WO2017051522A1 - ブラシレスモータ - Google Patents

ブラシレスモータ Download PDF

Info

Publication number
WO2017051522A1
WO2017051522A1 PCT/JP2016/004229 JP2016004229W WO2017051522A1 WO 2017051522 A1 WO2017051522 A1 WO 2017051522A1 JP 2016004229 W JP2016004229 W JP 2016004229W WO 2017051522 A1 WO2017051522 A1 WO 2017051522A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
center
brushless motor
rotor
central portion
Prior art date
Application number
PCT/JP2016/004229
Other languages
English (en)
French (fr)
Inventor
松尾 英明
哲司 舟津
俊幸 玉村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017541421A priority Critical patent/JP6748852B2/ja
Priority to CN201690000522.4U priority patent/CN207518374U/zh
Publication of WO2017051522A1 publication Critical patent/WO2017051522A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles

Definitions

  • the present invention relates to the structure of a brushless motor.
  • a configuration having two slot portions in one pole that is, when one magnet is disposed in each slot portion and the two slot portions are physically separated, the two The metal portion between the slot portions is connected on the outer peripheral side and the center side of the rotor core.
  • the magnetic flux generated by the magnet passes through this metal portion between the slot portions, and as a result, leakage of the magnetic flux generated by the magnet occurs in that portion. Therefore, there are cases where two slot portions are physically connected to form one slot portion.
  • the magnet may cause irreversible demagnetization when exposed to high temperature or high reverse magnetic field. For this reason, irreversible demagnetization may be prevented by using a magnet having a large coercive force or increasing the thickness of the magnet itself. Further, since the reverse magnetic field acts locally on the magnet, a gap may be provided near the end of the magnet where the reverse magnetic field concentrates (see, for example, Patent Document 1).
  • the brushless motor of the present invention is a brushless motor having a stator formed by winding a stator core, and a rotor that is opposed to the stator via a gap and is rotatably held.
  • the rotor of this brushless motor has one slot portion in which two magnets are embedded per pole, and the radial width in the vicinity of the center of the central portion of the slot between the two magnets is set to the other portion of the slot portion. It is smaller than the width.
  • the brushless motor of the present invention is characterized in that the slot portion has a V shape extending in the radial direction with the center portion of the slot as a bottom portion.
  • the brushless motor of the present invention is characterized in that a convex portion protruding toward the inside of the slot central portion is provided in the vicinity of the center of the slot central portion.
  • the slot portion is arranged in a V shape, and the surface of the center portion of the rotor on the rotor center side is an axis connecting the center point of the slot center portion and the center point of the rotor. It is characterized by being a straight line perpendicular to it.
  • the brushless motor of the present invention is characterized in that the minimum radial width in the vicinity of the center of the center portion of the slot is at least twice the slight gap between the stator and the rotor.
  • the brushless motor of the present invention is characterized in that a magnet stopper for restricting the movement of the magnet is provided at the center of the slot. With this configuration, the magnet does not move toward the center of the slot during assembly of the rotor or during use of the motor, so that the above-described effects can be maintained.
  • the brushless motor of the present invention can reduce the reverse magnetic field applied to the magnet by guiding the reverse magnetic field to the vicinity of the center of the slot center while suppressing the leakage magnetic flux at the center of the slot.
  • FIG. 1 is a top view of a brushless motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a top view of the rotor of the brushless motor.
  • FIG. 3A is a diagram showing a flow of magnetic lines of force in the first embodiment.
  • FIG. 3B is a diagram illustrating a flow of magnetic lines of force in a comparative example.
  • FIG. 4 is a top view of the rotor of the brushless motor according to the second embodiment of the present invention.
  • FIG. 5 is a top view of the rotor of the brushless motor according to the third embodiment of the present invention.
  • FIG. 6 is a top view of the rotor of the brushless motor according to the fourth embodiment of the present invention.
  • FIG. 1 is a top view of a brushless motor 100 according to Embodiment 1 of the present invention.
  • the brushless motor 100 includes a stator 10 and a rotor 20 that faces the stator 10 with a slight gap and is rotatably held.
  • the brushless motor 100 of the present embodiment is a magnet-embedded brushless motor, and a permanent magnet is mounted in a magnet-embedded hole formed in the rotor 20.
  • the stator 10 includes a stator core 11 and a winding 15.
  • the stator core 11 is formed by, for example, laminating a plurality of electromagnetic steel plates, and has an annular yoke 12 and a plurality of teeth 13 disposed inside the yoke 12.
  • a status lot 14 is provided between adjacent teeth 13.
  • a winding 15 is wound around the tooth 13.
  • the rotor 20 is disposed on the inner peripheral side of the stator 10.
  • FIG. 2 is an enlarged view of the rotor 20 of FIG. 1, and is a top view of the rotor 20 viewed from the axial direction.
  • the rotor 20 includes a metal rotor core 21, magnets 23 a and 23 b that are permanent magnets, and a rotating shaft 30 that is disposed at the center of the rotor core 21.
  • the rotor core 21 is configured by laminating a plurality of thin plate-like electromagnetic steel plates in the axial direction, like the stator core 11.
  • the rotor core 21 is provided with a slot portion 22s as a magnet embedding hole which is a rectangular hole for embedding two magnets 23a and 23b with respect to the metal core portion 22m which is an electromagnetic steel plate portion.
  • the slot portion 22s has a configuration in which two magnets 23a and 23b are embedded in one pole. That is, as shown in FIG. 2, in one slot portion 22s, the outer surfaces of the magnets 23a and 23b are the same pole, the inner surfaces are the same pole, and the inner surface is relative to the outer surface.
  • Magnets 23a and 23b are arranged so as to have different polarities.
  • the rotor core 21 has a plurality of such slot portions 22s, and each is formed at a predetermined interval in the circumferential direction and at the same position from the outer periphery of the rotor core 21.
  • the magnets 23a and 23b are inserted into these slot portions 22s, which are air holes formed in the metal core portion 22m, and are sandwiched and fixed by the metal core portions 22m on both sides of the slot portion 22s, or are made of resin or adhesive. It is fixed.
  • the total dimension in the longitudinal direction of the magnets 23a and 23b is made smaller than the dimension of the slot portion 22s when viewed from the top.
  • a sufficient gap is formed between the magnet 23a and the magnet 23b. That is, between the magnet 23a and the magnet 23b, the central portion of the slot portion 22s is provided with a slot central portion 24 that is a space where no magnet is arranged.
  • the outer peripheral side and the central side of the rotor core 21 are substantially separated with the slot portion 22s as a boundary.
  • the present embodiment in contrast to the conventional configuration in which one magnet is disposed in each of the slot portions described in the background art and the two slot portions are physically separated from each other, first such one slot is provided.
  • the slot central portion 24 is provided as a space between two magnets in the portion 22s. In this embodiment, such a configuration suppresses the leakage of magnetic flux as described in the background art.
  • the reverse magnetic field is equal to or greater than the demagnetization resistance of the magnets 23a and 23b, some countermeasure is required. Therefore, as one method for such measures, in order to reduce the reverse magnetic field received by the magnets 23a and 23b, a place having a higher magnetic permeability through which the magnetic field lines can pass more easily than the magnets 23a and 23b may be provided. In other words, the reverse magnetic field generated with respect to the magnets 23a and 23b can be reduced by guiding the magnetic flux coming from the stator core 11 toward the rotor 20 to a place where the magnetic lines of force can easily pass. Therefore, the possibility that irreversible demagnetization occurs in the magnets 23a and 23b is reduced.
  • the magnets 23a and 23b are hardly affected by the reverse magnetic field. That is, since a lot of magnetic flux concentrates in a place where the magnetic permeability is high and the influence of the reverse magnetic field is strong, the place where the magnetic permeability is high is kept at an appropriate distance from the magnets 23a and 23b and away from the magnets 23a and 23b. It is desirable to be located where it is. And what is necessary is just to guide the magnetic flux which was flowing toward the magnets 23a and 23b to the place where this magnetic permeability is high.
  • the location where the magnetic permeability is high is the slot central portion 24 where the radial width near the center between the magnets 23a and 23b is smaller than the width of the other portions of the slot portion 22s. Is forming.
  • the metal core portion 22m is placed in the slot portion 22s toward the outer periphery so that the width T of the slot portion 22s is the shortest.
  • a protruding convex portion 25 is formed.
  • the shape of the slot central portion 24 by the convex portion 25 is a concave shape in which the space forming the slot central portion 24 is recessed.
  • the surface of the slot central portion 24 on the rotor center side is provided with a convex portion 25 protruding toward the outer peripheral direction.
  • the slot central portion 24 has a high magnetic permeability because the width of the air layer having a large magnetic resistance is narrowed. Therefore, the magnetic lines of force that flow in the vicinity of the slot central portion 24 form a magnetic flux that is guided to the convex portion 25.
  • FIG. 3A is a diagram showing the flow of magnetic lines of force in the present embodiment in which such a slot central portion 24 is formed
  • FIG. 3B is a diagram showing the flow of magnetic lines of force in a comparative example shown for comparison with FIG. 3A. It is.
  • the present embodiment shown in FIG. 3A as described above, two magnets 23a and 23b are arranged in one slot portion 22s, and a slot central portion 24 including a convex portion 25 is provided between the magnet 23a and the magnet 23b. Is formed.
  • the comparative example shown in FIG. 3B shows the case of the rotor 90 in which one magnet 93 is arranged in one slot portion 92s, and there is no space near the center of the slot portion.
  • the magnetic flux B10 concentrated on the bridge portion 99 located between the end portion of the slot portion 92s and the outer periphery of the rotor 90 and the magnetization direction of the magnet 93 are generated oppositely.
  • the magnetic flux B11 that has been generated is guided to the convex portion 25 by the magnetic flux B21 generated in the slot central portion 24 as in the present embodiment shown in FIG. 3A.
  • the magnetic flux B20 generated in the bridge portion 29 also decreases. Therefore, the reverse magnetic field applied to the magnets 23a and 23b is reduced, and irreversible demagnetization can be suppressed.
  • the magnetic flux generated by the magnet passes through a slight gap between the stator and the rotor and flows toward the stator, thereby becoming an effective magnetic flux for generating torque. Therefore, it is desirable to prevent the magnetic flux generated by the magnet from flowing to the slot central portion 24 when the motor is driven.
  • the radial width T in the vicinity of the center of the slot central portion 24 is at least twice the slight gap between the stator 10 and the rotor 20.
  • the effective magnetic flux generated by the magnet flows through the slight gap to the stator side, and again passes through the gap and returns to the rotor side from the stator side, so that it passes through the slight gap twice as a magnetic path. Therefore, if the radial width T in the vicinity of the center of the slot central portion 24 is set to be twice or more the slight gap, the magnetic resistance in the vicinity of the center in the central portion of the slot is more than the magnetic resistance of the magnetic path of the effective magnetic flux. growing. As a result, when the motor is driven, the magnetic flux flows more easily to the stator side than the vicinity of the center of the slot central portion, and effective magnetic flux leakage can be reduced.
  • FIG. 4 is a top view of the rotor 40 of the brushless motor 100 according to Embodiment 2 of the present invention. Since the basic configuration is the same as that of the first embodiment, the differences will be mainly described below.
  • the slot portion 22s has a V shape that spreads in the radial direction of the rotor with the central portion of the slot as the bottom.
  • the convex part 25 similar to Embodiment 1 is provided so that radial width T near the center of the slot center part 24 may become the smallest.
  • the position of the slot central portion 24 can be brought closer to the center side of the rotor core 21. If it does so, the area of the outer peripheral side from the slot part 22s of the rotor core 21 will become a fan shape, and will become large. As a result, the magnetic flux can more easily pass and the reverse magnetic field can be easily guided to the vicinity of the center of the slot central portion 24.
  • the irreversible demagnetization of the magnet can be further reduced than in the first embodiment, and a brushless motor having high efficiency and high demagnetization resistance can be realized.
  • FIG. 5 is a top view of the rotor 50 of the brushless motor 100 according to Embodiment 3 of the present invention.
  • the difference from the second embodiment is that the location of the convex portion 25 of the slot central portion 24 is linear. That is, the surface on the rotor center side of the slot center portion 24 is a straight portion 26 that is a straight line perpendicular to the axis L connecting the center point of the slot center portion 24 and the center point of the rotor 50.
  • the radial width T in the vicinity of the center of the slot central portion 24 can be made the smallest, so the shape becomes very simple compared to the convex portion 25, and the manufacturing becomes easier and the cost is reduced. Can be planned.
  • FIG. 6 is a top view of the rotor 60 of the brushless motor 100 according to Embodiment 4 of the present invention.
  • the rotor 60 of the present embodiment has a configuration in which a magnet stopper 27 is further provided on the rotor 50 of the third embodiment.
  • a magnet stopper 27 is provided in the slot central portion 24.
  • the magnet stopper 27 is realized by making the width S2 of the slot central portion 24 smaller than the width S1 of the slot portion in which the magnets 23a and 23b are embedded.
  • the effects described in the first to third embodiments are not hindered by preventing the magnets 23a and 23b from approaching the vicinity of the center of the slot central portion 24 where the reverse magnetic field is concentrated when the rotor 60 is assembled or the motor is used. In addition, the performance can always be maintained.
  • the brushless motor of the present invention has high efficiency and high demagnetization resistance, it can be applied to various electric devices such as compressors and air conditioners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本ブラシレスモータは、ステータコアに巻線を施してなるステータと、ステータと僅かな空隙を介して対向し、回転自在に保持されたロータとを有するブラシレスモータであって、ロータは1極あたり2つの磁石が埋設される少なくとも1つのスロット部を備え、2つの磁石の間のスロット中央部の中心近傍の径方向の幅を、スロット部の他の部分の幅より小さくした。また、本ブラシレスモータは、スロット部を、スロット中央部を底部として径方向に広がるV字状としている。また、本ブラシレスモータは、スロット中央部の中心近傍に、スロット中央部の内側に向けて突出する凸部を設けている。

Description

ブラシレスモータ
 本発明はブラシレスモータの構造に関するものである。
 このようなブラシレスモータの1つとして、ロータコアに設けられたスロット部に磁石を配置する磁石埋め込み型のブラシレスモータがある。この磁石埋め込み型のブラシレスモータは、マグネットトルクに加え、リラクタンストルクを得ることができるため、高効率が要求される圧縮機用モータ等に使用されている。
 磁石埋め込み型のロータコアにおいて、1極中に2つのスロット部を備えた構成、すなわち、スロット部それぞれに1つの磁石を配置して2つのスロット部の間を物理的に離した場合、その2つのスロット部の間の金属部分で、ロータコアの外周側と中心側で繋がることになる。そして、磁石によって発生した磁束がスロット部間でのこの金属箇所を通り、その結果、磁石で発生した磁束の漏れがその部分で発生する。そのため、2つのスロット部を物理的につないで1つのスロット部とする場合も有る。
 ところで、上記磁石は、高温または高逆磁界にさらされると不可逆減磁を起こしてしまうことがある。このため、保磁力の大きな磁石を用いたり、あるいは磁石自体の厚さを大きくしたりするなどして、不可逆減磁が起きないようにすることもある。また、逆磁界は磁石に対して局所的に作用することから、逆磁界が集中する磁石端近傍に空隙を設けることもある(例えば、特許文献1参照)。
 しかしながら、2つのスロット部をつないで1つのスロット部にしてロータコアの外周側と中心側を分離しつつ、さらに逆磁界が集中する磁石端近傍に空隙を設けたとしても、ステータ側より発生する逆磁界がさらに大きくなるような場合では、十分に磁石の不可逆減磁を低減することができなかった。
特開2003-143788号公報
 本発明のブラシレスモータは、ステータコアに巻線を施してなるステータと、ステータと空隙を介して対向し、回転自在に保持されたロータとを有するブラシレスモータである。本ブラシレスモータのロータは、1極あたり2つの磁石が埋設される1つのスロット部を備え、2つの磁石の間のスロット中央部の中心近傍の径方向の幅を、スロット部の他の部分の幅より小さくしたものである。この構成により、スロット中央部での漏れ磁束を抑制しつつ、逆磁界をスロット中央部中心付近に導くことで磁石にかかる逆磁界を低減できる。
 また、本発明のブラシレスモータは、スロット部が、スロット中央部を底部として径方向に広がるV字状であることを特徴とする。この構成により、ロータコアのスロット部より外周側の面積がより大きくなることで、磁束がより通り易くなり、逆磁界をスロット中央部中心付近へ導きやすくなることで、磁石にかかる逆磁界を低減できる。
 また、本発明のブラシレスモータは、スロット中央部の中心近傍に、スロット中央部の内側に向けて突出する凸部を設けたことを特徴とする。凸部を設けることで容易にスロット中央部の中心近傍の径方向の幅を小さくすることができる。
 また、本発明のブラシレスモータは、スロット部がV字状に配置されており、さらに、スロット中央部のロータ中心側の面が、スロット中央部の中心点とロータの中心点とを結ぶ軸に対し垂直な直線状であることを特徴とする。この構成により、容易にスロット中央部の中心付近の径方向の幅を最も小さくすることができ、かつ製造が簡単になる。
 また、本発明のブラシレスモータは、スロット中央部の中心近傍の径方向の最小の幅を、ステータとロータとの間の僅かな空隙の2倍以上としたことを特徴とする。この構成により、モータ駆動時には、磁束がスロット中央部の中心近傍よりも、ステータ側へ流れやすくなり、有効な磁束の漏れを小さくすることができる。
 また、本発明のブラシレスモータは、スロット中央部に、磁石の動きを規制する磁石止め部を設けたことを特徴とする。この構成により、ロータの組立て時やモータの使用中に、磁石がスロット中央部側へ移動することがないので、前述した効果を維持することができる。
 以上のように、本発明のブラシレスモータは、スロット中央部での漏れ磁束を抑制しつつ、逆磁界をスロット中央部の中心付近に導くことで磁石にかかる逆磁界を低減できる。
図1は、本発明の実施の形態1に係るブラシレスモータの上面図である。 図2は、同ブラシレスモータのロータの上面図である。 図3Aは、実施の形態1における磁力線の流れを示す図である。 図3Bは、比較例における磁力線の流れを示す図である。 図4は、本発明の実施の形態2に係るブラシレスモータのロータの上面図である。 図5は、本発明の実施の形態3に係るブラシレスモータのロータの上面図である。 図6は、本発明の実施の形態4に係るブラシレスモータのロータの上面図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係るブラシレスモータ100の上面図である。ブラシレスモータ100は、ステータ10と、そのステータ10と僅かな隙間を介して対向し、回転自在に保持されたロータ20とを備えている。特に、本実施の形態のブラシレスモータ100は、磁石埋め込み型のブラシレスモータであり、ロータ20に形成された磁石埋設孔に永久磁石を装着している。
 ステータ10は、ステータコア11と、巻線15とを備えている。ステータコア11は、例えば複数の電磁鋼板を積層して形成され、環状のヨーク12と、ヨーク12の内部に配置された複数のティース13とを有している。また、隣り合うティース13間には、ステータスロット14が設けられている。そして、ティース13には、巻線15が巻回されている。このようなステータ10の内周側に、図1に示すように、ロータ20が配置されている。
 図2は、図1のロータ20を拡大した図であり、軸方向から見たロータ20の上面図である。ロータ20は、金属のロータコア21と、永久磁石である磁石23a、23bと、ロータコア21の中央に配置された回転軸30とを含む。
 ロータコア21は、ステータコア11と同様に、薄い板状体の電磁鋼板を複数枚軸方向に積層して構成されている。そして、ロータコア21には、電磁鋼板部分である金属コア部22mに対し、2つの磁石23a、23bを埋設するための長方形状の孔である磁石埋設孔としてのスロット部22sが設けられている。ここで、特に、本実施の形態では、スロット部22sが、1極中に2つの磁石23a、23bを埋設する構成である。すなわち、図2のように、1つのスロット部22sにおいて、磁石23aと23bとの外側の面どうしが同じ極、内側の面どうしも同じ極であり、かつ内側の面が外側の面に対して異極となるように、磁石23a、23bそれぞれを配置している。ロータコア21は、このようなスロット部22sを複数有しており、それぞれが周方向に所定間隔で、かつロータコア21の外周から同じ位置となるように形成されている。磁石23a、23bは、金属コア部22mに形成された空気孔であるこれらスロット部22sに挿入され、スロット部22s両面の金属コア部22mにて挟み込み固定されるか、あるいは樹脂や接着剤などで固着されている。
 さらに、図2のように上面から見て、磁石23aと磁石23bとの長手方向の合計寸法をスロット部22sの寸法よりも小さくしている。このような磁石23aと磁石23bとを、それぞれスロット部22sの端部に配置することで、磁石23aと磁石23bとの間に十分な隙間を形成している。すなわち、磁石23aと磁石23bとの間で、スロット部22sの中央部分には、磁石が配置されない空間であるスロット中央部24が設けられている。そして、径方向においては、このスロット部22sを境にして、ロータコア21の外周側と中心側がほぼ分離されることになる。
 本実施の形態では、上記の背景技術で説明したスロット部それぞれに1つの磁石を配置して2つのスロット部の間を物理的に離した従来の構成に対し、まず、このような1つのスロット部22s中の2つの磁石間の空間となるスロット中央部24を設けた構成としている。本実施の形態では、このような構成とすることで、上記の背景技術で説明したような磁束の漏れを抑制している。
 次に、巻線15に電流が通電され、磁石23a、23bの磁化方向と逆向きの磁界が磁石23a、23bにかかるような場合を考える。つまり、ステータコア11に発生した磁束が、僅かな空隙を通りロータ20側へ向かい、磁石23a、23bに逆磁界がかかる場合である。
 その逆磁界が磁石23a、23bの減磁耐力以上であれば、なんらかの対策が必要となる。そこで、そのような対策の一手法として、磁石23a、23bが受ける逆磁界を小さくするために、磁石23a、23bよりも、より磁力線が通り易い透磁率が高い場所を設けてやれば良い。言い換えれば、ステータコア11からロータ20へ向かってくる磁束を、磁力線が通り易い場所へ導くことで、磁石23a、23bに対して生じる逆磁界を低減できる。よって、磁石23a、23bには、不可逆減磁が生じる可能性が低くなる。
 ところで、このように磁力線が通り易い透磁率が高い場所としては、磁石23a、23bが逆磁界の影響を受け難いような適切な場所に形成する必要がある。すなわち、透磁率が高い場所には多くの磁束が集中して逆磁界の影響が強いため、透磁率が高い場所としては、磁石23a、23bから適切な距離を保ち、磁石23a、23bから離れている場所に位置することが望ましい。そして、磁石23a、23bに向かって流れていた磁束を、この透磁率が高い場所へ導いてやれば良い。
 そこで、本実施の形態において、透磁率が高い場所は、磁石23aと磁石23bとの間の中心近傍の径方向の幅がスロット部22sの他の部分の幅より小さくなるようなスロット中央部24を形成している。
 具体的には、磁石23aと磁石23bとの間に位置するスロット中央部24に、スロット部22sの幅Tが最も短くなるように、金属コア部22mが外周方向に向けてスロット部22s内に突出する凸部25を形成している。ロータコア21の径方向において、この凸部25によりスロット中央部24の形状としては、スロット中央部24を形成する空間がへこむような凹形状となる。詳しくは、スロット中央部24のロータ中心側の面において、外周方向に向けて突出した凸部25を設けた構成となっている。
 本構成とすれば、スロット中央部24は、磁気抵抗が大きい空気層の幅が狭くなるため、透磁率が高くなる。よって、スロット中央部24近傍に流れる磁力線は、凸部25に導かれるような磁束を形成する。
 図3Aは、このようなスロット中央部24を形成した本実施の形態における磁力線の流れを示す図であり、図3Bは、図3Aと比較するために示した比較例における磁力線の流れを示す図である。図3Aに示す本実施の形態は、上述したとおり、1つのスロット部22sに2つの磁石23a、23bを配置し、磁石23aと磁石23bとの間には、凸部25を含むスロット中央部24が形成される。これに対し、図3Bに示す比較例では、1つのスロット部92sに1つの磁石93を配置したロータ90の場合を示しており、スロット部の中央付近には空間を有していない。
 この結果、図3Bに示す比較例のように、スロット部92sの端部とロータ90の外周の間に位置するブリッジ部99に集中していた磁束B10や、磁石93の磁化方向と逆に発生していた磁束B11は、図3Aに示す本実施の形態のように、スロット中央部24に生じている磁束B21は凸部25へと導かれる。この影響を受け、ブリッジ部29に生じる磁束B20も減少する。したがって、磁石23a、23bにかかる逆磁界が低減し、不可逆減磁を抑制できる。
 以上のことから、磁石で発生した磁束の漏れを低減しつつ、かつ磁石の不可逆減磁を抑制できるので、高効率で高減磁耐力をもつブラシレスモータを実現することができる。
 なお、磁石によって発生した磁束は、ステータとロータとの間の僅かな空隙を通りステータ側に流れることによって、トルクを発生させるための有効な磁束となる。よって、モータの駆動時には、磁石によって発生した磁束がスロット中央部24へ流れないようにするほうが望ましい。
 そのため、スロット中央部24の中心付近の径方向の幅Tは、ステータ10とロータ20との間の僅かな空隙の2倍以上にすることが好ましい。磁石で発生した有効な磁束は、僅かな空隙を通りステータ側に流れ、ステータ側がら再度空隙を通りロータ側に戻るため、磁路として僅かな空隙を2回通ることになる。そこで、スロット中央部24の中心付近の径方向の幅Tを、その僅かな空隙の2倍以上にしてやれば、有効な磁束の磁路の磁気抵抗よりもスロット中央部の中心付近の磁気抵抗が大きくなる。これにより、モータの駆動時に、磁束はスロット中央部の中心付近よりもステータ側へ流れやすくなり、有効な磁束の漏れを小さくすることができる。
 (実施の形態2)
 図4は、本発明の実施の形態2に係るブラシレスモータ100のロータ40の上面図である。基本的な構成は実施の形態1と同じなので、相違点を中心に以下説明する。
 本実施の形態のロータ40では、スロット部22sが、スロット中央部を底部としてロータの径方向に向けて広がるV字状となっている。そして、スロット中央部24の中心付近の径方向の幅Tが最も小さくなるように、実施の形態1と同様の凸部25を設けている。
 スロット部22sをV字状にすることで、スロット中央部24の位置を、よりロータコア21の中心側にもってくることができる。そうすると、ロータコア21のスロット部22sより外周側の面積が、扇形状になって大きくなる。その結果、磁束がより通り易くなり、逆磁界をスロット中央部24の中心付近へ導きやすくなる。
 そのため、本実施の形態では、実施の形態1よりさらに磁石の不可逆減磁を低減することができ、高効率で高減磁耐力をもつブラシレスモータを実現することができる。
 (実施の形態3)
 図5は、本発明の実施の形態3に係るブラシレスモータ100のロータ50の上面図である。本実施の形態2との相違点は、スロット中央部24の凸部25の箇所が直線状になっている点である。つまり、スロット中央部24のロータ中心側の面を、スロット中央部24の中心点とロータ50の中心点とを結ぶ軸Lに対して垂直な直線状である直線部26としている。
 この構成とすれば、スロット中央部24の中心付近の径方向の幅Tを最も小さくすることができるので、凸部25にくらべて形状が非常に簡単になるので、製造がしやすくなりコストダウンが図れる。
 (実施の形態4)
 図6は、本発明の実施の形態4に係るブラシレスモータ100のロータ60の上面図である。本実施の形態のロータ60は、実施の形態3のロータ50に、磁石止め27をさらに設けた構成としている。磁石23a、23bのそれぞれがスロット中央部24中心付近に寄ることを防ぐための位置決めとして、スロット中央部24に磁石止め27を設けている。
 この磁石止め27は、磁石23a、23bが埋設されるスロット部の幅S1より、スロット中央部24の幅S2を小さくすることで実現している。
 ロータ60の組立て時やモータ使用中に磁石23a、23bが、逆磁界が集中するスロット中央部24の中心付近に近づかないようにして、実施形態1~3で説明したような効果が阻害されずに、常時性能を維持することができる。
 本発明のブラシレスモータは高効率で高減磁耐力を有しているので、圧縮機をはじめ、空調機など各種電気機器に適用可能である。
 10  ステータ
 11  ステータコア
 12  ヨーク
 13  ティース
 14  ステータスロット
 15  巻線
 20,40,50,60,90  ロータ
 21  ロータコア
 22s,92s  スロット部
 22m  金属コア部
 23a,23b,93  磁石
 24  スロット中央部
 25  凸部
 26  直線部
 27  磁石止め
 29,99  ブリッジ部
 30  回転軸
 100  ブラシレスモータ

Claims (7)

  1. ステータコアに巻線を施してなるステータと、前記ステータと空隙を介して対向し、回転自在に保持されたロータとを有するブラシレスモータであって、
    前記ロータは1極あたり2つの磁石が埋設される1つのスロット部を備え、
    前記2つの磁石の間のスロット中央部の中心近傍の径方向の幅を、前記スロット部の他の部分の幅より小さくしたことを特徴とするブラシレスモータ。
  2. 前記スロット部は、前記スロット中央部を底部として径方向に広がるV字状であることを特徴とする請求項1に記載のブラシレスモータ。
  3. 前記スロット中央部の中心近傍に、前記スロット中央部の内側に向けて突出する凸部を設けたことを特徴とする請求項1に記載のブラシレスモータ。
  4. 前記スロット中央部の中心近傍に、前記スロット中央部の内側に向けて突出する凸部を設けたことを特徴とする請求項2に記載のブラシレスモータ。
  5. 前記スロット中央部のロータ中心側の面が、前記スロット中央部の中心点と前記ロータの中心点とを結ぶ軸に対し垂直な直線状であることを特徴とする請求項2に記載のブラシレスモータ。
  6. 前記スロット中央部の中心近傍の径方向の最小の幅を、前記ステータと前記ロータとの間の空隙の2倍以上としたことを特徴とする請求項1~5のいずれか1項に記載のブラシレスモータ。
  7. 前記スロット中央部に、前記磁石の動きを規制する磁石止め部を設けたことを特徴とする請求項6に記載のブラシレスモータ。
PCT/JP2016/004229 2015-09-25 2016-09-16 ブラシレスモータ WO2017051522A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017541421A JP6748852B2 (ja) 2015-09-25 2016-09-16 ブラシレスモータ
CN201690000522.4U CN207518374U (zh) 2015-09-25 2016-09-16 无刷电动机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-188173 2015-09-25
JP2015188173 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051522A1 true WO2017051522A1 (ja) 2017-03-30

Family

ID=58385879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004229 WO2017051522A1 (ja) 2015-09-25 2016-09-16 ブラシレスモータ

Country Status (3)

Country Link
JP (1) JP6748852B2 (ja)
CN (1) CN207518374U (ja)
WO (1) WO2017051522A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200095871A (ko) * 2019-02-01 2020-08-11 엘지전자 주식회사 모터 및 이를 구비한 압축기
JP2020191710A (ja) * 2019-05-20 2020-11-26 株式会社ジェイテクト 埋込磁石型ロータおよび埋込磁石型ロータの製造方法
EP4015025A1 (en) 2016-06-13 2022-06-22 Fisher & Paykel Healthcare Limited Nasal seal and respiratory interface
USD960086S1 (en) 2017-07-25 2022-08-09 Milwaukee Electric Tool Corporation Battery pack
US11780061B2 (en) 2019-02-18 2023-10-10 Milwaukee Electric Tool Corporation Impact tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106370A (ja) * 2011-11-10 2013-05-30 Shin Etsu Chem Co Ltd モータおよび圧縮機
JP2014082852A (ja) * 2012-10-16 2014-05-08 Suzuki Motor Corp Ipm型電動回転機
EP2752971A1 (en) * 2013-01-03 2014-07-09 ABB Technology AG Rotor for an electric machine and electric machine including the same
JP2015109772A (ja) * 2013-12-05 2015-06-11 日産自動車株式会社 ロータ及びロータの製造方法
EP2889987A2 (en) * 2013-12-30 2015-07-01 Hyundai Motor Company Rotor of interior permanent magnet motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106370A (ja) * 2011-11-10 2013-05-30 Shin Etsu Chem Co Ltd モータおよび圧縮機
JP2014082852A (ja) * 2012-10-16 2014-05-08 Suzuki Motor Corp Ipm型電動回転機
EP2752971A1 (en) * 2013-01-03 2014-07-09 ABB Technology AG Rotor for an electric machine and electric machine including the same
JP2015109772A (ja) * 2013-12-05 2015-06-11 日産自動車株式会社 ロータ及びロータの製造方法
EP2889987A2 (en) * 2013-12-30 2015-07-01 Hyundai Motor Company Rotor of interior permanent magnet motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4015025A1 (en) 2016-06-13 2022-06-22 Fisher & Paykel Healthcare Limited Nasal seal and respiratory interface
USD960086S1 (en) 2017-07-25 2022-08-09 Milwaukee Electric Tool Corporation Battery pack
US11462794B2 (en) 2017-07-25 2022-10-04 Milwaukee Electric Tool Corporation High power battery-powered system
US11476527B2 (en) 2017-07-25 2022-10-18 Milwaukee Electric Tool Corporation High power battery-powered system
KR20200095871A (ko) * 2019-02-01 2020-08-11 엘지전자 주식회사 모터 및 이를 구비한 압축기
KR102174640B1 (ko) * 2019-02-01 2020-11-05 엘지전자 주식회사 모터 및 이를 구비한 압축기
US11780061B2 (en) 2019-02-18 2023-10-10 Milwaukee Electric Tool Corporation Impact tool
JP2020191710A (ja) * 2019-05-20 2020-11-26 株式会社ジェイテクト 埋込磁石型ロータおよび埋込磁石型ロータの製造方法
JP7293859B2 (ja) 2019-05-20 2023-06-20 株式会社ジェイテクト 埋込磁石型ロータおよび埋込磁石型ロータの製造方法

Also Published As

Publication number Publication date
JPWO2017051522A1 (ja) 2018-07-12
JP6748852B2 (ja) 2020-09-02
CN207518374U (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
US8890385B2 (en) Rotor for rotary electric machine
JP5353917B2 (ja) 回転電機用回転子
US10033234B2 (en) Motor
JP5643127B2 (ja) 回転電機用回転子
US9013082B2 (en) Rotating machine and rotor thereof
CN112838693B (zh) 旋转电机
WO2017051522A1 (ja) ブラシレスモータ
JP6597184B2 (ja) 永久磁石型モータ
JP5709907B2 (ja) 車両用永久磁石埋込型回転電機
KR20170043464A (ko) 회전 전기 기기, 회전자 철심의 제조 방법
JP2009136040A (ja) 回転電機の回転子
JP5725202B2 (ja) 電動機
JP2014150626A (ja) 永久磁石型モータ用ロータ、永久磁石型モータ用ロータの製造方法及び永久磁石型モータ
WO2018117195A1 (ja) 回転電気機械
JP2016005419A (ja) 永久磁石電動機
JP4291211B2 (ja) 回転電機の回転子および回転電機
JP2013051840A (ja) ロータ
JP2013176267A (ja) ロータ
JP5750995B2 (ja) 同期電動機
JP2017046386A (ja) 永久磁石電動機
AU2015225336B2 (en) Rotor
JP2015006110A (ja) モータ装置
WO2022114176A1 (ja) 電動機
JP2011244687A (ja) 電動機及び分割固定子鉄心の製造方法
KR102390035B1 (ko) 자속 집중형 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848313

Country of ref document: EP

Kind code of ref document: A1