WO2017051781A1 - 水晶片及び水晶振動子 - Google Patents

水晶片及び水晶振動子 Download PDF

Info

Publication number
WO2017051781A1
WO2017051781A1 PCT/JP2016/077521 JP2016077521W WO2017051781A1 WO 2017051781 A1 WO2017051781 A1 WO 2017051781A1 JP 2016077521 W JP2016077521 W JP 2016077521W WO 2017051781 A1 WO2017051781 A1 WO 2017051781A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
crystal
crystal piece
thickness
piece
Prior art date
Application number
PCT/JP2016/077521
Other languages
English (en)
French (fr)
Inventor
山本 裕之
開田 弘明
賢 浅井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017534753A priority Critical patent/JP6233621B2/ja
Priority to CN201680054847.5A priority patent/CN108028638B/zh
Publication of WO2017051781A1 publication Critical patent/WO2017051781A1/ja
Priority to US15/923,413 priority patent/US10425057B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02023Characteristics of piezoelectric layers, e.g. cutting angles consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0509Holders; Supports for bulk acoustic wave devices consisting of adhesive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0519Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for cantilever
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0552Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement the device and the other elements being mounted on opposite sides of a common substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/022Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • H03H2003/0435Modification of the thickness of an element of a piezoelectric layer

Definitions

  • the present invention relates to an AT-cut crystal piece and a crystal resonator.
  • a quartz diaphragm disclosed in Patent Document 1 As an invention relating to a conventional quartz piece for the purpose of reducing the series resistance value, for example, a quartz diaphragm disclosed in Patent Document 1 is known. In the quartz diaphragm, chamfering (beveling) is applied to the end of the quartz diaphragm. As a result, vibration energy is confined under the excitation electrode, and a good series resistance value can be obtained.
  • the crystal piece has been devised in various ways to obtain a good series resistance value.
  • an object of the present invention is to provide a crystal piece and a crystal resonator that can reduce the CI (crystal impedance) value.
  • a crystal piece according to an aspect of the present invention is an AT-cut type crystal piece that has a plate shape and is rectangular when viewed from the normal direction of the main surface, and the length of the main surface The side is substantially parallel to the Z ′ axis of the crystal piece, the short side of the main surface is substantially parallel to the X axis of the crystal piece, and the frequency of the main vibration of the crystal piece is 46.
  • the first region including the center of the main surface and the long side direction in which the long side extends
  • the thickness of the first region is substantially uniform, the thickness of the second region and the thickness of the third region are Less than the thickness of the first region, and / or the thickness of the fourth region and the thickness of the fifth region are less than the thickness of the first region, the first region,
  • W the length of the fourth region and the fifth region in the short side direction
  • T the thickness of the first region
  • the present invention is also directed to a crystal resonator including the crystal piece.
  • the CI value can be reduced.
  • FIG. 1 is an external perspective view of a crystal resonator 10. 1 is an exploded perspective view of a crystal unit 10.
  • FIG. 2 is a cross-sectional structure diagram along AA in FIG. 1.
  • FIG. 3 is a cross-sectional structure diagram along BB in FIG. 2.
  • FIG. 3 is a cross-sectional structure view taken along a line CC in FIG. 2. It is the figure which looked at the crystal piece 17 from the upper side. It is an enlarged view of area
  • FIG. 1 is an external perspective view of the crystal unit 10.
  • FIG. 2 is an exploded perspective view of the crystal unit 10.
  • FIG. 3 is a cross-sectional structure diagram along AA in FIG.
  • the normal direction with respect to the main surface of the crystal unit 10 is defined as the vertical direction, and the direction in which the long side of the crystal unit 10 extends when viewed from above is defined as the long side direction.
  • the direction in which the short side of the child 10 extends is defined as the short side direction.
  • each component may be described with reference to the AT cut axial direction of the crystal piece 17.
  • the crystal resonator 10 includes a substrate 12, a metal cap 14, a crystal vibrating piece 16, and a brazing material 50.
  • the width of the short side of the crystal unit 10 is 1.6 mm, and the length of the long side of the crystal unit 10 is 2.0 mm.
  • the substrate 12 (an example of a circuit board) includes a substrate body 21, external electrodes 22, 26, 40, 42, 44, 46, via-hole conductors 25, 28, 54, 56 and a metallized film 30.
  • the substrate body 21 has a plate shape, and has a rectangular shape when viewed from above.
  • the substrate body 21 includes, for example, an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a ceramic insulating material such as a glass ceramic sintered body, crystal, glass It is made of silicon or the like.
  • the substrate body 21 is configured by laminating a plurality of insulator layers made of a ceramic material.
  • the substrate body 21 has two main surfaces at the top and bottom.
  • the upper main surface (the main surface on the + Y ′ side) of the substrate body 21 is referred to as the front surface
  • the lower main surface (the main surface on the ⁇ Y ′ side) of the substrate body 21 is referred to as the back surface.
  • External electrodes 22 and 26 are provided side by side in the short side direction on one end side in the long side direction on the surface of the substrate body 21.
  • the external electrode 22 is a rectangular conductor layer provided near the ⁇ Z ′ and + X side corners of the surface of the substrate body 21.
  • the external electrode 26 is a rectangular conductor layer provided near the ⁇ Z ′ and ⁇ X side corners of the surface of the substrate body 21.
  • External electrodes 40, 42, 44, 46 are provided in the vicinity of each corner on the back surface of the substrate body 21.
  • the external electrode 40 is a square-shaped conductor layer provided near the ⁇ Z ′ and ⁇ X side corners on the back surface of the substrate body 21 and overlaps the external electrode 26 when viewed from above.
  • the external electrode 42 is a square conductor layer provided in the vicinity of the ⁇ Z ′ and + X side corners on the back surface of the substrate body 21, and overlaps the external electrode 22 when viewed from above.
  • the external electrode 44 is a square conductor layer provided near the + Z ′ and ⁇ X side corners of the back surface of the substrate body 21.
  • the external electrode 46 is a square conductor layer provided in the vicinity of the + Z ′ and + X side corners of the back surface of the substrate body 21.
  • the via-hole conductor 25 penetrates the substrate body 21 in the vertical direction, and connects the external electrode 22 and the external electrode 42.
  • the via-hole conductor 28 penetrates the substrate body 21 in the vertical direction, and connects the external electrode 26 and the external electrode 40.
  • the metallized film 30 is a linear metal film provided on the surface of the substrate body 21 and has a rectangular ring shape when viewed from the upper side (normal direction to the surface).
  • the external electrodes 22 and 26 are provided in a region surrounded by the metallized film 30 when viewed from above.
  • the via-hole conductor 54 penetrates the substrate body 21 in the vertical direction, and connects the metallized film 30 and the external electrode 46.
  • the via-hole conductor 56 penetrates the substrate main body 21 in the vertical direction, and connects the metallized film 30 and the external electrode 44.
  • the external electrodes 22, 26, 40, 42, 44, 46 and the metallized film 30 have a three-layer structure. Specifically, a molybdenum layer, a nickel layer, and a gold layer are laminated from the lower layer side to the upper layer side. It is constituted by.
  • the via-hole conductors 25, 28, 54, and 56 are manufactured by burying a conductor such as molybdenum in a via hole formed in the substrate body 21.
  • the crystal vibrating piece 16 includes a crystal piece 17, external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103.
  • the crystal piece 17 has a plate shape, and has a rectangular shape when viewed from above.
  • the main surface on the upper side of the crystal piece 17 is called a front surface, and the main surface on the lower side of the crystal piece 17 is called a back surface.
  • the crystal piece 17 is, for example, an AT-cut type crystal piece cut out from a rough crystal or the like at a predetermined angle. Further, the long sides of the front and back surfaces of the crystal piece 17 are substantially parallel to the Z ′ axis of the crystal piece 17. The short sides of the front and back surfaces of the crystal piece 17 are substantially parallel to the X axis of the crystal piece 17.
  • the term “substantially parallel” refers to those within a range of about ⁇ 1 degree with respect to the Z ′ axis and the X axis.
  • the crystal piece 17 is beveled, and details will be described later. Moreover, in FIG.2, 3, the point to which the bevel process is given is not expressed.
  • the size of the crystal unit is within the range of 2.0 mm in the long side direction and 1.6 mm in the short side direction. Therefore, the wall thickness of the package, bleeding of the sealing material, device mounting accuracy, etc.
  • the crystal piece 17 is designed so that the length in the long side direction is 1.500 mm or less and the width in the short side direction of the crystal piece 17 is 1.00 mm or less. .
  • the external electrode 97 is a conductor layer provided at and near the ⁇ Z ′ and + X side corners of the crystal piece 17.
  • the external electrode 97 is formed from the front surface to the back surface of the crystal piece 17 and is also formed on each side surface of the crystal piece 17 on the + X side and the ⁇ Z ′ side.
  • the external electrode 98 is a conductor layer provided on the ⁇ Z ′ and ⁇ X side corners of the back surface of the crystal piece 17 and in the vicinity thereof.
  • the external electrode 98 is formed from the front surface to the back surface of the crystal piece 17, and is also formed on each side surface of the crystal piece 17 on the ⁇ X side and the ⁇ Z ′ side.
  • the external electrodes 97 and 98 are arranged along the short side of the crystal piece 17.
  • the excitation electrode 100 is provided in the center of the surface of the crystal piece 17 and has a rectangular shape when viewed from above.
  • the excitation electrode 101 is provided in the center of the back surface of the crystal piece 17 and has a rectangular shape when viewed from above.
  • the excitation electrode 100 and the excitation electrode 101 overlap with each other when viewed from above.
  • the lead conductor 102 is provided on the surface of the crystal piece 17 and connects the external electrode 97 and the excitation electrode 100.
  • the lead conductor 103 is provided on the back surface of the crystal piece 17 and connects the external electrode 98 and the excitation electrode 101.
  • the external electrodes 97 and 98, the excitation electrodes 100 and 101, and the lead conductors 102 and 103 are produced, for example, by laminating gold on a chromium underlayer.
  • the crystal vibrating piece 16 is mounted on the surface of the substrate 12. Specifically, the external electrode 22 and the external electrode 97 are fixed in a state where they are electrically connected by the conductive adhesive 210, and the external electrode 26 and the external electrode 98 are electrically connected by the conductive adhesive 212. It is fixed in the state that was done.
  • the metal cap 14 is a casing having a rectangular opening, and is produced, for example, by applying nickel plating and gold plating to a base material of an iron nickel alloy or a cobalt nickel alloy.
  • the metal cap 14 is a rectangular parallelepiped box having an opening on the lower side, and is produced by performing nickel plating and gold plating on the surface of a base material of iron-nickel alloy.
  • the brazing material 50 is disposed on the metallized film 30.
  • the brazing material 50 has substantially the same shape as the metallized film 30 and has a rectangular ring shape.
  • the brazing material 50 has a melting point lower than that of the metallized film 30 and is made of, for example, a gold-tin alloy.
  • the brazing material 50 is formed on the metallized film 30 by printing or the like, for example.
  • the metallized film 30 is melted and solidified in a state where the outer edge of the opening of the metal cap 14 is in contact with the brazing material 50. Thereby, the metal cap 14 is bonded to the metallized film 30 through the brazing material 50 over the entire length of the outer edge of the opening.
  • a sealed space Sp is formed by the surface of the substrate body 21 and the metal cap 14. Therefore, the crystal vibrating piece 16 is accommodated in the sealed space Sp. Further, the sealed space Sp is kept in a vacuum state by the metal cap 14 being in close contact with the substrate body 21 via the metallized film 30 and the brazing material 50. However, it may be in atmospheric conditions. Instead of the brazing material 50, for example, an adhesive such as low melting glass or resin may be used. At this time, the metallized film 30 is not necessarily required.
  • FIG. 4 is a cross-sectional structural view taken along line BB in FIG.
  • FIG. 5 is a sectional structural view taken along the line CC of FIG.
  • FIG. 6 is a view of the crystal piece 17 as viewed from above.
  • FIG. 7 is an enlarged view of the region A1.
  • the crystal piece 17 according to the present embodiment satisfies the conditions described below in order to reduce the CI value.
  • Condition 1 The frequency of the main vibration of the crystal piece 17 is not less than 46.0 MHz and not more than 49.0 MHz.
  • Condition 2 The long side of the front surface and the back surface of the crystal piece 17 is substantially parallel to the Z ′ axis of the crystal piece 17.
  • Condition 3 The short sides of the front surface and the back surface of the crystal piece 17 are substantially parallel to the X axis of the crystal piece 17.
  • Condition 4 By performing bevel processing, as shown in FIGS. 4 and 5, the thickness near the outer edge of the front surface and the back surface of the crystal piece 17 is larger than the thickness near the center of the front surface and the back surface of the crystal piece 17. It is getting thinner.
  • the frequency of the main vibration of the crystal piece 17 depends on the thickness T of the crystal piece 17. Therefore, the thickness T of the crystal piece 17 is set in a range of 0.0341 mm or more and 0.0363 mm or less.
  • the quartz piece is generally fixed to the substrate with a conductive adhesive in the vicinity of the short side, and the AT-cut quartz piece is known to have the vibration direction of thickness shear vibration in the X-axis direction. It has been. Therefore, the conventional crystal piece whose long side is parallel to the X-axis direction is susceptible to vibration leakage on the substrate via the conductive adhesive on the short side.
  • the AT-cut type crystal piece 17 according to the present embodiment has a long side parallel to the Z′-axis direction, so that there is little vibration leakage to the Z′-axis region, and in the vicinity of the short side of the crystal piece 17.
  • the influence of vibration leakage on the substrate is small. Therefore, according to the AT-cut type crystal piece according to the present embodiment, the influence of vibration leakage is less and the CI value is better than the crystal piece whose long side is parallel to the X-axis direction.
  • the crystal piece 17 includes regions A1 to A5 when viewed from above.
  • the region A1 is a rectangular region including the center of the surface when viewed from above.
  • the region A1 may have a shape other than a rectangular shape when viewed from above, for example, an elliptical shape.
  • the region A2 is a rectangular region adjacent to the region A1 on the + Z ′ side.
  • the region A2 is in contact with the entire short side of the + Z ′ side of the surface, and the vicinity of the + Z ′ side end of the ⁇ X side and the long side of the + X side of the surface. That is, the region A2 is located at the end of the crystal piece 17 on the + Z ′ side.
  • the region A3 is a rectangular region adjacent to the region A1 on the ⁇ Z ′ side.
  • the region A3 is in contact with the entire short side on the ⁇ Z ′ side of the surface, and the vicinity of the end on the ⁇ Z ′ side of the ⁇ X side and the long side of the + X side of the surface. That is, the region A3 is located at the end on the ⁇ Z ′ side in the crystal piece 17.
  • the area A4 is a rectangular area adjacent to the area A1 on the ⁇ X side and sandwiched between the areas A2 and A3 from the left and right. Region A4 is in contact with the portion excluding both ends of the long side on the ⁇ X side of the surface. That is, the region A4 is located at the end of the crystal piece 17 on the ⁇ X side.
  • the region A5 is a rectangular region adjacent to the region A1 on the + X side and sandwiched between the regions A2 and A3 from the left and right. Region A5 is in contact with the portion excluding both ends of the long side on the + X side of the surface. That is, the region A5 is located at the + X side end of the crystal piece 17.
  • the thickness T of the region A1 is substantially uniform as shown in FIGS.
  • the front and back surfaces of the region A1 are slightly curved. Therefore, the substantially uniform region A1 is a region having a thickness of Tmax ⁇ 2 ⁇ m or more and Tmax or less when the maximum value of the thickness of the crystal piece in the region A1 is Tmax as shown in FIG. It is.
  • the region A1 is a continuous region including the center of the surface.
  • the thickness T of the region A1 is substantially uniform, and Tmax is the value.
  • the thickness of the regions A2 to A5 is smaller than the thickness T of the region A1, as shown in FIGS.
  • the thicknesses of the regions A2 to A5 are continuously reduced as the distance from the region A1 increases.
  • the front and back surfaces in the regions A2 to A5 are convex.
  • the length in the long side direction of the regions A1 to A3 is L and the length in the long side direction of the region A1 is RL, 0.78 ⁇ RL / L ⁇ 0.85 is established, and When the length of the region A1 in the short side direction is RW, it is more preferable that 0.86 ⁇ RW / W ⁇ 0.94 is satisfied.
  • the length RL is the length of the region A1 in the long side direction passing through a point where the thickness is Tmax in the region A1.
  • the length RW is the length of the region A1 in the short side direction passing through a point where the thickness is Tmax in the region A1.
  • a mother substrate in which a plurality of substrate bodies 21 are arranged in a matrix is prepared.
  • the mother substrate may be, for example, an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a ceramic insulating material such as a glass ceramic sintered body, crystal, glass, It is made of silicon or the like.
  • a beam is irradiated to the position where the via-hole conductors 25, 28, 54, 56 of the substrate body 21 are formed to form a through hole. Further, the through hole is filled with a conductive material such as molybdenum and dried. Thereafter, the via-hole conductors 25, 28, 54, and 56 are formed by sintering the conductive material.
  • the base electrodes of the external electrodes 40, 42, 44, 46 are formed on the back surface of the mother substrate. Specifically, a molybdenum layer is printed on the back surface of the mother substrate and dried. Thereafter, the molybdenum layer is sintered. As a result, the base electrodes of the external electrodes 40, 42, 44, 46 are formed.
  • the base electrodes of the external electrodes 22 and 26 and the metallized film 30 are formed on the surface of the mother substrate. Specifically, the molybdenum layer is printed on the surface of the mother substrate and dried. Thereafter, the molybdenum layer is sintered. Thereby, the base electrodes of the external electrodes 22 and 26 and the metallized film 30 are formed.
  • the filling of the conductive material into the through holes and the printing of the external electrodes and the like on the mother substrate can be simultaneously formed by using vacuum printing or the like. At this time, the conductive material and the external electrode are fired simultaneously.
  • the mother substrate is a ceramic-based sintered insulating material
  • the through-holes are formed, the conductive material is filled, the external electrodes 22, 26, 40, 42, 44, 46, and metallized in a sheet state before firing.
  • the film 30 is printed and dried, it is press-contacted in a state where a plurality of sheets are laminated to form a laminated sheet, which is baked to form via hole conductors, external electrodes 22, 26, 40, 42, 44, 46, and metallized films.
  • 30 and the substrate body 21 can be completed simultaneously. Thereafter, the same plating as described above is performed.
  • the mother substrate is divided into a plurality of substrate bodies 21 by a dicer.
  • the mother substrate may be divided into a plurality of substrate bodies 21 after the laser beam is irradiated to form the division grooves in the mother substrate.
  • a quartz crystal ore is cut out by AT cut to obtain a rectangular plate-shaped crystal piece 17.
  • the long sides of the front and back surfaces of the crystal piece 17 are substantially parallel to the Z ′ axis of the crystal piece 17, and the short sides of the front and back surfaces of the crystal piece 17 are substantially parallel to the X axis of the crystal piece 17. Cut the rough crystal so that
  • bevel processing is performed on the crystal piece 17 using a barrel processing apparatus. Thereby, the vicinity of the ridgeline of the crystal piece 17 is scraped off, and as shown in FIGS. 4 and 5, the crystal piece 17 has a cross-sectional shape whose thickness decreases as the distance from the center of the surface increases.
  • external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103 are formed on the crystal piece 17. Note that the formation of the external electrodes 97 and 98, the excitation electrodes 100 and 101, and the lead conductors 102 and 103 is a general process and will not be described.
  • the crystal vibrating piece 16 is mounted on the surface of the substrate body 21. Specifically, as shown in FIGS. 2 and 3, the external electrode 22 and the external electrode 97 are bonded by the conductive adhesive 210, and the external electrode 26 and the external electrode 98 are bonded by the conductive adhesive 212. To do.
  • the metal cap 14 is attached to the substrate 12 with the brazing material 50.
  • the crystal resonator 10 is completed.
  • the CI value can be reduced. More specifically, as shown in FIGS. 4 and 5, the crystal piece 17 has a cross-sectional shape in which the thickness decreases as the distance from the center of the surface decreases. Thereby, the vibration energy of the main vibration of the crystal piece 17 is confined in the region A1. Excitation electrodes 100 and 101 are provided in the region A1. As a result, the main vibration is efficiently converted into an electric signal, and the electric signal is output from the excitation electrodes 100 and 101. Therefore, according to the crystal piece 17 and the crystal resonator 10, the CI value can be reduced.
  • FIG. 8 is a graph showing the relationship between the frequency of the main vibration and the sub vibration and W / T in the crystal piece 17 having the main vibration frequency of 46.0 MHz.
  • FIG. 9 is a graph showing the relationship between the main and sub-vibration frequencies and W / T in the crystal piece 17 having a main vibration frequency of 48.0 MHz.
  • FIG. 10 is a graph showing the relationship between the main and sub-vibration frequencies and W / T in the crystal piece 17 having a main vibration frequency of 49.0 MHz. 8 to 10, ⁇ indicates main vibration, and ⁇ and ⁇ indicate sub vibration.
  • a secondary vibration is generated in addition to the main vibration.
  • the main vibration is vibration generated by thickness slip.
  • the frequency of the main vibration depends on the thickness T of the crystal piece 17.
  • the secondary vibration is vibration other than the main vibration, and is generated by expansion / contraction of the crystal piece 17 in the short side direction, expansion / contraction in the long side direction, bending of the crystal piece 17 or the like.
  • the frequency of the secondary vibration depends on the length L, the width W, and the like. Such a secondary vibration is a so-called spurious.
  • the crystal piece 17 and the crystal vibration piece 16 may be designed so that the main vibration frequency and the sub-vibration frequency are separated from each other. Therefore, the inventor of the present application investigated the relationship between W / T and the frequency of the main vibration and the secondary vibration by computer simulation.
  • the thickness W of the quartz piece 17 having three main vibration frequencies of 46.0 MHz, 48.0 MHz, and 49.0 MHz was kept constant while the width W was changed. The simulation conditions are described below.
  • the main vibration and the sub vibrations 1 and 2 do not intersect if W / T is 25.93 or more and 27.07 or less. That is, if W / T is 25.93 or more and 27.07 or less (that is, T is 0.0363 mm and W is 0.941 mm or more and 0.983 mm or less), the frequency of the main vibration and the frequency of the sub vibration are separated. .
  • the main vibration and the sub vibrations 1 and 2 do not intersect if W / T is 25.93 or more and 27.07 or less. That is, if W / T is 25.93 or more and 27.07 or less (that is, T is 0.0348 mm and W is 0.902 mm or more and 0.942 mm or less), the frequency of the main vibration and the frequency of the sub vibration are separated. .
  • the main vibration and the sub vibrations 1 and 2 do not intersect if W / T is 25.93 or more and 27.07 or less. That is, if W / T is 25.93 or more and 27.07 or less (that is, T is 0.0341 mm and W is 0.884 mm or more and 0.923 mm or less), the frequency of the main vibration and the frequency of the sub vibration are separated. .
  • the frequency of the main vibration of the crystal piece 17 is 46.0 MHz or more and 49.0 MHz or less
  • the frequency of the main vibration and the frequency of the sub vibration are 25.93 ⁇ W / T ⁇ 27.07.
  • the CI value can be reduced if 25.93 ⁇ W / T ⁇ 27.07.
  • the inventor of the present application conducts an experiment using an actually manufactured sample described below, and sets a more preferable W / T range within a frequency range of 46.0 MHz or more and 49.0 MHz or less obtained by simulation. Asked. More specifically, the inventor of the present application produced 40 samples of the first to third samples of the crystal unit 10 respectively. The conditions of the first sample to the third sample are described below.
  • CI values were measured for the first to third samples.
  • the ambient temperature was varied from -30 ° C to 85 ° C.
  • the CI value the maximum value when changing from ⁇ 30 ° C. to 85 ° C. in each sample was used.
  • FIG. 11 is a graph showing the experimental results of the first to third samples (main vibration frequency: 48.0 MHz).
  • the vertical axis indicates the CI value
  • the horizontal axis indicates the width W.
  • FIG. 11 shows a CI value of 0.910 mm or more and 0.921 mm or less when the CI value is 40 ⁇ or less when the main vibration frequency is 48.0 MHz.
  • W / T is 26.16 or more and 26.47 or less. This range is included in the range of W / T in which the influence of the secondary vibration on the main vibration shown in FIG. Therefore, when the frequency of the main vibration is 48.0 MHz, if W / T is 26.16 or more and 26.47 or less, the influence of the secondary vibration is small, and the CI value is 40 ⁇ or less, which is a sufficiently low value. .
  • CI values were measured for the fourth to sixth samples.
  • the ambient temperature was varied from -30 ° C to 85 ° C.
  • the CI value the maximum value when changing from ⁇ 30 ° C. to 85 ° C. in each sample was used.
  • FIG. 12 is a graph showing experimental results of the fourth to sixth samples (main vibration frequency: 48.0 MHz).
  • the vertical axis represents the CI value
  • the horizontal axis represents RL / L and RW / W.
  • RW / W is 0.86 or more and 0.94 or less
  • RL / L is 0.78 or more and 0.85 or less. If so, the CI value is 40 ⁇ or less.
  • the CI value can be sufficiently reduced even when RW / W is larger than 0.94 and RL / L is larger than 0.85. Therefore, when the frequency of the main vibration of the crystal piece 17 is 48.0 MHz, 0.78 ⁇ RL / L ⁇ 0.95 and 0.86 ⁇ RW / W ⁇ 0.95. For example, the CI value can be reduced.
  • the upper limit of RL / L and RW / W is set to 0.95. When RL / L and RW / W are larger than 0.95, the vibration energy of the main vibration of the crystal piece 17 is sufficiently confined in the region A1. It is because it is not.
  • FIG. 13 is a cross-sectional structure diagram of a crystal resonator 10a according to a modification.
  • the crystal resonator 10 a includes a crystal resonator element 16 including a crystal element 17, and is different from the crystal oscillator 10 described in the above embodiment with a thermistor on the back surface of the substrate 12. The difference is that 60 is provided.
  • the crystal piece 17 can apply the structure demonstrated in the said embodiment.
  • FIG. 14 is a cross-sectional structure diagram of the crystal oscillator 300.
  • the crystal oscillator 300 includes a crystal resonator element 16 including a crystal element 17, and differs from the crystal oscillator 10 of FIG. 3 in that an IC 302 is mounted on the back surface of the substrate 12. ing.
  • the crystal piece 17 can apply the structure demonstrated in the said embodiment.
  • the crystal piece and the crystal resonator according to the present invention are not limited to the crystal piece 17 and the crystal resonator 10 and can be changed within the scope of the gist thereof.
  • the crystal piece 17 has a shape in which the thickness decreases as the distance from the center of the surface increases in both the short side direction and the long side direction.
  • the thickness of the crystal piece 17 may decrease as the distance from the center of the surface decreases in the short side direction, or may decrease as the distance from the center of the surface increases in the long side direction. That is, the thickness of the region A2 and the thickness of the region A3 may be smaller than the thickness of the region A1, and / or the thickness of the region A4 and the thickness of the region A5 may be smaller than the thickness of the region A1.
  • a region having a larger thickness than the region A2 may be provided on the + Z ′ side from the region A2, or a thickness larger than the region A3 on the ⁇ Z ′ side than the region A3.
  • region which has may be provided.
  • a region having a larger thickness than the region A4 may be provided on the ⁇ X side of the region A4.
  • a region having a larger thickness than the region A5 may be provided on the + X side of the region A5. That is, if the regions A2 to A5 having a smaller thickness than the region A1 are provided around the region A1, the vibration energy of the main vibration is confined in the region A1, so that further regions around the regions A2 to A5. May or may not be present.
  • regions A2 to A5 are convex surfaces that change continuously, they may be concave surfaces or surfaces that change discontinuously. That is, as shown in FIG. 16, the regions A2 to A5 may be stepped.
  • the present invention is useful for crystal pieces and crystal resonators, and is particularly excellent in that the CI value can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本発明に係る水晶片は、主面の長辺が水晶片のZ'軸と実質的に平行であり、主面の短辺が水晶片のX軸と実質的に平行であり、水晶片の主振動の周波数が、46.0MHz以上49.0MHz以下であり、水晶片が、主面の中央を含む第1の領域と、長辺が延在する長辺方向の両側において第1の領域に隣接する第2の領域及び第3の領域と、短辺が延在する短辺方向の両側において第1の領域に隣接する第4の領域及び第5の領域を含んでおり、第1の領域の厚みが実質的に均一であり、第2の領域の厚み及び第3の領域の厚みが第1の領域の厚みよりも小さく、及び/又は、第4の領域の厚み及び第5の領域の厚みが第1の領域の厚みよりも小さく、短辺の長さがWであり、厚さがTである場合に、25.93≦W/T≦27.07が成立していること、を特徴とする。

Description

水晶片及び水晶振動子
 本発明は、ATカット型の水晶片及び水晶振動子に関する。
 近年、水晶振動子の小型化が求められる中で、水晶片を小型にする必要がある。ただし、水晶片が小型化されると、副振動の影響がより顕著に現れたり、振動漏れの影響が現れたりして、直列抵抗値が大きくなりやすい。直列抵抗値を低減することを目的とする従来の水晶片に関する発明としては、例えば、特許文献1に記載の水晶振動板が知られている。該水晶振動板では、水晶振動板の端部に面取り加工(べベル加工)が施されている。これにより、励振電極下に振動エネルギーが閉じ込められて、良好な直列抵抗値が得られるようになる。
 以上のように、水晶片では、良好な直列抵抗値を得るために種々の工夫がなされている。
特開2013-34176号公報
 そこで、本発明の目的は、CI(クリスタルインピーダンス)値を低減できる水晶片及び水晶振動子を提供することである。
 本発明の一形態に係る水晶片は、板状をなしており、主面の法線方向から見たときに矩形状をなしているATカット型の水晶片であって、前記主面の長辺が前記水晶片のZ'軸と実質的に平行であり、前記主面の短辺が前記水晶片のX軸と実質的に平行であり、前記水晶片の主振動の周波数が、46.0MHz以上49.0MHz以下であり、前記水晶片が、前記主面の法線方向から見たときに該主面の中央を含む第1の領域と、前記長辺が延在する長辺方向の両側において該第1の領域に隣接する第2の領域及び第3の領域と、前記短辺が延在する短辺方向の両側において該第1の領域に隣接する第4の領域及び第5の領域とを含んでおり、前記第1の領域の厚さが実質的に均一であり、前記第2の領域の厚さ及び前記第3の領域の厚さが前記第1の領域の厚さよりも小さく、及び/又は、前記第4の領域の厚さ及び前記第5の領域の厚さが該第1の領域の厚さよりも小さく、前記第1の領域、前記第4の領域及び前記第5の領域の短辺方向の長さがWであり、前記第1の領域の厚さがTである場合に、25.93≦W/T≦27.07が成立していること、を特徴とする。
 本発明は、前記水晶片を備えた水晶振動子にも向けられている。
 本発明によれば、CI値を低減できる。
水晶振動子10の外観斜視図である。 水晶振動子10の分解斜視図である。 図1のA-Aにおける断面構造図である。 図2のB-Bにおける断面構造図である。 図2のC-Cにおける断面構造図である。 水晶片17を上側から見た図である。 領域A1の拡大図である。 主振動の周波数が46.0MHzである水晶片17において、主振動及び副振動の周波数とW/Tとの関係を示したグラフである。 主振動の周波数が48.0MHzである水晶片17において、主振動及び副振動の周波数とW/Tとの関係を示したグラフである。 主振動の周波数が49.0MHzである水晶片17において、主振動及び副振動の周波数とW/Tとの関係を示したグラフである。 第1のサンプルないし第3のサンプルの実験結果を示したグラフである。 第4のサンプルないし第6のサンプルの実験結果を示したグラフである。 変形例に係る水晶振動子10aの断面構造図である。 水晶発振器300の断面構造図である。 その他の実施形態に係る水晶片17aの断面構造図である。 その他の実施形態に係る水晶片17bの断面構造図である。
(水晶振動子の構造)
 以下に、本発明の電子部品の一実施形態に係る水晶片を備えた水晶振動子について図面を参照しながら説明する。図1は、水晶振動子10の外観斜視図である。図2は、水晶振動子10の分解斜視図である。図3は、図1のA-Aにおける断面構造図である。
 以下では、水晶振動子10の主面に対する法線方向を上下方向と定義し、上側から見たときに、水晶振動子10の長辺が延在する方向を長辺方向と定義し、水晶振動子10の短辺が延在する方向を短辺方向と定義する。また、以下では、水晶片17のATカットの軸方向を基準として各構成を説明することもある。
 水晶振動子10は、図1ないし図3に示すように、基板12、金属キャップ14、水晶振動片16及びろう材50を備えている。水晶振動子10の短辺の幅が1.6mmであり、水晶振動子10の長辺の長さが2.0mmである。
 基板12(回路基板の一例)は、基板本体21、外部電極22,26,40,42,44,46、ビアホール導体25,28,54,56及びメタライズ膜30を含んでいる。
 基板本体21は、板状をなしており、上側から見たときに、矩形状をなしている。基板本体21は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体、炭化ケイ素質焼結体、ガラスセラミックス焼結体等のセラミックス系絶縁性材料、水晶、ガラス、シリコン等により作製されている。本実施形態では、基板本体21は、セラミック材料により作製された複数の絶縁体層が積層されて構成されている。基板本体21は、上下に2つの主面を有している。基板本体21の上側の主面(+Y’側の主面)を表面と呼び、基板本体21の下側の主面(-Y’側の主面)を裏面と呼ぶ。
 外部電極22,26は、基板本体21の表面において、長辺方向の一方端側で短辺方向に並んで設けられている。具体的には、外部電極22は、基板本体21の表面の-Z’及び+X側の角近傍に設けられている矩形状の導体層である。外部電極26は、基板本体21の表面の-Z’及び-X側の角近傍に設けられている矩形状の導体層である。
 外部電極40,42,44,46は、基板本体21の裏面の各角近傍に設けられている。外部電極40は、基板本体21の裏面の-Z’及び-X側の角近傍に設けられている正方形状の導体層であり、上側から見たときに、外部電極26と重なっている。外部電極42は、基板本体21の裏面の-Z’及び+X側の角近傍に設けられている正方形状の導体層であり、上側から見たときに、外部電極22と重なっている。外部電極44は、基板本体21の裏面の+Z’及び-X側の角近傍に設けられている正方形状の導体層である。外部電極46は、基板本体21の裏面の+Z’及び+X側の角近傍に設けられている正方形状の導体層である。
 ビアホール導体25は、基板本体21を上下方向に貫通しており、外部電極22と外部電極42とを接続している。ビアホール導体28は、基板本体21を上下方向に貫通しており、外部電極26と外部電極40とを接続している。
 メタライズ膜30は、基板本体21の表面上に設けられている線状の金属膜であり、上側(表面に対する法線方向)から見たときに、長方形状の環状をなしている。外部電極22,26は、上側から見たときに、メタライズ膜30に囲まれた領域内に設けられている。
 ビアホール導体54は、基板本体21を上下方向に貫通しており、メタライズ膜30と外部電極46とを接続している。ビアホール導体56は、基板本体21を上下方向に貫通しており、メタライズ膜30と外部電極44とを接続している。
 外部電極22,26,40,42,44,46及びメタライズ膜30は、3層構造をなしており、具体的には、下層側から上層側へとモリブデン層、ニッケル層及び金層が積層されることにより構成されている。ビアホール導体25,28,54,56は、基板本体21に形成されたビアホールに対してモリブデン等の導体が埋め込まれて作製される。
 水晶振動片16は、水晶片17、外部電極97,98、励振電極100,101及び引き出し導体102,103を含んでいる。水晶片17は、板状をなしており、上側から見たときに、矩形状をなしている。水晶片17の上側の主面を表面と呼び、水晶片17の下側の主面を裏面と呼ぶ。
 水晶片17は、例えば、水晶の原石などから所定の角度で切り出されたATカット型の水晶片である。また、水晶片17の表面及び裏面の長辺は、水晶片17のZ’軸と実質的に平行である。水晶片17の表面及び裏面の短辺は、水晶片17のX軸と実質的に平行である。実質的に平行とは、Z’軸、X軸に対し、およそ±1度の範囲内のものをいう。なお、水晶片17には、べベル加工が施されているが、詳細については後述する。また、図2,3では、べベル加工が施されている点については表現されていない。
 水晶振動子のサイズは、長辺方向の長さが2.0mm、短辺方向の幅が1.6mmの範囲に収めるため、パッケージの壁厚さ、封止材のにじみ、素子のマウント精度等を考慮して、水晶片17のサイズは、長辺方向の長さが1.500mm以下となり、水晶片17の短辺方向の幅が1.00mm以下となるように水晶片17が設計される。
 外部電極97は、水晶片17の-Z’及び+X側の角及びその近傍に設けられている導体層である。外部電極97は、水晶片17の表面から裏面に跨って形成されており、水晶片17の+X側及び-Z’側の各側面にも形成されている。外部電極98は、水晶片17の裏面の-Z’及び-X側の角及びその近傍に設けられている導体層である。外部電極98は、水晶片17の表面から裏面に跨って形成されており、水晶片17の-X側及び-Z’側の各側面にも形成されている。これにより、外部電極97,98は、水晶片17の短辺に沿って並んでいる。
 励振電極100は、水晶片17の表面の中央に設けられており、上側から見たときに矩形状をなしている。励振電極101は、水晶片17の裏面の中央に設けられており、上側から見たときに矩形状をなしている。励振電極100と励振電極101とは、上側から見たときに、一致した状態で重なっている。
 引き出し導体102は、水晶片17の表面に設けられており、外部電極97と励振電極100とを接続している。引き出し導体103は、水晶片17の裏面に設けられており、外部電極98と励振電極101とを接続している。外部電極97,98、励振電極100,101及び引き出し導体102,103は、例えば、クロムの下地層上に金が積層されることにより作製される。
 水晶振動片16は、基板12の表面に実装される。具体的には、外部電極22と外部電極97とが導電性接着剤210により電気的に接続された状態で固定され、外部電極26と外部電極98とが導電性接着剤212により電気的に接続された状態で固定される。
 金属キャップ14は、矩形状の開口を有する筺体であり、例えば、鉄ニッケル合金又はコバルトニッケル合金の母材にニッケルめっき及び金めっきが施されることにより作製されている。本実施形態では、金属キャップ14は、下側が開口した直方体状の箱であり、鉄ニッケル合金の母材の表面にニッケルめっき及び金めっきが施されることにより作製されている。
 ろう材50は、メタライズ膜30上に配置される。ろう材50は、メタライズ膜30と実質的に同じ形状を有しており、長方形状の環状をなしている。ろう材50は、メタライズ膜30よりも低い融点を有しており、例えば、金-すず合金により作製されている。ろう材50は、例えば、印刷等によりメタライズ膜30上に形成される。そして、金属キャップ14の開口の外縁がろう材50に接触した状態で、メタライズ膜30が溶融及び固化させられる。これにより、金属キャップ14は、開口の外縁の全長においてメタライズ膜30にろう材50を介して接合する。その結果、基板本体21の表面及び金属キャップ14により、密閉空間Spが形成されている。よって、水晶振動片16は、密閉空間Sp内に収容されている。また、密閉空間Spは、金属キャップ14がメタライズ膜30及びろう材50を介して基板本体21に密着することによって、真空状態に保たれている。ただし、大気状態でもよい。なお、ろう材50の代わりに、例えば、低融点ガラス、樹脂等の接着剤が用いられてもよく、このとき、メタライズ膜30は必ずしも必要ではない。
(水晶片の詳細について)
 以下に、水晶片17の詳細について図面を参照しながら説明する。図4は、図2のB-Bにおける断面構造図である。図5は、図2のC-Cにおける断面構造図である。図6は、水晶片17を上側から見た図である。図7は、領域A1の拡大図である。
 本実施形態に係る水晶片17は、CI値を低減するために、以下に説明する条件を満足している。
条件1:水晶片17の主振動の周波数が46.0MHz以上49.0MHz以下である。
条件2:水晶片17の表面及び裏面の長辺が水晶片17のZ'軸と実質的に平行である。
条件3:水晶片17の表面及び裏面の短辺が水晶片17のX軸と実質的に平行である。
条件4:べベル加工が施されることにより、図4及び図5に示すように、水晶片17の表面及び裏面の外縁近傍の厚さが水晶片17の表面及び裏面の中央近傍の厚さより薄くなっている。
条件5:水晶片17の領域A1,A4,A5の短辺方向の長さがWであり、水晶片17の領域A1の厚さがTである場合に、25.93≦W/T≦27.07が成立している。領域A1,A4,A5については後述する。
<条件1について>
 水晶片17の主振動の周波数は、水晶片17の厚さTに依存している。したがって、水晶片17の厚さTは、0.0341mm以上0.0363mm以下の範囲に設定されている。
<条件2及び条件3について>
 水晶片は、その短辺近傍において導電性接着剤で基板に固定されることが一般的であり、また、ATカットの水晶片は、厚みすべり振動の振動方向がX軸方向であることが知られている。したがって、従来の長辺がX軸方向と平行となる水晶片は、短辺側の導電性接着剤を介して基板に振動漏れの影響を受けやすい。これに対して本実施形態に係るATカット型の水晶片17は、長辺がZ’軸方向と平行であるため、Z’軸領域への振動漏れが少なく、水晶片17の短辺近傍において導電性接着剤210,212で基板12に固定した場合であっても、基板への振動漏れの影響が少ない。したがって、本実施形態に係るATカット型の水晶片によれば、長辺がX軸方向と平行である水晶片より、振動漏れの影響が少なく、CI値が良い。
<条件4について>
 水晶片17は、図6に示すように、上側から見たときに、領域A1~A5を含んでいる。領域A1は、上側から見たときに、表面の中央を含む長方形状の領域である。ただし、領域A1は、上側から見たときに、長方形状以外の形状であってもよく、例えば、楕円形状であってもよい。領域A2は、+Z’側において領域A1に隣接する長方形状の領域である。領域A2は、表面の+Z’側の短辺全体、表面の-X側及び+X側の長辺の+Z’側の端部近傍に接している。すなわち、領域A2は、水晶片17において+Z’側の端部に位置している。領域A3は、-Z’側において領域A1に隣接する長方形状の領域である。領域A3は、表面の-Z’側の短辺全体、表面の-X側及び+X側の長辺の-Z’側の端部近傍に接している。すなわち、領域A3は、水晶片17において-Z’側の端部に位置している。
 領域A4は、-X側において領域A1に隣接すると共に、領域A2,A3に左右から挟まれている長方形状の領域である。領域A4は、表面の-X側の長辺の両端を除く部分に接している。すなわち、領域A4は、水晶片17において-X側の端部に位置している。領域A5は、+X側において領域A1に隣接すると共に、領域A2,A3に左右から挟まれている長方形状の領域である。領域A5は、表面の+X側の長辺の両端を除く部分に接している。すなわち、領域A5は、水晶片17において+X側の端部に位置している。
 領域A1の厚さTは、図4及び図5に示すように、実質的に均一である。ただし、領域A1の表面及び裏面は、わずかに湾曲している。したがって、実質的に均一である領域A1とは、図7に示すように、領域A1における水晶片の厚さの最大値がTmaxである場合に、Tmax-2μm以上Tmax以下の厚さを有する領域である。ただし、領域A1は、表面の中央を含んでいると共に、連続した領域である。また、領域A1の厚さTは、実質的に均一であり、Tmaxをその値とする。
 領域A2~A5の厚さは、図4及び図5に示すように、領域A1の厚さTよりも小さい。本実施形態では、領域A2~A5の厚さは、領域A1から離れるにしたがって連続的に小さくなっている。本実施形態では、領域A2~A5における表面及び裏面は、凸面をなしている。
<条件5について>
 水晶片17の領域A1,A4,A5の短辺方向の長さがWであり、水晶片17の領域A1の厚さがTである場合に、25.93≦W/T≦27.07が成立している。また、26.16≦W/T≦26.47が成立していることがより好ましい。
<その他の条件について>
 上記条件1~条件5に加えて、領域A1~A3の長辺方向の長さがLであり、領域A1の長辺方向の長さがRLである場合に、0.78≦RL/L≦0.95が成立し、かつ、領域A1の短辺方向の長さがRWである場合に、0.86≦RW/W≦0.95が成立していることが好ましい。更に、領域A1~A3の長辺方向の長さがLであり、領域A1の長辺方向の長さがRLである場合に、0.78≦RL/L≦0.85が成立し、かつ、領域A1の短辺方向の長さがRWである場合に、0.86≦RW/W≦0.94が成立していることがより好ましい。ここで、長さRLは、領域A1において厚さがTmaxとなる点を通過し、長辺方向における領域A1の長さである。長さRWは、領域A1において厚さがTmaxとなる点を通過し、短辺方向における領域A1の長さである。
(水晶振動子の製造方法)
 以下に、水晶振動子10の製造方法について図面を参照しながら説明する。
 まず、基板12の製造方法について説明する。複数の基板本体21がマトリクス状に配列されたマザー基板を準備する。マザー基板は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体、炭化ケイ素質焼結体、ガラスセラミックス焼結体等のセラミックス系絶縁性材料、水晶、ガラス、シリコン等により作製されている。
 次に、マザー基板において、基板本体21のビアホール導体25,28,54,56が形成される位置にビームを照射して、貫通孔を形成する。更に、貫通孔にモリブデン等の導電性材料を充填し、乾燥させる。その後、導電性材料を焼結することにより、ビアホール導体25,28,54,56を形成する。
 次に、外部電極40,42,44,46の下地電極をマザー基板の裏面に形成する。具体的には、モリブデン層をマザー基板の裏面上に印刷し、乾燥させる。その後、モリブデン層を焼結する。これにより、外部電極40,42,44,46の下地電極が形成される。
 次に、外部電極22,26及びメタライズ膜30の下地電極をマザー基板の表面に形成する。具体的には、モリブデン層をマザー基板の表面上に印刷し、乾燥させる。その後、モリブデン層を焼結する。これにより、外部電極22,26及びメタライズ膜30の下地電極が形成される。
 次に、外部電極40,42,44,46,22,26及びメタライズ膜30の下地電極に、ニッケルめっき及び金めっきをこの順に施す。これにより、外部電極40,42,44,46,22,26及びメタライズ膜30が形成される。
 ここで、貫通孔への導電性材料の充填とマザー基板への外部電極等の印刷は真空印刷などを用いることで、同時に形成することができる。このとき、導電性材料と外部電極等を同時に焼成する。
 また、マザー基板がセラミックス系焼結体絶縁性材料の場合は、焼成前のシート状態で、貫通孔の形成、導電性材料の充填、外部電極22,26,40,42,44,46及びメタライズ膜30の印刷、乾燥を行い、その後、複数枚積層した状態で加圧密着し積層シートとし、これを焼成して、ビアホール導体、外部電極22,26,40,42,44,46及びメタライズ膜30及び基板本体21を同時に完成させることができる。この後、前記同様のめっきを施す。
 次に、ダイサーにより、マザー基板を複数の基板本体21に分割する。なお、レーザビームを照射してマザー基板に分割溝を形成した後、マザー基板を複数の基板本体21に分割してもよい。
 次に、水晶振動片16の製造方法について説明する。水晶の原石をATカットにより切り出して、矩形状の板状の水晶片17を得る。この際、水晶片17の表面及び裏面の長辺が水晶片17のZ'軸と実質的に平行となり、水晶片17の表面及び裏面の短辺が水晶片17のX軸と実質的に平行となるように、水晶の原石をカットする。
 次に、水晶片17に対してバレル加工装置を用いてべベル加工を施す。これにより、水晶片17の稜線付近が削り取られて、図4及び図5に示すように、表面の中央から離れるにしたがって厚さが小さくなる断面形状を水晶片17が有するようになる。
 次に、水晶片17に外部電極97,98、励振電極100,101及び引き出し導体102,103を形成する。なお、外部電極97,98、励振電極100,101及び引き出し導体102,103の形成については、一般的な工程であるので説明を省略する。
 次に、基板本体21の表面に水晶振動片16を実装する。具体的には、図2及び図3に示すように、外部電極22と外部電極97とを導電性接着剤210により接着するとともに、外部電極26と外部電極98とを導電性接着剤212により接着する。
 次に、金属キャップ14をろう材50により基板12に取り付ける。以上の工程を経て、水晶振動子10が完成する。
(効果)
 本実施形態に係る水晶片17及び水晶振動子10によれば、CI値を低減できる。より詳細には、図4及び図5に示すように、表面の中央から離れるにしたがって厚さが小さくなる断面形状を水晶片17が有している。これにより、水晶片17の主振動の振動エネルギーが、領域A1に閉じ込められるようになる。領域A1には励振電極100,101が設けられている。その結果、主振動が効率よく電気信号に変換され、励振電極100,101から電気信号が出力されるようになる。よって、水晶片17及び水晶振動子10によれば、CI値を低減できる。
 また、水晶片17及び水晶振動子10によれば、以下に説明する理由によっても、CI値を低減できる。図8は、主振動の周波数が46.0MHzである水晶片17において、主振動及び副振動の周波数とW/Tとの関係を示したグラフである。図9は、主振動の周波数が48.0MHzである水晶片17において、主振動及び副振動の周波数とW/Tとの関係を示したグラフである。図10は、主振動の周波数が49.0MHzである水晶片17において、主振動及び副振動の周波数とW/Tとの関係を示したグラフである。なお、図8ないし10において、△は主振動を示し、□及び◇は副振動を示す。
 水晶片17及び水晶振動子10では、主振動の他に副振動が発生する。主振動は、厚み滑りにより発生する振動である。主振動の周波数は、水晶片17の厚さTに依存している。一方、副振動は、主振動以外の振動であり、水晶片17の短辺方向の伸縮や長辺方向の伸縮、水晶片17の撓み等により生じる振動である。副振動の周波数は、長さLや幅W等に依存している。このような副振動は、所謂スプリアスである。なお、水晶片17の長辺方向の長さLを一定にした場合においてW/Tを変動させた後述のシミュレーション結果からわかるとおり、水晶片17及び水晶振動子10に生じ得る副振動は、W/Tを調整することにより抑制することができる。
 ここで、水晶片17及び水晶振動子10のCI値を低減するためには、主振動の周波数と副振動の周波数とが離れるように、水晶片17及び水晶振動片16を設計すればよい。そこで、本願発明者は、コンピュータシミュレーションによりW/Tと主振動及び副振動の周波数との関係を調べた。コンピュータシミュレーションでは、46.0MHz、48.0MHz及び49.0MHzの3種類の主振動の周波数を有する水晶片17について、厚さTを一定に保って、幅Wを変化させた。以下に、シミュレーション条件を記載する。
(1)46.0MHz
厚さT:0.0363mm
長さL:1.350mm
長さRL:1.100mm
RW/W:0.90
(2)48.0MHz
厚さT:0.0348mm
長さL:1.350mm
長さRL:1.100mm
RW/W:0.90
(3)49.0MHz
厚さT:0.0341mm
長さL:1.350mm
長さRL:1.100mm
RW/W:0.90 
 以上の条件でシミュレーションを行ったところ、図8ないし図10に示す結果が得られた。そして、本願発明者は、シミュレーション結果に基づいて、好ましいW/Tを求めた。
 図8によれば、主振動の周波数が46.0MHzである場合には、W/Tが25.93以上27.07以下であれば、主振動と副振動1,2とが交差しない。すなわち、W/Tが25.93以上27.07以下(すなわち、Tが0.0363mm、Wが0.941mm以上0.983mm以下)であれば、主振動の周波数と副振動の周波数とが離れる。
 図9によれば、主振動の周波数が48.0MHzである場合には、W/Tが25.93以上27.07以下であれば、主振動と副振動1,2とが交差しない。すなわち、W/Tが25.93以上27.07以下(すなわち、Tが0.0348mm、Wが0.902mm以上0.942mm以下)であれば、主振動の周波数と副振動の周波数とが離れる。
 図10によれば、主振動の周波数が49.0MHzである場合には、W/Tが25.93以上27.07以下であれば、主振動と副振動1,2とが交差しない。すなわち、W/Tが25.93以上27.07以下(すなわち、Tが0.0341mm、Wが0.884mm以上0.923mm以下)であれば、主振動の周波数と副振動の周波数とが離れる。
 以上より、水晶片17の主振動の周波数が46.0MHz以上49.0MHz以下である場合には、25.93≦W/T≦27.07であれば、主振動の周波数と副振動の周波数とが離れることが分かった。以上より、主振動の周波数が46.0MHz以上49.0MHz以下である水晶片17において、25.93≦W/T≦27.07とすれば、CI値を低減できる。
 ところで、シミュレーションを用いれば主振動と副振動とを個別に解析できるため、46.0MHz以上49.0MHz以下の主振動における、主振動に与える副振動の影響が小さい範囲をCI値によって求められる利点がある。しかし、実際のサンプルのCI値の測定では、主振動と副振動とが重ね合わされたCI値しか得られないものの、寸法、形状、材料特性など実際の変動が反映された詳細な測定結果が得られる。そこで、本願発明者は、以下に説明する実際に製作したサンプルを用いた実験を行って、シミュレーションで求めた、46.0MHz以上49.0MHz以下の周波数範囲内においてより好ましいW/Tの範囲を求めた。より詳細には、本願発明者は、水晶振動子10の第1のサンプルないし第3のサンプルをそれぞれ40個ずつ作製した。以下に、第1のサンプルないし第3のサンプルの条件を記載する。
第1のサンプルないし第3のサンプル(主振動の周波数:48.0MHz)
Figure JPOXMLDOC01-appb-T000001
 以上の第1のサンプルないし第3のサンプルにおいて、CI値を測定した。実験では、周囲の温度を-30℃から85℃まで変化させた。CI値は、各サンプルにおいて-30℃から85℃まで変化させたときの最大値を用いた。
 図11は、第1のサンプルないし第3のサンプル(主振動の周波数:48.0MHz)の実験結果を示したグラフである。図11において、縦軸はCI値を示し、横軸は幅Wを示す。
 図11に、主振動の周波数が48.0MHzである場合に、CI値が40Ω以下となったWが0.910mm以上0.921mm以下のCI値を示す。ここで、水晶片17の厚さTは0.0348mmであるので、W/Tが26.16以上26.47以下となる。この範囲は、図10で示した主振動に与える副振動の影響が小さいW/Tが25.93以上27.07以下の範囲に含まれる。よって、主振動の周波数が48.0MHzである場合、W/Tが26.16以上26.47以下であれば、副振動の影響が小さく、かつCI値が40Ω以下となり十分に低い値となる。
 次に、本願発明者は、以下に説明する実験を行って、好ましいRL/L及びRW/Wの範囲を求めた。より詳細には、第4のサンプルないし第6のサンプルをそれぞれ40個ずつ作成した。以下に、第4のサンプルないし第6のサンプルの条件を記載する。
第4のサンプルないし第6のサンプル(主振動の周波数:48.0MHz)
Figure JPOXMLDOC01-appb-T000002
 以上の第4のサンプルないし第6のサンプルにおいて、CI値を測定した。実験では、周囲の温度を-30℃から85℃まで変化させた。CI値は、各サンプルにおいて-30℃から85℃まで変化させたときの最大値を用いた。
 図12は、第4のサンプルないし第6のサンプル(主振動の周波数:48.0MHz)の実験結果を示したグラフである。図12において、縦軸はCI値を示し、横軸はRL/L及びRW/Wを示す。
 図12によれば、主振動の周波数が48.0MHzである場合には、RW/Wが0.86以上0.94以下であって、かつ、RL/Lが0.78以上0.85以下であれば、CI値が40Ω以下となる。
 ただし、図12によれば、RW/Wが0.94より大きく、かつ、RL/Lが0.85よりも大きくても、CI値を十分に低減できると考えられる。そこで、水晶片17の主振動の周波数が48.0MHzである場合には、0.78≦RL/L≦0.95であって、かつ、0.86≦RW/W≦0.95であれば、CI値を低減できる。RL/L及びRW/Wの上限を0.95としているのは、RL/L及びRW/Wが0.95より大きくなると、水晶片17の主振動の振動エネルギーの領域A1への閉じ込めが十分でなくなるためである。
(変形例)
 以下に変形例に係る水晶振動子10aについて図面を参照しながら説明する。図13は、変形例に係る水晶振動子10aの断面構造図である。
 図13に示すように、本変形例に係る水晶振動子10aは水晶片17を含む水晶振動片16を備えており、上記実施形態で説明した水晶振動子10とは、基板12の裏面にサーミスタ60が設けられている点で異なっている。なお、水晶片17は、上記実施形態で説明した構成を適用することができる。
(水晶発振器)
 以下に水晶片17を備えた水晶発振器300について図面を参照しながら説明する。図14は、水晶発振器300の断面構造図である。
 図14に示すように、水晶発振器300は、水晶片17を含む水晶振動片16を備えており、図3の水晶振動子10とは、基板12の裏面にIC302が実装されている点で異なっている。なお、水晶片17は、上記実施形態で説明した構成を適用することができる。
(その他の実施形態)
 本発明に係る水晶片及び水晶振動子は、水晶片17及び水晶振動子10に限らずその要旨の範囲内において変更可能である。
 なお、水晶片17は、表面の中央から短辺方向及び長辺方向の両方に離れるにしたがって、厚さが薄くなる形状を有している。しかしながら、水晶片17の厚さは、表面の中央から短辺方向に離れるにしたがって、小さくなっていてもよいし、表面の中央から長辺方向に離れるにしたがって、小さくなっていてもよい。すなわち、領域A2の厚さ及び領域A3の厚さが領域A1の厚さよりも小さく、及び/又は、領域A4の厚さ及び領域A5の厚さが領域A1の厚さよりも小さければよい。
 図15及び図16は、その他の実施形態に係る水晶片17a,17bの断面構造図である。図15に示すように、領域A2よりも+Z’側に領域A2よりも大きな厚さを有する領域が設けられていてもよいし、領域A3よりも-Z’側に領域A3よりも大きな厚さを有する領域が設けられていてもよい。同様に、領域A4よりも-X側に領域A4よりも大きな厚さを有する領域が設けられていてもよい。領域A5よりも+X側に領域A5よりも大きな厚さを有する領域が設けられていてもよい。すなわち、領域A1よりも小さな厚さを有する領域A2~A5が領域A1の周囲に設けられていれば、主振動の振動エネルギーが領域A1に閉じ込められるので、領域A2~A5の周囲に更なる領域が存在していても存在しなくてもよい。
 また、領域A2~A5は、連続的に変化する凸面をなしているが、凹面をなしていてもよいし、不連続に変化する面であってもよい。すなわち、図16に示すように、領域A2~A5は、階段状をなしていてもよい。
 以上のように、本発明は、水晶片及び水晶振動子に有用であり、特に、CI値を低減できる点において優れている。
10,10a:水晶振動子
12:基板
14:金属キャップ
16:水晶振動片
17,17a,17b:水晶片
21:基板本体
22,26,40,42,44,46:外部電極
30:メタライズ膜
50:ろう材
60:サーミスタ
100,101:励振電極
300:水晶発振器
A1~A5:領域
 

Claims (10)

  1.  板状をなしており、主面の法線方向から見たときに矩形状をなしているATカット型の水晶片であって、
     前記主面の長辺が前記水晶片のZ'軸と実質的に平行であり、
     前記主面の短辺が前記水晶片のX軸と実質的に平行であり、
     前記水晶片の主振動の周波数が、46.0MHz以上49.0MHz以下であり、
     前記水晶片が、前記主面の法線方向から見たときに該主面の中央を含む第1の領域と、前記長辺が延在する長辺方向の両側において該第1の領域に隣接する第2の領域及び第3の領域と、前記短辺が延在する短辺方向の両側において該第1の領域に隣接する第4の領域及び第5の領域とを含んでおり、
     前記第1の領域の厚さが実質的に均一であり、
     前記第2の領域の厚さ及び前記第3の領域の厚さが前記第1の領域の厚さよりも小さく、及び/又は、前記第4の領域の厚さ及び前記第5の領域の厚さが該第1の領域の厚さよりも小さく、
     前記第1の領域、前記第4の領域及び前記第5の領域の短辺方向の長さがWであり、前記第1の領域の厚さがTである場合に、25.93≦W/T≦27.07が成立していること、
     を特徴とする水晶片。
  2.  26.16≦W/T≦26.47が成立していること、
     を特徴とする請求項1に記載の水晶片。
  3.  前記第2の領域の厚さ及び前記第3の領域の厚さが前記第1の領域の厚さよりも小さく、かつ、前記第4の領域の厚さ及び前記第5の領域の厚さが該第1の領域の厚さよりも小さいこと、
     を特徴とする請求項1又は請求項2のいずれかに記載の水晶片。
  4.  前記第2の領域及び前記第3の領域は、前記水晶片において前記長辺方向の両端に位置し、
     前記第4の領域及び前記第5の領域は、前記水晶片において前記短辺方向の両端に位置していること、
     を特徴とする請求項3に記載の水晶片。
  5.  前記水晶片の厚さは、前記主面の中央から前記長辺方向に離れるにしたがって小さくなり、かつ、前記主面の中央から前記短辺方向に離れるにしたがって小さくなっていること、
     を特徴とする請求項4に記載の水晶片。
  6.  前記第1の領域、前記第2の領域及び前記第3の領域の長辺方向の長さがLであり、前記第1の領域の長辺方向の長さがRLである場合に、0.78≦RL/L≦0.95が成立し、
     前記第1の領域の短辺方向の長さがRWである場合に、0.86≦RW/W≦0.95が成立していること、
     を特徴とする請求項4又は請求項5のいずれかに記載の水晶片。
  7.  0.78≦RL/L≦0.85が成立し、
     0.86≦RW/W≦0.94が成立していること、
     を特徴とする請求項6に記載の水晶片。
  8.  請求項1ないし請求項7のいずれかに記載の水晶片を備えていること、
     を特徴とする水晶振動子。
  9.  前記水晶片と、該水晶片の短辺に沿って並ぶ第1の外部電極及び第2の外部電極と、を備えている水晶振動片と、
     板状の基板本体と、該基板本体の主面上に設けられている第3の外部電極及び第4の外部電極と、
     を備えており、
     前記第1の外部電極と前記第3の外部電極とが固定され、前記第2の外部電極と前記第4の外部電極とが固定されること、
     を特徴とする請求項8に記載の水晶振動子。
  10.  前記基板本体上に設けられ、前記水晶振動片を覆うキャップを、
     更に備えていること、
     を特徴とする請求項9に記載の水晶振動子。                                      
     
PCT/JP2016/077521 2015-09-25 2016-09-16 水晶片及び水晶振動子 WO2017051781A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017534753A JP6233621B2 (ja) 2015-09-25 2016-09-16 水晶片及び水晶振動子
CN201680054847.5A CN108028638B (zh) 2015-09-25 2016-09-16 水晶片以及水晶振子
US15/923,413 US10425057B2 (en) 2015-09-25 2018-03-16 Quartz crystal blank and quartz crystal resonator unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015187890 2015-09-25
JP2015-187890 2015-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/923,413 Continuation US10425057B2 (en) 2015-09-25 2018-03-16 Quartz crystal blank and quartz crystal resonator unit

Publications (1)

Publication Number Publication Date
WO2017051781A1 true WO2017051781A1 (ja) 2017-03-30

Family

ID=58386592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077521 WO2017051781A1 (ja) 2015-09-25 2016-09-16 水晶片及び水晶振動子

Country Status (4)

Country Link
US (1) US10425057B2 (ja)
JP (1) JP6233621B2 (ja)
CN (1) CN108028638B (ja)
WO (1) WO2017051781A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600136A (zh) * 2017-10-02 2019-04-09 京瓷株式会社 晶体振荡器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6233620B2 (ja) * 2015-09-28 2017-11-22 株式会社村田製作所 水晶片及び水晶振動子
WO2017057167A1 (ja) * 2015-09-30 2017-04-06 株式会社村田製作所 水晶片及び水晶振動子
WO2017057137A1 (ja) * 2015-10-02 2017-04-06 株式会社村田製作所 水晶片及び水晶振動子
JP6797764B2 (ja) * 2017-08-09 2020-12-09 日本電波工業株式会社 水晶振動子およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316310A (ja) * 1988-12-12 1991-01-24 Nippon Dempa Kogyo Co Ltd 水晶振動子
JPH07183759A (ja) * 1993-12-22 1995-07-21 Seiko Epson Corp Atカット水晶振動子及び発振器
JP2013034176A (ja) * 2011-07-04 2013-02-14 Daishinku Corp 水晶振動板および当該水晶振動板を用いた水晶振動子
JP2016158147A (ja) * 2015-02-25 2016-09-01 京セラクリスタルデバイス株式会社 水晶素子および水晶デバイス

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297417A (ja) * 1985-10-23 1987-05-06 Seiko Electronic Components Ltd 矩形atカツト水晶振動子
US6791243B2 (en) * 2002-03-06 2004-09-14 Piedek Technical Laboratory Quartz crystal unit and its manufacturing method
JP4341583B2 (ja) * 2005-06-02 2009-10-07 エプソントヨコム株式会社 メサ型水晶振動子
JP4305542B2 (ja) * 2006-08-09 2009-07-29 エプソントヨコム株式会社 Atカット水晶振動片及びその製造方法
JP5028061B2 (ja) * 2006-10-05 2012-09-19 日本電波工業株式会社 水晶振動子
JP5562757B2 (ja) * 2010-08-07 2014-07-30 日本電波工業株式会社 メサ型のatカット水晶振動片及び水晶デバイス
JP5589167B2 (ja) * 2010-11-19 2014-09-17 セイコーエプソン株式会社 圧電振動片および圧電振動子
JP5708089B2 (ja) * 2011-03-18 2015-04-30 セイコーエプソン株式会社 圧電振動素子、圧電振動子、圧電発振器及び電子デバイス
JP5883665B2 (ja) * 2012-01-31 2016-03-15 日本電波工業株式会社 水晶振動片及び水晶デバイス
JP5943187B2 (ja) * 2012-03-21 2016-06-29 セイコーエプソン株式会社 振動素子、振動子、電子デバイス、および電子機器
US9331666B2 (en) * 2012-10-22 2016-05-03 Qualcomm Mems Technologies, Inc. Composite dilation mode resonators
KR20150060343A (ko) * 2013-11-26 2015-06-03 삼성전기주식회사 수정 진동자 및 그 제조방법
CN204031088U (zh) * 2014-07-28 2014-12-17 广东惠伦晶体科技股份有限公司 一种稳定性好的石英晶体谐振器
US9503045B2 (en) * 2015-01-19 2016-11-22 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus, and moving object
JP6592906B2 (ja) * 2015-01-29 2019-10-23 セイコーエプソン株式会社 振動片、振動子、振動デバイス、発振器、電子機器、および移動体
JP2016152477A (ja) * 2015-02-17 2016-08-22 セイコーエプソン株式会社 振動子、振動デバイス、発振器、電子機器、および移動体
WO2016199921A1 (ja) * 2015-06-12 2016-12-15 株式会社村田製作所 水晶片及び水晶振動子
CN107710612B (zh) * 2015-07-09 2020-10-27 株式会社村田制作所 石英片以及石英振子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316310A (ja) * 1988-12-12 1991-01-24 Nippon Dempa Kogyo Co Ltd 水晶振動子
JPH07183759A (ja) * 1993-12-22 1995-07-21 Seiko Epson Corp Atカット水晶振動子及び発振器
JP2013034176A (ja) * 2011-07-04 2013-02-14 Daishinku Corp 水晶振動板および当該水晶振動板を用いた水晶振動子
JP2016158147A (ja) * 2015-02-25 2016-09-01 京セラクリスタルデバイス株式会社 水晶素子および水晶デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600136A (zh) * 2017-10-02 2019-04-09 京瓷株式会社 晶体振荡器
CN109600136B (zh) * 2017-10-02 2023-12-19 京瓷株式会社 晶体振荡器

Also Published As

Publication number Publication date
JP6233621B2 (ja) 2017-11-22
CN108028638B (zh) 2021-01-05
CN108028638A (zh) 2018-05-11
JPWO2017051781A1 (ja) 2017-09-21
US20180212585A1 (en) 2018-07-26
US10425057B2 (en) 2019-09-24

Similar Documents

Publication Publication Date Title
JP6233621B2 (ja) 水晶片及び水晶振動子
JP6090687B1 (ja) 水晶片及び水晶振動子
JP6168264B2 (ja) 水晶片及び水晶振動子
JP6090686B1 (ja) 水晶片及び水晶振動子
JP6218004B2 (ja) 水晶片及び水晶振動子
JP6226218B2 (ja) 水晶片及び水晶振動子
JP6233620B2 (ja) 水晶片及び水晶振動子
JP6245489B2 (ja) 水晶片及び水晶振動子
WO2017061478A1 (ja) 水晶片及び水晶振動子
JP6150092B1 (ja) 水晶片及び水晶振動子
WO2017006941A1 (ja) 水晶振動片及び水晶振動子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534753

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848569

Country of ref document: EP

Kind code of ref document: A1