process, but the polymer compound has a low charge transfer ability compared to a monomolecular compound and is difficult to purify the compound with high purity. There is a problem in that it is limited in improving the efficiency of the device.
따라서, 본 발명이 이루고자 하는 기술적 과제는 유기용매에 대한 용해성이 높으면서도 박막특성이 우수하여 용액공정을 통한 박막의 형성이 가능한 유기소자용 저분자화합물에 관한 기술을 제공하는 것이다. 또한, 본 발명은 이러한 신규한 화합물에 관한 기술을 제공함으로써 유기소자의 대면적화 및 저비용화에 기여하는 것을 또 다른 일목적으로 한다.Accordingly, the technical problem to be achieved by the present invention is to provide a technique for a low molecular compound for an organic device capable of forming a thin film through a solution process due to its high solubility in organic solvents and excellent thin film properties. In addition, the present invention has another object to contribute to the large area and low cost of the organic device by providing a technique for such a novel compound.
또한, 본 발명이 이루고자 하는 기술적 과제는 용액공정을 통해 다층 구조의 유기소자를 제작하는 경우 유기소자의 성능을 향상시키고, 용매에 대한 용해성 및 박막 형성 특성을 향상시켜 충분한 안정성을 확보할 수 있는 유기소자 화합물을 제공하고자 한다.In addition, the technical problem to be achieved by the present invention is to improve the performance of the organic device when manufacturing the organic device having a multi-layer structure through a solution process, and to improve the solubility and thin film formation characteristics of the solvent organic to ensure sufficient stability It is intended to provide a device compound.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned above may be clearly understood by those skilled in the art from the following description. There will be.
상기 기술적 과제를 달성하기 위하여, 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 포함하고, 상기 피리미딘 고리를 포함하는 작용기는 수소결합이 가능한 것을 특징으로 하는 전자수송층 또는 정공차단층에 적용될 수 있는 유기소자용 화합물을 제공한다.In order to achieve the above technical problem, at least one functional group including a pyrimidine ring, the functional group including the pyrimidine ring can be applied to the electron transport layer or hole blocking layer, characterized in that hydrogen bonds are possible Provided are compounds for organic devices.
본 발명의 일 실시예에 있어서, 카바졸을 포함하여 이루어지는 카바졸계 화합물의 말단에 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비하며, 상기 피리미딘 고리를 포함하는 작용기는 수소결합이 가능한 것을 특징으로 하는 유기발광 유기소자용 화합물을 제공한다.In one embodiment of the present invention, at least one functional group containing a pyrimidine ring at the terminal of the carbazole-based compound comprising carbazole, the functional group including the pyrimidine ring is capable of hydrogen bonding It provides a compound for an organic light emitting organic device characterized in that.
본 발명의 다른 실시예에 있어서, 정공수송 특성을 가지는 화합물의 말단에 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비하며, 상기 피리미딘 고리를 포함하는 작용기 간의 수소결합에 의하여 유기 박막을 형성하는 것을 특징으로 하는 유기소자용 화합물을 제공한다.In another embodiment of the present invention, at least one functional group including a pyrimidine ring at the terminal of the compound having a hole transport property, to form an organic thin film by hydrogen bonding between the functional group comprising the pyrimidine ring It provides a compound for an organic device, characterized in that.
상기 기술적 과제를 달성하기 위하여 본 발명의 또 다른 실시예는 유기박막을 제조하는 방법을 제공한다. i) 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기소자용 화합물을 가용성인 제2용매에 용해시켜 용액을 제조하는 단계, ii) 기재를 준비하는 단계, iii) 상기 기재의 상부에 상기 용액을 도포하는 단계, 및 iv) 상기 용액이 도포된 기판을 70℃ 내지 170℃의 온도조건에서 열처리하여 상기 피리미딘 고리를 포함하는 작용기간의 수소결합으로 유기박막을 형성하는 단계를 포함하는 유기박막의 제조방법을 제공한다. In order to achieve the above technical problem, another embodiment of the present invention provides a method of manufacturing an organic thin film. i) dissolving a compound for an organic device having two or more functional groups including a pyrimidine ring in a soluble second solvent to prepare a solution, ii) preparing a substrate, iii) the upper portion of the substrate Applying a solution, and iv) heat-treating the substrate to which the solution is applied at a temperature of 70 ° C. to 170 ° C. to form an organic thin film by hydrogen bonding in the working period including the pyrimidine ring. It provides a method for producing a thin film.
본 발명의 실시예에 따르면, 종래 유기소자의 정공차단층용, 전자수송층용, 발광층용 화합물에 수소결합이 가능한 피리미딘 고리를 포함하는 작용기를 적어도 2개 이상 도입하여 화합물의 용해성을 향상시킴으로써 용액공정을 가능케 할 수 있다는 제1효과, According to an embodiment of the present invention, the solution process by improving the solubility of the compound by introducing at least two functional groups containing a pyrimidine ring capable of hydrogen bonding to the compound for the hole blocking layer, electron transport layer, light emitting layer of the conventional organic device The first effect of enabling
상기 화합물을 포함하는 용액은 70℃ 내지 170℃의 온도에서 피리미딘 고리를 포함하는 작용기간의 수소결합으로 열적 안정성이 우수한 유기박막을 형성할 수 있다는 제2효과, A second effect that the solution containing the compound can form an organic thin film having excellent thermal stability by hydrogen bonding of the working period including the pyrimidine ring at a temperature of 70 ℃ to 170 ℃,
기존 증착방식으로는 곤란하였던 유기소자의 대면적화가 가능할 수 있다는 제3효과, The third effect that the large area of the organic device, which was difficult with the conventional deposition method, may be possible.
저가의 용액공정을 통해 유기박막을 형성함에 따라 유기소자의 저비용화 및 양산성 향상에 기여할 수 있다는 제4효과를 갖는다.Forming the organic thin film through a low-cost solution process has a fourth effect that can contribute to lowering the cost and mass production of the organic device.
또한, 본 발명에 따른 유기소자용 화합물을 포함하여 용액공정으로 소자를 제작하는 경우, 인접한 층이 용해되는 현상 없이 안정한 구조의 다층박막형성이 가능할 수 있다. In addition, when fabricating a device by a solution process including the compound for an organic device according to the present invention, it is possible to form a multilayer thin film having a stable structure without the phenomenon that the adjacent layer is dissolved.
본 발명에 따른 유기발광 화합물은 수소결합이 가능한 피리미딘 고리를 포함하는 작용기를 구비함으로써 각종 용매에 대한 용해성이 향상될 수 있다. 또한, 일반적으로 사용되는 저분자 유기발광 화합물은 용해성이 떨어지는 문제로 인하여 주로 증착공정을 통해 유기박막을 형성하였는데, 본 발명에 따른 용해성의 향상으로 각종 용액공정에 적합한 특성을 제공할 수 있다. The organic light emitting compound according to the present invention may be improved in solubility in various solvents by providing a functional group including a pyrimidine ring capable of hydrogen bonding. In addition, the low molecular organic light-emitting compound is generally used to form an organic thin film mainly through the deposition process due to the problem of poor solubility, it is possible to provide properties suitable for various solution processes by the improved solubility according to the present invention.
또한, 종래기술에서는 용액공정을 통해 유기박막을 형성하더라도, 안정한 유기박막을 형성하기 위하여 고온 조건에서 수행하여야 하는 문제점이 있었는데, 본 발명에 따른 유기발광 화합물은 용매에 대한 용해성이 우수할 뿐만 아니라, 화합물에 구비된 작용기간의 수소결합으로 저온공정으로도 열에 안정한 박막을 형성할 수 있기 때문에 유기소자의 대량생산, 대면적화 및 저비용화를 가능케 할 수 있는 것이다.In addition, in the prior art, even when the organic thin film is formed through a solution process, there is a problem to be performed under high temperature conditions in order to form a stable organic thin film. The hydrogen bond of the working period included in the compound can form a thermally stable thin film even at a low temperature process, thereby enabling mass production, large area, and low cost of the organic device.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above-described effects, but should be understood to include all the effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일실시예에 따른 유기소자용 화합물의 화학식과 이의 수소결합 구조식이다.1 is a chemical formula of a compound for an organic device according to an embodiment of the present invention and a hydrogen bond structural formula thereof.
도 2는 본 발명의 일실시예에 따른 유기발광소자의 적층구조를 보여주는 단면도 및 에너지 레벨 다이어그램을 나타낸 도면이다. 2 is a cross-sectional view and an energy level diagram showing a stacked structure of an organic light emitting diode according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 유기소자용 화합물(uracil-B3PyPB)의 1HNMR 스펙트럼을 나타낸 도면이다.3 is a diagram showing a 1 HNMR spectrum of the compound for organic devices (uracil-B3PyPB) according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 유기소자용 화합물(uracil-B3PyPB)의 UV-vis 흡수 스펙트럼 및 PL 스펙트럼을 나타낸 도면이다. 4 is a view showing UV-vis absorption spectrum and PL spectrum of the compound for organic devices (uracil-B3PyPB) according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따라 제조된 유기발광소자 및 종래기술에 따른 유기발광소자의 전기 광학적 특성 분석 결과를 보여주는 그래프이다.5 is a graph showing an electro-optical characteristic analysis result of the organic light emitting device manufactured according to an embodiment of the present invention and the organic light emitting device according to the prior art.
도 6은 본 발명의 일실시예에 따른 유기발광소자의 단면 모식도이다.6 is a schematic cross-sectional view of an organic light emitting diode according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 유기발광 화합물(MCP-pym) 및 종래기술에 따른 유기발광 화합물(MCP)의 UV-vis 스펙트럼 및 PL 스펙트럼을 나타내는 그래프이다.7 is a graph showing the UV-vis spectrum and PL spectrum of the organic light emitting compound (MCP-pym) and the organic light emitting compound (MCP) according to the prior art according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 유기발광소자의 EL 스펙트럼 및 청색 인광 도펀트(Fir6)의 PL 스펙트럼을 나타내는 그래프이다.8 is a graph showing the EL spectrum and the PL spectrum of the blue phosphorescent dopant (Fir6) of the organic light emitting device according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따라 제조된 유기발광소자의 전류밀도의 변화에 따른 전류효율을 나타내는 그래프이다.9 is a graph showing the current efficiency according to the change in the current density of the organic light emitting device manufactured according to an embodiment of the present invention.
도 10은 본 발명의 일실시예에 따른 유기소자용 화합물(uracil-TPA)의 수소결합 구조를 보여주는 도면이다.10 is a view showing a hydrogen bonding structure of the compound for organic devices (uracil-TPA) according to an embodiment of the present invention.
도 11은 본 발명의 일실시예에 따른 유기소자용 화합물(uracil-TPD)의 수소결합 구조를 보여주는 도면이다.11 is a view showing a hydrogen bond structure of the compound for organic devices (uracil-TPD) according to an embodiment of the present invention.
도 12는 실시예 5 및 비교예 3의 전압-전류(V-I) 곡선이다. 12 is a voltage-current (V-I) curve of Example 5 and Comparative Example 3. FIG.
도 13은 실시예 5 및 비교예 3의 전류밀도에 대한 발광효율 변화를 보여주는 그래프이다.FIG. 13 is a graph showing changes in luminous efficiency with respect to current densities of Example 5 and Comparative Example 3. FIG.
도 14는 실시예 6 및 비교예 3의 전압-전류(V-I) 곡선이다.14 is a voltage-current (V-I) curve of Example 6 and Comparative Example 3. FIG.
도 15는 실시예 6 및 비교예 3의 전류밀도에 대한 발광효율 변화를 보여주는 그래프이다.15 is a graph showing changes in luminous efficiency with respect to current densities of Example 6 and Comparative Example 3. FIG.
도 16은 실시예 7, 실시예 8 및 비교예 4의 전압-전류(V-I) 곡선이다.16 is a voltage-current (V-I) curve of Example 7, Example 8, and Comparative Example 4. FIG.
도 17은 실시예 7, 실시예 8 및 비교예 4의 전류밀도에 대한 발광효율 변화를 보여주는 그래프이다.17 is a graph showing changes in luminous efficiency with respect to current densities of Example 7, Example 8 and Comparative Example 4. FIG.
도 18은 본 발명의 일실시예에 따른 유기발광소자의 단면 모식도이다.18 is a schematic cross-sectional view of an organic light emitting diode according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, coupled)" with another part, it is not only "directly connected" but also "indirectly connected" with another member in between. "Includes the case. In addition, when a part is said to "include" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
이하에서는 첨부한 화학식, 반응식 및 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 첨부된 화학식, 반응식 및 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.Hereinafter, with reference to the accompanying formula, scheme and drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. And the part not related to the description in order to clearly describe the present invention in the accompanying formula, scheme and drawings are omitted.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, coupled)" with another part, it is not only "directly connected" but also "indirectly connected" with another member in between. "Includes the case. In addition, when a part is said to "include" a certain component, this means that unless otherwise stated, it may further include other components rather than excluding the other components.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
본 발명에서 “피리미딘 고리를 포함하는 작용기는”는 4개의 탄소 원자와 2개의 질소원자가 고리구조를 이루는 피리미딘 고리를 포함하는 화합물로부터 유도된 원자단을 총칭하며, 피리미딘 고리를 구성하는 수소원자 또는 원자단이 치환되거나 비치환된 것을 모두 포함하는 것으로 한다. 본 발명에서 “수소결합이 가능한 것”이라는 용어는 분자 내에 수소결합이 가능한 원자단(예를들어, -NH, -C=O, -OH 등)을 포함하고 있는 것을 의미한다. In the present invention, the "functional group including a pyrimidine ring" refers to a group of atoms derived from a compound including a pyrimidine ring in which four carbon atoms and two nitrogen atoms form a ring structure, and hydrogen atoms constituting a pyrimidine ring. Or it shall include all substituted or unsubstituted atomic groups. In the present invention, the term "hydrogen bondable" means that the molecule contains a hydrogen bond capable of hydrogen bonding (for example, -NH, -C = O, -OH, etc.).
또한, 본 발명에서 “퓨린계 작용기”는 피리미딘 고리와 이미다졸 고리가 탄소-탄소 결합 하나를 공유하는 구조의 방향족 고리 화합물인 퓨린으로부터 유도된 원자단을 총칭하며, 퓨린 분자를 구성하는 수소원자 또는 원자단이 치환되거나 비치환된 것을 모두 포함하는 것으로 한다. 본 발명에서 “치환되거나 비치환된 것”은 화합물의 수소원자가 중수소, 할로겐, 직쇄 또는 분지쇄 알킬기, 아릴기, 헤테로고리기, 시아노기, 아미노기, 카르복실기, 하이드록시기, 할로젠화알킬기 중에서 선택되는 1개 이상의 작용기로 치환되었거나, 또는 어떠한 작용기도 갖지 않는 것을 의미한다. 본 발명에서 피리딘은 1개의 질소원자를 함유하는 헤테로고리화합물을 의미한다.In addition, in the present invention, the “purine-based functional group” refers to an atomic group derived from purine, which is an aromatic ring compound having a structure in which a pyrimidine ring and an imidazole ring share one carbon-carbon bond, and are hydrogen atoms constituting a purine molecule or It is assumed to include all substituted or unsubstituted atomic groups. In the present invention, "substituted or unsubstituted" is a hydrogen atom of the compound selected from deuterium, halogen, linear or branched alkyl group, aryl group, heterocyclic group, cyano group, amino group, carboxyl group, hydroxy group, halogenated alkyl group It means that it is substituted with one or more functional groups, or have no functional groups. In the present invention, pyridine means a heterocyclic compound containing one nitrogen atom.
본 발명은 유기소자의 정공차단층(Hole blocking layer, HBL) 또는 전자수송층(Electron transport layer, ETL)에 적용되는 유기소자용 화합물에 관한 것으로, 본 발명에 따른 유기소자용 화합물은 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 포함하고, 상기 피리미딘 고리를 포함하는 작용기는 수소결합이 가능한 원자단(-NH, -C=O, -OH 등)을 포함하는 것을 특징으로 할 수 있다. 본 발명의 피리미딘 고리를 포함하는 작용기는 전술한 바와 같이 수소결합이 가능한 원자단을 포함함에 따라 유기소자용 화합물이 상기 작용기를 적어도 2개 이상 구비하는 경우, 소정의 온도조건에서 상기 작용기간의 수소결합으로 유기 박막을 형성할 수 있다는 특징을 갖는다.The present invention relates to a compound for an organic device applied to a hole blocking layer (HBL) or an electron transport layer (ETL) of an organic device, the compound for an organic device according to the present invention is a pyrimidine ring It includes at least one functional group comprising, the functional group including the pyrimidine ring may be characterized in that it comprises an atomic group (-NH, -C = O, -OH, etc.) capable of hydrogen bonding. As the functional group including the pyrimidine ring of the present invention includes an atomic group capable of hydrogen bonding, as described above, when the compound for an organic device includes at least two or more functional groups, hydrogen of the functional period under a predetermined temperature condition It is characterized by forming an organic thin film by bonding.
도 1의 (a)는 본 발명의 일실시예에 따른 피리미딘 고리를 포함하는 작용기를 2개 구비하는 유기소자용 화합물(이하, uracil-B3PyPB라고 한다.)의 화학식이다. 화합물 uracil-B3PyPB는 종래 정공차단층 또는 전자수송층의 재료인 B3PyPB(1,3-bis[3,5-di(pyridin-3-yl)phenyl]benzene)의 수소원자 2개를 피리미딘 고리를 포함하는 작용기로 각각 치환하여 제조될 수 있다. 1A is a chemical formula of a compound for an organic device (hereinafter, referred to as uracil-B3PyPB) having two functional groups including a pyrimidine ring according to an embodiment of the present invention. Compound uracil-B3PyPB contains a pyrimidine ring containing two hydrogen atoms of B3PyPB (1,3-bis [3,5-di (pyridin-3-yl) phenyl] benzene), which is a material of a conventional hole blocking layer or electron transport layer. It can be prepared by substituting each functional group.
또한, 도 1의 (b)는 화합물 uracil-B3PyPB의 수소결합 구조식을 보여주는 도면이다. 이를 참조하면, 화합물 uracil-B3PyPB는 수소결합이 가능한 원자단을 포함하는 작용기를 양 말단에 구비함에 따라 소정의 온도조건에서 상기 작용기간의 수소결합으로 네트워크 구조를 형성함에 따라 용액공정을 통한 유기박막의 형성이 가능할 수 있는 것이다.In addition, Figure 1 (b) is a view showing the hydrogen bond structural formula of the compound uracil-B3PyPB. Referring to this, the compound uracil-B3PyPB has a functional group including a hydrogen group capable of hydrogen bonding at both ends thereof to form a network structure with hydrogen bonds in the working period under a predetermined temperature condition, thereby forming an organic thin film through a solution process. Formation may be possible.
이하에서는 화학식을 참조하여 본 발명의 일실시예에 따른 유기소자용 화합물 및 상기 화합물에 구비되는 작용기에 관하여 보다 구체적으로 설명하기로 한다. Hereinafter, a compound for an organic device and a functional group included in the compound according to an embodiment of the present invention will be described in detail with reference to the chemical formula.
본 발명의 피리미딘 고리를 포함하는 작용기는 피리미딘계 작용기 및 퓨린계 작용기 중에서 선택되는 1종 이상이 될 수 있다. The functional group containing the pyrimidine ring of the present invention may be one or more selected from pyrimidine-based functional groups and purine-based functional groups.
본 발명의 일실시예에서 피리미딘계 작용기는 하기 화학식 1a 또는 화학식 1b로 표시되는 피리미딘계 화합물로부터 유도되는 것을 특징으로 할 수 있다. In one embodiment of the present invention, the pyrimidine-based functional group may be characterized in that it is derived from a pyrimidine-based compound represented by Formula 1a or 1b.
Figure PCTKR2016010717-appb-I000001
Figure PCTKR2016010717-appb-I000001
(상기 화학식 1a 및 화학식 1b에서, (In Formula 1a and Formula 1b,
R1 내지 R6은 서로 같거나 상이할 수 있고, 각각 독립적으로 수소, 중수소, 할로겐, 직쇄 또는 분지쇄 알킬기, 아릴기, 헤테로고리기, 시아노기, 아미노기, 카르복실기, 하이드록시기, 할로젠화알킬기, 알콕시기 중에서 선택됨)R1 to R6 may be the same as or different from each other, and each independently hydrogen, deuterium, halogen, linear or branched alkyl group, aryl group, heterocyclic group, cyano group, amino group, carboxyl group, hydroxy group, halogenated alkyl group, Selected from alkoxy groups)
구체적으로 상기 화학식 1a 또는 화학식 1b로 표시되는 피리미딘계 화합물로부터 유도된 작용기는 하기 화학식으로 표시되는 다수의 물질군으로부터 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다. Specifically, the functional group derived from the pyrimidine-based compound represented by Formula 1a or Formula 1b may be selected from a plurality of substance groups represented by the following formulas, but is not limited thereto.
Figure PCTKR2016010717-appb-I000002
Figure PCTKR2016010717-appb-I000002
또한, 본 발명의 일실시예에서 퓨린계 작용기는 하기 화학식 2a 내지 2f로 표시되는 퓨린계 화합물 중에서 선택되는 1종으로부터 유도되는 것을 특징으로 할 수 있다. In addition, the purine-based functional group in one embodiment of the present invention may be characterized in that it is derived from one selected from the purine-based compound represented by the formula (2a) to 2f.
Figure PCTKR2016010717-appb-I000003
Figure PCTKR2016010717-appb-I000003
(상기 화학식 2a 내지 2f에서, (In Chemical Formulas 2a to 2f,
R7 내지 R21은 서로 같거나 상이할 수 있고, 각각 독립적으로 수소, 중수소, 할로겐, 직쇄 또는 분지쇄 알킬기, 아릴기, 헤테로고리기, 시아노기, 아미노기, 카르복실기, 하이드록시기, 할로젠화알킬기, 알콕시기 중에서 선택됨)R7 to R21 may be the same as or different from each other, and each independently hydrogen, deuterium, halogen, straight or branched chain alkyl group, aryl group, heterocyclic group, cyano group, amino group, carboxyl group, hydroxy group, halogenated alkyl group, Selected from alkoxy groups)
구체적으로 상기 화학식 2a 내지 2f로 표시되는 퓨린계 화합물로부터 유도된 작용기는 하기 화학식으로 표시되는 다수의 물질군으로부터 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다. Specifically, the functional group derived from the purine-based compound represented by Formulas 2a to 2f may be selected from a plurality of substance groups represented by the following Formulas, but is not limited thereto.
Figure PCTKR2016010717-appb-I000004
Figure PCTKR2016010717-appb-I000004
Figure PCTKR2016010717-appb-I000005
Figure PCTKR2016010717-appb-I000005
Figure PCTKR2016010717-appb-I000006
Figure PCTKR2016010717-appb-I000006
본 발명의 유기소자용 화합물은 음이온 라디칼을 안정화시킬 수 있는 전자-구인성(electron-withdrawing) 그룹을 포함하는 화합물이나 전자를 잘 수용할 수 있는 금속착화합물의 일부 원자 또는 원자단을 상기 피리미딘 고리를 포함하는 작용기로 적어도 1개 이상 치환하여 제조되는 것 일 수 있다. The compound for an organic device of the present invention is a compound containing an electron-withdrawing group capable of stabilizing an anion radical or a part of atoms or atomic groups of a metal complex compound capable of accommodating electrons. It may be prepared by replacing at least one or more functional groups.
보다 구체적으로 유기소자용 화합물은 하기 [화학식 3-1] 내지 [화학식 3-3]으로 표시되는 금속착화합물로부터 선택되는 1종의 화합물의 수소원자를 상기 피리미딘 고리를 포함하는 작용기로 적어도 1개 이상 치환하여 제조되는 것일 수 있다. 그러나, 피리미딘 고리를 포함하는 작용기가 결합될 수 있는 금속착화합물은 하기 [화학식 3-1], [화학식 3-2] 및 [화학식 3-3]로 제한되지 않으며, 이들로부터 유도된 금속착화합물의 유도체들도 가능할 수 있음을 명시한다. More specifically, the compound for an organic device includes at least one hydrogen atom of at least one compound selected from metal complex compounds represented by the following [Formula 3-1] to [Formula 3-3] as a functional group including the pyrimidine ring. It may be prepared by substitution above. However, the metal complex compound to which the functional group including the pyrimidine ring can be bound is not limited to the following [Formula 3-1], [Formula 3-2] and [Formula 3-3], It is noted that derivatives may also be possible.
Figure PCTKR2016010717-appb-I000007
Figure PCTKR2016010717-appb-I000007
(상기 화학식3-1에서 M은 Al 또는 Ga 중에서 선택되는 1종의 금속원소임)(In Formula 3-1, M is one metal element selected from Al or Ga)
또한, 유기소자용 화합물은 하기 [화학식 4-1] 내지 [화학식 4-16]으로 표시되는 유기소자의 정공차단층 및/또는 전자수송층 화합물로부터 선택되는 1종의 일부 원자 또는 원자단을 상기 피리미딘 고리를 포함하는 작용기로 적어도 1개 이상 치환하여 제조되는 것일 수 있다. In addition, the compound for an organic device is a pyrimidine compound of one kind of atoms or atomic groups selected from the hole blocking layer and / or the electron transport layer compound of the organic device represented by the following [Formula 4-1] to [Formula 4-16] It may be prepared by replacing at least one or more functional groups containing a ring.
본 발명의 유기소자용 화합물은 oxadizole group, azole group, 및 benzimidizole group 중 어느 하나로부터 선택될 수 있다.The compound for an organic device of the present invention may be selected from any one of oxadizole group, azole group, and benzimidizole group.
예를 들어 상기 화합물은 하기 화학식으로 표현되는 화합물일 수 있다.For example, the compound may be a compound represented by the following formula.
Figure PCTKR2016010717-appb-I000008
Figure PCTKR2016010717-appb-I000008
Figure PCTKR2016010717-appb-I000009
Figure PCTKR2016010717-appb-I000009
또한, 본 발명의 유기소자용 화합물은 전자-구인성을 갖는 그룹인 피리딘을 포함하며, 하기 [화학식 4-1] 내지 [화학식 4-16]으로 표시되는 화합물로부터 선택되는 1종의 화합물의 일부 원자 또는 원자단을 피리미딘 고리를 포함하는 작용기로 적어도 1개 이상 치환하여 제조되는 것 일 수 있다. 또한, 하기 [화학식 4-1] 내지 [화학식 4-16]으로부터 유도된 유도체들의 일부 원자 또는 원자단을 상기 피리미딘 고리를 포함하는 작용기로 치환하여 본 발명에 이를 수 있음을 명시한다. In addition, the compound for an organic device of the present invention includes a pyridine which is a group having electron-specificity, and part of one compound selected from the compounds represented by the following [Formula 4-1] to [Formula 4-16] It may be prepared by replacing at least one atom or atom group with a functional group including a pyrimidine ring. In addition, it is specified that the present invention can be achieved by substituting some of the atoms or the atomic groups of the derivatives derived from the following [Formula 4-1] to [Formula 4-16] with a functional group including the pyrimidine ring.
Figure PCTKR2016010717-appb-I000010
Figure PCTKR2016010717-appb-I000010
Figure PCTKR2016010717-appb-I000011
Figure PCTKR2016010717-appb-I000011
그러나, 본 발명의 유기소자용 화합물은 상기 [화학식 4-1] 내지 [화학식 4-16]로 표시되는 피리딘 구조를 포함하는 화합물 이외의 전자구인성 그룹을 갖는 화합물의 일부를 피리미딘 고리를 포함하는 작용기로 치환시켜 제조될 수도 있으며, 구체적으로 전자구인성 그룹은 사일롤(silole), 옥사디아졸(oxadiazole), 트리아졸(triazole), 이미다졸(imidazole), 퍼플루오르화 올리고-p-페닐렌(perfluorinated oligo-p-phenylene), 페난트롤린(phenanthroline), 트리아진(triazine) 등을 포함한다. 보다 구체적으로 상기 [화학식 4-1] 내지 [화학식 4-27] 이외에 전자구인성 그룹을 갖는 화합물은 하기 화학식으로 표시되는 다수의 물질군으로부터 선택될 수 있으며, 선택된 화합물의 일부 원자 또는 원자단을 피리미딘 고리를 포함하는 작용기로 치환시켜 본 발명에 이를 수 있음을 명시한다.However, the compound for an organic device of the present invention includes a pyrimidine ring as part of a compound having an electron-withdrawing group other than the compound containing a pyridine structure represented by the above [Formula 4-1] to [Formula 4-16] The electron withdrawing group may be prepared by substituting a functional group, and specifically, the electron withdrawing group may be silole, oxadiazole, triazole, imidazole, or perfluorinated oligo-p-phenyl. Perreninated oligo-p-phenylene, phenanthroline, triazine and the like. More specifically, the compound having an electron withdrawing group in addition to the above [Formula 4-1] to [Formula 4-27] may be selected from a plurality of substance groups represented by the following formula, and a portion of the selected compound or atom group It is noted that the present invention can be achieved by substitution with a functional group containing a midine ring.
Figure PCTKR2016010717-appb-I000012
Figure PCTKR2016010717-appb-I000012
보다 바람직하게 본 발명에 따른 유기소자용 화합물은 상기 [화학식 3-1] 내지 [화학식 3-3] 및 상기 화학식 [화학식 4-1] 내지 [화학식 4-16]으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종의 화합물의 일부 원자 또는 원자단을 상기 피리미딘 고리를 포함하는 작용기로 적어도 2개 이상 치환하여 제조된 것일 수 있으며, 이와 같이 작용기를 2개 이상 구비하는 유기소자용 화합물은 작용기간의 수소결합으로 용이하게 안정한 유기박막을 형성할 수 있다. More preferably, the compound for an organic device according to the present invention is from the group consisting of the compounds represented by the above [Formula 3-1] to [Formula 3-3] and the formula [Formula 4-1] to [Formula 4-16] It may be prepared by substituting at least two or more of the atoms or atomic groups of the selected one compound with a functional group including the pyrimidine ring, the compound for an organic device having two or more functional groups as described above The hydrogen bond can form an easily stable organic thin film.
또한, 본 발명에 따른 유기소자용 화합물은 피리미딘 고리를 포함하는 작용기의 개수에 따라서 형성되는 유기박막의 경도를 제어할 수 있다는 특징을 갖는다. 본 발명에 따른 유기소자용 화합물은 화합물에 구비된 피리미딘 고리를 포함하는 작용기에 수소결합이 가능한 원자단을 포함함에 따라 이들 원자단 간의 수소결합으로 유기박막을 형성하는데, 작용기의 개수가 증가할수록 수소결합을 통해 보다 치밀한 네트워크 구조를 형성함에 따라 박막의 경도가 증가하는 특성을 나타낼 수 있다. In addition, the compound for an organic device according to the present invention has a feature of controlling the hardness of the organic thin film formed according to the number of functional groups containing a pyrimidine ring. The compound for an organic device according to the present invention includes an atomic group capable of hydrogen bonding to a functional group including a pyrimidine ring provided in the compound to form an organic thin film by hydrogen bonding between these atomic groups. Through the formation of a more dense network structure can exhibit the characteristic of increasing the hardness of the thin film.
이하에서는 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기소자용 화합물을 사용하여 유기박막을 형성하는 방법에 관하여 상세하게 설명하기로 한다. Hereinafter, a method of forming an organic thin film using a compound for an organic device having two or more functional groups including a pyrimidine ring will be described in detail.
본 발명의 실시예에서 유기박막은 i) 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기소자용 화합물을 제1용매에 용해시켜 용액을 제조하는 단계, ii) 기재를 준비하는 단계, iii) 기재의 일면에 상기 용액을 도포하는 단계, iv) 용액이 도포된 기재를 소정의 시간 동안 열처리하여 유기박막을 형성하는 단계를 포함하여 형성될 수 있다. In an embodiment of the present invention, the organic thin film is i) dissolving a compound for an organic device having two or more functional groups including a pyrimidine ring in a first solvent to prepare a solution, ii) preparing a substrate, iii 1) applying the solution to one surface of the substrate, iv) heat-treating the substrate to which the solution is applied for a predetermined time to form an organic thin film.
본 발명의 i) 단계에서 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기소자용 화합물은 상온에서 제1용매에 가용성인 것을 특징으로 할 수 있으며, 본 발명의 일실시예에서 제1용매는 1,2,3-트리클로로벤젠(1,2,3-Trichlorobenzene), 1,2,4-트리클로로벤젠(1,2,4-Trichlorobenzene), 1,3,5-트리클로로벤젠(1,3,5-Trichlorobenzen), 클로로포름(chloroform), 테트라하이드로퓨란(Tetrahydrofuran) 및 에탄올 중에서 선택되는 1종 또는 2종 이상의 혼합용매일 수 있으나, 이에 제한되는 것은 아님을 명시한다. The compound for an organic device having two or more functional groups including a pyrimidine ring in step i) of the present invention may be soluble in the first solvent at room temperature, and in one embodiment of the present invention, the first solvent Is 1,2,3-trichlorobenzene (1,2,3-Trichlorobenzene), 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene), 1,3,5-trichlorobenzene (1 , 3,5-Trichlorobenzen), chloroform, chloroform, tetrahydrofuran and one or two or more mixed solvents selected from ethanol, but is not limited thereto.
본 발명의 ii) 단계에서 기재는 한정되지 않으며, 표면이 상기 용액에 의해 용해되지 않고, 후술하는 열처리단계에서 변형되지 않는 소재의 기판이라면 어느 것이든 가능할 수 있다. The substrate in step ii) of the present invention is not limited, and may be any substrate as long as the substrate is not melted by the solution and is not deformed in the heat treatment step described later.
본 발명의 iii) 단계는 기재의 일면에 용액을 도포하는 단계이다. 용액의 도포는 스핀코팅, 잉크젯 프린팅, 캐스팅 방식, 딥코팅, 스프레이코팅 등 공지된 용액도포 및 코팅 방식을 제한 없이 사용할 수 있다.Step iii) of the present invention is a step of applying a solution to one side of the substrate. Application of the solution may be any known solution coating and coating method such as spin coating, inkjet printing, casting method, dip coating, spray coating without limitation.
본 발명의 iv) 단계는 용액이 도포된 기재를 소정의 시간 동안 열처리하여 수소결합을 유도함으로써 유기박막을 형성하는 단계이다. 전술한 바와 같이 피리미딘 고리를 포함하는 작용기는 수소결합이 가능한 원자단을 포함하여 이들 간의 수소결합을 통해 유기박막이 형성될 수 있으며, 이때 열처리는 70 내지 170℃ 범위내의 온도에서 수행되는 것이 바람직할 수 있다. 열처리 온도가 70℃ 미만일 경우에는 수소결합을 위한 열에너지가 충분하지 못하여 유기박막을 형성하기에 곤란할 수 있으며, 170℃를 초과하는 경우에는 과도한 열이 가해지면서 기재 및 화합물의 안정성을 저해할 수 있어 상기 온도로 한정하였으나, 반드시 이에 제한되는 것은 아님을 명시한다. 또한, 용액을 도포하는 공정 이전에 용액에 70℃이상 보다 바람직하게는 60℃ 이상의 열이 가해지는 경우, 용액 내에서 분자간의 수소결합이 발생하여 네트워크 구조가 미리 형성됨에 따라, iv) 단계에서 균일하고 고른 박막을 형성하기에 곤란할 수 있음을 명시한다. Step iv) of the present invention is a step of forming an organic thin film by inducing hydrogen bonding by heat-treating the substrate to which the solution is applied for a predetermined time. As described above, the functional group including the pyrimidine ring may include an atomic group capable of hydrogen bonding to form an organic thin film through hydrogen bonding therebetween, and the heat treatment may be preferably performed at a temperature in the range of 70 to 170 ° C. Can be. If the heat treatment temperature is less than 70 ℃ heat energy for hydrogen bonding may not be enough to form an organic thin film, if it exceeds 170 ℃ excessive heat may be applied to inhibit the stability of the substrate and the compound It is specified that the temperature is limited, but not necessarily limited thereto. In addition, when heat is applied to the solution at 70 ° C. or more and more preferably 60 ° C. or more prior to the process of applying the solution, the hydrogen bonds between molecules occur in the solution, and thus the network structure is formed in advance. It may be difficult to form an even thin film.
본 발명에 따른 유기소자용 화합물은 전자 당김 특성 또는 전자를 잘 수용할 수 있는 그룹을 포함하여 유기발광소자의 정공차단층 및/또는 전자수송층에 적용될 수 있으며, 이하 본 발명에 따른 유기소자용 화합물을 포함하여 제조되는 유기발광소자에 관하여 설명하기로 한다. The compound for an organic device according to the present invention can be applied to the hole blocking layer and / or the electron transport layer of the organic light emitting device including the electron pulling characteristics or a group that can accept the electron well, the compound for an organic device according to the present invention It will be described with respect to the organic light emitting device manufactured to include.
본 발명의 유기발광소자는 양극, 정공주입층, 정공수송층, 발광층, 정공차단층, 전자수송층 및 음극을 포함할 수 있으며, 이때, 정공차단층 및/또는 전자수송층은 본 발명의 일실시예에 따라 피리미딘 고리를 포함하는 작용기를 적어도 2개 이상 구비하는 유기소자용 화합물을 포함하는 용액으로부터 형성된 유기박막인 것을 특징으로 할 수 있다. The organic light emitting device of the present invention may include an anode, a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer and a cathode, wherein the hole blocking layer and / or the electron transport layer in one embodiment of the present invention Therefore, the organic thin film may be formed from a solution containing a compound for an organic device having at least two functional groups including a pyrimidine ring.
본 발명의 일실시예에서 상기 정공차단층은 하기 화학식으로 표시되는 화합물을 포함하여 형성될 수 있다. In one embodiment of the present invention, the hole blocking layer may be formed including a compound represented by the following formula.
Figure PCTKR2016010717-appb-I000013
Figure PCTKR2016010717-appb-I000013
(상기 Pym1 내지 Pym7은 서로 같거나 상이할 수 있고, Pym1 내지 Pym7 중에서 적어도 2개 이상은 상기 피리미딘 고리를 포함하는 작용기고, 나머지는 수소이며, 상기 화학식 6에서 Pym8 내지 Pym10은 서로 같거나 상이할 수 있고, Pym8 내지 Pym10 중에서 적어도 2개 이상은 상기 피리미딘 고리를 포함하는 작용기고, 나머지는 수소임)(The Pym 1 to Pym 7 may be the same as or different from each other, at least two or more of Pym 1 to Pym 7 is a functional group containing the pyrimidine ring, the remainder is hydrogen, Pym 8 to Pym in the formula (6) 10 may be the same as or different from each other, at least two or more of Pym 8 to Pym 10 may be a functional group including the pyrimidine ring, and the remainder is hydrogen)
구체적으로 본 발명의 일실시예에서 정공차단층은 상기 화학식으로 표시되는 화합물을 포함하는 용액을 제조하고, 발광층의 상부에 도포한 뒤 소정의 온도조건에서 상기 화학식으로 표시되는 화합물의 수소결합을 유도하여 형성될 수 있다. 이때, 소정의 온도조건은 상기 유기박막의 제조방법에서 상술한 열처리 조건과 동일하다. Specifically, in one embodiment of the present invention, the hole blocking layer prepares a solution containing the compound represented by the above formula, and is applied on top of the light emitting layer to induce hydrogen bonding of the compound represented by the above formula under a predetermined temperature condition. Can be formed. At this time, the predetermined temperature conditions are the same as the heat treatment conditions described above in the method for manufacturing the organic thin film.
또한, 상기 유기발광소자를 구성하는 양극, 정공주입층, 정공수송층, 발광층, 음극은 당업에서 공지된 재료를 공지된 방법(증착, 용액공정 등)을 사용하여 형성하는 것이 가능할 수 있다. 다만, 소자의 원활한 작동을 위해서는 공지된 재료들을 사용하되, 각 층을 구성하는 화합물들의 에너지 레벨을 고려하여 소자제작이 이루어져야 한다. 도 2는 각 층을 구성하는 화합물들의 에너지 레벨을 고려하여 제작된 본 발명의 일실시예에 따른 유기발광소자의 단면도 및 각 층을 구성하는 화합물들의 에너지레벨을 모식화한 도면이다. In addition, the anode, the hole injection layer, the hole transport layer, the light emitting layer, and the cathode constituting the organic light emitting device may be formed of a material known in the art using a known method (deposition, solution process, etc.). However, for the smooth operation of the device using known materials, the device must be made in consideration of the energy level of the compounds constituting each layer. 2 is a cross-sectional view of an organic light emitting device according to an embodiment of the present invention manufactured in consideration of energy levels of compounds constituting each layer, and a diagram illustrating energy levels of compounds constituting each layer.
도 2의 (a)를 참조하면, 본 발명의 일실시예에 따른 유기발광소자는 양극과 음극의 사이에 정공주입층(HIL), 정공수송층(HTL), 발광층(EML), 정공차단층(HBL), 전자수송층(ETL), 전자주입층(EIL)을 순차적으로 형성하여 제조될 수 있다. 구체적으로 정공주입층, 전자수송층, 전자주입층은 공지된 유기 재료를 사용할 수 있으며, 정공차단층은 본 발명의 일실시예에 따른 유기소자용 화합물인 uracil-B3PyPB를 사용할 수 있다. 또한, 본 발명의 피리미딘 고리를 포함하는 작용기는 정공차단 물질뿐만 아니라, 정공수송층 또는 발광층 재료에 적어도 2개 이상 결합되어 수소결합을 통한 유기박막의 형성을 가능케 할 수도 있음을 명시한다. 일례로 도 2의 (a)에 도시된 정공수송층은 공지된 정공수송 재료인 TCTA에 피리미딘 고리를 포함하는 작용기의 일종인 우라실(uracil)의 유도체를 결합시켜 제조된 uracil-TCTA를 포함하여 형성될 수 있으며, 발광층은 공지된 호스트 물질인 CzTP에 상기 우라실의 유도체를 결합시켜 제조된 uracil-CzTP와 도펀트를 포함하여 형성될 수 있다. 상기와 같이 피리미딘 고리를 포함하는 작용기를 구비하는 화합물들을 정공수송층, 발광층, 정공차단층에 모두 적용하는 것은 용액공정을 통한 다층구조의 유기박막 형성이 가능하다는 것을 의미하며, 이와 관련하여 구체적인 일실시예는 후술하는 실시예 및 실험예에서 구체적으로 상술하기로 한다. Referring to Figure 2 (a), the organic light emitting device according to an embodiment of the present invention is a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), a hole blocking layer ( HBL), the electron transport layer (ETL), and the electron injection layer (EIL) can be prepared by sequentially forming. Specifically, a hole injection layer, an electron transport layer, or an electron injection layer may use a known organic material, and the hole blocking layer may use uracil-B3PyPB, which is a compound for an organic device, according to an embodiment of the present invention. In addition, the functional group containing the pyrimidine ring of the present invention is not only a hole blocking material, but also specifies that at least two or more bonded to the hole transport layer or the light emitting layer material may enable the formation of an organic thin film through hydrogen bonding. For example, the hole transport layer illustrated in FIG. 2A includes uracil-TCTA prepared by combining a derivative of uracil, which is a kind of a functional group containing a pyrimidine ring, to TCTA, a known hole transport material. The light emitting layer may include a uracil-CzTP and a dopant prepared by binding the derivative of uracil to CzTP, which is a known host material. Application of all compounds having a functional group containing a pyrimidine ring to the hole transport layer, the light emitting layer, and the hole blocking layer as described above means that the organic thin film can be formed through a solution process. Examples will be described in detail in Examples and Experimental Examples to be described later.
아울러, 상기에서는 본 발명에 따른 유기소자용 화합물 및 이를 포함하여 제조되는 유기박막은 유기발광소자에 한정되어 적용되지 않으며, 유기 감광체, 유기 트랜지스터, 유기 태양전지, 유기 이미지센서 등 다양한 유기소자에 적용할 수 있음은 자명하다. In addition, in the above, the compound for an organic device and the organic thin film prepared by using the same according to the present invention are not limited to an organic light emitting device, and are not applicable to various organic devices such as an organic photosensitive member, an organic transistor, an organic solar cell, and an organic image sensor. It can be obvious.
이하, 본 발명의 실시예 및 실험예를 기재한다. Hereinafter, Examples and Experimental Examples of the present invention will be described.
[실시예 1] 우라실기를 구비하는 유기소자용 화합물(uracil-B3PyPB)의 제조Example 1 Preparation of Compound for Organic Device (uracil-B3PyPB) Having Urasyl Group
1. 중간체 (1)의 합성1. Synthesis of Intermediate (1)
2구 플라스크에 3-브로모피리딘 (3g, 0.019mol), 비스(피나콜라토)디보론 (2.2g, 0.019mol), Pd(pph3)4 (0.05g, 0.2mol), 포타슘 아세테이트 (3.7g, 0.038mol) 및 1,4-디옥세인 (100ml)를 넣고 질소분위기를 유지하며 교반하며 혼합하였다. 혼합물을 80℃에서 12시간 동안 환류시켜 반응을 진행하였다. 반응이 완료된 후 생성물을 상온으로 식힌 뒤, 에틸아세테이트로 세척 및 여과하였다. 여과된 용액을 에틸아세테이트 및 헥산을 1:8의 부피비로 사용하는 컬럼크로마토그래피로 정제하여 중간체 (1)을 수득하였다(이와 관련하여 하기 반응식 1을 참조한다).3-bromopyridine (3g, 0.019mol), bis (pinacolato) diboron (2.2g, 0.019mol), Pd (pph3) 4 (0.05g, 0.2mol), potassium acetate (3.7g) in a two-neck flask , 0.038 mol) and 1,4-dioxane (100 ml) were added and mixed under stirring and maintaining a nitrogen atmosphere. The mixture was refluxed at 80 ° C. for 12 hours to proceed with the reaction. After the reaction was completed, the product was cooled to room temperature, washed with ethyl acetate and filtered. The filtered solution was purified by column chromatography using ethyl acetate and hexane in a volume ratio of 1: 8 to obtain Intermediate (1) (see Reaction Scheme 1 below).
[반응식 1]Scheme 1
Figure PCTKR2016010717-appb-I000014
Figure PCTKR2016010717-appb-I000014
(상기 반응식 1에서 Pd(pph3)4 는 화합물 Palladium-tetrakis(triphenylphosphine)의 약자이며, KOAc는 포타슘 아세테이트의 약자이다.) (In Scheme 1, Pd (pph3) 4 stands for compound Palladium-tetrakis (triphenylphosphine), and KOAc stands for potassium acetate.)
2. 중간체 (2)의 합성 2. Synthesis of Intermediate (2)
플라스크에 정제된 중간체 (1) (2.5g, 0.012mol), 1,3,5-트리브로모벤젠 (3.7g, 0.012mol), Pd(pph3)4 (0.02g, 0.00001mol) 및 THF (50ml)를 넣고 질소 분위기를 유지하면서 교반하여 혼합하였다. 반응용기 내 물질이 용매에 모두 용해된 후 2N 농도의 포타슘 카보네이트 수용액 (50ml)를 첨가하고 교반하며 80℃에서 12시간 동안 환류시키며 반응을 진행하였다. 반응이 종료된 후, 생성물을 에틸아세테이트 및 헥산을 1:10의 부피비로 사용하는 컬럼크로마토그래피로 정제하여 중간체 (2)을 수득하였다. (이와 관련하여 하기 반응식 2를 참조한다.)Purified intermediate (1) (2.5g, 0.012mol), 1,3,5-tribromobenzene (3.7g, 0.012mol), Pd (pph3) 4 (0.02g, 0.00001mol) and THF (50ml) in flask ) Was added and mixed under stirring while maintaining a nitrogen atmosphere. After the materials in the reaction vessel were all dissolved in the solvent, 2N aqueous potassium carbonate solution (50ml) was added and stirred, and the mixture was refluxed at 80 ° C. for 12 hours to proceed with the reaction. After the reaction was completed, the product was purified by column chromatography using ethyl acetate and hexane in a volume ratio of 1:10 to obtain an intermediate (2). (See Scheme 2 below in this regard.)
[반응식 2] Scheme 2
Figure PCTKR2016010717-appb-I000015
Figure PCTKR2016010717-appb-I000015
3. 중간체 (3)의 합성 3. Synthesis of Intermediate (3)
2구 플라스크에 정제된 중간체 (2) (2g, 0.0064mol), 1,3-비스(4,4,5,5,-테트라메틸-1,3,2-디옥사보란-2-일)벤젠 (1g, 0.0032mol), Pd(pph3)4 (0.05g, 0.00006mol) 및 THF (100ml)를 넣고 질소분위기를 유지하며 교반하였다. 반응기 내의 물질이 용매에 모두 용해된 후 2N 농도의 포타슘 카보네이트 수용액 (100ml)를 첨가하고 교반하며 80℃에서 12시간 동안 환류시키며 반응을 진행하였다. 반응이 종료된 후, 생성물을 메틸클로라이드 및 헥산을 1:7의 부피비로 사용하는 컬럼크로마토그래피로 정제하여 중간체 (3)을 수득하였다. (이와 관련하여 하기 반응식 3을 참조한다.)Purified intermediate (2) (2 g, 0.0064 mol), 1,3-bis (4,4,5,5, -tetramethyl-1,3,2-dioxaboran-2-yl) benzene in a two-necked flask (1g, 0.0032mol), Pd (pph3) 4 (0.05g, 0.00006mol) and THF (100ml) were added thereto, and the mixture was stirred while maintaining a nitrogen atmosphere. After the materials in the reactor were all dissolved in a solvent, an aqueous potassium carbonate solution (100 ml) of 2N concentration was added, stirred, and refluxed at 80 ° C. for 12 hours to proceed with the reaction. After the reaction was completed, the product was purified by column chromatography using methyl chloride and hexane in a volume ratio of 1: 7 to obtain an intermediate (3). (See Scheme 3 below in this regard.)
[반응식 3] Scheme 3
Figure PCTKR2016010717-appb-I000016
Figure PCTKR2016010717-appb-I000016
4. 중간체 (4)의 합성 4. Synthesis of Intermediate (4)
2구 플라스크에 정제된 중간체 (3) (2g, 0.0037mol), 비스(피나콜라토)디보론 (4.8g, 0.0074mol), Pd(pph3)4 (0.08g, 0.00004mol), 포타슘 아세테이트 (1.5g, 0.0148mol) 및 1,4-디옥세인 (100ml)를 넣고 질소분위기 하에서 교반하며 혼합하고, 혼합물을 80℃에서 12시간 동안 환류시켜 반응을 진행하였다. 반응이 완료된 후 생성물을 상온으로 식힌 뒤, 에틸아세테이트로 세척 및 여과하였다. 여과된 용액을 에틸아세테이트 및 헥산을 1:10의 부피비로 사용하는 컬럼크로마토그래피로 정제하여 중간체 (4)를 수득하였다. (이와 관련하여 하기 반응식 4를 참조한다.)Purified intermediate (3) (2g, 0.0037mol), bis (pinacolato) diboron (4.8g, 0.0074mol), Pd (pph3) 4 (0.08g, 0.00004mol), potassium acetate (1.5) g, 0.0148 mol) and 1,4-dioxane (100 ml) were added thereto, stirred and mixed under a nitrogen atmosphere, and the mixture was refluxed at 80 ° C. for 12 hours to proceed with the reaction. After the reaction was completed, the product was cooled to room temperature, washed with ethyl acetate and filtered. The filtered solution was purified by column chromatography using ethyl acetate and hexane in a volume ratio of 1:10 to obtain an intermediate (4). (See Scheme 4 below in this regard.)
[반응식 4] Scheme 4
Figure PCTKR2016010717-appb-I000017
Figure PCTKR2016010717-appb-I000017
5. 중간체 (5)의 합성 5. Synthesis of Intermediate (5)
2구 플라스크에 정제된 중간체 (4) (1.5g, 0.0024mol), 3-아미노-5-브로모피리딘 (0.8g, 0.0047mol), Pd(pph3)4 (0.02g, 0.000024mol) 및 THF (150ml)를 넣고 교반하며 혼합하였다. 반응용기 내 물질이 용매에 모두 용해된 후 2N 농도의 포타슘 카보네이트 수용액 (150ml)를 첨가하고 교반하며 180℃에서 12시간 동안 환류시키며 반응을 진행하였다. 반응이 종료된 후, 생성물을 메틸클로라이드 및 헥산을 1:5의 부피비로 사용하는 컬럼크로마토그래피로 정제하여 중간체 (5)을 수득하였다. (이와 관련하여 하기 반응식 5를 참조한다.)Purified intermediate (4) (1.5 g, 0.0024 mol), 3-amino-5-bromopyridine (0.8 g, 0.0047 mol), Pd (pph3) 4 (0.02 g, 0.000024 mol) and THF (in a two neck flask) 150 ml) was added and mixed under stirring. After the materials in the reaction vessel were all dissolved in the solvent, 2N aqueous potassium carbonate solution (150ml) was added and stirred, and the mixture was refluxed at 180 ° C. for 12 hours to proceed with the reaction. After the reaction was completed, the product was purified by column chromatography using methyl chloride and hexane in a volume ratio of 1: 5 to obtain an intermediate (5). (See Scheme 5 below in this regard.)
[반응식 5] Scheme 5
Figure PCTKR2016010717-appb-I000018
Figure PCTKR2016010717-appb-I000018
6. 화합물 uracil-B3PyPB의 합성 6. Synthesis of Compound uracil-B3PyPB
질소 분위기 하에서 플라스크에 정제된 중간체 (5) (1.2g, 0.0002mol), 2,6-디옥소-1,2,3,6-테트라하이드록시피리미딘-4-카르복시산 (0.66g, 0.0042mol), 포타슘 포스페이트 (1.3g, 0.006mol), 18-크라운-6 (0.5g, 0.08mol) 및 DMF (100ml)를 넣고 교반하며 혼합하였다. 혼합물을 180℃에서 24 시간 동안 반응시켰다. 반응이 완료된 후, 생성물을 메틸렌클로라이드와 증류수로 워크업(work-up)하고 유기용매층을 분리하여 용매를 감압 여과시켜 제거한 뒤, 메틸렌클로라이드와 헥산을 1:10의 부피비로 사용하는 컬럼크로마토그래피로 정제하여 목적하는 화합물uracil-B3PyPB를 수득하였다. (이와 관련하여 하기 반응식 6을 참조한다.)Purified intermediate (5) (1.2g, 0.0002mol), 2,6-dioxo-1,2,3,6-tetrahydroxypyrimidine-4-carboxylic acid (0.66g, 0.0042mol) purified in flask under nitrogen atmosphere , Potassium phosphate (1.3 g, 0.006 mol), 18-crown-6 (0.5 g, 0.08 mol) and DMF (100 ml) were added and stirred and mixed. The mixture was reacted at 180 ° C. for 24 hours. After the reaction was completed, the product was worked up with methylene chloride and distilled water, the organic solvent layer was separated and the solvent was removed by filtration under reduced pressure. Then, the column chromatography using methylene chloride and hexane in a volume ratio of 1:10 was used. Purification with gave the desired compounduracil-B3PyPB. (See Scheme 6 below in this regard.)
[반응식 6] Scheme 6
Figure PCTKR2016010717-appb-I000019
Figure PCTKR2016010717-appb-I000019
상기 실시예 1에 따라 제조된 화합물 uracil-B3PyPB의 합성을 확인하기 위하여 1HNMR분석을 실시하였다. 화합물의 1HNMR 분석은 분석 대상 물질을 용매 CDCl3에 용해시켜 측정되었으며, 이의 분석결과는 도 3에 도시하였다. 또한, 도 3에 상기 화합물의 구조를 특정할 수 있는 피크를 표기하였다. In order to confirm the synthesis of the compound uracil-B3PyPB prepared according to Example 1, 1HNMR analysis was performed. 1 HNMR analysis of the compound was measured by dissolving the analyte in solvent CDCl 3, the results of which are shown in FIG. 3. In addition, the peak which can identify the structure of the said compound is shown in FIG.
[실시예 2] 우라실기를 구비하는 유기소자용 화합물(uracil-TAZ)의 제조Example 2 Preparation of Compound (uracil-TAZ) for Organic Devices Having Urasyl Group
1. 중간체 (a)의 합성1. Synthesis of Intermediate (a)
반응용기에 4-브로모벤조일 클로라이드(15g), 4-브로모벤조익 하이드라지드(9g) 및 클로로포름(60ml)를 혼합하고, 완전히 용해시킨 후 40℃에서 6시간 동안 반응시켰다. 반응이 완료된 후 생성물을 여과하여 흰색 고체의 중간체 (a) 10g을 수득하였다. 4-bromobenzoyl chloride (15 g), 4-bromobenzoic hydrazide (9 g) and chloroform (60 ml) were mixed in a reaction vessel, and completely dissolved, and then reacted at 40 ° C. for 6 hours. After the reaction was completed the product was filtered to give 10 g of intermediate (a) as a white solid.
2. 중간체 (b)의 합성 2. Synthesis of Intermediate (b)
플라스크에 아닐린(6ml), 삼염화인(1.44ml), 1,2-디클로로벤젠(10ml)를 넣고, 100℃에서 1시간 동안 교반하며 혼합하였다. 교반이 끝난 후 중간체 (a) 3.5g을 용매에 녹여 반응물에 첨가하고 200℃에서 4시간 동안 교반하며 반응시켰다. 4시간 후 2N 농도의 HCl(500ml)를 첨가하여 반응을 종결시킨 뒤 여과하고, 재결정에 의해 1.4g의 중간체 (b)를 수득하였다.Aniline (6 ml), phosphorus trichloride (1.44 ml) and 1,2-dichlorobenzene (10 ml) were added to the flask and mixed with stirring at 100 ° C. for 1 hour. After stirring, 3.5 g of intermediate (a) was dissolved in a solvent, added to the reaction product, and reacted with stirring at 200 ° C. for 4 hours. After 4 hours, the reaction was terminated by addition of 2N HCl (500 ml), filtered and recrystallized to obtain 1.4 g of intermediate (b).
3. 중간체 (c)의 합성 3. Synthesis of Intermediate (c)
500ml 둥근바닥플라스크에 수소화나트륨 0.2g 및 DMSO 50ml를 넣고 질소분위기를 유지하며 한 시간 동안 교반하였다. 다음으로, 3-브로모-1-프로판올(3-bromo-1-propanol) 1.25g과 우라실(uracil) 1.1g을 DMSO 50ml에 용해시켜 제조된 용액을 반응 플라스크에 천천히 첨가한 뒤, 상온에서 48시간 동안 교반하며 반응시켰다. 생성물을 여과하여 중간체 (c)를 수득하였다. 0.2 g of sodium hydride and 50 ml of DMSO were added to a 500 ml round bottom flask, and the mixture was stirred for 1 hour while maintaining a nitrogen atmosphere. Next, a solution prepared by dissolving 1.25 g of 3-bromo-1-propanol and 1.1 g of uracil in 50 ml of DMSO was slowly added to the reaction flask, followed by 48 at room temperature. The reaction was stirred for an hour. The product was filtered to give intermediate (c).
4. 화합물 uracil-TAZ의 합성4. Synthesis of Compound uracil-TAZ
질소분위기를 유지하며 2구 플라스크에 포타슘포스페이트(0.8g, 6mmol), 중간체 (c) (0.3g, 1.7mmol) 및 DMSO(80ml)를 넣고 1시간 동안 교반하였다. 다음으로 중간체 (b) (0.4g, 0.9mmol)을 DMSO(30ml)에 용해시켜 첨가하고, 상온에서 72시간 동안 반응시켰다. 반응이 완료된 후 침전물을 여과하고, 여과액을 받아 용매를 감압제거하였다. 이를 메틸렌클로라이드와 헥산을 1:10의 부피비로 사용하는 컬럼크로마토그래피로 정제하여 uracil-TAZ 0.32 g을 수득하였다. Potassium phosphate (0.8 g, 6 mmol), intermediate (c) (0.3 g, 1.7 mmol) and DMSO (80 ml) were added to a two-necked flask while maintaining a nitrogen atmosphere, and the mixture was stirred for 1 hour. Next, the intermediate (b) (0.4 g, 0.9 mmol) was dissolved in DMSO (30 ml) and added, and the mixture was reacted at room temperature for 72 hours. After the reaction was completed, the precipitate was filtered, and the filtrate was taken to remove the solvent under reduced pressure. This was purified by column chromatography using methylene chloride and hexane in a volume ratio of 1:10 to obtain 0.32 g of uracil-TAZ.
[반응식 7] Scheme 7
Figure PCTKR2016010717-appb-I000020
Figure PCTKR2016010717-appb-I000020
[실험예 1] 우라실기를 구비하는 유기소자용 화합물의 특성 분석Experimental Example 1 Characterization of the Compound for Organic Devices Having Urasyl Group
1. 화합물의 광학적 특성 분석 1. Optical Characterization of Compounds
상기 실시예 1에 따라 제조된 화합물 uracil-B3PyPB의 광학적 특성을 알아보기 위하여 UV 스펙트럼 및 PL(photoluminescence) 스펙트럼 분석을 실시하였다. UV 스펙트럼 분석과 PL 스펙트럼 분석은 uracil-B3PyPB를 클로로포름에 용해시켜 측정하였으며, 이의 결과는 도 4에 도시하였다.UV spectra and PL (photoluminescence) spectra were analyzed to determine the optical properties of the compound uracil-B3PyPB prepared according to Example 1. UV spectra and PL spectra were measured by dissolving uracil-B3PyPB in chloroform, the results of which are shown in FIG. 4.
도 4를 참조하면, 본 발명의 일실시예에 따라 제조된 화합물 uracil-B3PyPB는 작용기(uracil)를 구비하지 않는 종래 유기소자용 화합물 B3PyPB(UV 흡광 피크 250nm, PL 피크 357nm)과 비교하였을 때, 장파장쪽으로 쉬프트되나 거의 흡사한 광학적 특성을 가지고 있는 것으로 확인되었다. 따라서, 본 발명의 일실시예에 따라 제조된 화합물 uracil-B3PyPB는 작용기를 구비함에 따라 용매에 대한 용해성 및 박막형성 특성을 나타내는 동시에 B3PyPB가 갖는 고유의 광학적 특성을 가지고 있는 것으로 판단할 수 있다.Referring to FIG. 4, the compound uracil-B3PyPB prepared according to an embodiment of the present invention is compared with the compound B3PyPB (UV absorption peak 250 nm, PL peak 357 nm) for an organic device having no functional group (uracil), Although shifted toward longer wavelengths, it was found to have almost the same optical characteristics. Therefore, the compound uracil-B3PyPB prepared according to an embodiment of the present invention may be determined to have solubility and thin film formation property in a solvent as well as the inherent optical properties of B3PyPB as having a functional group.
2. 화합물의 에너지 레벨 분석 2. Energy Level Analysis of Compounds
제조된 화합물이 유기소자의 정공차단층 및/또는 전자수송층에 적합한 에너지 레벨을 가지고 있는 알아보고자 상기 실시예 1 및 실시예 2에 따른 화합물들의 에너지 레벨을 CV(cyclic voltammetry)를 사용하여 측정하였다. 화합물 uracil-B3PyPB의 HOMO 값을 계산하기 위하여 0.35V의 E1/2 (반파전위)를 가지는 페로센(ferrocene)을 기준물질로 사용하였다. 계산결과, 화합물 uracil-B3PyPB의 HOMO 레벨 값은 6.37eV인 것으로 확인되었다.The energy levels of the compounds according to Examples 1 and 2 were measured using CV (cyclic voltammetry) to find out whether the prepared compounds have suitable energy levels for the hole blocking layer and / or the electron transport layer of the organic device. In order to calculate the HOMO value of the compound uracil-B3PyPB, ferrocene having an E 1/2 (half wave potential) of 0.35 V was used as a reference material. As a result, the HOMO level value of the compound uracil-B3PyPB was found to be 6.37 eV.
또한, 화합물 uracil-B3PyPB의 LUMO 값은 UV-vis 흡수 스펙트럼으로부터 알 수 있는 광학적 밴드갭 에너지와 상기에서 계산된 HOMO 값으로부터 계산되었으며, 계산 결과 LUMO 값은 3.37eV인 것으로 확인되었다. 이와 같은 값은 종래 유기발광소자의 정공차단층에 사용되는 화합물의 에너지 레벨과 유사한 값으로 본 발명의 일실시예에 따라 제조된 화합물을 유기발광소자의 정공차단층에 적용할 수 있음을 의미한다. 도 2의 (b)는 실시예 1에 따라 제조된 유기소자용 화합물과 종래 유기소자용 화합물들의 에너지 레벨을 보여주는 도면이다. 이를 참조하면, 본 발명의 일실시예에 따라 제조된 화합물 uracil-B3PyPB는 정공차단층으로 사용될 수 있음을 확인할 수 있다. 또한, 동일한 방법으로 산출된 uracil-TAZ의 에너지 레벨은 HOMO 5.72eV, LUMO 1.74eV인 것으로 확인되었으며, 유기발광소자에 적용될 수 있음을 확인하였다. In addition, the LUMO value of the compound uracil-B3PyPB was calculated from the optical bandgap energy known from the UV-vis absorption spectrum and the HOMO value calculated above, and the LUMO value was found to be 3.37 eV. This value is similar to the energy level of the compound used in the hole blocking layer of the conventional organic light emitting device means that the compound prepared according to an embodiment of the present invention can be applied to the hole blocking layer of the organic light emitting device. . Figure 2 (b) is a view showing the energy level of the compound for an organic device prepared according to Example 1 and the compound for a conventional organic device. Referring to this, it can be seen that the compound uracil-B3PyPB prepared according to one embodiment of the present invention can be used as a hole blocking layer. In addition, the energy level of uracil-TAZ calculated by the same method was confirmed that the HOMO 5.72eV, LUMO 1.74eV, it can be applied to the organic light emitting device.
[실시예 3] 용액공정을 이용한 유기발광소자의 제작Example 3 Fabrication of Organic Light Emitting Diode Using Solution Process
양극으로 ITO 유리기판을 사용하였으며, 소자 제작 전에 ITO 기판을 아세톤에 담가 30분 동안 초음파 세척 및 건조시킨 뒤, 동일한 방식으로 이소프로필알코올 및 증류수에 순차적으로 담가 세척시켜 불순물을 제거하였다. An ITO glass substrate was used as the anode, and the ITO substrate was immersed in acetone for 30 minutes, ultrasonically cleaned and dried, and then immersed in isopropyl alcohol and distilled water in the same manner to remove impurities.
ITO 가 코팅된 면에 PEDOT:PSS(PH4083, Celvios)를 스핀코팅법으로 코팅한 뒤, 120℃의 온도로 30분 동안 건조시켜 정공주입층을 형성하였다. PEDOT: PSS (PH4083, Celvios) was coated on the surface coated with ITO by spin coating, and dried at a temperature of 120 ° C. for 30 minutes to form a hole injection layer.
종래 정공수송층용 화합물로 알려진 TCTA(Tris(4-carbazoyl-9-ylphenyl)amine)에 본 발명에 따른 피리미딘 고리를 포함하는 작용기 3개를 각각 다른 위치에 결합시켜 uracil-TCTA를 제조하였다. 제조된 uracil-TCTA를 트리클로로벤젠(trichlorobenzene)에 20wt%의 농도로 용해시켜 용액을 제조한 뒤, 이를 정공주입층의 상부에 스핀코팅법으로 코팅한 뒤, 100℃의 온도로 30분 동안 열처리하여 정공수송층을 형성하였다. Uracil-TCTA was prepared by combining three functional groups containing a pyrimidine ring according to the present invention to TCTA (Tris (4-carbazoyl-9-ylphenyl) amine), which is known as a compound for a hole transport layer, at different positions. The prepared uracil-TCTA was dissolved in trichlorobenzene at a concentration of 20wt% to prepare a solution, which was coated on top of the hole injection layer by spin coating, followed by heat treatment at a temperature of 100 ° C. for 30 minutes. To form a hole transport layer.
종래 발광층의 호스트 물질로 알려진 CzTP(3,6-bis[(3,5-diphenyl)phenyl]-9-phenyl-carbazole)에 본 발명에 따른 피리미딘 고리를 포함하는 작용기 4개를 각각 다른 위치에 결합시켜 uracil-CzTP를 제조하였다. 제조된 uracil-CzTP를 클로로벤젠에 용해시킨 후, 녹색 인광 도펀트인 Ir(mppy)3을 8wt%로 첨가하여 제조된 발광층 용액을 정공수송층의 상부에 스핀코팅법으로 도포한 뒤, 100℃에서 30분 동안 열처리하여 발광층을 형성하였다. In the CzTP (3,6-bis [(3,5-diphenyl) phenyl] -9-phenyl-carbazole), which is known as a host material of the conventional light emitting layer, four functional groups containing a pyrimidine ring according to the present invention are respectively placed at different positions. Uracil-CzTP was prepared by binding. After dissolving the prepared uracil-CzTP in chlorobenzene, the light emitting layer solution prepared by adding 8 wt% of Ir (mppy) 3, which is a green phosphorescent dopant, was applied by spin coating to the upper portion of the hole transport layer. Heat treatment for minutes to form a light emitting layer.
다음으로, 본 발명의 일실시예에 따라 제조된 uracil-B3PyPB를 트리클로로벤젠에 20wt%의 농도로 용해시켜 용액을 제조한 뒤, 이를 발광층의 상부에 스핀코팅법으로 코팅한 뒤, 100℃의 온도에서 30분 동안 열처리하여 정공차단층을 형성하였다. Next, uracil-B3PyPB prepared according to one embodiment of the present invention was dissolved in trichlorobenzene at a concentration of 20 wt% to prepare a solution, and then coated on top of the light emitting layer by spin coating. Heat treatment at temperature for 30 minutes to form a hole blocking layer.
다음으로, 정공차단층의 상부에 Alq3(Tris(8-hydroxy-quinolinato)aluminium)를 진공도 1 X 10-7Pa, 증착속도 2 nm/s의 조건으로 진공증착시켜 전자수송층을 형성하였다. Next, Alq3 (Tris (8-hydroxy-quinolinato) aluminium) was vacuum deposited on the hole blocking layer under vacuum conditions of 1 × 10 −7 Pa and a deposition rate of 2 nm / s to form an electron transport layer.
다음으로, 전자수송층의 상부에 상기와 동일한 조건으로 LiF 및 Al을 순차적으로 진공증착시켜 음극을 형성하였다. Next, LiF and Al were sequentially vacuum deposited on the electron transport layer under the same conditions as above to form a cathode.
최종적으로 유기발광소자는 ITO/PH4083/uracil-TCTA (40nm)/uracil-CzTP + Ir(mppy)3(8wt%) (30nm)/uracil-B3PyPB (10nm)/Alq3 (30nm)/LiF/Al의 구조로 제작되었다. Finally, the organic light emitting device is composed of ITO / PH4083 / uracil-TCTA (40nm) / uracil-CzTP + Ir (mppy) 3 (8wt%) (30nm) / uracil-B3PyPB (10nm) / Alq3 (30nm) / LiF / Al. Made of structure.
상기 urail-TCTA 및 uracil-CzTP의 구조식은 하기와 같으며, 이의 제조는 실시예 1 및 실시예 2와 유사한 반응으로 진행되었다.The structural formulas of the urail-TCTA and uracil-CzTP are as follows, and the preparation thereof was performed in a reaction similar to those of Examples 1 and 2.
Figure PCTKR2016010717-appb-I000021
Figure PCTKR2016010717-appb-I000021
[비교예 1] 진공증착 공정을 이용한 유기발광소자의 제작Comparative Example 1 Fabrication of Organic Light Emitting Diode Using Vacuum Deposition Process
정공수송 물질로 TAPC(Di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexan), 발광층 재료로서 호스트 물질인 CBP(4,4'-Bis(carbazol-9-yl)biphenyl) 92wt% 및 도펀트인 Ir(mppy)3 8wt%를 사용하고, 정공차단층 물질로 TPBi(2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole))를 사용하여 상기와 동일한 조건으로 진공증착시켜 정공수송층, 발광층, 정공차단층을 형성하는 것을 제외하고는 실시예 2와 동일한 조건으로 유기발광소자를 제작하였다. 92 wt% TAPC (Di- [4- (N, N-ditolyl-amino) -phenyl] cyclohexan) as hole transport material and CBP (4,4'-Bis (carbazol-9-yl) biphenyl) as host material as light emitting layer material % And the dopant Ir (mppy) 3 8wt%, TPBi (2,2 ', 2 "-(1,3,5-benzinetriyl) -tris (1-phenyl-1-H- Benzimidazole)) using an organic light emitting device was manufactured under the same conditions as in Example 2, except that by vacuum deposition under the same conditions as above to form a hole transport layer, a light emitting layer, a hole blocking layer.
최종적으로 유기발광소자는 ITO/PH4083/TATC (30nm)/CBP + Ir(mppy)3(8wt%) (30nm)/TPBi (10nm)/Alq3 (30nm)/LiF/Al의 구조로 제작되었다. Finally, the organic light emitting device was manufactured in the structure of ITO / PH4083 / TATC (30nm) / CBP + Ir (mppy) 3 (8wt%) (30nm) / TPBi (10nm) / Alq3 (30nm) / LiF / Al.
[실험예 2] 유기발광소자의 전기 광학적 특성 분석 Experimental Example 2 Analysis of Electro-optical Properties of Organic Light-Emitting Device
상기 실시예 3 및 비교예 1에 따라 제조된 유기발광소자의 전기 광학적 특성을 평가하기 위하여 제작된 각각의 유기발광소자의 전압에 따른 전류변화 및 전류밀도에 따른 발광효율을 측정하였으며, 이의 결과는 도 5에 도시하였다.In order to evaluate the electro-optical characteristics of the organic light emitting diodes manufactured according to Example 3 and Comparative Example 1, the luminous efficiency according to the current change and the current density according to the voltage of each organic light emitting diode was measured. 5 is shown.
도 5의 (a)는 실시예 3 및 비교예 1에 따라 제조된 각각의 유기발광소자의 전압-전류 곡선을 나타내는 그래프이며, 도 5의 (b)는 전류밀도에 따른 발광효율을 나타내는 그래프이다. 5 (a) is a graph showing the voltage-current curve of each organic light emitting device manufactured according to Example 3 and Comparative Example 1, Figure 5 (b) is a graph showing the luminous efficiency according to the current density. .
먼저, 본 발명의 일실시예에 따른 유기소자용 화합물을 적용하여 제조된 유기발광소자는 정공수송층, 발광층, 정공차단층 각각을 용액공정을 통해 형성하였음에도, 하층부가 용해되는 현상 없이 안정한 다층박막을 형성할 수 있었다. First, the organic light emitting device manufactured by applying the compound for an organic device according to an embodiment of the present invention has a stable multilayer thin film without the phenomenon that the lower layer is dissolved even though the hole transport layer, the light emitting layer, and the hole blocking layer are formed through a solution process. Could form.
또한, 도 5의 효율 분석 결과를 참조하면 용액공정으로 다층유기박막을 형성하여 제조된 실시예 3의 유기발광소자와 정공수송층을 제외한 모든 층을 진공증착시켜 제조된 비교예 1의 유기발광소자의 광학적 특성은 거의 동일한 것을 확인할 수 있다. 따라서, 본 발명에 따른 유기소자용 화합물을 적용하여 유기발광소자를 제작하는 경우 용액공정으로 다층박막을 제조할 수 있어 소자 제조비용을 대폭 절감할 수 있으며, 소자의 대면적화 및 양산성 향상에 기여할 수 있을 것이다. In addition, referring to the efficiency analysis result of FIG. 5, the organic light emitting diode of Comparative Example 1 manufactured by forming a multilayer organic thin film by a solution process and vacuum depositing all layers except the hole transport layer of the organic light emitting diode of Example 3 It can be seen that the optical characteristics are almost the same. Therefore, when the organic light emitting device is manufactured by applying the compound for an organic device according to the present invention, the multilayer thin film can be manufactured by a solution process, thereby greatly reducing the device manufacturing cost and contributing to the large area and mass production of the device. Could be.
본 발명에서 “카바졸”은 공지된 화합물로서, 질소를 포함하는 헤테로고리의 양쪽 면에 벤젠고리 두 개가 결합된 화합물을 의미하며, 이의 치환 또는 비치환된 구조를 모두 포함하는 것임을 명시한다. 또한, 본 발명에서 카바졸계 화합물은 치환 또는 비치환된 카바졸을 포함하여 이루어지는 화합물을 의미한다. 또한, 본 발명에서 피리미딘 고리는 4개의 탄소 원자와 2개의 질소원자로 이루어지는 헤테로고리를 의미하며, 치환 또는 비치환된 피리미딘 고리를 모두 포함하는 것으로 한다. 또한, 본 발명에서 퓨린계 작용기는 치환 또는 비치환된 퓨린 분자를 포함하는 화합물을 의미하며, 퓨린 분자는 피리미딘 고리와 이미다졸 고리가 탄소-탄소 결합 하나를 공유하는 구조의 방향족 고리 화합물을 의미한다. In the present invention, "carbazole" means a compound in which two benzene rings are bonded to both sides of a heterocycle including nitrogen, and includes both substituted or unsubstituted structures thereof. In addition, the carbazole compound in the present invention means a compound comprising a substituted or unsubstituted carbazole. In addition, in the present invention, the pyrimidine ring means a heterocyclic ring composed of four carbon atoms and two nitrogen atoms, and includes all substituted or unsubstituted pyrimidine rings. In the present invention, a purine-based functional group means a compound including a substituted or unsubstituted purine molecule, and a purine molecule means an aromatic ring compound having a structure in which a pyrimidine ring and an imidazole ring share one carbon-carbon bond. do.
이하, 첨부된 도면 및 화학식을 참조하여 본 발명의 실시예를 구체적으로 설명하기로 한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings and chemical formulas.
본 발명에 따른 유기발광 화합물은 카바졸계 화합물의 말단에 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비하며, 피리미딘 고리를 포함하는 작용기는 수소결합이 가능한 것을 특징으로 할 수 있다. 바람직하게 카바졸계 화합물은 하기 화학식 5a 내지 5f로 표시되는 카바졸계 화합물 중에서 선택되고, 카바졸계 화합물의 벤젠고리에 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비할 수 있다. The organic light emitting compound according to the present invention may have at least one functional group including a pyrimidine ring at the terminal of the carbazole compound, and the functional group including the pyrimidine ring may be characterized in that hydrogen bonding is possible. Preferably, the carbazole compound is selected from carbazole compounds represented by the following Formulas 5a to 5f, and may include at least one functional group including a pyrimidine ring in the benzene ring of the carbazole compound.
Figure PCTKR2016010717-appb-I000022
Figure PCTKR2016010717-appb-I000022
본 발명에 따른 유기발광 화합물은 정공수송 특성이 우수하고, 삼중항 밴드갭이 커서 인광 호스트 물질로 적용되는 카바졸계 화합물에 수소결합이 가능한 피리미딘 고리를 포함하는 작용기를 구비함으로써, 정공수송 및 발광 특성뿐만 아니라 각종 용매에 대한 용해성이 확보되어 용액공정을 가능케 할 수 있다. 또한, 유기발광 화합물은 카바졸계 화합물에 피리미딘 고리를 포함하는 작용기를 제외하고는 알킬기와 같은 작용기가 결합하지 않는 것이 바람직할 수 있으나, 이에 제한되는 것은 아님을 명시한다. 다만, 알킬기와 같은 작용기를 구비하지 않는 경우, 화합물의 합성이 보다 간편하고, 유기박막의 형성이 용이하기 때문에 바람직할 수 있다. The organic light emitting compound according to the present invention has excellent hole transporting properties, and has a triplet bandgap, thereby providing a functional group including a pyrimidine ring capable of hydrogen bonding to a carbazole compound applied as a phosphorescent host material. Not only properties but also solubility in various solvents can be secured to enable a solution process. In addition, the organic light emitting compound may be preferably, but is not limited to a functional group such as an alkyl group, except for a functional group containing a pyrimidine ring to the carbazole compound. However, when it is not provided with a functional group such as an alkyl group, it may be preferable because the synthesis of the compound is simpler and the formation of the organic thin film is easy.
또한, 본 발명에서 피리미딘 고리를 포함하는 작용기는 피리미딘계 작용기 및 퓨린계 작용기 중에서 선택될 수 있으며, 본 발명의 일실시예에서 피리미딘계 작용기는 하기 화학식 7a 또는 7b로 표시되는 화합물로부터 형성되는 작용기 일 수 있다.In addition, in the present invention, the functional group including the pyrimidine ring may be selected from pyrimidine-based functional groups and purine-based functional groups. In one embodiment of the present invention, the pyrimidine-based functional group is formed from a compound represented by the following Chemical Formula 7a or 7b. It can be a functional group.
Figure PCTKR2016010717-appb-I000023
Figure PCTKR2016010717-appb-I000023
(화학식 7a 및 7b에서 R6 내지 R11은 서로 같거나 상이할 수 있고, 각각 독립적으로H, D, F, Cl, Br, I, 아미노기, 탄소수 1 내지 12인 직쇄알킬, 탄소수 1 내지 10인 카르복실산, 탄소수 1 내지 10인 알코올, 및 탄소수 1 내지 10인 할로젠화알킬 중에서 선택된다.)R 6 to R 11 in Formulas 7a and 7b may be the same as or different from each other, and each independently H, D, F, Cl, Br, I, an amino group, linear alkyl having 1 to 12 carbon atoms, and having 1 to 10 carbon atoms. Carboxylic acid, alcohol having 1 to 10 carbon atoms, and alkyl halide having 1 to 10 carbon atoms.)
보다 바람직하게, 화학식 7a로 표시되는 화합물로부터 형성되는 피리미딘계 작용기는 하기 화학식으로 표시되는 다수의 물질군으로부터 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다. More preferably, the pyrimidine-based functional group formed from the compound represented by Formula 7a may be selected from a plurality of substance groups represented by the following Formulas, but is not limited thereto.
Figure PCTKR2016010717-appb-I000024
Figure PCTKR2016010717-appb-I000024
(상기 화학식에서 쓰인 기호(*)는 유기발광 화합물의 벤젠고리와의 결합을 나타낸다.)(The symbol (*) used in the above formula represents a bond with the benzene ring of the organic light emitting compound.)
또한, 화학식 7b로 표시되는 화합물로부터 형성되는 피리미딘계 작용기는 하기 화학식으로 표시되는 다수의 물질군으로부터 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다. In addition, the pyrimidine-based functional group formed from the compound represented by the formula (7b) may be selected from a plurality of groups represented by the following formula, but is not limited thereto.
Figure PCTKR2016010717-appb-I000025
Figure PCTKR2016010717-appb-I000025
(상기 화학식에서 쓰인 기호(*)는 유기발광 화합물의 벤젠고리와의 결합을 나타낸다.)(The symbol (*) used in the above formula represents a bond with the benzene ring of the organic light emitting compound.)
또한, 본 발명의 일실시예에서 퓨린계 작용기는 하기 화학식 8c 내지 8h 중에서 선택되는 화합물로부터 형성될 수 있다. In addition, the purine-based functional group in one embodiment of the present invention may be formed from a compound selected from the formula 8c to 8h.
Figure PCTKR2016010717-appb-I000026
Figure PCTKR2016010717-appb-I000026
(화학식 8c 내지 8h에서 R12 내지 R25는 서로 같거나 상이할 수 있고, 각각 독립적으로H, D, F, Cl, Br, I, 아미노기, 탄소수 1 내지 12인 직쇄알킬, 탄소수 1 내지 10인 카르복실산, 탄소수 1 내지 10인 알코올, 및 탄소수 1 내지 10인 할로젠화알킬 중에서 선택된다.)In Formulas 8c to 8h, R 12 to R 25 may be the same as or different from each other, and each independently H, D, F, Cl, Br, I, an amino group, linear alkyl having 1 to 12 carbon atoms, and having 1 to 10 carbon atoms. Carboxylic acid, alcohol having 1 to 10 carbon atoms, and alkyl halide having 1 to 10 carbon atoms.)
바람직하게, 퓨린계 작용기는 하기 화학식으로 표시되는 다수의 물질군으로부터 선택될 수 있으나 이에 제한되는 것은 아님을 명시한다. Preferably, the purine-based functional group may be selected from a plurality of substance groups represented by the following formula, but is not limited thereto.
(상기 화학식에서 쓰인 기호(*)는 유기발광 화합물의 벤젠고리와의 결합을 나타낸다.)(The symbol (*) used in the above formula represents a bond with the benzene ring of the organic light emitting compound.)
Figure PCTKR2016010717-appb-I000027
Figure PCTKR2016010717-appb-I000027
또한, 본 발명에 따른 유기발광 화합물은 피리미딘 고리를 포함하는 작용기를 적어도 2개 이상 구비하는 것이 바람직할 수 있다. 본 발명에 따른 유기발광 화합물은 용매에 대한 용해도가 낮아 용액공정이 곤란한 카바졸계 화합물의 말단에 피리미딘 고리를 포함하는 작용기를 구비함으로써 용해성을 향상시킬 수 있고, 이에 나아가 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기발광 화합물은 피리미딘 고리를 포함하는 작용기 간의 수소결합으로 유기박막을 형성할 수 있다. 구체적으로, 본 발명에 따른 피리미딘 고리를 포함하는 작용기는 화합물 내에 아마이드기, 카보닐기와 같이 수소결합이 가능한 결합을 포함하고 있다. 따라서, 유기소자용 화합물에 피리미딘 고리를 포함하는 작용기가 2개 이상 구비되는 경우, 전술한 수소결합성 작용기간의 결합을 유도하여 유기박막을 형성할 수 있다. In addition, the organic light emitting compound according to the present invention may be preferably provided with at least two or more functional groups containing a pyrimidine ring. The organic light emitting compound according to the present invention can improve the solubility by providing a functional group containing a pyrimidine ring at the end of the carbazole compound having a low solubility in a solvent solution is difficult, furthermore, a functional group comprising a pyrimidine ring An organic light emitting compound having two or more can form an organic thin film by hydrogen bonding between the functional group containing a pyrimidine ring. Specifically, the functional group including the pyrimidine ring according to the present invention includes a bond capable of hydrogen bonding such as an amide group and a carbonyl group in the compound. Therefore, when two or more functional groups including a pyrimidine ring are provided in the compound for an organic device, the organic thin film may be formed by inducing the above-described hydrogen bonding functional period.
본 발명의 일실시예에서 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기발광 화합물은 하기 화학식 6으로 표시되는 화합물 일 수 있으나, 이에 제한되는 것은 아님을 명시한다. In one embodiment of the present invention, the organic light emitting compound having two or more functional groups including a pyrimidine ring may be a compound represented by the following Chemical Formula 6, but is not limited thereto.
[화학식 6][Formula 6]
Figure PCTKR2016010717-appb-I000028
Figure PCTKR2016010717-appb-I000028
(상기 화학식6에서 R1 내지 R5는 서로 같거나 상이할 수 있고, R1 내지 R5 중에서 적어도 2개 이상은 피리미딘 고리를 포함하는 작용기며, 나머지는 수소이다.)(In Formula 6, R 1 to R 5 may be the same as or different from each other, at least two or more of R 1 to R 5 are functional groups including a pyrimidine ring, and the rest are hydrogen.)
또한, 본 발명에 따른 유기발광 화합물은 말단에 구비되는 피리미딘 고리를 포함하는 작용기의 개수에 따라서 박막의 경도를 조절할 수 있는 것을 특징으로 할 수 있다. 본 발명에 따른 유기발광 화합물은 말단에 구비된 피리미딘 고리를 포함하는 작용기 간의 수소결합을 통하여 네트워크 구조를 형성하는데, 유기발광 화합물에 구비된 피리미딘 고리를 포함하는 작용기의 개수가 증가하면, 수소결합에 의해 보다 치밀한 구조의 박막이 형성될 수 있다. In addition, the organic light emitting compound according to the present invention may be characterized in that the hardness of the thin film can be adjusted according to the number of functional groups including a pyrimidine ring provided at the terminal. The organic light emitting compound according to the present invention forms a network structure through hydrogen bonding between functional groups including a pyrimidine ring provided at the terminal, and when the number of functional groups including a pyrimidine ring provided in the organic light emitting compound is increased, hydrogen By bonding, a thinner film having a more dense structure can be formed.
이하에서는 본 발명에 따른 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기발광 화합물을 포함하여 유기박막층을 형성하는 방법에 관하여 설명하도록 한다. Hereinafter, a method of forming an organic thin film layer including an organic light emitting compound having two or more functional groups including a pyrimidine ring according to the present invention will be described.
본 발명의 일실시예에서, 유기박막층은 유기발광 화합물을 용매에 용해시켜 용액을 제조하는 제1단계, 용액을 코팅하기 위한 기재를 준비하는 제2단계, 기재의 일면에 유기발광 화합물을 포함하는 용액을 도포하는 제3단계, 용액이 도포된 기판을 소정의 시간 동안 열처리하여 박막을 형성하는 단계를 포함하여 제조될 수 있다. In one embodiment of the present invention, the organic thin film layer is a first step of preparing a solution by dissolving the organic light emitting compound in a solvent, a second step of preparing a substrate for coating the solution, comprising an organic light emitting compound on one side of the substrate The third step of applying a solution, it may be prepared including a step of forming a thin film by heat treatment the substrate to which the solution is applied for a predetermined time.
본 발명에 따른 유기발광 화합물은 피리미딘 고리를 포함하는 작용기를 구비함으로써 용해성이 향상되어, 상온에서 제1단계의 용매에 가용성인 것을 특징으로 할 수 있다. 또한, 용매는 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,3,5-Trichlorobenzen, 클로로포름(chloroform), 테트라하이드로퓨란(Tetrahydrofuran) 및 에탄올 중에서 선택되는 1종 또는 2종 이상을 포함하는 혼합용매일 수 있으나, 이에 제한되는 것은 아님을 명시한다. 다만 트리클로로벤젠계 용매를 사용함으로써 상온에서 보다 균일하게 본 발명에 따른 유기발광 화합물을 용해시키고 가열 시 부반응을 일으키지 않기 때문에 고순도의 유기박막을 형성할 수 있다는 이점이 있다. The organic light emitting compound according to the present invention may be characterized by having improved solubility by having a functional group including a pyrimidine ring, and being soluble in the solvent of the first step at room temperature. In addition, the solvent is one, two or more selected from 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,3,5-Trichlorobenzen, chloroform, chloroform, Tetrahydrofuran and ethanol. It may be a mixed solvent including, but is not limited thereto. However, by using a trichlorobenzene solvent, the organic light emitting compound according to the present invention is more uniformly dissolved at room temperature, and there is an advantage that an organic thin film of high purity can be formed because it does not cause side reactions upon heating.
또한, 본 발명의 또 다른 일실시예에서 제1단계와 제2단계의 사이에 발광 도펀트를 첨가하는 단계를 더 포함하여 용액을 제조할 수 있다. 본 발명에 따른 유기발광 화합물은 전술한 바와 같이 정공수송 특성 및 인광 특성을 가지는 카바졸계 화합물을 포함하여 이루어짐에 따라 발광층용 호스트 물질로 적용할 수 있다. 따라서 제1단계의 용액에 소정의 비율로 발광 도펀트를 더 첨가하여 발광층용 용액을 제조할 수 있다. 이때, 발광 도펀트는 전체 용액 100중량부에 대하여 1 내지 10 wt%로 첨가할 수 있으며, 보다 바람직하게는 5 내지 10wt%의 비율로 첨가할 수 있다. 이에 관하여는 후술하는 유기발광 소자의 제조방법에서 상세하게 설명하도록 한다. In another embodiment of the present invention, the method may further include adding a light emitting dopant between the first step and the second step. The organic light emitting compound according to the present invention can be applied as a host material for the light emitting layer as it comprises a carbazole compound having a hole transporting property and phosphorescence properties as described above. Therefore, a light emitting layer solution may be prepared by further adding a light emitting dopant in a predetermined ratio to the solution of the first step. In this case, the light emitting dopant may be added in an amount of 1 to 10 wt% with respect to 100 parts by weight of the total solution, and more preferably in a ratio of 5 to 10 wt%. This will be described in detail in the method of manufacturing an organic light emitting device to be described later.
또한, 본 발명의 제3단계에서 용액은 스핀코팅, 그라비아 옵셋 인쇄, 리버스 옵셋 인쇄, 스크린 인쇄, 롤투롤 인쇄, 슬롯다이 코팅, 침지코팅, 스프레이코팅, 닥터블레이드 코팅, 잉크젯 코팅으로 이루어지는 군으로부터 선택되는 어느 하나의 방법으로 기재의 일면에 도포될 수 있으나, 이에 제한되는 것은 아님을 명시한다. In addition, the solution in the third step of the present invention is selected from the group consisting of spin coating, gravure offset printing, reverse offset printing, screen printing, roll-to-roll printing, slot die coating, dip coating, spray coating, doctor blade coating, inkjet coating It may be applied to one side of the substrate in any one way, but is not limited thereto.
또한, 본 발명의 제4단계는 용액이 도포된 기판을 열처리 하는 단계는 70 내지 170℃의 온도로 수행될 수 있으며, 본 발명에 따른 유기발광 화합물은 소정의 온도 조건에서 피리미딘 고리를 포함하는 작용기간의 수소결합으로 경화되어 박막을 형성할 수 있다. 이때, 온도가 70℃ 미만인 경우, 경화온도가 충분하지 못하여 열적으로 안정한 유기박막을 형성하기 곤란할 수 있고, 공정 시간이 길어지는 문제점이 있을 수 있다. 또한, 열처리 온도가 170℃를 초과하는 경우에는 과도한 열로 인하여 기재 및 화합물의 안정성을 담보할 수 없기 때문에 상기 온도로 한정하였으나, 이에 제한되는 것은 아님을 명시한다. In addition, the fourth step of the present invention, the step of heat-treating the substrate to which the solution is applied may be carried out at a temperature of 70 to 170 ℃, the organic light emitting compound according to the present invention comprises a pyrimidine ring at a predetermined temperature conditions It can be cured by hydrogen bonding in the working period to form a thin film. At this time, when the temperature is less than 70 ℃, it may be difficult to form a thermally stable organic thin film because the curing temperature is not sufficient, there may be a problem that the process time is long. In addition, when the heat treatment temperature exceeds 170 ℃ it is limited to the above temperature because it is not possible to ensure the stability of the substrate and the compound due to excessive heat, but is not limited thereto.
이하에서는 본 발명에 따른 유기발광 화합물을 포함하여 유기발광소자를 제조하는 방법에 관하여 설명하도록 한다. 본 발명의 바람직한 일실시예에 따라 제조되는 유기발광소자의 단면도를 도6에 도시하였다. Hereinafter, a method of manufacturing an organic light emitting device including the organic light emitting compound according to the present invention will be described. 6 is a cross-sectional view of an organic light emitting device manufactured according to an exemplary embodiment of the present invention.
본 발명의 일실시예에서 유기발광소자는 i) 양극 기판을 준비하는 단계, ii) 양극 기판의 상부에 정공주입층을 형성하는 단계, iii) 정공주입층의 상부에 정공수송층을 형성하는 단계, iv) 정공수송층의 상부에 발광층을 형성하는 단계, v) 발광층의 상부에 정공차단층을 형성하는 단계, vi) 정공차단층의 상부에 전자수송층을 형성하는 단계, vi) 전자수송층의 상부에 전자주입층을 형성하는 단계 및 vii) 전자주입층의 상부에 음극을 형성하는 단계를 포함하여 제조될 수 있다. 이하, 각 제조단계별로 상술하는 방식으로 본 발명에 따른 유기발광소자의 제조방법을 상세하게 설명하도록 한다. In one embodiment of the present invention, the organic light emitting device comprises the steps of i) preparing a positive electrode substrate, ii) forming a hole injection layer on top of the positive electrode substrate, iii) forming a hole transport layer on top of the hole injection layer, iv) forming a light emitting layer on top of the hole transport layer, v) forming a hole blocking layer on top of the light emitting layer, vi) forming an electron transport layer on top of the hole blocking layer, vi) electrons on top of the electron transport layer Forming an injection layer and vii) forming a cathode on top of the electron injection layer. Hereinafter, the manufacturing method of the organic light emitting diode according to the present invention will be described in detail in the manner described in detail for each manufacturing step.
본 발명에서 양극 기판은 해당 기술분야에서 공지된 양극재료가 코팅된 기판이면 어느 것 이든 제한 없이 사용할 수 있다. 바람직하게 양극 기판은 인듐- 틴-옥사이드(ITO), 플루오린-틴-옥사이드(FTO), 인듐-징크-옥사이드(IZO) 등의 투명전극물질이 코팅된 기판을 사용할 수 있으나, 이에 제한되는 것은 아니다. In the present invention, the anode substrate may be used without limitation as long as it is a substrate coated with a cathode material known in the art. Preferably, the anode substrate may be a substrate coated with a transparent electrode material such as indium tin oxide (ITO), fluorine tin oxide (FTO), or indium zinc oxide (IZO), but is not limited thereto. no.
다음 단계는, 양극 기판의 상부에 정공주입층(Hole Injection Layer, HIL)을 형성하는 단계이다. 정공주입층은 양극으로부터 주입되는 정공의 주입에너지 장벽을 낮추어 정공주입을 용이하게 하는 화합물을 포함하여 형성되며, 이와 같은 물질로는 4,4',4" -Tris(N,N-diphenyl-amino)triphenylamine(NATA), 4,4',4"-Tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine(m-MTDATA) 및 폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌설포닉엑시드)(PEDOT:PSS) 등이 공지되어 있으며, 공지된 정공주입층용 물질이라면 제한 없이 사용할 수 있다. 바람직하게 정공주입층은 PEDOT:PSS 용액을 스핀코팅하여 형성될 수 있다. The next step is to form a hole injection layer (HIL) on the anode substrate. The hole injection layer is formed to include a compound that facilitates the hole injection by lowering the injection energy barrier of the hole injected from the anode, such as 4,4 ', 4 "-Tris (N, N-diphenyl-amino ) triphenylamine (NATA), 4,4 ', 4 "-Tris (N-3-methylphenyl-N-phenyl-amino) triphenylamine (m-MTDATA) and poly (3,4-ethylenedioxythiophene): poly (styrene Sulfonic acid) (PEDOT: PSS) and the like are known, and any material for a known hole injection layer may be used without limitation. Preferably, the hole injection layer may be formed by spin coating a PEDOT: PSS solution.
다음 단계는, 정공주입층의 상부에 정공수송층(Hole Transport Layer, HTL)을 형성하는 단계로, 정공수송층은 양극으로부터 주입된 정공이 손실되지 않고 발광층으로 수송시키는 역할을 수행하는 화합물을 포함하여 형성될 수 있다. 예를 들어, 정공수송층은 NPB(N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine), α-NPD(N,N'-비스-(3-메틸페닐)-N,N'-비스-(페닐)-벤 지딘(TPD), 비스(N-(1-나프틸-N-페닐)벤지딘), CBP(4,4-N,N'-디카르바졸-비페닐) 중에서 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다. 통상 정공주입층은 상기 전술한 정공주입층용 화합물을 진공증착하여 형성되고 있으나, 진공증착법은 소자의 대면적화 및 저비용화에 제한되는 요소로 알려져 있다. 이와 같은 문제점을 해소하기 위하여 용액공정에 적합한 특성을 갖는 정공수송 물질을 이용하여 정공수송층을 형성할 수 있다. 본 발명의 일실시예에서 정공수송물질은 공지된 트라이페닐아민계 화합물의 말단 벤젠고리에 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 화합물 일 수 있으며, 구체적으로 하기 화학식으로 표시되는 화합물 일 수 있다. 하기 화학식으로 표시되는 화합물은 본 발명에 따른 유기발광 화합물과 동일한 효과를 제공하는 피리미딘 고리를 포함하는 작용기를 2개 이상 구비함으로써 용액공정을 통해 정공수송층을 형성할 수 있게 한다. The next step is to form a hole transport layer (HTL) on top of the hole injection layer, the hole transport layer is formed by including a compound that serves to transport to the light emitting layer without losing holes injected from the anode Can be. For example, the hole transport layer is NPB (N, N'-bis (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine), α-NPD (N, N '-Bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine (TPD), bis (N- (1-naphthyl-N-phenyl) benzidine), CBP (4,4- N, N'-dicarbazole-biphenyl), but is not limited thereto.The hole injection layer is generally formed by vacuum depositing the above-described compound for hole injection layer. In order to solve such a problem, the hole transport layer may be formed using a hole transport material having properties suitable for a solution process. The hole transport material may be a compound having two or more functional groups including a pyrimidine ring in the terminal benzene ring of a known triphenylamine compound, and specifically, The compound represented by the following formula may be provided with two or more functional groups containing a pyrimidine ring to provide the same effect as the organic light emitting compound according to the present invention to form a hole transport layer through a solution process To be able.
Figure PCTKR2016010717-appb-I000029
Figure PCTKR2016010717-appb-I000029
(상기 화학식에서 R1 내지 R4는 서로 같거나 상이할 수 있고, R1 내지 R4 중에서 적어도 2개 이상은 피리미딘 고리를 포함하는 작용기며, 나머지는 수소이다.) (In the above formula, R 1 to R 4 may be the same as or different from each other, at least two or more of R 1 to R 4 is a functional group including a pyrimidine ring, the remainder is hydrogen.)
다음 단계는 정공수송층의 상부에 발광층(Emitting Material Layer, EML)을 형성하는 단계이다. 발광층은 발광 화합물을 단독으로 포함하여 형성될 수 있고, 전하 수송 특성을 가지는 호스트 물질에 발광 도펀트를 혼합하여 형성될 수도 있다. 발광 화합물을 단독으로 포함하여 발광층을 형성하는 경우, 발광 특성은 매우 우수하나 전하 수송능력이 떨어져 고효율의 유기발광소자를 제작하기 곤란하기 때문에 전하수송능력이 우수한 호스트 물질에 발광 도펀트를 첨가하는 방식으로 발광층을 형성하는 것이 바람직할 수 있다. The next step is to form an Emitting Material Layer (EML) on top of the hole transport layer. The light emitting layer may be formed by including a light emitting compound alone, or may be formed by mixing a light emitting dopant with a host material having charge transport characteristics. In the case of forming the light emitting layer by including the light emitting compound alone, the light emitting property is very excellent, but the charge transporting ability is low, so that it is difficult to manufacture a high efficiency organic light emitting device. It may be desirable to form a light emitting layer.
본 발명은 호스트 물질로서 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 카바졸계 화합물을 사용하는 것을 특징으로 한다. 통상 카바졸계 화합물은 전하수송 특성이 우수하고 열적으로 안정할 뿐만 아니라 높은 삼중항 에너지를 갖기 때문에 호스트 물질로 적합하다고 알려져 있다. 이에 나아가, 본 발명에 따른 카바졸계 화합물은 말단에 수소결합이 가능한 피리미딘 고리를 포함하는 작용기를 구비함에 따라 용해성이 향상되어 용액공정을 가능케 할 수 있으며, 피리미딘 고리를 포함하는 작용기간의 수소결합을 통하여 쉽게 박막을 형성할 수 있다는 이점을 갖는다. The present invention is characterized by using a carbazole compound having at least two functional groups containing a pyrimidine ring as a host material. Carbazole-based compounds are generally known to be suitable as host materials because of their excellent charge transport properties, thermal stability, and high triplet energy. Further, the carbazole compound according to the present invention may have a functional group including a pyrimidine ring capable of hydrogen bonding at the terminal thereof to improve solubility, thereby enabling a solution process, and hydrogen of a working period including a pyrimidine ring. It is advantageous to form a thin film easily through bonding.
또한, 발광 도펀트는 인광 발광 또는 형광 발광 화합물 중에서 선택될 수 있는데, 단일항 여기자가 바닥상태로 전이하면서 발광하는 형광 발광과 달리, 인광 발광은 계간 전이(intersystem crossing)를 통해 단일항 여기자가 삼중항 여기자로 비발광 전이한 뒤, 삼중항 여기자가 바닥상태로 전이하면서 발광하는 메커니즘으로 형광 발광 보다 수명이 길고 효율이 높기 때문에 발광 도펀트로는 인광 발광 특성을 갖는 화합물을 사용하는 것이 바람직할 수 있다. 또한, 발광층을 형성하기 위한 호스트 물질과 도펀트 물질을 선택할 때에는 이들의 삼중항 에너지 레벨을 고려하여야 한다. 호스트 물질의 삼중항은 도펀트의 삼중항 보다 높은 에너지 준위를 가질 경우 호스트로부터 도펀트로의 에너지 전달이 더 안정하여 소자의 효율을 향상시킬 수 있다. 이는 호스트의 삼중항 에너지가 도펀트의 삼중항 에너지보다 낮으면 흡열 에너지 전이로 인하여 에너지 손실이 발생하고, 이는 소자의 발광효율을 떨어트리는 요인이 된다. 반면에, 호스트의 삼중항 에너지 준위가 도펀트의 삼중항 에너지보다 높으면 발열 에너지 전이로 인한 발광이 나타남에 따라 높은 발광 효율을 구현할 수 있다. In addition, the luminescent dopant may be selected from a phosphorescent emission or a fluorescence emitting compound. In contrast to the fluorescence emission in which the singlet excitons emit light while the singlet excitant transitions to the ground state, the phosphorescent emission is tripletd through the intersystem crossing. It may be preferable to use a compound having phosphorescence properties as a light emitting dopant because it has a longer life and higher efficiency than fluorescent light emission as a mechanism for light emission after the non-light emission transition to excitons, and the triplet excitons light up while transitioning to the ground state. In addition, when selecting a host material and a dopant material for forming the light emitting layer, their triplet energy level should be considered. When the triplet of the host material has a higher energy level than the triplet of the dopant, the energy transfer from the host to the dopant is more stable, thereby improving the efficiency of the device. This is because if the triplet energy of the host is lower than the triplet energy of the dopant, energy loss occurs due to the endothermic energy transition, which causes a decrease in luminous efficiency of the device. On the other hand, when the triplet energy level of the host is higher than the triplet energy of the dopant, light emission due to the exothermic energy transfer may appear, thereby realizing high light emission efficiency.
이와 같은 특성을 고려하였을 때, 본 발명에 따른 호스트 물질에 적합한 도펀트는 청색 인광 도펀트일 수 있으며, 구체적으로 (3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium (III)(FirPic)나 Bis(2,4-difluorophenylpyridinato)-tetrakis(1-pyrazolyl)borate iridium(III)(Fir6) 중에서 선택되는 도펀트를 사용할 수 있다. 그러나, 이에 제한되는 것은 아니며, 4-디시아노메틸렌-2-메틸-6-(파라-디메틸아미노스틸릴)-4H-피란], 디시아노메틸렌-2-메틸-6-(줄로리딘-4-일-비닐)-4H-피란), 디시아노메틸렌-2-메틸-6-(1,1,7,7-테트라메틸줄로리딜-9-에닐)-4H-피란), 디시아노메틸렌-2-터셔리부틸-6-(1,1,7,7-테트라메틸줄로리딜-9-에닐)-4H-피란) 및 디시아노메틸렌-2-아이소프로필-6-(1,1,7,7-테트라메틸줄로리딜-9-에닐)-4H-피란) 등으로부터 선택되는 화합물을 도펀트로 사용할 수도 있다. In view of such characteristics, a suitable dopant for the host material according to the present invention may be a blue phosphorescent dopant, specifically (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium ( Dopants selected from III) (FirPic) or Bis (2,4-difluorophenylpyridinato) -tetrakis (1-pyrazolyl) borate iridium (III) (Fir6) may be used, but are not limited thereto. Methylene-2-methyl-6- (para-dimethylaminostyryl) -4H-pyran], dicyanomethylene-2-methyl-6- (zulolidin-4-yl-vinyl) -4H-pyran), dish Aminomethylene-2-methyl-6- (1,1,7,7-tetramethylzulolidil-9-enyl) -4H-pyran), dicyanomethylene-2-tert-butylbutyl-6- (1,1 , 7,7-tetramethylzulolidyl-9-enyl) -4H-pyran) and dicyanomethylene-2-isopropyl-6- (1,1,7,7-tetramethylzololidyl-9-enyl ) -4H-pyran) and the like can also be used as a dopant.
또한, 본 발명의 일실시예에서 발광층은 호스트 물질인 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기발광 화합물과 용매를 혼합하여 혼합용액을 제조하고, 혼합용액 100중량부에 대하여 발광 도펀트를 1 내지 10wt%로 첨가하여 제조된 용액을 코팅하여 형성될 수 있다. In addition, in one embodiment of the present invention, the light emitting layer is mixed with an organic light emitting compound having two or more functional groups including a pyrimidine ring as a host material and a solvent to prepare a mixed solution, the light emitting dopant based on 100 parts by weight of the mixed solution It may be formed by coating a solution prepared by adding 1 to 10wt%.
다음 단계는 발광층의 상부에 정공차단층(Hole Blocking Layer, HBL)을 형성하는 단계이다. 정공차단층은 발광층에서 전자와 결합하지 못한 정공의 이동을 억제하는 역할을 수행하며, 본 발명의 일실시예에서 정공차단층은 Balq, 2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)(TPBi), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP)등의 물질을 증착하여 형성될 수 있다.The next step is to form a hole blocking layer (HBL) on top of the light emitting layer. The hole blocking layer serves to suppress the movement of holes that do not combine with electrons in the light emitting layer, and in one embodiment of the present invention, the hole blocking layer is Balq, 2,2 ', 2 "-(1,3,5- It may be formed by depositing a material such as benzinetriyl) -tris (1-phenyl-1-H-benzimidazole) (TPBi), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
다음 단계는 정공차단층의 상부에 전자수송층(Electron Transport Layer, ETL)을 형성하는 단계이다. 전자수송층은 음극으로부터 주입된 전자를 발광층으로 수송하는 역할을 수행함으로써 발광층 내에서 정공과 전자의 결합 확률을 향상시킬 수 있다. 이러한 역할을 수행하기 위하여 전자수송 물질은 전자친화성이 우수하고 음극과의 계면 접착성이 좋은 물질을 이용하는 것이 바람직하다. 본 발명의 일실시예에서 전자수송층은 Alq3(Tris(8-hydroxy-quinolinato)aluminium), Balq(Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium), BeBq2(Bis(10-hydroxybenzo[h]quinolinato)beryllium)로 이루어진 군으로부터 선택되는 1종 이상의 물질을 증착시켜 형성될 수 있다. The next step is to form an Electron Transport Layer (ETL) on top of the hole blocking layer. The electron transport layer may improve the coupling probability of holes and electrons in the light emitting layer by serving to transport electrons injected from the cathode to the light emitting layer. In order to perform this role, it is preferable to use an electron transport material having a good electron affinity and good interfacial adhesion with a negative electrode. In one embodiment of the present invention, the electron transport layer is Alq3 (Tris (8-hydroxy-quinolinato) aluminium), Balq (Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminium), BeBq2 (Bis (10- It may be formed by depositing one or more materials selected from the group consisting of hydroxybenzo [h] quinolinato) beryllium).
다음 단계는 전자수송층의 상부에 전자주입층(Electron Injection Layer, EIL)을 형성하는 단계이다. 전자주입층은 전자 주입 시, 전위 장벽을 낮추어 음극으로부터 전자의 주입을 용이하게 하는 역할을 수행하며, 본 발명의 일실시예에서 전자주입층은 LiF, 8-Hydroxyquinolinolato-lithium(Liq), 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene(TmPyPB)로 이루어지는 군으로부터 선택되는 1종 이상의 물질을 증착하여 형성될 수 있다.The next step is to form an Electron Injection Layer (EIL) on top of the electron transport layer. The electron injection layer serves to facilitate the injection of electrons from the cathode by lowering the potential barrier during electron injection. In one embodiment of the present invention, the electron injection layer is LiF, 8-Hydroxyquinolinolato-lithium (Liq), 1, It may be formed by depositing one or more materials selected from the group consisting of 3,5-tri [(3-pyridyl) -phen-3-yl] benzene (TmPyPB).
다음 단계는 전자주입층의 상부에 음극을 형성하는 단계이다. 음극 물질로는 리튬(Li), 마그네슘(Mg), 칼슘(Ca), 알루미늄(Al), Al:Li, Ba:Li 또는 Ca:Li과 같이 일함수 값이 작은 물질을 증착하여 형성될 수 있다. The next step is to form a cathode on top of the electron injection layer. The negative electrode material may be formed by depositing a material having a small work function value such as lithium (Li), magnesium (Mg), calcium (Ca), aluminum (Al), Al: Li, Ba: Li, or Ca: Li. .
유기발광소자를 제조할 시에는 각 층을 구성하는 화합물들의 에너지 레벨을 고려하여 소자의 효율을 극대화 시킬 수 있도록 설계하여야 한다. 이하에서는 본 발명의 일실시예에 따른 피리미딘 고리를 포함하는 작용기를 구비하는 유기발광 화합물을 포함하여 제조되는 유기발광소자의 바람직한 실시예 및 실험예를 기재하나 이에 제한되는 것은 아님을 명시한다. When manufacturing an organic light emitting device, it should be designed to maximize the efficiency of the device in consideration of the energy level of the compounds constituting each layer. Hereinafter, preferred embodiments and experimental examples of an organic light emitting device manufactured by using an organic light emitting compound having a functional group including a pyrimidine ring according to an embodiment of the present invention are described, but are not limited thereto.
이에 나아가 본 발명에 따른 피리미딘 고리를 포함하는 작용기를 구비하는 유기발광 화합물 및 이를 포함하여 제조되는 유기박막층은 유기발광소자 이외의 다양한 유기소자에 적용될 수 있으며, 구체적으로 유기 트랜지스터(TFT), 유기감광체(OPC), 포토다이오드, 유기 레이저 및 유기 이미지센서 등에 제한 없이 적용가능 할 수 있음을 명시한다. In addition, the organic light emitting compound having a functional group including a pyrimidine ring according to the present invention and the organic thin film layer prepared by using the same may be applied to various organic devices other than the organic light emitting device, specifically, an organic transistor (TFT), organic It can be applied without limitation, such as photosensitive member (OPC), photodiode, organic laser and organic image sensor.
이하, 본 발명의 실시예 및 실험예를 기재한다. Hereinafter, Examples and Experimental Examples of the present invention will be described.
[실시예 4]Example 4
<MCP-pym의 제조><Manufacture of MCP-pym>
1. 중간체 A의 제조1. Preparation of Intermediate A
플라스크에 수소화나트륨(NaH) 0.2g및 DMSO 50ml를 넣고 질소분위기를 유지하며 한 시간 동안 교반하였다. 다음으로, 3-브로모-1-프로판올(3-bromo-1-propanol) 1.25g과 우라실(uracil) 1.1g을 DMSO 50ml에 용해시켜 제조된 용액을 반응 플라스크에 천천히 첨가한 뒤, 상온에서 48시간 동안 교반하며 반응시켰다. 반응이 완료된 후 반응용액을 퀜칭하고, 감압 여과장치를 이용하여 용매를 제거하였다. 여과장치에 남은 생성물을 에틸아세테이트와 헥산을 1:4의 부피비로 혼합한 용매를 이용하여 세척한 후, 중간체 A를 수득하였다. (이와 관련하여 하기 반응식 7을 참조한다.)0.2 g of sodium hydride (NaH) and 50 ml of DMSO were added to the flask, and the mixture was stirred for 1 hour while maintaining a nitrogen atmosphere. Next, a solution prepared by dissolving 1.25 g of 3-bromo-1-propanol and 1.1 g of uracil in 50 ml of DMSO was slowly added to the reaction flask, followed by 48 at room temperature. The reaction was stirred for an hour. After the reaction was completed, the reaction solution was quenched, and the solvent was removed using a vacuum filter. The product remaining in the filter was washed with a solvent in which ethyl acetate and hexane were mixed at a volume ratio of 1: 4, and then intermediate A was obtained. (See Reaction Scheme 7 below.)
[반응식 7]Scheme 7
Figure PCTKR2016010717-appb-I000030
Figure PCTKR2016010717-appb-I000030
2. 중간체 B의 제조2. Preparation of Intermediate B
플라스크에 포타슘포스페이트(KH2PO4) 0.8g, 중간체 A 0.5g 및 DMSO 80ml를 넣고 질소분위기를 유지하며 한 시간 동안 교반하였다. 다음으로, 2-브로모-9H-카바졸(2-bromo-9H-carbazole) 0.72g을 DMSO 30ml에 녹인 후, 포타슘포스페이트 용액에 첨가하고, 상온에서 72 시간 동안 교반하며 반응시켰다. 반응 종료 후, 여과장치를 이용하여 침전물을 거르고, 여과액을 받아 용매를 감압제거 하였다. 여과장치에 남은 조생성물(crude product)을 메틸렌클로라이드 및 헥산을 1:10의 부피비로 혼합한 혼합용매를 사용하는 컬럼크로마토그래피로 정제하여 중간체 B를 제조하였다. (이와 관련하여 하기 반응식 8을 참조한다.)0.8 g of potassium phosphate (KH 2 PO 4 ), 0.5 g of intermediate A, and 80 ml of DMSO were added to the flask, and the mixture was stirred for 1 hour while maintaining a nitrogen atmosphere. Next, 0.72 g of 2-bromo-9H-carbazole was dissolved in 30 ml of DMSO, added to potassium phosphate solution, and reacted with stirring at room temperature for 72 hours. After the reaction was completed, the precipitate was filtered using a filtration device, the filtrate was received, and the solvent was removed under reduced pressure. The crude product remaining in the filter was purified by column chromatography using a mixed solvent in which methylene chloride and hexane were mixed at a volume ratio of 1:10 to prepare Intermediate B. (See Scheme 8 below in this regard.)
[반응식 8] Scheme 8
Figure PCTKR2016010717-appb-I000031
Figure PCTKR2016010717-appb-I000031
3. MCP-pym의 제조3. Manufacturing of MCP-pym
플라스크에 1,3-디브로모벤젠(1,3-dibromobenzen) 1g, 중간체 B 2.9g, 요오드화구리(CuI) 0.0085g, 포타슘포스페이트(KH2PO4) 2.2g, 1,2-트랜스-사이클로헥세인 디아민(1,2-trans-cyclohezane diamine, C6H10(NH2)2) 0.48mL및 1,4-다이옥세인(1,4-dioxane) 100mL을 혼합하고 교반하였다. 혼합물을 50℃에서 48시간 동안 교반하며 반응시켰다. 반응 종료 후, 메틸렌클로라이드(Methylene Chloride)와 증류수를 사용하여 work-up하여 증류수층은 제거하고 유기용매(메틸렌클로라이드)층은 수거하였다. 유기용매층을 감압 여과하여 용매를 모두 제거하였다. 여과장치에 남은 조생성물(crude product)을 메틸렌클로라이드 및 헥산을 1:4의 부피비로 혼합한 혼합용매를 사용하는 컬럼크로마토그래피로 정제하여 최종 생성물 MCP-pym을 수득하였다. (이와 관련하여 하기 반응식 9를 참조한다.)1 g of 1,3-dibromobenzen, 1 g of intermediate B, 2.9 g of intermediate B, 0.0085 g of copper iodide (CuI), 2.2 g of potassium phosphate (KH2PO4), 1,2-trans-cyclohexane diamine 0.48 mL of (1,2-trans-cyclohezane diamine, C6H10 (NH2) 2) and 100 mL of 1,4-dioxane (1,4-dioxane) were mixed and stirred. The mixture was reacted with stirring at 50 ° C. for 48 hours. After completion of the reaction, work-up was performed using methylene chloride and distilled water to remove the distilled water layer and the organic solvent (methylene chloride) layer was collected. The organic solvent layer was filtered under reduced pressure to remove all solvent. The crude product remaining in the filter was purified by column chromatography using a mixed solvent in which methylene chloride and hexane were mixed at a volume ratio of 1: 4 to obtain a final product MCP-pym. (See Scheme 9 below in this regard.)
[반응식 9]Scheme 9
Figure PCTKR2016010717-appb-I000032
Figure PCTKR2016010717-appb-I000032
<TPD-pym의 제조><Production of TPD-pym>
1. 중간체 C의 제조1. Preparation of Intermediate C
플라스크에 N,N'-dim-tolylbiphenyl-4,4'-diamine 5g과 클로로포름(CHCl3) 60ml를 넣고 질소분위기를 유지하며 30분 동안 교반하였다. 다음으로 반응용액에 N-브로모숙신이미드(N-Bromosuccinimide, C4H4BrNO2) 15g을 천천히 첨가한 후, 70℃에서 24시간 동안 반응시켰다. 반응 완료 후, 메틸렌클로라이드(Methylene Chloride)와 증류수를 사용하여 work-up하여 증류수층은 제거하고 유기용매(메틸렌클로라이드)층은 수거하였다. 유기용매층을 감압 여과하여 용매를 모두 제거하였다. 여과장치에 남은 조생성물(crude product)을 메틸렌클로라이드 및 헥산을 1:5의 부피비로 혼합한 혼합용매를 사용하는 컬럼크로마토그래피로 정제하여 중간체 C를 제조하였다. (이와 관련하여 하기 반응식 10을 참조한다.)5 g of N, N'-dim-tolylbiphenyl-4,4'-diamine and 60 ml of chloroform (CHCl 3) were added to the flask, and the mixture was stirred for 30 minutes while maintaining a nitrogen atmosphere. Next, N-bromosuccinimide (N-Bromosuccinimide, C4H4BrNO2) 15g was slowly added to the reaction solution, followed by reaction at 70 ° C for 24 hours. After completion of the reaction, work-up was performed using methylene chloride and distilled water to remove the distilled water layer and the organic solvent (methylene chloride) layer was collected. The organic solvent layer was filtered under reduced pressure to remove all solvent. The crude product remaining in the filter was purified by column chromatography using a mixed solvent in which methylene chloride and hexane were mixed at a volume ratio of 1: 5 to prepare Intermediate C. (See Scheme 10 below in this regard.)
[반응식 10] Scheme 10
Figure PCTKR2016010717-appb-I000033
Figure PCTKR2016010717-appb-I000033
2. 중간체 A의 제조2. Preparation of Intermediate A
*115상기와 동일한 조건 및 방법으로 중간체 A를 제조하였다. 115. An intermediate A was prepared under the same conditions and methods as described above.
3. TPD-pym의 제조3. Preparation of TPD-pym
플라스크에 포타슘포스페이트(KH2PO4) 0.8g, 중간체 A 0.5g 및 DMSO 80ml를 넣고 한 시간 동안 교반하였다. 다음으로, 중간체C 0.8g을 DMSO 30ml에 용해시킨 후 반응 플라스크에 첨가하고 상온에서 72시간 동안 교반하며 반응시켰다. 반응이 완료된 후 여과장치를 이용하여 침전물을 거르고, 여과액을 수거하여 용매를 감압 제거한 뒤, 조생성물(crude product)을 에틸아세테이트와 헥산을 1:10의 부피비로 혼합한 혼합용액을 사용하는 컬럼크로마토그래피로 정제하여TPD-pym을 수득하였다. (이에 관하여 하기 반응식 11을 참조한다.)0.8 g of potassium phosphate (KH 2 PO 4), 0.5 g of intermediate A, and 80 ml of DMSO were added to the flask and stirred for an hour. Next, 0.8 g of intermediate C was dissolved in 30 ml of DMSO, added to the reaction flask, and reacted with stirring at room temperature for 72 hours. After the reaction was completed, the precipitate was filtered using a filtration apparatus, the filtrate was collected, the solvent was distilled off under reduced pressure, and the crude product was mixed with ethyl acetate and hexane in a volume ratio of 1:10. Purification by chromatography gave TPD-pym. (See Scheme 11 below for this.)
[반응식 11] Scheme 11
Figure PCTKR2016010717-appb-I000034
Figure PCTKR2016010717-appb-I000034
양극 기판으로 ITO 유리기판을 사용하였으며, 상기 ITO기판을 아세톤, 이소프로필알코올 및 증류수로 각각 30분 동안 초음파 세척 및 건조시켜 불순물을 제거하였다. An ITO glass substrate was used as the cathode substrate, and the ITO substrate was ultrasonically washed and dried for 30 minutes with acetone, isopropyl alcohol, and distilled water to remove impurities.
ITO가 코팅된 면에 PEDOT:PSS(PH4083, Celvios)를 스핀코팅법으로 코팅한 뒤, 120℃의 온도로 30분 동안 건조시켜 정공주입층을 형성하였다. PEDOT: PSS (PH4083, Celvios) was coated on the surface coated with ITO by spin coating, and then dried at a temperature of 120 ° C. for 30 minutes to form a hole injection layer.
다음으로, TPD-pym을 트리클로로벤젠에 녹여 30wt% 용액을 제조한 뒤, 이를 스핀코팅법으로 코팅하고 100℃에서 건조시켜 정공수송층을 형성하였다. Next, TPD-pym was dissolved in trichlorobenzene to prepare a 30 wt% solution, which was then coated by spin coating and dried at 100 ° C. to form a hole transport layer.
다음으로, 호스트 물질인 MCP-pym을 클로로벤젠에 용해시킨 후, 청색 인광 도펀트인 Fir6를 9wt%로 첨가하여 제조된 발광층용 용액을 정공수송층의 상부에 스핀코팅법으로 도포한 뒤, 100℃에서 건조시켜 발광층을 형성하였다. Next, after dissolving the host material MCP-pym in chlorobenzene, a light emitting layer solution prepared by adding Fir6, a blue phosphorescent dopant, at 9wt% was applied by spin coating on the hole transport layer, and then at 100 ° C. It dried and the light emitting layer was formed.
다음으로, 발광층의 상부에 TPBi를 진공도 1 X 10-7Pa, 증착속도 2 nm/s 의 조건으로 진공증착하여 정공차단층을 형성하였다. Next, TPBi was vacuum-deposited on the top of the light emitting layer under conditions of a vacuum degree of 1 × 10 −7 Pa and a deposition rate of 2 nm / s to form a hole blocking layer.
다음으로, 동일한 증착 조건으로 Alq3(Tris-(8-hydroxyquinoline)aluminum)를 진공증착하여 전자수송층을 형성하고, 전자수송층의 상부에 LiF를 증착시켜 전자주입층을 형성하고, 이의 상부에 Al을 진공증착시켜 음극을 형성하였다. Next, Alq3 (Tris- (8-hydroxyquinoline) aluminum) is vacuum-deposited under the same deposition conditions to form an electron transport layer, and LiF is deposited on the electron transport layer to form an electron injection layer, and Al is vacuumed thereon. Evaporation to form a cathode.
최종적으로 유기발광소자는 ITO/PH4083/TPD-pym/MCP-pym+Fir6(9wt%)/TPBi /Alq3/LiF/Al의 구조로 제작되었다. Finally, the organic light emitting device was manufactured in the structure of ITO / PH4083 / TPD-pym / MCP-pym + Fir6 (9wt%) / TPBi / Alq3 / LiF / Al.
[비교예2]Comparative Example 2
정공수송 물질인 NPB(N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine)를 진공증착시켜 정공수송층을 형성하고, 호스트 물질인 MCP와 도펀트인 Fir6를 9wt%로 첨가하여 제조된 발광층용 용액을 진공증착시켜 발광층을 형성하는 것을 제외하고는 실시예4와 동일한 조건으로 소자를 제작하였다. NPB (N, N'-bis (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine), which is a hole transport material, is vacuum-deposited to form a hole transport layer. A device was manufactured under the same conditions as in Example 4, except that the solution for the light emitting layer prepared by adding the material MCP and the dopant Fir6 at 9wt% was vacuum deposited to form the light emitting layer.
[실험예 2]Experimental Example 2
실시예 4에 따라 제조된 화합물 MCP-pym 및 TPD-pym의 합성을 확인하기 위하여 1H NMR분석을 실시하였다. 화합물의 NMR 분석은 분석 대상 물질을 듀테로클로로포름(CDCl3)에 용해시켜 측정되었으며, 이의 분석결과는 다음과 같다. 1 H NMR analysis was performed to confirm the synthesis of the compounds MCP-pym and TPD-pym prepared according to Example 4. NMR analysis of the compound was measured by dissolving the analyte in deuterochloroform (CDCl 3 ), the analysis results are as follows.
화합물 MCP-pym의 분석결과Analysis of Compound MCP-pym
; 1H NMR (CDCl3, 300 MHz); δ = 8.34 (s, -NH-), 7.89 (d, -H), 7.74 (s, -CH-), 7.69 (m, -CH-), 6.99 (d, -CH-), 5.83 (m, -H), 2.25~2.05 (s, -CH2-), 1.53 (s, -CH2-); 1 H NMR (CDCl 3 , 300 MHz); δ = 8.34 (s, -NH-), 7.89 (d, -H), 7.74 (s, -CH-), 7.69 (m, -CH-), 6.99 (d, -CH-), 5.83 (m, -H), 2.25-2.05 (s, -CH 2- ), 1.53 (s, -CH 2- )
*137화합물 TPD-pym의 분석결과* 137 Analysis result of compound TPD-pym
; 1H NMR (CDCl3, 300 MHz); δ = 8.87 (s, -NH-), 8.23 (d, -CH-), 8~7.95 (m, -CH-), 7.63 (t,-CH-), 7.52~7.38 (m, -CH-), 7.03 (m, -CH-), 5.38 (s, -H-), 3.53~3.46 (m, -CH2-), 2.57 (s, -CH3-), 1.98 (m, -CH3-); 1 H NMR ( CDCl 3, 300 MHz); δ = 8.87 (s, -NH-), 8.23 (d, -CH-), 8-7.95 (m, -CH-), 7.63 (t, -CH-), 7.52-7.38 (m, -CH-) , 7.03 (m, -CH-), 5.38 (s, -H-), 3.53-3.46 (m, -CH2-), 2.57 (s, -CH3-), 1.98 (m, -CH3-)
상기 1H NMR 분석 결과에서 사용된 약자는 각각 다음을 의미한다; s: 단일선, d: 이중선, t: 삼중선, g: 사중선, m: 다중선.The abbreviations used in the 1H NMR analysis results mean the following; s: singlet, d: doublet, t: triplet, g: quartet, m: multiplet.
[실험예 3]Experimental Example 3
실시예4에 따라 제조된 화합물 MCP-pym의 광학적 특성을 평가하기 위하여 UV 스펙트럼 및 PL(photoluminescence) 스펙트럼를 측정하였다. UV 스펙트럼은 MCP-pym을 클로로포름에 용해시켜 측정하였으며, PL 스펙트럼은 MCP-pym을 클로로포름에 용해시켜 측정하였다. 이의 결과를 도 2에 나타내었다. UV spectra and PL (photoluminescence) spectra were measured to evaluate the optical properties of the compound MCP-pym prepared according to Example 4. UV spectra were measured by dissolving MCP-pym in chloroform, and PL spectra were measured by dissolving MCP-pym in chloroform. The results are shown in FIG.
*143도 7을 참조하면, MCP에 피리미딘 고리를 포함하는 작용기를 결합시켜 제조된 화합물 MCP-pym은 종래기술에 따른 MCP와 거의 흡사한 광학적 특성을 갖고 있는 것을 확인할 수 있다. 따라서, 본 발명에 따른 유기발광 화합물은 MCP의 광학적 특성을 저해시키지 않고, 용해성 및 박막형성 특성에만 영향을 주는 것으로 판단할 수 있다. * 143 Referring to Figure 7, it can be seen that the compound MCP-pym prepared by combining a functional group containing a pyrimidine ring to MCP has an optical characteristic almost similar to the MCP according to the prior art. Therefore, the organic light emitting compound according to the present invention can be judged to affect only the solubility and thin film formation properties without inhibiting the optical properties of the MCP.
[실험예 4]Experimental Example 4
실시예4에 따라 제조된 유기발광소자의 전기 광학적 특성을 평가하기 위하여 유기발광소자의 전류밀도, 전류효율 및 EL(electroluminescence) 세기를 측정하였다. 도 8에 실시예4에 따라 제조된 유기발광소자의 EL 스펙트럼 및 청색 인광 도펀트인 Fir6의 PL 스펙트럼을 나타내었으며, 도 9에 실시예 4와 비교예 2에 따른 유기발광소자의 전류밀도 변화에 따른 전류효율 변화 그래프는 나타내었다. In order to evaluate the electro-optical characteristics of the organic light emitting device manufactured according to Example 4, the current density, current efficiency, and EL (electroluminescence) intensity of the organic light emitting device were measured. 8 shows the EL spectrum of the organic light emitting diode manufactured according to Example 4 and the PL spectrum of Fir6, which is a blue phosphorescent dopant, and according to the current density change of the organic light emitting diode according to Example 4 and Comparative Example 2 in FIG. A graph of the current efficiency change is shown.
먼저, 도8을 참조하면, 본 발명의 일실시예에 따른 유기발광소자는 460nm 부근에서 최대 피크를 나타내고, 청색 발광 스펙트럼 특성을 나타내는 것을 확인할 수 있다. 또한, 본 발명에 다른 유기발광소자의 발광 스펙트럼 특성은 도10에 도시된 청색 인광 도펀트인 FiR6의 발광 스펙트럼과 거의 중첩되는 것을 확인할 수 있다. 이와 같은 결과를 통하여, 본 발명에 따른 유기발광 화합물을 호스트 물질로 사용하는 경우, 도펀트 물질로 에너지 전달이 효과적으로 이루어짐을 알 수 있다. First, referring to FIG. 8, it can be seen that the organic light emitting diode according to the exemplary embodiment of the present invention exhibits a maximum peak at around 460 nm and exhibits blue emission spectrum characteristics. In addition, it can be seen that the emission spectrum characteristics of the organic light emitting diode according to the present invention almost overlap the emission spectrum of FiR6, which is a blue phosphorescent dopant shown in FIG. Through these results, it can be seen that when the organic light emitting compound according to the present invention is used as a host material, energy transfer to the dopant material is effectively performed.
또한, 도 9를 참조하면, 본 발명의 일실시예에 따른 유기발광소자는 최대 전류효율이 14cd/A인 것을 확인할 수 있으며, 이는 증착공정을 통해 제조된 비교예2의 소자보다 약 2.5배 향상된 값이다. 따라서, 본 발명에 따른 유기발광 화합물을 유기발광소자에 적용할 경우, 용액공정을 가능케 할 수 있으며, 용액공정을 통해 인접한 층을 용해시키지 않고 안정한 다층 구조의 유기발광소자가 제작되었음을 알 수 있다. In addition, referring to Figure 9, the organic light emitting device according to an embodiment of the present invention can be seen that the maximum current efficiency is 14cd / A, which is about 2.5 times improved compared to the device of Comparative Example 2 manufactured through the deposition process Value. Therefore, when the organic light emitting compound according to the present invention is applied to an organic light emitting device, it is possible to enable a solution process, it can be seen that the organic light emitting device having a stable multilayer structure without dissolving adjacent layers through the solution process.
본 발명에서 본 발명에서 피리미딘 고리는 4개의 탄소 원자와 2개의 질소원자로 이루어지는 헤테로고리를 의미하며, 치환 또는 비치환된 피리미딘 고리를 모두 포함하는 것으로 한다. 또한, 본 발명에서 퓨린계 작용기는 치환 또는 비치환된 퓨린 분자를 포함하는 화합물을 의미하며, 퓨린 분자는 피리미딘 고리와 이미다졸 고리가 탄소-탄소 결합 하나를 공유하는 구조의 방향족 고리 화합물을 의미한다. 또한, 본 발명에서 치환 또는 비치환이란 중수소; 할로겐기; 알킬기; 아릴기; 헤티로아릴기; 플루오레닐기; 시아노기로 이루어진 군으로부터 선택되는 1개 이상의 작용기로 치환되었거나, 또는 어떠한 작용기도 갖지 않는 것을 의미한다. In the present invention, the pyrimidine ring in the present invention means a heterocyclic ring composed of four carbon atoms and two nitrogen atoms, and includes all substituted or unsubstituted pyrimidine rings. In the present invention, a purine-based functional group means a compound including a substituted or unsubstituted purine molecule, and a purine molecule means an aromatic ring compound having a structure in which a pyrimidine ring and an imidazole ring share one carbon-carbon bond. do. In the present invention, substituted or unsubstituted deuterium; Halogen group; Alkyl groups; Aryl group; Hetiaryl group; Fluorenyl group; It means substituted with one or more functional groups selected from the group consisting of cyano groups, or having no functional groups.
이하 첨부된 도면 및 화학식을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings and chemical formulas.
본 발명에 따른 유기소자용 화합물은 정공수송 특성을 가지는 화합물의 말단에 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비하며, 상기 피리미딘 고리를 포함하는 작용기는 수소결합이 가능한 것을 특징으로 할 수 있다.The compound for an organic device according to the present invention includes at least one functional group including a pyrimidine ring at the terminal of the compound having hole transport properties, and the functional group including the pyrimidine ring is capable of hydrogen bonding. Can be.
본 발명의 바람직한 일실시예에서 정공수송 특성을 가지는 화합물은 하기 화학식 9 또는 화학식 10으로 표시되는 화합물 중에서 선택될 수 있고, 이러한 화합물의 말단에 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비하고, 피리미딘 고리를 포함하는 작용기는 수소결합이 가능한 것을 특징으로 할 수 있다. In a preferred embodiment of the present invention, the compound having a hole transport property may be selected from compounds represented by the following formula (9) or formula (10), and has at least one functional group including a pyrimidine ring at the terminal of the compound And, the functional group containing a pyrimidine ring can be characterized in that capable of hydrogen bonding.
[화학식 9][Formula 9]
Figure PCTKR2016010717-appb-I000035
Figure PCTKR2016010717-appb-I000035
(상기 화학식 9에서, Ar1, Ar2 및 Ar3은 서로 같거나 상이할 수 있고, 각각 독립적으로 치환 또는 비치환된 페닐기 또는 나프틸기이다.) (In Formula 9, Ar1, Ar2 and Ar3 may be the same as or different from each other, and each independently a substituted or unsubstituted phenyl group or naphthyl group.)
[화학식 10][Formula 10]
Figure PCTKR2016010717-appb-I000036
Figure PCTKR2016010717-appb-I000036
(상기 화학식 10에서, n은 2 또는 3이고,(In Formula 10, n is 2 or 3,
Ar4 및 Ar5는 서로 같거나 상이할 수 있고, 각각 독립적으로 치환 또는 비치환된 페닐기, 나프틸기, 페난스레닐기 이고, Ar4 and Ar5 may be the same as or different from each other, and each independently represent a substituted or unsubstituted phenyl group, naphthyl group, phenanthrenyl group,
L은 직접 결합; 치환 또는 비치환된 페닐렌기이며,L is a direct bond; A substituted or unsubstituted phenylene group,
Ar6는 치환 또는 비치환된 페닐렌기, 비페닐렌기, 나프틸레닐기, 플루오레닐기, 사이클로헥실기, 스파이로바이플로레닐기, 트리페닐아민기 및 디페닐메틸렌기로 이루어진 군으로부터 선택된다.)Ar6 is selected from the group consisting of a substituted or unsubstituted phenylene group, biphenylene group, naphthyleneyl group, fluorenyl group, cyclohexyl group, spirobifluorenyl group, triphenylamine group and diphenylmethylene group.)
보다 바람직하게 화학식 9 또는 화학식 10으로 표시되는 정공수송 특성을 가지는 화합물은 하기 화학식으로 표시되는 다수의 물질군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니며, 화합물의 벤젠고리에 수소결합이 가능한 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비할 수 있다. More preferably, the compound having the hole transport property represented by Formula 9 or Formula 10 may be selected from a plurality of substance groups represented by the following Formulas, but is not limited thereto, and pyrimidine capable of hydrogen bonding to the benzene ring of the compound At least one functional group including a ring may be provided.
Figure PCTKR2016010717-appb-I000037
Figure PCTKR2016010717-appb-I000037
또한, 본 발명에 있어서, 상기 정공수송 특성을 가지는 화합물은 실리콘계 화합물, 포스핀옥사이드계 화합물, 및 아릴아민계 화합물로부터 선택되는 1이상의 화합물이고, 상기 화합물의 말단에 상기 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비할 수 있다.In the present invention, the compound having a hole transport property is at least one compound selected from a silicon compound, a phosphine oxide compound, and an arylamine compound, a functional group containing the pyrimidine ring at the terminal of the compound At least one may be provided.
예를 들어, 상기 실리콘계 화합물은 하기의 화학식으로 표시되는 다수의 물질군으로부터 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다.For example, the silicon-based compound may be selected from a plurality of material groups represented by the following chemical formulas, but is not limited thereto.
Figure PCTKR2016010717-appb-I000038
Figure PCTKR2016010717-appb-I000038
다른 예를 들어, 상기 포스핀옥사이드계 화합물은 하기의 화학식으로 표시되는 다수의 물질군일 수 있다.In another example, the phosphine oxide-based compound may be a plurality of substance groups represented by the following formulas.
Figure PCTKR2016010717-appb-I000039
Figure PCTKR2016010717-appb-I000039
또 다른 예를 들어, 상기 설파이드계 화합물은 하기의 화학식으로 표현되는 화합물일 수 있다.In another example, the sulfide-based compound may be a compound represented by the following formula.
Figure PCTKR2016010717-appb-I000040
Figure PCTKR2016010717-appb-I000040
또 다른 예를 들어, 상기 아릴아민계 화합물은 하기의 화학식으로 표시되는 다수의 물질군일 수 있다.For another example, the arylamine-based compound may be a plurality of substance groups represented by the following formula.
Figure PCTKR2016010717-appb-I000041
Figure PCTKR2016010717-appb-I000041
또한, 본 발명에 있어서, 상기 정공수송 특성을 가지는 화합물은 탄화수소 화합물일 수 있다.In addition, in the present invention, the compound having the hole transport characteristics may be a hydrocarbon compound.
예를 들어, 상기 탄화수소 화합물은 하기의 화학식으로 표시되는 다수의 물질군일 수 있다.For example, the hydrocarbon compound may be a plurality of substance groups represented by the following formulas.
Figure PCTKR2016010717-appb-I000042
Figure PCTKR2016010717-appb-I000042
또한, 본 발명에서 피리미딘 고리를 포함하는 작용기는 피리미딘계 작용기 및 퓨린계 작용기 일 수 있다. 본 발명의 일실시예에서 피리미딘계 작용기는 하기 화학식 11a 및 11b로 표시되는 화합물로부터 형성될 수 있다.In addition, in the present invention, the functional group including the pyrimidine ring may be a pyrimidine-based functional group and a purine-based functional group. In one embodiment of the present invention, the pyrimidine-based functional group may be formed from a compound represented by the following Formulas 11a and 11b.
Figure PCTKR2016010717-appb-I000043
Figure PCTKR2016010717-appb-I000043
(화학식 11a 및 11b에서 R1 내지 R6은 서로 같거나 상이할 수 있고, 각각 독립적으로 H, D, F, Cl, Br, I, 아미노기, 탄소수 1 내지 12인 직쇄알킬, 탄소수 1 내지 10인 카르복실산, 탄소수 1 내지 10인 알코올, 및 탄소수 1 내지 10인 할로젠화알킬 중에서 선택된다.)In Formulas 11a and 11b, R 1 to R 6 may be the same as or different from each other, and each independently H, D, F, Cl, Br, I, an amino group, linear alkyl having 1 to 12 carbon atoms, and having 1 to 10 carbon atoms. Carboxylic acid, alcohol having 1 to 10 carbon atoms, and alkyl halide having 1 to 10 carbon atoms.)
구체적으로, 화학식 11a로 표시되는 화합물로부터 형성되는 피리미딘계 작용기는 하기 화학식으로 표시되는 다수의 물질군으로부터 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다. Specifically, the pyrimidine-based functional group formed from the compound represented by Formula 11a may be selected from a plurality of substance groups represented by the following Formulas, but is not limited thereto.
Figure PCTKR2016010717-appb-I000044
Figure PCTKR2016010717-appb-I000044
(상기 화학식에서 쓰인 기호(*)는 본 발명에 따른 정공수송 특성을 가지는 화합물과의 결합위치를 나타낸다.)(The symbol (*) used in the above chemical formula represents a bonding position with a compound having a hole transporting property according to the present invention.)
또한, 화학식 11b로 표시되는 화합물로부터 형성되는 피리미딘계 작용기는 하기 화학식으로 표시되는 다수의 물질군으로부터 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다. In addition, a pyrimidine-based functional group formed from the compound represented by Formula 11b may be selected from a plurality of substance groups represented by the following Formulas, but is not limited thereto.
Figure PCTKR2016010717-appb-I000045
Figure PCTKR2016010717-appb-I000045
(상기 화학식에서 쓰인 기호(*)는 본 발명에 따른 정공수송 특성을 가지는 화합물과의 결합위치를 나타낸다.)(The symbol (*) used in the above chemical formula represents a bonding position with a compound having a hole transporting property according to the present invention.)
본 발명의 일실시예에서 퓨린계 작용기는 하기 화학식 11c 내지 11h로 표시되는 화합물로부터 형성될 수 있으나 이에 제한되는 것은 아니다.In one embodiment of the present invention, a purine-based functional group may be formed from a compound represented by the following Chemical Formulas 11c to 11h, but is not limited thereto.
Figure PCTKR2016010717-appb-I000046
Figure PCTKR2016010717-appb-I000046
구체적으로, 퓨린계 작용기는 하기 화학식으로 표시되는 다수의 물질군으로부터 선택될 수 있으나 이에 제한되는 것은 아님을 명시한다.Specifically, the purine-based functional group may be selected from a plurality of substance groups represented by the following formulae, but is not limited thereto.
Figure PCTKR2016010717-appb-I000047
Figure PCTKR2016010717-appb-I000047
(상기 화학식에서 쓰인 기호(*)는 본 발명에 따른 정공수송 특성을 가지는 화합물과의 결합위치를 나타낸다.)(The symbol (*) used in the above chemical formula represents a bonding position with a compound having a hole transporting property according to the present invention.)
또한, 본 발명의 일실시예에서 유기소자용 화합물은 피리미딘 고리를 포함하는 작용기를 적어도 2개 이상 구비하는 것이 바람직할 수 있다. 본 발명에 따른 유기소자용 화합물을 용매에 대한 용해도가 낮아 용액공정이 곤란한 저분자 화합물의 말단에 피리미딘 고리를 포함하는 작용기를 구비함에 따라 용해성을 향상시킬 수 있고, 이에 나아가 화합물의 말단에 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 경우, 피리미딘 고리를 포함하는 작용기간의 수소결합으로 안정한 유기박막을 형성할 수 있다. 구체적으로 본 발명에 따른 피리미딘 고리를 포함하는 작용기는 화합물 내에 아마이드기, 카보닐기와 같이 수소결합이 가능한 결합을 포함하고 있다. 따라서, 유기소자용 화합물에 피리미딘 고리를 포함하는 작용기가 2개 이상 구비되는 경우, 전술한 수소결합성 작용기간의 결합을 유도하여 유기박막을 형성할 수 있다. In addition, in one embodiment of the present invention, the compound for an organic device may be preferably provided with at least two or more functional groups including a pyrimidine ring. The compound for an organic device according to the present invention may be improved in solubility by having a functional group including a pyrimidine ring at the terminal of the low molecular weight compound having a low solubility in a solvent, which makes it difficult to process the solution. When two or more functional groups including a ring are provided, a stable organic thin film can be formed by hydrogen bonding of a functional period including a pyrimidine ring. Specifically, the functional group including the pyrimidine ring according to the present invention includes a bond capable of hydrogen bonding such as an amide group and a carbonyl group in the compound. Therefore, when two or more functional groups including a pyrimidine ring are provided in the compound for an organic device, the organic thin film may be formed by inducing the above-described hydrogen bonding functional period.
본 발명의 구체적인 일실시예에 따른 유기소자용 화합물간의 수소결합 구조를 보여주는 구조식을 도10 및 도 11에 기재하였다. 이를 참조하여 본 발명의 일실시예에 따른 화합물의 수소결합 특성을 설명한다. 본 발명의 일실시예에 따른 유기소자용 화합물은 도10 및 도 11에 도시된 바와 같이 화합물간의 3차원 결합을 형성할 수 있으며, 피리미딘 고리를 포함하는 작용기의 개수를 조절하여 최종적으로 형성되는 박막의 경도를 제어할 수 있다는 특징을 갖는다. 보다 구체적으로 본 발명에 따른 정공수송 특성을 가지는 화합물의 말단에 화학반응을 통하여 작용기를 결합하기 위한 결합자리를 다수 개 마련할 수 있으며, 정공수송 특성을 가지는 화합물에 결합되는 작용기의 개수를 조절할 수 있다. 유기소자용 화합물에 구비된 작용기의 개수가 증가하면, 피리미딘 고리를 포함하는 작용기간의 수소결합에 의해 보다 치밀한 구조의 박막이 형성됨에 따라 박막의 경도는 증가하게 된다. Structural formulas showing hydrogen bonding structures between compounds for an organic device according to an exemplary embodiment of the present invention are described in FIGS. 10 and 11. With reference to this will be described the hydrogen bonding properties of the compound according to an embodiment of the present invention. Compound for an organic device according to an embodiment of the present invention can form a three-dimensional bond between the compound, as shown in Figure 10 and 11, and finally formed by adjusting the number of functional groups containing a pyrimidine ring The hardness of the thin film can be controlled. More specifically, it is possible to provide a plurality of binding sites for binding functional groups through chemical reactions at the ends of the compounds having hole transporting properties according to the present invention, and to control the number of functional groups bound to the compounds having hole transporting properties. have. When the number of functional groups included in the compound for an organic device is increased, the hardness of the thin film increases as a thin film having a more dense structure is formed by hydrogen bonding in the functional period including the pyrimidine ring.
본 발명의 일실시예에서 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기소자용 화합물은 하기 화학식 9a로 표시되는 화합물일 수 있다. In one embodiment of the present invention, the compound for an organic device having two or more functional groups including a pyrimidine ring may be a compound represented by the following Formula 9a.
[화학식 9a][Formula 9a]
Figure PCTKR2016010717-appb-I000048
Figure PCTKR2016010717-appb-I000048
(상기 화학식9a에서 Pym1 내지 Pym3는 서로 같거나 상이할 수 있고, Pym1 내지 Pym3 중에서 적어도 2개 이상은 피리미딘 고리를 포함하는 작용기며, 나머지는 수소이다.)(In Formula 9a, Pym1 to Pym3 may be the same as or different from each other, and at least two or more of Pym1 to Pym3 are functional groups including a pyrimidine ring, and the rest are hydrogen.)
본 발명의 또 다른 일실시예에서, 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기소자용 화합물은, 하기 화학식 10a로 표시되는 화합물일 수 있다. In another embodiment of the present invention, the compound for an organic device having two or more functional groups containing a pyrimidine ring may be a compound represented by the following formula (10a).
[화학식 10a][Formula 10a]
Figure PCTKR2016010717-appb-I000049
Figure PCTKR2016010717-appb-I000049
(상기 화학식10a에서 Pym4 내지 Pym9는 서로 같거나 상이할 수 있고, Pym4 내지 Pym9 중에서 적어도 2개 이상은 피리미딘 고리를 포함하는 작용기며, 나머지는 수소이다.)(In Formula 10a, Pym 4 to Pym 9 may be the same as or different from each other, at least two or more of Pym 4 to Pym 9 are functional groups including a pyrimidine ring, and the rest are hydrogen.)
이하에서는 화학식9a로 표시되는 유기소자용 화합물의 제조방법에 관하여 설명하기로 한다. Hereinafter, a method of preparing a compound for an organic device represented by Formula 9a will be described.
첫째, 촉매로서 소듐하이드라이드(sodium hydride)와 제1용매를 혼합하고 소정의 시간 동안 교반하여 반응을 개시한다. 이때, 부반응을 억제하여 고순도의 화합물을 제조하기 위하여 질소분위기하에서 수행하는 것이 바람직할 수 있다. 또한, 제1용매는 디메틸설폭사이드(DMSO), 디메틸포름아미드(DMF), 아세토니트릴(ACN) 및 헥사메틸포스포아미드(HMPA) 중에서 선택되는 1종 또는 2종 이상을 포함하는 혼합용매일 수 있으나 이에 제한되는 것은 아님을 명시한다. 다만, 활성화 에너지를 낮추어 반응효율을 증진시킬 수 있는 극성 비양자성 용매를 사용하는 것이 바람직 할 수 있으며, 보다 바람직하게 제1용매는 비점이 높고 화학적으로 안정한 DMSO일 수 있다. First, sodium hydride and the first solvent are mixed as a catalyst and stirred for a predetermined time to initiate the reaction. At this time, it may be preferable to perform under a nitrogen atmosphere to suppress side reactions to produce a high purity compound. In addition, the first solvent may be a mixed solvent including one or two or more selected from dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetonitrile (ACN), and hexamethylphosphoamide (HMPA). It should be noted that this is not limiting. However, it may be preferable to use a polar aprotic solvent that can lower the activation energy to improve the reaction efficiency, more preferably the first solvent may be a high boiling point and chemically stable DMSO.
둘째, 제1용매에 정공수송 화합물을 용해시킨 후, 이를 촉매 용액에 첨가하고 소정의 시간 동안 교반하는 단계이다. 본 발명의 일실시예에서 정공수송 화합물은 하기 화학식 12a로 표시되는 화합물일 수 있다.Second, after dissolving the hole transport compound in the first solvent, it is added to the catalyst solution and stirred for a predetermined time. In one embodiment of the present invention, the hole transport compound may be a compound represented by the following Formula 12a.
[화학식 12a][Formula 12a]
Figure PCTKR2016010717-appb-I000050
Figure PCTKR2016010717-appb-I000050
촉매 용액에 상기 화학식12a의 화합물을 첨가하여 소정의 시간 동안 교반하면, 피리미딘 고리를 포함하는 작용기를 도입하기 위한 결합자리가 형성된다. When the compound of Formula 12a is added to the catalyst solution and stirred for a predetermined time, a binding site for introducing a functional group including a pyrimidine ring is formed.
셋째, 제1용매에 피리미딘 고리를 포함하는 화합물을 용해시킨 후, 2단계의 용액에 첨가하고 소정의 시간 동안 반응시켜 화학식 13a로 표시되는 유기소자용 화합물을 제조하는 단계이다. 본 발명의 일실시예에서 피리미딘 고리를 포함하는 화합물은 하기 화학식 13a로 표시되는 화합물일 수 있다.Third, after dissolving the compound containing the pyrimidine ring in the first solvent, it is added to the solution of the second step and reacted for a predetermined time to prepare a compound for an organic device represented by the formula (13a). In one embodiment of the present invention, the compound containing a pyrimidine ring may be a compound represented by the following Chemical Formula 13a.
[화학식 13a][Formula 13a]
Figure PCTKR2016010717-appb-I000051
Figure PCTKR2016010717-appb-I000051
(상기 화학식 13a에서 n은 0 내지 10의 정수를 의미하며, n이 0인 경우는, “-COOH”가 피리미딘 고리에 직접 결합하는 것을 의미한다.) (In Formula 13a, n means an integer of 0 to 10, and when n is 0, it means that “-COOH” is directly bonded to the pyrimidine ring.)
첨가된 피리미딘 고리를 포함하는 화합물은 촉매 하에서 정공수송 화합물의 말단에 결합하여 화학식 9a로 표시되는 유기소자용 화합물이 형성될 수 있다. 또한, 세번째 단계는 20 내지 70℃의 온도에서 4 내지 15 시간 동안 수행될 수 있으며, 이때, 반응온도가 20℃ 미만인 경우, 반응효율이 낮아 반응시간이 길어지고, 최종적으로 얻어지는 화합물의 수득량이 적을 수 있으며, 반응온도가 60℃를 초과하는 경우, 화합물 간의 수소결합이 진행되어, 점도가 과도하게 증가할 수 있기 때문에 바람직하지 않다. The compound including the added pyrimidine ring may be bonded to the terminal of the hole transport compound under a catalyst to form a compound for an organic device represented by Formula 9a. In addition, the third step may be carried out at a temperature of 20 to 70 ℃ for 4 to 15 hours, in this case, when the reaction temperature is less than 20 ℃, the reaction efficiency is low, the reaction time is long, the final yield of the obtained compound If the reaction temperature exceeds 60 ° C, hydrogen bonding between the compounds proceeds, which is not preferable because the viscosity may be excessively increased.
또한, 본 발명의 일실시예는 세번째 단계가 완료된 후, 유기용매로 수회 세척 하여 미반응물 및 용매를 제거하고, 순도를 증진시키기 위하여 정제하는 단계를 더 포함할 수 있다. In addition, one embodiment of the present invention may further comprise the step of removing the unreacted material and the solvent by washing several times with an organic solvent after the third step is completed, to improve the purity.
이하에서는 화학식 10a로 표시되는 유기소자용 화합물의 제조방법에 관하여 설명하기로 한다. 전술한 화학식 9a의 화합물을 제조하는 방법과 동일한 설명은 생략하기로 한다. Hereinafter, a method of preparing a compound for an organic device represented by Chemical Formula 10a will be described. The same description as the method for preparing the compound of Formula 9a will be omitted.
본 발명의 일실시예에서, 유기소자용 화합물은 촉매로서 포타슘포스페이트(potassium phosphate) 및 제3용매를 혼합하고 소정의 시간 동안 교반하여 반응을 개시하는 단계, 제3용매에 하기 화학식 12b로 표시되는 정공수송 화합물을 용해시킨 후, 이를 촉매 용액에 첨가하고 소정의 시간 동안 교반하는 단계, 제1용매에 피리미딘계 화합물을 용해시킨 후, 이를 두번째 단계의 용액에 첨가하여, 소정의 시간 동안 반응시켜 피리미딘계 작용기를 구비하는 유기소자용 화합물을 제조하는 단계를 주요 단계로 하며, 생성물을 세척하고 정제하는 단계를 더 포함하여 이루어질 수 있다.In one embodiment of the present invention, the compound for an organic device is a step of starting a reaction by mixing a potassium phosphate (potassium phosphate) and a third solvent as a catalyst and stirred for a predetermined time, represented by the formula 12b to the third solvent After dissolving the hole transport compound, it is added to the catalyst solution and stirred for a predetermined time, the pyrimidine-based compound is dissolved in the first solvent, it is added to the solution of the second step, and reacted for a predetermined time The main step is to prepare a compound for an organic device having a pyrimidine-based functional group, and further comprising the step of washing and purifying the product.
[화학식 12b][Formula 12b]
Figure PCTKR2016010717-appb-I000052
Figure PCTKR2016010717-appb-I000052
(상기 화학식 12b에서 RX1 내지 RX6은 서로 같거나 상이할 수 있고, RX1 내지 RX6 중에서 적어도 2개 이상은 알킬할라이드기이다.) (In Formula 12b, RX 1 to RX 6 may be the same as or different from each other, and at least two or more of RX 1 to RX 6 are alkyl halide groups.)
또한, 본 발명에서 알킬할라이드기는 일반식 -CnH2n X로 표시될 수 있으며, (여기서 X는 F, Br, I, Cl 등의 할로젠을 의미한다.) 촉매 하에서 C-X 결합의 불균일 분해로 피리미딘 고리를 포함하는 작용기를 도입하기 위한 결합자리가 형성되어 유기소자용 화합물을 제조할 수 있다. In addition, the alkyl halide group in the present invention may be represented by the general formula -CnH2n X, where X means a halogen such as F, Br, I, Cl, etc.) Pyrimidine ring by heterogeneous decomposition of CX bond under catalyst A binding site for introducing a functional group including a compound may be formed to prepare a compound for an organic device.
또한, 본 발명의 일실시예에서 피리미딘 고리를 포함하는 화합물은 하기 화학식 13b로 표시되는 화합물일 수 있다. In addition, in one embodiment of the present invention, the compound containing a pyrimidine ring may be a compound represented by the following Chemical Formula 13b.
[화학식 13b][Formula 13b]
Figure PCTKR2016010717-appb-I000053
Figure PCTKR2016010717-appb-I000053
(상기 화학식 13에서 n은 2 내지 10의 정수이다.) (In Formula 13, n is an integer of 2 to 10.)
또한, 본 발명의 세번째 단계는 20 내지 60℃의 온도에서 2 내지 80 시간 동안 수행되는 바람직할 수 있다. 반응 온도가 20℃ 미만인 경우, 반응속도의 저하로 반응소요 시간이 길어지고 수율이 저하되는 문제점이 발생할 수 있으며, 60℃ 이상인 경우, 반응물질들의 안정성을 확보하기 곤란하다는 문제점이 있을 수 있다. In addition, the third step of the present invention may be preferably carried out for 2 to 80 hours at a temperature of 20 to 60 ℃. When the reaction temperature is less than 20 ° C, the reaction time may be long and the yield may decrease due to the decrease in the reaction rate, and when the reaction temperature is 60 ° C or higher, it may be difficult to secure the stability of the reactants.
이하에서는 본 발명에의 일실시예에 따른 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기소자용 화합물을 이용하여 유기박막층을 형성하는 방법에 관하여 설명한다. Hereinafter, a method of forming an organic thin film layer using a compound for an organic device having two or more functional groups including a pyrimidine ring according to an embodiment of the present invention will be described.
본 발명의 일실시예는 유기박막층을 형성하는 방법에 있어서, 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기소자용 화합물을 제2용매에 용해시켜 용액을 제조하는 단계, 기판을 준비하는 단계, 기판의 상부에 상기 용액을 도포하는 단계, 용액이 도포된 기판을 소정의 시간 동안 열처리하여 박막을 형성하는 단계를 주요 제조 단계로 하며, 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기소자용 화합물은 상온에서 제2용매에 가용성인 것을 특징으로 할 수 있다. According to one embodiment of the present invention, in the method of forming an organic thin film layer, dissolving a compound for an organic device having two or more functional groups including a pyrimidine ring in a second solvent to prepare a solution, preparing a substrate Step, the step of applying the solution on top of the substrate, the step of heat-treating the substrate to which the solution is applied for a predetermined time to form a thin film, and having two or more functional groups containing a pyrimidine ring The compound for an organic device may be characterized by being soluble in a second solvent at room temperature.
또한, 제4용매는 1,2,3-트리클로로벤젠(1,2,3-Trichlorobenzene), 1,2,4-트리클로로벤젠(1,2,4-Trichlorobenzene), 1,3,5-트리클로로벤젠(1,3,5-Trichlorobenzen), 클로로포름(chloroform), 테트라하이드로퓨란(Tetrahydrofuran) 및 에탄올 중에서 선택되는 1종 또는 2종 이상을 포함하는 혼합용매일 수 있으나, 이에 제한되는 것은 아님을 명시한다. In addition, the fourth solvent is 1,2,3-trichlorobenzene (1,2,3-Trichlorobenzene), 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene), 1,3,5- Trichlorobenzene (1,3,5-Trichlorobenzen), chloroform (chloroform), tetrahydrofuran (Tetrahydrofuran) and may be a mixed solvent containing one or two or more selected from ethanol, but is not limited thereto. Specify it.
본 발명의 일실시예에서, 용액을 도포하기 위한 기판은 유리 및 폴리이미드(PI), 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌타프탈레이트(PEN), 폴리카보네이트(PC) 등의 플라스틱 기판 중에서 선택될 수 있으나, 이에 제한되는 것은 아니다. 다만, 용액 도포 후 열처리 단계의 온도를 고려하여 상기 온도 조건에서 변형이 일어나지 않는 소재이면 어느 것이든 가능할 수 있으며, ITO 기판, FTO 기판, AZO 기판과 같이 투명 전극물질이 코팅된 유리기판을 사용할 수도 있음을 명시한다. In one embodiment of the present invention, the substrate for applying the solution may be selected from glass and plastic substrates such as polyimide (PI), polyethylene terephthalate (PET), polyethylenetaphthalate (PEN), polycarbonate (PC), and the like. However, it is not limited thereto. However, in consideration of the temperature of the heat treatment step after the solution is applied, any material may not be deformed under the above temperature conditions, and a glass substrate coated with a transparent electrode material such as an ITO substrate, an FTO substrate, and an AZO substrate may be used. State that
또한, 기판에 용액을 도포하는 방법은 스핀코팅, 그라비아 옵셋 인쇄, 리버스 옵셋 인쇄, 스크린 인쇄, 롤투롤 인쇄, 슬롯다이 코팅, 침지코팅, 스프레이코팅, 닥터블레이드 코팅, 잉크젯 코팅으로 이루어지는 군으로부터 선택되는 어느 하나의 방법으로 수행될 수 있다. In addition, the method of applying the solution to the substrate is selected from the group consisting of spin coating, gravure offset printing, reverse offset printing, screen printing, roll-to-roll printing, slot die coating, immersion coating, spray coating, doctor blade coating, inkjet coating It can be done in either way.
또한, 용액이 도포된 기판을 소정의 시간 동안 열처리 하는 단계는 70 내지 170℃의 온도로 수행되며, 유기소자용 화합물에 구비된 작용기간의 수소결합으로 박막이 형성되는 것을 특징으로 한다. 본 발명에 따른 유기발광 화합물은 소정의 온도 조건에서 피리미딘 고리를 포함하는 작용기간의 수소결합으로 경화되어 박막을 형성할 수 있다. 이때, 온도가 70℃ 미만인 경우, 경화온도가 충분하지 못하여 열적으로 안정한 유기박막을 형성하기 곤란할 수 있고, 공정 시간이 길어지는 문제점이 있을 수 있다. 또한, 열처리 온도가 170℃를 초과하는 경우에는 과도한 열로 인하여 기재 및 화합물의 안정성을 담보할 수 없기 때문에 상기 온도로 한정하였으나, 이에 제한되는 것은 아님을 명시한다. In addition, the step of heat-treating the substrate to which the solution is applied for a predetermined time is carried out at a temperature of 70 to 170 ℃, characterized in that the thin film is formed by the hydrogen bond of the working period provided in the compound for an organic device. The organic light emitting compound according to the present invention may be cured by hydrogen bonding in a working period including a pyrimidine ring at a predetermined temperature condition to form a thin film. At this time, when the temperature is less than 70 ℃, it may be difficult to form a thermally stable organic thin film because the curing temperature is not sufficient, there may be a problem that the process time is long. In addition, when the heat treatment temperature exceeds 170 ℃ it is limited to the above temperature because it is not possible to ensure the stability of the substrate and the compound due to excessive heat, but is not limited thereto.
아울러, 본 발명에 따른 유기소자용 화합물 및 이를 포함하여 제조되는 유기박막층은 유기 감광체, 유기 트랜지스터, 유기 태양전지, 유기발광소자 및 유기 이미지센서를 포함하는 다양한 유기소자에 적용될 수 있다. 이하에서는 본 발명의 일실시예에 따른 유기발광소자의 제조방법에 관하여 상술하나 본 발명에 따른 유기화합물의 적용분야가 이에 한정되는 것은 아님을 명시한다. In addition, the compound for an organic device and the organic thin film layer prepared by using the same according to the present invention may be applied to various organic devices including an organic photoconductor, an organic transistor, an organic solar cell, an organic light emitting device, and an organic image sensor. Hereinafter, a method for manufacturing an organic light emitting diode according to an embodiment of the present invention will be described in detail, but the application field of the organic compound according to the present invention is not limited thereto.
도 18은 본 발명의 일실시예에 따른 유기발광소자의 단면도를 나타내는 모식도이다. 18 is a schematic view showing a cross-sectional view of an organic light emitting device according to an embodiment of the present invention.
본 발명의 일실시예에 따른 유기발광소자의 제조방법은, 기판을 준비하는 제 1단계, 기판의 상부에 양극을 형성하는 제2단계, 양극의 상부에 정공주입층을 형성하는 제3단계, 정공주입층의 상부에 정공수송층을 제4단계, 정공수송층의 상부에 발광층을 형성하는 제5단계, 발광층의 상부에 정공차단층을 형성하는 제6단계, 정공차단층의 상부에 전자수송층을 형성하는 제7단계, 전자수송층의 상부에 음극을 형성하는 제8단계를 포함하여 이루어지되, 정공주입층은 본 발명에 따른 유기박막의 제조방법에 의해 형성되는 것을 특징으로 한다. The method of manufacturing an organic light emitting diode according to an embodiment of the present invention includes a first step of preparing a substrate, a second step of forming an anode on the top of the substrate, a third step of forming a hole injection layer on the top of the anode, A fourth step of forming a hole transport layer on top of the hole injection layer, a fifth step of forming a light emitting layer on top of the hole transport layer, a sixth step of forming a hole blocking layer on top of the light emitting layer, and an electron transport layer formed on the hole blocking layer The seventh step is performed, including the eighth step of forming a cathode on the upper portion of the electron transport layer, the hole injection layer is characterized in that formed by the method for producing an organic thin film according to the present invention.
기판을 준비하는 제1단계 및 양극을 형성하는 제2단계는 유기발광소자의 제조에 통상적으로 사용되는 기판 및 양극 물질이면 어느 것이든 가능할 수 있다. 바람직하게 기판은 유리이고, 양극 물질은 산화인듐주석(ITO)일 수 있으나 이에 한정되는 것은 아니다. The first step of preparing the substrate and the second step of forming the anode may be any substrate and anode material commonly used in the manufacture of the organic light emitting device. Preferably, the substrate is glass, and the positive electrode material may be indium tin oxide (ITO), but is not limited thereto.
다음으로, 양극의 상부에 마련되는 정공주입층(Hole Injection Layer, HIL)은 양극으로부터 주입되는 정공의 주입에너지 장벽을 낮추어 정공주입을 용이하게 하는 화합물을 포함하여 형성되며, 이와 같은 물질로는 4,4',4" -Tris(N,N-diphenyl-amino)triphenylamine(NATA), 4,4',4"-Tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine(m-MTDATA) 및 폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌설포닉엑시드)(PEDOT:PSS) 등이 공지되어 있으며, 공지된 정공주입층용 물질이라면 제한 없이 사용할 수 있다. 바람직하게 정공주입층은 PEDOT:PSS 용액을 스핀코팅하여 형성될 수 있다. Next, the hole injection layer (HIL) provided on the upper portion of the anode is formed to include a compound that facilitates the hole injection by lowering the injection energy barrier of the hole injected from the anode, such as 4 , 4 ', 4 "-Tris (N, N-diphenyl-amino) triphenylamine (NATA), 4,4', 4" -Tris (N-3-methylphenyl-N-phenyl-amino) triphenylamine (m-MTDATA) And poly (3,4-ethylenedioxythiophene): poly (styrenesulphonic acid) (PEDOT: PSS) and the like are known, and any material for a known hole injection layer may be used without limitation. Preferably, the hole injection layer may be formed by spin coating a PEDOT: PSS solution.
다음으로, 정공수송층(Hole Transport Layer, HTL)은 양극으로부터 주입된 정공이 손실되지 않고 발광층으로 수송시키는 역할을 수행하며, 본 발명의 일실시예에 따른 유기소자용 화합물을 포함하여 형성될 수 있다. 바람직하게 정공수송층은 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기소자용 화합물을 포함하여 제조된 코팅용액을 도포하고 70 내지 170℃의 온도로 가열하여 형성될 수 있다. Next, a hole transport layer (HTL) serves to transport the hole injected from the anode to the light emitting layer without losing the hole, and may be formed including the compound for an organic device according to an embodiment of the present invention. . Preferably, the hole transport layer may be formed by applying a coating solution prepared by using a compound for an organic device having two or more functional groups including a pyrimidine ring and heating to a temperature of 70 to 170 ℃.
다음으로, 발광층(Emitting Material Layer, EML)은 양극으로부터 주입된 정공과 음극으로부터 주입된 전자의 재결합을 통해 빛을 방출하는 층으로, 발광층 내의 결합에너지에 따라 적색, 청색, 녹색의 빛을 방출할 수 있으며, 복수개의 발광층을 구성하여 백색 발광층을 형성할 수도 있다. 발광층은 발광 또는 인광 특성을 갖는 화합물을 단독으로 포함하여 형성될 수 있고, 정공 또는 전자 수송 특성을 가지는 호스트 물질에 형광 또는 인광 특성을 가지는 화합물을 도핑하여 형성될 수도 있다. 단독 화합물의 경우, 발광특성은 매우 우수하나 정공 또는 전자 수송능력이 떨어져 고효율의 유기광전소자 제작에 어려움이 있어 호스트 물질에 도펀트를 첨가하는 방식으로 발광층을 형성하는 것이 바람직할 수 있다. 호스트 물질 및 도펀트는 공지된 화합물이면 제한 없이 사용할 수 있다. 공지된 호스트 물질로는 PPV(poly(p-phenylenevinylene)), PPP(poly(p-phenylene)), PT(polythiophene), PF(polyfluorene), PFO(poly(9.9-dioctylfluorene)와 같은 형광 공액고분자 및 CBP(4,4-N,N'-디카르바졸-비페닐) 나 MCP(N,N′-디카바졸일-3,5-벤젠)와 같은 카바졸계 화합물 등을 포함한다. 또한, 도펀트는 Tris(2-phenylpyridine)iridium(III)(Ir(ppy)3), Bis(2-phenylpyridine)(acetylacetonate)iridium(III)(Ir(ppy)2(acac)) 등을 포함하는 녹색 인광 도펀트, Bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium (III)(FirPic), Bis(2,4-difluorophenylpyridinato)-tetrakis(1-pyrazolyl)borate iridium(III)(Fir6) 등을 포함하는 청색 인광 도펀트, Tris(1-phenylisoquinoline)iridium(III)(Ir(piq)3), Tris(2-phenylquinoline)iridium(III)(Ir(2-phq)3) 등을 포함하는 적색 인광 도펀트를 일 수 있으나, 이에 제한되는 것은 아님을 명시한다.Next, an emitting material layer (EML) is a layer that emits light through recombination of holes injected from the anode and electrons injected from the cathode, and emits red, blue, and green light according to binding energy in the emitting layer. The white light emitting layer may be formed by forming a plurality of light emitting layers. The light emitting layer may be formed by including a compound having luminescence or phosphorescence properties alone, or may be formed by doping a compound having fluorescence or phosphorescence properties to a host material having hole or electron transporting properties. In the case of a single compound, it may be desirable to form a light emitting layer by adding a dopant to a host material because the light emitting property is very excellent, but the hole or electron transport ability is difficult to produce a high efficiency organic photoelectric device. The host material and dopant can be used without limitation as long as it is a known compound. Known host materials include fluorescent conjugated polymers such as poly (p-phenylenevinylene), polypropylene (p-phenylene), polypropylene (PT), polythiophene (PT), polyfluorene (PF), poly (9.9-dioctylfluorene) (PFO), and Carbazole-based compounds such as CBP (4,4-N, N'-dicarbazole-biphenyl) or MCP (N, N'-dicarbazolyl-3,5-benzene) and the like. Green phosphorescent dopant, including Tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3), Bis (2-phenylpyridine) (acetylacetonate) iridium (III) (Ir (ppy) 2 (acac)) (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III) (FirPic), Bis (2,4-difluorophenylpyridinato) -tetrakis (1-pyrazolyl) borate iridium (III) ( Blue phosphorescent dopants including Fir6), Tris (1-phenylisoquinoline) iridium (III) (Ir (piq) 3), Tris (2-phenylquinoline) iridium (III) (Ir (2-phq) 3), and the like. It may be, but not limited to, a red phosphorescent dopant.
다음으로, 정공차단층(Hole Blocking Layer, HBL)은 발광층에서 전자와 결합하지 못한 정공의 이동을 억제하는 역할을 수행하며, 본 발명의 일실시예에서 정공차단층은 Balq, 2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)(TPBi), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP)등의 물질을 증착하여 형성될 수 있다. Next, the hole blocking layer (HBL) plays a role of suppressing the movement of holes that do not combine with electrons in the light emitting layer, and in one embodiment of the present invention, the hole blocking layer is Balq, 2,2 ', 2 "-(1,3,5-benzinetriyl) -tris (1-phenyl-1-H-benzimidazole) (TPBi), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), etc. It can be formed by depositing a material of.
다음으로, 전자수송층(Electron Transport Layer, ETL)은 음극으로부터 주입된 전자를 발광층으로 수송하는 역할을 수행함으로써 발광층 내에서 정공과 전자의 결합 확률을 향상시킬 수 있다. 이러한 역할을 수행하기 위하여 전자수송 물질은 전자친화성이 우수하고 음극과의 계면 접착성이 좋은 물질을 이용하는 것이 바람직하다. 본 발명의 일실시예에서 전자수송층은 Alq3(Tris(8-hydroxy-quinolinato)aluminium), Balq(Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium), BeBq2(Bis(10-hydroxybenzo[h]quinolinato)beryllium)로 이루어진 군으로부터 선택되는 1종 이상의 물질을 증착시켜 형성될 수 있다.Next, the electron transport layer (ETL) serves to transport the electrons injected from the cathode to the light emitting layer, thereby improving the coupling probability of holes and electrons in the light emitting layer. In order to perform this role, it is preferable to use an electron transport material having a good electron affinity and good interfacial adhesion with a negative electrode. In one embodiment of the present invention, the electron transport layer is Alq3 (Tris (8-hydroxy-quinolinato) aluminium), Balq (Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminium), BeBq2 (Bis (10- It may be formed by depositing one or more materials selected from the group consisting of hydroxybenzo [h] quinolinato) beryllium).
다음으로, 전자주입층(Electron Injection Layer, EIL)은 전자 주입 시, 전위 장벽을 낮추어 음극으로부터 전자의 주입을 용이하게 하는 역할을 수행하며, 본 발명의 일실시예에서 전자주입층은 LiF, 8-Hydroxyquinolinolato-lithium(Liq), 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene(TmPyPB)로 이루어지는 군으로부터 선택되는 1종 이상의 물질을 증착하여 형성될 수 있다.Next, the electron injection layer (EIL) serves to facilitate the injection of electrons from the cathode by lowering the potential barrier during electron injection. In one embodiment of the present invention, the electron injection layer is LiF, 8 -Hydroxyquinolinolato-lithium (Liq), 1,3,5-tri [(3-pyridyl) -phen-3-yl] benzene (TmPyPB) may be formed by depositing one or more materials selected from the group consisting of.
다음 단계는, 전자주입층의 상부에 음극을 형성하는 단계이다. 음극 물질로는 리튬(Li), 마그네슘(Mg), 칼슘(Ca), 알루미늄(Al), Al:Li, Ba:Li, 또는 Ca:Li과 같이 일함수 값이 작은 물질을 증착하여 형성될 수 있다.The next step is to form a cathode on top of the electron injection layer. The negative electrode material may be formed by depositing a material having a small work function value such as lithium (Li), magnesium (Mg), calcium (Ca), aluminum (Al), Al: Li, Ba: Li, or Ca: Li. have.
이하에서는, 본 발명의 실시예 및 실험예를 기재한다. Hereinafter, examples and experimental examples of the present invention will be described.
[실시예 5]Example 5
<화학식 17로 표시되는 화합물(이하, uracil-TPA라고 한다.)의 제조><Preparation of the compound represented by Formula 17 (hereinafter referred to as uracil-TPA)>
온도계가 부착된 500ml의 둥근바닥플라스크에 수소화나트륨(sodium hydride) 0.4g 및 디메틸설폭사이드(Dimethyl sulfoxide, DMSO) 50ml를 혼합하고 질소분위기를 유지하며 한 시간 동안 교반하였다. 다음으로, N,N-bis(4-aminophenyl)benzene-1,4-diamine 1g을 DMSO 50ml에 용해시켜 제조된 용액을 둥근바닥플라스크에 천천히 첨가하고 30분 동안 교반하였다. 다음으로, 오르트산(orotic acid) 1.85g을 DMSO 100ml에 녹여 제조된 용액을 둥근바닥플라스크에 천천히 첨가하고 교반하며 40℃에서 12시간 동안 교반하였다. 다음으로 반응이 완료된 후 반응용액을 퀜칭(quenching) 하고, 감압 여과장치를 이용하여 용매를 제거하였다. 여과장치에 남은 생성물을 에틸아세테이트(ethyl acetate)로 세척한 후, 조생성물(crude product)을 에틸아세테이트 및 헥산(hexane)을 1:5의 부피비로 혼합한 혼합용매를 사용하는 컬럼크로마토그래피로 정제하여 화학식 17로 표시되는 화합물 0.72g을 수득하였다. (이에 관하여 하기 반응식 12를 참조한다.)In a 500 ml round bottom flask equipped with a thermometer, 0.4 g of sodium hydride and 50 ml of dimethyl sulfoxide (DMSO) were mixed and stirred for 1 hour while maintaining a nitrogen atmosphere. Next, a solution prepared by dissolving 1 g of N, N-bis (4-aminophenyl) benzene-1,4-diamine in 50 ml of DMSO was slowly added to a round bottom flask and stirred for 30 minutes. Next, a solution prepared by dissolving 1.85 g of orotic acid in 100 ml of DMSO was slowly added to a round bottom flask and stirred at 40 ° C. for 12 hours. Next, after the reaction was completed, the reaction solution was quenched, and the solvent was removed using a vacuum filter. The remaining product in the filter was washed with ethyl acetate, and then the crude product was purified by column chromatography using a mixed solvent in which ethyl acetate and hexane were mixed at a volume ratio of 1: 5. This yielded 0.72 g of the compound represented by Formula 17. (See Scheme 12 below for this.)
[반응식 12] Scheme 12
Figure PCTKR2016010717-appb-I000054
Figure PCTKR2016010717-appb-I000054
또한, 실시예 5에 따라 제조된 [화학식 17]의 화합물의 합성을 확인하기 위하여 H1 NMR 분석을 실시하였다. 화합물의 NMR 분석은 분석 대상 물질을 듀테로클로로포름(CDCl3)에 용해시켜 측정되었으며, 이의 결과는 다음과 같다. (하기 1H NMR 분석 결과에서 사용된 약자는 각각 다음을 의미한다; s: 단일선, d: 이중선, t: 삼중선, g: 사중선, m: 다중선.)In addition, H1 NMR analysis was performed to confirm the synthesis of the compound of [Formula 17] prepared according to Example 5. NMR analysis of the compound was measured by dissolving the analyte in deuterochloroform (CDCl 3 ), and the results are as follows. (The abbreviations used in the 1H NMR analysis results refer to the following; s: singlet, d: doublet, t: triplet, g: quartet, m: multiplet.)
; 1H NMR (CDCl3, 300 MHz); d = 10~ 9.8 (s, -NH), 7.48 (m, -CH-), 7.23~6.97 (m, -CH-, -H), 6.01 (s, -NH); 1 H NMR ( CDCl 3, 300 MHz); d = 10 to 9.8 (s, -NH), 7.48 (m, -CH-), 7.23 to 6.97 (m, -CH-, -H), 6.01 (s, -NH)
<화학식 17로 표시되는 화합물(uracil-TPA)을 포함하는 녹색 유기발광소자 제작><Preparation of green organic light emitting device comprising the compound represented by the formula (uracil-TPA)>
양극으로는 두께가 20nm이고, 면저항이 15Ω/□ 인 ITO가 마련된 유리기판을 사용하였으며, 상기 ITO기판을 아세톤, 이소프로필알코올 및 증류수로 각각 30분 동안 초음파 세척 및 건조시켜 불순물을 제거하였다. As the anode, a glass substrate provided with ITO having a thickness of 20 nm and a sheet resistance of 15 μs / □ was used. The ITO substrate was ultrasonically washed and dried for 30 minutes with acetone, isopropyl alcohol, and distilled water to remove impurities.
다음으로, uracil-TPA를 트리클로로벤젠(trichlorobenzene)에 용해시켜 20wt%의 용액을 제조하고, 이 용액을 양극의 상부에 스핀코팅법으로 코팅한 뒤, 100℃의 온도로 30분 동안 경화시켜 정공주입층을 형성하였다. Next, uracil-TPA was dissolved in trichlorobenzene to prepare a 20 wt% solution, the solution was coated on the top of the anode by spin coating, and then cured at a temperature of 100 ° C. for 30 minutes. An injection layer was formed.
다음으로, 상기 정공주입층의 상부에 정공수송 물질인 NPB(N,N'-bis(1-naphthyl)-N,N'-diphenyl- 1,1'-biphenyl-4,4'-diamine)를 진공도 1 X 10-7Pa, 증착속도 2 nm/s의 조건으로 진공증착하여 정공수송층을 형성하였다. Next, NPB (N, N'-bis (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine), which is a hole transport material, is formed on the hole injection layer. The hole transport layer was formed by vacuum deposition under conditions of a vacuum degree of 1 × 10 −7 Pa and a deposition rate of 2 nm / s.
다음으로, 상기 정공수송층의 상부에 동일한 증착조건으로 호스트 물질인 CBP(4,4-N,N'-디카르바졸-비페닐)과 녹색 인광 도펀트인 Ir(PPy)3 (PPy=2-phenylpyridine)을 동시에 증착하여 발광층을 형성하였다.Next, CBP (4,4-N, N'-dicarbazole-biphenyl) as a host material and Ir (PPy) 3 (PPy = 2-phenylpyridine) as a green phosphorescent dopant under the same deposition conditions on the hole transport layer. ) Was simultaneously deposited to form a light emitting layer.
다음으로, 상기 발광층의 상부에 동일한 증착조건으로 TPBi(tris(N-arylbenzimidazole)를 진공증착하여 정공차단층을 형성하였으며, 이의 상부에 전자수송물질인 Alq3(Tris-(8-hydroxyquinoline)aluminum), 음극인 LiF와 Al을 순차적으로 진공증착하여 유기발광소자를 제조하였다. Next, a hole blocking layer was formed by vacuum depositing TPBi (tris (N-arylbenzimidazole) under the same deposition conditions on the light emitting layer, and on the top thereof, Alq3 (Tris- (8-hydroxyquinoline) aluminum), An organic light emitting device was manufactured by vacuum deposition of LiF and Al as cathodes.
최종적으로 유기발광소자는 ITO/uracil-TPA(30nm)/NPB(30nm)/CBP + Ir(PPy)3(7wt%) (30nm)/TPBi(10nm)/Alq3(30nm)/ LiF/Al의 구조로 제조되었다.Finally, the organic light emitting device has the structure of ITO / uracil-TPA (30nm) / NPB (30nm) / CBP + Ir (PPy) 3 (7wt%) (30nm) / TPBi (10nm) / Alq3 (30nm) / LiF / Al Was prepared.
[실시예6] Example 6
<화학식 18으로 표시되는 화합물(uracil-TPD)의 제조><Production of Compound (uracil-TPD) Represented by Formula 18>
1. 중간체 A의 합성1. Synthesis of Intermediate A
500ml의 둥근바닥플라스크에 N,N'-dim-tolylbiphenyl-4,4'-diamine(c) 5g과 클로로포름 60ml를 넣고 질소분위기를 유지하며 30분 동안 교반하였다. 다음으로 반응용액에 N-브로모숙신이미드(N-Bromosuccinimide) 15g을 천천히 첨가한 후, 70℃에서 24시간 동안 반응시켰다. 반응 완료 후, 메틸렌클로라이드(Methylene Chloride)와 증류수를 사용하여 work-up하여 증류수층은 제거하고 유기용매(메틸렌클로라이드)층은 수거하였다. 유기용매층을 감압 여과하여 용매를 모두 제거하였다. 여과장치에 남은 조생성물(crude product)을 메틸렌클로라이드 및 헥산을 1:5의 부피비로 혼합한 혼합용매를 사용하는 컬럼크로마토그래피로 정제하여 중간체 A를 4.5g 수득하였다. (이에 관하여 하기 반응식 13를 참조한다.)5 g of N, N'-dim-tolylbiphenyl-4,4'-diamine (c) and 60 ml of chloroform were added to a 500 ml round bottom flask, and the mixture was stirred for 30 minutes while maintaining a nitrogen atmosphere. Next, 15 g of N-bromosuccinimide was slowly added to the reaction solution, followed by reaction at 70 ° C. for 24 hours. After completion of the reaction, work-up was performed using methylene chloride and distilled water to remove the distilled water layer and the organic solvent (methylene chloride) layer was collected. The organic solvent layer was filtered under reduced pressure to remove all solvent. The crude product remaining in the filter was purified by column chromatography using a mixed solvent in which methylene chloride and hexane were mixed at a volume ratio of 1: 5 to obtain 4.5 g of intermediate A. (See Reaction Scheme 13 below.)
[반응식 13] Scheme 13
Figure PCTKR2016010717-appb-I000055
Figure PCTKR2016010717-appb-I000055
2. 중간체 B의 합성2. Synthesis of Intermediate B
500ml 둥근바닥플라스크에 수소화나트륨 0.2g 및 DMSO 50ml를 넣고 질소분위기를 유지하며 한 시간 동안 교반하였다. 다음으로, 3-브로모-1-프로판올(3-bromo-1-propanol)(e) 1.25g과 우라실(uracil) 1.1g을 DMSO 50ml에 용해시켜 제조된 용액을 반응 플라스크에 천천히 첨가한 뒤, 상온에서 48시간 동안 교반하며 반응시켰다. 반응이 완료된 후 반응용액을 퀜칭하고, 감압 여과장치를 이용하여 용매를 제거하였다. 여과장치에 남은 생성물을 에틸아세테이트와 헥산을 1:4의 부피비로 혼합한 용매를 이용하여 세척한 후, 중간체 B를 0.5g 수득하였다. (이에 관하여 하기 반응식 14을 참조한다.)0.2 g of sodium hydride and 50 ml of DMSO were added to a 500 ml round bottom flask, and the mixture was stirred for 1 hour while maintaining a nitrogen atmosphere. Next, a solution prepared by dissolving 1.25 g of 3-bromo-1-propanol (e) and 1.1 g of uracil in 50 ml of DMSO was slowly added to the reaction flask, The reaction was stirred at room temperature for 48 hours. After the reaction was completed, the reaction solution was quenched, and the solvent was removed using a vacuum filter. The product remaining in the filter was washed with a solvent in which ethyl acetate and hexane were mixed at a volume ratio of 1: 4, and then 0.5 g of intermediate B was obtained. (See Scheme 14 below for this.)
[반응식 14] Scheme 14
Figure PCTKR2016010717-appb-I000056
Figure PCTKR2016010717-appb-I000056
3. 화학식 18로 표시되는 화합물(uracil-TPD)의 합성3. Synthesis of Compound represented by Formula 18 (uracil-TPD)
500ml 둥근바닥플라스크에 포타슘포스페이트(potassium phosphate) 0.8g, 중간체 B 0.5g 및 DMSO 80ml를 넣고 한 시간 동안 교반하였다. 다음으로, 중간체 A 0.8g을 DMSO 30ml에 용해시킨 후 반응 플라스크에 첨가하고 상온에서 72시간 동안 교반하며 반응시켰다. 반응이 완료된 후 여과장치를 이용하여 침전물을 거르고, 여과액을 수거하여 용매를 감압 제거한 뒤, 조생성물(crude product)을 에틸아세테이트와 헥산을 1:10의 부피비로 혼합한 혼합용액을 사용하는 컬럼크로마토그래피로 정제하여 화학식 18(uracil-TPD)으로 표시되는 화합물을 수득하였다. (이에 관하여 하기 반응식 15를 참조한다.)0.8 g of potassium phosphate, 0.5 g of intermediate B, and 80 ml of DMSO were added to a 500 ml round bottom flask, and the mixture was stirred for one hour. Next, 0.8 g of intermediate A was dissolved in 30 ml of DMSO, and then added to the reaction flask and reacted with stirring at room temperature for 72 hours. After the reaction was completed, the precipitate was filtered using a filtration apparatus, the filtrate was collected, the solvent was distilled off under reduced pressure, and the crude product was mixed with ethyl acetate and hexane in a volume ratio of 1:10. Purification by chromatography gave the compound represented by Chemical Formula 18 (uracil-TPD). (See Scheme 15 below for this.)
[반응식 15] Scheme 15
Figure PCTKR2016010717-appb-I000057
Figure PCTKR2016010717-appb-I000057
또한, 실시예 6에 따라 제조된 [화학식10]의 화합물의 합성을 확인하기 위하여 상기와 동일한 조건으로 H1 NMR 분석을 실시하였으며, 이의 결과는 다음과 같다. In addition, H1 NMR analysis was performed under the same conditions as above to confirm the synthesis of the compound of [Formula 10] prepared according to Example 6. The results are as follows.
; 1H NMR (CDCl3, 300 MHz); d =8.26 (s, -NH-), 7.97 (d, -CH-), 7.78~7.62 (d, -CH-), 7.48~7.32(m, -CH-), 7.02 (d, -CH-), 5.42 (s, -H), 3.68 (d, -CH2-), 3.43 (d, -CH2-) 2.53 (s, -CH3), 1.98 (m, -CH2-); 1 H NMR (CDCl 3 , 300 MHz); d = 8.26 (s, -NH-), 7.97 (d, -CH-), 7.78-7.62 (d, -CH-), 7.48-7.32 (m, -CH-), 7.02 (d, -CH-) , 5.42 (s, -H), 3.68 (d, -CH 2- ), 3.43 (d, -CH 2- ) 2.53 (s, -CH 3 ), 1.98 (m, -CH 2- )
<화학식 18으로 표시되는 화합물(uracil-TPD)을 포함하는 녹색 유기발광소자 제작><Preparation of green organic light emitting device comprising the compound represented by the formula (uracil-TPD)>
정공주입 물질로 uracil-TPD을 트리클로로벤젠에 용해시켜 30wt%의 용액을 제조하여 양극의 상부에 형성하는 것을 제외하고는 실시예5와 동일한 조건으로 유기발광소자를 제조하였다. An organic light-emitting device was manufactured under the same conditions as in Example 5, except that uracil-TPD was dissolved in trichlorobenzene as a hole injection material to prepare a 30 wt% solution and formed on top of the positive electrode.
최종적으로 유기발광소자는 ITO/uracil-TPD(35nm)/NPB(30nm)/CBP + Ir(PPy)3(7wt%) (30nm)/TPBi(10nm)/Alq3(30nm)/LiF/Al의 구조로 제조되었다. Finally, the organic light emitting device has the structure of ITO / uracil-TPD (35nm) / NPB (30nm) / CBP + Ir (PPy) 3 (7wt%) (30nm) / TPBi (10nm) / Alq3 (30nm) / LiF / Al Was prepared.
[비교예 3]Comparative Example 3
<녹색 유기발광소자의 제조><Production of Green Organic Light Emitting Diode>
실시예5와 동일한 ITO 기판을 준비하고 아세톤, 이소프로필알코올 및 증류수로 각각 30분 동안 초음파 세척 및 건조시켜 불순물을 제거하였다. ITO가 코팅된 면에 정공주입물질인 PEDOT:PSS(PH4083, Celvios)를 스핀코팅법으로 코팅한 뒤, 120℃의 온도로 30분 동안 건조시켜 정공주입층을 형성하였다.The same ITO substrate as in Example 5 was prepared and ultrasonically washed and dried with acetone, isopropyl alcohol and distilled water for 30 minutes to remove impurities. A hole injection material PEDOT: PSS (PH4083, Celvios) was coated on the surface coated with ITO by spin coating, and dried at a temperature of 120 ° C. for 30 minutes to form a hole injection layer.
상기 정공주입층의 상부에 정공수송 물질인 NPB를 실시예5와 동일한 조건으로 증착하여 정공수송층을 형성하고, 이의 상부에 실시예 5와 동일한 물질 및 동일한 조건으로 발광층을 형성하였다. NPB, a hole transport material, was deposited on the hole injection layer under the same conditions as in Example 5 to form a hole transport layer, and a light emitting layer was formed on the same material as in Example 5 and under the same conditions.
다음으로, 정공차단층으로 BCP(bathocuproine)를 사용한 것을 제외하고는 실시예5와 동일한 조건으로 정공차단층, 전자수송층 및 음극을 형성하여 유기발광소자를 제조하였다. Next, except for the use of BCP (bathocuproine) as the hole blocking layer, a hole blocking layer, an electron transport layer and a cathode were formed under the same conditions as in Example 5 to prepare an organic light emitting device.
최종적으로 유기발광소자는 ITO/PEDOT:PSS/NPB(30nm)/CBP + Ir(PPy)3(7wt%) (30nm)/ BCP(10nm)/Alq3(30nm)/LiF/Al의 구조로 제조되었다.Finally, the organic light emitting device was manufactured in the structure of ITO / PEDOT: PSS / NPB (30nm) / CBP + Ir (PPy) 3 (7wt%) (30nm) / BCP (10nm) / Alq3 (30nm) / LiF / Al. .
[실험예5] 유기발광소자의 성능 평가 Experimental Example 5 Performance Evaluation of Organic Light Emitting Diode
본 발명의 일 구현예에 따른 화합물을 포함하여 용액공정을 통해 정공주입층을 형성하는 경우, 유기발광소자의 전기적 특성 및 광학적 특성을 확인하고자 실시예 5, 실시예 6 및 비교예 3에 따른 유기발광소자의 전압의 변화에 따른 전류 및 전류밀도의 변화에 따른 발광효율을 측정하였다. In the case of forming the hole injection layer through the solution process including the compound according to an embodiment of the present invention, to confirm the electrical and optical properties of the organic light emitting device according to Examples 5, 6 and Comparative Example 3 The luminous efficiency was measured according to the change of current and current density according to the change of voltage of the light emitting device.
전압의 변화에 따른 전류의 변화는 유기발광소자의 전압을 0 V에서부터 14 V까지 변화시키면서 전류-전압계를 이용하여 단위소자에 흐르는 전류를 측정하였다. 또한, 전류밀도의 변화에 따른 발광효율은 전류밀도를 0 mA/Cm2에서부터 500 mA/Cm2까지 변화시키면서 휘도계를 이용하여 측정하였다. 이의 결과를 도12 내지 도15에 나타내었다.In the current change according to the voltage change, the current flowing through the unit device was measured by using a current-voltmeter while changing the voltage of the organic light emitting diode from 0 V to 14 V. In addition, the luminous efficiency according to the change of the current density was measured by using a luminance meter while changing the current density from 0 mA / Cm2 to 500 mA / Cm2. The results are shown in FIGS. 12 to 15.
도12는 실시예 4 및 비교예 3의 전압-전류(V-I) 곡선이다. 이를 참조하면, 실시예 5에 따른 유기발광소자는 비교예 3에 따른 유기발광소자에 비하여 전력이 높은 것을 알 수 있다. 구체적으로 동일한 전류값(5mA)에서의 작동전압이 실시예5은 약 14V이고, 비교예 3은 대략 10V로 확인되었다. 또한, 도13은 실시예 5및 비교예3의 전류밀도에 대한 발광효율 변화를 보여주는 그래프이다. 이를 참조하면, 실시예5에 따른 유기발광소자는 비교예3에 따른 유기발광소자의 발광효율보다 다소 낮은 것으로 확인되었다. 12 is a voltage-current (V-I) curve of Example 4 and Comparative Example 3. FIG. Referring to this, it can be seen that the organic light emitting diode according to Example 5 has a higher power than the organic light emitting diode according to Comparative Example 3. Specifically, the operating voltage at the same current value (5 mA) was found to be about 14V in Example 5, and Comparative Example 3 was about 10V. 13 is a graph showing changes in luminous efficiency with respect to current densities of Example 5 and Comparative Example 3. FIG. Referring to this, the organic light emitting diode according to Example 5 was found to be somewhat lower than the luminous efficiency of the organic light emitting diode according to Comparative Example 3.
도 14는 실시예 6 및 비교예 3의 전압-전류(V-I) 곡선이다. 이를 참조하면, 실시예 5의 결과와 마찬가지로 실시예 6에 따른 유기발광소자는 비교예 3에 따른 유기발광소자에 비하여 전력이 높은 것으로 확인되었다. 다만 실시예 6의 경우, 비교예 3과의 전력차이가 실시예 5와 비교예 3의 전력차이에 비해 보다 적은 것으로 나타났으며, 이를 통하여 uracil-TPA 보다 uracil-TPD가 유기발광소자의 정공층으로 더 효과적인 물질임을 알 수 있다. 도15는 실시예6 및 비교예3의 전류밀도에 대한 발광효율 변화를 보여주는 그래프이다. 이를 참조하면, 실시예6에 따른 유기발광소자의 발광효율은 전류밀도가 증가함에 따라 보다 큰 감소율을 보이나, 초기 발광효율은 비교에3에 따른 유기발광소자의 발광효율과 거의 유사한 것을 확인할 수 있다. 14 is a voltage-current (V-I) curve of Example 6 and Comparative Example 3. FIG. Referring to this, as in the result of Example 5, the organic light emitting device according to Example 6 was found to have a higher power than the organic light emitting device according to Comparative Example 3. However, in Example 6, it was found that the power difference between Comparative Example 3 and the comparative example 3 is smaller than the power difference between Example 5 and Comparative Example 3, through which the uracil-TPD than the uracil-TPA hole layer of the organic light emitting device It can be seen that more effective material. 15 is a graph showing changes in luminous efficiency with respect to current densities of Example 6 and Comparative Example 3. FIG. Referring to this, the luminous efficiency of the organic light emitting device according to Example 6 shows a larger reduction ratio as the current density increases, but it can be seen that the initial luminous efficiency is almost similar to that of the organic light emitting device according to the comparison 3. .
[실시예 7] Example 7
<청색 유기발광소자 제작><Blue organic light emitting device fabrication>
비교예 3과 동일한 방법으로 세척된 ITO 기판에 정공주입물질인 PEDOT:PSS(PH4083, Celvios)를 증착법으로 코팅한 뒤, 120℃의 온도로 30분 동안 건조시켜 정공주입층을 형성하였다.A hole injection material PEDOT: PSS (PH4083, Celvios) was coated on the cleaned ITO substrate in the same manner as in Comparative Example 3 by vapor deposition, and then dried at a temperature of 120 ° C. for 30 minutes to form a hole injection layer.
다음으로, 화학식 18으로 표시되는 화합물(uracil-TPD)을 트리클로로벤젠에 용해시켜 30wt%의 용액을 제조하고, 이 용액을 정공주입층의 상부에 스핀코팅법으로 코팅한 뒤, 100℃의 온도로 30분 동안 경화시켜 두께 25mm의 정공수송층을 형성하였다. Next, a compound represented by the formula (uracil-TPD) was dissolved in trichlorobenzene to prepare a 30 wt% solution, and the solution was coated on the top of the hole injection layer by spin coating, followed by a temperature of 100 ° C. Curing for 30 minutes to form a hole transport layer having a thickness of 25mm.
다음으로, alkyl-MCP (alkyl-substituted-1,3-Bis(N-carbazolyl)benzene)를 클로로벤젠(chlorobenzene)에 용해시킨 후, 청색인광 도펀트인 FIr6 를 7wt%로 혼합하여 발광층 용액을 제조하였다. 다음으로 발광층 용액을 정공수송층의 상부에 스핀 코팅하여 발광층을 형성하였다.Next, alkyl-MCP (alkyl-substituted-1,3-Bis (N-carbazolyl) benzene) was dissolved in chlorobenzene, and then a blue phosphorescent dopant FIr6 was mixed at 7wt% to prepare a light emitting layer solution. . Next, the light emitting layer solution was spin-coated on top of the hole transport layer to form a light emitting layer.
다음으로, 실시예 5와 동일한 조건 및 방법으로 TPBi, Alq3, LiF 및 Al을 증착하여 소자를 제작하였다.Next, TPBi, Alq3, LiF and Al were deposited under the same conditions and methods as in Example 5 to fabricate the device.
최종적으로 유기발광소자는 ITO/PEDOT:PSS/uracil-TPD(25nm)/alkyl-MCP + FIr6(7wt%) (30nm)/TPBi(10nm)/Alq3(30nm)/LiF/Al의 구조로 제조되었다.Finally, the organic light emitting device was manufactured in the structure of ITO / PEDOT: PSS / uracil-TPD (25nm) / alkyl-MCP + FIr6 (7wt%) (30nm) / TPBi (10nm) / Alq3 (30nm) / LiF / Al. .
상기 alkyl-MCP는 하기 화학식으로 표시되는 화합물이다. The alkyl-MCP is a compound represented by the following formula.
Figure PCTKR2016010717-appb-I000058
Figure PCTKR2016010717-appb-I000058
[실시예 8]Example 8
<청색 유기발광소자 제작><Blue organic light emitting device fabrication>
정공주입층의 상부에 두께 20mm인 정공수송층을 형성하는 것과 청색인광 도펀트인 FIr6를 9wt% 혼합하여 발광층용액을 제조하는 것을 제외하고는 실시예3과 동일한 조건 및 방법으로 유기발광소자를 제조하였다. 최종적으로 유기발광소자는 ITO/PEDOT:PSS/uracil-TPD(20nm)/alkyl-MCP + FIr6(9wt%) (30nm)/TPBi(10nm)/Alq3(30nm)/LiF/Al의 구조로 제조되었다.An organic light emitting diode was manufactured according to the same conditions and methods as in Example 3, except that a light transport layer having a thickness of 20 mm was formed on the hole injection layer and 9 wt% of a blue phosphorescent dopant was mixed to prepare a light emitting layer solution. Finally, the organic light emitting device was manufactured in the structure of ITO / PEDOT: PSS / uracil-TPD (20nm) / alkyl-MCP + FIr6 (9wt%) (30nm) / TPBi (10nm) / Alq3 (30nm) / LiF / Al. .
[비교예 4][Comparative Example 4]
<청색 유기발광소자 제작><Blue organic light emitting device fabrication>
NPB를 실시예 1과 동일한 방법으로 증착하여 정공수송층을 형성하는 것과 클로로벤젠에 MCP 및 FIr6(7wt%)를 용해시켜 제조된 발광층용액을 정공수송층의 상부에 증착하여 발광층을 형성하는 것을 제외하고는 실시예 7과 동일한 조건으로 유기발광소자를 제작하였다. 최종적으로 유기발광소자는 ITO/PEDOT:PSS/alkyl-MCP + FIr6(9wt%) (30nm)/TPBi(10nm)/Alq3(30nm)/LiF/Al의 구조로 제조되었다. Except for depositing NPB in the same manner as in Example 1 to form a hole transport layer and the light emitting layer solution prepared by dissolving MCP and FIr6 (7wt%) in chlorobenzene is deposited on top of the hole transport layer to form a light emitting layer An organic light emitting diode was manufactured under the same condition as in Example 7. Finally, the organic light emitting device was manufactured in the structure of ITO / PEDOT: PSS / alkyl-MCP + FIr 6 (9 wt%) (30 nm) / TPBi (10 nm) / Alq 3 (30 nm) / LiF / Al.
[실험예 6]Experimental Example 6
실시예 7 및 실시예 8의 경우, 정공주입층, 정공수송층 및 발광층을 모두 스핀코팅법 즉, 용액공정으로 각각 코팅하였음에도 하층부를 용해시키지 않고 안정한 다층박막을 형성하는 것을 확인하였다. 또한, 본 발명의 일실시예에 따른 화합물이 정공수송 물질로서의 역할을 수행할 수 있는지 평가하기 위하여 실시예7, 실시예8 및 비교예 4에 따른 유기발광소자의 전압의 변화에 따른 전류 및 전류밀도의 변화에 따른 발광효율을 측정하였다. 또한, 실시예 7 및 실시예 8은 정공수송층의 두께를 달리하여 두께에 따른 유기발광소자의 성능 변화를 분석하였다. 측정은 전술한 것과 동일한 조건 및 방법으로 수행되었으며, 이의 결과를 도 16 및 도 17에 나타내었다. In Example 7 and Example 8, even though the hole injection layer, the hole transport layer and the light emitting layer were all coated by the spin coating method, that is, the solution process, it was confirmed that a stable multilayer thin film was formed without dissolving the lower layer portion. In addition, in order to evaluate whether the compound according to one embodiment of the present invention can play a role as a hole transport material, the current and the current according to the change of the voltage of the organic light emitting device according to Examples 7, 8 and Comparative Example 4 The luminous efficiency was measured according to the change of density. In addition, Example 7 and Example 8 analyzed the performance change of the organic light emitting device according to the thickness by varying the thickness of the hole transport layer. Measurements were performed under the same conditions and methods as described above, and the results are shown in FIGS. 16 and 17.
도 16은 실시예 7, 실시예 8 및 비교예 4의 전압-전류(V-I) 곡선이다. 이를 참조하면, 실시예 7 및 실시예 8에 따른 유기발광소자는 기존의 증착공정으로 제조된 비교예 4의 소자와 비교하였을 때, 전력이 낮은 것을 확인할 수 있다. 이를 통해 본 발명의 일구현예에 따른 유기소자용 화합물은 정공수송층으로써 우수한 특성을 가지는 것을 알 수 있다. 16 is a voltage-current (V-I) curve of Example 7, Example 8, and Comparative Example 4. FIG. Referring to this, it can be seen that the organic light emitting diodes according to Example 7 and Example 8 have low power when compared with those of Comparative Example 4 manufactured by a conventional deposition process. Through this, it can be seen that the compound for an organic device according to the exemplary embodiment of the present invention has excellent characteristics as a hole transport layer.
도 17은 실시예 7, 실시예 8 및 비교예 4의 전류밀도에 대한 발광효율 변화를 보여주는 그래프이다. 이를 참조하면, 실시예 7 및 실시예 8에 따른 유기발광소자는 비교예 4에 따른 유기발광소자의 발광효율보다 높은 것을 확인할 수 있다. 특히, uracil-TPD를 25nm 두께로 코팅한 실시예 7의 경우, 비교예 4 대비 초기 발광효율이 2배 가량 향상되는 것을 확인할 수 있다. 17 is a graph showing changes in luminous efficiency with respect to current densities of Example 7, Example 8 and Comparative Example 4. FIG. Referring to this, it can be seen that the organic light emitting diode according to Example 7 and Example 8 is higher than the luminous efficiency of the organic light emitting diode according to Comparative Example 4. In particular, in the case of Example 7 coated with the uracil-TPD in a thickness of 25nm, it can be seen that the initial luminous efficiency is improved by about 2 times compared to Comparative Example 4.
상기 실험예를 종합하면, 본 발명에 따른 유기소자용 화합물은 트리페닐아민을 포함하는 골격의 말단에 피리미딘계 작용기를 구비함으로써, 용액에 대한 용해성이 우수한 특성을 가지며, 이를 포함하여 제조된 용액은 종래기술 대비 비교적 저온의 온도조건(100℃)에서 안정한 유기박막을 형성하며, 하층부를 용해시키지 않고 다층구조의 유기소자제작을 가능케 할 수 있음을 확인하였다. 또한, 상기 피리미딘계 작용기를 구비하는 화합물을 정공층, 특히 정공수송층으로 사용하는 경우 종래 증착공정을 통해 제조된 소자에 비해 발광효율을 크게 향상시키는 것을 확인하였다. In summary, the compound for an organic device according to the present invention has a property of excellent solubility in a solution by having a pyrimidine-based functional group at the terminal of a skeleton containing triphenylamine, and a solution prepared therefrom. It was confirmed that the formation of a stable organic thin film at a relatively low temperature (100 ℃) compared to the prior art, it is possible to manufacture a multi-layered organic device without dissolving the lower layer. In addition, when the compound having the pyrimidine-based functional group is used as a hole layer, in particular a hole transport layer, it was confirmed that the luminous efficiency is greatly improved compared to the device manufactured through the conventional deposition process.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.

Claims (30)

  1. 전자수송층 또는 정공차단층에 적용될 수 있는 유기소자용 화합물에 있어서, In the compound for an organic device that can be applied to the electron transport layer or hole blocking layer,
    피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 포함하고, 상기 피리미딘 고리를 포함하는 작용기는 수소결합이 가능한 것을 특징으로 하는 유기소자용 화합물. A compound for an organic device, characterized in that it comprises at least one functional group comprising a pyrimidine ring, the functional group comprising the pyrimidine ring is capable of hydrogen bonding.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 유기소자용 화합물이 상기 피리미딘 고리를 포함하는 작용기를 적어도 2개 이상 포함하는 경우, 상기 피리미딘 고리를 포함하는 작용기간의 수소결합으로 박막 형성이 가능한 것을 특징으로 하는 유기소자용 화합물.When the compound for an organic device includes at least two or more functional groups containing the pyrimidine ring, a compound for an organic device, characterized in that the thin film can be formed by hydrogen bonding of the functional period containing the pyrimidine ring.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 피리미딘 고리를 포함하는 작용기는 피리미딘계 작용기 및 퓨린계 작용기 중에서 선택되는 1종 이상인 것을 특징으로 하는 유기소자용 화합물.The functional group containing the pyrimidine ring is an organic device compound, characterized in that at least one selected from pyrimidine-based functional groups and purine-based functional groups.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 피리미딘계 작용기는 하기 [화학식 1a] 또는 [화학식 1b]로 표시되는 피리미딘계 화합물로부터 유도되는 것을 특징으로 하는 유기소자용 화합물:Wherein the pyrimidine-based functional group is derived from a pyrimidine-based compound represented by the following [Formula 1a] or [Formula 1b]:
    Figure PCTKR2016010717-appb-I000059
    Figure PCTKR2016010717-appb-I000059
    (상기 화학식 1a 및 화학식 1b에서, R1 내지 R6은 서로 같거나 상이할 수 있고, 각각 독립적으로 수소, 중수소, 할로겐, 직쇄 또는 분지쇄 알킬기, 아릴기, 헤테로고리기, 시아노기, 아미노기, 카르복실기, 하이드록시기, 할로젠화알킬기, 알콕시기 중에서 선택됨).(In Formula 1a and Formula 1b, R1 to R6 may be the same as or different from each other, and each independently hydrogen, deuterium, halogen, straight or branched chain alkyl group, aryl group, heterocyclic group, cyano group, amino group, carboxyl group, Hydroxy group, halogenated alkyl group, alkoxy group).
  5. 청구항 3에 있어서,The method according to claim 3,
    상기 퓨린계 작용기는 하기 [화학식 2a] 내지 [화학식 2f]로 표시되는 퓨린계 화합물 중에서 선택되는 1종으로부터 유도되는 것을 특징으로 하는 유기소자용 화합물:The purine-based functional group is a compound for an organic device, characterized in that derived from one selected from the Purine-based compound represented by the formula [2a] to [Formula 2f]:
    Figure PCTKR2016010717-appb-I000060
    Figure PCTKR2016010717-appb-I000060
    (상기 화학식 2a 내지 2f에서, R7 내지 R21은 서로 같거나 상이할 수 있고, 각각 독립적으로 수소, 중수소, 할로겐, 직쇄 또는 분지쇄 알킬기, 아릴기, 헤테로고리기, 시아노기, 아미노기, 카르복실기, 하이드록시기, 할로젠화알킬기, 알콕시기 중에서 선택됨).(In Chemical Formulas 2a to 2f, R7 to R21 may be the same as or different from each other, and each independently hydrogen, deuterium, halogen, linear or branched alkyl group, aryl group, heterocyclic group, cyano group, amino group, carboxyl group, and hydride. Selected from a hydroxy group, a halogenated alkyl group and an alkoxy group).
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 유기소자용 화합물은 하기 [화학식 3-1] 내지 [화학식 3-3]으로 표시되는 금속착화합물로부터 선택되는 1종의 화합물의 수소원자를 상기 피리미딘 고리를 포함하는 작용기로 적어도 1개 이상 치환하여 제조되는 것을 특징으로 하는 유기소자용 화합물:In the compound for an organic device, at least one hydrogen atom of one compound selected from metal complex compounds represented by the following [Formula 3-1] to [Formula 3-3] is substituted with a functional group including the pyrimidine ring. Compound for an organic device, characterized in that prepared by:
    Figure PCTKR2016010717-appb-I000061
    Figure PCTKR2016010717-appb-I000061
    (상기 화학식3-1에서 M은 Al 또는 Ga 중에서 선택되는 1종의 금속원소임). (In Formula 3-1, M is one metal element selected from Al or Ga).
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 유기소자용 화합물은 전자구인성 그룹인 피리딘(pyridine)을 포함하며, The compound for an organic device includes pyridine, an electron withdrawing group,
    하기 [화학식 4-1] 내지 [화학식 4-16]으로 표시되는 화합물로부터 선택되는 1종의 화합물의 일부 원자 또는 원자단을 상기 피리미딘 고리를 포함하는 작용기로 적어도 1개 이상 치환하여 제조되는 것을 특징으로 하는 유기소자용 화합물.It is prepared by substituting at least one or more functional groups containing at least one atom or atom group of one compound selected from the compounds represented by [Formula 4-1] to [Formula 4-16] with the pyrimidine ring. Compound for organic devices which consists of.
    Figure PCTKR2016010717-appb-I000062
    Figure PCTKR2016010717-appb-I000062
    Figure PCTKR2016010717-appb-I000063
    Figure PCTKR2016010717-appb-I000063
  8. 유기발광층에 적용될 수 있는 유기소자 화합물에 있어서, In the organic device compound which can be applied to the organic light emitting layer,
    카바졸을 포함하여 이루어지는 카바졸계 화합물의 말단에 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비하며, 상기 피리미딘 고리를 포함하는 작용기는 수소결합이 가능한 것을 특징으로 하는 유기소자 화합물.An organic device compound comprising at least one functional group containing a pyrimidine ring at a terminal of a carbazole compound including carbazole, wherein the functional group including the pyrimidine ring is capable of hydrogen bonding.
  9. 청구항 8에 있어서, The method according to claim 8,
    상기 카바졸계 화합물은 하기 화학식 5a 내지 5f로 표시되는 화합물 중에서 선택되고, 상기 카바졸계 화합물의 벤젠고리에 상기 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비하는 것을 특징으로 하는 유기소자 화합물.The carbazole compound is selected from compounds represented by the following formulas 5a to 5f, and the organic device compound, characterized in that at least one functional group containing the pyrimidine ring in the benzene ring of the carbazole compound.
    Figure PCTKR2016010717-appb-I000064
    Figure PCTKR2016010717-appb-I000064
  10. 청구항 8에 있어서, The method according to claim 8,
    상기 피리미딘 고리를 포함하는 작용기를 적어도 2개 이상 구비하는 유기소자 화합물은 상기 피리미딘 고리를 포함하는 작용기간의 수소결합으로 유기박막을 형성하는 것을 특징으로 하는 유기소자 화합물.An organic device compound having at least two functional groups including the pyrimidine ring is an organic device compound, characterized in that to form an organic thin film by hydrogen bonding of the functional period containing the pyrimidine ring.
  11. 청구항 8에 있어서,The method according to claim 8,
    상기 피리미딘 고리를 포함하는 작용기를 적어도 2개 이상 구비하는 유기소자 화합물은 하기 화학식 6으로 표시되는 화합물인 것인 유기소자 화합물:An organic device compound having at least two or more functional groups including the pyrimidine ring is a compound represented by the following formula (6):
    Figure PCTKR2016010717-appb-I000065
    Figure PCTKR2016010717-appb-I000065
    [화학식 6][Formula 6]
    (상기 화학식 6에서 R1 내지 R5는 서로 같거나 상이할 수 있고, R1 내지 R5 중에서 적어도 2개 이상은 피리미딘 고리를 포함하는 작용기며, 나머지는 수소이다).(In Formula 6, R1 to R5 may be the same as or different from each other, at least two or more of R1 to R5 are functional groups including a pyrimidine ring, and the rest are hydrogen).
  12. 청구항8에 있어서, The method according to claim 8,
    상기 피리미딘 고리를 포함하는 작용기는 퓨린계 작용기 및 피리미딘계 작용기 중에서 선택되는 것을 특징으로 하는 유기소자 화합물.The functional group containing the pyrimidine ring is an organic device compound, characterized in that selected from the purine-based functional groups and pyrimidine-based functional groups.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 피리미딘계 작용기는 하기 화학식 7a 또는 7b로 표시되는 화합물로부터 형성되는 것을 특징으로 하는 유기소자 화합물:The pyrimidine-based functional group is an organic device compound, characterized in that formed from a compound represented by the formula 7a or 7b:
    Figure PCTKR2016010717-appb-I000066
    Figure PCTKR2016010717-appb-I000066
    (화학식 7a 및 7b에서 R6 내지 R11은 서로 같거나 상이할 수 있고, 각각 독립적으로H, D, F, Cl, Br, I, 아미노기, 탄소수 1 내지 12인 직쇄알킬, 탄소수 1 내지 10인 카르복실산, 탄소수 1 내지 10인 알코올, 및 탄소수 1 내지 10인 할로젠화알킬 중에서 선택된다).In Formulas 7a and 7b, R6 to R11 may be the same as or different from each other, and each independently H, D, F, Cl, Br, I, an amino group, linear alkyl having 1 to 12 carbon atoms, and carboxyl having 1 to 10 carbon atoms. Acid, alcohol having 1 to 10 carbon atoms, and alkyl halide having 1 to 10 carbon atoms).
  14. 청구항 12에 있어서, The method according to claim 12,
    상기 퓨린계 작용기는 하기 화학식 8c 내지 8h로 표시되는 화합물로부터 형성되는 것을 특징으로 하는 유기소자 화합물:The purine-based functional group is an organic device compound, characterized in that formed from a compound represented by the formula 8c to 8h:
    Figure PCTKR2016010717-appb-I000067
    Figure PCTKR2016010717-appb-I000067
    (화학식 8c 내지 8h에서 R12 내지 R25는 서로 같거나 상이할 수 있고, 각각 독립적으로H, D, F, Cl, Br, I, 아미노기, 탄소수 1 내지 12인 직쇄알킬, 탄소수 1 내지 10인 카르복실산, 탄소수 1 내지 10인 알코올, 및 탄소수 1 내지 10인 할로젠화알킬 중에서 선택된다).In Formulas 8c to 8h, R 12 to R 25 may be the same as or different from each other, and each independently H, D, F, Cl, Br, I, an amino group, linear alkyl having 1 to 12 carbon atoms, and having 1 to 10 carbon atoms. Carboxylic acid, alcohol having 1 to 10 carbon atoms, and alkyl halide having 1 to 10 carbon atoms).
  15. 정공수송 층에 적용되는 유기소자용 화합물에 있어서,In the compound for an organic device applied to the hole transport layer,
    정공수송 특성을 가지는 화합물의 말단에 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비하며, 상기 피리미딘 고리를 포함하는 작용기 간의 수소결합에 의하여 유기 박막을 형성하는 것을 특징으로 하는 유기소자용 화합물.Compound for an organic device comprising at least one functional group containing a pyrimidine ring at the terminal of the compound having a hole transport property, to form an organic thin film by hydrogen bonding between the functional group containing the pyrimidine ring .
  16. 청구항 15에 있어서, The method according to claim 15,
    상기 정공수송 특성을 가지는 화합물은 하기 화학식 9 또는 화학식 10으로 표시되는 화합물이고, 상기 화합물의 말단에 상기 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비하는 것을 특징으로 하는 유기소자용 화합물:The compound having a hole transport property is a compound represented by the following formula (9) or formula (10), the compound for an organic device, characterized in that at least one functional group containing the pyrimidine ring at the terminal of the compound:
    [화학식 9][Formula 9]
    Figure PCTKR2016010717-appb-I000068
    Figure PCTKR2016010717-appb-I000068
    (상기 화학식 9에서, Ar1, Ar2 및 Ar3은 서로 같거나 상이할 수 있고, 각각 독립적으로 치환 또는 비치환된 페닐기 또는 나프틸기이다). (In Formula 9, Ar 1 , Ar 2 And Ar 3 It may be the same as or different from each other, each independently represent a substituted or unsubstituted phenyl group or naphthyl group).
    [화학식 2][Formula 2]
    Figure PCTKR2016010717-appb-I000069
    Figure PCTKR2016010717-appb-I000069
    (상기 화학식 10에서, n은 2 또는 3이고, (In Formula 10, n is 2 or 3,
    Ar4 및 Ar5는 서로 같거나 상이할 수 있고, 각각 독립적으로 치환 또는 비치환된 페닐기 또는 나프틸기이고, Ar 4 and Ar 5 may be the same as or different from each other, and each independently represent a substituted or unsubstituted phenyl group or a naphthyl group,
    L은 직접 결합; 치환 또는 비치환된 페닐렌기이며,L is a direct bond; A substituted or unsubstituted phenylene group,
    Ar6는 치환 또는 비치환된 페닐렌기, 비페닐렌기, 나프틸레닐기, 플루오레닐기, 사이클로헥실기, 스파이로바이플로레닐기, 트리페닐아민기 및 디페닐메틸렌기로 이루어진 군으로부터 선택된다).Ar 6 is selected from the group consisting of a substituted or unsubstituted phenylene group, biphenylene group, naphthyleneyl group, fluorenyl group, cyclohexyl group, spirobifluorenyl group, triphenylamine group and diphenylmethylene group).
  17. 청구항 15에 있어서, The method according to claim 15,
    상기 정공수송 특성을 가지는 화합물은 실리콘계 화합물, 포스핀옥사이드계 화합물, 설파이드계 화합물, 및 아릴아민계 화합물로부터 선택되는 1이상의 화합물이고, 상기 화합물의 말단에 상기 피리미딘 고리를 포함하는 작용기를 적어도 1개 이상 구비하는 것을 특징으로 하는 유기소자용 화합물.The compound having the hole transporting property is at least one compound selected from silicon compound, phosphine oxide compound, sulfide compound, and arylamine compound, and at least one functional group containing the pyrimidine ring at the terminal of the compound. Compound for organic devices, characterized in that provided with at least two.
  18. 청구항15에 있어서, The method according to claim 15,
    상기 피리미딘 고리를 포함하는 작용기는 퓨린계 작용기 및 피리미딘계 작용기 중에서 선택되는 것을 특징으로 하는 유기소자용 화합물.The functional group containing the pyrimidine ring is selected from a purine-based functional group and a pyrimidine-based functional compound for an organic device.
  19. 청구항 18에 있어서,The method according to claim 18,
    상기 피리미딘계 작용기는 하기 화학식 11a 또는 11b로 표시되는 화합물로부터 형성되는 것을 특징으로 하는 유기소자용 화합물:The pyrimidine-based functional group is a compound for an organic device, characterized in that formed from a compound represented by the formula (11a or 11b):
    Figure PCTKR2016010717-appb-I000070
    Figure PCTKR2016010717-appb-I000070
    (상기 화학식 11a 및 11b에서 R1 내지 R6은 서로 같거나 상이할 수 있고, 각각 독립적으로 H, D, F, Cl, Br, I, 아미노기, 탄소수 1 내지 12인 직쇄알킬, 탄소수 1 내지 10인 카르복실산, 탄소수 1 내지 10인 알코올, 및 탄소수 1 내지 10인 할로젠화알킬 중에서 선택된다).In Formulas 11a and 11b, R 1 to R 6 may be the same as or different from each other, and each independently H, D, F, Cl, Br, I, an amino group, linear alkyl having 1 to 12 carbon atoms, and 1 to 10 carbon atoms. Phosphoric carboxylic acid, alcohol having 1 to 10 carbon atoms, and alkyl halide having 1 to 10 carbon atoms).
  20. 청구항 18에 있어서, The method according to claim 18,
    상기 퓨린계 작용기는 하기 화학식 11c 내지 11h로 표시되는 화합물 중 어느 하나로부터 형성되는 것을 특징으로 하는 유기소자용 화합물:The purine-based functional group is an organic device compound, characterized in that formed from any one of the compounds represented by formula 11c to 11h:
    Figure PCTKR2016010717-appb-I000071
    Figure PCTKR2016010717-appb-I000071
    (상기 화학식 11c 내지 11h에서 R7 내지 R20은 서로 같거나 상이할 수 있고, 각각 독립적으로 H, D, F, Cl, Br, I, 아미노기, 탄소수 1 내지 12인 직쇄알킬, 탄소수 1 내지 10인 카르복실산, 탄소수 1 내지 10인 알코올, 및 탄소수 1 내지 10인 할로젠화알킬 중에서 선택된다).R 7 to R 20 in Formulas 11c to 11h may be the same as or different from each other, and each independently H, D, F, Cl, Br, I, an amino group, linear alkyl having 1 to 12 carbon atoms, and 1 to 10 carbon atoms. Phosphoric carboxylic acid, alcohol having 1 to 10 carbon atoms, and alkyl halide having 1 to 10 carbon atoms).
  21. 청구항18에 있어서, The method according to claim 18,
    상기 유기소자용 화합물은 하기 화학식 9a로 표시되며, 상기 피리미딘 고리를 포함하는 작용기를 적어도 2개 이상 구비하는 것을 특징으로 하는 유기소자용 화합물:The compound for an organic device is represented by Formula 9a, and characterized in that it comprises at least two or more functional groups containing the pyrimidine ring:
    [화학식 9a][Formula 9a]
    Figure PCTKR2016010717-appb-I000072
    Figure PCTKR2016010717-appb-I000072
    (상기 화학식 9a에서 Pym1 내지 Pym3는 서로 같거나 상이할 수 있고, Pym1 내지 Pym3 중에서 적어도 2개 이상은 피리미딘 고리를 포함하는 작용기며, 나머지는 수소이다).(In Formula 9a, Pym1 to Pym3 may be the same as or different from each other, and at least two or more of Pym1 to Pym3 are functional groups including a pyrimidine ring, and the rest are hydrogen).
  22. 청구항 16에 있어서, The method according to claim 16,
    상기 유기소자용 화합물은 하기 화학식 10a로 표시되며, 상기 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 것을 특징으로 하는 유기소자용 화합물:The compound for an organic device is represented by the following formula 10a, Compound for an organic device characterized in that it comprises two or more functional groups containing the pyrimidine ring:
    [화학식 10a][Formula 10a]
    (상기 화학식 10a에서 Pym4 내지 Pym9는 서로 같거나 상이할 수 있고, Pym4 내지 Pym9 중에서 적어도 2개 이상은 피리미딘 고리를 포함하는 작용기며, 나머지는 수소이다).(In Formula 10a, Pym4 to Pym9 may be the same as or different from each other, and at least two or more of Pym4 to Pym9 are functional groups including a pyrimidine ring, and the rest are hydrogen).
  23. i) 촉매 및 제1용매를 혼합하고 소정의 시간 동안 교반하여 반응을 개시하는 단계;i) mixing the catalyst and the first solvent and stirring for a predetermined time to initiate the reaction;
    ii) 상기 제1용매에 정공수송 화합물을 용해시킨 후, 상기 i) 단계의 혼합물에 첨가하고 소정의 시간 동안 교반하는 단계;ii) dissolving the hole transport compound in the first solvent, then adding to the mixture of step i) and stirring for a predetermined time;
    iii) 상기 제1용매에 피리미딘 고리를 포함하는 화합물을 용해시킨 후, 이를 세척 및 정제하는 단계; 및iii) dissolving the compound comprising a pyrimidine ring in the first solvent, washing and purifying it; And
    iv) 상기 iii)단계에서 정제된 피리미딘 고리를 포함하는 화합물과 i)단계의 혼합물에 첨가하여, 20℃ 내지 70℃의 온도에서 4시간 내지 15시간 동안 반응시켜 유기소자용 화합물을 제조하는 단계; iv) adding the compound comprising the pyrimidine ring purified in step iii) to the mixture of step i), and reacting for 4 hours to 15 hours at a temperature of 20 ℃ to 70 ℃ to prepare a compound for an organic device ;
    를 포함하여 이루어지는 것을 특징으로 하는 유기소자용 화합물의 제조방법.Method for producing a compound for an organic device comprising a.
  24. 청구항 23에 있어서,The method according to claim 23,
    상기 촉매는 소듐하이드라이드(sodium hydride) 또는 포타슘포스페이트(potassium phosphate)인 것을 특징으로 하는 유기소자용 화합물의 제조방법.Wherein the catalyst is sodium hydride (sodium hydride) or potassium phosphate (potassium phosphate) method for producing a compound for an organic device, characterized in that.
  25. 청구항 23에 있어서, The method according to claim 23,
    상기 제1용매는 디메틸설폭사이드(DMSO), 디메틸포름아미드(DMF), 아세토니트릴(ACN) 및 헥사메틸포스포아미드(HMPA) 중에서 선택되는 1종 또는 2종 이상을 포함하는 혼합용매인 것을 특징으로 하는 유기소자용 화합물의 제조방법. The first solvent is a mixed solvent comprising one or two or more selected from dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetonitrile (ACN) and hexamethylphosphoamide (HMPA). A method for producing a compound for an organic device.
  26. 청구항 23에 있어서, The method according to claim 23,
    상기 ii) 단계의 상기 정공수송 화합물은 하기 화학식 12a 또는 화학식 12b로 표시되는 화합물인 것을 특징으로 하는 유기소자용 화합물의 제조방법.The hole transport compound of step ii) is a method for producing a compound for an organic device, characterized in that the compound represented by the formula (12a) or (12b).
    [화학식 12a][Formula 12a]
    Figure PCTKR2016010717-appb-I000074
    Figure PCTKR2016010717-appb-I000074
    [화학식 12b][Formula 12b]
    Figure PCTKR2016010717-appb-I000075
    Figure PCTKR2016010717-appb-I000075
  27. 청구항 23에 있어서, The method according to claim 23,
    상기 피리미딘 고리를 포함하는 화합물은 하기 화학식 13a로 표시되는 화합물인 것을 특징으로 하는 유기소자용 화합물의 제조방법:Method for producing a compound for an organic device, characterized in that the compound containing the pyrimidine ring is a compound represented by the formula (13a):
    [화학식 13a] [Formula 13a]
    Figure PCTKR2016010717-appb-I000076
    Figure PCTKR2016010717-appb-I000076
    (상기 화학식 13a에서 n은 0 내지 10의 정수이다).(N is an integer of 0 to 10 in Formula 13a).
  28. 유기박막을 제조하는 방법에 있어서,In the method for producing an organic thin film,
    i) 피리미딘 고리를 포함하는 작용기를 2개 이상 구비하는 유기소자용 화합물을 가용성인 제2용매에 용해시켜 용액을 제조하는 단계;i) preparing a solution by dissolving a compound for an organic device having two or more functional groups including a pyrimidine ring in a soluble second solvent;
    ii) 기재를 준비하는 단계; ii) preparing the substrate;
    iii) 상기 기재의 상부에 상기 용액을 도포하는 단계; 및iii) applying the solution on top of the substrate; And
    iv) 상기 용액이 도포된 기판을 70℃ 내지 170℃의 온도조건에서 열처리하여 상기 피리미딘 고리를 포함하는 작용기간의 수소결합으로 유기박막을 형성하는 단계를 포함하는 유기박막의 제조방법. iv) heat-treating the substrate to which the solution is applied at a temperature of 70 ° C. to 170 ° C. to form an organic thin film by hydrogen bonding in a working period including the pyrimidine ring.
  29. 청구항 28에 있어서,The method according to claim 28,
    상기 제2용매는 1,2,3-트리클로로벤젠(1,2,3-Trichlorobenzene), 1,2,4-트리클로로벤젠(1,2,4-Trichlorobenzene), 1,3,5-트리클로로벤젠(1,3,5-Trichlorobenzen), 클로로포름(chloroform), 테트라하이드로퓨란(Tetrahydrofuran) 및 에탄올 중에서 선택되는 1종 또는 2종 이상의 혼합용매인 것을 특징으로 하는 유기박막의 제조방법.The second solvent is 1,2,3-trichlorobenzene (1,2,3-Trichlorobenzene), 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene), 1,3,5-trichloro 1,3,5-Trichlorobenzen, chloroform, tetrahydrofuran and ethanol, or a method for producing an organic thin film, characterized in that at least two or more mixed solvents selected from ethanol.
  30. 청구항 28에 있어서, The method according to claim 28,
    상기 i) 단계와 상기 ii) 단계의 사이에 상기 용액에 발광 도펀트를 첨가하는 단계를 더 포함하는 것을 특징으로 하는 유기박막의 제조방법.The method of manufacturing an organic thin film further comprising the step of adding a light emitting dopant to the solution between step i) and step ii).
PCT/KR2016/010717 2015-09-25 2016-09-23 Organic compound to be used in organic device, and method for manufacturing organic device by using same WO2017052308A2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2015-0136847 2015-09-25
KR1020150136847A KR101789672B1 (en) 2015-09-25 2015-09-25 New organic light emitting compound having highly solubility, and process for the preparation organic electroluminescent device comprising the same compound
KR20150136848 2015-09-25
KR10-2015-0136848 2015-09-25
KR1020160045725A KR101859123B1 (en) 2016-04-14 2016-04-14 New compound for Hole blocking layer and/or electron transport layer of organic devices and Preparing method of organic film comprising the same compound and OLED
KR10-2016-0045725 2016-04-14
KR1020160120760A KR101888562B1 (en) 2015-09-25 2016-09-21 Compound for organic devices and an organic light emitting device comprising the same
KR10-2016-0120760 2016-09-21

Publications (2)

Publication Number Publication Date
WO2017052308A2 true WO2017052308A2 (en) 2017-03-30
WO2017052308A3 WO2017052308A3 (en) 2017-05-11

Family

ID=58386558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010717 WO2017052308A2 (en) 2015-09-25 2016-09-23 Organic compound to be used in organic device, and method for manufacturing organic device by using same

Country Status (1)

Country Link
WO (1) WO2017052308A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108912105A (en) * 2018-08-03 2018-11-30 瑞声科技(南京)有限公司 A kind of double carbazole compounds symmetrically replaced and its application
KR20180130859A (en) * 2017-05-30 2018-12-10 한국생산기술연구원 A coating solution for forming a thin film of an organic light emitting device, its manufacturing method and an organic light emitting device manufactured thereby
CN110157241A (en) * 2019-05-13 2019-08-23 深圳市华星光电半导体显示技术有限公司 A kind of ink-jet printing ink and its application
KR102056936B1 (en) * 2018-02-26 2019-12-17 한국생산기술연구원 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR20200069184A (en) * 2018-12-06 2020-06-16 한국생산기술연구원 Monomer compounds comprising uracil group, Organic layers comprising the cross-linked of the monomer compounds, and Organic electronic device comprising the organic layers
US11359106B2 (en) 2019-05-13 2022-06-14 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Inkjet printing ink and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100114749A (en) * 2009-04-16 2010-10-26 에스에프씨 주식회사 Aluminium complex derivatives and organoelectroluminescent device using the same
KR20130122321A (en) * 2012-04-30 2013-11-07 순천향대학교 산학협력단 Organic light emitting diodes using compound
US9074043B2 (en) * 2012-08-17 2015-07-07 Harvatek Corporation Compound for carrier transport, element and electronic device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180130859A (en) * 2017-05-30 2018-12-10 한국생산기술연구원 A coating solution for forming a thin film of an organic light emitting device, its manufacturing method and an organic light emitting device manufactured thereby
KR102029676B1 (en) 2017-05-30 2019-10-10 한국생산기술연구원 A coating solution for forming a thin film of an organic light emitting device, its manufacturing method and an organic light emitting device manufactured thereby
KR102056936B1 (en) * 2018-02-26 2019-12-17 한국생산기술연구원 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN108912105A (en) * 2018-08-03 2018-11-30 瑞声科技(南京)有限公司 A kind of double carbazole compounds symmetrically replaced and its application
KR20200069184A (en) * 2018-12-06 2020-06-16 한국생산기술연구원 Monomer compounds comprising uracil group, Organic layers comprising the cross-linked of the monomer compounds, and Organic electronic device comprising the organic layers
KR102127006B1 (en) * 2018-12-06 2020-06-25 한국생산기술연구원 Monomer compounds comprising uracil group, Organic layers comprising the cross-linked of the monomer compounds, and Organic electronic device comprising the organic layers
CN110157241A (en) * 2019-05-13 2019-08-23 深圳市华星光电半导体显示技术有限公司 A kind of ink-jet printing ink and its application
WO2020228264A1 (en) * 2019-05-13 2020-11-19 深圳市华星光电半导体显示技术有限公司 Ink-jet printing ink and application thereof
US11359106B2 (en) 2019-05-13 2022-06-14 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Inkjet printing ink and application thereof

Also Published As

Publication number Publication date
WO2017052308A3 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
WO2018186670A1 (en) Compound and organic light emitting element comprising same
WO2017171420A1 (en) Compound and organic light emitting element using same
WO2016167491A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic apparatus
WO2017095075A1 (en) Compound for organic electric device, organic electric device using same, and electronic device
WO2015194791A2 (en) Compound for organic electronic element, organic electronic element using same, and electronic device thereof
WO2014208829A1 (en) Hetero ring compound and organic light emitting diode comprising same
WO2017052308A2 (en) Organic compound to be used in organic device, and method for manufacturing organic device by using same
WO2017086723A1 (en) Spiro compound and organic light-emitting element comprising same
WO2015046835A1 (en) Heterocyclic compound and organic light-emtting element including same
WO2020256480A1 (en) Organic light-emitting device
WO2017086724A1 (en) Spiro compound and organic light-emitting element comprising same
WO2021010767A1 (en) Compound, coating composition including same, and organic light-emitting device using same
WO2020159279A1 (en) Polycyclic compound and organic light-emitting element comprising same
WO2018160003A1 (en) Heterocyclic compound and organic light-emitting device comprising same
WO2020085765A1 (en) Polycyclic compound and organic light-emitting element comprising same
WO2020122384A1 (en) Condensed cyclic compound and organic light emitting device comprising same
WO2021172664A1 (en) Organic light-emitting device
WO2021010656A1 (en) Organic light emitting element
WO2020009518A1 (en) Polycyclic compound and organic light emitting diode comprising same
WO2016137068A1 (en) Hetero ring compound and organic luminescent element comprising same
WO2017047992A1 (en) Heterocyclic compound and organic light emitting device comprising same
WO2019164383A1 (en) Compound for organic electronic device, organic electronic device using same, and electronic apparatus thereof
WO2017052221A1 (en) Novel compound and organic light-emitting element comprising same
WO2019172647A1 (en) Heterocyclic compound and organic light emitting device comprising same
WO2016195461A2 (en) Compound and organic electronic element comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16849033

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16849033

Country of ref document: EP

Kind code of ref document: A2