WO2017051699A1 - 熱電変換素子 - Google Patents

熱電変換素子 Download PDF

Info

Publication number
WO2017051699A1
WO2017051699A1 PCT/JP2016/076078 JP2016076078W WO2017051699A1 WO 2017051699 A1 WO2017051699 A1 WO 2017051699A1 JP 2016076078 W JP2016076078 W JP 2016076078W WO 2017051699 A1 WO2017051699 A1 WO 2017051699A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
bet
high heat
heat conduction
substrate
Prior art date
Application number
PCT/JP2016/076078
Other languages
English (en)
French (fr)
Inventor
広樹 渡辺
林 直之
佳也 大原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017051699A1 publication Critical patent/WO2017051699A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present invention relates to a thermoelectric conversion element.
  • thermoelectric conversion materials that can mutually convert thermal energy and electrical energy are used for thermoelectric conversion elements such as power generation elements and Peltier elements that generate electricity by heat.
  • the thermoelectric conversion element can convert heat energy directly into electric power, and has an advantage that a movable part is not required. For this reason, a thermoelectric conversion module (power generation device) formed by connecting a plurality of thermoelectric conversion elements is provided in a portion where heat is exhausted, such as an incinerator or various facilities in a factory, so that it is not necessary to incur operation costs and is simple. Can get power.
  • thermoelectric conversion element As such a thermoelectric conversion element, a so-called ⁇ -type thermoelectric conversion element is known.
  • a ⁇ -type thermoelectric conversion element is provided with a pair of electrodes spaced apart from each other, an N-type thermoelectric conversion material on one electrode, and a P-type thermoelectric conversion material on the other electrode, which are also spaced apart from each other. The upper surfaces of both thermoelectric conversion materials are connected by electrodes.
  • a plurality of thermoelectric conversion elements are arranged so that N-type thermoelectric conversion materials and P-type thermoelectric conversion materials are alternately arranged, and the lower electrodes of the thermoelectric conversion material are connected in series, so that thermoelectric conversion is achieved.
  • a module is formed.
  • Normal thermoelectric conversion elements including ⁇ -type thermoelectric conversion elements, have an electrode on a sheet-like substrate, a thermoelectric conversion layer (power generation layer) on the electrode, and a sheet on the thermoelectric conversion layer. It has the structure which has a shape-like electrode. That is, in a normal thermoelectric conversion element, a thermoelectric conversion layer is sandwiched between electrodes in the thickness direction, a temperature difference is generated in the thickness direction of the thermoelectric conversion layer, and heat energy is converted into electric energy.
  • thermoelectric conversion elements have a problem that the manufacturing process becomes complicated and takes time. Further, there has been a problem that the effect of thermal strain due to the difference in thermal expansion coefficient of each member and the occurrence of fatigue phenomenon at the interface due to repeated occurrence of thermal strain change, resulting in performance degradation.
  • Patent Document 1 and Patent Document 2 use a substrate having a high heat conduction portion and a low heat conduction portion to cause a temperature difference in the surface direction of the thermoelectric conversion layer, not in the thickness direction of the thermoelectric conversion layer.
  • a thermoelectric conversion element that converts thermal energy into electrical energy is described.
  • a flexible film substrate composed of two types of materials having different thermal conductivities is provided on both surfaces of a thermoelectric conversion layer formed of a P-type material and an N-type material.
  • thermoelectric conversion element in which a material having a different thermal conductivity is positioned at a position opposite to the energizing direction and a material having a high thermal conductivity is positioned at a part of the outer surface of the substrate.
  • Patent Document 2 includes a first temperature difference forming layer that generates a temperature difference in the horizontal direction, a thermoelectric element formed on the first temperature difference forming layer, and a wiring that connects the thermoelectric elements.
  • the main surface on the thermoelectric element side is smaller in area than the other main surface, and the first high thermal conductor and the first low thermal conductor filled in the gap are alternately arranged in the horizontal direction.
  • the thermoelectric element is formed so as to cover at least a part of the first high thermal conductor, and is extended to the first low thermal conductor adjacent to the first high thermal conductor.
  • a thermoelectric conversion module device is described.
  • thermoelectric conversion element that generates a temperature difference in the surface direction of the thermoelectric conversion layer and converts heat energy into electric energy, in order to increase the amount of power generation, the temperature difference generated in the thermoelectric conversion layer is increased.
  • one surface is brought into contact with a high-temperature heat source, and the other surface is brought into contact with a low-temperature heat source (or air cooling), thereby causing a temperature difference in the thermoelectric conversion layer. Therefore, it is necessary to efficiently convert the temperature difference between the high-temperature heat source and the low-temperature heat source given from the outside into the temperature difference in the thermoelectric conversion layer.
  • thermoelectric conversion layer by efficiently converting the applied thermal energy into a temperature difference in the thermoelectric conversion layer, the amount of power generation can be increased, and the conversion efficiency between thermal energy and electrical energy can be improved.
  • the conventional thermoelectric conversion element sufficient studies have not been made on the configuration for increasing the temperature difference generated in the thermoelectric conversion layer.
  • An object of the present invention is to solve such problems of the prior art, and in the thermoelectric conversion element, the temperature difference between the high temperature heat source and the low temperature heat source given from the outside can be efficiently obtained in the thermoelectric conversion layer.
  • An object of the present invention is to provide a thermoelectric conversion element that can be converted into a temperature difference and can increase power generation.
  • the inventors of the present invention have a thermoelectric conversion layer, a power generation element having an electrode pair arranged with the thermoelectric conversion layer sandwiched in the plane direction, and an electrode on the maximum surface of the power generation element.
  • a power generation element having a thermoelectric conversion layer, and an electrode pair arranged with the thermoelectric conversion layer sandwiched in the plane direction;
  • Two high thermal conductivity parts having a thermal conductivity of 50 W / m ⁇ K or more, which are arranged apart from each other in the arrangement direction of the electrode pair on the maximum surface of the power generation element;
  • the separation distance in the surface direction of the two high heat conduction parts is L bet in the unit ⁇ m
  • the contact area between one high heat conduction part and the external low-temperature heat source is S cool in the unit ⁇ m 2 , Assuming that the cross-sectional area perpendicular to the separating direction of the high heat conducting part is S bet in the unit ⁇ m 2
  • Thermoelectric conversion element satisfying L bet ⁇ S cool / S bet ⁇ 0.01.
  • thermoelectric conversion element according to (1) or (2) that satisfies 1.57 ⁇ 10 2 ⁇ L bet ⁇ S cool / S bet ⁇ 2.0 ⁇ 10 10 .
  • thermoelectric conversion element according to any one of (1) to (3), wherein a separation distance L bet between the two high heat conducting portions is 20100 ⁇ m or less.
  • the power generation element includes a first substrate and a second substrate that sandwich the thermoelectric conversion layer and the electrode pair in the thickness direction, One high heat conduction part is laminated on the surface of the first substrate opposite to the thermoelectric conversion layer, and the other high heat conduction part is laminated on the surface of the second substrate opposite to the thermoelectric conversion layer (1)
  • the power generation element includes a first substrate and a second substrate that sandwich the thermoelectric conversion layer and the electrode pair in the thickness direction, The thermoelectric conversion element according to any one of (1) to (4), wherein two high heat conductive portions are laminated on a surface of the first substrate opposite to the thermoelectric conversion layer.
  • the power generation element includes a first substrate on which a thermoelectric conversion layer and an electrode pair are formed, The thermoelectric conversion element according to any one of (1) to (4), wherein two high heat conduction portions are stacked on a surface of the power generation element on the first substrate side.
  • the power generation element includes a first substrate on which a thermoelectric conversion layer and an electrode pair are formed, The thermoelectric conversion element according to any one of (1) to (4), wherein two high heat conduction portions are laminated on a surface of the power generation element on the thermoelectric conversion layer side.
  • thermoelectric conversion element in the thermoelectric conversion element, the temperature difference between the high temperature heat source and the low temperature heat source given from the outside can be efficiently converted into the temperature difference in the thermoelectric conversion layer, and the amount of power generation can be reduced.
  • a thermoelectric conversion element that can be enlarged can be provided.
  • FIG. 2 is a top view of FIG. 1. It is sectional drawing of FIG. It is a graph which shows the result of simulation. It is a figure which shows notionally another example of the thermoelectric conversion element of this invention. It is a figure which shows notionally another example of the thermoelectric conversion element of this invention. It is a figure which shows notionally another example of the thermoelectric conversion element of this invention. It is a figure which shows notionally another example of the thermoelectric conversion element of this invention. It is a figure which shows notionally another example of the thermoelectric conversion element of this invention. It is a figure which shows notionally another example of the thermoelectric conversion element of this invention. It is a figure which shows notionally another example of the thermoelectric conversion element of this invention.
  • thermoelectric conversion element of the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings.
  • “to” indicating a numerical range includes numerical values written on both sides.
  • is a numerical value ⁇ to a numerical value ⁇
  • the range of ⁇ is a range including the numerical value ⁇ and the numerical value ⁇ , and expressed by mathematical symbols, ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the angle unless otherwise specified, it means that the difference from the exact angle is within a range of less than 5 °.
  • the difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
  • “same” and “same” include an error range generally allowed in the technical field.
  • “entire surface” includes an error range generally allowed in the technical field, and includes, for example, 99% or more, 95% or more, or 90% or more. .
  • FIG. 1 is a perspective view conceptually showing an example of the thermoelectric conversion element of the present invention
  • FIG. 2A is a top view of FIG. 1
  • FIG. 2B is a cross-sectional view of FIG. Note that FIG. 2B shows a cross section of FIG. 2A cut in the horizontal direction in the drawing, but hatching is omitted to simplify the drawing.
  • thermoelectric conversion element 10 shown in FIGS. 1, 2A, and 2B basically includes a thermoelectric conversion layer 16, an electrode 26, an electrode 28, an adhesive layer 18, a thermoelectric conversion layer 16, an electrode 26, an electrode 28, and
  • the power generation element 14 including the first substrate 12 and the second substrate 20 that hold the adhesive layer 18 in the thickness direction, and the high heat conductive portion 13 and the second substrate stacked on a part of the main surface of the first substrate. It has a high heat conduction part 21 laminated on a part of the main surface.
  • the layer composed of the thermoelectric conversion layer 16, the electrode 26, the electrode 28, and the adhesive layer 18 is referred to as the composite layer 15.
  • thermoelectric conversion element 10 includes a power generation element 14 in which the composite layer 15 is held between the first substrate 12 and the second substrate 20, and a high heat conduction portion 13 that is stacked on the surface of the power generation element 14 on the first substrate 12 side. And a high heat conduction portion 21 laminated on the surface of the power generation element 14 on the second substrate 20 side.
  • the power generation element 14 has the thermoelectric conversion layer 16, the electrode 26, and the electrode 28 on the first substrate 12, and has the adhesive layer 18 that covers the thermoelectric conversion layer 16, the electrode 26, and the electrode 28.
  • the second substrate 20 is provided on the adhesive layer 18.
  • the electrode 26 and the electrode 28, that is, the electrode pair are provided so as to sandwich the thermoelectric conversion layer 16 in the direction of the substrate surface of the first substrate 12.
  • the direction of the substrate surface of the first substrate 12 is also simply referred to as “surface direction”.
  • the high heat conduction portion 13 and the high heat conduction portion 21 are located at different positions in the separation direction of the electrode 26 and the electrode 28, that is, in the energization direction and perpendicular to the main surface of the first substrate 12. When viewed from various directions, they are arranged so as not to overlap. That is, the high heat conduction part 13 and the high heat conduction part 21 are separated from each other by a predetermined distance in the surface direction. Moreover, as shown in the figure, the maximum surfaces of the high heat conduction part 13 and the high heat conduction part 21 are substantially parallel to the maximum surface of the thermoelectric conversion layer 16. In the present invention, the distance between the high heat conduction portion 13 and the high heat conduction portion 21 in this plane direction is L bet .
  • the thermoelectric conversion element 10 has a configuration in which two high heat conduction portions are located at different positions in the surface direction, and the thermoelectric conversion layer is sandwiched between the two high heat conduction portions in the surface direction. A temperature difference is caused to convert heat energy into electrical energy. At that time, when the separation distance L bet between the high heat conduction portion 13 and the high heat conduction portion 21 in the plane direction satisfies a predetermined condition, a temperature difference can be efficiently generated in the thermoelectric conversion layer 16, and the power generation amount can be reduced. Can be bigger. This point will be described in detail later.
  • first substrate 12 and the second substrate 20 have the same configuration except for the arrangement positions. Therefore, the description is the first except when it is necessary to distinguish the first substrate 12 and the second substrate 20.
  • One substrate 12 is used as a representative example.
  • the first substrate 12 has a lower thermal conductivity than a high heat conduction portion 13 described later, such as a glass plate, a ceramic plate, a plastic film, or a resin layer, and has sufficient heat resistance against the formation of the thermoelectric conversion layer 16 and the electrode 26. As long as it has the property, the thing which consists of various materials can be utilized.
  • the first substrate 12 is a sheet-like material (plate-like material) made of resin (polymer material) such as a plastic film or a layer made of resin. Forming the first substrate 12 with a resin is preferable because the thermoelectric conversion element 10 having flexibility (flexibility) can be formed while reducing the weight and cost.
  • resins that can be used for the first substrate 12 include polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6.
  • polyester resins such as phthalenedicarboxylate, polyimide, polycarbonate, polypropylene, polyethersulfone, cycloolefin polymer, polyetheretherketone (PEEK), triacetylcellulose (TAC) and other resins, glass epoxy, liquid crystalline polyester, etc.
  • a sheet-like material film / plate-like material
  • polyimide, polyethylene terephthalate, polyethylene naphthalate, and the like are preferably used in terms of thermal conductivity, heat resistance, solvent resistance, availability, economy, and the like.
  • the thickness and the like of the first substrate 12 may be appropriately set according to the forming material of the first substrate 12, the size of the thermoelectric conversion element 10, and the like.
  • the thickness of the first substrate 12 is preferably 2 to 50 ⁇ m, more preferably 2 to 25 ⁇ m.
  • the size of the surface direction of the first substrate 12 (when viewed from the direction orthogonal to the substrate surface) and the like are appropriately set according to the forming material of the first substrate 12, the size of the thermoelectric conversion element 10, and the like. do it.
  • the composite layer 15 including the thermoelectric conversion layer 16 and the electrode 26 and the electrode 28 is provided on one main surface of the first substrate 12. That is, the first substrate 12 also functions as a formation substrate for the composite layer 15 (thermoelectric conversion layer 16 and electrode 26 and electrode 28).
  • the thermoelectric conversion element 10 can be easily manufactured, and the productivity of the thermoelectric conversion element 10 can be improved. preferable.
  • thermoelectric conversion layer 16 can use any of various configurations using known thermoelectric conversion materials. Therefore, the thermoelectric conversion layer 16 may be a material using an organic thermoelectric conversion material or an inorganic thermoelectric conversion material. Further, the thermoelectric conversion layer 16 may be made of a P-type material, an N-type material, or both a P-type material and an N-type material.
  • thermoelectric conversion material used for the thermoelectric conversion layer 16 organic materials, such as a conductive polymer and a conductive nanocarbon material, are illustrated suitably, for example.
  • the conductive polymer include a polymer compound having a conjugated molecular structure (conjugated polymer). Specifically, known polyaniline, polyphenylene vinylene, polypyrrole, polythiophene, polyfluorene, acetylene, polyphenylene, polydioxythiophene, poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate), etc. Examples include ⁇ -conjugated polymers. In particular, polydioxythiophene, poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) can be preferably used.
  • the conductive nanocarbon material include carbon nanotubes (hereinafter also referred to as CNT), carbon nanofibers, carbon nanohorns, carbon nanobats, graphite, graphene, and carbon nanoparticles. These may be used alone or in combination of two or more. Among these, CNT is preferably used for the reason that the thermoelectric characteristics are better.
  • a CNT is a single-walled CNT in which a single carbon film (graphene sheet) is wound in a cylindrical shape, a double-walled CNT in which two graphene sheets are wound in a concentric shape, and a plurality of graphene sheets in a concentric circle There are multi-walled CNTs wound in a shape.
  • single-walled CNTs, double-walled CNTs, and multilayered CNTs may be used alone, or two or more kinds may be used in combination.
  • Single-walled CNTs may be semiconducting or metallic, and both may be used in combination. When both semiconducting CNT and metallic CNT are used, the content ratio of both in the composition can be appropriately adjusted according to the use of the composition.
  • the CNT may contain a metal or the like, or may contain a molecule such as fullerene.
  • the CNTs may be modified or processed.
  • a dopant (acceptor) may be included.
  • thermoelectric conversion material constituting the thermoelectric conversion layer 16 nickel or a nickel alloy is also preferably exemplified.
  • Various nickel alloys that generate electricity by generating a temperature difference can be used. Specific examples include one component such as vanadium, chromium, silicon, aluminum, titanium, molybdenum, manganese, zinc, tin, copper, cobalt, iron, magnesium, zirconium, or a nickel alloy mixed with two or more components. Is done.
  • the thermoelectric conversion layer 16 preferably has a nickel content of 90 atomic% or more, and more preferably has a nickel content of 95 atomic% or more. Preferably, it is made of nickel.
  • the thermoelectric conversion layer 16 made of nickel includes those having inevitable impurities.
  • the thermoelectric conversion layer 16 and the electrode may be formed integrally.
  • thermoelectric conversion element 10 of the present invention the size in the plane direction, the area ratio in the plane direction with respect to the substrate, and the like may be appropriately set according to the forming material of the thermoelectric conversion layer 16, the size of the thermoelectric conversion element 10, and the like. Good. Note that, in the illustrated thermoelectric conversion element 10, the thermoelectric conversion layer 16 has a center in the separation direction between the electrode 26 and the electrode 28 in the plane direction and the center in the separation direction between the high heat conduction portion 13 and the high heat conduction portion 21. Then formed.
  • thermoelectric conversion layer 16 has the electrical conductivity of a surface direction higher than the thickness direction. Since the electric conductivity in the surface direction of the thermoelectric conversion layer 16 is higher than the electric conductivity in the thickness direction, the generated electric power can be efficiently supplied in the separation direction of the electrode 26 and the electrode 28, that is, the energization direction.
  • the thermoelectric conversion layer 16 is connected with the electrode 26 and the electrode 28 so as to be sandwiched in the plane direction.
  • the electrode 26 and the electrode 28 are an electrode pair in the present invention.
  • the separation direction of the electrode 26 and the electrode 28 and the separation direction of the high heat conduction part 13 and the high heat conduction part 21 correspond. Note that the two electrodes have the same configuration except for the arrangement position, and therefore the description will be made using the electrode 26 as a representative example, unless the electrode 26 and the electrode 28 need to be distinguished.
  • the electrode 26 and the electrode 28 can be formed of various materials as long as they have a necessary conductivity. Specifically, various materials such as copper, silver, gold, platinum, nickel, aluminum, constantan, chromium, indium, iron, copper alloy, and other devices such as indium tin oxide (ITO) and zinc oxide (ZnO) Examples include materials used as transparent electrodes. Among these, copper, gold, silver, platinum, nickel, copper alloy, aluminum, constantan and the like are preferably exemplified, and copper, gold, silver, platinum and nickel are more preferably exemplified.
  • the electrode 26 and the electrode 28 may be laminated electrodes, such as a configuration in which a copper layer is formed on a chromium layer. Further, the electrode 26 and the electrode 28 may be formed of different materials.
  • the thickness and size of the electrode 26 and the electrode 28 may be appropriately set according to the thickness, size and shape of the thermoelectric conversion layer 16 and the size of the thermoelectric conversion element 10.
  • the composite layer 15 has the adhesion layer 18 on the thermoelectric conversion layer 16, the electrode 26, and the electrode 28 as a preferable aspect.
  • a thermoelectric conversion element thermoelectric conversion module
  • the adhesive layer 18 also functions as an insulating layer that insulates the second substrate 20 from the thermoelectric conversion layer 16, the electrode 26, and the electrode 28.
  • the forming material of the adhesive layer 18 is the first substrate 12, the thermoelectric conversion layer 16, the electrode 26, and the first substrate 12, the thermoelectric conversion layer 16, and the electrode 26 according to the forming material of the second substrate 20 and the like.
  • Various types of electrodes that can attach the electrode 28 and the second substrate 20 can be used. Specific examples include acrylic resins, urethane resins, silicone resins, epoxy resins, rubber, EVA, ⁇ -olefin polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, gelatin, starch, and the like.
  • the thickness of the adhesive layer 18 is such that the thermoelectric conversion layer 16 or the like and the second substrate 20 are adhered with sufficient adhesion depending on the forming material of the adhesive layer 18, the size of the step caused by the thermoelectric conversion layer 16, and the like.
  • a thickness that can be insulated and insulated may be set as appropriate. Basically, the thinner the adhesive layer 18, the higher the thermoelectric conversion performance. Specifically, it is preferably 3 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, particularly preferably 3 to 25 ⁇ m.
  • the thickness of the adhesive layer 18 By setting the thickness of the adhesive layer 18 to 3 ⁇ m or more, it is preferable in that the level difference caused by the thermoelectric conversion layer 16 can be sufficiently filled, good adhesion can be obtained, and sufficient insulation can be obtained. .
  • the thermoelectric conversion element 10 thermoelectric conversion module
  • the thermoelectric conversion element 10 thermoelectric conversion module
  • the layer 18 is preferable in that the thermal resistance of the layer 18 can be reduced and better thermoelectric conversion performance can be obtained.
  • the interface may be modified or cleaned by performing a known surface treatment such as plasma treatment, UV ozone treatment, electron beam irradiation treatment or the like on at least one surface of the surface to be formed.
  • the second substrate 20 is adhered, and the power generation element 14 holding the composite layer 15 including the thermoelectric conversion layer 16 and the like between the first substrate 12 and the second substrate 20 is provided.
  • S bet be a cross-sectional area perpendicular
  • the high heat conduction unit 13 is stacked on a part of the surface of the power generation element 14 on the first substrate 12 side, and the high heat conduction unit 21 is stacked on a part of the surface of the power generation element 14 on the second substrate 20 side. Is done.
  • the high heat conduction part 13 and the high heat conduction part 21 are located at different positions in the separation direction of the electrode 26 and the electrode 28, that is, in the energization direction, and are arranged so as not to overlap when viewed from the direction perpendicular to the main surface of the first substrate 12. Is done. Note that the two high heat conduction parts have the same configuration except for the arrangement positions. Therefore, the description is not provided unless the high heat conduction part 13 and the high heat conduction part 21 need to be distinguished. As a representative example.
  • the high thermal conductivity portion 13 has a higher thermal conductivity than the first substrate 12 and has a thermal conductivity of 50 W / m ⁇ K or more
  • films and metal foils made of various materials are exemplified.
  • various metals such as gold, silver, copper, and aluminum are exemplified in terms of thermal conductivity and the like.
  • copper and aluminum are preferably used in terms of thermal conductivity, economy, and the like.
  • the thickness and the like of the high heat conductive portion 13 may be set as appropriate according to the material for forming the high heat conductive portion 13, the size of the thermoelectric conversion element 10, and the like.
  • the size of the surface direction of the first substrate 12 is also set as appropriate according to the material for forming the high heat conduction portion 13, the size of the thermoelectric conversion element 10, and the like. do it.
  • the position in the surface direction of the high thermal conductive portion 13 on the first substrate 12 is not limited to the illustrated example, and various positions can be used.
  • the high heat conducting unit 13 may be included in the first substrate 12 in the surface direction.
  • a part of the high heat conducting unit 13 may be positioned at the end of the first substrate 12 in the plane direction, and the other region may be included in the first substrate 12.
  • various configurations can be used in addition to the configuration in which the high thermal conductive portion 13 is stacked on the surface of the first substrate 12.
  • a configuration in which a concave portion is formed in a partial region of one surface of the first substrate 12 and the high heat conducting portion 13 is incorporated in the concave portion so that the surface is uniform may be employed.
  • the formation method may be different between the high heat conduction part 13 and the high heat conduction part 21.
  • the high thermal conductivity portion 13 is formed on the first substrate 12 in the stacking direction. Located on the outside.
  • the present invention may have a configuration in which the high thermal conductive portion 13 is positioned inside the first substrate 12 in the stacking direction.
  • the configuration in which the high heat conductive portion 13 is included in the first substrate 12 in the thickness direction may be employed. Further, the formation method may be different between the high heat conduction part 13 and the high heat conduction part 21.
  • the high heat conductive portion is formed of a conductive material such as metal and the high heat conductive portion is disposed inside the stacking direction
  • the high heat conductive portion, the electrode 26, the electrode 28, and the thermoelectric conversion layer 16 are provided.
  • an insulating layer may be provided therebetween.
  • thermoelectric conversion element 10 configured as described above, for example, the surface of the thermoelectric conversion layer 16 can be obtained by bringing the high heat conduction portion 13 into contact with the low temperature heat source H 2 and bringing the high heat conduction portion 21 into contact with the high temperature heat source H 1. Electricity is generated by creating a temperature difference in the direction. Moreover, the generated electric power (electric energy) is taken out by connecting wiring to the electrode 26 and the electrode 28.
  • thermoelectric conversion element of the present invention the contact area between the high heat conduction part 13 and the low temperature heat source H 2 is S cool , and the separation distance between the high heat conduction part 13 and the high heat conduction part 21 in the plane direction is L bet ,
  • L bet ⁇ S cool / S bet ⁇ 0.01 is satisfied.
  • thermoelectric conversion element that converts a thermal energy into an electric energy by generating a temperature difference in the surface direction of the thermoelectric conversion layer
  • the applied thermal energy is efficiently converted into a temperature difference in the thermoelectric conversion layer.
  • sufficient studies have not been made on the configuration for increasing the temperature difference generated in the thermoelectric conversion layer.
  • the present inventors can efficiently convert the temperature difference between the high-temperature heat source and the low-temperature heat source given from the outside to the thermoelectric conversion element into the temperature difference in the thermoelectric conversion layer.
  • Various studies were made on the structure of the thermoelectric conversion element that can increase the size of the thermoelectric conversion element. According to the study by the present inventors, the contact area S cool between the high heat conduction part 13 and the low temperature heat source H 2 , the cross-sectional area S bet of the power generation element 14, and the separation distance L bet between the high heat conduction part 13 and the high heat conduction part 21. Found that is important.
  • thermoelectric conversion layer 16 can be increased.
  • separation distance L bet The larger the separation distance L bet between the high heat conduction unit 13 and the high heat conduction unit 21 (hereinafter, also simply referred to as “separation distance L bet ”), the more difficult it is for heat to flow in the surface direction of the power generation element 14.
  • the temperature difference at both ends of the layer 16 in the surface direction can be increased.
  • FIG. 3 shows a graph of simulation results.
  • the vertical axis represents the ratio between the contact area S cool and the cross-sectional area S bet
  • the horizontal axis represents the separation distance L bet .
  • the contact area S cool , the cross-sectional area S bet , and the separation distance L bet satisfy this relationship, the temperature difference between the high temperature heat source and the low temperature heat source can be efficiently converted into the temperature difference in the thermoelectric conversion layer.
  • the amount of power generation can be increased.
  • the separation distance L bet between the two high heat conducting portions is preferably 20100 ⁇ m or less. If the separation distance L bet between the two high heat conducting portions is too large, the air layer is geometrically increased, and thus there is a risk that the efficiency may be reduced due to heat dissipation. Therefore, the separation distance L bet is preferably 20100 ⁇ m or less.
  • the high heat conduction part 13 (high heat conduction part 21) is configured to be laminated on the flat first substrate 12 (second substrate 20), but the present invention is not limited thereto. Not done.
  • a recess is formed in a partial region of one surface of the first substrate 12 (second substrate 20) so that the surface is uniform in the recess. It is good also as a structure which incorporates the high heat conduction part 13 (high heat conduction part 21).
  • the cross-sectional area S bet in the case where the high heat conduction part is incorporated in the substrate in this way is, as shown in FIG. 4, the distance between the two high heat conduction parts in the thickness direction ⁇ the width in the plane direction (2 The width of the two high heat conducting portions in the direction perpendicular to the separating direction).
  • thermoelectric conversion element in the example shown in FIG. 1, a high temperature heat source H 1 and the low temperature heat source H 2 is to sandwich the thickness direction of the thermoelectric conversion element 10, in contact with high-temperature heat source H 1 and the high thermal conductive portion 21, a low temperature heat source H 2
  • the present invention is not limited to this.
  • 5A to 5D conceptually show other configurations of the thermoelectric conversion element of the present invention.
  • Thermoelectric conversion element 30a shown in Figure 5A except that the contact position between the high-temperature heat source H 1 and the low-temperature heat source H 2 are different, one having the same configuration as the thermoelectric conversion element 10 shown in FIG.
  • Thermoelectric conversion elements 30a are on both end faces in the plane direction of the thermoelectric conversion elements 30a, has a structure in which high-temperature heat source H 1 and the low-temperature heat source H 2 is in contact with.
  • thermoelectric conversion element 30a the contact area between the end surface and the low-temperature heat source of H 2 highly thermal conductive portion 13 and S cool, and the contact area S cool, and the sectional area S bet, and a distance L bet, L bet ⁇ S cool / S bet ⁇ 0.01 may be satisfied.
  • the configuration in which the both ends in the surface direction of the thermoelectric conversion element are in contact with the heat source is also referred to as a vertical thermoelectric conversion element.
  • the vertical thermoelectric conversion element may have a configuration in which two high heat conduction portions are formed on one substrate side. That is, like the thermoelectric conversion element 30b shown in FIG. 5B, the power generation element 14 holding the composite layer 15 in the thickness direction between the first substrate 12 and the second substrate 20, and the surface of the power generation element 14 on the first substrate 12 side It is good also as a structure which has the high heat conduction part 13 laminated
  • FIG. The positional relationship between the high heat conduction part 13 and the high heat conduction part 21 in the plane direction is the same as described above.
  • the power generation element 14 includes the composite layer 15 and the first substrate 12 that supports the composite layer 15, and the power generation element 14 on the first substrate 12 side. It is good also as a structure by which the high heat conductive part 13 and the high heat conductive part 21 are laminated
  • the power generation element 14 includes the composite layer 15 and the first substrate 12 that supports the composite layer 15, and the surface of the power generation element 14 on the composite layer 15 side.
  • the high heat conduction part 13 and the high heat conduction part 21 may be stacked.
  • the positional relationship between the high heat conduction portion 13 and the high heat conduction portion 21 in the plane direction is the same as described above.
  • thermoelectric conversion element of the present invention can be used for various applications. Examples include various power generation applications such as hot spring thermal generators, solar thermal generators, waste heat generators, and other devices (devices) such as wristwatch power supplies, semiconductor drive power supplies, and small sensor power supplies.
  • power generation applications such as hot spring thermal generators, solar thermal generators, waste heat generators, and other devices (devices) such as wristwatch power supplies, semiconductor drive power supplies, and small sensor power supplies.
  • sensor element uses such as a thermal sensor and a thermocouple, are illustrated besides a power generation use.
  • thermoelectric conversion element of the present invention has been described in detail, but the present invention is not limited to the above-described examples, and various modifications and changes may be made without departing from the scope of the present invention. Of course.
  • thermoelectric conversion element 10 As shown in FIG. 1, simulation was performed to obtain temperature conversion efficiency.
  • the size of the power generating element 14 was 6060 ⁇ m wide ⁇ 100 ⁇ m wide, 78 ⁇ m thick, and the cross-sectional area S bet was 7.8 ⁇ 10 3 ⁇ m 2 .
  • the combined thermal conductivity ⁇ bet of the power generation element 14 was set to 1.0 W / (m ⁇ K) from the thermal conductivity of each component of the power generation element 14.
  • the size (area S hot ) of the high heat conductive portion 13 is 3.0 ⁇ 10 5 ⁇ m 2
  • the height H hot is 1.0 ⁇ 10 4 ⁇ m
  • the thermal conductivity ⁇ hot is assumed to be copper. 3.98 ⁇ 10 2 W / (m ⁇ K).
  • the size (area S cool ) of the high heat conduction portion 21 is 3.0 ⁇ 10 5 ⁇ m 2
  • the height H cool is 1.0 ⁇ 10 4 ⁇ m
  • the heat conductivity ⁇ cool is assumed to be copper. 3.98 ⁇ 10 2 W / (m ⁇ K).
  • the ambient was air, and the thermal conductivity ⁇ air was 2.4 ⁇ 10 ⁇ 2 W / (m ⁇ K). Further, assuming that the low-temperature heat source H 2 is air-cooled, the heat transfer coefficient h between the low-temperature heat source H 2 and the high heat conducting portion 21 is 6.0 ⁇ 10 W / (m 2 ⁇ K). The temperature of the high temperature heat source H 1 was 80 ° C., and the temperature of the low temperature heat source H 2 was 24 ° C.
  • Example 2 Assuming that the low-temperature heat source H 2 is water-cooled, the heat transfer coefficient h between the low-temperature heat source H 2 and the high heat conduction portion 21 is 1.0 ⁇ 10 5 W / (m 2 ⁇ K) Similarly, a simulation was performed to obtain a temperature difference ⁇ T bet in the surface direction of the power generation element 14. As a result, ⁇ T bet was 15.7 ° C. That is, the temperature conversion efficiency was about 28% of the temperature difference (56 ° C.) given from the outside.
  • the size of the power generation element 14 was 60 ⁇ m wide ⁇ 100 ⁇ m wide, the thickness was 5000 ⁇ m, and the cross-sectional area S bet was 5.0 ⁇ 10 5 ⁇ m 2 . Further, the combined thermal conductivity ⁇ bet of the power generation element 14 was set to 1.0 ⁇ 10 ⁇ 2 W / (m ⁇ K) from the thermal conductivity of each component of the power generation element 14. Further, the size (area S hot ) of the high heat conducting portion 13 is 1.0 ⁇ 10 3 ⁇ m 2 , the height H hot is 1.0 ⁇ 10 ⁇ m, and the thermal conductivity ⁇ hot is assumed to be copper. It was set to 3.98 ⁇ 10 2 W / (m ⁇ K).
  • the size (area S cool ) of the high thermal conductivity portion 21 is 1.0 ⁇ 10 2 ⁇ m 2
  • the height H cool is 1.0 ⁇ 10 ⁇ m
  • the thermal conductivity ⁇ cool is assumed to be copper. It was set to 3.98 ⁇ 10 2 W / (m ⁇ K).
  • the ambient was air, and the thermal conductivity ⁇ air was 2.4 ⁇ 10 ⁇ 2 W / (m ⁇ K). Further, assuming that the low-temperature heat source H 2 is water-cooled, the heat transfer coefficient h between the low-temperature heat source H 2 and the high heat conduction portion 21 is 1.0 ⁇ 10 5 W / (m 2 ⁇ K). The temperature of the high temperature heat source H 1 was 80 ° C., and the temperature of the low temperature heat source H 2 was 24 ° C.
  • Example 2 Under such conditions, a simulation was performed in the same manner as in Example 1, and the temperature difference ⁇ T bet in the surface direction of the power generation element 14 was obtained. As a result, ⁇ T bet was 4.5 ° C. That is, the temperature conversion efficiency was about 8% of the temperature difference (56 ° C.) given from the outside.
  • Examples 1 and 2 which are the thermoelectric conversion elements of the present invention can obtain a higher temperature conversion efficiency than that of Comparative Example 1, and the temperature difference given from the outside can be efficiently obtained from the thermoelectric conversion layer. It can be converted to a temperature difference, and it can be seen that a high power generation amount can be obtained. From the above results, the effects of the present invention are clear.

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

熱電変換素子において、外部から与えられた、高温熱源と低温熱源との温度差を、効率よく熱電変換層内の温度差に変換することができ、発電量を大きくできる熱電変換素子を提供する。熱電変換層、および、熱電変換層を面方向に挟んで配置された電極対を有する発電素子と、発電素子の最大面に電極対の配列方向に離間して配置される、熱伝導率が50W/m・K以上の2つの高熱伝導部とを有し、2つの高熱伝導部の面方向の離間距離をLbet(μm)とし、一方の高熱伝導部と外部の低温熱源との接触面積をScool(μm2)とし、発電素子の、2つの高熱伝導部の離間方向に垂直な断面積をSbet(μm2)とすると、Lbet×Scool/Sbet≧0.01を満たす。

Description

熱電変換素子
 本発明は、熱電変換素子に関する。
 熱エネルギーと電気エネルギーとを相互に変換することができる熱電変換材料が、熱によって発電する発電素子やペルチェ素子のような熱電変換素子に用いられている。
 熱電変換素子は、熱エネルギーを直接電力に変換することができ、可動部を必要としない等の利点を有する。そのため、複数の熱電変換素子を接続してなる熱電変換モジュール(発電装置)は、例えば、焼却炉や工場の各種の設備など、排熱される部位に設けることで、動作コストを掛ける必要なく、簡易に電力を得ることができる。
 このような熱電変換素子としては、いわゆるπ型の熱電変換素子が知られている。
 π型の熱電変換素子とは、互いに離間する一対の電極を設け、一方の電極の上にN型熱電変換材料を、他方の電極の上にP型熱電変換材料を、同じく互いに離間して設け、両熱電変換材料の上面を電極によって接続してなる構成を有する。
 また、N型熱電変換材料とP型熱電変換材料とが交互に配置されるように、複数の熱電変換素子を配列して、熱電変換材料の下部の電極を直列に接続することで、熱電変換モジュールが形成される。
 π型の熱電変換素子を含め、通常の熱電変換素子は、シート状の基板の上に電極を有し、電極の上に熱電変換層(発電層)を有し、熱電変換層の上にシート状の電極を有してなる構成を有する。
 すなわち、通常の熱電変換素子は、電極で熱電変換層を厚さ方向に挟持し、熱電変換層の厚さ方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換させている。
 しかしながら、このようなπ型の熱電変換素子を多数接続するように製造するのは、製造工程が複雑になり手間がかかるという問題があった。また、各部材の熱膨張係数の違いによる熱歪みの影響や、熱歪みの変化が繰り返し発生することで界面の疲労現象が発生し、性能が低下するという問題があった。
 これに対し、特許文献1や特許文献2には、高熱伝導部と低熱伝導部とを有する基板を用いて、熱電変換層の厚さ方向ではなく、熱電変換層の面方向に温度差を生じさせて熱エネルギーを電気エネルギーに変換する熱電変換素子が記載されている。
 具体的には、特許文献1には、P型材料およびN型材料で形成された熱電変換層の両面に、熱伝導率が異なる2種類の材料で構成された柔軟性を有するフィルム基板を設け、かつ、フィルム基板を、熱伝導率が異なる材料を通電方向の逆位置に位置し、熱伝導率が高い材料が基板の外面の一部に位置した熱電変換素子が記載されている。
 また、特許文献2には、水平方向に温度差を生じさせる第1温度差形成層と、第1温度差形成層上に形成された熱電素子と、熱電素子間を接続する配線と、を備え、第1温度差形成層は、熱電素子側の主面が他方の主面よりも面積が小さい第1高熱伝導体と、この隙間に充填された第1低熱伝導体とが、水平方向に交互に形成され、熱電素子は、第1高熱伝導体の少なくとも一部を覆うように形成され、かつ、第1高熱伝導体に隣接する第1低熱伝導体まで延在されるように形成されている熱電変換モジュール装置が記載されている。
特開2006-186255号公報 WO2013/121486A1
 このような熱電変換層の面方向に温度差を生じさせて熱エネルギーを電気エネルギーに変換する熱電変換素子では、発電量をより大きくするためには、熱電変換層に生じる温度差をより大きくする必要がある。
 このような熱電変換素子では、例えば、一方の面を高温熱源に接触させて、他方の面を低温熱源に接触(あるいは、空冷)することで、熱電変換層に温度差を生じさせる。
 したがって、外部から与えられた、高温熱源と低温熱源との温度差を、熱電変換層内の温度差に効率よく変換することが必要である。すなわち、与えられた熱エネルギーを効率よく熱電変換層内の温度差に変換することで、発電量をより大きくでき、熱エネルギーと電気エネルギーとの変換効率を向上することができる。
 しかしながら、従来の熱電変換素子においては、熱電変換層に生じる温度差をより大きくするための構成については、十分な検討がなされていなかった。
 本発明の目的は、このような従来技術の問題点を解決することにあり、熱電変換素子において、外部から与えられた、高温熱源と低温熱源との温度差を、効率よく熱電変換層内の温度差に変換することができ、発電量を大きくできる熱電変換素子を提供することにある。
 本発明者らは、上記課題を達成すべく鋭意研究した結果、熱電変換層、および、熱電変換層を面方向に挟んで配置された電極対を有する発電素子と、発電素子の最大面に電極対の配列方向に離間して配置される、熱伝導率が50W/m・K以上の2つの高熱伝導部とを有し、2つの高熱伝導部の面方向の離間距離をLbet(μm)とし、一方の高熱伝導部と外部の低温熱源との接触面積をScool(μm2)とし、発電素子の、2つの高熱伝導部の離間方向に垂直な断面積をSbet(μm2)とすると、Lbet×Scool/Sbet≧0.01を満たすことにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の熱電変換素子を提供する。
 (1) 熱電変換層、および、熱電変換層を面方向に挟んで配置された電極対を有する発電素子と、
 発電素子の最大面に電極対の配列方向に離間して配置される、熱伝導率が50W/m・K以上の2つの高熱伝導部とを有し、
 2つの高熱伝導部の面方向の離間距離を単位μmにてLbetとし、一方の高熱伝導部と外部の低温熱源との接触面積を単位μm2にてScoolとし、発電素子の、2つの高熱伝導部の離間方向に垂直な断面積を単位μm2にてSbetとすると、
 Lbet×Scool/Sbet≧0.01を満たす熱電変換素子。
 (2) 2つの高熱伝導部の離間距離Lbet、一方の高熱伝導部と外部の低温熱源との接触面積Scool、および、発電素子の2つの高熱伝導部の離間方向に垂直な断面積Sbetが、
 1.11≦Lbet×Scool/Sbet≦2.0×1010を満たす(1)に記載の熱電変換素子。
 (3) 2つの高熱伝導部の離間距離Lbet、一方の高熱伝導部と外部の低温熱源との接触面積Scool、および、発電素子の2つの高熱伝導部の離間方向に垂直な断面積Sbetが、
 1.57×102≦Lbet×Scool/Sbet≦2.0×1010を満たす(1)または(2)に記載の熱電変換素子。
 (4) 2つの高熱伝導部の離間距離Lbetが、20100μm以下である(1)~(3)のいずれかに記載の熱電変換素子。
 (5) 発電素子は、熱電変換層と電極対を厚さ方向に挟持する第1基板および第2基板を有し、
 第1基板の、熱電変換層とは反対側の面に一方の高熱伝導部が積層され
 第2基板の、熱電変換層とは反対側の面に他方の高熱伝導部が積層される(1)~(4)のいずれかに記載の熱電変換素子。
 (6) 発電素子は、熱電変換層と電極対を厚さ方向に挟持する第1基板および第2基板を有し、
 第1基板の、熱電変換層とは反対側の面に2つの高熱伝導部が積層される(1)~(4)のいずれかに記載の熱電変換素子。
 (7) 発電素子は、熱電変換層と電極対が形成される第1基板を有し、
 発電素子の、第1基板側の面に2つの高熱伝導部が積層される(1)~(4)のいずれかに記載の熱電変換素子。
 (8) 発電素子は、熱電変換層と電極対が形成される第1基板を有し、
 発電素子の、熱電変換層側の面に2つの高熱伝導部が積層される(1)~(4)のいずれかに記載の熱電変換素子。
 (9) 熱電変換層の最大面、および、2つの高熱伝導部それぞれの最大面が、平行である(1)~(8)のいずれかに記載の熱電変換素子。
 このような本発明によれば、熱電変換素子において、外部から与えられた、高温熱源と低温熱源との温度差を、効率よく熱電変換層内の温度差に変換することができ、発電量を大きくできる熱電変換素子を提供することができる。
本発明の熱電変換素子の一例を概念的に示す斜視図である。 図1の上面図である。 図1の断面図である。 シミュレーションの結果を示すグラフである。 本発明の熱電変換素子の他の一例を概念的に示す図である。 本発明の熱電変換素子の他の一例を概念的に示す図である。 本発明の熱電変換素子の他の一例を概念的に示す図である。 本発明の熱電変換素子の他の一例を概念的に示す図である。 本発明の熱電変換素子の他の一例を概念的に示す図である。
 以下、本発明の熱電変換素子について、添付の図面に示される好適実施例を基に詳細に説明する。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
 角度については、特に記載がなければ、厳密な角度との差異が5°未満の範囲内であることを意味する。厳密な角度との差異は、4°未満であることが好ましく、3°未満であることがより好ましい。
 また、「同一」、「同じ」とは、技術分野で一般的に許容される誤差範囲を含むものとする。また、「全面」等は、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば、99%以上、95%以上、または90%以上である場合を含むものとする。
 図1は、本発明の熱電変換素子の一例を概念的に示す斜視図であり、図2Aは、図1の上面図であり、図2Bは、図1の断面図である。なお、図2Bは、図2Aを図中横方向に切断した断面を示しているが、図を簡略化するために、ハッチは省略している。
 図1、図2Aおよび図2Bに示す熱電変換素子10は、基本的に、熱電変換層16と、電極26と、電極28と、粘着層18と、熱電変換層16、電極26、電極28および粘着層18を厚さ方向に挾持する第1基板12および第2基板20とを備える発電素子14、ならびに、第1基板の主面の一部に積層された高熱伝導部13および第2基板の主面の一部に積層された高熱伝導部21を有して構成される。
 以下の説明においては、熱電変換層16、電極26、電極28および粘着層18からなる層を複合層15という。すなわち、熱電変換素子10は、第1基板12および第2基板20で複合層15を挾持してなる発電素子14と、発電素子14の第1基板12側の面に積層される高熱伝導部13と、発電素子14の第2基板20側の面に積層される高熱伝導部21を有する。
 具体的には、発電素子14は、第1基板12の上に熱電変換層16、電極26および電極28を有し、熱電変換層16、電極26および電極28を覆って粘着層18を有し、粘着層18の上に第2基板20を有する。また、電極26および電極28すなわち電極対は、第1基板12の基板面の方向に熱電変換層16を挟むように設けられる。以下、第1基板12の基板面の方向を、以下、単に『面方向』とも言う。
 図1、図2Aおよび図2Bに示すように、高熱伝導部13および高熱伝導部21は、電極26と電極28との離間方向すなわち通電方向に異なる位置となり、第1基板12の主面に垂直な方向から見た際に、重複しないように配置される。すなわち、高熱伝導部13と高熱伝導部21とは、面方向に所定の距離離間している。
 また、図に示すとおり、高熱伝導部13および高熱伝導部21それぞれの最大面は、熱電変換層16の最大面と略平行である。
 本発明においては、この面方向における、高熱伝導部13と高熱伝導部21との離間距離をLbetとする。
 熱電変換素子10は、2つの高熱伝導部を面方向に異なる位置として、この2つの高熱伝導部で熱電変換層を面方向に挟持してなる構成を有することにより、熱電変換層16の面方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換する。
 その際、面方向における、高熱伝導部13と高熱伝導部21との離間距離Lbetが所定の条件を満たすことで、効率よく熱電変換層16に温度差を生じさせることができ、発電量をより大きくできる。この点については後に詳述する。
 なお、第1基板12および第2基板20は、配置位置が異なるのみで構成は同じであるので、第1基板12と第2基板20とを区別する必要がある場合を除いて、説明は第1基板12を代表例として行う。
 第1基板12は、ガラス板、セラミックス板、プラスチックフィルム、樹脂からなる層など、後述する高熱伝導部13よりも熱伝導率が低く、熱電変換層16や電極26等の形成等に対する十分な耐熱性を有するものであれば、各種の材料からなる物が利用可能である。
 好ましくは、第1基板12には、プラスチックフィルム等の樹脂(高分子材料)からなるシート状物(板状物)や樹脂からなる層が利用される。第1基板12を樹脂で形成することにより、軽量化やコストの低下を計ると共に、可撓性(フレキシブル性)を有する熱電変換素子10が形成可能となり、好ましい。
 第1基板12に利用可能な樹脂としては、具体的には、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-フタレンジカルボキシレート等のポリエステル樹脂、ポリイミド、ポリカーボネート、ポリプロピレン、ポリエーテルスルホン、シクロオレフィンポリマー、ポリエーテルエーテルケトン(PEEK)、トリアセチルセルロース(TAC)等の樹脂、ガラスエポキシ、液晶性ポリエステル等からなるシート状物(フィルム/板状物)が例示される。
 中でも、熱伝導率、耐熱性、耐溶剤性、入手の容易性や経済性等の点で、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート等は、好適に利用される。
 なお、本発明において、第1基板12の厚さ等は、第1基板12の形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。本発明者らの検討によれば、第1基板12の厚さは、2~50μmが好ましく、2~25μmがより好ましい。
 また、第1基板12の面方向(基板面と直交する方向から見た際)の大きさ等も、第1基板12の形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。
 熱電変換素子10において、第1基板12の一方の主面には、熱電変換層16、ならびに、電極26および電極28を含む複合層15が設けられる。
 すなわち、第1基板12は、複合層15(熱電変換層16、ならびに、電極26および電極28)の形成基板としても作用する。このような熱電変換層16等の形成基板となる第1基板12を有することにより、熱電変換素子10の製造を容易に行える、熱電変換素子10の生産性を向上することができる等の点で好ましい。
 本発明の熱電変換素子10において、熱電変換層16は、公知の熱電変換材料を用いる各種の構成が、全て、利用可能である。従って、熱電変換層16は、有機系の熱電変換材料を用いる物であっても、無機系の熱電変換材料を用いるものであってもよい。さらに、熱電変換層16は、P型材料からなるものでも、N型材料からなるものでも、P型材料およびN型材料の両方からなるものでもよい。
 熱電変換層16に用いられる熱電変換材料としては、例えば、導電性高分子や導電性ナノ炭素材料等の有機材料が好適に例示される。
 導電性高分子としては、共役系の分子構造を有する高分子化合物(共役系高分子)が例示される。具体的には、ポリアニリン、ポリフェニレンビニレン、ポリピロール、ポリチオフェン、ポリフルオレン、アセチレン、ポリフェニレン、ポリジオキシチオフェン、ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸塩)などの公知のπ共役高分子等が例示される。特に、ポリジオキシチオフェン、ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸塩)は、好適に使用できる。
 導電性ナノ炭素材料としては、具体的には、カーボンナノチューブ(以下、CNTとも言う)、カーボンナノファイバー、カーボンナノホーン、カーボンナノバット、グラファイト、グラフェン、カーボンナノ粒子等が例示される。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、熱電特性がより良好となる理由から、CNTが好ましく利用される。
 CNTには、1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT、2枚のグラフェン・シートが同心円状に巻かれた2層CNT、及び複数のグラフェン・シートが同心円状に巻かれた多層CNTがある。本発明においては、単層CNT、2層CNT、多層CNTを各々単独で用いてもよく、2種以上を併せて用いてもよい。特に、導電性及び半導体特性において優れた性質を持つ単層CNTおよび2層CNTを用いることが好ましく、単層CNTを用いることがより好ましい。
 単層CNTは、半導体性のものであっても、金属性のものであってもよく、両者を併せて用いてもよい。半導体性CNTと金属性CNTとを両方を用いる場合、組成物中の両者の含有比率は、組成物の用途に応じて適宜調整することができる。また、CNTには金属などが内包されていてもよく、フラーレン等の分子が内包されたものを用いてもよい。
 CNTは、修飾あるいは処理されたものであってもよい。さらに、熱電変換層16にCNTを利用する場合には、ドーパント(アクセプタ)を含んでいてもよい。
 熱電変換層16を構成する熱電変換材料としては、ニッケルあるいはニッケル合金も好適に例示される。
 ニッケル合金は、温度差を生じることで発電するニッケル合金が、各種、利用可能である。具体的には、バナジウム、クロム、シリコン、アルミニウム、チタン、モリブデン、マンガン、亜鉛、錫、銅、コバルト、鉄、マグネシウム、ジルコニウムなどの1成分、もしくは、2成分以上と混合したニッケル合金等が例示される。
 熱電変換層16にニッケルあるいはニッケル合金を用いる場合には、熱電変換層16は、ニッケルの含有量が90原子%以上であるのが好ましく、ニッケルの含有量が95原子%以上であるのがより好ましく、ニッケルからなるのが特に好ましい。ニッケルからなる熱電変換層16とは、不可避的不純物を有するものも含む。
 また、熱電変換層16としてニッケルあるいはニッケル合金を用いる場合であって、電極としてもニッケルあるいはニッケル合金を用いる場合には、熱電変換層16と電極とを一体的に形成してもよい。
 本発明の熱電変換素子10において、面方向の大きさ、基板に対する面方向の面積率等は、熱電変換層16の形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。
 なお、図示例の熱電変換素子10において、熱電変換層16は、面方向における電極26と電極28との離間方向の中心を、高熱伝導部13と高熱伝導部21との離間方向の中心に一致して形成される。
 また、熱電変換層16は、厚さ方向よりも面方向の導電率が高いことが好ましい。
 熱電変換層16の面方向の導電率が、厚さ方向の導電率よりも高いことで、発電した電力を、電極26と電極28との離間方向すなわち通電方向に効率よく通電することができる。
 このような熱電変換層16には、面方向に挟持するように、電極26および電極28が接続される。電極26および電極28は、本発明における電極対である。
 また、電極26および電極28の離間方向と、高熱伝導部13および高熱伝導部21の離間方向とは一致している。
 なお、2つの電極は、配置位置が異なるのみで、構成は同じであるので、電極26と電極28とを区別する必要がある場合を除いて、説明は電極26を代表例として行う。
 電極26および電極28は、必要な導電率を有するものであれば、各種の材料で形成可能である。
 具体的には、銅、銀、金、白金、ニッケル、アルミニウム、コンスタンタン、クロム、インジウム、鉄、銅合金などの金属材料、酸化インジウムスズ(ITO)や酸化亜鉛(ZnO)等の各種のデバイスで透明電極として利用されている材料等が例示される。中でも、銅、金、銀、白金、ニッケル、銅合金、アルミニウム、コンスタンタン等は好ましく例示され、銅、金、銀、白金、ニッケルは、より好ましく例示される。
 電極26および電極28は、例えば、クロム層の上に銅層を形成してなる構成等、積層電極であってもよい。
 また、電極26と電極28とが異なる材料で形成されていてもよい。
 電極26および電極28の厚さや大きさ等は、熱電変換層16の厚さや大きさ、形状、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。
 複合層15は、好ましい態様として、熱電変換層16、電極26および電極28の上には、粘着層18を有する。このような粘着層18を有することにより第1基板12と第2基板20との密着性を良好にして、耐屈曲性など、機械的強度が良好な熱電変換素子(熱電変換モジュール)が得られる。また、粘着層18は、第2基板20と、熱電変換層16、電極26および電極28とを絶縁する、絶縁層としても作用する。
 粘着層18の形成材料は、第1基板12、熱電変換層16、電極26および電極28、ならびに、第2基板20の形成材料等に応じて、第1基板12、熱電変換層16、電極26および電極28と、第2基板20とを貼着可能なものが、各種、利用可能である。
 具体的には、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂、ゴム、EVA、α-オレフィンポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ゼラチン、デンプン等が例示される。また、粘着層18は、市販の接着剤、粘着剤、両面テープや粘着フィルム等を利用して形成してもよい。
 粘着層18の厚さは、粘着層18の形成材料、熱電変換層16に起因する段差の大きさ等に応じて、熱電変換層16等と第2基板20とを十分な密着力で貼着でき、かつ、絶縁できる厚さを、適宜、設定すればよい。なお、粘着層18は、基本的に、薄い方が、熱電変換性能を高くできる。
 具体的には、3~100μmが好ましく、3~50μmがより好ましく、3~25μmが特に好ましい。
 粘着層18の厚さを3μm以上とすることにより、熱電変換層16に起因する段差を十分に埋めることができる、良好な密着性が得られ、十分な絶縁性が得られる等の点で好ましい。
 粘着層18の厚さを100μm以下、特に25μm以下とすることにより、熱電変換素子10(熱電変換モジュール)の薄膜化を計れる、可撓性の良好な熱電変換素子10を得ることができる、粘着層18の熱抵抗を小さくでき、より良好な熱電変換性能が得られる等の点で好ましい。
 なお、必要に応じて、密着性を向上するために、熱電変換層16、電極26および電極28と粘着層18との界面、粘着層18と第2基板20との界面の1以上において、界面を形成する表面の少なくとも1面に、プラズマ処理、UVオゾン処理、電子線照射処理等の公知の表面処理を施して、表面の改質や清浄化を行ってもよい。
 複合層15(粘着層18)の上には、第2基板20が貼着されて、熱電変換層16等を含む複合層15を第1基板12および第2基板20で挾持した発電素子14が構成される。
 ここで、本発明においては、発電素子14の、高熱伝導部13と高熱伝導部21との離間方向に垂直な断面積をSbetとする。この断面積Sbetが所定の条件を満たすことで、効率よく熱電変換層16に温度差を生じさせることができ、発電量をより大きくできる。この点については後に詳述する。
 前述のとおり、高熱伝導部13は、発電素子14の第1基板12側の面の一部に積層され、高熱伝導部21は、発電素子14の第2基板20側の面の一部に積層される。高熱伝導部13と高熱伝導部21は、電極26と電極28との離間方向すなわち通電方向に異なる位置となり、第1基板12の主面に垂直な方向から見た際に、重複しないように配置される。
 なお、2つの高熱伝導部は、配置位置が異なるのみで、構成は同じであるので、高熱伝導部13と高熱伝導部21とを区別する必要が有る場合を除いて、説明は高熱伝導部13を代表例として行う。
 高熱伝導部13は、第1基板12よりも熱伝導率が高く、熱伝導率が50W/m・K以上のものであれば、各種の材料からなるフィルムや金属箔が例示される。
 具体的には、熱伝導率等の点で、金、銀、銅、アルミニウム等の各種の金属が例示される。中でも、熱伝導率、経済性等の点で、銅およびアルミニウムは好適に利用される。
 なお、本発明において、高熱伝導部13の厚さ等は、高熱伝導部13の形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。
 また、第1基板12の面方向(基板面と直交する方向から見た際)の大きさ等も、高熱伝導部13の形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。
 さらに、第1基板12上の高熱伝導部13の面方向の位置も、図示例に限定されず、各種の位置が利用可能である。
 例えば、高熱伝導部13は、面方向において第1基板12に内包されてもよい。あるいは、高熱伝導部13は、面方向において、一部を第1基板12の端部に位置し、それ以外の領域を第1基板12に内包されてもよい。
 さらに、第1基板12上に、面方向に複数の高熱伝導部13を有してもよい。
 また、本発明においては、高熱伝導部13が、第1基板12の表面に積層される構成以外にも、各種の構成が利用可能である。例えば、第1基板12の一方の面の一部の領域に凹部を形成して、この凹部に、表面が均一となるように高熱伝導部13を組み込んでなる構成でもよい。
 また、高熱伝導部13と高熱伝導部21とで、形成方法が異なってもよい。
 また、図2Bに示す熱電変換素子10は、第1基板12と第2基板20との間での温度差を生じ易い好ましい態様として、高熱伝導部13は、積層方向において、第1基板12の外側に位置している。
 しかしながら、本発明は、これ以外にも、高熱伝導部13が、積層方向において、第1基板12の内側に位置する構成でもよい。あるいは、高熱伝導部13が、厚さ方向において、第1基板12に内包される構成でもよい。
 また、高熱伝導部13と高熱伝導部21とで形成方法が異なってもよい。
 なお、高熱伝導部が金属等の導電性を有する材料で形成され、かつ、高熱伝導部が積層方向の内側に配置される構成において、高熱伝導部と、電極26、電極28および熱電変換層16の少なくとも1つとが接触する場合には、高熱伝導部と、電極26、電極28および熱電変換層16の少なくとも1つとの絶縁性を確保するために、間に絶縁層を設けてもよい。
 以上のように構成される熱電変換素子10においては、例えば、高熱伝導部13を低温熱源H2に接触させ、高熱伝導部21を高温熱源H1に接触させることで、熱電変換層16の面方向に温度差を生じさせることにより、発電する。また、電極26および電極28に配線を接続することにより、発生した電力(電気エネルギー)が取り出される。
 ここで、本発明の熱電変換素子は、高熱伝導部13と低温熱源H2との接触面積をScoolとし、面方向における高熱伝導部13と高熱伝導部21との離間距離をLbetとし、発電素子14の、高熱伝導部13と高熱伝導部21との離間方向に垂直な断面積をSbetとしたときに、Lbet×Scool/Sbet≧0.01を満たすものである。
 前述のとおり、従来、熱電変換層の面方向に温度差を生じさせて熱エネルギーを電気エネルギーに変換する熱電変換素子において、与えられた熱エネルギーを効率よく熱電変換層内の温度差に変換し、熱電変換層に生じる温度差をより大きくするための構成については、十分な検討がなされていなかった。
 これに対して、本発明者らは、熱電変換素子に外部から与えられた、高温熱源と低温熱源との温度差を、効率よく熱電変換層内の温度差に変換することができ、発電量を大きくできる熱電変換素子の構成について種々の検討を行った。
 本発明者らの検討によれば、高熱伝導部13と低温熱源H2との接触面積Scool、発電素子14の断面積Sbet、高熱伝導部13と高熱伝導部21との離間距離Lbetが重要であることを見出した。
 高熱伝導部13と低温熱源H2との接触面積Scool(以下、単に、「接触面積Scool」ともいう)は、大きいほど高熱伝導部13と低温熱源H2との間で熱が流れやすくなるため、熱電変換層16内の温度差を大きくすることができる。
 発電素子14の断面積Sbet(以下、単に、「断面積Sbet」ともいう)は、小さいほど、発電素子14の面方向に熱が流れにくくなるため、熱電変換層16の面方向の両端部での温度差を大きくすることができる。
 高熱伝導部13と高熱伝導部21との離間距離Lbet(以下、単に、「離間距離Lbet」ともいう)は、大きいほど、発電素子14の面方向に熱が流れにくくなるため、熱電変換層16の面方向の両端部での温度差を大きくすることができる。
 そこで、接触面積Scool(μm2)、断面積Sbet(μm2)、および、離間距離Lbet(μm)について、有限要素法構造解析ソフトウェア(ANSYS)を用いたシミュレーションで種々検討を行った。
 具体的には、接触面積Scool、断面積Sbet、および、離間距離Lbet等を種々変更して、与えた高温熱源H1と低温熱源H2との温度差に対する、熱電変換層内の温度差の比率(以下、温度変換効率ともいう)を求めた。また、これら以外の各部材の熱伝導率λや、低温側高熱伝導部の冷却能力などの他のパラメータについては、現実的な範囲で種々設定して検討を行った。
 図3に、シミュレーションの結果のグラフを示す。
 図3に示すグラフは、縦軸が接触面積Scoolと断面積Sbetとの比で、横軸が離間距離Lbetである。温度変換効率を10%以上とするためには、このグラフにおいて、少なくとも実線で示すラインよりも上の領域である必要があることがわかった。このラインを式で表すと、Scool/Sbet=0.01/Lbetであった。
 したがって、温度変換効率を10%以上とするためには、少なくとも、Lbet×Scool/Sbet≧0.01を満たす必要があることがわかった。接触面積Scool、断面積Sbet、および、離間距離Lbetがこの関係を満たすことで、高温熱源と低温熱源との温度差を、効率よく熱電変換層内の温度差に変換することができ、発電量を大きくできる。
 ここで、低温熱源H2が空冷である場合をシミュレーションしたところ、温度変換効率を10%以上とするためには、図3に示すグラフにおいて、破線で示すラインよりも上の領域である必要があることがわかった。このラインを式で表すと、Scool/Sbet=1.11/Lbetであった。
 したがって、空冷の場合に温度変換効率を10%以上とするためには、少なくとも、Lbet×Scool/Sbet≧1.11を満たすことが好ましい。
 さらに、低温熱源H2が空冷である場合のシミュレーションにおいて、温度変換効率を94%以上とするためには、図3に示すグラフにおいて、一点鎖線で示すラインよりも上の領域である必要があることがわかった。このラインを式で表すと、Scool/Sbet=1.57×102/Lbetであった。
 したがって、空冷の場合に温度変換効率を94%以上とするためには、少なくとも、Lbet×Scool/Sbet≧1.57×102を満たすことが好ましい。これにより、より効率よく、高温熱源と低温熱源との温度差を熱電変換層内の温度差に変換することができ、発電量をさらに大きくできる。
 また、低温熱源H2が空冷である場合のシミュレーションにおいて、温度変換効率が100%となる領域を求めたところ、Lbet×Scool/Sbet≧2.0×1010であったが、温度変換効率が100%超となることはないため、Lbet×Scool/Sbetは、最大でも2.0×1010であるのが好ましい。
 ここで、2つの高熱伝導部の離間距離Lbetは、20100μm以下であるのが好ましい。2つの高熱伝導部の離間距離Lbetが大きすぎると、幾何学的に空気層が大きくなるため、熱籠りにより効率が低下してしまうおそれがある。したがって、離間距離Lbetは、20100μm以下であるのが好ましい。
 ここで、図1に示す例では、高熱伝導部13(高熱伝導部21)は、平坦な第1基板12(第2基板20)上に積層して配置される構成としたが、これに限定はされない。例えば、図4に示す熱電変換素子40のように、第1基板12(第2基板20)の一方の面の一部の領域に凹部を形成して、この凹部に、表面が均一となるように高熱伝導部13(高熱伝導部21)を組み込んでなる構成としてもよい。
 なお、このように高熱伝導部を基板に組み込んだ構成とする場合の断面積Sbetは、図4に示すように、厚さ方向における2つの高熱伝導部間の距離×面方向における幅(2つの高熱伝導部の離間方向に直交する方向の幅)とする。
 また、図1に示す例では、高温熱源H1と低温熱源H2が熱電変換素子10を厚さ方向に挟むようにして、高温熱源H1と高熱伝導部21とが接触し、低温熱源H2と高熱伝導部13とが接触するようにしたが、本発明はこれに限定はされない。
 図5A~図5Dそれぞれに、本発明の熱電変換素子の他の構成を概念的に示す。
 図5Aに示す熱電変換素子30aは、高温熱源H1および低温熱源H2との接触位置が異なる以外は、図1に示す熱電変換素子10と同様の構成を有するものである。
 熱電変換素子30aは、熱電変換素子30aの面方向の両端面に、高温熱源H1および低温熱源H2がそれぞれ接する構成を有する。
 このような熱電変換素子30aにおいては、高熱伝導部13の端面と低温熱源H2との接触面積をScoolとし、この接触面積Scoolと、断面積Sbetと、離間距離Lbetとが、Lbet×Scool/Sbet≧0.01を満たせばよい。
 なお、以下の説明では、このように熱電変換素子の面方向の両端面にて熱源と接触させる構成を、縦型の熱電変換素子ともいう。
 縦型の熱電変換素子では、2つの高熱伝導部を一方の基板側に形成した構成としてもよい。
 すなわち、図5Bに示す熱電変換素子30bのように、複合層15を厚さ方向に第1基板12および第2基板20で挾持した発電素子14と、発電素子14の第1基板12側の面の一部に積層される高熱伝導部13と、発電素子14の第1基板12側の、高熱伝導部13とは異なる位置に積層される高熱伝導部21とを有する構成としてもよい。
 なお、面方向における高熱伝導部13と高熱伝導部21との位置関係については、前述と同様である。
 また、図5Cに示す熱電変換素子30cのように、発電素子14が、複合層15と、この複合層15を支持する第1基板12とからなり、この発電素子14の第1基板12側の面に、高熱伝導部13および高熱伝導部21が積層される構成としてもよい。
 あるいは、図5Dに示す熱電変換素子30dのように、発電素子14が、複合層15と、この複合層15を支持する第1基板12とからなり、この発電素子14の複合層15側の面に、高熱伝導部13および高熱伝導部21が積層される構成としてもよい。
 なお、図5Cの熱電変換素子30c、図5Dの熱電変換素子30dの場合も、面方向における高熱伝導部13と高熱伝導部21との位置関係については、前述と同様である。
 このような本発明の熱電変換素子は、各種の用途に利用可能である。
 一例として、温泉熱発電機、太陽熱発電機、廃熱発電機などの発電機や、腕時計用電源、半導体駆動電源、小型センサ用電源などの各種装置(デバイス)の電源等、様々な発電用途が例示される。また、本発明の熱電変換素子の用途としては、発電用途以外にも、感熱センサや熱電対などのセンサー素子用途も例示される。
 以上、本発明の熱電変換素子について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 以下、本発明の具体的実施例を挙げて、本発明をより詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 [実施例1]
 図1に示すような熱電変換素子10について、シミュレーションを行い温度変換効率を求めた。
 具体的には、発電素子14の大きさを、横6060μm×幅100μm、厚さを78μmとし、断面積Sbetを7.8×10μm2とした。また、発電素子14の各構成要素の熱伝導率から、発電素子14の合成熱伝導率λbetを1.0W/(m・K)とした。
 また、高熱伝導部13の大きさ(面積Shot)は、3.0×10μm2、高さHhotは1.0×104μmとし、熱伝導率λhotは、銅を想定して、3.98×102W/(m・K)とした。
 また、高熱伝導部21の大きさ(面積Scool)は、3.0×10μm2、高さHcoolは1.0×10μmとし、熱伝導率λcoolは、銅を想定して、3.98×102W/(m・K)とした。
 また、高熱伝導部13と高熱伝導部21の面方向の離間距離Lbetは、6.0×10μmとした。
 すなわち、Lbet×Scool/Sbet=2290μmとした。
 また、周囲は空気とし、熱伝導率λairは、2.4×10-2W/(m・K)とした。
 また、低温熱源H2は空冷と想定して、低温熱源H2と高熱伝導部21との熱伝達率hは、6.0×10W/(m2・K)とした。
 また、高温熱源H1の温度は80℃とし、低温熱源H2の温度は24℃とした。
 このような条件で、有限要素法構造解析ソフトウェア(ANSYS)を用いてシミュレーションを行い、発電素子14の面方向の温度差ΔTbetを定常熱伝導解析により求めた。
 シミュレーションの結果、ΔTbetは、6.7℃であった。すなわち、温度変換効率は、外部から与えられる温度差(56℃)の約12%であった。
 [実施例2]
 低温熱源H2を水冷と想定して、低温熱源H2と高熱伝導部21との熱伝達率hを、1.0×105W/(m2・K)とした以外は実施例1と同様にしてシミュレーションを行い、発電素子14の面方向の温度差ΔTbetを求めた。
 その結果、ΔTbetは、15.7℃であった。すなわち、温度変換効率は、外部から与えられる温度差(56℃)の約28%であった。
 [比較例1]
 発電素子14の大きさを、横60μm×幅100μm、厚さを5000μmとし、断面積Sbetを5.0×105μm2とした。また、発電素子14の各構成要素の熱伝導率から、発電素子14の合成熱伝導率λbetを1.0×10-2W/(m・K)とした。
 また、高熱伝導部13の大きさ(面積Shot)は、1.0×103μm2、高さHhotは1.0×10μmとし、熱伝導率λhotは、銅を想定して、3.98×102W/(m・K)とした。
 また、高熱伝導部21の大きさ(面積Scool)は、1.0×102μm2、高さHcoolは1.0×10μmとし、熱伝導率λcoolは、銅を想定して、3.98×102W/(m・K)とした。
 また、高熱伝導部13と高熱伝導部21の面方向の離間距離Lbetは、4.9×10μmとした。
 すなわち、Lbet×Scool/Sbet=9.7×10-3μmとした。
 また、周囲は空気とし、熱伝導率λairは、2.4×10-2W/(m・K)とした。
 また、低温熱源H2は水冷と想定して、低温熱源H2と高熱伝導部21との熱伝達率hは、1.0×105W/(m2・K)とした。
 また、高温熱源H1の温度は80℃とし、低温熱源H2の温度は24℃とした。
 このような条件で、実施例1と同様にシミュレーションを行い、発電素子14の面方向の温度差ΔTbetを求めた。
 その結果、ΔTbetは、4.5℃であった。すなわち、温度変換効率は、外部から与えられる温度差(56℃)の約8%であった。
 以上の結果から、本発明の熱電変換素子である実施例1および2は、比較例1に比較して、高い温度変換効率を得られ、外部から与えられた温度差を効率よく熱電変換層の温度差に変換することができ、高い発電量を得られることがわかる。
 以上の結果より、本発明の効果は明らかである。
 10、30、40 熱電変換素子
 12 第1基板
 13、21 高熱伝導部
 14 発電素子
 15 複合層
 16 熱電変換層
 18 粘着層
 20 第2基板
 26、28 電極

Claims (9)

  1.  熱電変換層、および、前記熱電変換層を面方向に挟んで配置された電極対を有する発電素子と、
     前記発電素子の最大面に前記電極対の配列方向に離間して配置される、熱伝導率が50W/m・K以上の2つの高熱伝導部とを有し、
     2つの前記高熱伝導部の面方向の離間距離を単位μmにてLbetとし、一方の前記高熱伝導部と外部の低温熱源との接触面積を単位μm2にてScoolとし、前記発電素子の、2つの前記高熱伝導部の離間方向に垂直な断面積を単位μm2にてSbetとすると、
     Lbet×Scool/Sbet≧0.01を満たすことを特徴とする熱電変換素子。
  2.  2つの前記高熱伝導部の前記離間距離Lbet、一方の前記高熱伝導部と外部の前記低温熱源との前記接触面積Scool、および、前記発電素子の2つの前記高熱伝導部の離間方向に垂直な前記断面積Sbetが、
     1.11≦Lbet×Scool/Sbet≦2.0×1010を満たす請求項1に記載の熱電変換素子。
  3.  2つの前記高熱伝導部の前記離間距離Lbet、一方の前記高熱伝導部と外部の前記低温熱源との前記接触面積Scool、および、前記発電素子の2つの前記高熱伝導部の離間方向に垂直な前記断面積Sbetが、
     1.57×102≦Lbet×Scool/Sbet≦2.0×1010を満たす請求項1または2に記載の熱電変換素子。
  4.  2つの前記高熱伝導部の前記離間距離Lbetが、20100μm以下である請求項1~3のいずれか一項に記載の熱電変換素子。
  5.  前記発電素子は、前記熱電変換層と前記電極対を厚さ方向に挟持する第1基板および第2基板を有し、
     前記第1基板の、前記熱電変換層とは反対側の面に一方の前記高熱伝導部が積層され
     前記第2基板の、前記熱電変換層とは反対側の面に他方の前記高熱伝導部が積層される請求項1~4のいずれか一項に記載の熱電変換素子。
  6.  前記発電素子は、前記熱電変換層と前記電極対を厚さ方向に挟持する第1基板および第2基板を有し、
     前記第1基板の、前記熱電変換層とは反対側の面に2つの前記高熱伝導部が積層される請求項1~4のいずれか一項に記載の熱電変換素子。
  7.  前記発電素子は、前記熱電変換層と前記電極対が形成される第1基板を有し、
     前記発電素子の、前記第1基板側の面に2つの前記高熱伝導部が積層される請求項1~4のいずれか一項に記載の熱電変換素子。
  8.  前記発電素子は、前記熱電変換層と前記電極対が形成される第1基板を有し、
     前記発電素子の、前記熱電変換層側の面に2つの前記高熱伝導部が積層される請求項1~4のいずれか一項に記載の熱電変換素子。
  9.  前記熱電変換層の最大面、および、2つの前記高熱伝導部それぞれの最大面が、平行である請求項1~8のいずれか一項に記載の熱電変換素子。
PCT/JP2016/076078 2015-09-24 2016-09-06 熱電変換素子 WO2017051699A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-186661 2015-09-24
JP2015186661 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017051699A1 true WO2017051699A1 (ja) 2017-03-30

Family

ID=58386564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076078 WO2017051699A1 (ja) 2015-09-24 2016-09-06 熱電変換素子

Country Status (1)

Country Link
WO (1) WO2017051699A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022228A1 (ja) * 2018-07-25 2020-01-30 リンテック株式会社 熱電変換ユニット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035203A (ja) * 2009-08-03 2011-02-17 Fujitsu Ltd 熱電変換モジュール
US20110168224A1 (en) * 2010-01-14 2011-07-14 Samsung Electronics Co., Ltd. Thermoelectric device and thermoelectric device array

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035203A (ja) * 2009-08-03 2011-02-17 Fujitsu Ltd 熱電変換モジュール
US20110168224A1 (en) * 2010-01-14 2011-07-14 Samsung Electronics Co., Ltd. Thermoelectric device and thermoelectric device array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022228A1 (ja) * 2018-07-25 2020-01-30 リンテック株式会社 熱電変換ユニット
JPWO2020022228A1 (ja) * 2018-07-25 2021-08-02 リンテック株式会社 熱電変換ユニット

Similar Documents

Publication Publication Date Title
US20180190892A1 (en) Thermoelectric conversion module, method of manufacturing thermoelectric conversion module, and thermally conductive substrate
JP6600012B2 (ja) 熱電変換デバイス
WO2016039022A1 (ja) 熱電変換素子および熱電変換モジュール
JP6417050B2 (ja) 熱電変換モジュール
JP6524241B2 (ja) 熱電変換デバイス
US20180183360A1 (en) Thermoelectric conversion module
US10236431B2 (en) Thermoelectric conversion element and thermoelectric conversion module
WO2017051699A1 (ja) 熱電変換素子
WO2016203939A1 (ja) 熱電変換素子および熱電変換モジュール
US10347811B2 (en) Thermoelectric conversion module
JP6174246B2 (ja) 熱電変換素子および熱電変換モジュールならびに熱電変換素子の製造方法
JP6505585B2 (ja) 熱電変換素子
US10115882B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2016192424A (ja) 熱電変換素子および熱電変換モジュール
WO2015163178A1 (ja) 熱電変換素子および熱電変換素子の製造方法
US20220302365A1 (en) Thermoelectric conversion element
JPWO2012140800A1 (ja) 冷暖房装置
US10439124B2 (en) Thermoelectric conversion module, heat conductive laminate, and method of producing thermoelectric conversion module
KR102026838B1 (ko) 적층형 열전 모듈 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP