WO2017052293A1 - 레독스 플로우 배터리용 전극 집전체의 제조 방법 - Google Patents

레독스 플로우 배터리용 전극 집전체의 제조 방법 Download PDF

Info

Publication number
WO2017052293A1
WO2017052293A1 PCT/KR2016/010697 KR2016010697W WO2017052293A1 WO 2017052293 A1 WO2017052293 A1 WO 2017052293A1 KR 2016010697 W KR2016010697 W KR 2016010697W WO 2017052293 A1 WO2017052293 A1 WO 2017052293A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
redox flow
current collector
manufacturing
flow battery
Prior art date
Application number
PCT/KR2016/010697
Other languages
English (en)
French (fr)
Inventor
홍문현
박상선
백영민
장우인
김세진
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2017052293A1 publication Critical patent/WO2017052293A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention provides an electrode current collector for a redox flow battery. It is about a method.
  • the redox flow battery is a system in which an active material (electroactive mater al) in the electrolyte is oxidized / reduced and layer discharged, so that the battery output and the electrolyte tank can be separated.
  • the electrode has the advantage of high durability because it uses an inactive electrode and operates at room temperature.
  • As main components of a redox flow battery there are an electrolyte, a separator, and an electrode containing an active material, and there are other current collectors.
  • the current collector is in contact with the electrode.
  • the electrode and the current collector were separately prepared, and then manufactured by bonding them.
  • Japanese Patent Laid-Open No. 2009-170410 discloses a method of manufacturing an electrode current collector of a secondary battery by forming a conductive binding layer on an aluminum foil as a current collector using multilayer carbon nanotubes (MWCNT) during electrode production. -.
  • MWCNT multilayer carbon nanotubes
  • Korean Patent Publication No. 10-2014-0075851 discloses a carbon electrode through a step of preparing a slurry using a carbon electrode for energy storage and a manufacturing method, applying the slurry to a metal current collector and drying the film, and compressing the carbon electrode with a press. Disclosed is a method of manufacturing. However, the above method has a problem in that a process for manufacturing an electrode current collector is complex and a binder for increasing the internal resistance of the electrode is used.
  • the present invention is to provide a method for producing an electrode current collector for a redox flow battery that can be produced integrally with the electrode and the current collector by a simple method.
  • the present invention provides a method of manufacturing an electrode current collector for a redox flow battery comprising the following steps:
  • step 1 Positioning the metal bar on a metal mesh plate disposed in the mold (step 1); And
  • the term 'redox f low bat tery' refers to an oxidation / reduction cell capable of converting chemical energy of an active material directly into electrical energy.
  • the combination of the active material causing the oxidation / reduction reaction is generally referred to as a redox couple, and in the present invention, redox such as Fe / Cr, V / V, V / Br, Zn / Br, and Zn / Ce Flow cells can be used.
  • redox flow battery there are an electrolyte, a separator, and an electrode containing an active material, and there are other current collectors.
  • the current collector is attached to the electrode because the current collector serves to child the current generated from the electrode to the outside.
  • the current collector serves to child the current generated from the electrode to the outside.
  • a method of bonding them Poor adhesion may occur and a phenomenon in which the electrode and the current collector are separated during long-term use may occur.
  • Step 1 is a step of placing the metal bar on the metal mesh plate disposed in the mold.
  • the metal mesh plate forms a basic structure of the electrode current collector according to the present invention, and may use one or more selected from the group consisting of copper, aluminum, nickel, gold, silver, and alloys thereof.
  • the interface resistance is greatly lowered, thereby improving the voltage efficiency.
  • the resistance of the carbon-resin composite electrode may be relatively low due to the structural characteristics of the metal mesh plate, and the voltage efficiency may be increased. This can be improved.
  • the metal mesh plate may have a thickness of 0.2 mm to 1 mm.
  • the metal mesh plate may have a structure having a mesh value of 15 to 60, preferably a mesh value of 20 to 50.
  • the metal bar is installed at a predetermined position between the metal mesh plate and the carbon-resin composite electrode, and the voltage output can be improved, but the correct output value of the battery can be confirmed.
  • the metal bar may be one or more selected from the group consisting of copper, aluminum, nickel, gold, silver and alloys thereof.
  • the metal bar has a thickness of 1 kPa to 5 kPa.
  • the metal bar has a surface area of 10 to 30% of the surface of the electrode current collector for the redox flow battery according to the present invention.
  • one surface of the metal bar may protrude to the outside.
  • one surface of the metal bar may not contact the metal mesh plate.
  • 5% to 80% may protrude to the outside based on the surface area of one surface of the metal bar.
  • two or more metal mesh plates may be bonded to the metal bars.
  • the metal bars 10 may be disposed such that no contact occurs between the metal mesh plates 20, and then bonded thereto.
  • metal bars may be positioned between the metal mesh plates to be joined so that contact occurs between the metal mesh plates.
  • after positioning the metal bar on the metal mesh plate disposed in the mold as in step 1 may further comprise the step of fusing the metal mesh plate and the metal bar before step 2 to be described later.
  • step 2 the metal mesh plate and the metal bar are placed in a mold in which the mixture including the carbon compound and the resin is press-molded.
  • the mixture including the carbon compound and the resin may be firmly bonded to the metal mesh plate and the dispersibility of the carbon may be increased.
  • the step of forming a separate electrode sheet and the step of combining the electrode and the current collector can be omitted, there is an advantage that the problem of poor adhesion between the electrode and the current collector does not occur.
  • the mixture may be located in the inner space of the metal mesh plate through the pressing, the use of. The same material as the binder other than the resin may not be used.
  • the mixture containing the carbon compound and the resin is for the production of a carbon-resin composite electrode, preferably from 1 to 30 carbon compound. It includes by weight and comprises 99 to 70% by weight resin. More preferably the mixture contains 10 to 30% by weight of the carbon compound and 90 to 70% by weight of the resin.
  • the mixture is in the form of pellets, in which case the content of the carbon compound and the resin can be easily controlled, and also easy to layer in the mold.
  • the pellets have a particle size of 1 to 3 mm 3 in the form of a carbon plastic masterbatch.
  • the carbon compound may be a conductive carbon compound, for example, carbon felt, natural graphite (graphi te), artificial graphene (graphi te), expanded graphene (graphi te), carbon fiber, non-flammable carbon , Carbon black, carbon nanotubes, fullerenes, activated carbon can be used.
  • a polyolefin resin may be used, and for example, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-alphalepine copolymer, and mixtures or copolymers thereof may be used.
  • the filling amount of the mixture is not particularly limited as long as the mixture is sufficiently filled in the metal mesh plate after the compression molding.
  • the electrode current collector for the redox flow battery stack manufactured after the compression molding is filled to have a thickness of 1 mm to 5 mm.
  • the compression molding is carried out at 150 to 300 ° C.
  • the compression molding is performed at a pressure of 0.5 ton / m 2 to 50 ton / m 2 .
  • the present invention provides a redox flow battery manufactured according to the manufacturing method.
  • the redox flow battery may have a configuration of a redox flow battery commonly used in the art, except that the electrode current collector according to the present invention is used.
  • the redox flow battery may include a tank in which active materials having different oxidation states are stored; A pump for circulating the active material during charging / discharging; And an electrode cell that is divided into an electrode current collector, an electrolyte, and a separator, wherein the unit cell is manufactured according to the present invention. It may include an electrolyte and a porous separator.
  • the manufacturing method of the electrode current collector for a redox flow battery according to the present invention is manufactured by a method of directly molding a mixture containing a carbon compound and a resin together with a metal mesh plate and a metal bar, thereby separately manufacturing an electrode sheet.
  • the step of combining it with the current collector can be omitted, there is also an advantage that the internal resistance is not large.
  • the electrode sheet is manufactured separately, a high content of the carbon compound is difficult to manufacture the sheet, but in the present invention, since the method of direct molding is used as described above, it is possible to increase the dispersibility of the carbon compound and lower the internal resistance. have.
  • the manufacturing method of the electrode current collector for a redox flow battery according to the present invention can be manufactured integrally with the electrode and the current collector by a simple method, it is simple compared to the conventionally known method and has high electrical resistance and durability There is a feature that an electrode current collector can be manufactured.
  • FIG. 1 shows a method of disposing a metal bar 10 and a metal mesh plate 20 according to the present invention.
  • Figure 2 shows an electrode current collector for a redox flow battery manufactured in an embodiment of the present invention.
  • Figure 3 shows a method of measuring the electrode resistance value of the electrode current collector prepared in one embodiment and comparative example of the present invention. [Specific contents to carry out invention]
  • the carbon plastic pellet refers to a pellet containing a carbon compound and a polymer resin as a main component, specifically, the carbon plastic pellet is about 70% by weight of a polypropylene resin; And about 20% by weight carbon compound (CNT); And Fi l ler (Wax, etc.) is 1 to 5 parts by 3 ⁇ 4>, including 'said, the pellet has a particle size of 2 mm with a carbon plastic masterbatch form.
  • the prepared electrode current collector is shown in FIG. 2.
  • the electrode current collector had a size of two reaction areas of 950 cm 2 (width: 29.7 cm, length: 16 cm) and a thickness of 2.3 mm 3, and contained 20% by weight of CNT.
  • the metal mesh plate had a size of a reaction area of 429 cm 2 (width: 286 cm, length: 150 cm) and a thickness of 0.2 mm 3, and was made of aluminum.
  • the metal bar had a size of 88 cm 2 (width: 44 cm, length: 20 cm) and a thickness of 2 mm 3, and was made of aluminum. Comparative Example 1
  • Conductive plastic pellets (CNT: 3% by weight) were added to a mold extruder, manufactured in the form of a sheet through molding balls, and then discharged to prepare an electrode sheet. After applying a binder to the electrode sheet was coated with a fluidized bed using a fluidized bed reactor containing a carbon active material. In the same manner as in Example, a metal mesh plate and a metal bar were sequentially placed in a mold, and then the electrode was placed and pressed to prepare an electrode current collector. Comparative Example 2
  • Conductive plastic pellets (CNT: 10% by weight) were introduced into a mold release extruder, and a sheet was formed by molding. However, the flowability of the mixed resin was reduced, and thus the resin sheet was blocked during mixing and sheet molding, and thus the electrode sheet could not be manufactured.
  • Experimental Example 1 Conductive plastic pellets (CNT: 10% by weight) were introduced into a mold release extruder, and a sheet was formed by molding. However, the flowability of the mixed resin was reduced, and thus the resin sheet was blocked during mixing and sheet molding, and thus the electrode sheet could not be manufactured.
  • the electrode current collector prepared according to the present invention was not only able to omit the electrode sheet forming step and the fluidized bed coating step, it was confirmed that the internal resistance is not large.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 레독스 플로우 배터리용 전극 집전체의 제조 방법에 관한 것으로, 본 발명에 제조 방법은 간단한 방법으로 전극과 집전체를 일체형으로 제조할 수 있고, 종래 알려진 방법에 비하여 간단하면서도 전기 저항 및 내구성이 높은 전극 집전체를 제조할 수 있다는 특징이 있다.

Description

【명세서】
[발명의 명칭】
레독스 플로우 배터리용 전극 집전체의 제조 방법
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2015년 9월 23일자 한국 특허 출원 제 10-2015- 0134724호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 레독스 플로우 배터리용 전극 집전체의 제조. 방법에 관한 것이다.
【배경기술】
화석 연료를 사용하여 대량의 온실 가스 및 환경 오염 문제를 야기하는 화력 발전, 시설 자체의 안정성이나 폐기물 처리의 문제점을 갖는 원자력 발전 등의 기존 발전 시스템들이 다양한 한계점을 들어내면서 보다 친환경적이고 높은 효율을 갖는 에너지의 개발과 이를 이용한 전력 공급 시스템의 개발에 대한 연구가 크게 증가하고 있다. 특히, 전력 저장 기술은 외부 조건에 큰 영향을 받는 재생 에너지를 보다 다양하고 넓게 이용할 수 있도록 하며 전력 이용의 효율을 보다 높일 수 있어서, 이러한 기술 분야에 대한 개발이 집중되고 있으며, 이들 중 2차 전지에 대한 관심 및 연구 개발이 크게 증가하고 있는 실정이다.
'레독스 흐름 전지 (redox f low bat tery) '란, 2차 전지 중 하나로서 활성 물질의 화학적 에너지를 직접 전기 에너지로 전환할 수 있는 산화 /환원 전지를 의미한다. 레독스 흐름 전지에서는 산화 /환원 반웅을 일으키는 활물질을 포함한 전해액이 반대 전극과 저장 탱크 사이를 순환하며 충방전이 진행되며, 기본적으로 산화상태가 각각 다른 활물질이 저장된 탱크와 충 /방전시 활물질을 순환시키는 필프, 그리고 분리막으로 분획되는 단위셀을 포함하며 , 상기 단위 셀은 전극, 전해질 및 분리막을 포함한다. 레독스 흐름 전지는 기존 이차전지와는 달리 전해액 중의 활물질 (act ive mater i al )이 산화 /환원되어 층방전되는 시스템이기 때문어 1, 전지 출력과 전해액 탱크를 분리할 수 있어 출력과 용량을 자유롭게 설계 가능하다는 이점이 있다. 또한, 전극은 비활성 전극을 사용하고 상온에서 작동하기 때문에 내구성이 높다는 이점도 있다. 레독스 흐름 전지의 주요 구성 요소로서, 활물질을 포함하는 전해질, 분리막 및 전극이 있으며, 그 외에 집전체가 있다. 집전체는 전극과 접촉되어 있는테, 종래에는 전극과 집전체를 별도로 제조한 후, 이를 접착하는 방법으로 제조하였다. 일본특허 공개번호 제 2009-170410호에는, 전극 제조시 다층 카본 나노 튜브 (MWCNT)를 사용하여 집전체인 알루미늄박 위에 도전성 결착층을 형성하여 이차 전지의 전극 집전체를 제조하는 방법을 개시하고 있디- . 그러나, 상기 방법은 분산제가 집전체에 대한 밀착성이 낮아 도전성이 저하되는 문제가 있다. 한국특허 공개번호 제 10-2014-0075851호에는, 에너지 저장용 탄소 전극 및 제조방법으로 슬러리 제조 단계, 상기 슬러리를 금속 집전체에 도포 후 건조시키는 단계, 를 프레스로 압착하는 단계를 통해 탄소 전극을 제조하는 방법을 개시하고 있다. 그러나, 상기 방법은 전극 집전체 제조를 위한 공정이 복합하고 전극의 내부 저항을 높이는 바인더를 사용하는 문제가 있다. 이에 본 발명자들은, 간단한 방법으로 전극과 집전체를 일체형으로 제조할 수 있는 방법을 예의 연구한 결과, 이하 상술하는 바와 같은 방법이 종래 알려진 방법에 비하여 간단하면서도 전기 저항 및 내구성이 높은 전극 집전체를 제조할 수 있음을 확인하여 본 발명을 완성하였다. 【발명의 내용】
[해결하려는 과제】
본 발명은 간단한 방법으로 전극과 집전체를 일체형으로 제조할 수 있는 레독스 플로우 배터리용 전극 집전체의 제조 방법을 제공하기 위한 것이다.
【과제의 해결 수단】
상기 과제를 해결하기 위하여, 본 발명은 하기의 단계를 포함하는 레독스 플로우 배터리용 전극 집전체의 제조 방법을 제공한다:
금형 내에 배치된 금속 메쉬 플레이트 상에 금속 바를 위치시키는 단계 (단계 1) ; 및
상기 금형에 탄소 화합물 및 수지를 포함하는 혼합물을 충진하여 압착 성형하는 단계 (단계 2) . 본 발명에서 사용하는 용어 '레독스 흐름 전지 (redox f low bat tery) '란, 활성 물질의 화학적 에너지를 직접 전기 에너지로 전환할 수 있는 산화 /환원 전지를 의미한다. 상기 산화 /환원 반응을 일으키는 활물질의 조합을 일반적으로 레독스 커플 (redox coupl e)이라 하는데, 본 발명에서는 Fe/Cr , V/V, V/Br , Zn/Br , Zn/Ce 등의 레독스 흐름 전지를 사용할 수 있다. 레독스 흐름 전지의 주요 구성 요소로서, 활물질을 포함하는 전해질, 분리막 및 전극이 있으며, 그 외에 집전체가 있다. 일반적으로 집전체는 전극에서 발생하는 전류를 외부로 아동시키는 역할을 하기 때문에 전극에 접착되어 있다. 종래에는 전극과 집전체를 별도로 제조한 후, 이를 접착하는 방법으로 제조하였으나. 접착 불량이 발생할 수 있고 또한 장기 사용시 전극과 집전체가 분리되는 현상이 발생한다. 이에 본 발명에서는, 전극과 집전체를 일체형으로 제조하는 방식을 사용하는 것으로, 일체형으로 제조된 전극과 집전체를 본 발명에서는 '전극 집전체 '라는 용어로 사용한다. 이하, 각 단계 별로 본 발명을 상세히 설명한다. 상기 단계 1은, 금형 내에 배치된 금속 메쉬 플레이트 상에 금속 바를 위치시키는 단계이다. 상기 금속 메쉬 플레이트는, 본 발명에 따른 전극 집전체의 기본 구조를 형성하는 것으로, 구리, 알루미늄, 니켈, 금, 은 및 이의 합금으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 후술할 바와 같이, 금속 메쉬 플레이트에는 탄소 -수지 복합 전극이 견고하게 결합되면서도 계면 저항이 크게 낮추어 전압 효율을 향상시킬 수 있다. 또한, 탄소 -수지 복합 전극에 포함되는 수지 (고분자)로 인하여 처항이 높아지는 경향이 있으나, 상기 금속 메쉬 플레이트의 구조적인 특징으로 인하여 상기 탄소- 수지 복합 전극의 저항이 상대적으로 낮아질 수 있으며, 전압 효율이 향상될 수 있다. 바람직하게는, 상기 금속 메쉬 플레이트는 0.2 mm 내지 1 mm의 두께를 가질 수 있다. 또한 바람직하게는, 상기 금속 메쉬 플레이트는 15 내지 60의 mesh값, 바람직하게는 20 내지 50의 mesh값을 갖는 구조일 수 있다. - 상기 금속 바는, 상기 금속 메쉬 플레이트와 탄소 -수지 복합 전극 사이의 소정의 위치에 설치되는 것으로, 전압 효율이 향상시킬 수 있으면서도 전지의 정확한 출력 값을 확인할 수 있다. 상기 금속 바는, 구리, 알루미늄, 니켈, 금, 은 및 이의 합금으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 바람직하게는, 상기 금속 바는 1 隱 내지 5 瞧의 두께를 가진다. 또한 바람직하게는, 상기 금속 바는 본 발명에 따른 레독스 플로우 배터리용 전극 집전체 표면의 10 내지 30%의 표면적을 가진다. 또한 바람직하게는, 상기 금속 바의 일면이 외부로 돌출되어 있을 수 있다. 즉, 상기 금속 바의 일면은 상기 금속 메쉬 플레이트와 접하지 않을 수 있다. 바람직하게는, 상기 금속 바 일면의 표면적 기준으로 5% 내지 80%가 외부로 돌출되어 있을 수 있다. 또한, 상기 금속 바에 두 면 이상의 금속 메쉬 플레이트가 접합될 수 있다. 예를 들어, 도 1과 같이 금속 바 ( 10)에 금속 메쉬 플레이트 (20) 간에는 접촉이 발생하지 않도록 배치한 후, 이를 접합될 수 있다. 또한, 금속 바가 금속 메쉬 플레이트 사이에 위치하여 금속 메쉬 플레이트 간에 접촉이 발생하도록 접합될 수 있다. 또한, 상기 단계 1과 같이 금형 내에 배치된 금속 메쉬 플레이트 상에 금속 바를 위치시킨 이후에, 후술할 단계 2 이전에 상기 금속 메쉬 플레이트와 금속 바를 융착하는 단계를 추가로 포함할 수 있다. 상기 단계 2는, 상기 단계 1에 따라 금속 메쉬 플레이트와 금속 바가 배치되어 있는 금형에, 탄소 화합물 및 수지를 포함하는 혼합물을 충진하여 압착 성형하는 단계이다. 상기 단계를 통하여 탄소 화합물 및 수지를 포함하는 흔합물이 금속 메쉬 플레이트와 견고하게 결합되고 탄소의 분산성을 높일 수 있다. 또한, 별도의 전극 시트를 성형하는 단계와 전극과 집전체를 결합하는 단계를 생략할 수 있으며, 전극과 집전체 간의 밀착성이 떨어지는 문제도 발생하지 않는다는 이점이 있다. 또한, 상기 흔합물은 압착을 통하여 금속 메쉬 플레이트의 내부 공간에 위치할 수 있는바, 상기 사용하는. 수지 이외의 별도의 바인더와 같은 물질을 사용하지 않을 수 있다. 상기 탄소 화합물 및 수지를 포함하는 흔합물은 탄소 -수지 복합 전극의 제조를 위한 것으로, 바람직하게는 탄소 화합물을 1 내지 30 중량 %를 포함하고 수지를 99 내지 70 중량 %로 포함한다. 보다 바람직하게는 상기 흔합물은 탄소 화합물을 10 내지 30 중량 %를 포함하고 수지를 90 내지 70 중량 %로 포함한다. 바람직하게는, 상기 흔합물은 펠렛 형태이고 이 경우 탄소 화합물과 수지의 함량을 용이하게 조절할 수 있고, 금형 내에 층진하는데에도 용이하다. 바람직하게는, 상기 펠렛은 카본 플라스틱 마스터배치 형태로 1 내지 3 画의 입자 크기를 가진다. ' 상기 탄소 화합물로는 전도성을 갖는 탄소 화합물을 사용할 수 있으며, 예를 들어 카본 펠트, 천연 흑연 (graphi te) , 인조 혹연 (graphi te), 팽창 혹연 (graphi te) , 탄소 섬유, 난혹연화성 탄소, 카본 블랙, 탄소 나노 튜브, 플러렌, 활성탄을 사용할 수 있다. 상기 수지로는 폴리을레핀계 수지를 사용할 수 있으며, 예를 들어 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌 공중합체, 에틸렌 -알파을레핀 공중합체 및 이들의 흔합물이나 공중합체를 사용할 수 있다. 상기 혼합물의 충진량은 압착 성형 후 상기 금속 메쉬 플레이트에 상기 흔합물이 충분히 채워지는 정도이면 특별히 제한되지 않는다. 바람직하게는, 상기 압착 성형 후 제조된 레독스 플로우 배터리 스택용 전극 집전체의 두께가 1 mm 내지 5 mm가 되도록 충진한다. 바람직하게는, 상기 압착 성형은 150 내지 300°C에서 수행된다. 또한 바람직하게는, 상기 압착 성형은 0.5 ton/m2 내지 50 ton/m2의 압력에서 수행된다. 또한, 본 발명은 상기 제조 방법에 따라 제조되는 레독스 플로우 배터리를 제공한다. 상기 레독스 흐름 배터리는, 본 발명에 따른 전극 집전체를 사용한다는 것을 제외하고는 당업계에서 통상적으로 사용되는 레독스 흐름 배터리의 구성을 가질 수 있다. 일례로, 상기 레독스 흐름 전지는 산화 상태가 각각 다른 활물질이 저장된 탱크; 충 /방전시 활물질을 순환시키는 펌프; 및 전극 집전체, 전해질 및 분리막으로 분획되는 단위셀을 포함할 수 있으며, 상기 단위셀은 본 발명에 따라 제조되는 전극 집전체. 전해질 및 다공성 분리막을 포함할 수 있다. 상기와 같이 본 발명에 따른 레독스 플로우 배터리용 전극 집전체의 제조 방법은, 금속 메쉬 플레이트 및 금속 바와 함께 탄소 화합물 및 수지를 포함하는 흔합물을 직접 몰딩하는 방법으로 제조함으로써, 전극 시트를 별도로 제조하고 이를 집전체와 결합시키는 단계를 생략할 수 있고, 또한 내부 저항도 크지 않다는 이점이 있다. 또한, 전극 시트를 별도로 제조시 탄소 화합물의 함량이 높으면 시트 제조에 어려움이 있으나, 본 발명에서는 상기와 같이 직접 몰딩하는 방법을 사용하기 때문에 탄소 화합물의 분산성을 높이고 내부 저항을 낮출 수 있다는 이점이 있다.
【발명의 효과】
상술한 바와 같이, 본 발명에 따른 레독스 플로우 배터리용 전극 집전체의 제조 방법은, 간단한 방법으로 전극과 집전체를 일체형으로 제조할 수 있고, 종래 알려진 방법에 비하여 간단하면서도 전기 저항 및 내구성이 높은 전극 집전체를 제조할 수 있다는 특징이 있다.
【도면의 간단한 설명】
도 1은, 본 발명에 따른 금속 바 ( 10)와 금속 메쉬 플레이트 (20)의 배치 방법을 나타낸 것이다.
도 2는 본 발명의 일실시예에서 제조한 레독스 플로우 배터리용 전극 집전체를 나타낸 것이다.
도 3은, 본 발명의 일실시예 및 비교예에서 제조한 전극 집전체의 전극 저항 값을 측정하는 방법을 나타낸 것이다. 【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다. 실시예
금형 (Mold) 내에 금속 메쉬 플레이트와 금속 바를 순서대로 위치시킨 후, 카본 플라스틱 펠렛올 금형에 충진시킨 후, 상기 금형을 프레스를 이용하여 금형의 은도가 220°C에 도달할 때까지 45 ton/cm2의 압력으로 압착하여 전극 집전체를 제조하였다. 상기 카본 플라스틱 펠렛은 탄소 화합물과 고분자 수지를 주 성분으로 포함한 펠렛을 의미하여, 구체적으로 상기 카본 플라스틱 펠렛은 폴리프로필렌 수지 약 70 중량 % ; 및 탄소 화합물 (CNT) 약 20 중량 %; 및 Fi l ler (Wax 등)는 1 내지 5 중량 ¾>를 포함하 '며, 상기 펠렛은 카본 플라스틱 마스터배치 형태로 2 mm의 입자 크기를 가지고 있다. 상기 제조된 전극 집전체를 도 2에 나타내었다. 상기 전극 집전체는 950 cm2의 두 반웅 면적의 크기 (가로: 29.7 cm , 세로: 16 cm) 및 2.3 隱의 두께를 가졌으며 , CNT를 20 중량 %를 포함하였다. 상기 금속 메쉬 플레이트는 429 cm2의 반웅 면적의 크기 (가로: 286 cm , 세로: 150 cm) 및 0.2 隱의 두께를 가졌으며, 알루미늄 재질이었다. 상기 금속 바는 88 cm2의 면적의 크기 (가로: 44 cm, 세로: 20 cm) 및 2 隱의 두께를 가졌으며, 알루미늄 재질이었다. 비교예 1
이형 압출기에 전도성 플라스틱 펠렛 (CNT : 3 중량 %)을 투입하고 성형올 통해 시트 형태로 제조한 후 토출하여 전극 시트를 제조하였다. 상기 전극 시트에 바인더를 바른 후 카본 활물질이 포함된 유동충 반응기를 이용하여 유동층을 코팅하였다. 이를 실시예와 동일하게 금형 (Mold) 내에 금속 메쉬 플레이트와 금속 바를 순서대로 위치시킨 후, 상기 전극을 위치시키고 압착하여 전극 집전체를 제조하였다. 비교예 2
이형 압출기에 전도성 플라스틱 펠렛 (CNT : 10 중량 %)을 투입하고 성형을 통해 시트 형태로 제조하고자 하였으나, 흔합 수지의 흐름성이 저하되어 흔합 및 시트 성형시 수지가 막혀 전극 시트를 제조할 수 없었다. 실험예
도 3과 같이, 실시예 및 비교예 1에서 제조한 전극 집전체의 전극 저항 값을 Mul t imeter로 측정하였으몌 그 결과를 하기 표 1에 나타내었다. 【표 1】
Figure imgf000011_0001
상기 표 1에 나타난 바와 같이, 본 발명에 따라 제조된 전극 집전체는 전극 시트 성형 단계 및 유동층 코팅 단계를 생략할 수 있을 뿐만 아니라, 내부 저항도 크지 않음을 확인할 수 있었다.

Claims

【특허청구범위】
【청구항 1】
금형 내에 배치된 금속 메쉬 플레이트 상에 금속 바를 위치시키는 단계 ; 및
상기 금형에 탄소 화합물 및 수지를 포함하는 흔합물을 충진하여 압착 성형하는 단계를 포함하는 ,
레독스 플로우 배터리용 전극 집전체의 제조 방법.
【청구항 2]
제 1항에 있어서,
상기 금속 메쉬 플레이트는 구리, 알루미늄, 니켈, 금 은 및 이의 합금으로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는, 레독스 플로우 배터리용 전극 집전체의 제조 방법.
【청구항 3】
제 1항에 있어서,
상기 금속 메쉬 플레이트는 0.2 mm 내지 1 隱의 두께를 가지는 것을 특징으로 하는,
레독스 플로우 배터리용 전극 집전체의 제조 방법.
【청구항 4】
제 1항에 있어서,
상기 금속 바는 1 隱 내자 5 隱의 두께를 가지는 것을 특징으로 하는,
레독스 플로우 배터리용 전극 집전체의 제조 방법.
【청구항 5】
제 1항에 있어서,
상기 금속 바는 상기 레독스 플로우 배터리용 전극 집전체 표면의 10 내지 30%의 표면적을 가지는 것을 특징으로 하는, 레독스 플로우 배터리용 전극 집전체의 제조 방법.
【청구항 6】
제 1항에 있어서,
상기 금속 바의 일면이 외부로 돌출된 것을 특징으로 하는, 레독스 플로우 배터리용 전극 집전체의 제조 방법.
【청구항 7]
제 1항에 있어서,
상기 금속 바에 두 면의 금속 메쉬 플레이트가 접합되는 것을 특징으로 하는,
레독스 플로우 배터리 스택용 전극 집전체의 제조 방법.
【청구항 8】
제 1항에 있어서,
상기 탄소 화합물 및 수지를 포함하는 흔합물은 펠렛 형태인 것을 특징으로 하는,
레독스 플로우 배터리 스택용 전극 집전체의 제조 방법 .
【청구항 9]
제 1항에 있어서,
상기 압착 성형은 150 내지 300°C에서 수행되는 것을 특징으로 하는,
레독스 플로우 배터리 스택용 전극 집전체의 제조 방법 .
【청구항 10】
제 1항에 있어서,
상기 압착 성형은 0.5 ton/m2 내지 50 ton/ni2의 압력에서 수행되는 것을 특징으로 하는,
레독스 플로우 배터리 스택용 전극 집전체의 제조 방법 . 【청구항 11】
제 1항에 있어서,
상기 레독스 플로우 배터리 스택용 전극 집전체는 1 mm 내지 5 의 두께를 가지는 것을 특징으로 하는,
레독스 플로우 배터리 스택용 전극 집전체의 제조 방법 .
PCT/KR2016/010697 2015-09-23 2016-09-23 레독스 플로우 배터리용 전극 집전체의 제조 방법 WO2017052293A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0134724 2015-09-23
KR1020150134724A KR101796305B1 (ko) 2015-09-23 2015-09-23 레독스 플로우 배터리용 전극 집전체의 제조 방법

Publications (1)

Publication Number Publication Date
WO2017052293A1 true WO2017052293A1 (ko) 2017-03-30

Family

ID=58386587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010697 WO2017052293A1 (ko) 2015-09-23 2016-09-23 레독스 플로우 배터리용 전극 집전체의 제조 방법

Country Status (2)

Country Link
KR (1) KR101796305B1 (ko)
WO (1) WO2017052293A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102344374B1 (ko) 2018-06-01 2021-12-29 (주)엘엑스하우시스 동조엠보 바닥재 제조방법 및 이 제조방법에 의해 제조된 바닥재
KR20200063893A (ko) 2018-11-28 2020-06-05 롯데케미칼 주식회사 레독스 흐름전지용 전극 집전체 및 레독스 흐름전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067882A (ja) * 1998-08-26 2000-03-03 Mitsubishi Plastics Ind Ltd 燃料電池セル用セパレータとその製造方法
KR20050002864A (ko) * 2002-03-20 2005-01-10 쇼와 덴코 가부시키가이샤 도전성 경화성 수지 조성물, 그 경화체 및 그 제조 방법
KR101151012B1 (ko) * 2010-06-28 2012-05-30 한국타이어 주식회사 연료전지 분리판 성형용 소재, 그의 제조방법과 이로부터 제조된 연료전지 분리판 및 연료전지
KR20130019861A (ko) * 2011-08-18 2013-02-27 비나텍주식회사 전기화학 에너지 저장장치용 전극
KR20140134466A (ko) * 2013-05-14 2014-11-24 롯데케미칼 주식회사 레독스 흐름 전지용 전극 집전체, 레독스 흐름 전지용 전극 집전체의 제조 방법 및 레독스 흐름 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067882A (ja) * 1998-08-26 2000-03-03 Mitsubishi Plastics Ind Ltd 燃料電池セル用セパレータとその製造方法
KR20050002864A (ko) * 2002-03-20 2005-01-10 쇼와 덴코 가부시키가이샤 도전성 경화성 수지 조성물, 그 경화체 및 그 제조 방법
KR101151012B1 (ko) * 2010-06-28 2012-05-30 한국타이어 주식회사 연료전지 분리판 성형용 소재, 그의 제조방법과 이로부터 제조된 연료전지 분리판 및 연료전지
KR20130019861A (ko) * 2011-08-18 2013-02-27 비나텍주식회사 전기화학 에너지 저장장치용 전극
KR20140134466A (ko) * 2013-05-14 2014-11-24 롯데케미칼 주식회사 레독스 흐름 전지용 전극 집전체, 레독스 흐름 전지용 전극 집전체의 제조 방법 및 레독스 흐름 전지

Also Published As

Publication number Publication date
KR101796305B1 (ko) 2017-11-10
KR20170035614A (ko) 2017-03-31

Similar Documents

Publication Publication Date Title
CN110571475B (zh) 一种光固化3d打印制备固态锂离子电池的方法
CN105742613B (zh) 一种负极极片和锂离子电池
CN105449186B (zh) 一种二次电池及其制备方法
JP5344884B2 (ja) リチウム二次電池
CN108346523A (zh) 一种混合型储能器件的含锂金属负极制备方法
CN101937994A (zh) 锂离子电池的石墨烯/铝复合负极材料及其制备方法
CN103208645A (zh) 一种锰酸锂和石墨烯组成的纳米动力电池及其制备方法
KR100938058B1 (ko) 리튬 이차전지용 음극 및 이를 이용한 리튬 이차 전지
CN108400286A (zh) 一种基于高弹性电极的储能器件制备方法
CN111211323A (zh) 一种磷酸铁锂体系软包锂离子电池及其制备方法
CN104103848A (zh) 一种锰酸锂和镍钴锰酸锂动力电池及其制作方法
CN109698334A (zh) 正极片、钛酸锂电池及其制备方法
CN108598598A (zh) 一种高比能高功率的锂电池及其制造方法
CN108373902A (zh) 一种固态电池塑料封装材料及其应用
CN103208632B (zh) 一种纳米碳管和镍锰酸锂纳米电池的制作方法
CN114784223A (zh) 一种正极片及其制备方法与应用
CN114975853A (zh) 一种复合正极极片及其制备方法与应用
CN111261891A (zh) 一种液流电池用可焊接双极板及其制备和应用
CN105870489B (zh) 单体聚合物锂离子电池制造方法及其组装方法
KR102000658B1 (ko) 레독스 흐름 전지용 전극의 제조 방법 및 레독스 흐름 전지
WO2017052293A1 (ko) 레독스 플로우 배터리용 전극 집전체의 제조 방법
KR101586455B1 (ko) 레독스 흐름 전지용 전극 집전체, 레독스 흐름 전지용 전극 집전체의 제조 방법 및 레독스 흐름 전지
CN103700881B (zh) 一种磷酸亚铁锂高功率动力锂离子二次电池及其制备方法
CN112952136A (zh) 一种一体化双极板电极框及包含其的钒液流电池
CN104103824A (zh) 一种高能动力电池及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16849018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16849018

Country of ref document: EP

Kind code of ref document: A1